library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/test_xpu.py
|
test_stream_event_repr
|
def test_stream_event_repr(self):
s = torch.xpu.current_stream()
self.assertTrue("torch.xpu.Stream" in str(s))
e = torch.xpu.Event()
self.assertTrue("torch.xpu.Event(uninitialized)" in str(e))
s.record_event(e)
self.assertTrue("torch.xpu.Event" in str(e))
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_events
|
def test_events(self):
stream = torch.xpu.current_stream()
event = torch.xpu.Event()
self.assertTrue(event.query())
stream.record_event(event)
event.synchronize()
self.assertTrue(event.query())
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_generic_stream_event
|
def test_generic_stream_event(self):
stream = torch.Stream("xpu")
self.assertEqual(stream.device_index, torch.xpu.current_device())
xpu_stream = torch.xpu.Stream(
stream_id=stream.stream_id,
device_index=stream.device_index,
device_type=stream.device_type,
)
self.assertEqual(stream.stream_id, xpu_stream.stream_id)
self.assertNotEqual(stream.stream_id, torch.xpu.current_stream().stream_id)
event1 = torch.Event("xpu")
event2 = torch.Event("xpu")
self.assertEqual(event1.event_id, 0)
a = torch.randn(1000)
b = torch.randn(1000)
with torch.xpu.stream(xpu_stream):
a_xpu = a.to("xpu", non_blocking=True)
b_xpu = b.to("xpu", non_blocking=True)
self.assertEqual(stream.stream_id, torch.xpu.current_stream().stream_id)
event1.record(stream)
event1.synchronize()
self.assertTrue(event1.query())
c_xpu = a_xpu + b_xpu
event2.record()
event2.synchronize()
self.assertTrue(event2.query())
self.assertNotEqual(event1.event_id, event2.event_id)
self.assertEqual(c_xpu.cpu(), a + b)
with self.assertRaisesRegex(
NotImplementedError, "elapsedTime is not supported by XPU backend."
):
event1.elapsed_time(event2)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
to_cpu
|
def to_cpu(arg):
if isinstance(arg, torch.Tensor):
return arg.to(device="cpu")
return arg
samples = op.reference_inputs(device, dtype)
for sample in samples:
cpu_sample = sample.transform(to_cpu)
xpu_results = op(sample.input, *sample.args, **sample.kwargs)
cpu_results = op(cpu_sample.input, *cpu_sample.args, **cpu_sample.kwargs)
xpu_results = sample.output_process_fn_grad(xpu_results)
cpu_results = cpu_sample.output_process_fn_grad(cpu_results)
# Lower tolerance because we are running this as a `@slowTest`
# Don't want the periodic tests to fail frequently
self.assertEqual(xpu_results, cpu_results, atol=1e-4, rtol=1e-4)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_non_standard_bool_values
|
def test_non_standard_bool_values(self, device, dtype, op):
# Test boolean values other than 0x00 and 0x01 (gh-54789)
def convert_boolean_tensors(x):
if not isinstance(x, torch.Tensor) or x.dtype != torch.bool:
return x
# Map False -> 0 and True -> Random value in [2, 255]
true_vals = torch.randint(
2, 255, x.shape, dtype=torch.uint8, device=x.device
)
false_vals = torch.zeros((), dtype=torch.uint8, device=x.device)
x_int = torch.where(x, true_vals, false_vals)
ret = x_int.view(torch.bool)
self.assertEqual(ret, x)
return ret
for sample in op.sample_inputs(device, dtype):
expect = op(sample.input, *sample.args, **sample.kwargs)
transformed = sample.transform(convert_boolean_tensors)
actual = op(transformed.input, *transformed.args, **transformed.kwargs)
self.assertEqual(expect, actual)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
convert_boolean_tensors
|
def convert_boolean_tensors(x):
if not isinstance(x, torch.Tensor) or x.dtype != torch.bool:
return x
# Map False -> 0 and True -> Random value in [2, 255]
true_vals = torch.randint(
2, 255, x.shape, dtype=torch.uint8, device=x.device
)
false_vals = torch.zeros((), dtype=torch.uint8, device=x.device)
x_int = torch.where(x, true_vals, false_vals)
ret = x_int.view(torch.bool)
self.assertEqual(ret, x)
return ret
for sample in op.sample_inputs(device, dtype):
expect = op(sample.input, *sample.args, **sample.kwargs)
transformed = sample.transform(convert_boolean_tensors)
actual = op(transformed.input, *transformed.args, **transformed.kwargs)
self.assertEqual(expect, actual)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_serialization_array_with_storage
|
def test_serialization_array_with_storage(self):
x = torch.randn(5, 5).xpu()
y = torch.zeros(2, 5, dtype=torch.int, device="xpu")
q = [x, y, x, y.storage()]
with tempfile.NamedTemporaryFile() as f:
torch.save(q, f)
f.seek(0)
q_copy = torch.load(f)
self.assertEqual(q_copy, q, atol=0, rtol=0)
q_copy[0].fill_(5)
self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0)
self.assertEqual(q_copy[0].dtype, torch.float)
self.assertEqual(q_copy[1].dtype, torch.int)
self.assertEqual(q_copy[2].dtype, torch.float)
self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage))
self.assertTrue(isinstance(q_copy[3]._untyped_storage, torch.UntypedStorage))
q_copy[1].fill_(10)
y.fill_(10)
self.assertEqual(q_copy[3], y.storage())
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_serialization_array_with_empty
|
def test_serialization_array_with_empty(self):
x = [
torch.randn(4, 4).xpu(),
torch.tensor([], dtype=torch.float, device=torch.device("xpu")),
]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_multi_device_behavior
|
def test_multi_device_behavior(self):
current_device = torch.xpu.current_device()
target_device = (current_device + 1) % torch.xpu.device_count()
with torch.xpu.device(target_device):
self.assertEqual(target_device, torch.xpu.current_device())
self.assertEqual(current_device, torch.xpu.current_device())
with torch.xpu._DeviceGuard(target_device):
self.assertEqual(target_device, torch.xpu.current_device())
self.assertEqual(current_device, torch.xpu.current_device())
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_get_device_properties
|
def test_get_device_properties(self):
current_device = torch.xpu.current_device()
device_properties = torch.xpu.get_device_properties(current_device)
self.assertEqual(device_properties, torch.xpu.get_device_properties(None))
self.assertEqual(device_properties, torch.xpu.get_device_properties())
device_name = torch.xpu.get_device_name(current_device)
self.assertEqual(device_name, torch.xpu.get_device_name(None))
self.assertEqual(device_name, torch.xpu.get_device_name())
device_capability = torch.xpu.get_device_capability(current_device)
self.assertTrue(device_capability["max_work_group_size"] > 0)
self.assertTrue(device_capability["max_num_sub_groups"] > 0)
self.assertEqual(
device_properties.driver_version, device_capability["driver_version"]
)
self.assertEqual(device_properties.has_fp16, device_capability["has_fp16"])
self.assertEqual(device_properties.has_fp64, device_capability["has_fp64"])
self.assertEqual(
device_properties.has_atomic64, device_capability["has_atomic64"]
)
self.assertEqual(
device_properties.has_bfloat16_conversions,
device_capability["has_bfloat16_conversions"],
)
self.assertEqual(
device_properties.has_subgroup_matrix_multiply_accumulate,
device_capability["has_subgroup_matrix_multiply_accumulate"],
)
self.assertEqual(
device_properties.has_subgroup_matrix_multiply_accumulate_tensor_float32,
device_capability["has_subgroup_matrix_multiply_accumulate_tensor_float32"],
)
self.assertEqual(
device_properties.has_subgroup_2d_block_io,
device_capability["has_subgroup_2d_block_io"],
)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
run_model
|
def run_model(model, input):
input_xpu = input.clone().to('xpu')
model_xpu = copy.deepcopy(model).to('xpu')
loss_xpu = model_xpu(input_xpu).sum()
loss = model(input).sum()
torch.testing.assert_close(loss_xpu.cpu(), loss)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|||
torch
|
test/test_xpu.py
|
test_streams
|
def test_streams(self):
s0 = torch.xpu.Stream()
torch.xpu.set_stream(s0)
s1 = torch.xpu.current_stream()
self.assertEqual(s0, s1)
s2 = torch.xpu.Stream()
self.assertFalse(s0 == s2)
torch.xpu.set_stream(s2)
with torch.xpu.stream(s0):
self.assertEqual(s0, torch.xpu.current_stream())
self.assertEqual(s2, torch.xpu.current_stream())
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xnnpack_integration.py
|
test_decomposed_linear
|
def test_decomposed_linear(self):
data_shape = [2, 32]
weight_output_dim = 24
weight_shape = (weight_output_dim, data_shape[-1])
class DecomposedLinearAddmm(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand((weight_output_dim)), requires_grad=False)
def forward(self, x):
weight_t = self.weight.t()
return torch.addmm(self.bias, x, weight_t)
class DecomposedLinearMatmulAdd(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand((weight_output_dim)), requires_grad=False)
def forward(self, x):
weight_t = self.weight.t()
y = torch.matmul(x, weight_t)
res = y.add_(self.bias)
return res
class DecomposedLinearMatmul(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand((weight_output_dim)), requires_grad=False)
def forward(self, x):
weight_t = self.weight.t()
res = torch.matmul(x, weight_t)
