library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_kwargs
def test_kwargs(self): x = np.array([0, 0]) np.putmask(x, [0, 1], [-1, -2]) assert_array_equal(x, [0, -2]) x = np.array([0, 0]) np.putmask(x, mask=[0, 1], values=[-1, -2]) assert_array_equal(x, [0, -2]) x = np.array([0, 0]) np.putmask(x, values=[-1, -2], mask=[0, 1]) assert_array_equal(x, [0, -2]) with pytest.raises(TypeError): np.putmask(a=x, values=[-1, -2], mask=[0, 1])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
tst_basic
def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_equal(x[mask], np.array(val, T))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ip_types
def test_ip_types(self): unchecked_types = [bytes, str, np.void] x = np.random.random(1000) * 100 mask = x < 40 for val in [-100, 0, 15]: for types in "efdFDBbhil?": for T in types: if T not in unchecked_types: if val < 0 and np.dtype(T).kind == "u": val = np.iinfo(T).max - 99 self.tst_basic(x.copy().astype(T), T, mask, val) # Also test string of a length which uses an untypical length dt = np.dtype("S3") self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test__complex__should_not_work
def test__complex__should_not_work(self): dtypes = [ "i1", "i2", "i4", "i8", "u1", "f", "d", "F", "D", "?", ] for dt in dtypes: a = np.array([1, 2, 3], dtype=dt) assert_raises((TypeError, ValueError), complex, a) c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt) assert_raises((TypeError, ValueError), complex, c)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_array_contains
def test_array_contains(self): assert_(4.0 in np.arange(16.0).reshape(4, 4)) assert_(20.0 not in np.arange(16.0).reshape(4, 4))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestCequenceMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_inplace
def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.0) c = a + b * 2.0 / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3, decimal=5) assert_equal(a, 5) assert_equal(b, 3)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBinop(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_test_zero_rank
def test_test_zero_rank(self): x = np.array([1, 2, 3]) assert_(isinstance(x[0], (np.int_, np.ndarray))) assert_(type(x[0, ...]) is np.ndarray)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestSubscripting(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_list
def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_tuple
def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mask
def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mask2
def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_assign_mask
def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_assign_mask2
def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestFancyIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_no_dgemv_2
def test_no_dgemv_2(self, func, dtype): # check for unaligned data dt = np.dtype(dtype) a = np.zeros(8 * dt.itemsize // 2 + 1, dtype="int16")[1:].view(dtype) a = a.reshape(2, 4) b = a[0] # make sure it is not aligned assert_(a.__array_interface__["data"][0] % dt.itemsize != 0) ret1 = func(a, b) ret2 = func(a.copy(), b.copy()) assert_equal(ret1, ret2) ret1 = func(b.T, a.T) ret2 = func(b.T.copy(), a.T.copy()) assert_equal(ret1, ret2)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_matmul_out
def test_matmul_out(self): # overlapping memory a = np.arange(18).reshape(2, 3, 3) b = np.matmul(a, a) c = np.matmul(a, a, out=a) assert_(c is a) assert_equal(c, b) a = np.arange(18).reshape(2, 3, 3) c = np.matmul(a, a, out=a[::-1, ...]) assert_(c.base is a.base) assert_equal(c, b)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
tmp_filename
def tmp_filename(self, tmp_path, request): # This fixture covers two cases: # one where the filename is a string and # another where it is a pathlib object filename = tmp_path / "file" if request.param == "string": filename = str(filename) return filename
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_nofile
def test_nofile(self): # this should probably be supported as a file # but for now test for proper errors b = io.BytesIO() assert_raises(OSError, np.fromfile, b, np.uint8, 80) d = np.ones(7) assert_raises(OSError, lambda x: x.tofile(b), d)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_bool_fromstring
def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring("1 0 -2.3 0.0", sep=" ", dtype=np.bool_) assert_array_equal(v, y)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_uint64_fromstring
def test_uint64_fromstring(self): d = np.fromstring( "9923372036854775807 104783749223640", dtype=np.uint64, sep=" " ) e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_int64_fromstring
def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=" ") e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_fromstring_count0
def test_fromstring_count0(self): d = np.fromstring("1,2", sep=",", dtype=np.int64, count=0) assert d.shape == (0,)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_empty_files_text
def test_empty_files_text(self, tmp_filename): with open(tmp_filename, "w") as f: pass y = np.fromfile(tmp_filename) assert_(y.size == 0, "Array not empty")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_empty_files_binary
def test_empty_files_binary(self, tmp_filename): with open(tmp_filename, "wb") as f: pass y = np.fromfile(tmp_filename, sep=" ") assert_(y.size == 0, "Array not empty")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip_file
def test_roundtrip_file(self, x, tmp_filename): with open(tmp_filename, "wb") as f: x.tofile(f) # NB. doesn't work with flush+seek, due to use of C stdio with open(tmp_filename, "rb") as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip
def test_roundtrip(self, x, tmp_filename): x.tofile(tmp_filename) y = np.fromfile(tmp_filename, dtype=x.dtype) assert_array_equal(y, x.flat)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip_dump_pathlib
def test_roundtrip_dump_pathlib(self, x, tmp_filename): p = Path(tmp_filename) x.dump(p) y = np.load(p, allow_pickle=True) assert_array_equal(y, x)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip_binary_str
def test_roundtrip_binary_str(self, x): s = x.tobytes() y = np.frombuffer(s, dtype=x.dtype) assert_array_equal(y, x.flat) s = x.tobytes("F") y = np.frombuffer(s, dtype=x.dtype) assert_array_equal(y, x.flatten("F"))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip_str
def test_roundtrip_str(self, x): x = x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_roundtrip_repr
def test_roundtrip_repr(self, x): x = x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_unseekable_fromfile
def test_unseekable_fromfile(self, x, tmp_filename): # gh-6246 x.tofile(tmp_filename) def fail(*args, **kwargs): raise OSError("Can not tell or seek") with open(tmp_filename, "rb", buffering=0) as f: f.seek = fail f.tell = fail assert_raises(OSError, np.fromfile, f, dtype=x.dtype)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
fail
def fail(*args, **kwargs): raise OSError("Can not tell or seek") with open(tmp_filename, "rb", buffering=0) as f: f.seek = fail f.tell = fail assert_raises(OSError, np.fromfile, f, dtype=x.dtype)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_io_open_unbuffered_fromfile
def test_io_open_unbuffered_fromfile(self, x, tmp_filename): # gh-6632 x.tofile(tmp_filename) with open(tmp_filename, "rb", buffering=0) as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_largish_file
def test_largish_file(self, tmp_filename): # check the fallocate path on files > 16MB d = np.zeros(4 * 1024**2) d.tofile(tmp_filename) assert_equal(os.path.getsize(tmp_filename), d.nbytes) assert_array_equal(d, np.fromfile(tmp_filename)) # check offset with open(tmp_filename, "r+b") as f: f.seek(d.nbytes) d.tofile(f) assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2) # check append mode (gh-8329) open(tmp_filename, "w").close() # delete file contents with open(tmp_filename, "ab") as f: d.tofile(f) assert_array_equal(d, np.fromfile(tmp_filename)) with open(tmp_filename, "ab") as f: d.tofile(f) assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_io_open_buffered_fromfile
def test_io_open_buffered_fromfile(self, x, tmp_filename): # gh-6632 x.tofile(tmp_filename) with open(tmp_filename, "rb", buffering=-1) as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_file_position_after_fromfile
def test_file_position_after_fromfile(self, tmp_filename): # gh-4118 sizes = [ io.DEFAULT_BUFFER_SIZE // 8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE * 8, ] for size in sizes: with open(tmp_filename, "wb") as f: f.seek(size - 1) f.write(b"\0") for mode in ["rb", "r+b"]: err_msg = "%d %s" % (size, mode) with open(tmp_filename, mode) as f: f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() assert_equal(pos, 10, err_msg=err_msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_file_position_after_tofile
def test_file_position_after_tofile(self, tmp_filename): # gh-4118 sizes = [ io.DEFAULT_BUFFER_SIZE // 8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE * 8, ] for size in sizes: err_msg = "%d" % (size,) with open(tmp_filename, "wb") as f: f.seek(size - 1) f.write(b"\0") f.seek(10) f.write(b"12") np.array([0], dtype=np.float64).tofile(f) pos = f.tell() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) with open(tmp_filename, "r+b") as f: f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() assert_equal(pos, 10, err_msg=err_msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_load_object_array_fromfile
def test_load_object_array_fromfile(self, tmp_filename): # gh-12300 with open(tmp_filename, "w") as f: # Ensure we have a file with consistent contents pass with open(tmp_filename, "rb") as f: assert_raises_regex( ValueError, "Cannot read into object array", np.fromfile, f, dtype=object, ) assert_raises_regex( ValueError, "Cannot read into object array", np.fromfile, tmp_filename, dtype=object, )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
dup_str
def dup_str(fd): return "abc"
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
dup_bigint
def dup_bigint(fd): return 2**68 old_dup = os.dup try: with open(tmp_filename, "wb") as f: x.tofile(f) for dup, exc in ((dup_str, TypeError), (dup_bigint, OSError)): os.dup = dup assert_raises(exc, np.fromfile, f) finally: os.dup = old_dup
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
decimal_sep_localization
def decimal_sep_localization(self, request): """ Including this fixture in a test will automatically execute it with both types of decimal separator. So:: def test_decimal(decimal_sep_localization): pass is equivalent to the following two tests:: def test_decimal_period_separator(): pass def test_decimal_comma_separator(): with CommaDecimalPointLocale(): pass """ if request.param == "period": yield elif request.param == "comma": with CommaDecimalPointLocale(): yield else: raise AssertionError(request.param)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_decimal
def test_decimal(decimal_sep_localization): pass
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_decimal_period_separator
def test_decimal_period_separator(): pass
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_decimal_comma_separator
def test_decimal_comma_separator(): with CommaDecimalPointLocale(): pass
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_nan
def test_nan(self): input_arr = np.array([-2.0, np.nan, 0.5, 3.0, 0.25, np.nan]) result = input_arr.clip(-1, 1) expected = np.array([-1.0, np.nan, 0.5, 1.0, 0.25, np.nan]) assert_array_equal(result, expected)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestClip(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_inf
def test_inf(self, tmp_filename, decimal_sep_localization): self._check_from( b"inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], tmp_filename, sep=" ", )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_numbers
def test_numbers(self, tmp_filename, decimal_sep_localization): self._check_from( b"1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, 0.3, 0.3e55, -123133.1231e133], tmp_filename, sep=" ", )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_big_binary
def test_big_binary(self): """Test workarounds for 32-bit limit for MSVC fwrite, fseek, and ftell These normally would hang doing something like this. See : https://github.com/numpy/numpy/issues/2256 """ if sys.platform != "win32" or "[GCC " in sys.version: return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_string
