library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_empty_subscript_assignment
def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 assert_equal(a, 42) b[()] = "" assert_equal(b.item(), "")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail class TestZeroRank(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_invalid_subscript_assignment
def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v assert_raises(IndexError, assign, a, 0, 42) assert_raises(IndexError, assign, b, 0, "") assert_raises(ValueError, assign, a, (), "")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail class TestZeroRank(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
assign
def assign(a, b): a[...] = b assert_raises( (RuntimeError, ValueError), assign, a, np.arange(12).reshape(2, 2, 3) )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_non_sequence_sequence
def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail: def __len__(self): return 1 def __getitem__(self, index): raise ValueError class Map: def __len__(self): return 1 def __getitem__(self, index): raise KeyError a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__len__
def __len__(self): raise RuntimeError
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__len__
def __len__(self): raise RuntimeError
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_no_len_object_type
def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self) -> None: pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_false_len_sequence
def test_false_len_sequence(self): # gh-7264, segfault for this example class C: def __getitem__(self, i): raise IndexError def __len__(self): return 42 a = np.array(C()) # segfault? assert_equal(len(a), 0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__len__
def __len__(self): raise RuntimeError
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_invalid_subscript_assignment
def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v assert_raises(IndexError, assign, a, 0, 42) assert_raises(IndexError, assign, b, 0, "") assert_raises(ValueError, assign, a, (), "")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail class TestZeroRank(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
assign
def assign(a, b): a[...] = b assert_raises( (RuntimeError, ValueError), assign, a, np.arange(12).reshape(2, 2, 3) )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_newaxis
def test_newaxis(self): a, b = self.d assert_equal(a[np.newaxis].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ...].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1)) assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) assert_equal(a[(np.newaxis,) * 10].shape, (1,) * 10)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail class TestZeroRank(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_invalid_newaxis
def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] assert_raises(IndexError, subscript, a, (np.newaxis, 0)) assert_raises(IndexError, subscript, a, (np.newaxis,) * 50)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip # (reason="TODO: zero-rank?") # FIXME: revert skip into xfail class TestZeroRank(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
subscript
def subscript(x, i): x[i] assert_raises(IndexError, subscript, a, (np.newaxis, 0)) assert_raises(IndexError, subscript, a, (np.newaxis,) * 50)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_overlapping_assignment
def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1, :] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestScalarIndexing(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_from_attribute
def test_from_attribute(self): class x: def __array__(self, dtype=None): pass assert_raises(ValueError, np.array, x())
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__array__
def __array__(self, dtype=None): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class x: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_from_string
def test_from_string(self): types = np.typecodes["AllInteger"] + np.typecodes["Float"] nstr = ["123", "123"] result = np.array([123, 123], dtype=int) for type in types: msg = f"String conversion for {type}" assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_count_nonzero_all
def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_count_nonzero_unaligned
def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=bool)[o + 1 :] a[:o] = True assert_equal(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=bool)[o + 1 :] a[:o] = False assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_cast_from_bytes
def test_cast_from_bytes(self): self._test_cast_from_flexible(np.bytes_)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_compress
def test_compress(self): tgt = [[5, 6, 7, 8, 9]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=0) assert_equal(out, tgt) tgt = [[1, 3], [6, 8]] out = arr.compress([0, 1, 0, 1, 0], axis=1) assert_equal(out, tgt) tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=1) assert_equal(out, tgt) arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1]) assert_equal(out, 1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_structured_void_promotion
