library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_clamp_fp16_fp32
def test_clamp_fp16_fp32(self): cpu_x = torch.randn(10, device='cpu', dtype=torch.float, requires_grad=False) x = cpu_x.detach().clone().to('mps') dtype = torch.float16 clamp_min_vals_mps = torch.ones(10, device="mps").to(torch.float16) clamp_max_vals_mps = torch.ones(10, device="mps").to(torch.float16) * 10 clamp_result_mps = torch.clamp(x, clamp_min_vals_mps, clamp_max_vals_mps) clamp_min_vals_cpu = torch.ones(10, device="cpu").to(torch.float16) clamp_max_vals_cpu = torch.ones(10, device="cpu").to(torch.float16) * 10 clamp_result_cpu = torch.clamp(cpu_x, clamp_min_vals_cpu, clamp_max_vals_cpu) self.assertEqual(clamp_result_mps, clamp_result_cpu)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_clamp_nan
# Test clamp_min
def test_clamp_nan(self): t_mps = torch.tensor([torch.nan, 1, 2], device="mps") t_cpu = torch.tensor([torch.nan, 1, 2], device="cpu") clamp_min_max_mps = torch.clamp(t_mps, min=-100, max=100) clamp_min_max_cpu = torch.clamp(t_cpu, min=-100, max=100) self.assertEqual(clamp_min_max_mps, clamp_min_max_cpu) clamp_min_mps = torch.clamp(t_mps, min=-100) clamp_min_cpu = torch.clamp(t_cpu, min=-100) self.assertEqual(clamp_min_mps, clamp_min_cpu) clamp_max_mps = torch.clamp(t_mps, max=100) clamp_max_cpu = torch.clamp(t_cpu, max=100) self.assertEqual(clamp_max_mps, clamp_max_cpu) # Test clamp_min
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_neg_strided_input
# Test index add
def test_neg_strided_input(self): # See https://github.com/pytorch/pytorch/issues/98074#issuecomment-1496088337 x = torch.arange(18.0, device='mps').reshape(2, 3, 3) y = x.permute(1, 0, 2)[..., 1] z = y + y.neg() self.assertEqual(z.abs().max().item(), 0.0) # Test index add
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_index_64bit
def test_index_64bit(self): """ Test that index operations work for 4Gb+ tensors """ if product_version < 14.0: raise unittest.SkipTest("Sonoma is needed for large tensors, see https://github.com/pytorch/pytorch/issues/84039") # Cleanup memory gc.collect() torch.mps.empty_cache() # Check that index operations work for 4+GB tensors x = torch.rand(16000, 67120, device="mps") self.assertGreater(x.element_size() * x.numel(), 2**32) idx = torch.arange(0, 2, device="mps") x_sampled = x[:, idx] self.assertEqual(x[:, 0], x_sampled[:, 0]) # Reclaim memory after running the tests del x gc.collect() torch.mps.empty_cache()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
compare_mm
def compare_mm(m, n, k, dtype=torch.float): x = torch.rand(m, n, device="mps", dtype=dtype) y = torch.rand(n, k, device="mps", dtype=dtype) z = torch.mm(x, y).cpu() z_cpu = torch.mm(x.cpu(), y.cpu()) self.assertEqual(z, z_cpu) # Used to produce incorrect results with MPS on M1 running MacOS 14.3, but correct with Metal compare_mm(1024, 1, 32769) # one more time, but with dimensions inverted # see https://github.com/pytorch/pytorch/issues/116769#issuecomment-1920066984 compare_mm(32769, 1, 1025) if product_version >= 14.0: # Test bfloat16 mm compare_mm(1024, 1, 32769, torch.bfloat16)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_copy_large
# Test flip
def test_copy_large(self): """ Test that copy of 4Gb+ tensors works """ x = torch.ones((2**30 + 11,), dtype=torch.float32) y = x.to(device="mps") self.assertTrue(torch.all(y == torch.tensor(1.0, device="mps"))) del y del x # Test flip
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_stack
def test_stack(self): # https://github.com/pytorch/pytorch/issues/87856 x_cpu = torch.tensor([[1, 2]]) x_mps = x_cpu.detach().clone().to("mps") y_cpu = torch.stack((x_cpu[:, :1], x_cpu[:, -1:]), dim=-1) y_mps = torch.stack((x_mps[:, :1], x_mps[:, -1:]), dim=-1) self.assertEqual(y_cpu, y_mps) t_mps = torch.tensor([1, 2, 3, 4], device="mps") t_cpu = t_mps.detach().cpu().detach() x_mps = t_mps[2:] y_mps = t_mps[:2] x_cpu = t_cpu[2:] y_cpu = t_cpu[:2] res_mps = torch.stack((y_mps, x_mps), dim=-1) res_cpu = torch.stack((y_cpu, x_cpu), dim=-1) self.assertEqual(res_mps, res_cpu)
