library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_tensorboard.py
test_int_tensor_proto
def test_int_tensor_proto(self): int_values = [1, 2, 3] actual_proto = ( tensor_proto("dummy", torch.tensor(int_values, dtype=torch.int32)) .value[0] .tensor ) self.assertEqual(actual_proto.int_val, int_values) self.assertTrue(actual_proto.dtype == DataType.DT_INT32)
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorProtoSummary(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorboard.py
test_complex_tensor_proto
def test_complex_tensor_proto(self): real = torch.tensor([1.0, 2.0]) imag = torch.tensor([3.0, 4.0]) actual_proto = ( tensor_proto("dummy", torch.complex(real, imag)).value[0].tensor ) self.assertEqual(actual_proto.scomplex_val, [1.0, 3.0, 2.0, 4.0])
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorProtoSummary(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorboard.py
test_empty_tensor_proto
if __name__ == '__main__': run_tests()
def test_empty_tensor_proto(self): actual_proto = tensor_proto("dummy", torch.empty(0)).value[0].tensor self.assertEqual(actual_proto.float_val, [])
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorProtoSummary(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorexpr.py
test_alias_analysis_module
def test_alias_analysis_module(self): class AliasModule(nn.Module): def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): z = z + self.a self.b.add_(y) w = z + self.a z = w + x return z x = torch.randn(128, 128) def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) ref = am(x, x, x) test = am_s(x, x, x) torch.testing.assert_close(ref, test) # Now do the aliasing am.a = am.b ref = am(x, x, x) am_s.a = am_s.b test = am_s(x, x, x) torch.testing.assert_close(ref, test)
def test_alias_analysis_module(self): class AliasModule(nn.Module): def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): z = z + self.a self.b.add_(y) w = z + self.a z = w + x return z x = torch.randn(128, 128) def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) ref = am(x, x, x) test = am_s(x, x, x) torch.testing.assert_close(ref, test) # Now do the aliasing am.a = am.b ref = am(x, x, x) am_s.a = am_s.b test = am_s(x, x, x) torch.testing.assert_close(ref, test)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
__init__
def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
test_alias_analysis_inputs
def test_alias_analysis_inputs(self): class AliasModule(nn.Module): def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): x.add_(y) w = z + self.a z = w + x return z def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) torch.manual_seed(1337) x = torch.randn(128, 128) ref = am(x, x, x) torch.manual_seed(1337) x = torch.randn(128, 128) test = am_s(x, x, x) torch.testing.assert_close(ref, test)
def test_alias_analysis_inputs(self): class AliasModule(nn.Module): def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): x.add_(y) w = z + self.a z = w + x return z def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) torch.manual_seed(1337) x = torch.randn(128, 128) ref = am(x, x, x) torch.manual_seed(1337) x = torch.randn(128, 128) test = am_s(x, x, x) torch.testing.assert_close(ref, test)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
__init__
def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
test_alias_analysis_input_and_module
def test_alias_analysis_input_and_module(self): class AliasModule(nn.Module): def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): x.add_(y) w = z + self.b z = w + x return z def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) torch.manual_seed(1337) x = torch.randn(128, 128) am.b = x ref = am(x, x, x) torch.manual_seed(1337) x = torch.randn(128, 128) am_s.b = x test = am_s(x, x, x) torch.testing.assert_close(ref, test)
def test_alias_analysis_input_and_module(self): class AliasModule(nn.Module): def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128) def forward(self, x, y, z): x.add_(y) w = z + self.b z = w + x return z def getModule(script): am = AliasModule() if script: return torch.jit.script(am) return am am = getModule(False) am_s = getModule(True) torch.manual_seed(1337) x = torch.randn(128, 128) am.b = x ref = am(x, x, x) torch.manual_seed(1337) x = torch.randn(128, 128) am_s.b = x test = am_s(x, x, x) torch.testing.assert_close(ref, test)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
__init__
def __init__(self): super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
def __init__(self) -> None: super().__init__() torch.manual_seed(1337) self.a = torch.randn(128, 128) self.b = torch.randn(128, 128) self.c = torch.randn(128, 128)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() class AliasModule(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr_pybind.py
test_alloc_in_loop
def test_alloc_in_loop(self): a, tmp, b = [ te.BufHandle(name, [1], torch.float32) for name in ["a", "tmp", "b"] ] body = te.Block([tmp.store([0], a.load([0])), b.store([0], tmp.load([0]))]) for _ in range(4): i = te.VarHandle("i", torch.int32) body = te.For.make(i, 0, 100, body) nest = te.LoopNest(body, [b]) nest.prepare_for_codegen() f = te.construct_codegen("llvm", nest.simplify(), [a, b]) ta, tb = [torch.ones(1) for _ in range(2)] f.call([ta.data_ptr(), tb.data_ptr()])
def test_alloc_in_loop(self): a, tmp, b = ( te.BufHandle(name, [1], torch.float32) for name in ["a", "tmp", "b"] ) body = te.Block([tmp.store([0], a.load([0])), b.store([0], tmp.load([0]))]) for _ in range(4): i = te.VarHandle("i", torch.int32) body = te.For.make(i, 0, 100, body) nest = te.LoopNest(body, [b]) nest.prepare_for_codegen() f = te.construct_codegen("llvm", nest.simplify(), [a, b]) ta, tb = (torch.ones(1) for _ in range(2)) f.call([ta.data_ptr(), tb.data_ptr()])
import torch import numpy as np import torch._C._te as te from torch.testing._internal.common_utils import run_tests from torch.testing._internal.jit_utils import JitTestCase import unittest LLVM_ENABLED = torch._C._llvm_enabled() class TestTensorExprPyBind(JitTestCase):
import torch import numpy as np import torch._C._te as te from torch.testing._internal.common_utils import run_tests from torch.testing._internal.jit_utils import JitTestCase import unittest LLVM_ENABLED = torch._C._llvm_enabled() class TestTensorExprPyBind(JitTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorexpr.py
round
def round(x): return torch.round(x) for data_type in [torch.float32, torch.double]: a = torch.tensor([0.2, 1.6, 2.5, 3.5]).to(data_type) traced = torch.jit.trace(round, (a)) x = warmup_and_run_forward(traced, a) self.assertLastGraphAllFused() y = round(x) self.assertEqual(x, y)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled()
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorexpr.py
test_scalar
def test_scalar(self): @torch.jit.script def test_float(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, a: float, b: float) -> torch.Tensor: return torch.add(torch.add(x, y, alpha=a), z, alpha=b) @torch.jit.script def test_int(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, a: int, b: int) -> torch.Tensor: return torch.add(torch.add(x, y, alpha=a), z, alpha=b) for test in (test_float, test_int): for data_type in self.dtypes: x, y, z = [torch.rand(4, dtype=data_type) for i in range(3)] a, b = 1, 2 test(x, y, z, a, b) r = test(x, y, z, a, b) self.assertEqual(r, x + y * a + z * b)
def test_scalar(self): @torch.jit.script def test_float(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, a: float, b: float) -> torch.Tensor: return torch.add(torch.add(x, y, alpha=a), z, alpha=b) @torch.jit.script def test_int(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, a: int, b: int) -> torch.Tensor: return torch.add(torch.add(x, y, alpha=a), z, alpha=b) for test in (test_float, test_int): for data_type in self.dtypes: x, y, z = (torch.rand(4, dtype=data_type) for i in range(3)) a, b = 1, 2 test(x, y, z, a, b) r = test(x, y, z, a, b) self.assertEqual(r, x + y * a + z * b)
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
import numpy as np import torch import torch.nn.functional as F from torch import nn import unittest import itertools from torch.testing._internal.common_utils import suppress_warnings, num_profiled_runs, run_tests, skipIfTorchDynamo from torch.testing._internal.jit_utils import JitTestCase, TensorExprTestOptions LLVM_ENABLED = torch._C._llvm_enabled() @skipIfTorchDynamo() class TestTensorExprFuser(BaseTestClass):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
check
def check(size, low, high, requires_grad, noncontiguous): if dtype not in [torch.float, torch.cfloat]: requires_grad = False t = make_tensor(size, dtype=dtype, device=device, low=low, high=high, requires_grad=requires_grad, noncontiguous=noncontiguous) self.assertEqual(t.shape, size) self.assertEqual(t.device, torch.device(device)) self.assertEqual(t.dtype, dtype) low = -9 if low is None else low high = 9 if high is None else high if t.numel() > 0 and dtype in [torch.long, torch.float]: self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item()) self.assertEqual(t.requires_grad, requires_grad) if t.numel() > 1: self.assertEqual(t.is_contiguous(), not noncontiguous) else: self.assertTrue(t.is_contiguous()) for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)): check(size, None, None, False, False) check(size, 2, 4, True, True)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_testing.py
get_dtype_limits
def get_dtype_limits(dtype): if dtype is torch.bool: return 0, 1 info = (torch.finfo if dtype.is_floating_point or dtype.is_complex else torch.iinfo)(dtype) # We are using integer bounds here, because otherwise it would be impossible to pass `low` and `high` # outside their valid range. Python uses 64bit floating point numbers and thus trying to do something like # `torch.ffinfo(torch.float64)max * 2` will always result in `inf`. On the flipside, Pythons `int` is # unbounded. return int(info.min), int(info.max) lowest_inclusive, highest_inclusive = get_dtype_limits(dtype) with self.assertRaisesRegex(ValueError, ""): low, high = (-2, -1) if lowest_inclusive == 0 else (lowest_inclusive * 4, lowest_inclusive * 2) make_tensor(low=low, high=high) with self.assertRaisesRegex(ValueError, ""): make_tensor(low=highest_inclusive * 2, high=highest_inclusive * 4)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
test_low_high_boolean_integral2
def test_low_high_boolean_integral2(self, dtype, device): shape = (10_000,) if dtype is torch.bool: low = 1 elif dtype is torch.int64: # Due to its internals, `make_tensor` is not able to sample `torch.iinfo(torch.int64).max` low = torch.iinfo(dtype).max - 1 else: low = torch.iinfo(dtype).max high = low + 1 actual = torch.testing.make_tensor(shape, dtype=dtype, device=device, low=low, high=high) expected = torch.full(shape, low, dtype=dtype, device=device) torch.testing.assert_close(actual, expected)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestMakeTensor(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
_get_test_names_for_test_class
def _get_test_names_for_test_class(test_cls): """ Convenience function to get all test names for a given test class. """ test_names = ['{}.{}'.format(test_cls.__name__, key) for key in test_cls.__dict__ if key.startswith('test_')] return sorted(test_names)
def _get_test_names_for_test_class(test_cls): """ Convenience function to get all test names for a given test class. """ test_names = [f'{test_cls.__name__}.{key}' for key in test_cls.__dict__ if key.startswith('test_')] return sorted(test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