def test_string(self, tmp_filename): self._check_from(b"1,2,3,4", [1.0, 2.0, 3.0, 4.0], tmp_filename, sep=",")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_counted_string
def test_counted_string(self, tmp_filename, decimal_sep_localization): self._check_from( b"1,2,3,4", [1.0, 2.0, 3.0, 4.0], tmp_filename, count=4, sep="," ) self._check_from(b"1,2,3,4", [1.0, 2.0, 3.0], tmp_filename, count=3, sep=",") self._check_from( b"1,2,3,4", [1.0, 2.0, 3.0, 4.0], tmp_filename, count=-1, sep="," )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_string_with_ws
def test_string_with_ws(self, tmp_filename): self._check_from( b"1 2 3 4 ", [1, 2, 3, 4], tmp_filename, dtype=int, sep=" " )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_counted_string_with_ws
def test_counted_string_with_ws(self, tmp_filename): self._check_from( b"1 2 3 4 ", [1, 2, 3], tmp_filename, count=3, dtype=int, sep=" " )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ascii
def test_ascii(self, tmp_filename, decimal_sep_localization): self._check_from(b"1 , 2 , 3 , 4", [1.0, 2.0, 3.0, 4.0], tmp_filename, sep=",") self._check_from( b"1,2,3,4", [1.0, 2.0, 3.0, 4.0], tmp_filename, dtype=float, sep="," )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_array_base
def test_array_base(self, obj): # Objects (including NumPy arrays), which do not use the # `release_buffer` slot should be directly used as a base object. # See also gh-21612 if isinstance(obj, str): # @parametrize breaks with bytes objects obj = bytes(obj, enconding="latin-1") new = np.frombuffer(obj) assert new.base is obj
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestFromBuffer(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mmap_close
def test_mmap_close(self): # The old buffer protocol was not safe for some things that the new # one is. But `frombuffer` always used the old one for a long time. # Checks that it is safe with the new one (using memoryviews) with tempfile.TemporaryFile(mode="wb") as tmp: tmp.write(b"asdf") tmp.flush() mm = mmap.mmap(tmp.fileno(), 0) arr = np.frombuffer(mm, dtype=np.uint8) with pytest.raises(BufferError): mm.close() # cannot close while array uses the buffer del arr mm.close()
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestFromBuffer(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_contiguous
def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.a.flat[12] == 12.0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip # (reason="TODO") # FIXME: skip -> xfail (a0.shape = (4, 5) raises) class TestFlat(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_discontiguous
def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.b.flat[4] == 12.0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip # (reason="TODO") # FIXME: skip -> xfail (a0.shape = (4, 5) raises) class TestFlat(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_refcount
def test_refcount(self): # includes regression test for reference count error gh-13165 inds = [np.intp(0), np.array([True] * self.a.size), np.array([0]), None] indtype = np.dtype(np.intp) rc_indtype = sys.getrefcount(indtype) for ind in inds: rc_ind = sys.getrefcount(ind) for _ in range(100): try: self.a.flat[ind] except IndexError: pass assert_(abs(sys.getrefcount(ind) - rc_ind) < 50) assert_(abs(sys.getrefcount(indtype) - rc_indtype) < 50)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip # (reason="TODO") # FIXME: skip -> xfail (a0.shape = (4, 5) raises) class TestFlat(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_index_getset
def test_index_getset(self): it = np.arange(10).reshape(2, 1, 5).flat with pytest.raises(AttributeError): it.index = 10 for _ in it: pass # Check the value of `.index` is updated correctly (see also gh-19153) # If the type was incorrect, this would show up on big-endian machines assert it.index == it.base.size
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip # (reason="TODO") # FIXME: skip -> xfail (a0.shape = (4, 5) raises) class TestFlat(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_var_where
def test_var_where(self): a = np.arange(25).reshape((5, 5)) wh_full = np.array( [ [False, True, False, True, True], [True, False, True, True, False], [True, True, False, False, True], [False, True, True, False, True], [True, False, True, True, False], ] ) wh_partial = np.array([[False], [True], [True], [False], [True]]) _cases = [ (0, True, [50.0, 50.0, 50.0, 50.0, 50.0]), (1, True, [2.0, 2.0, 2.0, 2.0, 2.0]), ] for _ax, _wh, _res in _cases: assert_allclose(a.var(axis=_ax, where=_wh), np.array(_res)) assert_allclose(np.var(a, axis=_ax, where=_wh), np.array(_res)) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[0.25, 0.25], [0.25, 0.25]] assert_allclose(a3d.var(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.var(a3d, axis=2, where=_wh_partial), np.array(_res)) assert_allclose( np.var(a, axis=1, where=wh_full), np.var(a[wh_full].reshape((5, 3)), axis=1) ) assert_allclose( np.var(a, axis=0, where=wh_partial), np.var(a[wh_partial[:, 0]], axis=0) ) with pytest.warns(RuntimeWarning) as w: assert_equal(a.var(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.var(a, where=False), np.nan)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_std_where
def test_std_where(self): a = np.arange(25).reshape((5, 5))[::-1] whf = np.array( [ [False, True, False, True, True], [True, False, True, False, True], [True, True, False, True, False], [True, False, True, True, False], [False, True, False, True, True], ] ) whp = np.array([[False], [False], [True], [True], [False]]) _cases = [ (0, True, 7.07106781 * np.ones(5)), (1, True, 1.41421356 * np.ones(5)), (0, whf, np.array([4.0824829, 8.16496581, 5.0, 7.39509973, 8.49836586])), (0, whp, 2.5 * np.ones(5)), ] for _ax, _wh, _res in _cases: assert_allclose(a.std(axis=_ax, where=_wh), _res) assert_allclose(np.std(a, axis=_ax, where=_wh), _res) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[0.5, 0.5], [0.5, 0.5]] assert_allclose(a3d.std(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.std(a3d, axis=2, where=_wh_partial), np.array(_res)) assert_allclose( a.std(axis=1, where=whf), np.std(a[whf].reshape((5, 3)), axis=1) ) assert_allclose( np.std(a, axis=1, where=whf), (a[whf].reshape((5, 3))).std(axis=1) ) assert_allclose(a.std(axis=0, where=whp), np.std(a[whp[:, 0]], axis=0)) assert_allclose(np.std(a, axis=0, where=whp), (a[whp[:, 0]]).std(axis=0)) with pytest.warns(RuntimeWarning) as w: assert_equal(a.std(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.std(a, where=False), np.nan)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_vdot_array_order
def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order="C") b = np.array([[1, 2], [3, 4]], order="F") res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestVdot(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_vdot_uncontiguous_2
def test_vdot_uncontiguous_2(self): # test order='F' separately for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a.copy("F"), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy("F")), np.vdot(a.flatten(), b.flatten()))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestVdot(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dotmatmat
def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestDot(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_malformed
def test_malformed(self, tmp_filename, decimal_sep_localization): with assert_warns(DeprecationWarning): self._check_from(b"1.234 1,234", [1.234, 1.0], tmp_filename, sep=" ")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_long_sep
def test_long_sep(self, tmp_filename): self._check_from(b"1_x_3_x_4_x_5", [1, 3, 4, 5], tmp_filename, sep="_x_")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dtype
def test_dtype(self, tmp_filename): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from(b"1,2,3,4", v, tmp_filename, sep=",", dtype=np.int_)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dtype_bool
def test_dtype_bool(self, tmp_filename): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = b"1,0,-2.3,0" with open(tmp_filename, "wb") as f: f.write(s) y = np.fromfile(tmp_filename, sep=",", dtype=np.bool_) assert_(y.dtype == "?") assert_array_equal(y, v)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_tofile_sep
def test_tofile_sep(self, tmp_filename, decimal_sep_localization): x = np.array([1.51, 2, 3.51, 4], dtype=float) with open(tmp_filename, "w") as f: x.tofile(f, sep=",") with open(tmp_filename) as f: s = f.read() # assert_equal(s, '1.51,2.0,3.51,4.0') y = np.array([float(p) for p in s.split(",")]) assert_array_equal(x, y)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_tofile_format
def test_tofile_format(self, tmp_filename, decimal_sep_localization): x = np.array([1.51, 2, 3.51, 4], dtype=float) with open(tmp_filename, "w") as f: x.tofile(f, sep=",", format="%.2f") with open(tmp_filename) as f: s = f.read() assert_equal(s, "1.51,2.00,3.51,4.00")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_tofile_cleanup
def test_tofile_cleanup(self, tmp_filename): x = np.zeros((10), dtype=object) with open(tmp_filename, "wb") as f: assert_raises(OSError, lambda: x.tofile(f, sep="")) # Dup-ed file handle should be closed or remove will fail on Windows OS os.remove(tmp_filename) # Also make sure that we close the Python handle assert_raises(OSError, lambda: x.tofile(tmp_filename)) os.remove(tmp_filename)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_fromfile_subarray_binary
def test_fromfile_subarray_binary(self, tmp_filename): # Test subarray dtypes which are absorbed into the shape x = np.arange(24, dtype="i4").reshape(2, 3, 4) x.tofile(tmp_filename) res = np.fromfile(tmp_filename, dtype="(3,4)i4") assert_array_equal(x, res) x_str = x.tobytes() with assert_warns(DeprecationWarning): # binary fromstring is deprecated res = np.fromstring(x_str, dtype="(3,4)i4") assert_array_equal(x, res)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_parsing_subarray_unsupported
def test_parsing_subarray_unsupported(self, tmp_filename): # We currently do not support parsing subarray dtypes data = "12,42,13," * 50 with pytest.raises(ValueError): expected = np.fromstring(data, dtype="(3,)i", sep=",") with open(tmp_filename, "w") as f: f.write(data) with pytest.raises(ValueError): np.fromfile(tmp_filename, dtype="(3,)i", sep=",")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_read_shorter_than_count_subarray
def test_read_shorter_than_count_subarray(self, tmp_filename): # Test that requesting more values does not cause any problems # in conjunction with subarray dimensions being absorbed into the # array dimension. expected = np.arange(511 * 10, dtype="i").reshape(-1, 10) binary = expected.tobytes() with pytest.raises(ValueError): with pytest.warns(DeprecationWarning): np.fromstring(binary, dtype="(10,)i", count=10000) expected.tofile(tmp_filename) res = np.fromfile(tmp_filename, dtype="(10,)i", count=10000) assert_array_equal(res, expected)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @skip(reason="dont worry about IO") class TestIO(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_int_shape
def test_int_shape(self): x = np.eye(3) if IS_PYPY: x.resize(3, refcheck=False) else: x.resize(3) assert_array_equal(x, np.eye(3)[0, :])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestResize(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_none_shape
def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestResize(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_0d_shape
def test_0d_shape(self): # to it multiple times to test it does not break alloc cache gh-9216 for i in range(10): x = np.empty((1,)) x.resize(()) assert_equal(x.shape, ()) assert_equal(x.size, 1) x = np.empty(()) x.resize((1,)) assert_equal(x.shape, (1,)) assert_equal(x.size, 1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestResize(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_zeros_appended
def test_zeros_appended(self): x = np.eye(3) if IS_PYPY: x.resize(2, 3, 3, refcheck=False) else: x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3)))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestResize(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_check_weakref
def test_check_weakref(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) xref = weakref.ref(x) assert_raises(ValueError, x.resize, (5, 1)) del xref # avoid pyflakes unused variable warning.