def test_structured_void_promotion(self, idx): arr = np.array( [np.array(1, dtype="i,i")[idx], np.array(2, dtype="i,i")[idx]], dtype="V" ) assert_array_equal(arr, np.array([(1, 1), (2, 2)], dtype="i,i")) # The following fails to promote the two dtypes, resulting in an error with pytest.raises(TypeError): np.array( [np.array(1, dtype="i,i")[idx], np.array(2, dtype="i,i,i")[idx]], dtype="V", )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_malloc_fails
def test_malloc_fails(self): # This test is guaranteed to fail due to a too large allocation with assert_raises(np.core._exceptions._ArrayMemoryError): np.empty(np.iinfo(np.intp).max, dtype=np.uint8)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_zeros_big
def test_zeros_big(self): # test big array as they might be allocated different by the system types = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) # This test can fail on 32-bit systems due to insufficient # contiguous memory. Deallocating the previous array increases the # chance of success. del d
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_zeros_obj
def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_zeros_obj_obj
def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[("k", object, 2)]) assert_array_equal(d["k"], 0)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_zeros_like_like_zeros
def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes["All"]: if c == "V": continue d = np.zeros((3, 3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3, 3), dtype="S5") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype="U5") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype="<i4") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype=">i4") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype="<M8[s]") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype=">M8[s]") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3, 3), dtype="f4,f4") assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_empty_unicode
def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype="U") str(d)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_sequence_non_homogeneous
def test_sequence_non_homogeneous(self): assert_equal(np.array([4, 2**80]).dtype, object) assert_equal(np.array([4, 2**80, 4]).dtype, object) assert_equal(np.array([2**80, 4]).dtype, object) assert_equal(np.array([2**80] * 3).dtype, object) assert_equal(np.array([[1, 1], [1j, 1j]]).dtype, complex) assert_equal(np.array([[1j, 1j], [1, 1]]).dtype, complex) assert_equal(np.array([[1, 1, 1], [1, 1j, 1.0], [1, 1, 1]]).dtype, complex)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_choose_2
def test_choose_2(self): # gh-6272 check overlap on out x = np.arange(5) y = np.choose([0, 0, 0], [x[:3], x[:3], x[:3]], out=x[1:4], mode="wrap") assert_equal(y, np.array([0, 1, 2]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_prod
def test_prod(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [ np.int16, np.int32, np.float32, np.float64, np.complex64, np.complex128, ]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ["1", "b"]: assert_raises(ArithmeticError, a.prod) assert_raises(ArithmeticError, a2.prod, axis=1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_reshape
def test_reshape(self): arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(arr.reshape(2, 6), tgt) tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] assert_equal(arr.reshape(3, 4), tgt) tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]] assert_equal(arr.reshape((3, 4), order="F"), tgt) tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] assert_equal(arr.T.reshape((3, 4), order="C"), tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
check_round
def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert out is res check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_squeeze
def test_squeeze(self): a = np.array([[[1], [2], [3]]]) assert_equal(a.squeeze(), [1, 2, 3]) assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]]) # assert_raises(ValueError, a.squeeze, axis=(1,)) # a noop in pytorch assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_transpose
def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0)) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 0)) assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 1, 2))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ragged_ndim_object
def test_ragged_ndim_object(self): # Lists of mismatching depths are treated as object arrays a = self._ragged_creation([[1], 2, 3]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = self._ragged_creation([1, [2], 3]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = self._ragged_creation([1, 2, [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ragged_shape_object