def test_stack(self): # All shapes must be same def helper(shape, dtype=torch.float32): x, cpu_x = None, None y, cpu_y = None, None z, cpu_z = None, None if (dtype not in [torch.float32, torch.bool]): cpu_x = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) x = cpu_x.detach().clone().to('mps') cpu_y = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) y = cpu_y.detach().clone().to('mps') cpu_z = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) z = cpu_z.detach().clone().to('mps') elif (dtype == torch.bool): cpu_x = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) x = cpu_x.detach().clone().to('mps') cpu_y = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) y = cpu_y.detach().clone().to('mps') cpu_z = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) z = cpu_z.detach().clone().to('mps') else: cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) x = cpu_x.detach().clone().to('mps').requires_grad_() cpu_y = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) y = cpu_y.detach().clone().to('mps').requires_grad_() cpu_z = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) z = cpu_z.detach().clone().to('mps').requires_grad_() stack = torch.stack([x, y, z], dim=1) stack_cpu = torch.stack([cpu_x, cpu_y, cpu_z], dim=1) self.assertEqual(stack, stack_cpu) helper([2, 8, 4, 5]) helper([2, 8, 4, 5], dtype=torch.float16) helper([2, 8, 4, 5], dtype=torch.int32) helper([2, 8, 4, 5], dtype=torch.int64) helper([2, 8, 4, 5], dtype=torch.bool) # Empty test - Currently failing! Empty tensor not handled! # helper([0, 2, 4, 5]) # Test abs
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_bernoulli
def test_bernoulli(self): shape = (10, 10) all_ones = torch.ones(shape, device='mps') all_zeros = torch.zeros(shape, device='mps') prob_tensor = all_ones * 0.5 # probability of drawing "1" is 0.5 mps_out = torch.bernoulli(prob_tensor) # We can't check reliably the mean and std. # Just make sure we don't return constant values self.assertNotEqual(mps_out.to('cpu').mean(), 0.) self.assertNotEqual(mps_out.to('cpu').std() ** 2, 0.) # probability of drawing "1" is 0 mps_out = torch.bernoulli(all_zeros) self.assertEqual(mps_out, all_zeros) # probability of drawing "1" is 1 mps_out = torch.bernoulli(all_ones) self.assertEqual(mps_out, all_ones)
def test_bernoulli(self): shape = (10, 10) all_ones = torch.ones(shape, device='mps') all_zeros = torch.zeros(shape, device='mps') prob_tensor = all_ones * 0.5 # probability of drawing "1" is 0.5 mps_out = torch.bernoulli(prob_tensor) # We can't check reliably the mean and std. # Just make sure we don't return constant values self.assertNotEqual(mps_out.to('cpu').mean(), 0.) self.assertNotEqual(mps_out.to('cpu').std() ** 2, 0.) # probability of drawing "1" is 0 mps_out = torch.bernoulli(all_zeros) self.assertEqual(mps_out, all_zeros) # probability of drawing "1" is 1 mps_out = torch.bernoulli(all_ones) self.assertEqual(mps_out, all_ones) # Check it works for different dtypes for dtype in [torch.float16, torch.int8, torch.int16, torch.int32, torch.int64]: mps_out = torch.zeros(shape, device='mps', dtype=dtype).bernoulli(0.5) # Check that output is not all zeros or ones if product_version > 13.0: uniq = mps_out.unique() self.assertEqual(uniq, torch.arange(2, device='mps', dtype=dtype)) else: self.assertEqual(mps_out.min().item(), 0.) self.assertEqual(mps_out.max().item(), 1.)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch class TestNLLLoss(TestCaseMPS): import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_default_mps_generator
def test_default_mps_generator(self): # manual seeding on the "default" MPS generator using # the global torch.manual_seed() torch.manual_seed(230) mps_x = torch.randn(5, device='mps') # manual seeding using torch.mps.manual_seed() # which should set the "default" MPS generator # like the global torch.manual_seed() torch.mps.manual_seed(230) mps_y = torch.randn(5, device='mps') # seed values were the same, so the random tensor contents should match self.assertEqual(mps_x, mps_y) # save the default generator's state to restore it later g_state = torch.mps.get_rng_state() # generate random numbers without seeding mps_x = torch.randn(5, device='mps') # in this case, the random results must differ from the last generated random results self.assertNotEqual(mps_x, mps_y) # restore the previously saved state, and the results should match again torch.mps.set_rng_state(g_state) mps_x = torch.randn(5, device='mps') self.assertEqual(mps_x, mps_y)