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestResize(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
_mean
def _mean(a, **args): return a.mean(**args)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
_var
def _var(a, **args): return a.var(**args)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
_std
def _std(a, **args): return a.std(**args) @instantiate_parametrized_tests class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(3) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat def test_python_type(self): for x in (np.float16(1.0), 1, 1.0, 1 + 0j): assert_equal(np.mean([x]), 1.0) assert_equal(np.std([x]), 0.0) assert_equal(np.var([x]), 0.0) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes["AllInteger"] fcodes = np.typecodes["AllFloat"] # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. # for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes["AllFloat"]: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): # with warnings.catch_warnings(record=True) as w: # warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) # assert_(len(w) > 0) # assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: # with warnings.catch_warnings(record=True) as w: # warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) # assert_(len(w) > 0) # assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: # with warnings.catch_warnings(record=True) as w: # warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_mean_float16(self): # This fail if the sum inside mean is done in float16 instead # of float32. assert_(_mean(np.ones(100000, dtype="float16")) == 1) def test_mean_axis_error(self): # Ensure that AxisError is raised instead of IndexError when axis is # out of bounds, see gh-15817. with assert_raises(np.AxisError): np.arange(10).mean(axis=2) @xpassIfTorchDynamo # (reason="implement mean(..., where=...)") def test_mean_where(self): a = np.arange(16).reshape((4, 4)) wh_full = np.array( [ [False, True, False, True], [True, False, True, False], [True, True, False, False], [False, False, True, True], ] ) wh_partial = np.array([[False], [True], [True], [False]]) _cases = [ (1, True, [1.5, 5.5, 9.5, 13.5]), (0, wh_full, [6.0, 5.0, 10.0, 9.0]), (1, wh_full, [2.0, 5.0, 8.5, 14.5]), (0, wh_partial, [6.0, 7.0, 8.0, 9.0]), ] for _ax, _wh, _res in _cases: assert_allclose(a.mean(axis=_ax, where=_wh), np.array(_res)) assert_allclose(np.mean(a, axis=_ax, where=_wh), np.array(_res)) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[1.5, 5.5], [9.5, 13.5]] assert_allclose(a3d.mean(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.mean(a3d, axis=2, where=_wh_partial), np.array(_res)) with pytest.warns(RuntimeWarning) as w: assert_allclose( a.mean(axis=1, where=wh_partial), np.array([np.nan, 5.5, 9.5, np.nan]) ) with pytest.warns(RuntimeWarning) as w: assert_equal(a.mean(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.mean(a, where=False), np.nan) def test_var_values(self): for mat in [self.rmat, self.cmat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) @parametrize( "complex_dtype, ndec", ( ("complex64", 6), ("complex128", 7), ), ) def test_var_complex_values(self, complex_dtype, ndec): # Test fast-paths for every builtin complex type for axis in [0, 1, None]: mat = self.cmat.copy().astype(complex_dtype) msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt, decimal=ndec) def test_var_dimensions(self): # _var paths for complex number introduce additions on views that # increase dimensions. Ensure this generalizes to higher dims mat = np.stack([self.cmat] * 3) for axis in [0, 1, 2, -1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) @skip(reason="endianness") def test_var_complex_byteorder(self): # Test that var fast-path does not cause failures for complex arrays # with non-native byteorder cmat = self.cmat.copy().astype("complex128") cmat_swapped = cmat.astype(cmat.dtype.newbyteorder()) assert_almost_equal(cmat.var(), cmat_swapped.var()) def test_var_axis_error(self): # Ensure that AxisError is raised instead of IndexError when axis is # out of bounds, see gh-15817. with assert_raises(np.AxisError): np.arange(10).var(axis=2) @xpassIfTorchDynamo # (reason="implement var(..., where=...)") def test_var_where(self): a = np.arange(25).reshape((5, 5)) wh_full = np.array( [ [False, True, False, True, True], [True, False, True, True, False], [True, True, False, False, True], [False, True, True, False, True], [True, False, True, True, False], ] ) wh_partial = np.array([[False], [True], [True], [False], [True]]) _cases = [ (0, True, [50.0, 50.0, 50.0, 50.0, 50.0]), (1, True, [2.0, 2.0, 2.0, 2.0, 2.0]), ] for _ax, _wh, _res in _cases: assert_allclose(a.var(axis=_ax, where=_wh), np.array(_res)) assert_allclose(np.var(a, axis=_ax, where=_wh), np.array(_res)) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[0.25, 0.25], [0.25, 0.25]] assert_allclose(a3d.var(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.var(a3d, axis=2, where=_wh_partial), np.array(_res)) assert_allclose( np.var(a, axis=1, where=wh_full), np.var(a[wh_full].reshape((5, 3)), axis=1) ) assert_allclose( np.var(a, axis=0, where=wh_partial), np.var(a[wh_partial[:, 0]], axis=0) ) with pytest.warns(RuntimeWarning) as w: assert_equal(a.var(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.var(a, where=False), np.nan) def test_std_values(self): for mat in [self.rmat, self.cmat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) @xpassIfTorchDynamo # (reason="implement std(..., where=...)") def test_std_where(self): a = np.arange(25).reshape((5, 5))[::-1] whf = np.array( [ [False, True, False, True, True], [True, False, True, False, True], [True, True, False, True, False], [True, False, True, True, False], [False, True, False, True, True], ] ) whp = np.array([[False], [False], [True], [True], [False]]) _cases = [ (0, True, 7.07106781 * np.ones(5)), (1, True, 1.41421356 * np.ones(5)), (0, whf, np.array([4.0824829, 8.16496581, 5.0, 7.39509973, 8.49836586])), (0, whp, 2.5 * np.ones(5)), ] for _ax, _wh, _res in _cases: assert_allclose(a.std(axis=_ax, where=_wh), _res) assert_allclose(np.std(a, axis=_ax, where=_wh), _res) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[0.5, 0.5], [0.5, 0.5]] assert_allclose(a3d.std(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.std(a3d, axis=2, where=_wh_partial), np.array(_res)) assert_allclose( a.std(axis=1, where=whf), np.std(a[whf].reshape((5, 3)), axis=1) ) assert_allclose( np.std(a, axis=1, where=whf), (a[whf].reshape((5, 3))).std(axis=1) ) assert_allclose(a.std(axis=0, where=whp), np.std(a[whp[:, 0]], axis=0)) assert_allclose(np.std(a, axis=0, where=whp), (a[whp[:, 0]]).std(axis=0)) with pytest.warns(RuntimeWarning) as w: assert_equal(a.std(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.std(a, where=False), np.nan) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes["AllFloat"] + np.typecodes["AllInteger"] dt_complex = np.typecodes["Complex"] # test real a = np.eye(3) for dt in dt_numeric: b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex: b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) @xpassIfTorchDynamo # (reason="implement order='F'") def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order="C") b = np.array([[1, 2], [3, 4]], order="F") res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) @xpassIfTorchDynamo # (reason="implement order='F'") def test_vdot_uncontiguous_2(self): # test order='F' separately for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a.copy("F"), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy("F")), np.vdot(a.flatten(), b.flatten())) @instantiate_parametrized_tests class TestDot(TestCase): def setUp(self): np.random.seed(128) # Numpy and pytorch random streams differ, so inline the # values from numpy 1.24.1 # self.A = np.random.rand(4, 2) self.A = np.array( [ [0.86663704, 0.26314485], [0.13140848, 0.04159344], [0.23892433, 0.6454746], [0.79059935, 0.60144244], ] ) # self.b1 = np.random.rand(2, 1) self.b1 = np.array([[0.33429937], [0.11942846]]) # self.b2 = np.random.rand(2) self.b2 = np.array([0.30913305, 0.10972379]) # self.b3 = np.random.rand(1, 2) self.b3 = np.array([[0.60211331, 0.25128496]]) # self.b4 = np.random.rand(4) self.b4 = np.array([0.29968129, 0.517116, 0.71520252, 0.9314494]) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) # Numpy guarantees the random stream, and we don't. So inline the # values from numpy 1.24.1 # b1 = np.random.rand(1, 1) b1 = np.array([[0.54340494]]) # b2 = np.random.rand(1, 4) b2 = np.array([[0.27836939, 0.42451759, 0.84477613, 0.00471886]]) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) # b1 = np.random.rand(4, 1) b1 = np.array([[0.54340494], [0.27836939], [0.42451759], [0.84477613]]) # b2 = np.random.rand(1, 1) b2 = np.array([[0.00471886]]) res = np.dot(b1, b2) tgt = np.array([[0.00256425], [0.00131359], [0.00200324], [0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) @skip(reason="numpy internals") def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) @skip(reason="numpy internals") def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) if HAS_REFCOUNT: assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) @skip(reason="numpy