def test_ragged_shape_object(self): # The ragged dimension of a list is turned into an object array a = self._ragged_creation([[1, 1], [2], [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = self._ragged_creation([[1], [2, 2], [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = self._ragged_creation([[1], [2], [3, 3]]) assert a.shape == (3,) assert a.dtype == object
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_array_of_ragged_array
def test_array_of_ragged_array(self): outer = np.array([None, None]) outer[0] = outer[1] = np.array([1, 2, 3]) assert np.array(outer).shape == (2,) assert np.array([outer]).shape == (1, 2) outer_ragged = np.array([None, None]) outer_ragged[0] = np.array([1, 2, 3]) outer_ragged[1] = np.array([1, 2, 3, 4]) # should both of these emit deprecation warnings? assert np.array(outer_ragged).shape == (2,) assert np.array([outer_ragged]).shape == ( 1, 2, )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_object_initialized_to_None
def test_object_initialized_to_None(self, function, dtype): # NumPy has support for object fields to be NULL (meaning None) # but generally, we should always fill with the proper None, and # downstream may rely on that. (For fully initialized arrays!) arr = function(3, dtype=dtype) # We expect a fill value of None, which is not NULL: expected = np.array(None).tobytes() expected = expected * (arr.nbytes // len(expected)) assert arr.tobytes() == expected
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_test_interning
def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) assert_(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) assert_(a1 is b1) assert_(np.array([True])[0] is a1) assert_(np.array(True)[()] is a1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_sum_2
def test_sum_2(self): d = np.frombuffer(b"\xff\xff" * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
check_count_nonzero
def check_count_nonzero(self, power, length): powers = [2**i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=bool) c = builtins.sum(l) assert_equal(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 assert_equal(np.count_nonzero(a), c) av *= 4 assert_equal(np.count_nonzero(a), c) av[av != 0] = 0xFF assert_equal(np.count_nonzero(a), c)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestBool(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_sort_complex
def test_sort_complex(self, part, dtype): # test complex sorts. These use the same code as the scalars # but the compare function differs. cdtype = { np.single: np.csingle, np.double: np.cdouble, }[dtype] a = np.arange(-50, 51, dtype=dtype) b = a[::-1].copy() ai = (a * (1 + 1j)).astype(cdtype) bi = (b * (1 + 1j)).astype(cdtype) setattr(ai, part, 1) setattr(bi, part, 1) for kind in self.sort_kinds: msg = f"complex sort, {part} part == 1, kind={kind}" c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_sort_axis
def test_sort_axis(self): # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
assert_fortran
def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
assert_c
def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order="F") # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy("C")) assert_fortran(a.copy("F")) assert_fortran(a.copy("A")) # Now test starting with a C array. a = np.empty((2, 2), order="C") assert_c(a.copy()) assert_c(a.copy("C")) assert_fortran(a.copy("F")) assert_c(a.copy("A"))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test__deepcopy__
def test__deepcopy__(self, dtype): # Force the entry of NULLs into array a = np.empty(4, dtype=dtype) ctypes.memset(a.ctypes.data, 0, a.nbytes) # Ensure no error is raised, see gh-21833 b = a.__deepcopy__({}) a[0] = 42 with pytest.raises(AssertionError): assert_array_equal(a, b)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_false_len_iterable
def test_false_len_iterable(self): # Special case where a bad __getitem__ makes us fall back on __iter__: class C: def __getitem__(self, x): raise Exception # noqa: TRY002 def __iter__(self): return iter(()) def __len__(self): return 2 a = np.empty(2) with assert_raises(ValueError): a[:] = C() # Segfault! assert_equal(np.array(C()), list(C()))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__iter__
def __iter__(self): return iter(())
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class C: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__len__
def __len__(self): raise RuntimeError
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_failed_len_sequence
def test_failed_len_sequence(self): # gh-7393 class A: def __init__(self, data): self._data = data def __getitem__(self, item): return type(self)(self._data[item]) def __len__(self): return len(self._data) # len(d) should give 3, but len(d[0]) will fail d = A([1, 2, 3]) assert_equal(len(np.array(d)), 3)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__init__
def __init__(self, arr): self.arr = arr self.__array_interface__ = arr.__array_interface__
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator NEIGH_MODE = {"zero": 0, "one": 1, "constant": 2, "circular": 3, "mirror": 4} from numpy.core._internal import _dtype_from_pep3118 class Foo: from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__getitem__