_get_test_funcs_for_test_class
def _get_test_funcs_for_test_class(test_cls): """ Convenience function to get all (test function, parametrized_name) pairs for a given test class. """ test_funcs = [(getattr(test_cls, key), key) for key in test_cls.__dict__ if key.startswith('test_')] return test_funcs class TestTestParametrization(TestCase): def test_default_names(self): class TestParametrized(TestCase): @parametrize("x", range(5)) def test_default_names(self, x): pass @parametrize("x,y", [(1, 2), (2, 3), (3, 4)]) def test_two_things_default_names(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_default_names_x_0', 'TestParametrized.test_default_names_x_1', 'TestParametrized.test_default_names_x_2', 'TestParametrized.test_default_names_x_3', 'TestParametrized.test_default_names_x_4', 'TestParametrized.test_two_things_default_names_x_1_y_2', 'TestParametrized.test_two_things_default_names_x_2_y_3', 'TestParametrized.test_two_things_default_names_x_3_y_4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y)) def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_subtest_names(self): class TestParametrized(TestCase): @parametrize("bias", [subtest(True, name='bias'), subtest(False, name='no_bias')]) def test_custom_names(self, bias): pass @parametrize("x,y", [subtest((1, 2), name='double'), subtest((1, 3), name='triple'), subtest((1, 4), name='quadruple')]) def test_two_things_custom_names(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_two_things_custom_names_double', 'TestParametrized.test_two_things_custom_names_quadruple', 'TestParametrized.test_two_things_custom_names_triple', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_apply_param_specific_decorators(self): # Test that decorators can be applied on a per-param basis. def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @parametrize("x", [subtest(1, name='one'), subtest(2, name='two', decorators=[test_dec]), subtest(3, name='three')]) def test_param(self, x): pass instantiate_parametrized_tests(TestParametrized) for test_func, name in _get_test_funcs_for_test_class(TestParametrized): self.assertEqual(hasattr(test_func, '_decorator_applied'), name == 'test_param_two') def test_compose_param_specific_decorators(self): # Test that multiple per-param decorators compose correctly. def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @parametrize("x", [subtest(1), subtest(2, decorators=[test_dec]), subtest(3)]) @parametrize("y", [subtest(False, decorators=[test_dec]), subtest(True)]) def test_param(self, x, y): pass instantiate_parametrized_tests(TestParametrized) for test_func, name in _get_test_funcs_for_test_class(TestParametrized): # Decorator should be applied whenever either x == 2 or y == False. should_apply = ('x_2' in name) or ('y_False' in name) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_modules_decorator_misuse_error(self): # Test that @modules errors out when used with instantiate_parametrized_tests(). class TestParametrized(TestCase): @modules(module_db) def test_modules(self, module_info): pass with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'): instantiate_parametrized_tests(TestParametrized) def test_ops_decorator_misuse_error(self): # Test that @ops errors out when used with instantiate_parametrized_tests(). class TestParametrized(TestCase): @ops(op_db) def test_ops(self, module_info): pass with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'): instantiate_parametrized_tests(TestParametrized) def test_multiple_handling_of_same_param_error(self): # Test that multiple decorators handling the same param errors out. class TestParametrized(TestCase): @parametrize("x", range(3)) @parametrize("x", range(5)) def test_param(self, x): pass with self.assertRaisesRegex(RuntimeError, 'multiple parametrization decorators'): instantiate_parametrized_tests(TestParametrized) @parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3]) def test_subtest_expected_failure(self, x): if x == 2: raise RuntimeError('Boom') @parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3]) @parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])]) def test_two_things_subtest_expected_failure(self, x, y): if x == 1 or y == 6: raise RuntimeError('Boom') class TestTestParametrizationDeviceType(TestCase): def test_unparametrized_names(self, device): # This test exists to protect against regressions in device / dtype test naming # due to parametrization logic. device = self.device_type class TestParametrized(TestCase): def test_device_specific(self, device): pass @dtypes(torch.float32, torch.float64) def test_device_dtype_specific(self, device, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_device_dtype_specific_{}_float32', '{}.test_device_dtype_specific_{}_float64', '{}.test_device_specific_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_empty_param_names(self, device): # If no param names are passed, ensure things still work without parametrization. device = self.device_type class TestParametrized(TestCase): @parametrize("", []) def test_foo(self, device): pass @parametrize("", range(5)) def test_bar(self, device): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_bar_{}', '{}.test_foo_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_empty_param_list(self, device): # If no param values are passed, ensure a helpful error message is thrown. # In the wild, this could indicate reuse of an exhausted generator. device = self.device_type generator = (a for a in range(5)) class TestParametrized(TestCase): @parametrize("x", generator) def test_foo(self, device, x): pass # Reuse generator from first test function. @parametrize("y", generator) def test_bar(self, device, y): pass with self.assertRaisesRegex(ValueError, 'An empty arg_values was passed'): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) def test_default_names(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("x", range(5)) def test_default_names(self, device, x): pass @parametrize("x,y", [(1, 2), (2, 3), (3, 4)]) def test_two_things_default_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_default_names_x_0_{}', '{}.test_default_names_x_1_{}', '{}.test_default_names_x_2_{}', '{}.test_default_names_x_3_{}', '{}.test_default_names_x_4_{}', '{}.test_two_things_default_names_x_1_y_2_{}', '{}.test_two_things_default_names_x_2_y_3_{}', '{}.test_two_things_default_names_x_3_y_4_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_name_fn(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, device, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, device, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y)) def test_two_things_custom_names_alternate(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_custom_names_bias_{}', '{}.test_custom_names_no_bias_{}', '{}.test_three_things_composition_custom_names_1_3_5_{}', '{}.test_three_things_composition_custom_names_1_3_6_{}', '{}.test_three_things_composition_custom_names_1_4_5_{}', '{}.test_three_things_composition_custom_names_1_4_6_{}', '{}.test_three_things_composition_custom_names_2_3_5_{}', '{}.test_three_things_composition_custom_names_2_3_6_{}', '{}.test_three_things_composition_custom_names_2_4_5_{}', '{}.test_three_things_composition_custom_names_2_4_6_{}', '{}.test_two_things_custom_names_alternate_1__2_{}', '{}.test_two_things_custom_names_alternate_1__3_{}', '{}.test_two_things_custom_names_alternate_1__4_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_subtest_names(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("bias", [subtest(True, name='bias'), subtest(False, name='no_bias')]) def test_custom_names(self, device, bias): pass @parametrize("x,y", [subtest((1, 2), name='double'), subtest((1, 3), name='triple'), subtest((1, 4), name='quadruple')]) def test_two_things_custom_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_custom_names_bias_{}', '{}.test_custom_names_no_bias_{}', '{}.test_two_things_custom_names_double_{}', '{}.test_two_things_custom_names_quadruple_{}', '{}.test_two_things_custom_names_triple_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_ops_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @ops(op_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_op_parametrized(self, device, dtype, op, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [] for op in op_db: for dtype in op.supported_dtypes(torch.device(device).type): for flag_part in ('flag_disabled', 'flag_enabled'): expected_name = '{}.test_op_parametrized_{}_{}_{}_{}'.format( device_cls.__name__, op.formatted_name, flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_modules_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @modules(module_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_module_parametrized(self, device, dtype, module_info, training, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [] for module_info in module_db: for dtype in module_info.dtypes: for flag_part in ('flag_disabled', 'flag_enabled'): expected_train_modes = ( ['train_mode', 'eval_mode'] if module_info.train_and_eval_differ else ['']) for training_part in expected_train_modes: expected_name = '{}.test_module_parametrized_{}{}_{}_{}_{}'.format( device_cls.__name__, module_info.formatted_name, '_' + training_part if len(training_part) > 0 else '', flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_ops_decorator_applies_op_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-op / per-param basis. # Create a test op, OpInfo entry, and decorator to apply. def test_op(x): return -x def test_dec(func): func._decorator_applied = True return func test_op_info = OpInfo( 'test_op', op=test_op, dtypes=floating_types(), sample_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_op_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @ops(op_db + [test_op_info]) @parametrize("x", [2, 3]) def test_op_param(self, device, dtype, op, x): pass @ops(op_db + [test_op_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, op, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_op_param_test_op_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name)) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_modules_decorator_applies_module_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-module / per-param basis. # Create a test module, ModuleInfo entry, and decorator to apply. class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.nn.Parameter(torch.randn(3)) def forward(self, y): return self.x + y def test_dec(func): func._decorator_applied = True return func test_module_info = ModuleInfo( TestModule, module_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_module_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @modules(module_db + [test_module_info]) @parametrize("x", [2, 3]) def test_module_param(self, device, dtype, module_info, training, x): pass @modules(module_db + [test_module_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, module_info, training, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_module_param_TestModule_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name)) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_dtypes_composition_valid(self, device): # Test checks that @parametrize and @dtypes compose as expected when @parametrize # doesn't set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("x", range(3)) def