DeepakKumarMSL's picture
Create README.md
ffd7d21 verified
# πŸ“ Question Answers Roberta Model
This repository demonstrates how to **fine-tune** and **quantize** the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model for Question Answering using a sample dataset from Hugging Face Hub.
---
## πŸš€ Model Overview
- **Base Model:** `deepset/roberta-base-squad2`
- **Task:** Extractive Question Answering
- **Precision:** Supports FP32, FP16 (half-precision), and INT8 (quantized)
- **Dataset:** [`squad`](https://huggingface.co/datasets/squad) β€” Stanford Question Answering Dataset (Hugging Face Datasets)
---
## πŸ“¦ Dataset Used
We use the **`squad`** dataset from Hugging Face:
```bash
pip install datasets
```
# Dataset
```Pyhton
from datasets import load_dataset
dataset = load_dataset("squad")
```
# Load Model & Tokenizer:
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer
from datasets import load_dataset
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
dataset = load_dataset("squad")
```
# βœ… Results
Feature Benefit
FP16 Fine-Tuning - Faster Training + Lower Memory
INT8 Quantization - Smaller Model + Fast Inference
Dataset - Stanford QA Dataset (SQuAD)