library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_empty_subscript_assignment
|
def test_empty_subscript_assignment(self):
a, b = self.d
a[()] = 42
assert_equal(a, 42)
b[()] = ""
assert_equal(b.item(), "")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail
class TestZeroRank(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_invalid_subscript_assignment
|
def test_invalid_subscript_assignment(self):
a, b = self.d
def assign(x, i, v):
x[i] = v
assert_raises(IndexError, assign, a, 0, 42)
assert_raises(IndexError, assign, b, 0, "")
assert_raises(ValueError, assign, a, (), "")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail
class TestZeroRank(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
assign
|
def assign(a, b):
a[...] = b
assert_raises(
(RuntimeError, ValueError), assign, a, np.arange(12).reshape(2, 2, 3)
)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_non_sequence_sequence
|
def test_non_sequence_sequence(self):
"""Should not segfault.
Class Fail breaks the sequence protocol for new style classes, i.e.,
those derived from object. Class Map is a mapping type indicated by
raising a ValueError. At some point we may raise a warning instead
of an error in the Fail case.
"""
class Fail:
def __len__(self):
return 1
def __getitem__(self, index):
raise ValueError
class Map:
def __len__(self):
return 1
def __getitem__(self, index):
raise KeyError
a = np.array([Map()])
assert_(a.shape == (1,))
assert_(a.dtype == np.dtype(object))
assert_raises(ValueError, np.array, [Fail()])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__len__
|
def __len__(self):
raise RuntimeError
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__len__
|
def __len__(self):
raise RuntimeError
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_no_len_object_type
|
def test_no_len_object_type(self):
# gh-5100, want object array from iterable object without len()
class Point2:
def __init__(self) -> None:
pass
def __getitem__(self, ind):
if ind in [0, 1]:
return ind
else:
raise IndexError
d = np.array([Point2(), Point2(), Point2()])
assert_equal(d.dtype, np.dtype(object))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_false_len_sequence
|
def test_false_len_sequence(self):
# gh-7264, segfault for this example
class C:
def __getitem__(self, i):
raise IndexError
def __len__(self):
return 42
a = np.array(C()) # segfault?
assert_equal(len(a), 0)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__len__
|
def __len__(self):
raise RuntimeError
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_invalid_subscript_assignment
|
def test_invalid_subscript_assignment(self):
a, b = self.d
def assign(x, i, v):
x[i] = v
assert_raises(IndexError, assign, a, 0, 42)
assert_raises(IndexError, assign, b, 0, "")
assert_raises(ValueError, assign, a, (), "")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail
class TestZeroRank(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
assign
|
def assign(a, b):
a[...] = b
assert_raises(
(RuntimeError, ValueError), assign, a, np.arange(12).reshape(2, 2, 3)
)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_newaxis
|
def test_newaxis(self):
a, b = self.d
assert_equal(a[np.newaxis].shape, (1,))
assert_equal(a[..., np.newaxis].shape, (1,))
assert_equal(a[np.newaxis, ...].shape, (1,))
assert_equal(a[..., np.newaxis].shape, (1,))
assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
assert_equal(a[(np.newaxis,) * 10].shape, (1,) * 10)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail
class TestZeroRank(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_invalid_newaxis
|
def test_invalid_newaxis(self):
a, b = self.d
def subscript(x, i):
x[i]
assert_raises(IndexError, subscript, a, (np.newaxis, 0))
assert_raises(IndexError, subscript, a, (np.newaxis,) * 50)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail
class TestZeroRank(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
subscript
|
def subscript(x, i):
x[i]
assert_raises(IndexError, subscript, a, (np.newaxis, 0))
assert_raises(IndexError, subscript, a, (np.newaxis,) * 50)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_overlapping_assignment
|
def test_overlapping_assignment(self):
# With positive strides
a = np.arange(4)
a[:-1] = a[1:]
assert_equal(a, [1, 2, 3, 3])
a = np.arange(4)
a[1:] = a[:-1]
assert_equal(a, [0, 0, 1, 2])
# With positive and negative strides
a = np.arange(4)
a[:] = a[::-1]
assert_equal(a, [3, 2, 1, 0])
a = np.arange(6).reshape(2, 3)
a[::-1, :] = a[:, ::-1]
assert_equal(a, [[5, 4, 3], [2, 1, 0]])
a = np.arange(6).reshape(2, 3)
a[::-1, ::-1] = a[:, ::-1]
assert_equal(a, [[3, 4, 5], [0, 1, 2]])
# With just one element overlapping
a = np.arange(5)
a[:3] = a[2:]
assert_equal(a, [2, 3, 4, 3, 4])
a = np.arange(5)
a[2:] = a[:3]
assert_equal(a, [0, 1, 0, 1, 2])
a = np.arange(5)
a[2::-1] = a[2:]
assert_equal(a, [4, 3, 2, 3, 4])
a = np.arange(5)
a[2:] = a[2::-1]
assert_equal(a, [0, 1, 2, 1, 0])
a = np.arange(5)
a[2::-1] = a[:1:-1]
assert_equal(a, [2, 3, 4, 3, 4])
a = np.arange(5)
a[:1:-1] = a[2::-1]
assert_equal(a, [0, 1, 0, 1, 2])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestScalarIndexing(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_from_attribute
|
def test_from_attribute(self):
class x:
def __array__(self, dtype=None):
pass
assert_raises(ValueError, np.array, x())
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__array__
|
def __array__(self, dtype=None):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class x:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_from_string
|
def test_from_string(self):
types = np.typecodes["AllInteger"] + np.typecodes["Float"]
nstr = ["123", "123"]
result = np.array([123, 123], dtype=int)
for type in types:
msg = f"String conversion for {type}"
assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_count_nonzero_all
|
def test_count_nonzero_all(self):
# check all combinations in a length 17 array
# covers all cases of the 16 byte unrolled code
self.check_count_nonzero(17, 17)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_count_nonzero_unaligned
|
def test_count_nonzero_unaligned(self):
# prevent mistakes as e.g. gh-4060
for o in range(7):
a = np.zeros((18,), dtype=bool)[o + 1 :]
a[:o] = True
assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
a = np.ones((18,), dtype=bool)[o + 1 :]
a[:o] = False
assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_cast_from_bytes
|
def test_cast_from_bytes(self):
self._test_cast_from_flexible(np.bytes_)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_compress
|
def test_compress(self):
tgt = [[5, 6, 7, 8, 9]]
arr = np.arange(10).reshape(2, 5)
out = arr.compress([0, 1], axis=0)
assert_equal(out, tgt)
tgt = [[1, 3], [6, 8]]
out = arr.compress([0, 1, 0, 1, 0], axis=1)
assert_equal(out, tgt)
tgt = [[1], [6]]
arr = np.arange(10).reshape(2, 5)
out = arr.compress([0, 1], axis=1)
assert_equal(out, tgt)
arr = np.arange(10).reshape(2, 5)
out = arr.compress([0, 1])
assert_equal(out, 1)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_structured_void_promotion
|
def test_structured_void_promotion(self, idx):
arr = np.array(
[np.array(1, dtype="i,i")[idx], np.array(2, dtype="i,i")[idx]], dtype="V"
)
assert_array_equal(arr, np.array([(1, 1), (2, 2)], dtype="i,i"))
# The following fails to promote the two dtypes, resulting in an error
with pytest.raises(TypeError):
np.array(
[np.array(1, dtype="i,i")[idx], np.array(2, dtype="i,i,i")[idx]],
dtype="V",
)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_malloc_fails
|
def test_malloc_fails(self):
# This test is guaranteed to fail due to a too large allocation
with assert_raises(np.core._exceptions._ArrayMemoryError):
np.empty(np.iinfo(np.intp).max, dtype=np.uint8)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_zeros_big
|
def test_zeros_big(self):
# test big array as they might be allocated different by the system
types = np.typecodes["AllInteger"] + np.typecodes["AllFloat"]
for dt in types:
d = np.zeros((30 * 1024**2,), dtype=dt)
assert_(not d.any())
# This test can fail on 32-bit systems due to insufficient
# contiguous memory. Deallocating the previous array increases the
# chance of success.
del d
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_zeros_obj
|
def test_zeros_obj(self):
# test initialization from PyLong(0)
d = np.zeros((13,), dtype=object)
assert_array_equal(d, [0] * 13)
assert_equal(np.count_nonzero(d), 0)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_zeros_obj_obj
|
def test_zeros_obj_obj(self):
d = np.zeros(10, dtype=[("k", object, 2)])
assert_array_equal(d["k"], 0)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_zeros_like_like_zeros
|
def test_zeros_like_like_zeros(self):
# test zeros_like returns the same as zeros
for c in np.typecodes["All"]:
if c == "V":
continue
d = np.zeros((3, 3), dtype=c)
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
# explicitly check some special cases
d = np.zeros((3, 3), dtype="S5")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype="U5")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype="<i4")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype=">i4")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype="<M8[s]")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype=">M8[s]")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
d = np.zeros((3, 3), dtype="f4,f4")
assert_array_equal(np.zeros_like(d), d)
assert_equal(np.zeros_like(d).dtype, d.dtype)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_empty_unicode
|
def test_empty_unicode(self):
# don't throw decode errors on garbage memory
for i in range(5, 100, 5):
d = np.empty(i, dtype="U")
str(d)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_sequence_non_homogeneous
|
def test_sequence_non_homogeneous(self):
assert_equal(np.array([4, 2**80]).dtype, object)
assert_equal(np.array([4, 2**80, 4]).dtype, object)
assert_equal(np.array([2**80, 4]).dtype, object)
assert_equal(np.array([2**80] * 3).dtype, object)
assert_equal(np.array([[1, 1], [1j, 1j]]).dtype, complex)
assert_equal(np.array([[1j, 1j], [1, 1]]).dtype, complex)
assert_equal(np.array([[1, 1, 1], [1, 1j, 1.0], [1, 1, 1]]).dtype, complex)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_choose_2
|
def test_choose_2(self):
# gh-6272 check overlap on out
x = np.arange(5)
y = np.choose([0, 0, 0], [x[:3], x[:3], x[:3]], out=x[1:4], mode="wrap")
assert_equal(y, np.array([0, 1, 2]))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_prod
|
def test_prod(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
for ctype in [
np.int16,
np.int32,
np.float32,
np.float64,
np.complex64,
np.complex128,
]:
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
if ctype in ["1", "b"]:
assert_raises(ArithmeticError, a.prod)
assert_raises(ArithmeticError, a2.prod, axis=1)
else:
assert_equal(a.prod(axis=0), 26400)
assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype))
assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_reshape
|
def test_reshape(self):
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
assert_equal(arr.reshape(2, 6), tgt)
tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
assert_equal(arr.reshape(3, 4), tgt)
tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
assert_equal(arr.reshape((3, 4), order="F"), tgt)
tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
assert_equal(arr.T.reshape((3, 4), order="C"), tgt)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
check_round
|
def check_round(arr, expected, *round_args):
assert_equal(arr.round(*round_args), expected)