internals") def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) @xpassIfTorchDynamo # (reason="TODO order='F'") def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order="C") b = np.array([[1, 2], [3, 4]], order="F") res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) @skip(reason="TODO: nbytes, view, __array_interface__") def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order="C"): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset : offset + N * d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order="C"): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15, 32), (10000,), (200, 89), ("C", "F")) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == "F": assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) @slow @parametrize("dtype", [np.float64, np.complex128]) @requires_memory(free_bytes=18e9) # complex case needs 18GiB+ def test_huge_vectordot(self, dtype): # Large vector multiplications are chunked with 32bit BLAS # Test that the chunking does the right thing, see also gh-22262 data = np.ones(2**30 + 100, dtype=dtype) res = np.dot(data, data) assert res == 2**30 + 100 class MatmulCommon: """Common tests for '@' operator and numpy.matmul.""" # Should work with these types. Will want to add # "O" at some point types = "?bhilBefdFD" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ( ( 2, 1, ), (2,), ), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises((RuntimeError, ValueError), self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1, 1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) @xpassIfTorchDynamo # (reason="no scalars") def test_result_types_2(self): # in numpy, vector vector returns scalars # we return a 0D array instead for dt in self.types: v = np.ones((1,)).astype(dt) if dt != "O": res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_scalar_output(self): vec1 = np.array([2]) vec2 = np.array([3, 4]).reshape(1, -1) tgt = np.array([6, 8]) for dt in self.types[1:]: v1 = vec1.astype(dt) v2 = vec2.astype(dt) res = self.matmul(v1, v2) assert_equal(res, tgt) res = self.matmul(v2.T, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype="?").reshape(1, -1) res = self.matmul(vec[:, 0], vec) assert_equal(res, True) def test_vector_vector_values(self): vec1 = np.array([1, 2]) vec2 = np.array([3, 4]).reshape(-1, 1) tgt1 = np.array([11]) tgt2 = np.array([[3, 6], [4, 8]]) for dt in self.types[1:]: v1 = vec1.astype(dt) v2 = vec2.astype(dt) res = self.matmul(v1, v2) assert_equal(res, tgt1) # no broadcast, we must make v1 into a 2d ndarray res = self.matmul(v2, v1.reshape(1, -1)) assert_equal(res, tgt2) # boolean type vec = np.array([True, True], dtype="?") res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1] * 2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1] * 2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1] * 2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1] * 2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1] * 2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1] * 2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1] * 2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1] * 2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) @instantiate_parametrized_tests class TestMatmul(MatmulCommon, TestCase): def setUp(self): self.matmul = np.matmul def test_out_arg(self): a = np.ones((5, 2), dtype=float) b = np.array([[1, 3], [5, 7]], dtype=float) tgt = np.dot(a, b) # test as positional argument msg = "out positional argument" out = np.zeros((5, 2), dtype=float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((5, 2), dtype=float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) msg = "Cannot cast" out = np.zeros((5, 2), dtype=np.int32) assert_raises_regex(TypeError, msg, self.matmul, a, b, out=out) # test out with type upcast to complex out = np.zeros((5, 2), dtype=np.complex128) c = self.matmul(a, b, out=out) assert_(c is out) # with suppress_warnings() as sup: # sup.filter(np.ComplexWarning, '') c = c.astype(tgt.dtype) assert_array_equal(c, tgt) def test_empty_out(self): # Check that the output cannot be broadcast, so that it cannot be # size zero when the outer dimensions (iterator size) has size zero. arr = np.ones((0, 1, 1)) out = np.ones((1, 1, 1)) assert self.matmul(arr, arr).shape == (0, 1, 1) with pytest.raises((RuntimeError, ValueError)): self.matmul(arr, arr, out=out) def test_out_contiguous(self): a = np.ones((5, 2), dtype=float) b = np.array([[1, 3], [5, 7]], dtype=float) v = np.array([1, 3], dtype=float) tgt = np.dot(a, b) tgt_mv = np.dot(a, v) # test out non-contiguous out = np.ones((5, 2, 2), dtype=float) c = self.matmul(a, b, out=out[..., 0]) assert_array_equal(c, tgt) c = self.matmul(a, v, out=out[:, 0, 0]) assert_array_equal(c, tgt_mv) c = self.matmul(v, a.T, out=out[:, 0, 0]) assert_array_equal(c, tgt_mv) # test out contiguous in only last dim out = np.ones((10, 2), dtype=float) c = self.matmul(a, b, out=out[::2, :]) assert_array_equal(c, tgt) # test transposes of out, args out = np.ones((5, 2), dtype=float) c = self.matmul(b.T, a.T, out=out.T) assert_array_equal(out, tgt) @xfailIfTorchDynamo def test_out_contiguous_2(self): a = np.ones((5, 2), dtype=float) b = np.array([[1, 3], [5, 7]], dtype=float) # test out non-contiguous out = np.ones((5, 2, 2), dtype=float) c = self.matmul(a, b, out=out[..., 0]) assert c.tensor._base is out.tensor m1 = np.arange(15.0).reshape(5, 3) m2 = np.arange(21.0).reshape(3, 7) m3 = np.arange(30.0).reshape(5, 6)[:, ::2] # non-contiguous vc = np.arange(10.0) vr = np.arange(6.0) m0 = np.zeros((3, 0)) @parametrize( "args", ( # matrix-matrix subtest((m1, m2), name="mm1"), subtest((m2.T, m1.T), name="mm2"), subtest((m2.T.copy(), m1.T), name="mm3"), subtest((m2.T, m1.T.copy()), name="mm4"), # matrix-matrix-transpose, contiguous and non subtest((m1, m1.T), name="mmT1"), subtest((m1.T, m1), name="mmT2"), subtest((m1, m3.T), name="mmT3"), subtest((m3, m1.T), name="mmT4"), subtest((m3, m3.T), name="mmT5"), subtest((m3.T, m3), name="mmT6"), # matrix-matrix non-contiguous subtest((m3, m2), name="mmN1"), subtest((m2.T, m3.T), name="mmN2"), subtest((m2.T.copy(), m3.T), name="mmN3"), # vector-matrix, matrix-vector, contiguous subtest((m1, vr[:3]), name="vm1"), subtest((vc[:5], m1), name="vm2"), subtest((m1.T, vc[:5]), name="vm3"), subtest((vr[:3], m1.T), name="vm4"), # vector-matrix, matrix-vector, vector non-contiguous subtest((m1, vr[::2]), name="mvN1"), subtest((vc[::2], m1), name="mvN2"), subtest((m1.T, vc[::2]), name="mvN3"), subtest((vr[::2], m1.T), name="mvN4"), # vector-matrix, matrix-vector, matrix non-contiguous subtest((m3, vr[:3]), name="mvN5"), subtest((vc[:5], m3), name="mvN6"), subtest((m3.T, vc[:5]), name="mvN7"), subtest((vr[:3], m3.T), name="mvN8"), # vector-matrix, matrix-vector, both non-contiguous subtest((m3, vr[::2]), name="mvN9"), subtest((vc[::2], m3), name="mvn10"), subtest((m3.T, vc[::2]), name="mv11"), subtest((vr[::2], m3.T), name="mv12"), # size == 0 subtest((m0, m0.T), name="s0_1"), subtest((m0.T, m0), name="s0_2"), subtest((m1, m0), name="s0_3"), subtest((m0.T, m1.T), name="s0_4"), ), ) def test_dot_equivalent(self, args): r1 = np.matmul(*args) r2 = np.dot(*args) assert_equal(r1, r2) r3 = np.matmul(args[0].copy(), args[1].copy()) assert_equal(r1, r3) @skip(reason="object arrays") def test_matmul_exception_multiply(self): # test that matmul fails if `__mul__` is missing class add_not_multiply: def __add__(self, other): return self a = np.full((3, 3), add_not_multiply()) with assert_raises(TypeError): b = np.matmul(a, a) @skip(reason="object arrays") def test_matmul_exception_add(self): # test that matmul fails if `__add__` is missing class multiply_not_add: def __mul__(self, other): return self a = np.full((3, 3), multiply_not_add()) with assert_raises(TypeError): b = np.matmul(a, a) def test_matmul_bool(self): # gh-14439 a = np.array([[1, 0], [1, 1]], dtype=bool) assert np.max(a.view(np.uint8)) == 1 b = np.matmul(a, a) # matmul with boolean output should always be 0, 1 assert np.max(b.view(np.uint8)) == 1 # rg = np.random.default_rng(np.random.PCG64(43)) # d = rg.integers(2, size=4*5, dtype=np.int8) # d = d.reshape(4, 5) > 0 np.random.seed(1234) d = np.random.randint(2, size=(4, 5)) > 0 out1 = np.matmul(d, d.reshape(5, 4)) out2 = np.dot(d, d.reshape(5, 4)) assert_equal(out1, out2) c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool)) assert not np.any(c) class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul @skip(reason="no __array_priority__") def test_array_priority_override(self): class A: __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_raises(self): assert_raises( (RuntimeError, TypeError, ValueError), self.matmul, np.int8(5), np.int8(5) ) @xpassIfTorchDynamo # (reason="torch supports inplace matmul, and so do we") @skipif(numpy.