library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_mps.py
test_avg_pool2d_ceil_mode
def test_avg_pool2d_ceil_mode(self): # Regression test for gh-36977 x = 10 * torch.randn((1, 16, 4, 4)) y = torch.nn.functional.avg_pool2d( x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertTrue(not torch.isnan(y).any()) y = torch.nn.functional.avg_pool2d( x.to('mps'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertTrue(not torch.isnan(y).any())
def test_avg_pool2d_ceil_mode(self): # Regression test for gh-36977 x = 10 * torch.randn((1, 16, 4, 4)) y = torch.nn.functional.avg_pool2d( x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertFalse(torch.isnan(y).any()) y = torch.nn.functional.avg_pool2d( x.to('mps'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertFalse(torch.isnan(y).any())
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestAvgPool(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestAvgPool(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_exp
def test_exp(self, device="mps", dtype=torch.float): for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()): b = torch.arange(18, device="cpu") / 3 * math.pi a = torch.tensor(v, dtype=dtype, device="cpu") * b a = a.to(dtype).to("mps") self.compare_with_numpy(torch.exp, np.exp, a)
def test_exp(self, device="mps", dtype=torch.float): for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()): b = torch.arange(18, dtype=dtype, device=device) / 3 * math.pi a = torch.tensor(v, dtype=dtype, device="mps") * b self.compare_with_numpy(torch.exp, np.exp, a)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_conv_raises_error
def test_conv_raises_error(self, device='mps', dtype=torch.float): conv = nn.Conv1d(1, 65537, 3, padding=1).to('mps') x = torch.ones([1, 1, 3]) with self.assertRaises(NotImplementedError): y = conv(x.to("mps"))
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_triu_inf
def test_triu_inf(self, device="mps", dtype=torch.float): for diag in [-1, 0, 1]: mask = torch.full((3, 6, 6), float("-inf")) mask_mps = mask.clone().detach().to('mps') cpu_ref = torch.triu(mask, diagonal=diag) mps_out = torch.triu(mask_mps, diagonal=diag) self.assertEqual(cpu_ref, mps_out)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_exp1
def test_exp1(self, device="mps", dtype=torch.float): input = torch.tensor([-0.1, 3.0, -0.9]).to('mps') output = torch.exp(input).to('cpu')
def test_exp1(self, device="mps", dtype=torch.float): input = torch.tensor([-0.1, 1.0, -0.9, 0.1], device=device, dtype=dtype) output = torch.exp(input) output_cpu = torch.exp(input.cpu()) # If exponentWithTensor: MPS call is used on M1 running 14.5 test will fail with # Mismatched elements: 3 / 4 (75.0%) # Greatest absolute difference: 1.1920928955078125e-07 at index (3,) (up to 1e-08 allowed) # Greatest relative difference: 1.0786502002702036e-07 at index (3,) (up to 1e-08 allowed) self.assertEqual(output, output_cpu, atol=1e-8, rtol=1e-8)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
testNumbersGPU
def testNumbersGPU(self): for t in [np.float16, np.float32]: self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testReluInPlace( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps")
def testNumbersGPU(self): for t in [np.float16, np.float32]: self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testReluInPlace( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testRelu(np.array([]).astype(t), device="mps") self._testReluInPlace(np.array([]).astype(t), device="mps")
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
_testLeakyRelu
def _testLeakyRelu(self, np_features, negative_slope, device): cpu_x = torch.from_numpy(np_features).requires_grad_() mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') cpu_leaky_relu.backward(gradient=cpu_grad) mps_leaky_relu.backward(gradient=mps_grad) torch.testing.assert_close(cpu_x.grad, mps_x.grad.to('cpu'))
