rodrigocaus
chore: update readme with trainer informations
c2d6420
metadata
license: mit
base_model: intfloat/multilingual-e5-base
datasets:
  - E-FAQ
language:
  - pt
  - es
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@1
  - cosine_map@10
  - dot_accuracy@1
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@10
  - dot_recall@1
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@1
  - dot_map@10
  - euclidean_accuracy@1
  - euclidean_accuracy@10
  - euclidean_precision@1
  - euclidean_precision@10
  - euclidean_recall@1
  - euclidean_recall@10
  - euclidean_ndcg@10
  - euclidean_mrr@10
  - euclidean_map@1
  - euclidean_map@10
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:119448
  - loss:CompositionLoss
widget:
  - source_sentence: Tem mandril com outras medidas
    sentences:
      - >-
        Bom dia vem tudo no kit conforme a foto?maquina de solda
        ,esquadro,máscara, 2 rolos de arame é isso?
      - >-
        Você tem da magneti Marelli código 40421702 PARATI BOLA G2 96 MONOPONTO
        AP 1.6 GASOLINA
      - >-
        Hola buenas. Es compatible para NEW Mitsubishi Montero cr 4x4 3.2 N.
        Chasis: JMBMNV88W8J000791
  - source_sentence: Hola tienes disponible de mono talla 12 a 18 meses?
    sentences:
      - >-
        Hola buen dia! Necesito una malla sombra como la de esta publicación
        pero de 4 x 3.40 mts, en cuanto sale?
      - Serve na Duster automática 2.0
      - Lo que pasa es que no me deja agregar más de 1
  - source_sentence: Viene con kit de instalacion y tornillería?
    sentences:
      - Bom dia. Tem como fixar no chão. Na grama?
      - La base para conectar ese foco la tendrá???
      - Pod ser usado para instalação de farol d milha ?
  - source_sentence: corsa 2004 1.8 con ultimos 8 digitos NIV 4C210262
    sentences:
      - Le queda a un Derby 2007 1.8?
      - Serve no Corsa clacic 97 sedã
      - Boa tarde vc so tem.um ?
  - source_sentence: Buenos días, es compatible con las apps bancarias?
    sentences:
      - Hola....el bulon de q diámetro es?
      - Se le puede quitar el microfono?
      - Serve para cachorrinha que está no cio?
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: E-FAQ
          type: text-retrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.7941531042796866
            name: Cosine Accuracy@1
          - type: cosine_accuracy@10
            value: 0.9483875828812538
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7941531042796866
            name: Cosine Precision@1
          - type: cosine_precision@10
            value: 0.17701928872814954
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5563725301557428
            name: Cosine Recall@1
          - type: cosine_recall@10
            value: 0.9093050609545924
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8420320427198602
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8476323229713864
            name: Cosine Mrr@10
          - type: cosine_map@1
            value: 0.7941531042796866
            name: Cosine Map@1
          - type: cosine_map@10
            value: 0.8004156235676744
            name: Cosine Map@10
          - type: dot_accuracy@1
            value: 0.7941531042796866
            name: Dot Accuracy@1
          - type: dot_accuracy@10
            value: 0.9483875828812538
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7941531042796866
            name: Dot Precision@1
          - type: dot_precision@10
            value: 0.17701928872814954
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.5563725301557428
            name: Dot Recall@1
          - type: dot_recall@10
            value: 0.9093050609545924
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8420320427198602
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8476323229713864
            name: Dot Mrr@10
          - type: dot_map@1
            value: 0.7941531042796866
            name: Dot Map@1
          - type: dot_map@10
            value: 0.8004156235676744
            name: Dot Map@10
          - type: euclidean_accuracy@1
            value: 0.7941531042796866
            name: Euclidean Accuracy@1
          - type: euclidean_accuracy@10
            value: 0.9483875828812538
            name: Euclidean Accuracy@10
          - type: euclidean_precision@1
            value: 0.7941531042796866
            name: Euclidean Precision@1
          - type: euclidean_precision@10
            value: 0.17701928872814954
            name: Euclidean Precision@10
          - type: euclidean_recall@1
            value: 0.5563725301557428
            name: Euclidean Recall@1
          - type: euclidean_recall@10
            value: 0.9093050609545924
            name: Euclidean Recall@10
          - type: euclidean_ndcg@10
            value: 0.8420320427198602
            name: Euclidean Ndcg@10
          - type: euclidean_mrr@10
            value: 0.8476323229713864
            name: Euclidean Mrr@10
          - type: euclidean_map@1
            value: 0.7941531042796866
            name: Euclidean Map@1
          - type: euclidean_map@10
            value: 0.8004156235676744
            name: Euclidean Map@10

Multilingual E5 Base Self-Distilled on E-FAQ

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Framework Versions

  • Python: 3.12.4
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}