test_parametrized(self, x, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_parametrized_x_0_{}_float32', '{}.test_parametrized_x_0_{}_float64', '{}.test_parametrized_x_1_{}_float32', '{}.test_parametrized_x_1_{}_float64', '{}.test_parametrized_x_2_{}_float32', '{}.test_parametrized_x_2_{}_float64') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_dtypes_composition_invalid(self, device): # Test checks that @dtypes cannot be composed with parametrization decorators when they # also try to set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("dtype", [torch.int32, torch.int64]) def test_parametrized(self, dtype): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) # Verify proper error behavior with @ops + @dtypes, as both try to set dtype. class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @ops(op_db) def test_parametrized(self, op, dtype): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) def test_multiple_handling_of_same_param_error(self, device): # Test that multiple decorators handling the same param errors out. # Both @modules and @ops handle the dtype param. class TestParametrized(TestCase): @ops(op_db) @modules(module_db) def test_param(self, device, dtype, op, module_info, training): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) @parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3]) def test_subtest_expected_failure(self, device, x): if x == 2: raise RuntimeError('Boom') @parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3]) @parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])]) def test_two_things_subtest_expected_failure(self, device, x, y): if x == 1 or y == 6: raise RuntimeError('Boom') instantiate_parametrized_tests(TestTestParametrization) instantiate_device_type_tests(TestTestParametrizationDeviceType, globals()) class TestImports(TestCase): def test_circular_dependencies(self) -> None: """ Checks that all modules inside torch can be imported Prevents regression reported in https://github.com/pytorch/pytorch/issues/77441 """ ignored_modules = ["torch.utils.tensorboard", # deps on tensorboard "torch.distributed.elastic.rendezvous", # depps on etcd "torch.backends._coreml", # depends on pycoreml "torch.contrib.", # something weird "torch.testing._internal.distributed.", # just fails "torch.ao.pruning._experimental.", # depends on pytorch_lightning, not user-facing "torch.onnx._internal.fx", # depends on onnx-script ] # See https://github.com/pytorch/pytorch/issues/77801 if not sys.version_info >= (3, 9): ignored_modules.append("torch.utils.benchmark") if IS_WINDOWS or IS_MACOS: # Distributed should be importable on Windows(except nn.api.), but not on Mac if IS_MACOS: ignored_modules.append("torch.distributed.") else: ignored_modules.append("torch.distributed.nn.api.") ignored_modules.append("torch.distributed.optim.") ignored_modules.append("torch.distributed.pipeline.") ignored_modules.append("torch.distributed.rpc.") ignored_modules.append("torch.testing._internal.dist_utils") # And these both end up with transitive dependencies on distributed ignored_modules.append("torch.nn.parallel._replicated_tensor_ddp_interop") ignored_modules.append("torch.testing._internal.common_fsdp") ignored_modules.append("torch.testing._internal.common_distributed") torch_dir = os.path.dirname(torch.__file__) for base, folders, files in os.walk(torch_dir): prefix = os.path.relpath(base, os.path.dirname(torch_dir)).replace(os.path.sep, ".") for f in files: if not f.endswith(".py"): continue mod_name = f"{prefix}.{f[:-3]}" if f != "__init__.py" else prefix # Do not attempt to import executable modules if f == "__main__.py": continue if any(mod_name.startswith(x) for x in ignored_modules): continue try: mod = importlib.import_module(mod_name) except Exception as e: raise RuntimeError(f"Failed to import {mod_name}: {e}") from e self.assertTrue(inspect.ismodule(mod)) @unittest.skipIf(IS_WINDOWS, "importing torch+CUDA on CPU results in warning") def test_no_warning_on_import(self) -> None: out = subprocess.check_output( [sys.executable, "-W", "all", "-c", "import torch"], stderr=subprocess.STDOUT, # On Windows, opening the subprocess with the default CWD makes `import torch` # fail, so just set CWD to this script's directory cwd=os.path.dirname(os.path.realpath(__file__)),).decode("utf-8") self.assertEqual(out, "") @unittest.skipIf(IS_WINDOWS, "importing torch+CUDA on CPU results in warning") @parametrize('path', ['torch', 'functorch']) def test_no_mutate_global_logging_on_import(self, path) -> None: # Calling logging.basicConfig, among other things, modifies the global # logging state. It is not OK to modify the global logging state on # `import torch` (or other submodules we own) because users do not expect it. expected = 'abcdefghijklmnopqrstuvwxyz' commands = [ 'import logging', f'import {path}', '_logger = logging.getLogger("torch_test_testing")', 'logging.root.addHandler(logging.StreamHandler())', 'logging.root.setLevel(logging.INFO)', f'_logger.info("{expected}")' ] out = subprocess.check_output( [sys.executable, "-W", "all", "-c", "; ".join(commands)], stderr=subprocess.STDOUT, ).decode("utf-8") self.assertEqual(out.strip(), expected) class TestOpInfos(TestCase): def test_sample_input(self) -> None: a, b, c, d, e = [object() for _ in range(5)] # Construction with natural syntax s = SampleInput(a, b, c, d=d, e=e) assert s.input is a assert s.args == (b, c) assert s.kwargs == dict(d=d, e=e) # Construction with explicit args and kwargs s = SampleInput(a, args=(b,), kwargs=dict(c=c, d=d, e=e)) assert s.input is a assert s.args == (b,) assert s.kwargs == dict(c=c, d=d, e=e) # Construction with a mixed form will error with self.assertRaises(AssertionError): s = SampleInput(a, b, c, args=(d, e)) with self.assertRaises(AssertionError): s = SampleInput(a, b, c, kwargs=dict(d=d, e=e)) with self.assertRaises(AssertionError): s = SampleInput(a, args=(b, c), d=d, e=e) with self.assertRaises(AssertionError): s = SampleInput(a, b, c=c, kwargs=dict(d=d, e=e)) # Mixing metadata into "natural" construction will error with self.assertRaises(AssertionError): s = SampleInput(a, b, name="foo") with self.assertRaises(AssertionError): s = SampleInput(a, b, output_process_fn_grad=lambda x: x) with self.assertRaises(AssertionError): s = SampleInput(a, b, broadcasts_input=True) # But when only input is given, metadata is allowed for backward # compatibility s = SampleInput(a, broadcasts_input=True) assert s.input is a assert s.broadcasts_input def test_sample_input_metadata(self) -> None: a, b = [object() for _ in range(2)] s1 = SampleInput(a, b=b) self.assertIs(s1.output_process_fn_grad(None), None) self.assertFalse(s1.broadcasts_input) self.assertEqual(s1.name, "") s2 = s1.with_metadata( output_process_fn_grad=lambda x: a, broadcasts_input=True, name="foo", ) self.assertIs(s1, s2) self.assertIs(s2.output_process_fn_grad(None), a) self.assertTrue(s2.broadcasts_input) self.assertEqual(s2.name, "foo") # Tests that validate the various sample generating functions on each OpInfo. class TestOpInfoSampleFunctions(TestCase): @ops(op_db, dtypes=OpDTypes.any_one) def test_opinfo_sample_generators(self, device, dtype, op): # Test op.sample_inputs doesn't generate multiple samples when called samples = op.sample_inputs(device, dtype) self.assertIsInstance(samples, Generator) @ops([op for op in op_db if op.reference_inputs_func is not None], dtypes=OpDTypes.any_one) def test_opinfo_reference_generators(self, device, dtype, op): # Test op.reference_inputs doesn't generate multiple samples when called samples = op.reference_inputs(device, dtype) self.assertIsInstance(samples, Generator) @ops([op for op in op_db if op.error_inputs_func is not None], dtypes=OpDTypes.none) def test_opinfo_error_generators(self, device, op): # Test op.error_inputs doesn't generate multiple inputs when called samples = op.error_inputs(device) self.assertIsInstance(samples, Generator) instantiate_device_type_tests(TestOpInfoSampleFunctions, globals()) instantiate_parametrized_tests(TestImports) if __name__ == '__main__': run_tests()
def _get_test_funcs_for_test_class(test_cls): """ Convenience function to get all (test function, parametrized_name) pairs for a given test class. """ test_funcs = [(getattr(test_cls, key), key) for key in test_cls.__dict__ if key.startswith('test_')] return test_funcs class TestTestParametrization(TestCase): def test_default_names(self): class TestParametrized(TestCase): @parametrize("x", range(5)) def test_default_names(self, x): pass @parametrize("x,y", [(1, 2), (2, 3), (3, 4)]) def test_two_things_default_names(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_default_names_x_0', 'TestParametrized.test_default_names_x_1', 'TestParametrized.test_default_names_x_2', 'TestParametrized.test_default_names_x_3', 'TestParametrized.test_default_names_x_4', 'TestParametrized.test_two_things_default_names_x_1_y_2', 'TestParametrized.test_two_things_default_names_x_2_y_3', 'TestParametrized.test_two_things_default_names_x_3_y_4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: f'{x}__{y}') def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_subtest_names(self): class TestParametrized(TestCase): @parametrize("bias", [subtest(True, name='bias'), subtest(False, name='no_bias')]) def test_custom_names(self, bias): pass @parametrize("x,y", [subtest((1, 2), name='double'), subtest((1, 3), name='triple'), subtest((1, 4), name='quadruple')]) def test_two_things_custom_names(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_two_things_custom_names_double', 'TestParametrized.test_two_things_custom_names_quadruple', 'TestParametrized.test_two_things_custom_names_triple', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names) def test_apply_param_specific_decorators(self): # Test that decorators can be applied on a per-param basis. def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @parametrize("x", [subtest(1, name='one'), subtest(2, name='two', decorators=[test_dec]), subtest(3, name='three')]) def test_param(self, x): pass instantiate_parametrized_tests(TestParametrized) for test_func, name in _get_test_funcs_for_test_class(TestParametrized): self.assertEqual(hasattr(test_func, '_decorator_applied'), name == 'test_param_two') def test_compose_param_specific_decorators(self): # Test that multiple per-param decorators compose correctly. def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @parametrize("x", [subtest(1), subtest(2, decorators=[test_dec]), subtest(3)]) @parametrize("y", [subtest(False, decorators=[test_dec]), subtest(True)]) def test_param(self, x, y): pass instantiate_parametrized_tests(TestParametrized) for test_func, name in _get_test_funcs_for_test_class(TestParametrized): # Decorator should be applied whenever either x == 2 or y == False. should_apply = ('x_2' in name) or ('y_False' in name) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_modules_decorator_misuse_error(self): # Test that @modules errors out when used with instantiate_parametrized_tests(). class TestParametrized(TestCase): @modules(module_db) def test_modules(self, module_info): pass with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'): instantiate_parametrized_tests(TestParametrized) def test_ops_decorator_misuse_error(self): # Test that @ops errors out when used with instantiate_parametrized_tests(). class TestParametrized(TestCase): @ops(op_db) def test_ops(self, module_info): pass with self.assertRaisesRegex(RuntimeError, 