# With output array
out = np.zeros_like(arr)
res = arr.round(*round_args, out=out)
assert_equal(out, expected)
assert out is res
check_round(np.array([1.2, 1.5]), [1, 2])
check_round(np.array(1.5), 2)
check_round(np.array([12.2, 15.5]), [10, 20], -1)
check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
# Complex rounding
check_round(np.array([4.5 + 1.5j]), [4 + 2j])
check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_squeeze
|
def test_squeeze(self):
a = np.array([[[1], [2], [3]]])
assert_equal(a.squeeze(), [1, 2, 3])
assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]])
# assert_raises(ValueError, a.squeeze, axis=(1,)) # a noop in pytorch
assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_transpose
|
def test_transpose(self):
a = np.array([[1, 2], [3, 4]])
assert_equal(a.transpose(), [[1, 3], [2, 4]])
assert_raises((RuntimeError, ValueError), lambda: a.transpose(0))
assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 0))
assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 1, 2))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_ragged_ndim_object
|
def test_ragged_ndim_object(self):
# Lists of mismatching depths are treated as object arrays
a = self._ragged_creation([[1], 2, 3])
assert_equal(a.shape, (3,))
assert_equal(a.dtype, object)
a = self._ragged_creation([1, [2], 3])
assert_equal(a.shape, (3,))
assert_equal(a.dtype, object)
a = self._ragged_creation([1, 2, [3]])
assert_equal(a.shape, (3,))
assert_equal(a.dtype, object)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_ragged_shape_object
|
def test_ragged_shape_object(self):
# The ragged dimension of a list is turned into an object array
a = self._ragged_creation([[1, 1], [2], [3]])
assert_equal(a.shape, (3,))
assert_equal(a.dtype, object)
a = self._ragged_creation([[1], [2, 2], [3]])
assert_equal(a.shape, (3,))
assert_equal(a.dtype, object)
a = self._ragged_creation([[1], [2], [3, 3]])
assert a.shape == (3,)
assert a.dtype == object
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_array_of_ragged_array
|
def test_array_of_ragged_array(self):
outer = np.array([None, None])
outer[0] = outer[1] = np.array([1, 2, 3])
assert np.array(outer).shape == (2,)
assert np.array([outer]).shape == (1, 2)
outer_ragged = np.array([None, None])
outer_ragged[0] = np.array([1, 2, 3])
outer_ragged[1] = np.array([1, 2, 3, 4])
# should both of these emit deprecation warnings?
assert np.array(outer_ragged).shape == (2,)
assert np.array([outer_ragged]).shape == (
1,
2,
)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_object_initialized_to_None
|
def test_object_initialized_to_None(self, function, dtype):
# NumPy has support for object fields to be NULL (meaning None)
# but generally, we should always fill with the proper None, and
# downstream may rely on that. (For fully initialized arrays!)
arr = function(3, dtype=dtype)
# We expect a fill value of None, which is not NULL:
expected = np.array(None).tobytes()
expected = expected * (arr.nbytes // len(expected))
assert arr.tobytes() == expected
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_test_interning
|
def test_test_interning(self):
a0 = np.bool_(0)
b0 = np.bool_(False)
assert_(a0 is b0)
a1 = np.bool_(1)
b1 = np.bool_(True)
assert_(a1 is b1)
assert_(np.array([True])[0] is a1)
assert_(np.array(True)[()] is a1)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_sum_2
|
def test_sum_2(self):
d = np.frombuffer(b"\xff\xff" * 100, dtype=bool)
assert_equal(d.sum(), d.size)
assert_equal(d[::2].sum(), d[::2].size)
assert_equal(d[::-2].sum(), d[::-2].size)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
check_count_nonzero
|
def check_count_nonzero(self, power, length):
powers = [2**i for i in range(length)]
for i in range(2**power):
l = [(i & x) != 0 for x in powers]
a = np.array(l, dtype=bool)
c = builtins.sum(l)
assert_equal(np.count_nonzero(a), c)
av = a.view(np.uint8)
av *= 3
assert_equal(np.count_nonzero(a), c)
av *= 4
assert_equal(np.count_nonzero(a), c)
av[av != 0] = 0xFF
assert_equal(np.count_nonzero(a), c)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestBool(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_sort_complex
|
def test_sort_complex(self, part, dtype):
# test complex sorts. These use the same code as the scalars
# but the compare function differs.
cdtype = {
np.single: np.csingle,
np.double: np.cdouble,
}[dtype]
a = np.arange(-50, 51, dtype=dtype)
b = a[::-1].copy()
ai = (a * (1 + 1j)).astype(cdtype)
bi = (b * (1 + 1j)).astype(cdtype)
setattr(ai, part, 1)
setattr(bi, part, 1)
for kind in self.sort_kinds:
msg = f"complex sort, {part} part == 1, kind={kind}"
c = ai.copy()
c.sort(kind=kind)
assert_equal(c, ai, msg)
c = bi.copy()
c.sort(kind=kind)
assert_equal(c, ai, msg)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_sort_axis
|
def test_sort_axis(self):
# check axis handling. This should be the same for all type
# specific sorts, so we only check it for one type and one kind
a = np.array([[3, 2], [1, 0]])
b = np.array([[1, 0], [3, 2]])
c = np.array([[2, 3], [0, 1]])
d = a.copy()
d.sort(axis=0)
assert_equal(d, b, "test sort with axis=0")
d = a.copy()
d.sort(axis=1)
assert_equal(d, c, "test sort with axis=1")
d = a.copy()
d.sort()
assert_equal(d, c, "test sort with default axis")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
assert_fortran
|
def assert_fortran(arr):
assert_(arr.flags.fortran)
assert_(arr.flags.f_contiguous)
assert_(not arr.flags.c_contiguous)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
assert_c
|
def assert_c(arr):
assert_(not arr.flags.fortran)
assert_(not arr.flags.f_contiguous)
assert_(arr.flags.c_contiguous)
a = np.empty((2, 2), order="F")
# Test copying a Fortran array
assert_c(a.copy())
assert_c(a.copy("C"))
assert_fortran(a.copy("F"))
assert_fortran(a.copy("A"))