return res
# Linear with bias pattern.
pattern_count_map = {"Tensor = prim::CallFunction": -1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1}
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearAddmm(), pattern_count_map, data_shape)
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearMatmulAdd(), pattern_count_map, data_shape)
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearMatmul(), pattern_count_map, data_shape)
|
def test_decomposed_linear(self):
data_shape = [2, 32]
weight_output_dim = 24
weight_shape = (weight_output_dim, data_shape[-1])
class DecomposedLinearAddmm(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
return torch.addmm(self.bias, x, weight_t)
class DecomposedLinearMatmulAdd(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
y = torch.matmul(x, weight_t)
res = y.add_(self.bias)
return res
class DecomposedLinearMatmul(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
res = torch.matmul(x, weight_t)
return res
# Linear with bias pattern.
pattern_count_map = {
"Tensor = prim::CallFunction": -1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearAddmm(), pattern_count_map, data_shape
)
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearMatmulAdd(), pattern_count_map, data_shape
)
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearMatmul(), pattern_count_map, data_shape
)
|
import unittest
import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools
from torch.testing._internal.common_utils import IS_FBCODE, TEST_WITH_TSAN
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
@unittest.skipIf(TEST_WITH_TSAN, "TSAN fails with XNNPACK. Does not seem to have a good reason for failures.")
class TestXNNPACKRewritePass(TestCase):
|
import io
import itertools
import unittest
from hypothesis import assume, given, strategies as st
import torch
import torch.backends.xnnpack
import torch.testing._internal.hypothesis_utils as hu
from torch.nn import functional as F
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
IS_FBCODE,
run_tests,
slowTest,
TEST_WITH_TSAN,
TestCase,
)
from torch.utils.mobile_optimizer import optimize_for_mobile
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
)
class TestXNNPACKRewritePass(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/test_xpu.py
|
test_autocast_checkpointing
|
def test_autocast_checkpointing(self):
model = torch.nn.Sequential(
torch.nn.Linear(8, 8), torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)
).xpu()
input = torch.rand(
(8, 8), device="xpu", dtype=torch.float16, requires_grad=True
)
for reentrant in (True, False):
with torch.autocast("xpu"):
output = checkpoint_sequential(model, 2, input, use_reentrant=reentrant)
self.assertTrue(output.requires_grad)
self.assertTrue(output.dtype is torch.float16)
output.sum().backward()
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuAutocast(TestAutocast):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_xpu_autocast_dtype
|
def test_xpu_autocast_dtype(self):
dtype = torch.get_autocast_dtype("xpu")
self.assertEqual(dtype, torch.float16)
mat0_fp32 = torch.randn((10, 10), dtype=torch.float32, device="xpu")
mat1_fp32 = torch.randn((10, 10), dtype=torch.float32, device="xpu")
with torch.amp.autocast("xpu"):
result = torch.mm(mat0_fp32, mat1_fp32)
self.assertEqual(result.dtype, torch.float16)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuAutocast(TestAutocast):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
setUp
|
def setUp(self):
super().setUp()
self.autocast_lists = AutocastTestLists(torch.device("xpu"))
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuAutocast(TestAutocast):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_event_creation_callback
|
def test_event_creation_callback(self):
gpu_trace.register_callback_for_event_creation(self.mock)
event = torch.xpu.Event()
event.record()
self.mock.assert_called_once_with(event._as_parameter_.value)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_event_deletion_callback
|
def test_event_deletion_callback(self):
gpu_trace.register_callback_for_event_deletion(self.mock)
event = torch.xpu.Event()
event.record()
event_id = event._as_parameter_.value
del event
self.mock.assert_called_once_with(event_id)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_event_record_callback
|
def test_event_record_callback(self):
gpu_trace.register_callback_for_event_record(self.mock)
event = torch.xpu.Event()
event.record()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.xpu.current_stream().sycl_queue
)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_event_wait_callback
|
def test_event_wait_callback(self):
gpu_trace.register_callback_for_event_wait(self.mock)
event = torch.xpu.Event()
event.record()
event.wait()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.xpu.current_stream().sycl_queue
)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_device_synchronization_callback
|
def test_device_synchronization_callback(self):
gpu_trace.register_callback_for_device_synchronization(self.mock)
torch.xpu.synchronize()
self.mock.assert_called()
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_stream_synchronization_callback
|
def test_stream_synchronization_callback(self):
gpu_trace.register_callback_for_stream_synchronization(self.mock)
stream = torch.xpu.Stream()
stream.synchronize()
self.mock.assert_called_once_with(stream.sycl_queue)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xpu.py
|
test_event_synchronization_callback
|
def test_event_synchronization_callback(self):
gpu_trace.register_callback_for_event_synchronization(self.mock)
event = torch.xpu.Event()
event.record()
event.synchronize()
self.mock.assert_called_once_with(event._as_parameter_.value)
|
import subprocess
import sys
import tempfile
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.autocast_test_lists import AutocastTestLists, TestAutocast
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
from torch.utils.checkpoint import checkpoint_sequential
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpuTrace(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/check_tests_conform.py
|
check
|
def check(path):
"""Check a test file for common issues with pytest->pytorch conversion."""
print(path.name)
print("=" * len(path.name), "\n")
src = path.read_text().split("\n")
for num, line in enumerate(src):
if is_comment(line):
continue
# module level test functions
if line.startswith("def test"):
report_violation(line, num, header="Module-level test function")
# test classes must inherit from TestCase
if line.startswith("class Test") and "TestCase" not in line:
report_violation(
line, num, header="Test class does not inherit from TestCase"
)
# last vestiges of pytest-specific stuff
if "pytest.mark" in line:
report_violation(line, num, header="pytest.mark.something")
for part in ["pytest.xfail", "pytest.skip", "pytest.param"]:
if part in line:
report_violation(line, num, header=f"stray {part}")
if textwrap.dedent(line).startswith("@parametrize"):
# backtrack to check
nn = num
for nn in range(num, -1, -1):
ln = src[nn]
if "class Test" in ln:
# hack: large indent => likely an inner class
if len(ln) - len(ln.lstrip()) < 8:
break
else:
report_violation(line, num, "off-class parametrize")
if not src[nn - 1].startswith("@instantiate_parametrized_tests"):
report_violation(
line, num, f"missing instantiation of parametrized tests in {ln}?"
)
|
import sys
import textwrap
from pathlib import Path
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/check_tests_conform.py
|
is_comment
|
def is_comment(line):
return textwrap.dedent(line).startswith("#")
|
import sys
import textwrap
from pathlib import Path
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/check_tests_conform.py
|
report_violation
|
def report_violation(line, lineno, header):
print(f">>>> line {lineno} : {header}\n {line}\n")
if __name__ == "__main__":
argv = sys.argv
if len(argv) != 2:
raise ValueError("Usage : python check_tests_conform path/to/file/or/dir")
path = Path(argv[1])
if path.is_dir():
# run for all files in the directory (no subdirs)
for this_path in path.glob("test*.py"):
# breakpoint()
check(this_path)
else:
check(path)
|
import sys
import textwrap
from pathlib import Path
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
pytest_configure
|
def pytest_configure(config):
config.addinivalue_line("markers", "slow: very slow tests")
|
import sys
import pytest
import torch._numpy as tnp
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
pytest_addoption
|
def pytest_addoption(parser):
parser.addoption("--runslow", action="store_true", help="run slow tests")
parser.addoption("--nonp", action="store_true", help="error when NumPy is accessed")
class Inaccessible:
def __getattribute__(self, attr):
raise RuntimeError(f"Using --nonp but accessed np.{attr}")
|
import sys
import pytest
import torch._numpy as tnp
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
__getattribute__
|
def __getattribute__(self, attr):
raise RuntimeError(f"Using --nonp but accessed np.{attr}")
|
import sys
import pytest
import torch._numpy as tnp
class Inaccessible:
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
pytest_sessionstart
|
def pytest_sessionstart(session):
if session.config.getoption("--nonp"):
sys.modules["numpy"] = Inaccessible()
|
import sys
import pytest
import torch._numpy as tnp
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
pytest_generate_tests
|
def pytest_generate_tests(metafunc):
"""
Hook to parametrize test cases
See https://docs.pytest.org/en/6.2.x/parametrize.html#pytest-generate-tests
The logic here allows us to test with both NumPy-proper and torch._numpy.
Normally we'd just test torch._numpy, e.g.
import torch._numpy as np
...
def test_foo():
np.array([42])
...
but this hook allows us to test NumPy-proper as well, e.g.
def test_foo(np):
np.array([42])
...
np is a pytest parameter, which is either NumPy-proper or torch._numpy. This
allows us to sanity check our own tests, so that tested behaviour is
consistent with NumPy-proper.
pytest will have test names respective to the library being tested, e.g.
$ pytest --collect-only
test_foo[torch._numpy]
test_foo[numpy]
"""
np_params = [tnp]
try:
import numpy as np
except ImportError:
pass
else:
if not isinstance(np, Inaccessible): # i.e. --nonp was used
np_params.append(np)
if "np" in metafunc.fixturenames:
metafunc.parametrize("np", np_params)
|
import sys
import pytest
import torch._numpy as tnp
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
test_foo
|
def test_foo():
np.array([42])
...