'intended to be used in a device-specific context'): instantiate_parametrized_tests(TestParametrized) def test_multiple_handling_of_same_param_error(self): # Test that multiple decorators handling the same param errors out. class TestParametrized(TestCase): @parametrize("x", range(3)) @parametrize("x", range(5)) def test_param(self, x): pass with self.assertRaisesRegex(RuntimeError, 'multiple parametrization decorators'): instantiate_parametrized_tests(TestParametrized) @parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3]) def test_subtest_expected_failure(self, x): if x == 2: raise RuntimeError('Boom') @parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3]) @parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])]) def test_two_things_subtest_expected_failure(self, x, y): if x == 1 or y == 6: raise RuntimeError('Boom') class TestTestParametrizationDeviceType(TestCase): def test_unparametrized_names(self, device): # This test exists to protect against regressions in device / dtype test naming # due to parametrization logic. device = self.device_type class TestParametrized(TestCase): def test_device_specific(self, device): pass @dtypes(torch.float32, torch.float64) def test_device_dtype_specific(self, device, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_device_dtype_specific_{}_float32', '{}.test_device_dtype_specific_{}_float64', '{}.test_device_specific_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_empty_param_names(self, device): # If no param names are passed, ensure things still work without parametrization. device = self.device_type class TestParametrized(TestCase): @parametrize("", []) def test_foo(self, device): pass @parametrize("", range(5)) def test_bar(self, device): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_bar_{}', '{}.test_foo_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_empty_param_list(self, device): # If no param values are passed, ensure a helpful error message is thrown. # In the wild, this could indicate reuse of an exhausted generator. device = self.device_type generator = (a for a in range(5)) class TestParametrized(TestCase): @parametrize("x", generator) def test_foo(self, device, x): pass # Reuse generator from first test function. @parametrize("y", generator) def test_bar(self, device, y): pass with self.assertRaisesRegex(ValueError, 'An empty arg_values was passed'): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) def test_default_names(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("x", range(5)) def test_default_names(self, device, x): pass @parametrize("x,y", [(1, 2), (2, 3), (3, 4)]) def test_two_things_default_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_default_names_x_0_{}', '{}.test_default_names_x_1_{}', '{}.test_default_names_x_2_{}', '{}.test_default_names_x_3_{}', '{}.test_default_names_x_4_{}', '{}.test_two_things_default_names_x_1_y_2_{}', '{}.test_two_things_default_names_x_2_y_3_{}', '{}.test_two_things_default_names_x_3_y_4_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_default_name_non_primitive(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("x", [1, .5, "foo", object()]) def test_default_names(self, device, x): pass @parametrize("x,y", [(1, object()), (object(), .5), (object(), object())]) def test_two_things_default_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = sorted(name.format(device_cls.__name__, device) for name in ( '{}.test_default_names_x_1_{}', '{}.test_default_names_x_0_5_{}', '{}.test_default_names_x_foo_{}', '{}.test_default_names_x3_{}', '{}.test_two_things_default_names_x_1_y0_{}', '{}.test_two_things_default_names_x1_y_0_5_{}', '{}.test_two_things_default_names_x2_y2_{}') ) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_name_fn(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, device, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, device, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: f'{x}__{y}') def test_two_things_custom_names_alternate(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_custom_names_bias_{}', '{}.test_custom_names_no_bias_{}', '{}.test_three_things_composition_custom_names_1_3_5_{}', '{}.test_three_things_composition_custom_names_1_3_6_{}', '{}.test_three_things_composition_custom_names_1_4_5_{}', '{}.test_three_things_composition_custom_names_1_4_6_{}', '{}.test_three_things_composition_custom_names_2_3_5_{}', '{}.test_three_things_composition_custom_names_2_3_6_{}', '{}.test_three_things_composition_custom_names_2_4_5_{}', '{}.test_three_things_composition_custom_names_2_4_6_{}', '{}.test_two_things_custom_names_alternate_1__2_{}', '{}.test_two_things_custom_names_alternate_1__3_{}', '{}.test_two_things_custom_names_alternate_1__4_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_subtest_names(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("bias", [subtest(True, name='bias'), subtest(False, name='no_bias')]) def test_custom_names(self, device, bias): pass @parametrize("x,y", [subtest((1, 2), name='double'), subtest((1, 3), name='triple'), subtest((1, 4), name='quadruple')]) def test_two_things_custom_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_custom_names_bias_{}', '{}.test_custom_names_no_bias_{}', '{}.test_two_things_custom_names_double_{}', '{}.test_two_things_custom_names_quadruple_{}', '{}.test_two_things_custom_names_triple_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names) def test_ops_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @ops(op_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_op_parametrized(self, device, dtype, op, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [] for op in op_db: for dtype in op.supported_dtypes(torch.device(device).type): for flag_part in ('flag_disabled', 'flag_enabled'): expected_name = f'{device_cls.__name__}.test_op_parametrized_{op.formatted_name}_{flag_part}_{device}_{dtype_name(dtype)}' # noqa: B950 expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_modules_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @modules(module_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_module_parametrized(self, device, dtype, module_info, training, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [] for module_info in module_db: for dtype in module_info.dtypes: for flag_part in ('flag_disabled', 'flag_enabled'): expected_train_modes = ( ['train_mode', 'eval_mode'] if module_info.train_and_eval_differ else ['']) for training_part in expected_train_modes: expected_name = '{}.test_module_parametrized_{}{}_{}_{}_{}'.format( device_cls.__name__, module_info.formatted_name, '_' + training_part if len(training_part) > 0 else '', flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_ops_decorator_applies_op_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-op / per-param basis. # Create a test op, OpInfo entry, and decorator to apply. def test_op(x): return -x def test_dec(func): func._decorator_applied = True return func test_op_info = OpInfo( 'test_op', op=test_op, dtypes=floating_types(), sample_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_op_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @ops(op_db + [test_op_info]) @parametrize("x", [2, 3]) def test_op_param(self, device, dtype, op, x): pass @ops(op_db + [test_op_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, op, y): pass @decorateIf(test_dec, lambda p: p['dtype'] == torch.int16) @ops(op_db) def test_three(self, device, dtype, op): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_op_param_test_op_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name) or ('test_three' in name and name.endswith('_int16'))) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_modules_decorator_applies_module_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-module / per-param basis. # Create a test module, ModuleInfo entry, and decorator to apply. class TestModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.x = torch.nn.Parameter(torch.randn(3)) def forward(self, y): return self.x + y def test_dec(func): func._decorator_applied = True return func test_module_info = ModuleInfo( TestModule, module_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_module_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @modules(module_db + [test_module_info]) @parametrize("x", [2, 3]) def test_module_param(self, device, dtype, module_info, training, x): pass @modules(module_db + [test_module_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, module_info, training, y): pass @decorateIf(test_dec, lambda p: p['dtype'] == torch.float64) @modules(module_db) def test_three(self, device, dtype, module_info): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_module_param_TestModule_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name) or ('test_three' in name and name.endswith('float64'))) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_param_specific_decoration(self, device): def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @decorateIf(test_dec, lambda params: params["x"] == 1 and params["y"]) @parametrize("x", range(5)) @parametrize("y", [False, True]) def test_param(self, x, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = ('test_param_x_1_y_True' in name) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply) def test_dtypes_composition_valid(self, device): # Test checks that @parametrize and @dtypes compose as expected when @parametrize # doesn't set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("x", range(3)) def test_parametrized(self, x, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_parametrized_x_0_{}_float32', '{}.test_parametrized_x_0_{}_float64', '{}.test_parametrized_x_1_{}_float32', '{}.test_parametrized_x_1_{}_float64', '{}.test_parametrized_x_2_{}_float32', '{}.test_parametrized_x_2_{}_float64') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names)) def test_dtypes_composition_invalid(self, device): # Test checks that @dtypes cannot be composed with parametrization decorators when they # also try to set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("dtype", [torch.int32, torch.int64]) def test_parametrized(self, dtype): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) # Verify proper error behavior with @ops + @dtypes, as both try to set dtype. class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @ops(op_db) def test_parametrized(self, op, dtype): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) def test_multiple_handling_of_same_param_error(self, device): # Test that multiple decorators handling the same param errors out. # Both @modules and @ops handle the dtype param. class TestParametrized(TestCase): @ops(op_db) @modules(module_db) def test_param(self, device, dtype, op, module_info, training): pass with self.assertRaisesRegex(RuntimeError, "handled multiple times"): instantiate_device_type_tests(TestParametrized, locals(), only_for=device) @parametrize("x", [1, subtest(2, decorators=[unittest.expectedFailure]), 3]) def test_subtest_expected_failure(self, device, x): if x == 2: raise RuntimeError('Boom') @parametrize("x", [subtest(1, decorators=[unittest.expectedFailure]), 2, 3]) @parametrize("y", [4, 5, subtest(6, decorators=[unittest.expectedFailure])]) def test_two_things_subtest_expected_failure(self, device, x, y): if x == 1 or y == 6: raise RuntimeError('Boom') instantiate_parametrized_tests(TestTestParametrization) instantiate_device_type_tests(TestTestParametrizationDeviceType, globals()) class