# Now test starting with a C array.
a = np.empty((2, 2), order="C")
assert_c(a.copy())
assert_c(a.copy("C"))
assert_fortran(a.copy("F"))
assert_c(a.copy("A"))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test__deepcopy__
|
def test__deepcopy__(self, dtype):
# Force the entry of NULLs into array
a = np.empty(4, dtype=dtype)
ctypes.memset(a.ctypes.data, 0, a.nbytes)
# Ensure no error is raised, see gh-21833
b = a.__deepcopy__({})
a[0] = 42
with pytest.raises(AssertionError):
assert_array_equal(a, b)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_false_len_iterable
|
def test_false_len_iterable(self):
# Special case where a bad __getitem__ makes us fall back on __iter__:
class C:
def __getitem__(self, x):
raise Exception # noqa: TRY002
def __iter__(self):
return iter(())
def __len__(self):
return 2
a = np.empty(2)
with assert_raises(ValueError):
a[:] = C() # Segfault!
assert_equal(np.array(C()), list(C()))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__iter__
|
def __iter__(self):
return iter(())
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class C:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__len__
|
def __len__(self):
raise RuntimeError
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_failed_len_sequence
|
def test_failed_len_sequence(self):
# gh-7393
class A:
def __init__(self, data):
self._data = data
def __getitem__(self, item):
return type(self)(self._data[item])
def __len__(self):
return len(self._data)
# len(d) should give 3, but len(d[0]) will fail
d = A([1, 2, 3])
assert_equal(len(np.array(d)), 3)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__init__
|
def __init__(self, arr):
self.arr = arr
self.__array_interface__ = arr.__array_interface__
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
NEIGH_MODE = {"zero": 0, "one": 1, "constant": 2, "circular": 3, "mirror": 4}
from numpy.core._internal import _dtype_from_pep3118
class Foo:
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__getitem__
|
def __getitem__(self, value):
pass
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
__len__
|
def __len__(self):
raise RuntimeError
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class bad_sequence:
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_array_too_big
|
def test_array_too_big(self):
# Test that array creation succeeds for arrays addressable by intp
# on the byte level and fails for too large arrays.
buf = np.zeros(100)
max_bytes = np.iinfo(np.intp).max
for dtype in ["intp", "S20", "b"]:
dtype = np.dtype(dtype)
itemsize = dtype.itemsize
np.ndarray(
buffer=buf, strides=(0,), shape=(max_bytes // itemsize,), dtype=dtype
)
assert_raises(
ValueError,
np.ndarray,
buffer=buf,
strides=(0,),
shape=(max_bytes // itemsize + 1,),
dtype=dtype,
)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
_ragged_creation
|
def _ragged_creation(self, seq):
# without dtype=object, the ragged object raises
with pytest.raises(ValueError, match=".*detected shape was"):
a = np.array(seq)
return np.array(seq, dtype=object)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@skip(reason="object, void, structured dtypes")
@instantiate_parametrized_tests
class TestCreation(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_searchsorted_complex
|
def test_searchsorted_complex(self):
# test for complex arrays containing nans.
# The search sorted routines use the compare functions for the
# array type, so this checks if that is consistent with the sort
# order.
# check double complex
a = np.zeros(9, dtype=np.complex128)
a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
msg = "Test complex searchsorted with nans, side='l'"
b = a.searchsorted(a, side="left")
assert_equal(b, np.arange(9), msg)
msg = "Test complex searchsorted with nans, side='r'"
b = a.searchsorted(a, side="right")
assert_equal(b, np.arange(1, 10), msg)
msg = "Test searchsorted with little endian, side='l'"
a = np.array([0, 128], dtype="<i4")
b = a.searchsorted(np.array(128, dtype="<i4"))
assert_equal(b, 1, msg)
msg = "Test searchsorted with big endian, side='l'"
a = np.array([0, 128], dtype=">i4")
b = a.searchsorted(np.array(128, dtype=">i4"))
assert_equal(b, 1, msg)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_searchsorted_unaligned_array
|
def test_searchsorted_unaligned_array(self):
# Test searching unaligned array
a = np.arange(10)
aligned = np.empty(a.itemsize * a.size + 1, dtype="uint8")
unaligned = aligned[1:].view(a.dtype)
unaligned[:] = a
# Test searching unaligned array
b = unaligned.searchsorted(a, "left")
assert_equal(b, a)
b = unaligned.searchsorted(a, "right")
assert_equal(b, a + 1)
# Test searching for unaligned keys
b = a.searchsorted(unaligned, "left")
assert_equal(b, a)
b = a.searchsorted(unaligned, "right")
assert_equal(b, a + 1)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_searchsorted_resetting
|
def test_searchsorted_resetting(self):
# Test smart resetting of binsearch indices
a = np.arange(5)
b = a.searchsorted([6, 5, 4], "left")
assert_equal(b, [5, 5, 4])
b = a.searchsorted([6, 5, 4], "right")
assert_equal(b, [5, 5, 5])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_searchsorted_type_specific_2
|
def test_searchsorted_type_specific_2(self):
# Test all type specific binary search functions
types = "".join((np.typecodes["AllInteger"], np.typecodes["AllFloat"], "?"))