def test_default_mps_generator(self): # manual seeding on the "default" MPS generator using # the global torch.manual_seed() torch.manual_seed(230) mps_x = torch.randn(5, device='mps') # manual seeding using torch.mps.manual_seed() # which should set the "default" MPS generator # like the global torch.manual_seed() torch.mps.manual_seed(230) # generate random numbers with offset `0` mps_y = torch.randn(5, device='mps') # seed values were the same, so the random tensor contents should match self.assertEqual(mps_x, mps_y) # save the default generator's state (offset = 1) to restore it later g_state = torch.mps.get_rng_state() # generate random numbers with offset `1` mps_x = torch.randn(5, device='mps') # in this case, the random results must differ from the last generated random results self.assertNotEqual(mps_x, mps_y) # since we called randn twice after seeding, the offset should be 2 self.assertEqual(torch.mps._get_default_mps_generator().get_offset(), 2) # mps_x was produced by g_state, we use it as our reference mps_y. mps_y = mps_x # restore the previously saved state to the "default" MPS generator, and the results should match again torch.mps.set_rng_state(g_state) mps_x = torch.randn(5, device='mps') self.assertEqual(mps_x, mps_y)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch class TestNLLLoss(TestCaseMPS): import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_mps_allocator_module
def test_mps_allocator_module(self): # first garbage collect and empty the cached blocks gc.collect() torch.mps.empty_cache() # measure memory allocations from MPSAllocator current_alloc_before = torch.mps.current_allocated_memory() # after garbage collection and emptying the cache the # current_allocated_memory must be zero self.assertTrue(current_alloc_before == 0) # measure total memory allocations from Metal driver driver_alloc_before = torch.mps.driver_allocated_memory() # allocate a new 8 MB tensor to force allocation of a new Metal Heap x = torch.ones(1024 * 1024 * 8, device="mps") # get memory allocations after allocating tensor x current_alloc_after = torch.mps.current_allocated_memory() driver_alloc_after = torch.mps.driver_allocated_memory() # current and driver memory allocations must have # grown at this point self.assertTrue(current_alloc_after > current_alloc_before) self.assertTrue(driver_alloc_after > driver_alloc_before) # Test random_.to and random_.from
def test_mps_allocator_module(self): # first garbage collect and empty the cached blocks gc.collect() torch.mps.empty_cache() # measure memory allocations from MPSAllocator current_alloc_before = torch.mps.current_allocated_memory() # after garbage collection and emptying the cache the # current_allocated_memory must be zero self.assertEqual(current_alloc_before, 0) # measure total memory allocations from Metal driver driver_alloc_before = torch.mps.driver_allocated_memory() # allocate a new 8 MB tensor to force allocation of a new Metal Heap x = torch.ones(1024 * 1024 * 8, device="mps") # get memory allocations after allocating tensor x current_alloc_after = torch.mps.current_allocated_memory() driver_alloc_after = torch.mps.driver_allocated_memory() # current and driver memory allocations must have # grown at this point self.assertGreater(current_alloc_after, current_alloc_before) self.assertGreater(driver_alloc_after, driver_alloc_before)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch class TestNLLLoss(TestCaseMPS): import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_mps_allocator_stats
def test_mps_allocator_stats(self): max_memory = torch.mps.recommended_max_memory() print(f"Recommended Max Memory : {max_memory/ 1024 ** 3} GB") self.assertGreater(max_memory, 0) # to verify this test, run XCode Instruments "Metal System Trace" or "Logging" tool, # press record, then run this python test, and press stop. Next expand # the os_signposts->PyTorchMPS and check if events or intervals are logged # like this example: # "aten::mps_convolution_backward_input:f32[1,128,6,6]:f32[128,64,3,3]:1,128,6,6 (id=G2, run=2)"
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_mps_profiler_module
# Test random_.to and random_.from
def test_mps_profiler_module(self): with torch.mps.profiler.profile(mode="event", wait_until_completed=False) as p: # just running some ops to capture the OS Signposts traces for profiling net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ .to(device='mps', dtype=torch.float) x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) x = net1(x) torch.mps.profiler.start(mode="interval", wait_until_completed=True) # just running some ops to capture the OS Signposts traces for profiling x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) x = net1(x) torch.mps.profiler.stop()
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_cumprod_dim_check
def test_cumprod_dim_check(self): x = torch.rand((3, 3), device="mps") self.assertEqual(x.cumprod(1), x.cumprod(-1)) self.assertEqual(x.cumprod(0), x.cumprod(-2)) self.assertRaises(IndexError, lambda: x.cumprod(2)) self.assertRaises(IndexError, lambda: x.cumprod(-3))