TestImports(TestCase): @classmethod def _check_python_output(cls, program) -> str: return subprocess.check_output( [sys.executable, "-W", "always", "-c", program], stderr=subprocess.STDOUT, # On Windows, opening the subprocess with the default CWD makes `import torch` # fail, so just set CWD to this script's directory cwd=os.path.dirname(os.path.realpath(__file__)),).decode("utf-8") def test_circular_dependencies(self) -> None: """ Checks that all modules inside torch can be imported Prevents regression reported in https://github.com/pytorch/pytorch/issues/77441 """ ignored_modules = ["torch.utils.tensorboard", # deps on tensorboard "torch.distributed.elastic.rendezvous", # depps on etcd "torch.backends._coreml", # depends on pycoreml "torch.contrib.", # something weird "torch.testing._internal.distributed.", # just fails "torch.ao.pruning._experimental.", # depends on pytorch_lightning, not user-facing "torch.onnx._internal", # depends on onnx-script "torch._inductor.runtime.triton_helpers", # depends on triton "torch._inductor.codegen.cuda", # depends on cutlass ] # See https://github.com/pytorch/pytorch/issues/77801 if not sys.version_info >= (3, 9): ignored_modules.append("torch.utils.benchmark") if IS_WINDOWS or IS_MACOS or IS_JETSON: # Distributed should be importable on Windows(except nn.api.), but not on Mac if IS_MACOS or IS_JETSON: ignored_modules.append("torch.distributed.") else: ignored_modules.append("torch.distributed.nn.api.") ignored_modules.append("torch.distributed.optim.") ignored_modules.append("torch.distributed.rpc.") ignored_modules.append("torch.testing._internal.dist_utils") # And these both end up with transitive dependencies on distributed ignored_modules.append("torch.nn.parallel._replicated_tensor_ddp_interop") ignored_modules.append("torch.testing._internal.common_fsdp") ignored_modules.append("torch.testing._internal.common_distributed") torch_dir = os.path.dirname(torch.__file__) for base, folders, files in os.walk(torch_dir): prefix = os.path.relpath(base, os.path.dirname(torch_dir)).replace(os.path.sep, ".") for f in files: if not f.endswith(".py"): continue mod_name = f"{prefix}.{f[:-3]}" if f != "__init__.py" else prefix # Do not attempt to import executable modules if f == "__main__.py": continue if any(mod_name.startswith(x) for x in ignored_modules): continue try: mod = importlib.import_module(mod_name) except Exception as e: raise RuntimeError(f"Failed to import {mod_name}: {e}") from e self.assertTrue(inspect.ismodule(mod)) @unittest.skipIf(IS_WINDOWS, "TODO enable on Windows") def test_lazy_imports_are_lazy(self) -> None: out = self._check_python_output("import sys;import torch;print(all(x not in sys.modules for x in torch._lazy_modules))") self.assertEqual(out.strip(), "True") @unittest.skipIf(IS_WINDOWS, "importing torch+CUDA on CPU results in warning") def test_no_warning_on_import(self) -> None: out = self._check_python_output("import torch") self.assertEqual(out, "") def test_not_import_sympy(self) -> None: out = self._check_python_output("import torch;import sys;print('sympy' not in sys.modules)") self.assertEqual(out.strip(), "True", "PyTorch should not depend on SymPy at import time as importing SymPy is *very* slow.\n" "See the beginning of the following blog post for how to profile and find which file is importing sympy:\n" "https://dev-discuss.pytorch.org/t/delving-into-what-happens-when-you-import-torch/1589\n\n" "If you hit this error, you may want to:\n" " - Refactor your code to avoid depending on sympy files you may not need to depend\n" " - Use TYPE_CHECKING if you are using sympy + strings if you are using sympy on type annotations\n" " - Import things that depend on SymPy locally") @unittest.skipIf(IS_WINDOWS, "importing torch+CUDA on CPU results in warning") @parametrize('path', ['torch', 'functorch']) def test_no_mutate_global_logging_on_import(self, path) -> None: # Calling logging.basicConfig, among other things, modifies the global # logging state. It is not OK to modify the global logging state on # `import torch` (or other submodules we own) because users do not expect it. expected = 'abcdefghijklmnopqrstuvwxyz' commands = [ 'import logging', f'import {path}', '_logger = logging.getLogger("torch_test_testing")', 'logging.root.addHandler(logging.StreamHandler())', 'logging.root.setLevel(logging.INFO)', f'_logger.info("{expected}")' ] out = self._check_python_output("; ".join(commands)) self.assertEqual(out.strip(), expected) class TestOpInfos(TestCase): def test_sample_input(self) -> None: a, b, c, d, e = (object() for _ in range(5)) # Construction with natural syntax s = SampleInput(a, b, c, d=d, e=e) assert s.input is a assert s.args == (b, c) assert s.kwargs == dict(d=d, e=e) # Construction with explicit args and kwargs s = SampleInput(a, args=(b,), kwargs=dict(c=c, d=d, e=e)) assert s.input is a assert s.args == (b,) assert s.kwargs == dict(c=c, d=d, e=e) # Construction with a mixed form will error with self.assertRaises(AssertionError): s = SampleInput(a, b, c, args=(d, e)) with self.assertRaises(AssertionError): s = SampleInput(a, b, c, kwargs=dict(d=d, e=e)) with self.assertRaises(AssertionError): s = SampleInput(a, args=(b, c), d=d, e=e) with self.assertRaises(AssertionError): s = SampleInput(a, b, c=c, kwargs=dict(d=d, e=e)) # Mixing metadata into "natural" construction will error with self.assertRaises(AssertionError): s = SampleInput(a, b, name="foo") with self.assertRaises(AssertionError): s = SampleInput(a, b, output_process_fn_grad=lambda x: x) with self.assertRaises(AssertionError): s = SampleInput(a, b, broadcasts_input=True) # But when only input is given, metadata is allowed for backward # compatibility s = SampleInput(a, broadcasts_input=True) assert s.input is a assert s.broadcasts_input def test_sample_input_metadata(self) -> None: a, b = (object() for _ in range(2)) s1 = SampleInput(a, b=b) self.assertIs(s1.output_process_fn_grad(None), None) self.assertFalse(s1.broadcasts_input) self.assertEqual(s1.name, "") s2 = s1.with_metadata( output_process_fn_grad=lambda x: a, broadcasts_input=True, name="foo", ) self.assertIs(s1, s2) self.assertIs(s2.output_process_fn_grad(None), a) self.assertTrue(s2.broadcasts_input) self.assertEqual(s2.name, "foo") # Tests that validate the various sample generating functions on each OpInfo. class TestOpInfoSampleFunctions(TestCase): @ops(op_db, dtypes=OpDTypes.any_one) def test_opinfo_sample_generators(self, device, dtype, op): # Test op.sample_inputs doesn't generate multiple samples when called samples = op.sample_inputs(device, dtype) self.assertIsInstance(samples, Iterator) @ops([op for op in op_db if op.reference_inputs_func is not None], dtypes=OpDTypes.any_one) def test_opinfo_reference_generators(self, device, dtype, op): # Test op.reference_inputs doesn't generate multiple samples when called samples = op.reference_inputs(device, dtype) self.assertIsInstance(samples, Iterator) @ops([op for op in op_db if op.error_inputs_func is not None], dtypes=OpDTypes.none) def test_opinfo_error_generators(self, device, op): # Test op.error_inputs doesn't generate multiple inputs when called samples = op.error_inputs(device) self.assertIsInstance(samples, Iterator) instantiate_device_type_tests(TestOpInfoSampleFunctions, globals()) instantiate_parametrized_tests(TestImports) if __name__ == '__main__': run_tests()
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_name_fn
def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y)) def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names)
def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: f'{x}__{y}') def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrization(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_unparametrized_names
def test_unparametrized_names(self, device): # This test exists to protect against regressions in device / dtype test naming # due to parametrization logic. device = self.device_type class TestParametrized(TestCase): def test_device_specific(self, device): pass @dtypes(torch.float32, torch.float64) def test_device_dtype_specific(self, device, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_device_dtype_specific_{}_float32', '{}.test_device_dtype_specific_{}_float64', '{}.test_device_specific_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names)
def test_unparametrized_names(self, device): # This test exists to protect against regressions in device / dtype test naming # due to parametrization logic. device = self.device_type class TestParametrized(TestCase): def test_device_specific(self, device): pass @dtypes(torch.float32, torch.float64) def test_device_dtype_specific(self, device, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_device_dtype_specific_{}_float32', '{}.test_device_dtype_specific_{}_float64', '{}.test_device_specific_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_empty_param_names
def test_empty_param_names(self, device): # If no param names are passed, ensure things still work without parametrization. device = self.device_type class TestParametrized(TestCase): @parametrize("", []) def test_foo(self, device): pass @parametrize("", range(5)) def test_bar(self, device): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_bar_{}', '{}.test_foo_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names)
def test_empty_param_names(self, device): # If no param names are passed, ensure things still work without parametrization. device = self.device_type class TestParametrized(TestCase): @parametrize("", []) def test_foo(self, device): pass @parametrize("", range(5)) def test_bar(self, device): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_bar_{}', '{}.test_foo_{}') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_default_name_non_primitive
def test_default_name_non_primitive(self, device): device = self.device_type class TestParametrized(TestCase): @parametrize("x", [1, .5, "foo", object()]) def test_default_names(self, device, x): pass @parametrize("x,y", [(1, object()), (object(), .5), (object(), object())]) def test_two_things_default_names(self, device, x, y): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = sorted(name.format(device_cls.__name__, device) for name in ( '{}.test_default_names_x_1_{}', '{}.test_default_names_x_0_5_{}', '{}.test_default_names_x_foo_{}', '{}.test_default_names_x3_{}', '{}.test_two_things_default_names_x_1_y0_{}', '{}.test_two_things_default_names_x1_y_0_5_{}', '{}.test_two_things_default_names_x2_y2_{}') ) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(expected_test_names, test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
test_name_fn
def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: '{}__{}'.format(x, y)) def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names)