for dt in types:
if dt == "?":
a = np.arange(2, dtype=dt)
out = np.arange(2)
else:
a = np.arange(0, 5, dtype=dt)
out = np.arange(5)
# Test empty array, use a fresh array to get warnings in
# valgrind if access happens.
e = np.ndarray(shape=0, buffer=b"", dtype=dt)
b = e.searchsorted(a, "left")
assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
b = a.searchsorted(e, "left")
assert_array_equal(b, np.zeros(0, dtype=np.intp))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_partition
|
def test_partition(self):
d = np.arange(10)
assert_raises(TypeError, np.partition, d, 2, kind=1)
assert_raises(ValueError, np.partition, d, 2, kind="nonsense")
assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense")
assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense")
assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense")
for k in ("introselect",):
d = np.array([])
assert_array_equal(np.partition(d, 0, kind=k), d)
assert_array_equal(np.argpartition(d, 0, kind=k), d)
d = np.ones(1)
assert_array_equal(np.partition(d, 0, kind=k)[0], d)
assert_array_equal(
d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)
)
# kth not modified
kth = np.array([30, 15, 5])
okth = kth.copy()
np.partition(np.arange(40), kth)
assert_array_equal(kth, okth)
for r in ([2, 1], [1, 2], [1, 1]):
d = np.array(r)
tgt = np.sort(d)
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
assert_array_equal(
d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)
)
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
for r in (
[3, 2, 1],
[1, 2, 3],
[2, 1, 3],
[2, 3, 1],
[1, 1, 1],
[1, 2, 2],
[2, 2, 1],
[1, 2, 1],
):
d = np.array(r)
tgt = np.sort(d)
assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
assert_array_equal(
d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)
)
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
d = np.ones(50)
assert_array_equal(np.partition(d, 0, kind=k), d)
assert_array_equal(
d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)
)
# sorted
d = np.arange(49)
assert_equal(np.partition(d, 5, kind=k)[5], 5)
assert_equal(np.partition(d, 15, kind=k)[15], 15)
assert_array_equal(
d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)
)
# rsorted
d = np.arange(47)[::-1]
assert_equal(np.partition(d, 6, kind=k)[6], 6)
assert_equal(np.partition(d, 16, kind=k)[16], 16)
assert_array_equal(
d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)
)
assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k))
assert_array_equal(
np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)
)
assert_array_equal(
d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)
)
# median of 3 killer, O(n^2) on pure median 3 pivot quickselect
# exercises the median of median of 5 code used to keep O(n)
d = np.arange(1000000)
x = np.roll(d, d.size // 2)
mid = x.size // 2 + 1
assert_equal(np.partition(x, mid)[mid], mid)
d = np.arange(1000001)
x = np.roll(d, d.size // 2 + 1)
mid = x.size // 2 + 1
assert_equal(np.partition(x, mid)[mid], mid)
# max
d = np.ones(10)
d[1] = 4
assert_equal(np.partition(d, (2, -1))[-1], 4)
assert_equal(np.partition(d, (2, -1))[2], 1)
assert_equal(d[np.argpartition(d, (2, -1))][-1], 4)
assert_equal(d[np.argpartition(d, (2, -1))][2], 1)
d[1] = np.nan
assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1]))
assert_(np.isnan(np.partition(d, (2, -1))[-1]))
# equal elements
d = np.arange(47) % 7
tgt = np.sort(np.arange(47) % 7)
np.random.shuffle(d)
for i in range(d.size):
assert_equal(np.partition(d, i, kind=k)[i], tgt[i])
assert_array_equal(
d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)
)
assert_array_equal(
d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)
)
for i in range(d.size):
d[i:].partition(0, kind=k)
assert_array_equal(d, tgt)
d = np.array(
[0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]
)
kth = [0, 3, 19, 20]
assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7))
assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7))
d = np.array([2, 1])
d.partition(0, kind=k)
assert_raises(ValueError, d.partition, 2)
assert_raises(np.AxisError, d.partition, 3, axis=1)
assert_raises(ValueError, np.partition, d, 2)
assert_raises(np.AxisError, np.partition, d, 2, axis=1)
assert_raises(ValueError, d.argpartition, 2)
assert_raises(np.AxisError, d.argpartition, 3, axis=1)
assert_raises(ValueError, np.argpartition, d, 2)
assert_raises(np.AxisError, np.argpartition, d, 2, axis=1)
d = np.arange(10).reshape((2, 5))
d.partition(1, axis=0, kind=k)
d.partition(4, axis=1, kind=k)
np.partition(d, 1, axis=0, kind=k)
np.partition(d, 4, axis=1, kind=k)
np.partition(d, 1, axis=None, kind=k)
np.partition(d, 9, axis=None, kind=k)
d.argpartition(1, axis=0, kind=k)
d.argpartition(4, axis=1, kind=k)
np.argpartition(d, 1, axis=0, kind=k)
np.argpartition(d, 4, axis=1, kind=k)
np.argpartition(d, 1, axis=None, kind=k)
np.argpartition(d, 9, axis=None, kind=k)
assert_raises(ValueError, d.partition, 2, axis=0)
assert_raises(ValueError, d.partition, 11, axis=1)
assert_raises(TypeError, d.partition, 2, axis=None)
assert_raises(ValueError, np.partition, d, 9, axis=1)
assert_raises(ValueError, np.partition, d, 11, axis=None)
assert_raises(ValueError, d.argpartition, 2, axis=0)
assert_raises(ValueError, d.argpartition, 11, axis=1)
assert_raises(ValueError, np.argpartition, d, 9, axis=1)
assert_raises(ValueError, np.argpartition, d, 11, axis=None)
td = [
(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)
]
for dt, s in td:
aae = assert_array_equal
at = assert_
d = np.arange(s, dtype=dt)
np.random.shuffle(d)