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_mps_event_module
def test_mps_event_module(self): startEvent = torch.mps.Event(enable_timing=True) startEvent.record() net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ .to(device='mps', dtype=torch.float) x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) x = net1(x) endEvent = torch.mps.Event(enable_timing=True) endEvent.record() elapsedTime = startEvent.elapsed_time(endEvent) self.assertGreater(elapsedTime, 0.0)
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
test_jit_save_load
def test_jit_save_load(self): m = torch.nn.Module() m.x = torch.rand(3, 3, device='mps') buffer = io.BytesIO() torch.jit.save(torch.jit.script(m), buffer) buffer.seek(0) n = torch.jit.load(buffer) self.assertEqual(n.x, m.x) # Test random_, random_.to and random_.from
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
test_elu_strided_output
# Test glu
def test_elu_strided_output(self): # https://github.com/pytorch/pytorch/issues/124834 elu_input = torch.randn(1, 1024, 500) alpha = float(1) inplace = False elu_input_noncontiguous = elu_input.transpose(1, 2) self.assertEqual( F.elu(elu_input_noncontiguous.to('cpu'), alpha, inplace), F.elu(elu_input_noncontiguous.to('mps'), alpha, inplace) ) # Test glu
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' class TestMPS(TestCaseMPS): import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_mps.py
helper
def helper(val, shape): tensor = torch.zeros(shape, device='mps') tensor_mps = tensor.fill_(val) tensor_mps = torch.tanh(tensor_mps) tensor_0 = torch.zeros(shape, device='cpu') tensor_cpu = tensor_0.fill_(val) tensor_cpu = torch.tanh(tensor_cpu) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024]) helper(0.2, [2, 3])
def helper(val, shape, dtype): tensor = torch.zeros(shape, device='mps', dtype=dtype) tensor_mps = tensor.fill_(val) tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) tensor_cpu = tensor_0.fill_(val) self.assertEqual(tensor_mps, tensor_cpu) helper(0, [1024], torch.float32) helper(0.2, [2, 3], torch.float32) helper(0.2 + 0.5j, [2, 3], torch.complex64)
import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import pprint import copy import gc import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, run_tests, TestCase, download_file, IS_CI, TEST_WITH_UBSAN, dtype_abbrs, skipIfSlowGradcheckEnv, TEST_WITH_ASAN, suppress_warnings) from torch.testing import make_tensor from torch.testing._comparison import TensorLikePair from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests, onlyMPS from torch.testing._internal.common_nn import NNTestCase import numpy as np import torch import torch.utils._pytree as pytree from itertools import product _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning
import io import platform import sys import math import random import unittest import warnings import subprocess import tempfile import os import copy import gc import threading import torch import torch.nn as nn import torch.nn.functional as F import itertools from collections import defaultdict from torch import inf from torch.nn import Buffer, Parameter from torch.testing._internal import opinfo from torch.testing._internal.common_utils import \ (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) from torch.testing import make_tensor from torch.testing._internal.common_dtype import get_all_dtypes, integral_types import torch.backends.mps from torch.distributions import Uniform, Exponential from functools import partial from torch.testing._internal.common_methods_invocations import ( op_db, DecorateInfo, UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo, ) from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel import numpy as np import torch import torch.utils._pytree as pytree from itertools import product import operator test_consistency_op_db = copy.deepcopy(op_db) test_error_inputs_op_db = copy.deepcopy(op_db) _ref_test_ops = tuple( filter( lambda op: not isinstance( op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) ) and op.ref is not None, op_db, ) ) product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' import numpy as np import numpy as np import numpy as np import torch from torch.utils.checkpoint import checkpoint import numpy as np from torch.serialization import SourceChangeWarning from torch.serialization import SourceChangeWarning from torch.testing._internal.common_utils import random_hermitian_pd_matrix
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified