|
---
|
|
license: mit
|
|
base_model: intfloat/multilingual-e5-base
|
|
datasets:
|
|
- E-FAQ
|
|
language:
|
|
- pt
|
|
- es
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- cosine_accuracy@1
|
|
- cosine_accuracy@10
|
|
- cosine_precision@1
|
|
- cosine_precision@10
|
|
- cosine_recall@1
|
|
- cosine_recall@10
|
|
- cosine_ndcg@10
|
|
- cosine_mrr@10
|
|
- cosine_map@1
|
|
- cosine_map@10
|
|
- dot_accuracy@1
|
|
- dot_accuracy@10
|
|
- dot_precision@1
|
|
- dot_precision@10
|
|
- dot_recall@1
|
|
- dot_recall@10
|
|
- dot_ndcg@10
|
|
- dot_mrr@10
|
|
- dot_map@1
|
|
- dot_map@10
|
|
- euclidean_accuracy@1
|
|
- euclidean_accuracy@10
|
|
- euclidean_precision@1
|
|
- euclidean_precision@10
|
|
- euclidean_recall@1
|
|
- euclidean_recall@10
|
|
- euclidean_ndcg@10
|
|
- euclidean_mrr@10
|
|
- euclidean_map@1
|
|
- euclidean_map@10
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:119448
|
|
- loss:CompositionLoss
|
|
widget:
|
|
- source_sentence: Tem mandril com outras medidas
|
|
sentences:
|
|
- Bom dia vem tudo no kit conforme a foto?maquina de solda ,esquadro,máscara, 2
|
|
rolos de arame é isso?
|
|
- Você tem da magneti Marelli código 40421702 PARATI BOLA G2 96 MONOPONTO AP 1.6
|
|
GASOLINA
|
|
- 'Hola buenas. Es compatible para NEW Mitsubishi Montero cr 4x4 3.2 N. Chasis:
|
|
JMBMNV88W8J000791'
|
|
- source_sentence: Hola tienes disponible de mono talla 12 a 18 meses?
|
|
sentences:
|
|
- Hola buen dia! Necesito una malla sombra como la de esta publicación pero de 4
|
|
x 3.40 mts, en cuanto sale?
|
|
- Serve na Duster automática 2.0
|
|
- Lo que pasa es que no me deja agregar más de 1
|
|
- source_sentence: Viene con kit de instalacion y tornillería?
|
|
sentences:
|
|
- Bom dia. Tem como fixar no chão. Na grama?
|
|
- La base para conectar ese foco la tendrá???
|
|
- Pod ser usado para instalação de farol d milha ?
|
|
- source_sentence: corsa 2004 1.8 con ultimos 8 digitos NIV 4C210262
|
|
sentences:
|
|
- Le queda a un Derby 2007 1.8?
|
|
- Serve no Corsa clacic 97 sedã
|
|
- Boa tarde vc so tem.um ?
|
|
- source_sentence: Buenos días, es compatible con las apps bancarias?
|
|
sentences:
|
|
- Hola....el bulon de q diámetro es?
|
|
- Se le puede quitar el microfono?
|
|
- Serve para cachorrinha que está no cio?
|
|
model-index:
|
|
- name: SentenceTransformer based on intfloat/multilingual-e5-base
|
|
results:
|
|
- task:
|
|
type: information-retrieval
|
|
name: Information Retrieval
|
|
dataset:
|
|
name: E-FAQ
|
|
type: text-retrieval
|
|
metrics:
|
|
- type: cosine_accuracy@1
|
|
value: 0.7941531042796866
|
|
name: Cosine Accuracy@1
|
|
- type: cosine_accuracy@10
|
|
value: 0.9483875828812538
|
|
name: Cosine Accuracy@10
|
|
- type: cosine_precision@1
|
|
value: 0.7941531042796866
|
|
name: Cosine Precision@1
|
|
- type: cosine_precision@10
|
|
value: 0.17701928872814954
|
|
name: Cosine Precision@10
|
|
- type: cosine_recall@1
|
|
value: 0.5563725301557428
|
|
name: Cosine Recall@1
|
|
- type: cosine_recall@10
|
|
value: 0.9093050609545924
|
|
name: Cosine Recall@10
|
|
- type: cosine_ndcg@10
|
|
value: 0.8420320427198602
|
|
name: Cosine Ndcg@10
|
|
- type: cosine_mrr@10
|
|
value: 0.8476323229713864
|
|
name: Cosine Mrr@10
|
|
- type: cosine_map@1
|
|
value: 0.7941531042796866
|
|
name: Cosine Map@1
|
|
- type: cosine_map@10
|
|
value: 0.8004156235676744
|
|
name: Cosine Map@10
|
|
- type: dot_accuracy@1
|
|
value: 0.7941531042796866
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@10
|
|
value: 0.9483875828812538
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.7941531042796866
|
|
name: Dot Precision@1
|
|
- type: dot_precision@10
|
|
value: 0.17701928872814954
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.5563725301557428
|
|
name: Dot Recall@1
|
|
- type: dot_recall@10
|
|
value: 0.9093050609545924
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.8420320427198602
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.8476323229713864
|
|
name: Dot Mrr@10
|
|
- type: dot_map@1
|
|
value: 0.7941531042796866
|
|
name: Dot Map@1
|
|
- type: dot_map@10
|
|
value: 0.8004156235676744
|
|
name: Dot Map@10
|
|
- type: euclidean_accuracy@1
|
|
value: 0.7941531042796866
|
|
name: Euclidean Accuracy@1
|
|
- type: euclidean_accuracy@10
|
|
value: 0.9483875828812538
|
|
name: Euclidean Accuracy@10
|
|
- type: euclidean_precision@1
|
|
value: 0.7941531042796866
|
|
name: Euclidean Precision@1
|
|
- type: euclidean_precision@10
|
|
value: 0.17701928872814954
|
|
name: Euclidean Precision@10
|
|
- type: euclidean_recall@1
|
|
value: 0.5563725301557428
|
|
name: Euclidean Recall@1
|
|
- type: euclidean_recall@10
|
|
value: 0.9093050609545924
|
|
name: Euclidean Recall@10
|
|
- type: euclidean_ndcg@10
|
|
value: 0.8420320427198602
|
|
name: Euclidean Ndcg@10
|
|
- type: euclidean_mrr@10
|
|
value: 0.8476323229713864
|
|
name: Euclidean Mrr@10
|
|
- type: euclidean_map@1
|
|
value: 0.7941531042796866
|
|
name: Euclidean Map@1
|
|
- type: euclidean_map@10
|
|
value: 0.8004156235676744
|
|
name: Euclidean Map@10
|
|
---
|
|
|
|
# Multilingual E5 Base Self-Distilled on E-FAQ
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.4
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.42.4
|
|
- PyTorch: 2.3.1+cu121
|
|
- Accelerate: 0.32.1
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|