__version__ >= "1.26", reason="This is fixed in numpy 1.26") def test_matmul_inplace(self): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) @xfail # XXX: what's up with exec under Dynamo def test_matmul_inplace_2(self): a = np.eye(3) b = np.eye(3) assert_raises(TypeError, operator.imatmul, a, b) assert_raises(TypeError, exec, "a @= b", globals(), locals()) @xpassIfTorchDynamo # (reason="matmul_axes") def test_matmul_axes(self): a = np.arange(3 * 4 * 5).reshape(3, 4, 5) c = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (1, 2)]) assert c.shape == (3, 4, 4) d = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (0, 1)]) assert d.shape == (4, 4, 3) e = np.swapaxes(d, 0, 2) assert_array_equal(e, c) f = np.matmul(a, np.arange(3), axes=[(1, 0), (0), (0)]) assert f.shape == (4, 5) class TestInner(TestCase): def test_inner_scalar_and_vector(self): for dt in np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "?": sca = np.array(3, dtype=dt)[()] vec = np.array([1, 2], dtype=dt) desired = np.array([3, 6], dtype=dt) assert_equal(np.inner(vec, sca), desired) assert_equal(np.inner(sca, vec), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) def test_inner_product_with_various_contiguities(self): # github issue 6532 for dt in np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "?": # check an inner product involving a matrix transpose A = np.array([[1, 2], [3, 4]], dtype=dt) B = np.array([[1, 3], [2, 4]], dtype=dt) C = np.array([1, 1], dtype=dt) desired = np.array([4, 6], dtype=dt) assert_equal(np.inner(A.T, C), desired) assert_equal(np.inner(C, A.T), desired) assert_equal(np.inner(B, C), desired) assert_equal(np.inner(C, B), desired) # check a matrix product desired = np.array([[7, 10], [15, 22]], dtype=dt) assert_equal(np.inner(A, B), desired) # check the syrk vs. gemm paths desired = np.array([[5, 11], [11, 25]], dtype=dt) assert_equal(np.inner(A, A), desired) assert_equal(np.inner(A, A.copy()), desired) @skip(reason="[::-1] not supported") def test_inner_product_reversed_view(self): for dt in np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "?": # check an inner product involving an aliased and reversed view a = np.arange(5).astype(dt) b = a[::-1] desired = np.array(10, dtype=dt).item() assert_equal(np.inner(b, a), desired) def test_3d_tensor(self): for dt in np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "?": a = np.arange(24).reshape(2, 3, 4).astype(dt) b = np.arange(24, 48).reshape(2, 3, 4).astype(dt) desired = np.array( [ [ [[158, 182, 206], [230, 254, 278]], [[566, 654, 742], [830, 918, 1006]], [[974, 1126, 1278], [1430, 1582, 1734]], ], [ [[1382, 1598, 1814], [2030, 2246, 2462]], [[1790, 2070, 2350], [2630, 2910, 3190]], [[2198, 2542, 2886], [3230, 3574, 3918]], ], ] ).astype(dt) assert_equal(np.inner(a, b), desired) assert_equal(np.inner(b, a).transpose(2, 3, 0, 1), desired) @instantiate_parametrized_tests class TestChoose(TestCase): def setUp(self): self.x = 2 * np.ones((3,), dtype=int) self.y = 3 * np.ones((3,), dtype=int) self.x2 = 2 * np.ones((2, 3), dtype=int) self.y2 = 3 * np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) # XXX: revisit xfails when NEP 50 lands in numpy @skip(reason="XXX: revisit xfails when NEP 50 lands in numpy") @parametrize( "ops", [ (1000, np.array([1], dtype=np.uint8)), (-1, np.array([1], dtype=np.uint8)), (1.0, np.float32(3)), (1.0, np.array([3], dtype=np.float32)), ], ) def test_output_dtype(self, ops): expected_dt = np.result_type(*ops) assert np.choose([0], ops).dtype == expected_dt def test_docstring_1(self): # examples from the docstring, # https://numpy.org/doc/1.23/reference/generated/numpy.choose.html choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] A = np.choose([2, 3, 1, 0], choices) assert_equal(A, [20, 31, 12, 3]) def test_docstring_2(self): a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]] choices = [-10, 10] A = np.choose(a, choices) assert_equal(A, [[10, -10, 10], [-10, 10, -10], [10, -10, 10]]) def test_docstring_3(self): a = np.array([0, 1]).reshape((2, 1, 1)) c1 = np.array([1, 2, 3]).reshape((1, 3, 1)) c2 = np.array([-1, -2, -3, -4, -5]).reshape((1, 1, 5)) A = np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 expected = np.array( [ [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3]], [[-1, -2, -3, -4, -5], [-1, -2, -3, -4, -5], [-1, -2, -3, -4, -5]], ] ) assert_equal(A, expected) class TestRepeat(TestCase): def setUp(self): self.m = np.array([1, 2, 3, 4, 5, 6]) self.m_rect = self.m.reshape((2, 3)) def test_basic(self): A = np.repeat(self.m, [1, 3, 2, 1, 1, 2]) assert_equal(A, [1, 2, 2, 2, 3, 3, 4, 5, 6, 6]) def test_broadcast1(self): A = np.repeat(self.m, 2) assert_equal(A, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]) def test_axis_spec(self): A = np.repeat(self.m_rect, [2, 1], axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6]]) A = np.repeat(self.m_rect, [1, 3, 2], axis=1) assert_equal(A, [[1, 2, 2, 2, 3, 3], [4, 5, 5, 5, 6, 6]]) def test_broadcast2(self): A = np.repeat(self.m_rect, 2, axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]) A = np.repeat(self.m_rect, 2, axis=1) assert_equal(A, [[1, 1, 2, 2, 3, 3], [4, 4, 5, 5, 6, 6]]) # TODO: test for multidimensional NEIGH_MODE = {"zero": 0, "one": 1, "constant": 2, "circular": 3, "mirror": 4} @xpassIfTorchDynamo # (reason="TODO") class TestWarnings(TestCase): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1 - 2j, 1 + 2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(TestCase): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8 - 1) wanted = np.dtype("uint8") assert_equal(wanted, dt) # three tests below are added based on what numpy does def test_complex(self): dt = np.min_scalar_type(0 + 0j) assert dt == np.dtype("complex64") def test_float(self): dt = np.min_scalar_type(0.1) assert dt == np.dtype("float16") def test_nonscalar(self): dt = np.min_scalar_type([0, 1, 2]) assert dt == np.dtype("int64") from numpy.core._internal import _dtype_from_pep3118 @skip(reason="dont worry about buffer protocol") class TestPEP3118Dtype(TestCase): def _check(self, spec, wanted): dt = np.dtype(wanted) actual = _dtype_from_pep3118(spec) assert_equal(actual, dt, err_msg=f"spec {spec!r} != dtype {wanted!r}") def test_native_padding(self): align = np.dtype("i").alignment for j in range(8): if j == 0: s = "bi" else: s = "b%dxi" % j self._check( "@" + s, {"f0": ("i1", 0), "f1": ("i", align * (1 + j // align))} ) self._check("=" + s, {"f0": ("i1", 0), "f1": ("i", 1 + j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check("x3T{xi}", {"f0": (({"f0": ("i", 4)}, (3,)), 4)}) self._check("^x3T{xi}", {"f0": (({"f0": ("i", 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype("i").alignment size = np.dtype("i").itemsize def aligned(n): return align * (1 + (n - 1) // align) base = dict(formats=["i"], names=["f0"]) self._check("ix", dict(itemsize=aligned(size + 1), **base)) self._check("ixx", dict(itemsize=aligned(size + 2), **base)) self._check("ixxx", dict(itemsize=aligned(size + 3), **base)) self._check("ixxxx", dict(itemsize=aligned(size + 4), **base)) self._check("i7x", dict(itemsize=aligned(size + 7), **base)) self._check("^ix", dict(itemsize=size + 1, **base)) self._check("^ixx", dict(itemsize=size + 2, **base)) self._check("^ixxx", dict(itemsize=size + 3, **base)) self._check("^ixxxx", dict(itemsize=size + 4, **base)) self._check("^i7x", dict(itemsize=size + 7, **base)) def test_native_padding_3(self): dt = np.dtype( [("a", "b"), ("b", "i"), ("sub", np.dtype("b,i")), ("c", "i")], align=True ) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [ ("a", "b"), ("b", "i"), ("c", "b"), ("d", "b"), ("e", "b"), ("sub", np.dtype("b,i", align=True)), ] ) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [("a", "b"), ("b", "i"), ("c", "b", (3,)), ("d", "i")], align=True ) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check("@T{^i}xi", {"f0": ({"f0": ("i", 0)}, 0), "f1": ("i", 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype("i").alignment size = np.dtype("i").itemsize def aligned(n): return align * (1 + (n - 1) // align) self._check( "(3)T{ix}", ( dict( names=["f0"], formats=["i"], offsets=[0], itemsize=aligned(size + 1) ), (3,), ), ) def test_char_vs_string(self): dt = np.dtype("c") self._check("c", dt) dt = np.dtype([("f0", "S1", (4,)), ("f1", "S4")]) self._check("4c4s", dt) def test_field_order(self): # gh-9053 - previously, we relied on dictionary key order self._check("(0)I:a:f:b:", [("a", "I", (0,)), ("b", "f")]) self._check("(0)I:b:f:a:", [("b", "I", (0,)), ("a", "f")]) def test_unnamed_fields(self): self._check("ii", [("f0", "i"), ("f1", "i")]) self._check("ii:f0:", [("f1", "i"), ("f0", "i")]) self._check("i", "i") self._check("i:f0:", [("f0", "i")]) # NOTE: xpassIfTorchDynamo below # 1. TODO: torch._numpy does not handle/model _CopyMode # 2. order= keyword not supported (probably won't be) # 3. Under TEST_WITH_TORCHDYNAMO many of these make it through due # to a graph break leaving the _CopyMode to only be handled by numpy. @skipif(numpy.