def _testLeakyRelu(self, shape, dtype, negative_slope, contiguous): cpu_x = torch.randn(shape, device='cpu', dtype=dtype) mps_x = cpu_x.detach().clone().to('mps') if not contiguous and not (0 in shape or len(shape) < 2): # Tranposing will make the tensor non-contiguous cpu_x = cpu_x.transpose(0, 1) mps_x = mps_x.transpose(0, 1) assert not mps_x.is_contiguous() cpu_x.requires_grad_() mps_x.requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') mps_leaky_relu.backward(gradient=mps_grad) cpu_leaky_relu.backward(gradient=cpu_grad) assert cpu_x.grad is not None # Check that the grad is well-populated self.assertEqual(cpu_x.grad, mps_x.grad)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
_testLeakyRelu
def _testLeakyRelu(self, np_features, negative_slope, device): cpu_x = torch.from_numpy(np_features).requires_grad_() mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') cpu_leaky_relu.backward(gradient=cpu_grad) mps_leaky_relu.backward(gradient=mps_grad) torch.testing.assert_close(cpu_x.grad, mps_x.grad.to('cpu'))
def _testLeakyRelu(self, shape, dtype, negative_slope, contiguous): cpu_x = torch.randn(shape, device='cpu', dtype=dtype) mps_x = cpu_x.detach().clone().to('mps') if not contiguous and not (0 in shape or len(shape) < 2): # Tranposing will make the tensor non-contiguous cpu_x = cpu_x.transpose(0, 1) mps_x = mps_x.transpose(0, 1) assert not mps_x.is_contiguous() cpu_x.requires_grad_() mps_x.requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') mps_leaky_relu.backward(gradient=mps_grad) cpu_leaky_relu.backward(gradient=cpu_grad) assert cpu_x.grad is not None # Check that the grad is well-populated self.assertEqual(cpu_x.grad, mps_x.grad)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
_testLeakyRelu
def _testLeakyRelu(self, np_features, negative_slope, device): cpu_x = torch.from_numpy(np_features).requires_grad_() mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') cpu_leaky_relu.backward(gradient=cpu_grad) mps_leaky_relu.backward(gradient=mps_grad) torch.testing.assert_close(cpu_x.grad, mps_x.grad.to('cpu'))
def _testLeakyRelu(self, shape, dtype, negative_slope, contiguous): cpu_x = torch.randn(shape, device='cpu', dtype=dtype) mps_x = cpu_x.detach().clone().to('mps') if not contiguous and not (0 in shape or len(shape) < 2): # Tranposing will make the tensor non-contiguous cpu_x = cpu_x.transpose(0, 1) mps_x = mps_x.transpose(0, 1) assert not mps_x.is_contiguous() cpu_x.requires_grad_() mps_x.requires_grad_() relu_op = torch.nn.LeakyReLU(negative_slope) cpu_leaky_relu = relu_op(cpu_x) mps_leaky_relu = relu_op(mps_x) torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) # test backward pass cpu_grad = torch.ones_like(cpu_leaky_relu) mps_grad = cpu_grad.to('mps') mps_leaky_relu.backward(gradient=mps_grad) cpu_leaky_relu.backward(gradient=cpu_grad) assert cpu_x.grad is not None # Check that the grad is well-populated self.assertEqual(cpu_x.grad, mps_x.grad)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSLeakyReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
testNumbersGPU
def testNumbersGPU(self): for t in [np.float16, np.float32]: self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testReluInPlace( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps")
def testNumbersGPU(self): for t in [np.float16, np.float32]: self._testRelu( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testReluInPlace( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), device="mps") self._testRelu(np.array([]).astype(t), device="mps") self._testReluInPlace(np.array([]).astype(t), device="mps")
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class MPSReluTest(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_fill
def test_fill(self): def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def test_fill(self): def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_fill_storage_offset
def test_fill_storage_offset(self): shape = [2, 10] val = 0.2 tensor = torch.ones(shape, device="mps") tensor_mps = tensor[:][1].fill_(val) tensor_0 = torch.ones(shape, device="cpu") tensor_cpu = tensor_0[:][1].fill_(val) self.assertEqual(tensor_mps, tensor_cpu) shape = [1, 10] val = 0.0 tensor = torch.ones(shape, device="mps") val_tensor_mps = torch.tensor(val, device="mps") tensor_mps = tensor[:, 9].fill_(val_tensor_mps) tensor_0 = torch.ones(shape, device="cpu") val_tensor_cpu = torch.tensor(val, device="cpu") tensor_cpu = tensor_0[:, 9].fill_(val_tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu)