d1 = np.tile(np.arange(s, dtype=dt), (4, 1))
map(np.random.shuffle, d1)
d0 = np.transpose(d1)
for i in range(d.size):
p = np.partition(d, i, kind=k)
assert_equal(p[i], i)
# all before are smaller
assert_array_less(p[:i], p[i])
# all after are larger
assert_array_less(p[i], p[i + 1 :])
aae(p, d[np.argpartition(d, i, kind=k)])
p = np.partition(d1, i, axis=1, kind=k)
aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
# array_less does not seem to work right
at(
(p[:, :i].T <= p[:, i]).all(),
msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T),
)
at(
(p[:, i + 1 :].T > p[:, i]).all(),
msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1 :].T),
)
aae(
p,
d1[
np.arange(d1.shape[0])[:, None],
np.argpartition(d1, i, axis=1, kind=k),
],
)
p = np.partition(d0, i, axis=0, kind=k)
aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
# array_less does not seem to work right
at(
(p[:i, :] <= p[i, :]).all(),
msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]),
)
at(
(p[i + 1 :, :] > p[i, :]).all(),
msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1 :]),
)
aae(
p,
d0[
np.argpartition(d0, i, axis=0, kind=k),
np.arange(d0.shape[1])[None, :],
],
)
# check inplace
dc = d.copy()
dc.partition(i, kind=k)
assert_equal(dc, np.partition(d, i, kind=k))
dc = d0.copy()
dc.partition(i, axis=0, kind=k)
assert_equal(dc, np.partition(d0, i, axis=0, kind=k))
dc = d1.copy()
dc.partition(i, axis=1, kind=k)
assert_equal(dc, np.partition(d1, i, axis=1, kind=k))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_axis
|
def test_axis(self):
assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000)
assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestMinMax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_basic
|
def test_basic(self):
sk = np.array([0, -0.1, 0.1])
res = 250 * sk[:, np.newaxis]
assert_almost_equal(res.ravel(), 250 * sk)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestNewaxis(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
_check_range
|
def _check_range(self, x, cmin, cmax):
assert_(np.all(x >= cmin))
assert_(np.all(x <= cmax))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
class TestClip(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_basic
|
def test_basic(self):
sk = np.array([0, -0.1, 0.1])
res = 250 * sk[:, np.newaxis]
assert_almost_equal(res.ravel(), 250 * sk)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestNewaxis(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_max_or_min
|
def test_max_or_min(self):
val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
x = val.clip(3)
assert_(np.all(x >= 3))
x = val.clip(min=3)
assert_(np.all(x >= 3))
x = val.clip(max=4)
assert_(np.all(x <= 4))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
class TestClip(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_nan
|
def test_nan(self):
input_arr = np.array([-2.0, np.nan, 0.5, 3.0, 0.25, np.nan])
result = input_arr.clip(-1, 1)
expected = np.array([-1.0, np.nan, 0.5, 1.0, 0.25, np.nan])
assert_array_equal(result, expected)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
class TestClip(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_axis
|
def test_axis(self):
assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000)
assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestMinMax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_truncate
|
def test_truncate(self):
tgt = [[1], [6]]
arr = np.arange(10).reshape(2, 5)
out = np.compress([0, 1], arr, axis=1)
assert_equal(out, tgt)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
class TestCompress(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
tst_basic
|
def tst_basic(self, x, T, mask, val):
np.putmask(x, mask, val)
assert_equal(x[mask], np.array(val, T))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestPutmask(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_np_vs_ndarray
|
def test_np_vs_ndarray(self, arr_method, np_method):
# make sure both ndarray.argmax/argmin and
# numpy.argmax/argmin support out/axis args
a = np.random.normal(size=(2, 3))
arg_method = getattr(a, arr_method)
# check positional args
out1 = np.zeros(2, dtype=int)
out2 = np.zeros(2, dtype=int)
assert_equal(arg_method(1, out1), np_method(a, 1, out2))
assert_equal(out1, out2)
# check keyword args
out1 = np.zeros(3, dtype=int)
out2 = np.zeros(3, dtype=int)
assert_equal(arg_method(out=out1, axis=0), np_method(a, out=out2, axis=0))
assert_equal(out1, out2)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestArgmaxArgminCommon(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_combinations
|
def test_combinations(self, data):
arr, pos = data
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in reduce")
val = np.max(arr)
assert_equal(np.argmax(arr), pos, err_msg=f"{arr!r}")
assert_equal(arr[np.argmax(arr)], val, err_msg=f"{arr!r}")
# add padding to test SIMD loops
rarr = np.repeat(arr, 129)
rpos = pos * 129
assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
padd = np.repeat(np.min(arr), 513)
rarr = np.concatenate((arr, padd))
rpos = pos
assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestArgmax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_maximum_signed_integers
|
def test_maximum_signed_integers(self):
a = np.array([1, 2**7 - 1, -(2**7)], dtype=np.int8)
assert_equal(np.argmax(a), 1)
a = a.repeat(129)
assert_equal(np.argmax(a), 129)
a = np.array([1, 2**15 - 1, -(2**15)], dtype=np.int16)
assert_equal(np.argmax(a), 1)
a = a.repeat(129)
assert_equal(np.argmax(a), 129)
a = np.array([1, 2**31 - 1, -(2**31)], dtype=np.int32)