__version__ < "1.23", reason="CopyMode is new in NumPy 1.22") @xpassIfTorchDynamo @instantiate_parametrized_tests class TestArrayCreationCopyArgument(TestCase): class RaiseOnBool: def __bool__(self): raise ValueError # true_vals = [True, np._CopyMode.ALWAYS, np.True_] # false_vals = [False, np._CopyMode.IF_NEEDED, np.False_] true_vals = [True, 1, np.True_] false_vals = [False, 0, np.False_] def test_scalars(self): # Test both numpy and python scalars for dtype in np.typecodes["All"]: arr = np.zeros((), dtype=dtype) scalar = arr[()] pyscalar = arr.item(0) # Test never-copy raises error: assert_raises(ValueError, np.array, scalar, copy=np._CopyMode.NEVER) assert_raises(ValueError, np.array, pyscalar, copy=np._CopyMode.NEVER) assert_raises(ValueError, np.array, pyscalar, copy=self.RaiseOnBool()) # Casting with a dtype (to unsigned integers) can be special: with pytest.raises(ValueError): np.array(pyscalar, dtype=np.int64, copy=np._CopyMode.NEVER) @xfail # TODO: handle `_CopyMode` properly in torch._numpy def test_compatible_cast(self): # Some types are compatible even though they are different, no # copy is necessary for them. This is mostly true for some integers def int_types(byteswap=False): int_types = np.typecodes["Integer"] + np.typecodes["UnsignedInteger"] for int_type in int_types: yield np.dtype(int_type) if byteswap: yield np.dtype(int_type).newbyteorder() for int1 in int_types(): for int2 in int_types(True): arr = np.arange(10, dtype=int1) for copy in self.true_vals: res = np.array(arr, copy=copy, dtype=int2) assert res is not arr and res.flags.owndata assert_array_equal(res, arr) if int1 == int2: # Casting is not necessary, base check is sufficient here for copy in self.false_vals: res = np.array(arr, copy=copy, dtype=int2) assert res is arr or res.base is arr res = np.array(arr, copy=np._CopyMode.NEVER, dtype=int2) assert res is arr or res.base is arr else: # Casting is necessary, assert copy works: for copy in self.false_vals: res = np.array(arr, copy=copy, dtype=int2) assert res is not arr and res.flags.owndata assert_array_equal(res, arr) assert_raises( ValueError, np.array, arr, copy=np._CopyMode.NEVER, dtype=int2 ) assert_raises(ValueError, np.array, arr, copy=None, dtype=int2) def test_buffer_interface(self): # Buffer interface gives direct memory access (no copy) arr = np.arange(10) view = memoryview(arr) # Checking bases is a bit tricky since numpy creates another # memoryview, so use may_share_memory. for copy in self.true_vals: res = np.array(view, copy=copy) assert not np.may_share_memory(arr, res) for copy in self.false_vals: res = np.array(view, copy=copy) assert np.may_share_memory(arr, res) res = np.array(view, copy=np._CopyMode.NEVER) assert np.may_share_memory(arr, res) def test_array_interfaces(self): # Array interface gives direct memory access (much like a memoryview) base_arr = np.arange(10) class ArrayLike: __array_interface__ = base_arr.__array_interface__ arr = ArrayLike() for copy, val in [ (True, None), (np._CopyMode.ALWAYS, None), (False, arr), (np._CopyMode.IF_NEEDED, arr), (np._CopyMode.NEVER, arr), ]: res = np.array(arr, copy=copy) assert res.base is val def test___array__(self): base_arr = np.arange(10) class ArrayLike: def __array__(self): # __array__ should return a copy, numpy cannot know this # however. return base_arr arr = ArrayLike() for copy in self.true_vals: res = np.array(arr, copy=copy) assert_array_equal(res, base_arr) # An additional copy is currently forced by numpy in this case, # you could argue, numpy does not trust the ArrayLike. This # may be open for change: assert res is not base_arr for copy in self.false_vals: res = np.array(arr, copy=False) assert_array_equal(res, base_arr) assert res is base_arr # numpy trusts the ArrayLike with pytest.raises(ValueError): np.array(arr, copy=np._CopyMode.NEVER) @parametrize("arr", [np.ones(()), np.arange(81).reshape((9, 9))]) @parametrize("order1", ["C", "F", None]) @parametrize("order2", ["C", "F", "A", "K"]) def test_order_mismatch(self, arr, order1, order2): # The order is the main (python side) reason that can cause # a never-copy to fail. # Prepare C-order, F-order and non-contiguous arrays: arr = arr.copy(order1) if order1 == "C": assert arr.flags.c_contiguous elif order1 == "F": assert arr.flags.f_contiguous elif arr.ndim != 0: # Make array non-contiguous arr = arr[::2, ::2] assert not arr.flags.forc # Whether a copy is necessary depends on the order of arr: if order2 == "C": no_copy_necessary = arr.flags.c_contiguous elif order2 == "F": no_copy_necessary = arr.flags.f_contiguous else: # Keeporder and Anyorder are OK with non-contiguous output. # This is not consistent with the `astype` behaviour which # enforces contiguity for "A". It is probably historic from when # "K" did not exist. no_copy_necessary = True # Test it for both the array and a memoryview for view in [arr, memoryview(arr)]: for copy in self.true_vals: res = np.array(view, copy=copy, order=order2) assert res is not arr and res.flags.owndata assert_array_equal(arr, res) if no_copy_necessary: for copy in self.false_vals: res = np.array(view, copy=copy, order=order2) # res.base.obj refers to the memoryview if not IS_PYPY: assert res is arr or res.base.obj is arr res = np.array(view, copy=np._CopyMode.NEVER, order=order2) if not IS_PYPY: assert res is arr or res.base.obj is arr else: for copy in self.false_vals: res = np.array(arr, copy=copy, order=order2) assert_array_equal(arr, res) assert_raises( ValueError, np.array, view, copy=np._CopyMode.NEVER, order=order2 ) assert_raises(ValueError, np.array, view, copy=None, order=order2) def test_striding_not_ok(self): arr = np.array([[1, 2, 4], [3, 4, 5]]) assert_raises(ValueError, np.array, arr.T, copy=np._CopyMode.NEVER, order="C") assert_raises( ValueError, np.array, arr.T, copy=np._CopyMode.NEVER, order="C", dtype=np.int64, ) assert_raises(ValueError, np.array, arr, copy=np._CopyMode.NEVER, order="F") assert_raises( ValueError, np.array, arr, copy=np._CopyMode.NEVER, order="F", dtype=np.int64, ) class TestArrayAttributeDeletion(TestCase): def test_multiarray_writable_attributes_deletion(self): # ticket #2046, should not seqfault, raise AttributeError a = np.ones(2) attr = ["shape", "strides", "data", "dtype", "real", "imag", "flat"] with suppress_warnings() as sup: sup.filter(DeprecationWarning, "Assigning the 'data' attribute") for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = [ "ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__", ] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["writebackifcopy", "updateifcopy", "aligned", "writeable"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = [ "contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num", ] for s in attr: assert_raises(AttributeError, delattr, a, s) @skip # not supported, too brittle, too annoying @instantiate_parametrized_tests class TestArrayInterface(TestCase): class Foo: def __init__(self, value): self.value = value self.iface = {"typestr": "f8"} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) @parametrize( "val, iface, expected", [ (f, {}, 0.5), ([f], {}, [0.5]), ([f, f], {}, [0.5, 0.5]), (f, {"shape": ()}, 0.5), (f, {"shape": None}, TypeError), (f, {"shape": (1, 1)}, [[0.5]]), (f, {"shape": (2,)}, ValueError), (f, {"strides": ()}, 0.5), (f, {"strides": (2,)}, ValueError), (f, {"strides": 16}, TypeError), ], ) def test_scalar_interface(self, val, iface, expected): # Test scalar coercion within the array interface self.f.iface = {"typestr": "f8"} self.f.iface.update(iface) if HAS_REFCOUNT: pre_cnt = sys.getrefcount(np.dtype("f8")) if isinstance(expected, type): assert_raises(expected, np.array, val) else: result = np.array(val) assert_equal(np.array(val), expected) assert result.dtype == "f8" del result if HAS_REFCOUNT: post_cnt = sys.getrefcount(np.dtype("f8")) assert_equal(pre_cnt, post_cnt) class TestDelMisc(TestCase): @xpassIfTorchDynamo # (reason="TODO") def test_flat_element_deletion(self): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except Exception: raise AssertionError from None class TestConversion(TestCase): def test_array_scalar_relational_operation(self): # All integer for dt1 in np.typecodes["AllInteger"]: assert_(1 > np.array(0, dtype=dt1), f"type {dt1} failed") assert_(not 1 < np.array(0, dtype=dt1), f"type {dt1} failed") for dt2 in np.typecodes["AllInteger"]: assert_( np.array(1, dtype=dt1) > np.array(0, dtype=dt2), f"type {dt1} and {dt2} failed", ) assert_( not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), f"type {dt1} and {dt2} failed", ) # Unsigned integers for dt1 in "B": assert_(-1 < np.array(1, dtype=dt1), f"type {dt1} failed") assert_(not -1 > np.array(1, dtype=dt1), f"type {dt1} failed") assert_(-1 != np.array(1, dtype=dt1), f"type {dt1} failed") # Unsigned vs signed for dt2 in "bhil": assert_( np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) assert_( not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) assert_( np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) # Signed integers and floats for dt1 in "bhl" + np.typecodes["Float"]: assert_(1 > np.array(-1, dtype=dt1), f"type {dt1} failed") assert_(not 1 < np.array(-1, dtype=dt1), f"type {dt1} failed") assert_(-1 == np.array(-1, dtype=dt1), f"type {dt1} failed") for dt2 in "bhl" + np.typecodes["Float"]: assert_( np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) assert_( not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) assert_( np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), f"type {dt1} and {dt2} failed", ) @skip(reason="object arrays") def test_to_bool_scalar(self): assert_equal(bool(np.array([False])), False) assert_equal(bool(np.array([True])), True) assert_equal(bool(np.array([[42]])), True) assert_raises(ValueError, bool, np.array([1, 2])) class NotConvertible: def __bool__(self): raise NotImplementedError assert_raises(NotImplementedError, bool, np.array(NotConvertible())) assert_raises(NotImplementedError, bool, np.array([NotConvertible()])) if IS_PYSTON: raise SkipTest("Pyston disables recursion checking") self_containing = np.array([None]) self_containing[0] = self_containing Error = RecursionError assert_raises(Error, bool, self_containing) # previously stack overflow self_containing[0] = None # resolve circular reference def test_to_int_scalar(self): # gh-9972 means that these aren't always the same int_funcs = (int, lambda x: x.