def test_fill_storage_offset(self): shape = [2, 10] val = 0.2 tensor = torch.ones(shape, device="mps") tensor_mps = tensor[:][1].fill_(val) tensor_0 = torch.ones(shape, device="cpu") tensor_cpu = tensor_0[:][1].fill_(val) self.assertEqual(tensor_mps, tensor_cpu) self.assertEqual(tensor, tensor_0) shape = [1, 10] val = 0.0 tensor = torch.ones(shape, device="mps") val_tensor_mps = torch.tensor(val, device="mps") tensor_mps = tensor[:, 9].fill_(val_tensor_mps) # Regression test for https://github.com/pytorch/pytorch/issues/114692 tensor[:, 5].fill_(val_tensor_mps) tensor_0 = torch.ones(shape, device="cpu") val_tensor_cpu = torch.tensor(val, device="cpu") tensor_cpu = tensor_0[:, 9].fill_(val_tensor_cpu) tensor_0[:, 5].fill_(val_tensor_cpu) self.assertEqual(tensor_mps.to(device="cpu"), tensor_cpu) self.assertEqual(tensor.to(device="cpu"), tensor_0)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
_linear_helper
def _linear_helper(self, in_features, out_features, shape, bias=True, backward_pass=False): cpu_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="cpu", bias=bias) mps_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="mps", bias=bias) # Use the same weights and bias as the ones from the cpu mps_linear.weight.data = cpu_linear.weight.data.detach().clone().to("mps") if bias: mps_linear.bias.data = cpu_linear.bias.data.detach().clone().to("mps") linear_mps_input = torch.randn(shape).to('mps') linear_cpu_input = linear_mps_input.detach().clone().to('cpu') if backward_pass: linear_mps_input = linear_mps_input.requires_grad_() linear_cpu_input = linear_cpu_input.requires_grad_() linear_cpu_output = cpu_linear(linear_cpu_input) linear_mps_output = mps_linear(linear_mps_input) self.assertEqual(linear_cpu_output, linear_mps_output.to('cpu')) self.assertEqual(linear_cpu_output.size(), linear_mps_output.size()) if backward_pass: cpu_grad = torch.ones_like(linear_cpu_output) grad = cpu_grad.to('mps') linear_cpu_output.backward(gradient=cpu_grad) linear_mps_output.backward(gradient=grad) self.assertEqual(linear_cpu_input.grad.size(), linear_mps_input.grad.size()) self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) self.assertEqual(cpu_linear.weight.grad.size(), mps_linear.weight.grad.size()) self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) if bias: self.assertEqual(cpu_linear.bias.grad.size(), mps_linear.bias.grad.size()) self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad.to("cpu"), atol=8e-04, rtol=10.4e-05)
def _linear_helper(self, in_features, out_features, shape, bias=True, backward_pass=False): cpu_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="cpu", bias=bias) mps_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="mps", bias=bias) # Use the same weights and bias as the ones from the cpu mps_linear.weight.data = cpu_linear.weight.data.detach().clone().to("mps") if bias: mps_linear.bias.data = cpu_linear.bias.data.detach().clone().to("mps") linear_mps_input = torch.randn(shape).to('mps') linear_cpu_input = linear_mps_input.detach().clone().to('cpu') if backward_pass: linear_mps_input = linear_mps_input.requires_grad_() linear_cpu_input = linear_cpu_input.requires_grad_() linear_cpu_output = cpu_linear(linear_cpu_input) linear_mps_output = mps_linear(linear_mps_input) self.assertEqual(linear_cpu_output, linear_mps_output.to('cpu')) self.assertEqual(linear_cpu_output.size(), linear_mps_output.size()) if backward_pass: cpu_grad = torch.rand_like(linear_cpu_output, requires_grad=True) grad = cpu_grad.detach().to('mps').requires_grad_() linear_cpu_output.backward(gradient=cpu_grad, create_graph=True) linear_mps_output.backward(gradient=grad, create_graph=True) self.assertEqual(linear_cpu_input.grad.size(), linear_mps_input.grad.size()) self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) self.assertEqual(cpu_linear.weight.grad.size(), mps_linear.weight.grad.size()) self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) if