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|||
torch
|
test/torch_np/conftest.py
|
test_foo
|
def test_foo():
np.array([42])
...
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_readonly
|
def test_readonly(self):
x = np.arange(5)
x.flags.writeable = False
with pytest.raises(BufferError):
x.__dlpack__()
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_ndim0
|
def test_ndim0(self):
x = np.array(1.0)
y = np.from_dlpack(x)
assert_array_equal(x, y)
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_from_torch
|
def test_from_torch(self):
t = torch.arange(4)
a = np.from_dlpack(t)
assert_array_equal(a, np.asarray(t))
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_to_torch
|
def test_to_torch(self):
a = np.arange(4)
t = torch.from_dlpack(a)
assert_array_equal(np.asarray(t), a)
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
assert_dtype_equal
|
def assert_dtype_equal(a, b):
assert_equal(a, b)
assert_equal(
hash(a), hash(b), "two equivalent types do not hash to the same value !"
)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
assert_dtype_not_equal
|
def assert_dtype_not_equal(a, b):
assert_(a != b)
assert_(hash(a) != hash(b), "two different types hash to the same value !")
@instantiate_parametrized_tests
class TestBuiltin(TestCase):
@parametrize("t", [int, float, complex, np.int32])
def test_run(self, t):
"""Only test hash runs at all."""
dt = np.dtype(t)
hash(dt)
def test_equivalent_dtype_hashing(self):
# Make sure equivalent dtypes with different type num hash equal
intp = np.dtype(np.intp)
if intp.itemsize == 4:
left = intp
right = np.dtype(np.int32)
else:
left = intp
right = np.dtype(np.int64)
assert_(left == right)
assert_(hash(left) == hash(right))
@xfailIfTorchDynamo # TypeError -> InternalTorchDynamoError
def test_invalid_types(self):
# Make sure invalid type strings raise an error
assert_raises(TypeError, np.dtype, "O3")
assert_raises(TypeError, np.dtype, "O5")
assert_raises(TypeError, np.dtype, "O7")
assert_raises(TypeError, np.dtype, "b3")
assert_raises(TypeError, np.dtype, "h4")
assert_raises(TypeError, np.dtype, "I5")
assert_raises(TypeError, np.dtype, "e3")
assert_raises(TypeError, np.dtype, "f5")
if np.dtype("l").itemsize == 8:
assert_raises(TypeError, np.dtype, "l4")
assert_raises(TypeError, np.dtype, "L4")
else:
assert_raises(TypeError, np.dtype, "l8")
assert_raises(TypeError, np.dtype, "L8")
# XXX: what is 'q'? on my 64-bit ubuntu maching it's int64, same as 'l'
# if np.dtype('q').itemsize == 8:
# assert_raises(TypeError, np.dtype, 'q4')
# assert_raises(TypeError, np.dtype, 'Q4')
# else:
# assert_raises(TypeError, np.dtype, 'q8')
# assert_raises(TypeError, np.dtype, 'Q8')
def test_richcompare_invalid_dtype_equality(self):
# Make sure objects that cannot be converted to valid
# dtypes results in False/True when compared to valid dtypes.
# Here 7 cannot be converted to dtype. No exceptions should be raised
assert not np.dtype(np.int32) == 7, "dtype richcompare failed for =="
assert np.dtype(np.int32) != 7, "dtype richcompare failed for !="
@parametrize("operation", [operator.le, operator.lt, operator.ge, operator.gt])
def test_richcompare_invalid_dtype_comparison(self, operation):
# Make sure TypeError is raised for comparison operators
# for invalid dtypes. Here 7 is an invalid dtype.
with pytest.raises(TypeError):
operation(np.dtype(np.int32), 7)
@skipif(
numpy.__version__ < "1.24",
reason="older numpies emit DeprecatioWarnings instead",
)
@parametrize(
"dtype",
[
"Bool",
"Bytes0",
"Complex32",
"Complex64",
"Datetime64",
"Float16",
"Float32",
"Float64",
"Int8",
"Int16",
"Int32",
"Int64",
"Object0",
"Str0",
"Timedelta64",
"UInt8",
"UInt16",
"Uint32",
"UInt32",
"Uint64",
"UInt64",
"Void0",
"Float128",
"Complex128",
],
)
def test_numeric_style_types_are_invalid(self, dtype):
with assert_raises(TypeError):
np.dtype(dtype)
@skip(reason="dtype attributes not yet implemented")
class TestDtypeAttributeDeletion(TestCase):
def test_dtype_non_writable_attributes_deletion(self):
dt = np.dtype(np.double)
attr = [
"subdtype",
"descr",
"str",
"name",
"base",
"shape",
"isbuiltin",
"isnative",
"isalignedstruct",
"fields",
"metadata",
"hasobject",
]
for s in attr:
assert_raises(AttributeError, delattr, dt, s)
def test_dtype_writable_attributes_deletion(self):
dt = np.dtype(np.double)
attr = ["names"]
for s in attr:
assert_raises(AttributeError, delattr, dt, s)
@instantiate_parametrized_tests
class TestPickling(TestCase):
def check_pickling(self, dtype):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
buf = pickle.dumps(dtype, proto)
# The dtype pickling itself pickles `np.dtype` if it is pickled
# as a singleton `dtype` should be stored in the buffer:
assert b"_DType_reconstruct" not in buf
assert b"dtype" in buf
pickled = pickle.loads(buf)
assert_equal(pickled, dtype)
# XXX: out dtypes do not have .descr
# assert_equal(pickled.descr, dtype.descr)
# if dtype.metadata is not None:
# assert_equal(pickled.metadata, dtype.metadata)
# Check the reconstructed dtype is functional
x = np.zeros(3, dtype=dtype)
y = np.zeros(3, dtype=pickled)
assert_equal(x, y)
assert_equal(x[0], y[0])
@parametrize("t", [int, float, complex, np.int32, bool])
def test_builtin(self, t):
self.check_pickling(np.dtype(t))
@parametrize(
"DType",
[
subtest(type(np.dtype(t)), name=f"{np.dtype(t).name}_{i}")
for i, t in enumerate(np.typecodes["All"])
]
+ [np.dtype],
)
def test_pickle_types(self, DType):
# Check that DTypes (the classes/types) roundtrip when pickling
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
roundtrip_DType = pickle.loads(pickle.dumps(DType, proto))
assert roundtrip_DType is DType
@skip(reason="XXX: value-based promotions, we don't have.")
@instantiate_parametrized_tests
class TestPromotion(TestCase):
"""Test cases related to more complex DType promotions. Further promotion
tests are defined in `test_numeric.py`
"""
@parametrize(
"other, expected, expected_weak",
[
(2**16 - 1, np.complex64, None),
(2**32 - 1, np.complex128, np.complex64),
subtest((np.float16(2), np.complex64, None), name="float16_complex64_None"),
subtest((np.float32(2), np.complex64, None), name="float32_complex64_None"),
# repeat for complex scalars:
subtest(
(np.complex64(2), np.complex64, None), name="complex64_complex64_None"
),
],
)
def test_complex_other_value_based(
self, weak_promotion, other, expected, expected_weak
):
if weak_promotion and expected_weak is not None:
expected = expected_weak
# This would change if we modify the value based promotion
min_complex = np.dtype(np.complex64)
res = np.result_type(other, min_complex)
assert res == expected
# Check the same for a simple ufunc call that uses the same logic:
res = np.minimum(other, np.ones(3, dtype=min_complex)).dtype
assert res == expected
@parametrize(
"other, expected",
[
(np.bool_, np.complex128),
(np.int64, np.complex128),
(np.float16, np.complex64),
(np.float32, np.complex64),
(np.float64, np.complex128),
(np.complex64, np.complex64),
(np.complex128, np.complex128),
],
)
def test_complex_scalar_value_based(self, other, expected):
# This would change if we modify the value based promotion
complex_scalar = 1j
res = np.result_type(other, complex_scalar)
assert res == expected
# Check the same for a simple ufunc call that uses the same logic:
res = np.minimum(np.ones(3, dtype=other), complex_scalar).dtype
assert res == expected
@parametrize("val", [2, 2**32, 2**63, 2**64, 2 * 100])
def test_python_integer_promotion(self, val):
# If we only path scalars (mainly python ones!), the result must take
# into account that the integer may be considered int32, int64, uint64,
# or object depending on the input value. So test those paths!
expected_dtype = np.result_type(np.array(val).dtype, np.array(0).dtype)
assert np.result_type(val, 0) == expected_dtype
# For completeness sake, also check with a NumPy scalar as second arg:
assert np.result_type(val, np.int8(0)) == expected_dtype
@parametrize(
"dtypes, expected",
[
# These promotions are not associative/commutative:
([np.int16, np.float16], np.float32),
([np.int8, np.float16], np.float32),
([np.uint8, np.int16, np.float16], np.float32),
# The following promotions are not ambiguous, but cover code
# paths of abstract promotion (no particular logic being tested)
([1, 1, np.float64], np.float64),
([1, 1.0, np.complex128], np.complex128),
([1, 1j, np.float64], np.complex128),
([1.0, 1.0, np.int64], np.float64),
([1.0, 1j, np.float64], np.complex128),
([1j, 1j, np.float64], np.complex128),
([1, True, np.bool_], np.int_),
],
)
def test_permutations_do_not_influence_result(self, dtypes, expected):
# Tests that most permutations do not influence the result. In the
# above some uint and int combintations promote to a larger integer
# type, which would then promote to a larger than necessary float.
for perm in permutations(dtypes):
assert np.result_type(*perm) == expected
class TestMisc(TestCase):
def test_dtypes_are_true(self):
# test for gh-6294
assert bool(np.dtype("f8"))
assert bool(np.dtype("i8"))
@xpassIfTorchDynamo # (reason="No keyword arg for dtype ctor.")
def test_keyword_argument(self):
# test for https://github.com/numpy/numpy/pull/16574#issuecomment-642660971
assert np.dtype(dtype=np.float64) == np.dtype(np.float64)
@skipif(sys.version_info >= (3, 9), reason="Requires python 3.9")
def test_class_getitem_38(self) -> None:
match = "Type subscription requires python >= 3.9"
with pytest.raises(TypeError): # , match=match):
np.dtype[Any]
class TestFromDTypeAttribute(TestCase):
def test_simple(self):
class dt:
dtype = np.dtype("f8")
assert np.dtype(dt) == np.float64
assert np.dtype(dt()) == np.float64
@skip(
reason="We simply require the .name attribute, so this "
"fails with an AttributeError."
)
def test_recursion(self):
class dt:
pass
dt.dtype = dt
with pytest.raises(RecursionError):
np.dtype(dt)
dt_instance = dt()
dt_instance.dtype = dt
with pytest.raises(RecursionError):
np.dtype(dt_instance)
@skip(reason="Parameteric dtypes, our stuff is simpler.")
@skipif(sys.version_info < (3, 9), reason="Requires python 3.9")
@instantiate_parametrized_tests
class TestClassGetItem(TestCase):
def test_dtype(self) -> None:
alias = np.dtype[Any]
assert isinstance(alias, types.GenericAlias)
assert alias.__origin__ is np.dtype
@parametrize("code", np.typecodes["All"])
def test_dtype_subclass(self, code: str) -> None:
cls = type(np.dtype(code))
alias = cls[Any]
assert isinstance(alias, types.GenericAlias)
assert alias.__origin__ is cls
@parametrize("arg_len", range(4))
def test_subscript_tuple(self, arg_len: int) -> None:
arg_tup = (Any,) * arg_len
if arg_len == 1:
assert np.dtype[arg_tup]
else:
with pytest.raises(TypeError):
np.dtype[arg_tup]
def test_subscript_scalar(self) -> None:
assert np.dtype[Any]
if __name__ == "__main__":
run_tests()
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_run
|
def test_run(self, t):
"""Only test hash runs at all."""
dt = np.dtype(t)
hash(dt)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@instantiate_parametrized_tests
class TestBuiltin(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_invalid_types
|
def test_invalid_types(self):
# Make sure invalid type strings raise an error
assert_raises(TypeError, np.dtype, "O3")
assert_raises(TypeError, np.dtype, "O5")
assert_raises(TypeError, np.dtype, "O7")
assert_raises(TypeError, np.dtype, "b3")
assert_raises(TypeError, np.dtype, "h4")
assert_raises(TypeError, np.dtype, "I5")
assert_raises(TypeError, np.dtype, "e3")
assert_raises(TypeError, np.dtype, "f5")
if np.dtype("l").itemsize == 8:
assert_raises(TypeError, np.dtype, "l4")
assert_raises(TypeError, np.dtype, "L4")
else:
assert_raises(TypeError, np.dtype, "l8")
assert_raises(TypeError, np.dtype, "L8")
# XXX: what is 'q'? on my 64-bit ubuntu maching it's int64, same as 'l'
# if np.dtype('q').itemsize == 8:
# assert_raises(TypeError, np.dtype, 'q4')
# assert_raises(TypeError, np.dtype, 'Q4')
# else:
# assert_raises(TypeError, np.dtype, 'q8')
# assert_raises(TypeError, np.dtype, 'Q8')
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@instantiate_parametrized_tests
class TestBuiltin(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_numeric_style_types_are_invalid
|
def test_numeric_style_types_are_invalid(self, dtype):
with assert_raises(TypeError):
np.dtype(dtype)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@instantiate_parametrized_tests
class TestBuiltin(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_dtype_non_writable_attributes_deletion
|
def test_dtype_non_writable_attributes_deletion(self):
dt = np.dtype(np.double)
attr = [
"subdtype",
"descr",
"str",
"name",
"base",
"shape",
"isbuiltin",
"isnative",
"isalignedstruct",
"fields",
"metadata",
"hasobject",
]
for s in attr:
assert_raises(AttributeError, delattr, dt, s)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@skip(reason="dtype attributes not yet implemented")
class TestDtypeAttributeDeletion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_dtype_writable_attributes_deletion
|
def test_dtype_writable_attributes_deletion(self):
dt = np.dtype(np.double)
attr = ["names"]
for s in attr:
assert_raises(AttributeError, delattr, dt, s)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@skip(reason="dtype attributes not yet implemented")
class TestDtypeAttributeDeletion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_pickle_types
|
def test_pickle_types(self, DType):
# Check that DTypes (the classes/types) roundtrip when pickling
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
roundtrip_DType = pickle.loads(pickle.dumps(DType, proto))
assert roundtrip_DType is DType
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@instantiate_parametrized_tests
class TestPickling(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_permutations_do_not_influence_result
|
def test_permutations_do_not_influence_result(self, dtypes, expected):
# Tests that most permutations do not influence the result. In the
# above some uint and int combintations promote to a larger integer
# type, which would then promote to a larger than necessary float.
for perm in permutations(dtypes):
assert np.result_type(*perm) == expected
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
@skip(reason="XXX: value-based promotions, we don't have.")
@instantiate_parametrized_tests
class TestPromotion(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/conftest.py
|
pytest_collection_modifyitems
|
def pytest_collection_modifyitems(config, items):
if not config.getoption("--runslow"):
skip_slow = pytest.mark.skip(reason="slow test, use --runslow to run")
for item in items:
if "slow" in item.keywords:
item.add_marker(skip_slow)
|
import sys
import pytest
import torch._numpy as tnp
import numpy as np
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_dtype_passthrough
|
def test_dtype_passthrough(self, dtype):
x = np.arange(5, dtype=dtype)
y = np.from_dlpack(x)
assert y.dtype == x.dtype
assert_array_equal(x, y)
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_higher_dims
|
def test_higher_dims(self, ndim):
shape = (1,) * ndim
x = np.zeros(shape, dtype=np.float64)
assert shape == np.from_dlpack(x).shape
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
test_dlpack_device
|
def test_dlpack_device(self):
x = np.arange(5)
assert x.__dlpack_device__() == (1, 0)
y = np.from_dlpack(x)
assert y.__dlpack_device__() == (1, 0)
z = y[::2]
assert z.__dlpack_device__() == (1, 0)
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dlpack.py
|
dlpack_deleter_exception
|
def dlpack_deleter_exception(self):
x = np.arange(5)
_ = x.__dlpack__()
raise RuntimeError
|
import functools
import sys
import unittest
from unittest import skipIf as skipif
import numpy
import pytest
import torch
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import assert_array_equal
import torch._numpy as np
from torch._numpy.testing import assert_array_equal
skip = functools.partial(skipif, True)
IS_PYPY = False
@skipif(numpy.__version__ < "1.24", reason="numpy.dlpack is new in numpy 1.23")
@instantiate_parametrized_tests
class TestDLPack(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/test_xnnpack_integration.py
|
test_conv1d_with_relu_fc
|
def test_conv1d_with_relu_fc(self):
batch_size_list = range(1, 3)
input_channels_per_group_list = range(10, 12)
width_list = range(10, 12)
output_channels_per_group_list = range(10, 12)
groups_list = range(1, 3)
kernel_list = range(1, 4)
stride_list = range(1, 3)
padding_list = range(0, 3)
dilation_list = range(1, 3)
output_features_list = range(1, 3)
for hparams in itertools.product(batch_size_list,
input_channels_per_group_list,
width_list,
output_channels_per_group_list,
groups_list,
kernel_list,
stride_list,
padding_list,
dilation_list,
output_features_list):
batch_size, input_channels_per_group, width, output_channels_per_group, \
groups, kernel, stride, padding, dilation, output_features = hparams
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
conv_bias_shape = (output_channels)
conv_output_width = int((width + 2 * padding - dilation * (kernel - 1) - 1) / stride) + 1
fc_weight_shape = (output_features, output_channels * conv_output_width)
fc_bias_shape = (output_features)
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv_weight = torch.nn.Parameter(torch.rand(conv_weight_shape), requires_grad=False)
self.conv_bias = torch.nn.Parameter(torch.rand(conv_bias_shape), requires_grad=False)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.fc_weight = torch.nn.Parameter(torch.rand(fc_weight_shape), requires_grad=False)
self.fc_bias = torch.nn.Parameter(torch.rand(fc_bias_shape), requires_grad=False)
def forward(self, x):
x = F.conv1d(x, self.conv_weight, self.conv_bias,
self.stride, self.padding, self.dilation, self.groups)
x = F.relu(x)
x = x.view(x.size(0), -1)
x = F.linear(x, self.fc_weight, self.fc_bias)
return x
data_shape = (batch_size, input_channels, width)
pattern_count_transformed_map = {"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": 1}
pattern_count_optimized_map = {"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack" : -1,
"prepacked::conv2d_clamp_run": 1}
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(Net(),
pattern_count_transformed_map,
pattern_count_optimized_map,
data_shape)
|
def test_conv1d_with_relu_fc(self):
batch_size_list = range(1, 3)
input_channels_per_group_list = range(10, 12)
width_list = range(10, 12)
output_channels_per_group_list = range(10, 12)
groups_list = range(1, 3)
kernel_list = range(1, 4)
stride_list = range(1, 3)
padding_list = range(0, 3)
dilation_list = range(1, 3)
output_features_list = range(1, 3)
for hparams in itertools.product(
batch_size_list,
input_channels_per_group_list,
width_list,
output_channels_per_group_list,
groups_list,
kernel_list,
stride_list,
padding_list,
dilation_list,
output_features_list,
):
(
batch_size,
input_channels_per_group,
width,
output_channels_per_group,
groups,
kernel,
stride,
padding,
dilation,
output_features,
) = hparams
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
conv_bias_shape = output_channels
conv_output_width = (
int((width + 2 * padding - dilation * (kernel - 1) - 1) / stride) + 1
)
fc_weight_shape = (output_features, output_channels * conv_output_width)
fc_bias_shape = output_features
class Net(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv_weight = torch.nn.Parameter(
torch.rand(conv_weight_shape), requires_grad=False
)
self.conv_bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.fc_weight = torch.nn.Parameter(
torch.rand(fc_weight_shape), requires_grad=False
)
self.fc_bias = torch.nn.Parameter(
torch.rand(fc_bias_shape), requires_grad=False
)
def forward(self, x):
x = F.conv1d(
x,
self.conv_weight,
self.conv_bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
x = F.relu(x)
x = x.view(x.size(0), -1)
x = F.linear(x, self.fc_weight, self.fc_bias)
return x
data_shape = (batch_size, input_channels, width)
pattern_count_transformed_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": 1,
}
pattern_count_optimized_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
}
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(
Net(),
pattern_count_transformed_map,
pattern_count_optimized_map,
data_shape,
)
|
import unittest
import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools
from torch.testing._internal.common_utils import IS_FBCODE, TEST_WITH_TSAN
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
@unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment")
class TestXNNPACKConv1dTransformPass(TestCase):
|
import io
import itertools
import unittest
from hypothesis import assume, given, strategies as st
import torch
import torch.backends.xnnpack
import torch.testing._internal.hypothesis_utils as hu
from torch.nn import functional as F
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
IS_FBCODE,
run_tests,
slowTest,
TEST_WITH_TSAN,
TestCase,
)
from torch.utils.mobile_optimizer import optimize_for_mobile
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN is not fork-safe since we're forking in a multi-threaded environment",
)
class TestXNNPACKConv1dTransformPass(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_int32
|
def test_einsum_sums_int32(self):
self.check_einsum_sums("i4")
self.check_einsum_sums("i4", True)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_float16
|
def test_einsum_sums_float16(self):
self.check_einsum_sums("f2")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_float32
|
def test_einsum_sums_float32(self):
self.check_einsum_sums("f4")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_float64
|
def test_einsum_sums_float64(self):
self.check_einsum_sums("f8")
self.check_einsum_sums("f8", True)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_cfloat64
|
def test_einsum_sums_cfloat64(self):
self.check_einsum_sums("c8")
self.check_einsum_sums("c8", True)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_cfloat128
|
def test_einsum_sums_cfloat128(self):
self.check_einsum_sums("c16")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_misc
|
def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum("ij...,j...->i...", a, b), [[[2], [2]]])
assert_equal(np.einsum("ij...,j...->i...", a, b, optimize=True), [[[2], [2]]])
# Regression test for issue #10369 (test unicode inputs with Python 2)
assert_equal(np.einsum("ij...,j...->i...", a, b), [[[2], [2]]])
assert_equal(np.einsum("...i,...i", [1, 2, 3], [2, 3, 4]), 20)
assert_equal(
np.einsum("...i,...i", [1, 2, 3], [2, 3, 4], optimize="greedy"), 20
)
# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(
np.einsum("ijklm,ijn,ijn->", a, b, b), np.einsum("ijklm,ijn->", a, b)
)
assert_equal(
np.einsum("ijklm,ijn,ijn->", a, b, b, optimize=True),
np.einsum("ijklm,ijn->", a, b, optimize=True),
)
# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(
np.einsum("x,yx,zx->xzy", a, b, c),
[
[[1, 3], [3, 9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]],
],
)
assert_equal(
np.einsum("x,yx,zx->xzy", a, b, c, optimize=True),
[
[[1, 3], [3, 9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]],
],
)
# Ensure explicitly setting out=None does not cause an error
# see issue gh-15776 and issue gh-15256
assert_equal(np.einsum("i,j", [1], [2], out=None), [[2]])
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_subscript_range
|
def test_subscript_range(self):
# Issue #7741, make sure that all letters of Latin alphabet (both uppercase & lowercase) can be used
# when creating a subscript from arrays
a = np.ones((2, 3))
b = np.ones((3, 4))
np.einsum(a, [0, 20], b, [20, 2], [0, 2], optimize=False)
np.einsum(a, [0, 27], b, [27, 2], [0, 2], optimize=False)
np.einsum(a, [0, 51], b, [51, 2], [0, 2], optimize=False)
assert_raises(
ValueError,
lambda: np.einsum(a, [0, 52], b, [52, 2], [0, 2], optimize=False),
)
assert_raises(
ValueError,
lambda: np.einsum(a, [-1, 5], b, [5, 2], [-1, 2], optimize=False),
)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_broadcast
|
def test_einsum_broadcast(self):
# Issue #2455 change in handling ellipsis
# remove the 'middle broadcast' error
# only use the 'RIGHT' iteration in prepare_op_axes
# adds auto broadcast on left where it belongs
# broadcast on right has to be explicit
# We need to test the optimized parsing as well
A = np.arange(2 * 3 * 4).reshape(2, 3, 4)
B = np.arange(3)
ref = np.einsum("ijk,j->ijk", A, B, optimize=False)
for opt in [True, False]:
assert_equal(np.einsum("ij...,j...->ij...", A, B, optimize=opt), ref)
assert_equal(np.einsum("ij...,...j->ij...", A, B, optimize=opt), ref)
assert_equal(
np.einsum("ij...,j->ij...", A, B, optimize=opt), ref
) # used to raise error
A = np.arange(12).reshape((4, 3))
B = np.arange(6).reshape((3, 2))
ref = np.einsum("ik,kj->ij", A, B, optimize=False)
for opt in [True, False]:
assert_equal(np.einsum("ik...,k...->i...", A, B, optimize=opt), ref)
assert_equal(np.einsum("ik...,...kj->i...j", A, B, optimize=opt), ref)
assert_equal(
np.einsum("...k,kj", A, B, optimize=opt), ref
) # used to raise error
assert_equal(
np.einsum("ik,k...->i...", A, B, optimize=opt), ref
) # used to raise error
dims = [2, 3, 4, 5]
a = np.arange(np.prod(dims)).reshape(dims)
v = np.arange(dims[2])
ref = np.einsum("ijkl,k->ijl", a, v, optimize=False)
for opt in [True, False]:
assert_equal(np.einsum("ijkl,k", a, v, optimize=opt), ref)
assert_equal(
np.einsum("...kl,k", a, v, optimize=opt), ref
) # used to raise error
assert_equal(np.einsum("...kl,k...", a, v, optimize=opt), ref)
J, K, M = 160, 160, 120
A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M)
B = np.arange(J * K * M * 3).reshape(J, K, M, 3)
ref = np.einsum("...lmn,...lmno->...o", A, B, optimize=False)
for opt in [True, False]:
assert_equal(
np.einsum("...lmn,lmno->...o", A, B, optimize=opt), ref
) # used to raise error
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_fixedstridebug
|
def test_einsum_fixedstridebug(self):
# Issue #4485 obscure einsum bug
# This case revealed a bug in nditer where it reported a stride
# as 'fixed' (0) when it was in fact not fixed during processing
# (0 or 4). The reason for the bug was that the check for a fixed
# stride was using the information from the 2D inner loop reuse
# to restrict the iteration dimensions it had to validate to be
# the same, but that 2D inner loop reuse logic is only triggered
# during the buffer copying step, and hence it was invalid to
# rely on those values. The fix is to check all the dimensions
# of the stride in question, which in the test case reveals that
# the stride is not fixed.
#
# NOTE: This test is triggered by the fact that the default buffersize,
# used by einsum, is 8192, and 3*2731 = 8193, is larger than that
# and results in a mismatch between the buffering and the
# striding for operand A.
A = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16)
es = np.einsum("cl, cpx->lpx", A, B)
tp = np.tensordot(A, B, axes=(0, 0))
assert_equal(es, tp)
# The following is the original test case from the bug report,
# made repeatable by changing random arrays to aranges.
A = np.arange(3 * 3).reshape(3, 3).astype(np.float64)
B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32)
es = np.einsum("cl, cpxy->lpxy", A, B)
tp = np.tensordot(A, B, axes=(0, 0))
assert_equal(es, tp)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_fixed_collapsingbug
|
def test_einsum_fixed_collapsingbug(self):
# Issue #5147.
# The bug only occurred when output argument of einssum was used.
x = np.random.normal(0, 1, (5, 5, 5, 5))
y1 = np.zeros((5, 5))
np.einsum("aabb->ab", x, out=y1)
idx = np.arange(5)
y2 = x[idx[:, None], idx[:, None], idx, idx]
assert_equal(y1, y2)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_different_paths
|
def test_different_paths(self, dtype):
# Test originally added to cover broken float16 path: gh-20305
# Likely most are covered elsewhere, at least partially.
dtype = np.dtype(dtype)
# Simple test, designed to excersize most specialized code paths,
# note the +0.5 for floats. This makes sure we use a float value
# where the results must be exact.
arr = (np.arange(7) + 0.5).astype(dtype)
scalar = np.array(2, dtype=dtype)
# contig -> scalar:
res = np.einsum("i->", arr)
assert res == arr.sum()
# contig, contig -> contig:
res = np.einsum("i,i->i", arr, arr)
assert_array_equal(res, arr * arr)
# noncontig, noncontig -> contig:
res = np.einsum("i,i->i", arr.repeat(2)[::2], arr.repeat(2)[::2])
assert_array_equal(res, arr * arr)
# contig + contig -> scalar
assert np.einsum("i,i->", arr, arr) == (arr * arr).sum()
# contig + scalar -> contig (with out)
out = np.ones(7, dtype=dtype)
res = np.einsum("i,->i", arr, dtype.type(2), out=out)
assert_array_equal(res, arr * dtype.type(2))
# scalar + contig -> contig (with out)
res = np.einsum(",i->i", scalar, arr)
assert_array_equal(res, arr * dtype.type(2))
# scalar + contig -> scalar
res = np.einsum(",i->", scalar, arr)
# Use einsum to compare to not have difference due to sum round-offs:
assert res == np.einsum("i->", scalar * arr)
# contig + scalar -> scalar
res = np.einsum("i,->", arr, scalar)
# Use einsum to compare to not have difference due to sum round-offs:
assert res == np.einsum("i->", scalar * arr)
# contig + contig + contig -> scalar
if dtype in ["e", "B", "b"]:
# FIXME make xfail
raise SkipTest("overflow differs in pytorch and numpy")
arr = np.array([0.5, 0.5, 0.25, 4.5, 3.0], dtype=dtype)
res = np.einsum("i,i,i->", arr, arr, arr)
assert_array_equal(res, (arr * arr * arr).sum())
# four arrays:
res = np.einsum("i,i,i,i->", arr, arr, arr, arr)
assert_array_equal(res, (arr * arr * arr * arr).sum())
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_small_boolean_arrays
|
def test_small_boolean_arrays(self):
# See gh-5946.
# Use array of True embedded in False.
a = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
a[...] = True
out = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
tgt = np.ones((2, 1, 1), dtype=np.bool_)
res = np.einsum("...ij,...jk->...ik", a, a, out=out)
assert_equal(res, tgt)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_out_is_res
|
def test_out_is_res(self):
a = np.arange(9).reshape(3, 3)
res = np.einsum("...ij,...jk->...ik", a, a, out=a)
assert res is a
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
optimize_compare
|
def optimize_compare(self, subscripts, operands=None):
# Tests all paths of the optimization function against
# conventional einsum
if operands is None:
args = [subscripts]
terms = subscripts.split("->")[0].split(",")
for term in terms:
dims = [global_size_dict[x] for x in term]
args.append(np.random.rand(*dims))
else:
args = [subscripts] + operands
noopt = np.einsum(*args, optimize=False)
opt = np.einsum(*args, optimize="greedy")
assert_almost_equal(opt, noopt)
opt = np.einsum(*args, optimize="optimal")
assert_almost_equal(opt, noopt)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_hadamard_like_products
|
def test_hadamard_like_products(self):
# Hadamard outer products
self.optimize_compare("a,ab,abc->abc")
self.optimize_compare("a,b,ab->ab")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_index_transformations
|
def test_index_transformations(self):
# Simple index transformation cases
self.optimize_compare("ea,fb,gc,hd,abcd->efgh")
self.optimize_compare("ea,fb,abcd,gc,hd->efgh")
self.optimize_compare("abcd,ea,fb,gc,hd->efgh")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_dtype.py
|
test_recursion
|
def test_recursion(self):
class dt:
pass
dt.dtype = dt
with pytest.raises(RecursionError):
np.dtype(dt)
dt_instance = dt()
dt_instance.dtype = dt
with pytest.raises(RecursionError):
np.dtype(dt_instance)
|
import functools
import operator
import pickle
import sys
import types
from itertools import permutations
from typing import Any
from unittest import skipIf as skipif
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
xpassIfTorchDynamo,
)
skip = functools.partial(skipif, True)
import numpy as np
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy.testing import assert_, assert_equal
import numpy
class TestFromDTypeAttribute(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_views
|
def test_einsum_views(self):
# pass-through
for do_opt in [True, False]:
a = np.arange(6)
a = a.reshape(2, 3)
b = np.einsum("...", a, optimize=do_opt)
assert_(b.tensor._base is a.tensor)
b = np.einsum(a, [Ellipsis], optimize=do_opt)
assert_(b.base is a)
b = np.einsum("ij", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a)
b = np.einsum(a, [0, 1], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a)
# output is writeable whenever input is writeable
b = np.einsum("...", a, optimize=do_opt)
assert_(b.flags["WRITEABLE"])
a.flags["WRITEABLE"] = False
b = np.einsum("...", a, optimize=do_opt)
assert_(not b.flags["WRITEABLE"])
# transpose
a = np.arange(6)
a.shape = (2, 3)
b = np.einsum("ji", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a.T)
b = np.einsum(a, [1, 0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a.T)
# diagonal
a = np.arange(9)
a.shape = (3, 3)
b = np.einsum("ii->i", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[i, i] for i in range(3)])
b = np.einsum(a, [0, 0], [0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[i, i] for i in range(3)])
# diagonal with various ways of broadcasting an additional dimension
a = np.arange(27)
a.shape = (3, 3, 3)
b = np.einsum("...ii->...i", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
b = np.einsum("ii...->...i", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)])
b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)])
b = np.einsum("...ii->i...", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("jii->ij", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("ii...->i...", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
b = np.einsum("i...i->i...", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
b = np.einsum("i...i->...i", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)])
b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)])
# triple diagonal
a = np.arange(27)
a.shape = (3, 3, 3)
b = np.einsum("iii->i", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[i, i, i] for i in range(3)])
b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, [a[i, i, i] for i in range(3)])
# swap axes
a = np.arange(24)
a.shape = (2, 3, 4)
b = np.einsum("ijk->jik", a, optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a.swapaxes(0, 1))
b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt)
assert_(b.base is a)
assert_equal(b, a.swapaxes(0, 1))
# @np._no_nep50_warning()
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_einsum_sums_int16
|
def test_einsum_sums_int16(self):
self.check_einsum_sums("i2")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_complex
|
def test_complex(self):
# Long test cases
self.optimize_compare("acdf,jbje,gihb,hfac,gfac,gifabc,hfac")
self.optimize_compare("acdf,jbje,gihb,hfac,gfac,gifabc,hfac")
self.optimize_compare("cd,bdhe,aidb,hgca,gc,hgibcd,hgac")
self.optimize_compare("abhe,hidj,jgba,hiab,gab")
self.optimize_compare("bde,cdh,agdb,hica,ibd,hgicd,hiac")
self.optimize_compare("chd,bde,agbc,hiad,hgc,hgi,hiad")
self.optimize_compare("chd,bde,agbc,hiad,bdi,cgh,agdb")
self.optimize_compare("bdhe,acad,hiab,agac,hibd")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_collapse
|
def test_collapse(self):
# Inner products
self.optimize_compare("ab,ab,c->")
self.optimize_compare("ab,ab,c->c")
self.optimize_compare("ab,ab,cd,cd->")
self.optimize_compare("ab,ab,cd,cd->ac")
self.optimize_compare("ab,ab,cd,cd->cd")
self.optimize_compare("ab,ab,cd,cd,ef,ef->")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_expand
|
def test_expand(self):
# Outer products
self.optimize_compare("ab,cd,ef->abcdef")
self.optimize_compare("ab,cd,ef->acdf")
self.optimize_compare("ab,cd,de->abcde")
self.optimize_compare("ab,cd,de->be")
self.optimize_compare("ab,bcd,cd->abcd")
self.optimize_compare("ab,bcd,cd->abd")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_edge_cases
|
def test_edge_cases(self):
# Difficult edge cases for optimization
self.optimize_compare("eb,cb,fb->cef")
self.optimize_compare("dd,fb,be,cdb->cef")
self.optimize_compare("bca,cdb,dbf,afc->")
self.optimize_compare("dcc,fce,ea,dbf->ab")
self.optimize_compare("fdf,cdd,ccd,afe->ae")
self.optimize_compare("abcd,ad")
self.optimize_compare("ed,fcd,ff,bcf->be")
self.optimize_compare("baa,dcf,af,cde->be")
self.optimize_compare("bd,db,eac->ace")
self.optimize_compare("fff,fae,bef,def->abd")
self.optimize_compare("efc,dbc,acf,fd->abe")
self.optimize_compare("ba,ac,da->bcd")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_inner_product
|
def test_inner_product(self):
# Inner products
self.optimize_compare("ab,ab")
self.optimize_compare("ab,ba")
self.optimize_compare("abc,abc")
self.optimize_compare("abc,bac")
self.optimize_compare("abc,cba")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_random_cases
|
def test_random_cases(self):
# Randomly built test cases
self.optimize_compare("aab,fa,df,ecc->bde")
self.optimize_compare("ecb,fef,bad,ed->ac")
self.optimize_compare("bcf,bbb,fbf,fc->")
self.optimize_compare("bb,ff,be->e")
self.optimize_compare("bcb,bb,fc,fff->")
self.optimize_compare("fbb,dfd,fc,fc->")
self.optimize_compare("afd,ba,cc,dc->bf")
self.optimize_compare("adb,bc,fa,cfc->d")
self.optimize_compare("bbd,bda,fc,db->acf")
self.optimize_compare("dba,ead,cad->bce")
self.optimize_compare("aef,fbc,dca->bde")
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_combined_views_mapping
|
def test_combined_views_mapping(self):
# gh-10792
a = np.arange(9).reshape(1, 1, 3, 1, 3)
b = np.einsum("bbcdc->d", a)
assert_equal(b, [12])
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_output_order
|
def test_output_order(self):
# Ensure output order is respected for optimize cases, the below
# conraction should yield a reshaped tensor view
# gh-16415
a = np.ones((2, 3, 5), order="F")
b = np.ones((4, 3), order="F")
for opt in [True, False]:
tmp = np.einsum("...ft,mf->...mt", a, b, order="a", optimize=opt)
assert_(tmp.flags.f_contiguous)
tmp = np.einsum("...ft,mf->...mt", a, b, order="f", optimize=opt)
assert_(tmp.flags.f_contiguous)
tmp = np.einsum("...ft,mf->...mt", a, b, order="c", optimize=opt)
assert_(tmp.flags.c_contiguous)
tmp = np.einsum("...ft,mf->...mt", a, b, order="k", optimize=opt)
assert_(tmp.flags.c_contiguous is False)
assert_(tmp.flags.f_contiguous is False)
tmp = np.einsum("...ft,mf->...mt", a, b, optimize=opt)
assert_(tmp.flags.c_contiguous is False)
assert_(tmp.flags.f_contiguous is False)
c = np.ones((4, 3), order="C")
for opt in [True, False]:
tmp = np.einsum("...ft,mf->...mt", a, c, order="a", optimize=opt)
assert_(tmp.flags.c_contiguous)
d = np.ones((2, 3, 5), order="C")
for opt in [True, False]:
tmp = np.einsum("...ft,mf->...mt", d, c, order="a", optimize=opt)
assert_(tmp.flags.c_contiguous)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@instantiate_parametrized_tests
class TestEinsum(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
build_operands
|
def build_operands(self, string, size_dict=global_size_dict):
# Builds views based off initial operands
operands = [string]
terms = string.split("->")[0].split(",")
for term in terms:
dims = [size_dict[x] for x in term]
operands.append(np.random.rand(*dims))
return operands
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
assert_path_equal
|
def assert_path_equal(self, comp, benchmark):
# Checks if list of tuples are equivalent
ret = len(comp) == len(benchmark)
assert_(ret)
for pos in range(len(comp) - 1):
ret &= isinstance(comp[pos + 1], tuple)
ret &= comp[pos + 1] == benchmark[pos + 1]
assert_(ret)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_memory_contraints
|
def test_memory_contraints(self):
# Ensure memory constraints are satisfied
outer_test = self.build_operands("a,b,c->abc")
path, path_str = np.einsum_path(*outer_test, optimize=("greedy", 0))
self.assert_path_equal(path, ["einsum_path", (0, 1, 2)])
path, path_str = np.einsum_path(*outer_test, optimize=("optimal", 0))
self.assert_path_equal(path, ["einsum_path", (0, 1, 2)])
long_test = self.build_operands("acdf,jbje,gihb,hfac")
path, path_str = np.einsum_path(*long_test, optimize=("greedy", 0))
self.assert_path_equal(path, ["einsum_path", (0, 1, 2, 3)])
path, path_str = np.einsum_path(*long_test, optimize=("optimal", 0))
self.assert_path_equal(path, ["einsum_path", (0, 1, 2, 3)])
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_long_paths
|
def test_long_paths(self):
# Long complex cases
# Long test 1
long_test1 = self.build_operands("acdf,jbje,gihb,hfac,gfac,gifabc,hfac")
path, path_str = np.einsum_path(*long_test1, optimize="greedy")
self.assert_path_equal(
path, ["einsum_path", (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)]
)
path, path_str = np.einsum_path(*long_test1, optimize="optimal")
self.assert_path_equal(
path, ["einsum_path", (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)]
)
# Long test 2
long_test2 = self.build_operands("chd,bde,agbc,hiad,bdi,cgh,agdb")
path, path_str = np.einsum_path(*long_test2, optimize="greedy")
self.assert_path_equal(
path, ["einsum_path", (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)]
)
path, path_str = np.einsum_path(*long_test2, optimize="optimal")
self.assert_path_equal(
path, ["einsum_path", (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)]
)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_edge_paths
|
def test_edge_paths(self):
# Difficult edge cases
# Edge test1
edge_test1 = self.build_operands("eb,cb,fb->cef")
path, path_str = np.einsum_path(*edge_test1, optimize="greedy")
self.assert_path_equal(path, ["einsum_path", (0, 2), (0, 1)])
path, path_str = np.einsum_path(*edge_test1, optimize="optimal")
self.assert_path_equal(path, ["einsum_path", (0, 2), (0, 1)])
# Edge test2
edge_test2 = self.build_operands("dd,fb,be,cdb->cef")
path, path_str = np.einsum_path(*edge_test2, optimize="greedy")
self.assert_path_equal(path, ["einsum_path", (0, 3), (0, 1), (0, 1)])
path, path_str = np.einsum_path(*edge_test2, optimize="optimal")
self.assert_path_equal(path, ["einsum_path", (0, 3), (0, 1), (0, 1)])
# Edge test3
edge_test3 = self.build_operands("bca,cdb,dbf,afc->")
path, path_str = np.einsum_path(*edge_test3, optimize="greedy")
self.assert_path_equal(path, ["einsum_path", (1, 2), (0, 2), (0, 1)])
path, path_str = np.einsum_path(*edge_test3, optimize="optimal")
self.assert_path_equal(path, ["einsum_path", (1, 2), (0, 2), (0, 1)])
# Edge test4
edge_test4 = self.build_operands("dcc,fce,ea,dbf->ab")
path, path_str = np.einsum_path(*edge_test4, optimize="greedy")
self.assert_path_equal(path, ["einsum_path", (1, 2), (0, 1), (0, 1)])
path, path_str = np.einsum_path(*edge_test4, optimize="optimal")
self.assert_path_equal(path, ["einsum_path", (1, 2), (0, 2), (0, 1)])
# Edge test5
edge_test4 = self.build_operands(
"a,ac,ab,ad,cd,bd,bc->", size_dict={"a": 20, "b": 20, "c": 20, "d": 20}
)
path, path_str = np.einsum_path(*edge_test4, optimize="greedy")
self.assert_path_equal(path, ["einsum_path", (0, 1), (0, 1, 2, 3, 4, 5)])
path, path_str = np.einsum_path(*edge_test4, optimize="optimal")
self.assert_path_equal(path, ["einsum_path", (0, 1), (0, 1, 2, 3, 4, 5)])
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_path_type_input
|
def test_path_type_input(self):
# Test explicit path handling
path_test = self.build_operands("dcc,fce,ea,dbf->ab")
path, path_str = np.einsum_path(*path_test, optimize=False)
self.assert_path_equal(path, ["einsum_path", (0, 1, 2, 3)])
path, path_str = np.einsum_path(*path_test, optimize=True)
self.assert_path_equal(path, ["einsum_path", (1, 2), (0, 1), (0, 1)])
exp_path = ["einsum_path", (0, 2), (0, 2), (0, 1)]
path, path_str = np.einsum_path(*path_test, optimize=exp_path)
self.assert_path_equal(path, exp_path)
# Double check einsum works on the input path
noopt = np.einsum(*path_test, optimize=False)
opt = np.einsum(*path_test, optimize=exp_path)
assert_almost_equal(noopt, opt)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_path_type_input_internal_trace
|
def test_path_type_input_internal_trace(self):
# gh-20962
path_test = self.build_operands("cab,cdd->ab")
exp_path = ["einsum_path", (1,), (0, 1)]
path, path_str = np.einsum_path(*path_test, optimize=exp_path)
self.assert_path_equal(path, exp_path)
# Double check einsum works on the input path
noopt = np.einsum(*path_test, optimize=False)
opt = np.einsum(*path_test, optimize=exp_path)
assert_almost_equal(noopt, opt)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_path_type_input_invalid
|
def test_path_type_input_invalid(self):
path_test = self.build_operands("ab,bc,cd,de->ae")
exp_path = ["einsum_path", (2, 3), (0, 1)]
assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
assert_raises(RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
path_test = self.build_operands("a,a,a->a")
exp_path = ["einsum_path", (1,), (0, 1)]
assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
assert_raises(RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_spaces
|
def test_spaces(self):
# gh-10794
arr = np.array([[1]])
for sp in itertools.product(["", " "], repeat=4):
# no error for any spacing
np.einsum("{}...a{}->{}...a{}".format(*sp), arr)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
@skip(reason="no pytorch analog")
class TestEinsumPath(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_einsum.py
|
test_overlap
|
def test_overlap(self):
a = np.arange(9, dtype=int).reshape(3, 3)
b = np.arange(9, dtype=int).reshape(3, 3)
d = np.dot(a, b)
# sanity check
c = np.einsum("ij,jk->ik", a, b)
assert_equal(c, d)
# gh-10080, out overlaps one of the operands
c = np.einsum("ij,jk->ik", a, b, out=b)
assert_equal(c, d)
|
import functools
import itertools
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
from pytest import raises as assert_raises
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
suppress_warnings,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
skip = functools.partial(skipif, True)
chars = "abcdefghij"
sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
global_size_dict = dict(zip(chars, sizes))
class TestMisc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_singleton
|
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
assert_equal(id(ftype), id(ftype2))
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
@skip(reason="torch.finfo is not a singleton. Why demanding it is?")
