|
--- |
|
language: |
|
- eu |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_13_0 |
|
metrics: |
|
- wer |
|
base_model: openai/whisper-medium |
|
model-index: |
|
- name: Whisper Small Basque |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_13_0 eu |
|
type: mozilla-foundation/common_voice_13_0 |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- type: wer |
|
value: 12.839726193851513 |
|
name: Wer |
|
--- |
|
|
|
# Whisper Small Basque |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2287 |
|
- Wer: 12.8397 |
|
|
|
If you need to use this model with [whisper.cpp](https://github.com/ggerganov/whisper.cpp), you can download the ggml file: [ggml-medium-eu.bin](https://huggingface.co/xezpeleta/whisper-medium-eu/blob/main/ggml-medium.eu.bin) |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.4415 | 0.06 | 500 | 0.5092 | 36.9699 | |
|
| 0.4206 | 0.12 | 1000 | 0.4144 | 28.3365 | |
|
| 0.272 | 0.19 | 1500 | 0.3554 | 24.7438 | |
|
| 0.2681 | 0.25 | 2000 | 0.3271 | 22.1414 | |
|
| 0.2099 | 0.31 | 2500 | 0.2973 | 19.5350 | |
|
| 0.2283 | 0.38 | 3000 | 0.2760 | 18.5042 | |
|
| 0.1477 | 1.03 | 3500 | 0.2637 | 17.1493 | |
|
| 0.1008 | 1.09 | 4000 | 0.2592 | 16.3939 | |
|
| 0.0866 | 1.15 | 4500 | 0.2561 | 15.8066 | |
|
| 0.0915 | 1.21 | 5000 | 0.2411 | 15.0310 | |
|
| 0.0803 | 1.28 | 5500 | 0.2330 | 14.7616 | |
|
| 0.0674 | 1.34 | 6000 | 0.2325 | 13.8462 | |
|
| 0.0679 | 1.4 | 6500 | 0.2299 | 13.5809 | |
|
| 0.027 | 2.05 | 7000 | 0.2304 | 13.3805 | |
|
| 0.0231 | 2.11 | 7500 | 0.2287 | 12.8397 | |
|
| 0.0285 | 2.18 | 8000 | 0.2304 | 12.8883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|