bias: self.assertEqual(cpu_linear.bias.grad.size(), mps_linear.bias.grad.size()) self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) # test gradgrad x_grad_out = torch.rand_like(linear_cpu_input) x_grad_out_mps = x_grad_out.to("mps") w_grad_out = torch.rand_like(cpu_linear.weight) w_grad_out_mps = w_grad_out.to("mps") linear_cpu_input.grad.detach().zero_() linear_mps_input.grad.detach().zero_() cpu_linear.weight.grad.detach().zero_() mps_linear.weight.grad.detach().zero_() if bias: b_grad_out = torch.rand_like(cpu_linear.bias) b_grad_out_mps = b_grad_out.to("mps") cpu_linear.bias.grad.detach().zero_() mps_linear.bias.grad.detach().zero_() linear_cpu_input.grad.backward(x_grad_out, retain_graph=True) linear_mps_input.grad.backward(x_grad_out_mps, retain_graph=True) cpu_linear.weight.grad.backward(w_grad_out, retain_graph=True) mps_linear.weight.grad.backward(w_grad_out_mps, retain_graph=True) if bias: cpu_linear.bias.grad.backward(b_grad_out, retain_graph=True) mps_linear.bias.grad.backward(b_grad_out_mps, retain_graph=True) self.assertEqual(cpu_grad.grad, grad.grad) self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad) self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad) if bias: self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_large_bmm
def test_large_bmm(self, dtype): batch1 = torch.randn(11, 20064, 128, dtype=dtype, device='mps') batch2 = torch.randn(11, 128, 20064, dtype=dtype, device='mps') output_cpu = torch.bmm(batch1.cpu(), batch2.cpu()) output_mps = torch.bmm(batch1, batch2) # Using the low precision comparison for FP16 tol = 1e-2 if dtype == torch.float16 else None self.assertEqual(output_cpu, output_mps, atol=tol, rtol=tol) self.assertEqual(output_cpu.size(), output_mps.size())
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_linear_errors
def test_linear_errors(self): # Mixed CPU<->MPS tensors size = (3, 3) # Unsupported dtypes with self.assertRaisesRegex(RuntimeError, "does not support linear for non-float weights"): torch.nn.functional.linear(torch.rand(size, device='mps'), torch.randint(-10, 10, size, dtype=torch.int8, device='mps')) # Weigths on wrong device with self.assertRaisesRegex(RuntimeError, "argument weight is on cpu but expected on mps"): torch.nn.functional.linear(torch.rand(size, device='mps'), torch.rand(size, device='cpu')) # Input on wrong device with self.assertRaisesRegex(RuntimeError, "argument input is on cpu but expected on mps"): torch.nn.functional.linear(torch.rand(size, device='cpu'), torch.rand(size, device='mps'))
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_batch_norm_backward
def test_batch_norm_backward(self): inputs = torch.rand(1, 8, 4, 4, device="mps", requires_grad=True) x = torch.nn.BatchNorm2d(8).to("mps") y = torch.nn.BatchNorm2d(8).to("mps") y.weight.requires_grad = False y.bias.requires_grad = False outputs = y(x(inputs)) # This used to crash, see https://github.com/pytorch/pytorch/issues/98602 outputs.sum().backward() # Regression test for https://github.com/pytorch/pytorch/issues/133520
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_batch_norm_slices
def test_batch_norm_slices(self): bn_cpu = nn.BatchNorm2d(100, affine=False, device='cpu') bn_mps = nn.BatchNorm2d(100, affine=False, device='mps') x_cpu = torch.randn(100, 100, 35, 45).to('cpu') x_mps = x_cpu.to('mps') res_cpu = bn_cpu(x_cpu[5:]) res_mps = bn_mps(x_mps[5:]) self.assertEqual(res_cpu, res_mps)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_layer_norm_backward
def test_layer_norm_backward(self): inputs = torch.rand(4, 4, device="mps", requires_grad=True) x = torch.nn.LayerNorm(4).to("mps") y = torch.nn.LayerNorm(4).to("mps") y.weight.requires_grad = False y.bias.requires_grad = False outputs = y(x(inputs)) # This used to crash, see https://github.com/pytorch/pytorch/issues/98602 outputs.sum().backward()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_linalg_vector_norm