class TestPythonFloat(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_singleton
|
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
assert_equal(id(ftype), id(ftype2))
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
@skip(reason="torch.finfo is not a singleton. Why demanding it is?")
class TestPythonFloat(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_singleton
|
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
assert_equal(id(ftype), id(ftype2))
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
@skip(reason="torch.finfo is not a singleton. Why demanding it is?")
class TestPythonFloat(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_singleton
|
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
assert_equal(id(ftype), id(ftype2))
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
@skip(reason="torch.finfo is not a singleton. Why demanding it is?")
class TestPythonFloat(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_basic_missing
|
def test_basic_missing(self):
dt = np.float32
for attr in [
"epsneg",
"iexp",
"machep",
"maxexp",
"minexp",
"negep",
"nexp",
"nmant",
"precision",
"smallest_subnormal",
]:
getattr(finfo(dt), attr)
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
class TestFinfo(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_unsigned_max
|
def test_unsigned_max(self, T):
max_calculated = T(0) - T(1)
assert_equal(iinfo(T).max, max_calculated)
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
@instantiate_parametrized_tests
class TestIinfo(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_finfo_repr
|
def test_finfo_repr(self):
repr_f32 = repr(np.finfo(np.float32))
assert "finfo(resolution=1e-06, min=-3.40282e+38," in repr_f32
assert "dtype=float32" in repr_f32
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
class TestRepr(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
assert_ma_equal
|
def assert_ma_equal(discovered, ma_like):
# Check MachAr-like objects same as calculated MachAr instances
for key, value in discovered.__dict__.items():
assert_equal(value, getattr(ma_like, key))
if hasattr(value, "shape"):
assert_equal(value.shape, getattr(ma_like, key).shape)
assert_equal(value.dtype, getattr(ma_like, key).dtype)
class TestMisc(TestCase):
@skip(reason="Instantiate {i,f}info from dtypes.")
def test_instances(self):
iinfo(10)
finfo(3.0)
@skip(reason="MachAr no implemented (does it need to)?")
def test_known_types(self):
# Test we are correctly compiling parameters for known types
for ftype, ma_like in (
(np.float16, _float_ma[16]),
(np.float32, _float_ma[32]),
(np.float64, _float_ma[64]),
):
assert_ma_equal(_discovered_machar(ftype), ma_like)
# Suppress warning for broken discovery of double double on PPC
ld_ma = _discovered_machar(np.longdouble)
bytes = np.dtype(np.longdouble).itemsize
if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
# 80-bit extended precision
assert_ma_equal(ld_ma, _float_ma[80])
elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
# IEE 754 128-bit
assert_ma_equal(ld_ma, _float_ma[128])
@skip(reason="MachAr no implemented (does it need to be)?")
def test_subnormal_warning(self):
"""Test that the subnormal is zero warning is not being raised."""
ld_ma = _discovered_machar(np.longdouble)
bytes = np.dtype(np.longdouble).itemsize
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
# 80-bit extended precision
ld_ma.smallest_subnormal
assert len(w) == 0
elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
# IEE 754 128-bit
ld_ma.smallest_subnormal
assert len(w) == 0
else:
# Double double
ld_ma.smallest_subnormal
# This test may fail on some platforms
assert len(w) == 0
@xpassIfTorchDynamo # (reason="None of nmant, minexp, maxexp is implemented.")
def test_plausible_finfo(self):
# Assert that finfo returns reasonable results for all types
for ftype in (
[np.float16, np.float32, np.float64, np.longdouble]
+ [
np.complex64,
np.complex128,
]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else [])
):
info = np.finfo(ftype)
assert_(info.nmant > 1)
assert_(info.minexp < -1)
assert_(info.maxexp > 1)
if __name__ == "__main__":
run_tests()
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_getlimits.py
|
test_plausible_finfo
|
def test_plausible_finfo(self):
# Assert that finfo returns reasonable results for all types
for ftype in (
[np.float16, np.float32, np.float64, np.longdouble]
+ [
np.complex64,
np.complex128,
]
# no complex256 in torch._numpy
+ ([np.clongdouble] if hasattr(np, "clongdouble") else [])
):
info = np.finfo(ftype)
assert_(info.nmant > 1)
assert_(info.minexp < -1)
assert_(info.maxexp > 1)
|
import functools
import warnings
from unittest import expectedFailure as xfail, skipIf
import numpy
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy import double, finfo, half, iinfo, single
from numpy.testing import assert_, assert_equal
import torch._numpy as np
from torch._numpy import double, finfo, half, iinfo, single
from torch._numpy.testing import assert_, assert_equal
skip = functools.partial(skipIf, True)
class TestMisc(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/torch_np/numpy_tests/core/test_indexing.py
|
test_index_no_floats
|
def test_index_no_floats(self):
a = np.array([[[5]]])
assert_raises(IndexError, lambda: a[0.0])
assert_raises(IndexError, lambda: a[0, 0.0])
assert_raises(IndexError, lambda: a[0.0, 0])
assert_raises(IndexError, lambda: a[0.0, :])
assert_raises(IndexError, lambda: a[:, 0.0])
assert_raises(IndexError, lambda: a[:, 0.0, :])
assert_raises(IndexError, lambda: a[0.0, :, :])
assert_raises(IndexError, lambda: a[0, 0, 0.0])
assert_raises(IndexError, lambda: a[0.0, 0, 0])
assert_raises(IndexError, lambda: a[0, 0.0, 0])
assert_raises(IndexError, lambda: a[-1.4])
assert_raises(IndexError, lambda: a[0, -1.4])
assert_raises(IndexError, lambda: a[-1.4, 0])
assert_raises(IndexError, lambda: a[-1.4, :])
assert_raises(IndexError, lambda: a[:, -1.4])
assert_raises(IndexError, lambda: a[:, -1.4, :])
assert_raises(IndexError, lambda: a[-1.4, :, :])
assert_raises(IndexError, lambda: a[0, 0, -1.4])
assert_raises(IndexError, lambda: a[-1.4, 0, 0])
assert_raises(IndexError, lambda: a[0, -1.4, 0])
# Note torch validates index arguments "depth-first", so will prioritise
# raising TypeError over IndexError, e.g.
#
# >>> a = np.array([[[5]]])
# >>> a[0.0:, 0.0]
# IndexError: only integers, slices (`:`), ellipsis (`...`),
# numpy.newaxis # (`None`) and integer or boolean arrays are
# valid indices
# >>> t = torch.as_tensor([[[5]]]) # identical to a
# >>> t[0.0:, 0.0]
# TypeError: slice indices must be integers or None or have an
# __index__ method
#
assert_raises((IndexError, TypeError), lambda: a[0.0:, 0.0])
assert_raises((IndexError, TypeError), lambda: a[0.0:, 0.0, :])
|
import functools
import operator
import re
import sys
import warnings
from itertools import product
from unittest import expectedFailure as xfail, skipIf as skipif, SkipTest
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfTorchDynamo,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo,
)
import numpy as np
from numpy.testing import (
assert_,
assert_array_equal,
assert_equal,
assert_warns,
HAS_REFCOUNT,
)
import torch._numpy as np
from torch._numpy.testing import (
assert_,
assert_array_equal,
assert_equal,
assert_warns,
HAS_REFCOUNT,
)
skip = functools.partial(skipif, True)
@instantiate_parametrized_tests
class TestIndexing(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.