__int__()) for int_func in int_funcs: assert_equal(int_func(np.array(0)), 0) assert_equal(int_func(np.array([1])), 1) assert_equal(int_func(np.array([[42]])), 42) assert_raises((ValueError, TypeError), int_func, np.array([1, 2])) @skip(reason="object arrays") def test_to_int_scalar_2(self): int_funcs = (int, lambda x: x.__int__()) for int_func in int_funcs: # gh-9972 assert_equal(4, int_func(np.array("4"))) assert_equal(5, int_func(np.bytes_(b"5"))) assert_equal(6, int_func(np.str_("6"))) # The delegation of int() to __trunc__ was deprecated in # Python 3.11. if sys.version_info < (3, 11): class HasTrunc: def __trunc__(self): return 3 assert_equal(3, int_func(np.array(HasTrunc()))) assert_equal(3, int_func(np.array([HasTrunc()]))) else: pass class NotConvertible: def __int__(self): raise NotImplementedError assert_raises(NotImplementedError, int_func, np.array(NotConvertible())) assert_raises(NotImplementedError, int_func, np.array([NotConvertible()])) class TestWhere(TestCase): def test_basic(self): dts = [bool, np.int16, np.int32, np.int64, np.double, np.complex128] for dt in dts: c = np.ones(53, dtype=bool) assert_equal(np.where(c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) # assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) # assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) # assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) @skip(reason="object arrays") def test_exotic_2(self): # object cast d = np.array( [ -1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487, ] ) nan = float("NaN") e = np.array( [ "5z", "0l", nan, "Wz", nan, nan, "Xq", "cs", nan, nan, "QN", nan, nan, "Fd", nan, nan, "kp", nan, "36", "i1", ], dtype=object, ) m = np.array( [0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool ) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1.0, 2.0], dtype=np.float32) e = float("NaN") assert_equal(np.where(True, d, e).dtype, np.float32) e = float("Infinity") assert_equal(np.where(True, d, e).dtype, np.float32) e = float("-Infinity") assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = 1e150 assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:, np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:, 0], a[:, 0]) assert_array_equal(r[:, 1], b[:, 0]) def test_dtype_mix(self): c = np.array( [ False, True, False, False, False, False, True, False, False, False, True, False, ] ) a = np.uint8(1) b = np.array( [5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0], dtype=np.float64, ) r = np.array( [5.0, 1.0, 3.0, 2.0, -1.0, -4.0, 1.0, -10.0, 10.0, 1.0, 1.0, 3.0], dtype=np.float64, ) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) @skip(reason="endianness") def test_foreign(self): c = np.array( [ False, True, False, False, False, False, True, False, False, False, True, False, ] ) r = np.array( [5.0, 1.0, 3.0, 2.0, -1.0, -4.0, 1.0, -10.0, 10.0, 1.0, 1.0, 3.0], dtype=np.float64, ) a = np.ones(1, dtype=">i4") b = np.array( [5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0], dtype=np.float64, ) assert_equal(np.where(c, a, b), r) b = b.astype(">f8") assert_equal(np.where(c, a, b), r) a = a.astype("<i4") assert_equal(np.where(c, a, b), r) c = c.astype(">i4") assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises((RuntimeError, ValueError), np.where, c, a, a) assert_raises((RuntimeError, ValueError), np.where, c[0], a, b) def test_empty_result(self): # pass empty where result through an assignment which reads the data of # empty arrays, error detectable with valgrind, see gh-8922 x = np.zeros((1, 1)) ibad = np.vstack(np.where(x == 99.0)) assert_array_equal(ibad, np.atleast_2d(np.array([[], []], dtype=np.intp))) def test_largedim(self): # invalid read regression gh-9304 shape = [10, 2, 3, 4, 5, 6] np.random.seed(2) array = np.random.rand(*shape) for i in range(10): benchmark = array.nonzero() result = array.nonzero() assert_array_equal(benchmark, result) def test_kwargs(self): a = np.zeros(1) with assert_raises(TypeError): np.where(a, x=a, y=a) class TestHashing(TestCase): def test_arrays_not_hashable(self): x = np.ones(3) assert_raises(TypeError, hash, x) def test_collections_hashable(self): x = np.array([]) assert_(not isinstance(x, collections.abc.Hashable)) class TestFormat(TestCase): @xpassIfTorchDynamo # (reason="TODO") def test_0d(self): a = np.array(np.pi) assert_equal(f"{a:0.3g}", "3.14") assert_equal(f"{a[()]:0.3g}", "3.14") def test_1d_no_format(self): a = np.array([np.pi]) assert_equal(f"{a}", str(a)) def test_1d_format(self): # until gh-5543, ensure that the behaviour matches what it used to be a = np.array([np.pi]) assert_raises(TypeError, "{:30}".format, a) from numpy.testing import IS_PYPY class TestWritebackIfCopy(TestCase): # all these tests use the WRITEBACKIFCOPY mechanism def test_argmax_with_out(self): mat = np.eye(5) out = np.empty(5, dtype="i2") res = np.argmax(mat, 0, out=out) assert_equal(res, range(5)) def test_argmin_with_out(self): mat = -np.eye(5) out = np.empty(5, dtype="i2") res = np.argmin(mat, 0, out=out) assert_equal(res, range(5)) @xpassIfTorchDynamo # (reason="XXX: place()") def test_insert_noncontiguous(self): a = np.arange(6).reshape(2, 3).T # force non-c-contiguous # uses arr_insert np.place(a, a > 2, [44, 55]) assert_equal(a, np.array([[0, 44], [1, 55], [2, 44]])) # hit one of the failing paths assert_raises(ValueError, np.place, a, a > 20, []) def test_put_noncontiguous(self): a = np.arange(6).reshape(2, 3).T # force non-c-contiguous assert not a.flags["C_CONTIGUOUS"] # sanity check np.put(a, [0, 2], [44, 55]) assert_equal(a, np.array([[44, 3], [55, 4], [2, 5]])) @xpassIfTorchDynamo # (reason="XXX: putmask()") def test_putmask_noncontiguous(self): a = np.arange(6).reshape(2, 3).T # force non-c-contiguous # uses arr_putmask np.putmask(a, a > 2, a**2) assert_equal(a, np.array([[0, 9], [1, 16], [2, 25]])) def test_take_mode_raise(self): a = np.arange(6, dtype="int") out = np.empty(2, dtype="int") np.take(a, [0, 2], out=out, mode="raise") assert_equal(out, np.array([0, 2])) def test_choose_mod_raise(self): a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]]) out = np.empty((3, 3), dtype="int") choices = [-10, 10] np.choose(a, choices, out=out, mode="raise") assert_equal(out, np.array([[10, -10, 10], [-10, 10, -10], [10, -10, 10]])) @xpassIfTorchDynamo # (reason="XXX: ndarray.flat") def test_flatiter__array__(self): a = np.arange(9).reshape(3, 3) b = a.T.flat c = b.__array__() # triggers the WRITEBACKIFCOPY resolution, assuming refcount semantics del c def test_dot_out(self): # if HAVE_CBLAS, will use WRITEBACKIFCOPY a = np.arange(9, dtype=float).reshape(3, 3) b = np.dot(a, a, out=a) assert_equal(b, np.array([[15, 18, 21], [42, 54, 66], [69, 90, 111]])) @instantiate_parametrized_tests class TestArange(TestCase): def test_infinite(self): assert_raises( (RuntimeError, ValueError), np.arange, 0, np.inf # "unsupported range", ) def test_nan_step(self): assert_raises( (RuntimeError, ValueError), # "cannot compute length", np.arange, 0, 1, np.nan, ) def test_zero_step(self): assert_raises(ZeroDivisionError, np.arange, 0, 10, 0) assert_raises(ZeroDivisionError, np.arange, 0.0, 10.0, 0.0) # empty range assert_raises(ZeroDivisionError, np.arange, 0, 0, 0) assert_raises(ZeroDivisionError, np.arange, 0.0, 0.0, 0.0) def test_require_range(self): assert_raises(TypeError, np.arange) assert_raises(TypeError, np.arange, step=3) assert_raises(TypeError, np.arange, dtype="int64") @xpassIfTorchDynamo # (reason="weird arange signature (optionals before required args)") def test_require_range_2(self): assert_raises(TypeError, np.arange, start=4) def test_start_stop_kwarg(self): keyword_stop = np.arange(stop=3) keyword_zerotostop = np.arange(start=0, stop=3) keyword_start_stop = np.arange(start=3, stop=9) assert len(keyword_stop) == 3 assert len(keyword_zerotostop) == 3 assert len(keyword_start_stop) == 6 assert_array_equal(keyword_stop, keyword_zerotostop) @skip(reason="arange for booleans: numpy maybe deprecates?") def test_arange_booleans(self): # Arange makes some sense for booleans and works up to length 2. # But it is weird since `arange(2, 4, dtype=bool)` works. # Arguably, much or all of this could be deprecated/removed. res = np.arange(False, dtype=bool) assert_array_equal(res, np.array([], dtype="bool")) res = np.arange(True, dtype="bool") assert_array_equal(res, [False]) res = np.arange(2, dtype="bool") assert_array_equal(res, [False, True]) # This case is especially weird, but drops out without special case: res = np.arange(6, 8, dtype="bool") assert_array_equal(res, [True, True]) with pytest.raises(TypeError): np.arange(3, dtype="bool") @parametrize("which", [0, 1, 2]) def test_error_paths_and_promotion(self, which): args = [0, 1, 2] # start, stop, and step args[which] = np.float64(2.0) # should ensure float64 output assert np.arange(*args).dtype == np.float64 # repeat with non-empty ranges args = [0, 8, 2] args[which] = np.float64(2.0) assert np.arange(*args).dtype == np.float64 @parametrize("dt", [np.float32, np.uint8, complex]) def test_explicit_dtype(self, dt): assert np.arange(5.0, dtype=dt).dtype == dt class TestRichcompareScalar(TestCase): @skip # XXX: brittle, fails or passes under dynamo depending on the NumPy version def test_richcompare_scalar_boolean_singleton_return(self): # These are currently guaranteed to be the boolean singletons, but maybe # returning NumPy booleans would also be OK: assert (np.array(0) == "a") is False assert (np.array(0) != "a") is True assert (np.int16(0) == "a") is False assert (np.int16(0) != "a") is True @skip # (reason="implement views/dtypes") class TestViewDtype(TestCase): """ Verify that making a view of a non-contiguous array works as expected. """ def test_smaller_dtype_multiple(self): # x is non-contiguous x = np.arange(10, dtype="<i4")[::2] with pytest.raises(ValueError, match="the last axis must be contiguous"): x.view("<i2") expected = [[0, 0], [2, 0], [4, 0], [6, 0], [8, 0]] assert_array_equal(x[:, np.newaxis].view("<i2"), expected) def test_smaller_dtype_not_multiple(self): # x is non-contiguous x = np.arange(5, dtype="<i4")[::2] with pytest.raises(ValueError, match="the last axis must be contiguous"): x.view("S3") with pytest.raises(ValueError, match="When changing to a smaller dtype"): x[:, np.newaxis].view("S3") # Make sure the problem is because of the dtype size expected = [[b""], [b"\x02"], [b"\x04"]] assert_array_equal(x[:, np.newaxis].view("S4"), expected) def test_larger_dtype_multiple(self): # x is non-contiguous in the first dimension, contiguous in the last x = np.arange(20, dtype="<i2").reshape(10, 2)[::2, :] expected = np.array( [[65536], [327684], [589832], [851980], [1114128]], dtype="<i4" ) assert_array_equal(x.view("<i4"), expected) def test_larger_dtype_not_multiple(self): # x is non-contiguous in the first dimension, contiguous in the last x = np.arange(20, dtype="<i2").reshape(10, 2)[::2, :] with pytest.raises(ValueError, match="When changing to a larger dtype"): x.view("S3") # Make sure the problem is because of the dtype size expected = [ [b"\x00\x00\x01"], [b"\x04\x00\x05"], [b"\x08\x00\t"], [b"\x0c\x00\r"], [b"\x10\x00\x11"], ] assert_array_equal(x.view("S4"), expected) def test_f_contiguous(self): # x is F-contiguous x = np.arange(4 * 3, dtype="<i4").reshape(4, 3).T with pytest.raises(ValueError, match="the last axis must be contiguous"): x.view("<i2") def test_non_c_contiguous(self): # x is contiguous in axis=-1, but not C-contiguous in other axes x = np.arange(2 * 3 * 4, dtype="i1").reshape(2, 3, 4).transpose(1, 0, 2) expected = [ [[256, 770], [3340, 3854]], [[1284, 1798], [4368, 4882]], [[2312, 2826], [5396, 5910]], ] assert_array_equal(x.view("<i2"), expected) @instantiate_parametrized_tests class TestSortFloatMisc(TestCase): # Test various array sizes that hit different code paths in quicksort-avx512 @parametrize( "N", [8, 16, 24, 32, 48, 64, 96, 128, 151, 191, 256, 383, 512, 1023, 2047] ) def test_sort_float(self, N): # Regular data with nan sprinkled np.random.seed(42) arr = -0.5 + np.random.sample(N).astype("f") arr[np.random.choice(arr.shape[0], 3)] = np.nan assert_equal(np.sort(arr, kind="quick"), np.sort(arr, kind="heap")) # (2) with +INF infarr = np.inf * np.ones(N, dtype="f") infarr[np.random.choice(infarr.shape[0], 5)] = -1.0 assert_equal(np.sort(infarr, kind="quick"), np.sort(infarr, kind="heap")) # (3) with -INF neginfarr = -np.inf * np.ones(N, dtype="f") neginfarr[np.random.choice(neginfarr.shape[0], 5)] = 1.0 assert_equal(np.sort(neginfarr, kind="quick"), np.sort(neginfarr, kind="heap")) # (4) with +/-INF infarr = np.inf * np.ones(N, dtype="f") infarr[np.random.choice(infarr.shape[0], (int)(N / 2))] = -np.inf assert_equal(np.sort(infarr, kind="quick"), np.sort(infarr, kind="heap")) def test_sort_int(self): # Random data with NPY_MAX_INT32 and NPY_MIN_INT32 sprinkled # rng = np.random.default_rng(42) np.random.seed(1234) N = 2047 minv = np.iinfo(np.int32).min maxv = np.iinfo(np.int32).max arr = np.random.randint(low=minv, high=maxv, size=N).astype("int32") arr[np.random.choice(arr.shape[0], 10)] = minv arr[np.random.choice(arr.shape[0], 10)] = maxv assert_equal(np.sort(arr, kind="quick"), np.sort(arr, kind="heap")) if __name__ == "__main__": run_tests()
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_python_type
def test_python_type(self): for x in (np.float16(1.0), 1, 1.0, 1 + 0j): assert_equal(np.mean([x]), 1.0) assert_equal(np.std([x]), 0.0) assert_equal(np.var([x]), 0.0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_keepdims
def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_out
def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dtype_from_input
def test_dtype_from_input(self): icodes = np.typecodes["AllInteger"] fcodes = np.typecodes["AllFloat"] # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dtype_from_dtype
def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. # for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes["AllFloat"]: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ddof
def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ddof_too_big
def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): # with warnings.catch_warnings(record=True) as w: # warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) # assert_(len(w) > 0) # assert_(issubclass(w[0].category, RuntimeWarning))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mean_values
def test_mean_values(self): for mat in [self.rmat, self.cmat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mean_float16
def test_mean_float16(self): # This fail if the sum inside mean is done in float16 instead # of float32. assert_(_mean(np.ones(100000, dtype="float16")) == 1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mean_where
def test_mean_where(self): a = np.arange(16).reshape((4, 4)) wh_full = np.array( [ [False, True, False, True], [True, False, True, False], [True, True, False, False], [False, False, True, True], ] ) wh_partial = np.array([[False], [True], [True], [False]]) _cases = [ (1, True, [1.5, 5.5, 9.5, 13.5]), (0, wh_full, [6.0, 5.0, 10.0, 9.0]), (1, wh_full, [2.0, 5.0, 8.5, 14.5]), (0, wh_partial, [6.0, 7.0, 8.0, 9.0]), ] for _ax, _wh, _res in _cases: assert_allclose(a.mean(axis=_ax, where=_wh), np.array(_res)) assert_allclose(np.mean(a, axis=_ax, where=_wh), np.array(_res)) a3d = np.arange(16).reshape((2, 2, 4)) _wh_partial = np.array([False, True, True, False]) _res = [[1.5, 5.5], [9.5, 13.5]] assert_allclose(a3d.mean(axis=2, where=_wh_partial), np.array(_res)) assert_allclose(np.mean(a3d, axis=2, where=_wh_partial), np.array(_res)) with pytest.warns(RuntimeWarning) as w: assert_allclose( a.mean(axis=1, where=wh_partial), np.array([np.nan, 5.5, 9.5, np.nan]) ) with pytest.warns(RuntimeWarning) as w: assert_equal(a.mean(where=False), np.nan) with pytest.warns(RuntimeWarning) as w: assert_equal(np.mean(a, where=False), np.nan)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_var_complex_values
def test_var_complex_values(self, complex_dtype, ndec): # Test fast-paths for every builtin complex type for axis in [0, 1, None]: mat = self.cmat.copy().astype(complex_dtype) msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt, decimal=ndec)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_var_complex_byteorder
def test_var_complex_byteorder(self): # Test that var fast-path does not cause failures for complex arrays # with non-native byteorder cmat = self.cmat.copy().astype("complex128") cmat_swapped = cmat.astype(cmat.dtype.newbyteorder()) assert_almost_equal(cmat.var(), cmat_swapped.var())
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestStats(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_dotvecscalar2
def test_dotvecscalar2(self): np.random.seed(100) # b1 = np.random.rand(4, 1) b1 = np.array([[0.54340494], [0.27836939], [0.42451759], [0.84477613]]) # b2 = np.random.rand(1, 1) b2 = np.array([[0.00471886]]) res = np.dot(b1, b2) tgt = np.array([[0.00256425], [0.00131359], [0.00200324], [0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @instantiate_parametrized_tests class TestDot(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
aligned_array
def aligned_array(shape, align, dtype, order="C"): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset : offset + N * d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
as_aligned
def as_aligned(arr, align, dtype, order="C"): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
assert_dot_close
def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15, 32), (10000,), (200, 89), ("C", "F")) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == "F": assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added