def test_linalg_vector_norm(self): x_mps = torch.tensor([0, 0, 0, 2, 3], dtype=torch.float, device="mps") x_cpu = x_mps.detach().clone().cpu() res_mps = torch.linalg.vector_norm(x_mps, ord=0) res_cpu = torch.linalg.vector_norm(x_cpu, ord=0) self.assertEqual(res_mps, res_cpu) a_mps = torch.arange(27, dtype=torch.float, device="mps") - 4 a_cpu = torch.arange(27, dtype=torch.float, device="cpu") - 4 B_mps = a_mps.reshape(3, 3, 3) B_cpu = a_cpu.reshape(3, 3, 3) res_mps = torch.linalg.vector_norm(a_mps, ord=3.5) res_cpu = torch.linalg.vector_norm(a_cpu, ord=3.5) self.assertEqual(res_mps, res_cpu) res_mps = torch.linalg.vector_norm(B_mps, ord=3.5) res_cpu = torch.linalg.vector_norm(B_cpu, ord=3.5) self.assertEqual(res_mps, res_cpu) for dim in range(0, B_mps.dim()): res_mps = torch.linalg.vector_norm(B_mps, ord=3.5, dim=dim) res_cpu = torch.linalg.vector_norm(B_cpu, ord=3.5, dim=dim) self.assertEqual(res_mps, res_cpu)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_ifft
def test_ifft(self): # See: https://github.com/pytorch/pytorch/issues/124096 device = torch.device("mps") N = 64 signal = torch.rand(N, device=device) fft_result = torch.fft.rfft(signal) ifft_result = torch.fft.irfft(fft_result, n=signal.shape[0]) # Expecting the inverted to yield the original signal self.assertEqual(ifft_result, signal) # Regression test for https://github.com/pytorch/pytorch/issues/135223
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_fftfreq
def test_fftfreq(self): freq_cpu = torch.fft.fftfreq(10**4, device='cpu') freq_mps = torch.fft.fftfreq(10**4, device='mps') self.assertEqual(freq_cpu, freq_mps)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_addcdiv_transpose
def test_addcdiv_transpose(self): # Regression test for issue https://github.com/pytorch/pytorch/issues/118115 # Testing continuity of all input tensors def helper(shape, value): shape_t = shape[::-1] for i in range(2): for j in range(2): for k in range(2): x = torch.rand(shape, device="cpu") if i == 0 else torch.rand(shape_t, device="cpu").t() y = torch.rand(shape, device="cpu") if j == 0 else torch.rand(shape_t, device="cpu").t() z = torch.rand(shape, device="cpu") if k == 0 else torch.rand(shape_t, device="cpu").t() x_mps = x.detach().clone().to(device="mps") y_mps = y.detach().clone().to(device="mps") z_mps = z.detach().clone().to(device="mps") result_cpu = x.addcdiv_(y, z, value=value) result_mps = x_mps.addcdiv(y_mps, z_mps, value=value) result_mps_out = result_cpu.detach().clone().to('mps') torch.addcdiv(x_mps, y_mps, z_mps, out=result_mps_out, value=value) self.assertEqual(result_cpu, result_mps) self.assertEqual(result_cpu, result_mps_out) helper((2, 3), 1.0) helper((2, 3), 0.2) helper((100, 300), 1.0) helper((100, 300), 0.2)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_stack_storage_offset
# https://github.com/pytorch/pytorch/issues/87856 x_cpu = torch.tensor([[1, 2]]) x_mps = x_cpu.detach().clone().to("mps") y_cpu = torch.stack((x_cpu[:, :1], x_cpu[:, -1:]), dim=-1) y_mps = torch.stack((x_mps[:, :1], x_mps[:, -1:]), dim=-1) self.assertEqual(y_cpu, y_mps) t_mps = torch.tensor([1, 2, 3, 4], device="mps") t_cpu = t_mps.detach().cpu().detach() x_mps = t_mps[2:] y_mps = t_mps[:2] x_cpu = t_cpu[2:] y_cpu = t_cpu[:2] res_mps = torch.stack((y_mps, x_mps), dim=-1) res_cpu = torch.stack((y_cpu, x_cpu), dim=-1) self.assertEqual(res_mps, res_cpu)
def test_stack_storage_offset(self): # https://github.com/pytorch/pytorch/issues/87856 x_cpu = torch.tensor([[1, 2]]) x_mps = x_cpu.detach().clone().to("mps") y_cpu = torch.stack((x_cpu[:, :1], x_cpu[:, -1:]), dim=-1) y_mps = torch.stack((x_mps[:, :1], x_mps[:, -1:]), dim=-1) self.assertEqual(y_cpu, y_mps) t_mps = torch.tensor([1, 2, 3, 4], device="mps") t_cpu = t_mps.detach().cpu().detach() x_mps = t_mps[2:] y_mps = t_mps[:2] x_cpu = t_cpu[2:] y_cpu = t_cpu[:2] res_mps = torch.stack((y_mps, x_mps), dim=-1) res_cpu = torch.stack((y_cpu, x_cpu), dim=-1) self.assertEqual(res_mps, res_cpu)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_slice_view_api