def __getitem__(self, value): pass
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
__len__
def __len__(self): raise RuntimeError
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class bad_sequence: from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_array_too_big
def test_array_too_big(self): # Test that array creation succeeds for arrays addressable by intp # on the byte level and fails for too large arrays. buf = np.zeros(100) max_bytes = np.iinfo(np.intp).max for dtype in ["intp", "S20", "b"]: dtype = np.dtype(dtype) itemsize = dtype.itemsize np.ndarray( buffer=buf, strides=(0,), shape=(max_bytes // itemsize,), dtype=dtype ) assert_raises( ValueError, np.ndarray, buffer=buf, strides=(0,), shape=(max_bytes // itemsize + 1,), dtype=dtype, )
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
_ragged_creation
def _ragged_creation(self, seq): # without dtype=object, the ragged object raises with pytest.raises(ValueError, match=".*detected shape was"): a = np.array(seq) return np.array(seq, dtype=object)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @skip(reason="object, void, structured dtypes") @instantiate_parametrized_tests class TestCreation(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_searchsorted_complex
def test_searchsorted_complex(self): # test for complex arrays containing nans. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side="left") assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side="right") assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype="<i4") b = a.searchsorted(np.array(128, dtype="<i4")) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype=">i4") b = a.searchsorted(np.array(128, dtype=">i4")) assert_equal(b, 1, msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_searchsorted_unaligned_array
def test_searchsorted_unaligned_array(self): # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, dtype="uint8") unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, "left") assert_equal(b, a) b = unaligned.searchsorted(a, "right") assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, "left") assert_equal(b, a) b = a.searchsorted(unaligned, "right") assert_equal(b, a + 1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_searchsorted_resetting
def test_searchsorted_resetting(self): # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], "left") assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], "right") assert_equal(b, [5, 5, 5])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_searchsorted_type_specific_2
def test_searchsorted_type_specific_2(self): # Test all type specific binary search functions types = "".join((np.typecodes["AllInteger"], np.typecodes["AllFloat"], "?")) for dt in types: if dt == "?": a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) # Test empty array, use a fresh array to get warnings in # valgrind if access happens. e = np.ndarray(shape=0, buffer=b"", dtype=dt) b = e.searchsorted(a, "left") assert_array_equal(b, np.zeros(len(a), dtype=np.intp)) b = a.searchsorted(e, "left") assert_array_equal(b, np.zeros(0, dtype=np.intp))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_partition
def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones(1) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal( d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k) ) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal( d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k) ) assert_array_equal( d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k) ) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ( [3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1], ): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal( d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k) ) assert_array_equal( d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k) ) assert_array_equal( d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k) ) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones(50) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal( d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k) ) # sorted d = np.arange(49) assert_equal(np.partition(d, 5, kind=k)[5], 5) assert_equal(np.partition(d, 15, kind=k)[15], 15) assert_array_equal( d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k) ) assert_array_equal( d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k) ) # rsorted d = np.arange(47)[::-1] assert_equal(np.partition(d, 6, kind=k)[6], 6) assert_equal(np.partition(d, 16, kind=k)[16], 16) assert_array_equal( d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k) ) assert_array_equal( d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k) ) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal( np.partition(d, -16, kind=k), np.partition(d, 31, kind=k) ) assert_array_equal( d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k) ) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange(47) % 7 tgt = np.sort(np.arange(47) % 7) np.random.shuffle(d) for i in