def test_name_fn(self): class TestParametrized(TestCase): @parametrize("bias", [False, True], name_fn=lambda b: 'bias' if b else 'no_bias') def test_custom_names(self, bias): pass @parametrize("x", [1, 2], name_fn=str) @parametrize("y", [3, 4], name_fn=str) @parametrize("z", [5, 6], name_fn=str) def test_three_things_composition_custom_names(self, x, y, z): pass @parametrize("x,y", [(1, 2), (1, 3), (1, 4)], name_fn=lambda x, y: f'{x}__{y}') def test_two_things_custom_names_alternate(self, x, y): pass instantiate_parametrized_tests(TestParametrized) expected_test_names = [ 'TestParametrized.test_custom_names_bias', 'TestParametrized.test_custom_names_no_bias', 'TestParametrized.test_three_things_composition_custom_names_1_3_5', 'TestParametrized.test_three_things_composition_custom_names_1_3_6', 'TestParametrized.test_three_things_composition_custom_names_1_4_5', 'TestParametrized.test_three_things_composition_custom_names_1_4_6', 'TestParametrized.test_three_things_composition_custom_names_2_3_5', 'TestParametrized.test_three_things_composition_custom_names_2_3_6', 'TestParametrized.test_three_things_composition_custom_names_2_4_5', 'TestParametrized.test_three_things_composition_custom_names_2_4_6', 'TestParametrized.test_two_things_custom_names_alternate_1__2', 'TestParametrized.test_two_things_custom_names_alternate_1__3', 'TestParametrized.test_two_things_custom_names_alternate_1__4', ] test_names = _get_test_names_for_test_class(TestParametrized) self.assertEqual(expected_test_names, test_names)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrization(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_ops_composition_names
def test_ops_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @ops(op_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_op_parametrized(self, device, dtype, op, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [] for op in op_db: for dtype in op.supported_dtypes(torch.device(device).type): for flag_part in ('flag_disabled', 'flag_enabled'): expected_name = '{}.test_op_parametrized_{}_{}_{}_{}'.format( device_cls.__name__, op.formatted_name, flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
def test_ops_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @ops(op_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_op_parametrized(self, device, dtype, op, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [] for op in op_db: for dtype in op.supported_dtypes(torch.device(device).type): for flag_part in ('flag_disabled', 'flag_enabled'): expected_name = f'{device_cls.__name__}.test_op_parametrized_{op.formatted_name}_{flag_part}_{device}_{dtype_name(dtype)}' # noqa: B950 expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_modules_composition_names
def test_modules_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @modules(module_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_module_parametrized(self, device, dtype, module_info, training, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [] for module_info in module_db: for dtype in module_info.dtypes: for flag_part in ('flag_disabled', 'flag_enabled'): expected_train_modes = ( ['train_mode', 'eval_mode'] if module_info.train_and_eval_differ else ['']) for training_part in expected_train_modes: expected_name = '{}.test_module_parametrized_{}{}_{}_{}_{}'.format( device_cls.__name__, module_info.formatted_name, '_' + training_part if len(training_part) > 0 else '', flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
def test_modules_composition_names(self, device): device = self.device_type class TestParametrized(TestCase): @modules(module_db) @parametrize("flag", [False, True], lambda f: 'flag_enabled' if f else 'flag_disabled') def test_module_parametrized(self, device, dtype, module_info, training, flag): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [] for module_info in module_db: for dtype in module_info.dtypes: for flag_part in ('flag_disabled', 'flag_enabled'): expected_train_modes = ( ['train_mode', 'eval_mode'] if module_info.train_and_eval_differ else ['']) for training_part in expected_train_modes: expected_name = '{}.test_module_parametrized_{}{}_{}_{}_{}'.format( device_cls.__name__, module_info.formatted_name, '_' + training_part if len(training_part) > 0 else '', flag_part, device, dtype_name(dtype)) expected_test_names.append(expected_name) test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_ops_decorator_applies_op_and_param_specific_decorators
def test_ops_decorator_applies_op_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-op / per-param basis. # Create a test op, OpInfo entry, and decorator to apply. def test_op(x): return -x def test_dec(func): func._decorator_applied = True return func test_op_info = OpInfo( 'test_op', op=test_op, dtypes=floating_types(), sample_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_op_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @ops(op_db + [test_op_info]) @parametrize("x", [2, 3]) def test_op_param(self, device, dtype, op, x): pass @ops(op_db + [test_op_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, op, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_op_param_test_op_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name)) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
def test_ops_decorator_applies_op_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-op / per-param basis. # Create a test op, OpInfo entry, and decorator to apply. def test_op(x): return -x def test_dec(func): func._decorator_applied = True return func test_op_info = OpInfo( 'test_op', op=test_op, dtypes=floating_types(), sample_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_op_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @ops(op_db + [test_op_info]) @parametrize("x", [2, 3]) def test_op_param(self, device, dtype, op, x): pass @ops(op_db + [test_op_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, op, y): pass @decorateIf(test_dec, lambda p: p['dtype'] == torch.int16) @ops(op_db) def test_three(self, device, dtype, op): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_op_param_test_op_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name) or ('test_three' in name and name.endswith('_int16'))) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_three
device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_op_param_test_op_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name)) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
def test_three(self, device, dtype, op): pass
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestParametrized(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
test_modules_decorator_applies_module_and_param_specific_decorators
def test_modules_decorator_applies_module_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-module / per-param basis. # Create a test module, ModuleInfo entry, and decorator to apply. class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.x = torch.nn.Parameter(torch.randn(3)) def forward(self, y): return self.x + y def test_dec(func): func._decorator_applied = True return func test_module_info = ModuleInfo( TestModule, module_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_module_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @modules(module_db + [test_module_info]) @parametrize("x", [2, 3]) def test_module_param(self, device, dtype, module_info, training, x): pass @modules(module_db + [test_module_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, module_info, training, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_module_param_TestModule_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name)) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
def test_modules_decorator_applies_module_and_param_specific_decorators(self, device): # Test that decorators can be applied on a per-module / per-param basis. # Create a test module, ModuleInfo entry, and decorator to apply. class TestModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.x = torch.nn.Parameter(torch.randn(3)) def forward(self, y): return self.x + y def test_dec(func): func._decorator_applied = True return func test_module_info = ModuleInfo( TestModule, module_inputs_func=lambda _: [], decorators=[ DecorateInfo(test_dec, 'TestParametrized', 'test_module_param', device_type='cpu', dtypes=[torch.float64], active_if=lambda p: p['x'] == 2) ]) class TestParametrized(TestCase): @modules(module_db + [test_module_info]) @parametrize("x", [2, 3]) def test_module_param(self, device, dtype, module_info, training, x): pass @modules(module_db + [test_module_info]) @parametrize("y", [ subtest(4), subtest(5, decorators=[test_dec])]) def test_other(self, device, dtype, module_info, training, y): pass @decorateIf(test_dec, lambda p: p['dtype'] == torch.float64) @modules(module_db) def test_three(self, device, dtype, module_info): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_module_param_TestModule_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name) or ('test_three' in name and name.endswith('float64'))) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
__init__
def __init__(self): super().__init__() self.x = torch.nn.Parameter(torch.randn(3))
def __init__(self) -> None: super().__init__() self.x = torch.nn.Parameter(torch.randn(3))
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestModule(torch.nn.Module):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_three
device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = (name == 'test_module_param_TestModule_x_2_cpu_float64' or ('test_other' in name and 'y_5' in name))
def test_three(self, device, dtype, op): pass
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestParametrized(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
test_param_specific_decoration
def test_param_specific_decoration(self, device): def test_dec(func): func._decorator_applied = True return func class TestParametrized(TestCase): @decorateIf(test_dec, lambda params: params["x"] == 1 and params["y"]) @parametrize("x", range(5)) @parametrize("y", [False, True]) def test_param(self, x, y): pass device = self.device_type instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] for test_func, name in _get_test_funcs_for_test_class(device_cls): should_apply = ('test_param_x_1_y_True' in name) self.assertEqual(hasattr(test_func, '_decorator_applied'), should_apply)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_testing.py
test_dtypes_composition_valid
def test_dtypes_composition_valid(self, device): # Test checks that @parametrize and @dtypes compose as expected when @parametrize # doesn't set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("x", range(3)) def test_parametrized(self, x, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()['TestParametrized{}'.format(device.upper())] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_parametrized_x_0_{}_float32', '{}.test_parametrized_x_0_{}_float64', '{}.test_parametrized_x_1_{}_float32', '{}.test_parametrized_x_1_{}_float64', '{}.test_parametrized_x_2_{}_float32', '{}.test_parametrized_x_2_{}_float64') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
def test_dtypes_composition_valid(self, device): # Test checks that @parametrize and @dtypes compose as expected when @parametrize # doesn't set dtype. device = self.device_type class TestParametrized(TestCase): @dtypes(torch.float32, torch.float64) @parametrize("x", range(3)) def test_parametrized(self, x, dtype): pass instantiate_device_type_tests(TestParametrized, locals(), only_for=device) device_cls = locals()[f'TestParametrized{device.upper()}'] expected_test_names = [name.format(device_cls.__name__, device) for name in ( '{}.test_parametrized_x_0_{}_float32', '{}.test_parametrized_x_0_{}_float64', '{}.test_parametrized_x_1_{}_float32', '{}.test_parametrized_x_1_{}_float64', '{}.test_parametrized_x_2_{}_float32', '{}.test_parametrized_x_2_{}_float64') ] test_names = _get_test_names_for_test_class(device_cls) self.assertEqual(sorted(expected_test_names), sorted(test_names))
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestTestParametrizationDeviceType(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestTestParametrizationDeviceType(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_testing.py
test_opinfo_error_generators
def test_opinfo_error_generators(self, device, op): # Test op.error_inputs doesn't generate multiple inputs when called samples = op.error_inputs(device) self.assertIsInstance(samples, Generator)
def test_opinfo_error_generators(self, device, op): # Test op.error_inputs doesn't generate multiple inputs when called samples = op.error_inputs(device) self.assertIsInstance(samples, Iterator)
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple, Generator import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, skipIfRocm, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo class TestOpInfoSampleFunctions(TestCase):
import collections import doctest import functools import importlib import inspect import itertools import math import os import re import subprocess import sys import unittest.mock from typing import Any, Callable, Iterator, List, Tuple import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (IS_FBCODE, IS_JETSON, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, TestCase, run_tests, slowTest, parametrize, subtest, instantiate_parametrized_tests, dtype_name, TEST_WITH_ROCM, decorateIf) from torch.testing._internal.common_device_type import \ (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, get_device_type_test_bases, instantiate_device_type_tests, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, deviceCountAtLeast, ops, expectedFailureMeta, OpDTypes) from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal import opinfo from torch.testing._internal.common_dtype import all_types_and_complex_and, floating_types from torch.testing._internal.common_modules import modules, module_db, ModuleInfo from torch.testing._internal.opinfo.core import SampleInput, DecorateInfo, OpInfo import operator class TestOpInfoSampleFunctions(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_dtypetensor_warnings
def test_dtypetensor_warnings(self, device): msg = 'The torch.cuda.*DtypeTensor constructors are no longer recommended' with self.assertWarnsOnceRegex(UserWarning, msg): t = torch.cuda.FloatTensor([0]) with self.assertWarnsOnceRegex(UserWarning, msg): t = torch.cuda.DoubleTensor([0])
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_set_default_tensor_type_warnings
# TODO: this test should be in test_nn.py
def test_set_default_tensor_type_warnings(self, device): msg = '.*is deprecated as of PyTorch 2.1, please use torch.set_default_dtype().*' default_type = torch.tensor([]).type() try: with self.assertWarnsOnceRegex(UserWarning, msg): torch.set_default_tensor_type(torch.FloatTensor) if torch.cuda.is_available(): with self.assertWarnsOnceRegex(UserWarning, msg): torch.set_default_tensor_type(torch.cuda.FloatTensor) finally: torch.set_default_tensor_type(default_type) # TODO: this test should be in test_nn.py
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_scalar_check
def test_scalar_check(self, device): zero_d = torch.randn((), device=device) one_d = torch.randn((1,), device=device) # remainder self.assertEqual((), torch.remainder(zero_d, zero_d).shape) self.assertEqual((), torch.remainder(zero_d, 2).shape) self.assertEqual((1,), torch.remainder(zero_d, one_d).shape) self.assertEqual((1,), torch.remainder(one_d, zero_d).shape) # fmod self.assertEqual((), torch.fmod(zero_d, zero_d).shape) self.assertEqual((), torch.fmod(zero_d, 2).shape) self.assertEqual((1,), torch.fmod(zero_d, one_d).shape) self.assertEqual((1,), torch.fmod(one_d, zero_d).shape) # exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal self.assertEqual((), torch.exp(zero_d).shape) self.assertEqual((), torch.cos(zero_d).shape) self.assertEqual((), torch.cosh(zero_d).shape) self.assertEqual((), torch.tan(zero_d).shape) self.assertEqual((), torch.atan(zero_d).shape) self.assertEqual((), torch.acosh(zero_d).shape) self.assertEqual((), torch.asinh(zero_d).shape) self.assertEqual((), torch.atanh(zero_d).shape) self.assertEqual((), torch.tanh(zero_d).shape) self.assertEqual((), torch.erf(zero_d).shape) self.assertEqual((), torch.erfc(zero_d).shape) self.assertEqual((), torch.reciprocal(zero_d).shape) self.assertEqual((1,), torch.exp(one_d).shape) self.assertEqual((1,), torch.cos(one_d).shape) self.assertEqual((1,), torch.cosh(one_d).shape) self.assertEqual((1,), torch.tan(one_d).shape) self.assertEqual((1,), torch.atan(one_d).shape) self.assertEqual((1,), torch.acosh(one_d).shape) self.assertEqual((1,), torch.asinh(one_d).shape) self.assertEqual((1,), torch.atanh(one_d).shape) self.assertEqual((1,), torch.tanh(one_d).shape) self.assertEqual((1,), torch.erf(one_d).shape) self.assertEqual((1,), torch.erfc(one_d).shape) self.assertEqual((1,), torch.reciprocal(one_d).shape) # clamp self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape) self.assertEqual((), torch.clamp(zero_d, min=0).shape) self.assertEqual((), torch.clamp(zero_d, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0).shape) self.assertEqual((1,), torch.clamp(one_d, max=1).shape) # cumsum, cumprod, cummax, cummin self.assertEqual((), torch.logcumsumexp(zero_d, 0).shape) self.assertEqual((), torch.cumsum(zero_d, 0).shape) self.assertEqual((), torch.cumprod(zero_d, 0).shape) self.assertEqual((), torch.cummax(zero_d, 0)[0].shape) self.assertEqual((), torch.cummin(zero_d, 0)[0].shape) # sort, topk self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)]) # max, min self.assertEqual((), torch.max(zero_d, zero_d).shape) self.assertEqual((1,), torch.max(one_d, zero_d).shape) self.assertEqual((1,), torch.max(zero_d, one_d).shape) self.assertEqual((), torch.min(zero_d, zero_d).shape) self.assertEqual((1,), torch.min(one_d, zero_d).shape) self.assertEqual((1,), torch.min(zero_d, one_d).shape) zero_d_int = torch.tensor(1, device=device) one_d_int = torch.tensor([1], device=device) # lshift, rshift self.assertEqual((), (zero_d_int >> zero_d_int).shape) self.assertEqual((), (zero_d_int >> 1).shape) self.assertEqual((1,), (one_d_int >> zero_d_int).shape) self.assertEqual((1,), (zero_d_int >> one_d_int).shape) self.assertEqual((1,), (one_d_int >> 1).shape) self.assertEqual((), (zero_d_int << zero_d_int).shape) self.assertEqual((), (zero_d_int << 1).shape) self.assertEqual((1,), (one_d_int << zero_d_int).shape) self.assertEqual((1,), (zero_d_int << one_d_int).shape) self.assertEqual((1,), (one_d_int << 1).shape) # or self.assertEqual((), (zero_d_int | zero_d_int).shape) self.assertEqual((), (zero_d_int | 1).shape) self.assertEqual((1,), (one_d_int | zero_d_int).shape) self.assertEqual((1,), (zero_d_int | one_d_int).shape) self.assertEqual((1,), (one_d_int | 1).shape) # and self.assertEqual((), (zero_d_int & zero_d_int).shape) self.assertEqual((), (zero_d_int & 1).shape) self.assertEqual((1,), (one_d_int & zero_d_int).shape) self.assertEqual((1,), (zero_d_int & one_d_int).shape) self.assertEqual((1,), (one_d_int & 1).shape) # clone self.assertEqual((), zero_d.clone().shape) zero_d_bool = torch.tensor(True, device=device) one_d_bool = torch.tensor([True], device=device) # masked_select self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape) self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape) self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape) zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device) one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device) with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual((1,), torch.masked_select(zero_d_uint8, zero_d_uint8).shape) self.assertEqual((1,), torch.masked_select(zero_d_uint8, one_d_uint8).shape) self.assertEqual((1,), torch.masked_select(one_d_uint8, zero_d_uint8).shape) # mode self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)]) # max self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)]) # amax self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=False).shape) self.assertEqual((1,), torch.amax(one_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amax(one_d, dim=0, keepdim=False).shape) # min self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)]) # amin self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=False).shape) self.assertEqual((1,), torch.amin(one_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amin(one_d, dim=0, keepdim=False).shape) # set_ zero_d_clone = zero_d.clone() one_d_clone = one_d.clone() self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), zero_d.clone().set_(zero_d).shape) self.assertEqual((), one_d.clone().set_(zero_d).shape) self.assertEqual((1,), zero_d.clone().set_(one_d).shape) self.assertEqual((1,), one_d.clone().set_(one_d).shape) # take self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape) self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape) # gather self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) # normal # std must be >= 0 zero_d_ge_0 = torch.rand((), device=device) # documentation says out shape matches shape of mean self.assertEqual((), torch.normal(zero_d, zero_d_ge_0).shape) self.assertEqual((1,), torch.normal(one_d, zero_d_ge_0).shape) self.assertEqual((), torch.normal(1, zero_d_ge_0).shape) self.assertEqual((), torch.normal(zero_d, 1).shape) self.assertEqual((1,), torch.normal(one_d, 1).shape) # TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480. # self.assertEqual((), torch.normal(zero_d, one_d).shape) # self.assertEqual((), torch.normal(1, one_d).shape) # convolutions. Yes, we are testing nn.functional here; seems justified # given its similar to the other tests w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_() self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1)) self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2)) # nll_loss -- verify input can't be 0-dimensional. self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none')) self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none')) # verify output is 0-dimensional when reduction != 'none' for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)), (torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))): self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape) # multilabel_margin_loss for input in (zero_d, one_d, torch.randn(1, 1, device=device)): for target in (torch.tensor(0, device=device), torch.tensor([0], device=device), torch.tensor([[0]], device=device)): if (input.dim() <= 1 and target.dim() <= 1) or (input.dim() == 2 and target.dim() == 2): output_shape = (target.shape[0],) if target.dim() == 2 else () self.assertEqual(output_shape, torch.nn.functional.multilabel_margin_loss(input, target, reduction='none').shape) self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum').shape) else: self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='none')) self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean')) self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum')) # multi_margin_loss for input in (zero_d, one_d, torch.randn(1, 1, device=device)): for target in (torch.tensor(0, device=device), torch.tensor([0], device=device)): self.assertEqual(target.shape, torch.nn.functional.multi_margin_loss(input, target, reduction='none').shape) self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='sum').shape) # Test that `TORCH_CHECK_TENSOR_ALL` raises errors that propagate from C++ to Python