def test_slice_view_api(self, torch_type: torch.dtype): def helper(x_tensor, y_func, z_func, r_func=None): x_mps = x_tensor.detach().clone().to("mps") y = y_func(x_tensor) y_mps = y_func(x_mps) self.assertEqual(y, y_mps) z = z_func(y) z_mps = z_func(y_mps) self.assertEqual(z, z_mps) self.assertEqual(z.storage_offset(), z_mps.storage_offset()) if r_func: r = r_func(z) r_mps = r_func(z_mps) self.assertEqual(r, r_mps) # Skip bfloat16 before MacOS15 if not (product_version < 15.0 and torch_type == torch.bfloat16): # Tests for previously encountered MPS bugs helper( torch.randn(4, 4, dtype=torch_type), lambda x: x[1], lambda y: y.reshape(2, 2), lambda z: z + 1 ) helper( torch.randn(2, 4, dtype=torch_type), lambda x: x[1], lambda y: y + torch.ones(4, device=y.device) ) helper( torch.randn(4, 6, dtype=torch_type), lambda x: x[1], lambda y: y.reshape(3, 2).t(), lambda z: z + 1 ) helper( torch.arange(4, dtype=torch_type).resize(1, 2, 2), lambda x: x.permute(2, 0, 1), lambda y: y + 1 ) helper( torch.randn(4, 8, dtype=torch_type), lambda x: x.transpose(0, 1).reshape(-1), lambda y: y[:2], lambda z: z + 1 ) helper( torch.randn(1, dtype=torch_type), lambda x: x.expand(2, 3), lambda y: y + torch.ones(2, 3, device=y.device) )
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
validate_weight_norm_equality
def validate_weight_norm_equality(model, cpu_model, x, cpu_x, dim): cpu_norm = torch.nn.utils.parametrizations.weight_norm(cpu_model, dim=dim) norm = torch.nn.utils.parametrizations.weight_norm(model, dim=dim) cpu_out = cpu_norm(cpu_x) out = norm(x) self.assertEqual(cpu_out, out) cpu_grad = torch.randn(cpu_out.shape) grad = cpu_grad.to('mps') cpu_out.backward(gradient=cpu_grad) out.backward(gradient=grad) self.assertEqual(cpu_model.parametrizations.weight.original0.grad, model.parametrizations.weight.original0.grad) self.assertEqual(cpu_model.parametrizations.weight.original1.grad, model.parametrizations.weight.original1.grad) self.assertEqual(x.grad, cpu_x.grad)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_slice_reshape_contiguous
def test_slice_reshape_contiguous(self): x = torch.randn(4, 4) x_mps = x.detach().clone().to("mps") y = x[1] y_mps = x_mps[1] self.assertEqual(y, y_mps) z = y.reshape(2, 2) z_mps = y_mps.reshape(2, 2) self.assertEqual(z, z_mps) self.assertEqual(z.storage_offset(), z_mps.storage_offset())
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_masked_fill
def test_masked_fill(self): device = "mps" dtype = torch.float32 mask_dtype = torch.bool with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") num_dest = 10 dst = torch.zeros(num_dest, dtype=dtype, device=device) mask = torch.randint(2, (num_dest,), dtype=mask_dtype, device=device) val = random.random() dst2 = torch.zeros(num_dest, dtype=dtype) mask_cpu = mask.to("cpu") dst.masked_fill_(mask, val) for i in range(num_dest): if mask_cpu[i]: dst2[i] = val self.assertEqual(dst.to("cpu"), dst2, atol=0, rtol=0) # test non-contiguous case dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1)) dst2 = dst.contiguous() if dtype.is_complex: mask = dst.abs() > 0 else: mask = dst > 0 self.assertTrue(not dst.is_contiguous()) self.assertTrue(dst2.is_contiguous()) dst.masked_fill_(mask.to(mask_dtype), val) dst2.masked_fill_(mask.to(mask_dtype), val) self.assertEqual(dst, dst2, atol=0, rtol=0) if mask_dtype == torch.uint8: self.assertEqual(len(w), 3) warn = 'masked_fill_ received a mask with dtype torch.uint8,' for wi in w: self.assertEqual(str(wi.message)[0:52], str(warn)) else: self.assertEqual(len(w), 0)
def test_masked_fill(self): device = "mps" dtype = torch.float32 mask_dtype = torch.bool num_dest = 10 dst = torch.zeros(num_dest, dtype=dtype, device=device) mask = torch.randint(2, (num_dest,), dtype=mask_dtype, device=device) val = random.random() dst2 = torch.zeros(num_dest, dtype=dtype) mask_cpu = mask.to("cpu") dst.masked_fill_(mask, val) for i in range(num_dest): if mask_cpu[i]: dst2[i] = val self.assertEqual(dst.to("cpu"), dst2, atol=0, rtol=0)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_masked_fill__non_contiguous
