metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1432
- loss:MultipleNegativesRankingLoss
base_model: denaya/indoSBERT-large
widget:
- source_sentence: >-
Input-output domestik Indonesia: 17 sektor usaha, harga produsen, data
tahun 2016 (juta Rp)
sentences:
- 'Impor Besi dan Baja Menurut Negara Asal Utama, 2017-2023 '
- >-
IHK dan Rata-rata Upah per Bulan Buruh Hotel di Bawah Mandor
(Supervisor), 1996-2014 (1996=100)
- >-
Tabel Input-Output Indonesia Transaksi Domestik Atas Dasar Harga
Produsen (17 Lapangan Usaha), 2016 (Juta Rupiah)
- source_sentence: 'Gaji bulanan: beda umur, beda jenis pekerjaan (9 sektor), 2017'
sentences:
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Kelompok Umur dan Lapangan Pekerjaan Utama di 9 Sektor (Rupiah), 2017
- >-
Ekspor Rumput Laut dan Ganggang Lainnya menurut Negara Tujuan Utama,
2012-2023
- 'Rata-Rata Harga Valuta Asing Terpilih menurut Provinsi 2017 '
- source_sentence: Ringkasan aliran dana kuartal terakhir 2009 dalam Rupiah
sentences:
- >-
Jumlah Perahu/Kapal, Luas Usaha Budidaya dan Produksi menurut Sub Sektor
Perikanan, 2002-2016
- >-
Jumlah Pendapatan Menurut Golongan Rumah Tangga (miliar rupiah) 2000,
2005, dan 2008
- 'Ringkasan Neraca Arus Dana, Triwulan IV, 2009, (Miliar Rupiah) '
- source_sentence: >-
Berapa total transaksi (harga pembeli) untuk 9 sektor ekonomi di Indonesia
tahun 2005? (miliar rupiah)
sentences:
- >-
Jumlah Rumah Tangga Perikanan Budidaya Menurut Provinsi dan Jenis
Budidaya, 2000-2016
- >-
Transaksi Total Atas Dasar Harga Pembeli 9 Sektor Ekonomi (miliar
rupiah), 2005
- >-
Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
Pulau Jawa dan Sumatera dengan Nasional (2018=100)
- source_sentence: >-
Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk usia 15+
pada tahun 2022?
sentences:
- 'Persentase Perkembangan Distribusi Pengeluaran '
- >-
Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Lapangan
Pekerjaan Utama (ribu rupiah), 2018
- >-
Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang
Ditamatkan dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on denaya/indoSBERT-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.9120521172638436
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.990228013029316
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.993485342019544
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.996742671009772
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9120521172638436
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3572204125950054
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.23778501628664495
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.13745928338762217
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7097252402956855
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7867346590488319
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8052359035035943
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8221312325947948
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8348212945928647
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9497052892818366
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7729410950742827
name: Cosine Map@100
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates dev
type: quora_duplicates_dev
metrics:
- type: cosine_accuracy
value: 0.9914529914529915
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.31953397393226624
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9850953206239168
name: Cosine F1
- type: cosine_f1_threshold
value: 0.30364981293678284
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.988865692414753
name: Cosine Precision
- type: cosine_recall
value: 0.981353591160221
name: Cosine Recall
- type: cosine_ap
value: 0.9956970583311449
name: Cosine Ap
- type: cosine_mcc
value: 0.9791180702139771
name: Cosine Mcc
SentenceTransformer based on denaya/indoSBERT-large
This is a sentence-transformers model finetuned from denaya/indoSBERT-large. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: denaya/indoSBERT-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-bpstable-v1")
# Run inference
sentences = [
'Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk usia 15+ pada tahun 2022?',
'Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024 ',
'Persentase Perkembangan Distribusi Pengeluaran ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9121 |
cosine_accuracy@3 | 0.9902 |
cosine_accuracy@5 | 0.9935 |
cosine_accuracy@10 | 0.9967 |
cosine_precision@1 | 0.9121 |
cosine_precision@3 | 0.3572 |
cosine_precision@5 | 0.2378 |
cosine_precision@10 | 0.1375 |
cosine_recall@1 | 0.7097 |
cosine_recall@3 | 0.7867 |
cosine_recall@5 | 0.8052 |
cosine_recall@10 | 0.8221 |
cosine_ndcg@10 | 0.8348 |
cosine_mrr@10 | 0.9497 |
cosine_map@100 | 0.7729 |
Binary Classification
- Dataset:
quora_duplicates_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9915 |
cosine_accuracy_threshold | 0.3195 |
cosine_f1 | 0.9851 |
cosine_f1_threshold | 0.3036 |
cosine_precision | 0.9889 |
cosine_recall | 0.9814 |
cosine_ap | 0.9957 |
cosine_mcc | 0.9791 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,432 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 tokens
- mean: 16.84 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 20.88 tokens
- max: 48 tokens
- 1: 100.00%
- Samples:
sentence_0 sentence_1 label Average monthly net wage/salary of employees by age group and type of work (Rupiah), 2018
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur dan Jenis Pekerjaan (Rupiah), 2018
1
Cek average real wage buruh industri pengolahan (level bawah) sekitar tahun 2009
Rata-rata Upah Riil Per Bulan Buruh Industri Pengolahan di Bawah Mandor, 2005-2014 (1996=100)
1
Dimana saya bisa lihat rekapitulasi dokumen RPB kabupaten/kota?
Rekap Dokumen RPB Kabupaten/Kota
1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 30fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | eval_cosine_ndcg@10 | quora_duplicates_dev_cosine_ap |
---|---|---|---|---|
0.2222 | 20 | - | 0.7769 | - |
0.4444 | 40 | - | 0.8167 | - |
0.6667 | 60 | - | 0.8221 | - |
0.8889 | 80 | - | 0.8282 | - |
1.0 | 90 | - | 0.8256 | - |
1.1111 | 100 | - | 0.8278 | - |
1.3333 | 120 | - | 0.8388 | - |
1.5556 | 140 | - | 0.8347 | - |
1.7778 | 160 | - | 0.8351 | - |
2.0 | 180 | - | 0.8407 | - |
2.2222 | 200 | - | 0.8302 | - |
2.4444 | 220 | - | 0.8261 | - |
2.6667 | 240 | - | 0.8217 | - |
2.8889 | 260 | - | 0.8161 | - |
3.0 | 270 | - | 0.8143 | - |
3.1111 | 280 | - | 0.8133 | - |
3.3333 | 300 | - | 0.8259 | - |
3.5556 | 320 | - | 0.8342 | - |
3.7778 | 340 | - | 0.8267 | - |
4.0 | 360 | - | 0.8190 | - |
4.2222 | 380 | - | 0.8193 | - |
4.4444 | 400 | - | 0.8281 | - |
4.6667 | 420 | - | 0.8283 | - |
4.8889 | 440 | - | 0.8197 | - |
5.0 | 450 | - | 0.8211 | - |
5.1111 | 460 | - | 0.8118 | - |
5.3333 | 480 | - | 0.8298 | - |
5.5556 | 500 | 0.0412 | 0.8283 | - |
5.7778 | 520 | - | 0.8264 | - |
6.0 | 540 | - | 0.8271 | - |
6.2222 | 560 | - | 0.8243 | - |
6.4444 | 580 | - | 0.8256 | - |
6.6667 | 600 | - | 0.8356 | - |
6.8889 | 620 | - | 0.8332 | - |
7.0 | 630 | - | 0.8250 | - |
7.1111 | 640 | - | 0.8179 | - |
7.3333 | 660 | - | 0.8356 | - |
7.5556 | 680 | - | 0.8400 | - |
7.7778 | 700 | - | 0.8349 | - |
8.0 | 720 | - | 0.8281 | - |
8.2222 | 740 | - | 0.8330 | - |
8.4444 | 760 | - | 0.8338 | - |
8.6667 | 780 | - | 0.8338 | - |
8.8889 | 800 | - | 0.8344 | - |
9.0 | 810 | - | 0.8319 | - |
9.1111 | 820 | - | 0.8328 | - |
9.3333 | 840 | - | 0.8325 | - |
9.5556 | 860 | - | 0.8375 | - |
9.7778 | 880 | - | 0.8306 | - |
10.0 | 900 | - | 0.8263 | - |
10.2222 | 920 | - | 0.8280 | - |
10.4444 | 940 | - | 0.8272 | - |
10.6667 | 960 | - | 0.8280 | - |
10.8889 | 980 | - | 0.8313 | - |
11.0 | 990 | - | 0.8307 | - |
11.1111 | 1000 | 0.0198 | 0.8324 | - |
11.3333 | 1020 | - | 0.8303 | - |
11.5556 | 1040 | - | 0.8262 | - |
11.7778 | 1060 | - | 0.8294 | - |
12.0 | 1080 | - | 0.8309 | - |
12.2222 | 1100 | - | 0.8274 | - |
12.4444 | 1120 | - | 0.8312 | - |
12.6667 | 1140 | - | 0.8371 | - |
12.8889 | 1160 | - | 0.8408 | - |
13.0 | 1170 | - | 0.8374 | - |
13.1111 | 1180 | - | 0.8344 | - |
13.3333 | 1200 | - | 0.8341 | - |
13.5556 | 1220 | - | 0.8333 | - |
13.7778 | 1240 | - | 0.8388 | - |
14.0 | 1260 | - | 0.8414 | - |
14.2222 | 1280 | - | 0.8344 | - |
14.4444 | 1300 | - | 0.8328 | - |
14.6667 | 1320 | - | 0.8340 | - |
14.8889 | 1340 | - | 0.8317 | - |
15.0 | 1350 | - | 0.8260 | - |