range(d.size): assert_equal(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal( d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k) ) assert_array_equal( d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k) ) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array( [0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9] ) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(np.AxisError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(np.AxisError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(np.AxisError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(np.AxisError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [ (dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16) ] for dt, s in td: aae = assert_array_equal at = assert_ d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) assert_equal(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1 :]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at( (p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T), ) at( (p[:, i + 1 :].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1 :].T), ) aae( p, d1[ np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k), ], ) p = np.partition(d0, i, axis=0, kind=k) aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at( (p[:i, :] <= p[i, :]).all(), msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]), ) at( (p[i + 1 :, :] > p[i, :]).all(), msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1 :]), ) aae( p, d0[ np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None, :], ], ) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_axis
def test_axis(self): assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestMinMax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
_check_range
def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestClip(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_max_or_min
def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestClip(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_nan
def test_nan(self): input_arr = np.array([-2.0, np.nan, 0.5, 3.0, 0.25, np.nan]) result = input_arr.clip(-1, 1) expected = np.array([-1.0, np.nan, 0.5, 1.0, 0.25, np.nan]) assert_array_equal(result, expected)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } class TestClip(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_axis
def test_axis(self): assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestMinMax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_truncate
def test_truncate(self): tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr, axis=1) assert_equal(out, tgt)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") class TestCompress(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
tst_basic
def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_equal(x[mask], np.array(val, T))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_np_vs_ndarray
def test_np_vs_ndarray(self, arr_method, np_method): # make sure both ndarray.argmax/argmin and # numpy.argmax/argmin support out/axis args a = np.random.normal(size=(2, 3)) arg_method = getattr(a, arr_method) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(arg_method(1, out1), np_method(a, 1, out2)) assert_equal(out1, out2) # check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(arg_method(out=out1, axis=0), np_method(a, out=out2, axis=0)) assert_equal(out1, out2)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestArgmaxArgminCommon(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_combinations
def test_combinations(self, data): arr, pos = data with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in reduce") val = np.max(arr) assert_equal(np.argmax(arr), pos, err_msg=f"{arr!r}") assert_equal(arr[np.argmax(arr)], val, err_msg=f"{arr!r}") # add padding to test SIMD loops rarr = np.repeat(arr, 129) rpos = pos * 129 assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}") padd = np.repeat(np.min(arr), 513) rarr = np.concatenate((arr, padd)) rpos = pos assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestArgmax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_maximum_signed_integers
def test_maximum_signed_integers(self): a = np.array([1, 2**7 - 1, -(2**7)], dtype=np.int8) assert_equal(np.argmax(a), 1) a = a.repeat(129) assert_equal(np.argmax(a), 129) a = np.array([1, 2**15 - 1, -(2**15)], dtype=np.int16) assert_equal(np.argmax(a), 1) a = a.repeat(129) assert_equal(np.argmax(a), 129) a = np.array([1, 2**31 - 1, -(2**31)], dtype=np.int32) assert_equal(np.argmax(a), 1) a = a.repeat(129) assert_equal(np.argmax(a), 129) a = np.array([1, 2**63 - 1, -(2**63)], dtype=np.int64) assert_equal(np.argmax(a), 1) a = a.repeat(129) assert_equal(np.argmax(a), 129)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestArgmax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_combinations
def test_combinations(self, data): arr, pos = data with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in reduce") val = np.max(arr) assert_equal(np.argmax(arr), pos, err_msg=f"{arr!r}") assert_equal(arr[np.argmax(arr)], val, err_msg=f"{arr!r}") # add padding to test SIMD loops rarr = np.repeat(arr, 129) rpos = pos * 129 assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}") padd = np.repeat(np.min(arr), 513) rarr = np.concatenate((arr, padd)) rpos = pos assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}") assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestArgmax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_minimum_signed_integers
def test_minimum_signed_integers(self): a = np.array([1, -(2**7), -(2**7) + 1, 2**7 - 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = a.repeat(129) assert_equal(np.argmin(a), 129) a = np.array([1, -(2**15), -(2**15) + 1, 2**15 - 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = a.repeat(129) assert_equal(np.argmin(a), 129) a = np.array([1, -(2**31), -(2**31) + 1, 2**31 - 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = a.repeat(129) assert_equal(np.argmin(a), 129) a = np.array([1, -(2**63), -(2**63) + 1, 2**63 - 1], dtype=np.int64) assert_equal(np.argmin(a), 1) a = a.repeat(129) assert_equal(np.argmin(a), 129)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestArgmin(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_scalar
def test_scalar(self): assert_raises(np.AxisError, np.amax, 1, 1) assert_raises(np.AxisError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestMinMax(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_diagonal_view_notwriteable
def test_diagonal_view_notwriteable(self): a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_diagonal_memleak
def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_size_zero_memleak
def test_size_zero_memleak(self): # Regression test for issue 9615 # Exercises a special-case code path for dot products of length # zero in cblasfuncs (making it is specific to floating dtypes). a = np.array([], dtype=np.float64) x = np.array(2.0) for _ in range(100): np.dot(a, a, out=x) if HAS_REFCOUNT: assert_(sys.getrefcount(x) < 50)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_trace
def test_trace(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.trace(), 15) assert_equal(a.trace(0), 15) assert_equal(a.trace(1), 18) assert_equal(a.trace(-1), 13) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.trace(), [6, 8]) assert_equal(b.trace(0), [6, 8]) assert_equal(b.trace(1), [2, 3]) assert_equal(b.trace(-1), [4, 5]) assert_equal(b.trace(0, 0, 1), [6, 8]) assert_equal(b.trace(0, 0, 2), [5, 9]) assert_equal(b.trace(0, 1, 2), [3, 11]) assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3]) out = np.array(1) ret = a.trace(out=out) assert ret is out
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_swapaxes
def test_swapaxes(self): a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags["OWNDATA"]) b = a.copy() # check exceptions assert_raises(np.AxisError, a.swapaxes, -5, 0) assert_raises(np.AxisError, a.swapaxes, 4, 0) assert_raises(np.AxisError, a.swapaxes, 0, -5) assert_raises(np.AxisError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = (dim - 1 for dim in c.shape) j0, j1, j2, j3 = (dim - 1 for dim in src.shape) assert_equal( src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k)), ) # check a view is always returned, gh-5260 assert_(not c.flags["OWNDATA"], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_conjugate
def test_conjugate(self): a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j], "F") ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_conjugate_out
def test_conjugate_out(self): # Minimal test for the out argument being passed on correctly # NOTE: The ability to pass `out` is currently undocumented! a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j]) out = np.empty_like(a) res = a.conjugate(out) assert res is out assert_array_equal(out, a.conjugate())
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test__complex__
def test__complex__(self): dtypes = [ "i1", "i2", "i4", "i8", "u1", "f", "d", "F", "D", "?", ] for dt in dtypes: a = np.array(7, dtype=dt) b = np.array([7], dtype=dt) c = np.array([[[[[7]]]]], dtype=dt) msg = f"dtype: {dt}" ap = complex(a) assert_equal(ap, a, msg) bp = complex(b) assert_equal(bp, b, msg) cp = complex(c) assert_equal(cp, c, msg)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function @instantiate_parametrized_tests class TestMethods(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_basic
def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250 * sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250 * sk)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function class TestNewaxis(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_mixed
def test_mixed(self): a = np.array([1, 2, 1, 3, 1, 5]) b = np.array([0, 4, 5, 6, 2, 3], dtype="datetime64[D]") idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestLexsort(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_datetime
def test_datetime(self): a = np.array([0, 0, 0], dtype="datetime64[D]") b = np.array([2, 1, 0], dtype="datetime64[D]") idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0, 0, 0], dtype="timedelta64[D]") b = np.array([2, 1, 0], dtype="timedelta64[D]") idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestLexsort(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_object
def test_object(self): # gh-6312 a = np.random.choice(10, 1000) b = np.random.choice(["abc", "xy", "wz", "efghi", "qwst", "x"], 1000) for u in a, b: left = np.lexsort((u.astype("O"),)) right = np.argsort(u, kind="mergesort") assert_array_equal(left, right) for u, v in (a, b), (b, a): idx = np.lexsort((u, v)) assert_array_equal(idx, np.lexsort((u.astype("O"), v))) assert_array_equal(idx, np.lexsort((u, v.astype("O")))) u, v = np.array(u, dtype="object"), np.array(v, dtype="object") assert_array_equal(idx, np.lexsort((u, v)))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestLexsort(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_invalid_axis
def test_invalid_axis(self): # gh-7528 x = np.linspace(0.0, 1.0, 42 * 3).reshape(42, 3) assert_raises(np.AxisError, np.lexsort, x, axis=2)
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestLexsort(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_ip_types
def test_ip_types(self): unchecked_types = [bytes, str, np.void] x = np.random.random(1000) * 100 mask = x < 40 for val in [-100, 0, 15]: for types in "efdFDBbhil?": for T in types: if T not in unchecked_types: if val < 0 and np.dtype(T).kind == "u": val = np.iinfo(T).max - 99 self.tst_basic(x.copy().astype(T), T, mask, val) # Also test string of a length which uses an untypical length dt = np.dtype("S3") self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_byteorder
def test_byteorder(self, greater): dtype = ">i4" if greater else "<i4" x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_record_array
def test_record_array(self): # Note mixed byteorder. rec = np.array( [(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[("x", "<f8"), ("y", ">f8"), ("z", "<f8")], ) np.putmask(rec["x"], [True, False], 10) assert_array_equal(rec["x"], [10, 5]) assert_array_equal(rec["y"], [2, 4]) assert_array_equal(rec["z"], [3, 3]) np.putmask(rec["y"], [True, False], 11) assert_array_equal(rec["x"], [10, 5]) assert_array_equal(rec["y"], [11, 4]) assert_array_equal(rec["z"], [3, 3])
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_overlaps
def test_overlaps(self): # gh-6272 check overlap x = np.array([True, False, True, False]) np.putmask(x[1:4], [True, True, True], x[:3]) assert_equal(x, np.array([True, True, False, True])) x = np.array([True, False, True, False]) np.putmask(x[1:4], x[:3], [True, False, True]) assert_equal(x, np.array([True, True, True, True]))
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray import pickle from numpy.core.numeric import set_string_function _sctypes = { "int": [np.int8, np.int16, np.int32, np.int64], "uint": [np.uint8, np.uint16, np.uint32, np.uint64], "float": [np.float32, np.float64], "complex": [np.complex64, np.complex128] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []), } @xpassIfTorchDynamo # (reason="TODO") @instantiate_parametrized_tests class TestPutmask(TestCase): from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/torch_np/numpy_tests/core/test_multiarray.py
test_writeable
def test_writeable(self): mydict = locals() self.a.flags.writeable = False assert_raises(ValueError, runstring, "self.a[0] = 3", mydict) assert_raises(ValueError, runstring, "self.a[0:1].itemset(3)", mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0
import builtins import collections.abc import ctypes import functools import io import itertools import mmap import operator import os import sys import tempfile import warnings import weakref from contextlib import contextmanager from decimal import Decimal from pathlib import Path from tempfile import mkstemp from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest import numpy import pytest from pytest import raises as assert_raises from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, slowTest as slow, subtest, TEST_WITH_TORCHDYNAMO, TestCase, xfailIfTorchDynamo, xpassIfTorchDynamo, ) import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) import torch._numpy as np from torch._numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_equal, assert_raises_regex, assert_warns, suppress_warnings, ) skip = functools.partial(skipif, True) IS_PYPY = False IS_PYSTON = False HAS_REFCOUNT = True from numpy.core.tests._locales import CommaDecimalPointLocale from numpy.testing._private.utils import _no_tracing, requires_memory np.asanyarray = np.asarray np.asfortranarray = np.asarray @xpassIfTorchDynamo # (reason="TODO: flags") @instantiate_parametrized_tests class TestFlag(TestCase): import pickle from numpy.core.numeric import set_string_function from numpy.core.multiarray import dot from numpy.core.multiarray import dot from numpy.core.multiarray import dot import operator from numpy.core._internal import _dtype_from_pep3118 from numpy.testing import IS_PYPY
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added