def test_masked_fill__non_contiguous(self): shape = (3, 5) x_mps = torch.randn(shape, device="mps") x_cpu = x_mps.detach().clone().cpu() mask_mps = torch.zeros(shape, device="mps", dtype=torch.bool) mask_cpu = mask_mps.detach().clone().cpu() x_mps_strided = x_mps.T x_cpu_strided = x_cpu.T x_mps_strided.masked_fill_(mask_mps.T, float("-inf")) x_cpu_strided.masked_fill_(mask_cpu.T, float("-inf")) self.assertEqual(x_mps_strided, x_cpu_strided) self.assertFalse((x_mps_strided == float("-inf")).any())
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_repeat_interleave
def test_repeat_interleave(self, device="mps"): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], dtype=torch.int32, device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x)
def test_repeat_interleave(self, device="mps"): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) # Prior to macos 13.3, input of dtype=torch.int64 returns dtype=torch.int32 self.assertEqual(torch.repeat_interleave(x), expected, exact_dtype=product_version >= 13.3) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_div_bugs
def test_div_bugs(self): for (dtype, mode) in itertools.product(integral_types(), ['trunc', 'floor']): x = torch.tensor(list(range(1, 11)), device='mps', dtype=dtype) y = torch.div(x, 101, rounding_mode=mode) self.assertEqual(y.sum(), 0) # See https://github.com/pytorch/pytorch/issues/82663
def test_div_bugs(self): for (dtype, mode) in itertools.product(integral_types(), ['trunc', 'floor']): if dtype != torch.int64: x = torch.tensor(list(range(1, 11)), device='mps', dtype=dtype) y = torch.div(x, 101, rounding_mode=mode) self.assertEqual(y.sum(), 0) # See https://github.com/pytorch/pytorch/issues/82663
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_int_expand
# Empty unary op should return tensor of the same size
def test_int_expand(self): x = torch.tensor([[1], [0]], dtype=torch.int8, device='mps') y = torch.tensor([0, 1], dtype=torch.int8, device='mps') self.assertFalse(torch.equal(x.expand(2, 2), y.expand(2, 2))) # Empty unary op should return tensor of the same size
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_copy_storage_offset
def test_copy_storage_offset(self): x_cpu = torch.zeros(5, device="cpu", dtype=torch.float32) x_mps = torch.zeros(5, device="mps", dtype=torch.float32) update_cpu = torch.tensor([1, 1], device="cpu", dtype=torch.int64) update_mps = torch.tensor([1, 1], device="mps", dtype=torch.int64) x_cpu[2:4] = update_cpu x_mps[2:4] = update_mps # implicit type casting and copy self.assertEqual(x_cpu, x_mps) x_cpu[2:4] = update_mps # implicit device moving and copy self.assertEqual(x_cpu, x_mps)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_cumsum_bool
def test_cumsum_bool(self): a = torch.ones(2**16, dtype=torch.bool) t_cpu = a.cumsum(0) t_mps = a.to("mps").cumsum(0) self.assertEqual(t_cpu, t_mps)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_nll_loss_out_of_bounds_ignore_index
def test_nll_loss_out_of_bounds_ignore_index(self): def _test_nll_loss_out_of_bounds_ignore_index(device): output = [] x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) t = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) for reduction in ['mean', 'none']: output.append(F.nll_loss(x, t, ignore_index=255, reduction=reduction)) return output output_cpu = _test_nll_loss_out_of_bounds_ignore_index(device='cpu') output_mps = _test_nll_loss_out_of_bounds_ignore_index(device='mps') for cpu, mps in zip(output_cpu, output_mps): self.assertEqual(cpu, mps.to('cpu'))
def test_nll_loss_out_of_bounds_ignore_index(self): def test_nll_loss_out_of_bounds_ignore_index_helper(device): output = [] x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) t1 = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) t2 = torch.tensor([0, 1, 1, 0, -100, 2], dtype=torch.int64, device=device) for reduction in ['mean', 'none']: # out of bound ignore_index output.append(F.nll_loss(x, t1, ignore_index=255, reduction=reduction)) # default ignore_index output.append(F.nll_loss(x, t2, reduction=reduction)) return output output_cpu = test_nll_loss_out_of_bounds_ignore_index_helper(device='cpu') output_mps = test_nll_loss_out_of_bounds_ignore_index_helper(device='mps') for cpu, mps in zip(output_cpu, output_mps): self.assertEqual(cpu, mps)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch class TestNLLLoss(TestCaseMPS): import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np class TestNLLLoss(TestCaseMPS): from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