assert_equal(np.argmax(a), 1)
a = a.repeat(129)
assert_equal(np.argmax(a), 129)
a = np.array([1, 2**63 - 1, -(2**63)], dtype=np.int64)
assert_equal(np.argmax(a), 1)
a = a.repeat(129)
assert_equal(np.argmax(a), 129)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestArgmax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_combinations
|
def test_combinations(self, data):
arr, pos = data
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in reduce")
val = np.max(arr)
assert_equal(np.argmax(arr), pos, err_msg=f"{arr!r}")
assert_equal(arr[np.argmax(arr)], val, err_msg=f"{arr!r}")
# add padding to test SIMD loops
rarr = np.repeat(arr, 129)
rpos = pos * 129
assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
padd = np.repeat(np.min(arr), 513)
rarr = np.concatenate((arr, padd))
rpos = pos
assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestArgmax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_minimum_signed_integers
|
def test_minimum_signed_integers(self):
a = np.array([1, -(2**7), -(2**7) + 1, 2**7 - 1], dtype=np.int8)
assert_equal(np.argmin(a), 1)
a = a.repeat(129)
assert_equal(np.argmin(a), 129)
a = np.array([1, -(2**15), -(2**15) + 1, 2**15 - 1], dtype=np.int16)
assert_equal(np.argmin(a), 1)
a = a.repeat(129)
assert_equal(np.argmin(a), 129)
a = np.array([1, -(2**31), -(2**31) + 1, 2**31 - 1], dtype=np.int32)
assert_equal(np.argmin(a), 1)
a = a.repeat(129)
assert_equal(np.argmin(a), 129)
a = np.array([1, -(2**63), -(2**63) + 1, 2**63 - 1], dtype=np.int64)
assert_equal(np.argmin(a), 1)
a = a.repeat(129)
assert_equal(np.argmin(a), 129)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestArgmin(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_scalar
|
def test_scalar(self):
assert_raises(np.AxisError, np.amax, 1, 1)
assert_raises(np.AxisError, np.amin, 1, 1)
assert_equal(np.amax(1, axis=0), 1)
assert_equal(np.amin(1, axis=0), 1)
assert_equal(np.amax(1, axis=None), 1)
assert_equal(np.amin(1, axis=None), 1)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestMinMax(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_diagonal_view_notwriteable
|
def test_diagonal_view_notwriteable(self):
a = np.eye(3).diagonal()
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diagonal(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diag(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_diagonal_memleak
|
def test_diagonal_memleak(self):
# Regression test for a bug that crept in at one point
a = np.zeros((100, 100))
if HAS_REFCOUNT:
assert_(sys.getrefcount(a) < 50)
for i in range(100):
a.diagonal()
if HAS_REFCOUNT:
assert_(sys.getrefcount(a) < 50)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_size_zero_memleak
|
def test_size_zero_memleak(self):
# Regression test for issue 9615
# Exercises a special-case code path for dot products of length
# zero in cblasfuncs (making it is specific to floating dtypes).
a = np.array([], dtype=np.float64)
x = np.array(2.0)
for _ in range(100):
np.dot(a, a, out=x)
if HAS_REFCOUNT:
assert_(sys.getrefcount(x) < 50)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_trace
|
def test_trace(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.trace(), 15)
assert_equal(a.trace(0), 15)
assert_equal(a.trace(1), 18)
assert_equal(a.trace(-1), 13)
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.trace(), [6, 8])
assert_equal(b.trace(0), [6, 8])
assert_equal(b.trace(1), [2, 3])
assert_equal(b.trace(-1), [4, 5])
assert_equal(b.trace(0, 0, 1), [6, 8])
assert_equal(b.trace(0, 0, 2), [5, 9])
assert_equal(b.trace(0, 1, 2), [3, 11])
assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3])
out = np.array(1)
ret = a.trace(out=out)
assert ret is out
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_swapaxes
|
def test_swapaxes(self):
a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy()
idx = np.indices(a.shape)
assert_(a.flags["OWNDATA"])
b = a.copy()
# check exceptions
assert_raises(np.AxisError, a.swapaxes, -5, 0)
assert_raises(np.AxisError, a.swapaxes, 4, 0)
assert_raises(np.AxisError, a.swapaxes, 0, -5)
assert_raises(np.AxisError, a.swapaxes, 0, 4)
for i in range(-4, 4):
for j in range(-4, 4):
for k, src in enumerate((a, b)):
c = src.swapaxes(i, j)
# check shape
shape = list(src.shape)
shape[i] = src.shape[j]
shape[j] = src.shape[i]
assert_equal(c.shape, shape, str((i, j, k)))
# check array contents
i0, i1, i2, i3 = (dim - 1 for dim in c.shape)
j0, j1, j2, j3 = (dim - 1 for dim in src.shape)
assert_equal(
src[idx[j0], idx[j1], idx[j2], idx[j3]],
c[idx[i0], idx[i1], idx[i2], idx[i3]],
str((i, j, k)),
)
# check a view is always returned, gh-5260
assert_(not c.flags["OWNDATA"], str((i, j, k)))
# check on non-contiguous input array
if k == 1:
b = c
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_conjugate
|
def test_conjugate(self):
a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j])
ac = a.conj()
assert_equal(a.real, ac.real)
assert_equal(a.imag, -ac.imag)
assert_equal(ac, a.conjugate())
assert_equal(ac, np.conjugate(a))
a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j], "F")
ac = a.conj()
assert_equal(a.real, ac.real)
assert_equal(a.imag, -ac.imag)
assert_equal(ac, a.conjugate())
assert_equal(ac, np.conjugate(a))
a = np.array([1, 2, 3])
ac = a.conj()
assert_equal(a, ac)
assert_equal(ac, a.conjugate())
assert_equal(ac, np.conjugate(a))
a = np.array([1.0, 2.0, 3.0])
ac = a.conj()
assert_equal(a, ac)
assert_equal(ac, a.conjugate())
assert_equal(ac, np.conjugate(a))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_conjugate_out
|
def test_conjugate_out(self):
# Minimal test for the out argument being passed on correctly
# NOTE: The ability to pass `out` is currently undocumented!
a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j])
out = np.empty_like(a)
res = a.conjugate(out)
assert res is out
assert_array_equal(out, a.conjugate())
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test__complex__
|
def test__complex__(self):
dtypes = [
"i1",
"i2",
"i4",
"i8",
"u1",
"f",
"d",
"F",
"D",
"?",
]
for dt in dtypes:
a = np.array(7, dtype=dt)
b = np.array([7], dtype=dt)
c = np.array([[[[[7]]]]], dtype=dt)
msg = f"dtype: {dt}"
ap = complex(a)
assert_equal(ap, a, msg)
bp = complex(b)
assert_equal(bp, b, msg)
cp = complex(c)
assert_equal(cp, c, msg)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
@instantiate_parametrized_tests
class TestMethods(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_basic
|
def test_basic(self):
sk = np.array([0, -0.1, 0.1])
res = 250 * sk[:, np.newaxis]
assert_almost_equal(res.ravel(), 250 * sk)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
class TestNewaxis(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_mixed
|
def test_mixed(self):
a = np.array([1, 2, 1, 3, 1, 5])
b = np.array([0, 4, 5, 6, 2, 3], dtype="datetime64[D]")
idx = np.lexsort((b, a))
expected_idx = np.array([0, 4, 2, 1, 3, 5])
assert_array_equal(idx, expected_idx)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestLexsort(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_datetime
|
def test_datetime(self):
a = np.array([0, 0, 0], dtype="datetime64[D]")
b = np.array([2, 1, 0], dtype="datetime64[D]")
idx = np.lexsort((b, a))
expected_idx = np.array([2, 1, 0])
assert_array_equal(idx, expected_idx)
a = np.array([0, 0, 0], dtype="timedelta64[D]")
b = np.array([2, 1, 0], dtype="timedelta64[D]")
idx = np.lexsort((b, a))
expected_idx = np.array([2, 1, 0])
assert_array_equal(idx, expected_idx)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestLexsort(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_object
|
def test_object(self): # gh-6312
a = np.random.choice(10, 1000)
b = np.random.choice(["abc", "xy", "wz", "efghi", "qwst", "x"], 1000)
for u in a, b:
left = np.lexsort((u.astype("O"),))
right = np.argsort(u, kind="mergesort")
assert_array_equal(left, right)
for u, v in (a, b), (b, a):
idx = np.lexsort((u, v))
assert_array_equal(idx, np.lexsort((u.astype("O"), v)))
assert_array_equal(idx, np.lexsort((u, v.astype("O"))))
u, v = np.array(u, dtype="object"), np.array(v, dtype="object")
assert_array_equal(idx, np.lexsort((u, v)))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestLexsort(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_invalid_axis
|
def test_invalid_axis(self): # gh-7528
x = np.linspace(0.0, 1.0, 42 * 3).reshape(42, 3)
assert_raises(np.AxisError, np.lexsort, x, axis=2)
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestLexsort(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_ip_types
|
def test_ip_types(self):
unchecked_types = [bytes, str, np.void]
x = np.random.random(1000) * 100
mask = x < 40
for val in [-100, 0, 15]:
for types in "efdFDBbhil?":
for T in types:
if T not in unchecked_types:
if val < 0 and np.dtype(T).kind == "u":
val = np.iinfo(T).max - 99
self.tst_basic(x.copy().astype(T), T, mask, val)
# Also test string of a length which uses an untypical length
dt = np.dtype("S3")
self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestPutmask(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_byteorder
|
def test_byteorder(self, greater):
dtype = ">i4" if greater else "<i4"
x = np.array([1, 2, 3], dtype)
np.putmask(x, [True, False, True], -1)
assert_array_equal(x, [-1, 2, -1])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestPutmask(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_record_array
|
def test_record_array(self):
# Note mixed byteorder.
rec = np.array(
[(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[("x", "<f8"), ("y", ">f8"), ("z", "<f8")],
)
np.putmask(rec["x"], [True, False], 10)
assert_array_equal(rec["x"], [10, 5])
assert_array_equal(rec["y"], [2, 4])
assert_array_equal(rec["z"], [3, 3])
np.putmask(rec["y"], [True, False], 11)
assert_array_equal(rec["x"], [10, 5])
assert_array_equal(rec["y"], [11, 4])
assert_array_equal(rec["z"], [3, 3])
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestPutmask(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_overlaps
|
def test_overlaps(self):
# gh-6272 check overlap
x = np.array([True, False, True, False])
np.putmask(x[1:4], [True, True, True], x[:3])
assert_equal(x, np.array([True, True, False, True]))
x = np.array([True, False, True, False])
np.putmask(x[1:4], x[:3], [True, False, True])
assert_equal(x, np.array([True, True, True, True]))
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
import pickle
from numpy.core.numeric import set_string_function
_sctypes = {
"int": [np.int8, np.int16, np.int32, np.int64],
"uint": [np.uint8, np.uint16, np.uint32, np.uint64],
"float": [np.float32, np.float64],
"complex": [np.complex64, np.complex128]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else []),
}
@xpassIfTorchDynamo # (reason="TODO")
@instantiate_parametrized_tests
class TestPutmask(TestCase):
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_multiarray.py
|
test_writeable
|
def test_writeable(self):
mydict = locals()
self.a.flags.writeable = False
assert_raises(ValueError, runstring, "self.a[0] = 3", mydict)
assert_raises(ValueError, runstring, "self.a[0:1].itemset(3)", mydict)
self.a.flags.writeable = True
self.a[0] = 5
self.a[0] = 0
|
import builtins
import collections.abc
import ctypes
import functools
import io
import itertools
import mmap
import operator
import os
import sys
import tempfile
import warnings
import weakref
from contextlib import contextmanager
from decimal import Decimal
from pathlib import Path
from tempfile import mkstemp
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
slowTest as slow,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises_regex,
assert_warns,
suppress_warnings,
)
skip = functools.partial(skipif, True)
IS_PYPY = False
IS_PYSTON = False
HAS_REFCOUNT = True
from numpy.core.tests._locales import CommaDecimalPointLocale
from numpy.testing._private.utils import _no_tracing, requires_memory
np.asanyarray = np.asarray
np.asfortranarray = np.asarray
@xpassIfTorchDynamo # (reason="TODO: flags")
@instantiate_parametrized_tests
class TestFlag(TestCase):
import pickle
from numpy.core.numeric import set_string_function
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
from numpy.core.multiarray import dot
import operator
from numpy.core._internal import _dtype_from_pep3118
from numpy.testing import IS_PYPY
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.