yahyaabd's picture
Add new SentenceTransformer model
01286d7 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: denaya/indoSBERT-large
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
Jawa dan Sumatera dengan Nasional (2018=100)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
kedua tahun 2015?
sentences:
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
per provinsi, 2018?
sentences:
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
2012-2023
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
yang Ditamatkan (ribu rupiah), 2017
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
2002-2023
sentences:
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
1999, 2002-2023
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
Ditamatkan (ribu rupiah), 2016
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
(miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on denaya/indoSBERT-large
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 test
type: allstats-semantic-large-v1_test
metrics:
- type: cosine_accuracy
value: 0.9834364761558063
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7773222327232361
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9745739033249511
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7773222327232361
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9748462828395752
name: Cosine Precision
- type: cosine_recall
value: 0.9743016759776536
name: Cosine Recall
- type: cosine_ap
value: 0.9959810762137397
name: Cosine Ap
- type: cosine_mcc
value: 0.9622916280716365
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 dev
type: allstats-semantic-large-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9760905274685161
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7572722434997559
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9640997533570841
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7572722434997559
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9386339381003201
name: Cosine Precision
- type: cosine_recall
value: 0.9909859154929578
name: Cosine Recall
- type: cosine_ap
value: 0.9953499585582108
name: Cosine Ap
- type: cosine_mcc
value: 0.9469795586519781
name: Cosine Mcc
---
# SentenceTransformer based on denaya/indoSBERT-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 256 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-v1-32-2")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `allstats-semantic-large-v1_test` and `allstats-semantic-large-v1_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
|:--------------------------|:--------------------------------|:-------------------------------|
| cosine_accuracy | 0.9834 | 0.9761 |
| cosine_accuracy_threshold | 0.7773 | 0.7573 |
| cosine_f1 | 0.9746 | 0.9641 |
| cosine_f1_threshold | 0.7773 | 0.7573 |
| cosine_precision | 0.9748 | 0.9386 |
| cosine_recall | 0.9743 | 0.991 |
| **cosine_ap** | **0.996** | **0.9953** |
| cosine_mcc | 0.9623 | 0.947 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 25,580 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 17.12 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.47 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
* Samples:
| query | doc | label |
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 5,479 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.2 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
* Samples:
| query | doc | label |
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
|:--------:|:-------:|:-------------:|:---------------:|:-----------------------------------------:|:----------------------------------------:|
| -1 | -1 | - | - | 0.9750 | - |
| 0 | 0 | - | 0.1850 | - | 0.9766 |
| 0.025 | 20 | 0.1581 | 0.1538 | - | 0.9789 |