_test_nll_loss_out_of_bounds_ignore_index
def _test_nll_loss_out_of_bounds_ignore_index(device): output = [] x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) t = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) for reduction in ['mean', 'none']: output.append(F.nll_loss(x, t, ignore_index=255, reduction=reduction)) return output output_cpu = _test_nll_loss_out_of_bounds_ignore_index(device='cpu') output_mps = _test_nll_loss_out_of_bounds_ignore_index(device='mps') for cpu, mps in zip(output_cpu, output_mps): self.assertEqual(cpu, mps.to('cpu'))
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_activation_checkpoint_does_not_error
# MPS input_mps = input.detach().clone().to('mps').requires_grad_() target_mps = target.detach().clone().to('mps') output_cpu = F.nll_loss(input, target, reduction=reduction) output_mps = F.nll_loss(input_mps, target_mps, reduction=reduction) self.assertEqual(output_cpu, output_mps.to('cpu'))
def test_activation_checkpoint_does_not_error(self): from torch.utils.checkpoint import checkpoint for use_reentrant in (True, False): a = torch.tensor(1., device="mps", requires_grad=True) def fn(x): return x.sin().cos().exp() out = checkpoint(fn, a, use_reentrant=use_reentrant) out.backward()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
fn
output_cpu.sum().backward() output_mps.sum().backward() self.assertEqual(input.grad, input_mps.grad.to('cpu'))
def fn(x): return x.sin().cos().exp() out = checkpoint(fn, a, use_reentrant=use_reentrant) out.backward()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_mse_loss_strided_output
# Binary Cross Enropy
def test_mse_loss_strided_output(self): # https://github.com/pytorch/pytorch/issues/124621 lf = nn.MSELoss(reduction='none') model_cpu = nn.Sequential( nn.Conv1d(3, 3, 1), ) model_mps = copy.deepcopy(model_cpu).to("mps") x = torch.randn(128, 10, 3) x = x.permute(0, 2, 1) x_mps = x.detach().clone().to("mps").permute(0, 2, 1) x_mps = x_mps.permute(0, 2, 1) y = model_cpu(x) y_mps = model_mps(x_mps) y = y.permute(0, 2, 1)[:, :5, :] y_mps = y_mps.permute(0, 2, 1)[:, :5, :] y_hat = torch.randn(128, 5, 3) y_hat_mps = y_hat.detach().clone().to("mps") loss = lf(y, y_hat) loss_mps = lf(y_mps, y_hat_mps) self.assertEqual(loss, loss_mps) # Binary Cross Enropy
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_cross_entropy_loss
def test_cross_entropy_loss(self): # Regression test for https://github.com/pytorch/pytorch/issues/116095 loss = nn.CrossEntropyLoss() pred = torch.randn(3, 5, requires_grad=True, dtype=torch.float16, device='mps') target = torch.ones(3, dtype=torch.long, device='mps') output = loss(pred, target) output.backward()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_argmax
# Test forward argmin argmax
def test_argmax(self): # https://github.com/pytorch/pytorch/issues/98191 cpu_tensor = torch.tensor([[0, 1], [2, 1], [1, 0]]) res_cpu = torch.argmax(cpu_tensor, dim=1) mps_tensor = cpu_tensor.to(torch.device('mps')) res_mps = torch.argmax(mps_tensor, dim=1) self.assertEqual(res_cpu, res_mps) # https://github.com/pytorch/pytorch/issues/92311 mps_tensor = torch.randn(10, 2, device='mps', dtype=torch.float32) cpu_tensor = mps_tensor.detach().clone().cpu() res_mps = torch.argmax(mps_tensor, dim=1) res_cpu = torch.argmax(cpu_tensor, dim=1) self.assertEqual(res_cpu, res_mps) # Test forward argmin argmax
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_reduction_sum_max_long_val
# Test forward max # Note - don't test grad now
def test_reduction_sum_max_long_val(self): x_mps = torch.tensor([sys.maxsize, sys.maxsize - 10, sys.maxsize - 5, sys.maxsize - 18], device="mps") x_cpu = x_mps.detach().clone().cpu() res_mps = torch.sum(x_mps) res_cpu = torch.sum(x_cpu) self.assertEqual(res_mps, res_cpu) # Test forward max # Note - don't test grad now
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified