|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: finetuning-sentiment-model-roberta |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: test |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.93 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9297658862876254 |
|
- name: Precision |
|
type: precision |
|
value: 0.9328859060402684 |
|
- name: Recall |
|
type: recall |
|
value: 0.9266666666666666 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuning-sentiment-model-roberta |
|
|
|
This model was trained from scratch on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2171 |
|
- Accuracy: 0.93 |
|
- F1: 0.9298 |
|
- Precision: 0.9329 |
|
- Recall: 0.9267 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.144 | 0.98 | 46 | 0.2348 | 0.91 | 0.9132 | 0.8820 | 0.9467 | |
|
| 0.0957 | 1.98 | 93 | 0.2171 | 0.93 | 0.9298 | 0.9329 | 0.9267 | |
|
| 0.08 | 2.94 | 138 | 0.2554 | 0.9133 | 0.9167 | 0.8827 | 0.9533 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|