| 0.05 | 40 | 0.1898 | 0.1200 | - | 0.9848 |
| 0.075 | 60 | 0.0647 | 0.1096 | - | 0.9855 |
| 0.1 | 80 | 0.118 | 0.1242 | - | 0.9831 |
| 0.125 | 100 | 0.0545 | 0.1301 | - | 0.9827 |
| 0.15 | 120 | 0.0646 | 0.1114 | - | 0.9862 |
| 0.175 | 140 | 0.0775 | 0.1005 | - | 0.9865 |
| 0.2 | 160 | 0.0664 | 0.1234 | - | 0.9840 |
| 0.225 | 180 | 0.067 | 0.1349 | - | 0.9850 |
| 0.25 | 200 | 0.0823 | 0.1032 | - | 0.9877 |
| 0.275 | 220 | 0.0895 | 0.1432 | - | 0.9808 |
| 0.3 | 240 | 0.0666 | 0.1389 | - | 0.9809 |
| 0.325 | 260 | 0.0872 | 0.1122 | - | 0.9844 |
| 0.35 | 280 | 0.0551 | 0.1435 | - | 0.9838 |
| 0.375 | 300 | 0.0919 | 0.1068 | - | 0.9886 |
| 0.4 | 320 | 0.0437 | 0.0903 | - | 0.9861 |
| 0.425 | 340 | 0.0619 | 0.1065 | - | 0.9850 |
| 0.45 | 360 | 0.0469 | 0.1346 | - | 0.9844 |
| 0.475 | 380 | 0.029 | 0.1351 | - | 0.9828 |
| 0.5 | 400 | 0.0511 | 0.1123 | - | 0.9843 |
| 0.525 | 420 | 0.0394 | 0.1434 | - | 0.9815 |
| 0.55 | 440 | 0.0178 | 0.1577 | - | 0.9769 |
| 0.575 | 460 | 0.047 | 0.1253 | - | 0.9796 |
| 0.6 | 480 | 0.0066 | 0.1262 | - | 0.9791 |
| 0.625 | 500 | 0.0383 | 0.1277 | - | 0.9814 |
| 0.65 | 520 | 0.0084 | 0.1361 | - | 0.9845 |
| 0.675 | 540 | 0.0409 | 0.1202 | - | 0.9872 |
| 0.7 | 560 | 0.0372 | 0.1245 | - | 0.9854 |
| 0.725 | 580 | 0.0353 | 0.1469 | - | 0.9817 |
| 0.75 | 600 | 0.0429 | 0.1225 | - | 0.9836 |
| 0.775 | 620 | 0.0595 | 0.1082 | - | 0.9862 |
| 0.8 | 640 | 0.0266 | 0.0886 | - | 0.9903 |
| 0.825 | 660 | 0.0178 | 0.0712 | - | 0.9918 |
| **0.85** | **680** | **0.0567** | **0.0511** | **-** | **0.9936** |
| 0.875 | 700 | 0.0142 | 0.0538 | - | 0.9916 |
| 0.9 | 720 | 0.0136 | 0.0726 | - | 0.9890 |
| 0.925 | 740 | 0.0192 | 0.0707 | - | 0.9884 |
| 0.95 | 760 | 0.0253 | 0.0937 | - | 0.9872 |
| 0.975 | 780 | 0.0149 | 0.0792 | - | 0.9878 |
| 1.0 | 800 | 0.0231 | 0.0912 | - | 0.9879 |
| 1.025 | 820 | 0.0 | 0.1030 | - | 0.9871 |
| 1.05 | 840 | 0.0096 | 0.0990 | - | 0.9876 |
| 1.075 | 860 | 0.0 | 0.1032 | - | 0.9868 |
| 1.1 | 880 | 0.0 | 0.1037 | - | 0.9866 |
| 1.125 | 900 | 0.0 | 0.1038 | - | 0.9866 |
| 1.15 | 920 | 0.0 | 0.1038 | - | 0.9866 |
| 1.175 | 940 | 0.0 | 0.1038 | - | 0.9866 |
| 1.2 | 960 | 0.0121 | 0.1030 | - | 0.9895 |
| 1.225 | 980 | 0.0 | 0.1035 | - | 0.9899 |
| 1.25 | 1000 | 0.0 | 0.1040 | - | 0.9898 |
| 1.275 | 1020 | 0.0 | 0.1049 | - | 0.9898 |
| 1.3 | 1040 | 0.0 | 0.1049 | - | 0.9898 |
| 1.325 | 1060 | 0.0067 | 0.1015 | - | 0.9903 |
| 1.35 | 1080 | 0.0 | 0.1048 | - | 0.9901 |
| 1.375 | 1100 | 0.0159 | 0.0956 | - | 0.9910 |
| 1.4 | 1120 | 0.0067 | 0.0818 | - | 0.9926 |
| 1.425 | 1140 | 0.0151 | 0.0838 | - | 0.9926 |
| 1.45 | 1160 | 0.0 | 0.0889 | - | 0.9920 |
| 1.475 | 1180 | 0.0 | 0.0894 | - | 0.9920 |
| 1.5 | 1200 | 0.023 | 0.0696 | - | 0.9935 |
| 1.525 | 1220 | 0.0 | 0.0693 | - | 0.9935 |
| 1.55 | 1240 | 0.0 | 0.0711 | - | 0.9935 |
| 1.575 | 1260 | 0.0 | 0.0711 | - | 0.9935 |
| 1.6 | 1280 | 0.0 | 0.0711 | - | 0.9935 |
| 1.625 | 1300 | 0.0176 | 0.0743 | - | 0.9936 |
| 1.65 | 1320 | 0.0 | 0.0806 | - | 0.9931 |
| 1.675 | 1340 | 0.0 | 0.0817 | - | 0.9931 |
| 1.7 | 1360 | 0.007 | 0.0809 | - | 0.9929 |
| 1.725 | 1380 | 0.0209 | 0.0700 | - | 0.9941 |
| 1.75 | 1400 | 0.0068 | 0.0605 | - | 0.9949 |
| 1.775 | 1420 | 0.0069 | 0.0564 | - | 0.9951 |
| 1.8 | 1440 | 0.0097 | 0.0559 | - | 0.9953 |
| 1.825 | 1460 | 0.0 | 0.0557 | - | 0.9953 |
| 1.85 | 1480 | 0.0 | 0.0557 | - | 0.9953 |
| 1.875 | 1500 | 0.0 | 0.0557 | - | 0.9953 |
| 1.9 | 1520 | 0.0 | 0.0557 | - | 0.9953 |
| 1.925 | 1540 | 0.0 | 0.0557 | - | 0.9953 |
| 1.95 | 1560 | 0.0089 | 0.0544 | - | 0.9953 |
| 1.975 | 1580 | 0.0 | 0.0544 | - | 0.9953 |
| 2.0 | 1600 | 0.0 | 0.0544 | - | 0.9953 |
| -1 | -1 | - | - | 0.9960 | - |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->