15.1111 | 1360 | - | 0.8252 | - |
15.3333 | 1380 | - | 0.8244 | - |
15.5556 | 1400 | - | 0.8269 | - |
15.7778 | 1420 | - | 0.8275 | - |
16.0 | 1440 | - | 0.8281 | - |
16.2222 | 1460 | - | 0.8294 | - |
16.4444 | 1480 | - | 0.8299 | - |
16.6667 | 1500 | 0.0136 | 0.8318 | - |
16.8889 | 1520 | - | 0.8320 | - |
17.0 | 1530 | - | 0.8332 | - |
17.1111 | 1540 | - | 0.8337 | - |
17.3333 | 1560 | - | 0.8299 | - |
17.5556 | 1580 | - | 0.8283 | - |
17.7778 | 1600 | - | 0.8309 | - |
18.0 | 1620 | - | 0.8329 | - |
18.2222 | 1640 | - | 0.8317 | - |
18.4444 | 1660 | - | 0.8313 | - |
18.6667 | 1680 | - | 0.8317 | - |
18.8889 | 1700 | - | 0.8356 | - |
19.0 | 1710 | - | 0.8345 | - |
19.1111 | 1720 | - | 0.8358 | - |
19.3333 | 1740 | - | 0.8334 | - |
19.5556 | 1760 | - | 0.8335 | - |
19.7778 | 1780 | - | 0.8318 | - |
20.0 | 1800 | - | 0.8326 | - |
20.2222 | 1820 | - | 0.8318 | - |
20.4444 | 1840 | - | 0.8335 | - |
20.6667 | 1860 | - | 0.8333 | - |
20.8889 | 1880 | - | 0.8335 | - |
21.0 | 1890 | - | 0.8341 | - |
21.1111 | 1900 | - | 0.8341 | - |
21.3333 | 1920 | - | 0.8355 | - |
21.5556 | 1940 | - | 0.8360 | - |
21.7778 | 1960 | - | 0.8343 | - |
22.0 | 1980 | - | 0.8351 | - |
22.2222 | 2000 | 0.015 | 0.8342 | - |
22.4444 | 2020 | - | 0.8342 | - |
22.6667 | 2040 | - | 0.8339 | - |
22.8889 | 2060 | - | 0.8342 | - |
23.0 | 2070 | - | 0.8345 | - |
23.1111 | 2080 | - | 0.8354 | - |
23.3333 | 2100 | - | 0.8366 | - |
23.5556 | 2120 | - | 0.8379 | - |
23.7778 | 2140 | - | 0.8386 | - |
24.0 | 2160 | - | 0.8367 | - |
24.2222 | 2180 | - | 0.8357 | - |
24.4444 | 2200 | - | 0.8372 | - |
24.6667 | 2220 | - | 0.8377 | - |
24.8889 | 2240 | - | 0.8373 | - |
25.0 | 2250 | - | 0.8367 | - |
25.1111 | 2260 | - | 0.8366 | - |
25.3333 | 2280 | - | 0.8369 | - |
25.5556 | 2300 | - | 0.8373 | - |
25.7778 | 2320 | - | 0.8366 | - |
26.0 | 2340 | - | 0.8354 | - |
26.2222 | 2360 | - | 0.8347 | - |
26.4444 | 2380 | - | 0.8344 | - |
26.6667 | 2400 | - | 0.8341 | - |
26.8889 | 2420 | - | 0.8343 | - |
27.0 | 2430 | - | 0.8344 | - |
27.1111 | 2440 | - | 0.8345 | - |
27.3333 | 2460 | - | 0.8344 | - |
27.5556 | 2480 | - | 0.8347 | - |
27.7778 | 2500 | 0.0136 | 0.8342 | - |
28.0 | 2520 | - | 0.8347 | - |
28.2222 | 2540 | - | 0.8346 | - |
28.4444 | 2560 | - | 0.8346 | - |
28.6667 | 2580 | - | 0.8347 | - |
28.8889 | 2600 | - | 0.8348 | - |
29.0 | 2610 | - | 0.8348 | - |
29.1111 | 2620 | - | 0.8348 | - |
29.3333 | 2640 | - | 0.8348 | - |
29.5556 | 2660 | - | 0.8348 | - |
29.7778 | 2680 | - | 0.8348 | - |
30.0 | 2700 | - | 0.8348 | - |
-1 | -1 | - | - | 0.9957 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}