def test_scalar_check(self, device): zero_d = torch.randn((), device=device) one_d = torch.randn((1,), device=device) # remainder self.assertEqual((), torch.remainder(zero_d, zero_d).shape) self.assertEqual((), torch.remainder(zero_d, 2).shape) self.assertEqual((1,), torch.remainder(zero_d, one_d).shape) self.assertEqual((1,), torch.remainder(one_d, zero_d).shape) # fmod self.assertEqual((), torch.fmod(zero_d, zero_d).shape) self.assertEqual((), torch.fmod(zero_d, 2).shape) self.assertEqual((1,), torch.fmod(zero_d, one_d).shape) self.assertEqual((1,), torch.fmod(one_d, zero_d).shape) # exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal self.assertEqual((), torch.exp(zero_d).shape) self.assertEqual((), torch.cos(zero_d).shape) self.assertEqual((), torch.cosh(zero_d).shape) self.assertEqual((), torch.tan(zero_d).shape) self.assertEqual((), torch.atan(zero_d).shape) self.assertEqual((), torch.acosh(zero_d).shape) self.assertEqual((), torch.asinh(zero_d).shape) self.assertEqual((), torch.atanh(zero_d).shape) self.assertEqual((), torch.tanh(zero_d).shape) self.assertEqual((), torch.erf(zero_d).shape) self.assertEqual((), torch.erfc(zero_d).shape) self.assertEqual((), torch.reciprocal(zero_d).shape) self.assertEqual((1,), torch.exp(one_d).shape) self.assertEqual((1,), torch.cos(one_d).shape) self.assertEqual((1,), torch.cosh(one_d).shape) self.assertEqual((1,), torch.tan(one_d).shape) self.assertEqual((1,), torch.atan(one_d).shape) self.assertEqual((1,), torch.acosh(one_d).shape) self.assertEqual((1,), torch.asinh(one_d).shape) self.assertEqual((1,), torch.atanh(one_d).shape) self.assertEqual((1,), torch.tanh(one_d).shape) self.assertEqual((1,), torch.erf(one_d).shape) self.assertEqual((1,), torch.erfc(one_d).shape) self.assertEqual((1,), torch.reciprocal(one_d).shape) # clamp self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape) self.assertEqual((), torch.clamp(zero_d, min=0).shape) self.assertEqual((), torch.clamp(zero_d, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0).shape) self.assertEqual((1,), torch.clamp(one_d, max=1).shape) # cumsum, cumprod, cummax, cummin self.assertEqual((), torch.logcumsumexp(zero_d, 0).shape) self.assertEqual((), torch.cumsum(zero_d, 0).shape) self.assertEqual((), torch.cumprod(zero_d, 0).shape) self.assertEqual((), torch.cummax(zero_d, 0)[0].shape) self.assertEqual((), torch.cummin(zero_d, 0)[0].shape) # sort, topk self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)]) # max, min self.assertEqual((), torch.max(zero_d, zero_d).shape) self.assertEqual((1,), torch.max(one_d, zero_d).shape) self.assertEqual((1,), torch.max(zero_d, one_d).shape) self.assertEqual((), torch.min(zero_d, zero_d).shape) self.assertEqual((1,), torch.min(one_d, zero_d).shape) self.assertEqual((1,), torch.min(zero_d, one_d).shape) zero_d_int = torch.tensor(1, device=device) one_d_int = torch.tensor([1], device=device) # lshift, rshift self.assertEqual((), (zero_d_int >> zero_d_int).shape) self.assertEqual((), (zero_d_int >> 1).shape) self.assertEqual((1,), (one_d_int >> zero_d_int).shape) self.assertEqual((1,), (zero_d_int >> one_d_int).shape) self.assertEqual((1,), (one_d_int >> 1).shape) self.assertEqual((), (zero_d_int << zero_d_int).shape) self.assertEqual((), (zero_d_int << 1).shape) self.assertEqual((1,), (one_d_int << zero_d_int).shape) self.assertEqual((1,), (zero_d_int << one_d_int).shape) self.assertEqual((1,), (one_d_int << 1).shape) # or self.assertEqual((), (zero_d_int | zero_d_int).shape) self.assertEqual((), (zero_d_int | 1).shape) self.assertEqual((1,), (one_d_int | zero_d_int).shape) self.assertEqual((1,), (zero_d_int | one_d_int).shape) self.assertEqual((1,), (one_d_int | 1).shape) # and self.assertEqual((), (zero_d_int & zero_d_int).shape) self.assertEqual((), (zero_d_int & 1).shape) self.assertEqual((1,), (one_d_int & zero_d_int).shape) self.assertEqual((1,), (zero_d_int & one_d_int).shape) self.assertEqual((1,), (one_d_int & 1).shape) # clone self.assertEqual((), zero_d.clone().shape) zero_d_bool = torch.tensor(True, device=device) one_d_bool = torch.tensor([True], device=device) # masked_select self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape) self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape) self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape) zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device) one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device) # mode self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)]) # max self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)]) # amax self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=False).shape) self.assertEqual((1,), torch.amax(one_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amax(one_d, dim=0, keepdim=False).shape) # min self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)]) # amin self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=False).shape) self.assertEqual((1,), torch.amin(one_d, dim=0, keepdim=True).shape) self.assertEqual((), torch.amin(one_d, dim=0, keepdim=False).shape) # set_ zero_d_clone = zero_d.clone() one_d_clone = one_d.clone() self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), zero_d.clone().set_(zero_d).shape) self.assertEqual((), one_d.clone().set_(zero_d).shape) self.assertEqual((1,), zero_d.clone().set_(one_d).shape) self.assertEqual((1,), one_d.clone().set_(one_d).shape) # take self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape) self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape) # gather self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) # normal # std must be >= 0 zero_d_ge_0 = torch.rand((), device=device) # documentation says out shape matches shape of mean self.assertEqual((), torch.normal(zero_d, zero_d_ge_0).shape) self.assertEqual((1,), torch.normal(one_d, zero_d_ge_0).shape) self.assertEqual((), torch.normal(1, zero_d_ge_0).shape) self.assertEqual((), torch.normal(zero_d, 1).shape) self.assertEqual((1,), torch.normal(one_d, 1).shape) # TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480. # self.assertEqual((), torch.normal(zero_d, one_d).shape) # self.assertEqual((), torch.normal(1, one_d).shape) # convolutions. Yes, we are testing nn.functional here; seems justified # given its similar to the other tests w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_() self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1)) self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2)) # nll_loss -- verify input can't be 0-dimensional. self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none')) self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none')) # verify output is 0-dimensional when reduction != 'none' for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)), (torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))): self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape) # Test that `torch._check_tensor_all` raises errors in the correct cases
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_check_tensor_all
def test_check_tensor_all(self, device): default_message = 'Expected cond to be True' check_fn = torch._check_tensor_all expected_error = RuntimeError # cond must be a tensor with self.assertRaisesRegex(TypeError, 'cond must be a tensor'): check_fn(True) # cond tensor must be boolean with self.assertRaisesRegex(TypeError, 'cond tensor must have dtype torch.bool'): check_fn(torch.ones(1, device=device)) test_sizes = [ (), (1,), (10,), (1, 1), (1, 10), (10, 1), (10, 10), (1, 1, 1), (10, 1, 1), (1, 10, 1), (10, 10, 10), ] for size in test_sizes: t_all_true = torch.ones(size, dtype=torch.bool, device=device) t_all_false = torch.zeros(size, dtype=torch.bool, device=device) # Should not raise error check_fn(t_all_true) with self.assertRaisesRegex(expected_error, default_message): check_fn(t_all_false) if t_all_true.numel() > 1: t_all_true_but_one = t_all_true.clone() # Choose a random element to set to false idx = (random.choice(range(dim_size)) for dim_size in size) t_all_true_but_one[(..., *idx)] = False with self.assertRaisesRegex(expected_error, default_message): check_fn(t_all_true_but_one) # Test a simple failure message message = 'message' with self.assertRaisesRegex(expected_error, message): check_fn(t_all_false, lambda: message) # Test message with tensor def message(): return torch.arange(4) with self.assertRaisesRegex(expected_error, re.escape(str(message()))): check_fn(t_all_false, message) # Test format string message def message(): return f"{'test'} {[1, 2, 'a', True]} {True} {100} {torch.arange(4)}" with self.assertRaisesRegex(expected_error, re.escape(str(message()))): check_fn(t_all_false, message) # Test that `TORCH_CHECK_TENSOR_ALL` raises errors that propagate from C++ to Python
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
_cond_fn
def _cond_fn(x): if x: # taking boolean value of a tensor synchronizes return x else: return 2 * x # prepare inputs for subsequent ops size = 4 x = torch.rand(size, device=device) y = torch.rand((), device=device) ind = torch.randint(size, (3,), device=device) ind_cpu = ind.cpu() repeats = torch.full((1,), 2, device=device) mask = torch.randint(2, (size,), device=device, dtype=bool) expect_no_sync = (lambda: _ind_put_fn(x, mask, 1.), lambda: _ind_put_fn(x, ind, y), lambda: _ind_get_fn(x, ind), lambda: torch.nn.functional.one_hot(ind, num_classes=size), lambda: torch.randperm(20000, device=device), lambda: torch.repeat_interleave(x, 2, output_size=2 * size), lambda: torch.repeat_interleave(x, repeats, output_size=2 * size), lambda: torch.any(y)) expect_sync = (lambda: _ind_put_fn(x, mask, y), lambda: _ind_put_fn(x, ind_cpu, y), lambda: _ind_get_fn(x, mask), lambda: _ind_get_fn(x, ind_cpu), lambda: x.nonzero(), lambda: _cond_fn(y), lambda: torch.nn.functional.one_hot(ind), lambda: torch.repeat_interleave(x, 2), lambda: torch.repeat_interleave(x, repeats)) for f, level in product(expect_no_sync, (1, 2)): _no_sync_helper(f, level) for f, level in product(expect_sync, (1, 2)): _sync_raises_helper(f, level)
def _cond_fn(x): if x: # taking boolean value of a tensor synchronizes return x else: return 2 * x # prepare inputs for subsequent ops size = 4 x = torch.rand(size, device=device) y = torch.rand((), device=device) ind = torch.randint(size, (3,), device=device) ind_cpu = ind.cpu() repeats = torch.full((1,), 2, device=device) mask = torch.randint(2, (size,), device=device, dtype=bool) expect_no_sync = (lambda: _ind_put_fn(x, mask, 1.), lambda: _ind_put_fn(x, ind, y), lambda: _ind_get_fn(x, ind), lambda: torch.nn.functional.one_hot(ind, num_classes=size), lambda: torch.randperm(20000, device=device), lambda: torch.repeat_interleave(x, 2, output_size=2 * size), lambda: torch.repeat_interleave(x, repeats, output_size=2 * size), lambda: torch.any(y)) expect_sync = (lambda: _ind_put_fn(x, mask, y), lambda: _ind_put_fn(x, ind_cpu, y), lambda: _ind_get_fn(x, mask), lambda: _ind_get_fn(x, ind_cpu), lambda: x.nonzero(), lambda: _cond_fn(y), lambda: torch.nn.functional.one_hot(ind), lambda: torch.repeat_interleave(x, repeats)) for f, level in product(expect_no_sync, (1, 2)): _no_sync_helper(f, level) for f, level in product(expect_sync, (1, 2)): _sync_raises_helper(f, level)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_gradient_spacing_list_length_error
def test_gradient_spacing_list_length_error(self, device, dtype): t = make_tensor((2, 2), device=device, dtype=dtype) spacing = (make_tensor((2,), device=device, dtype=dtype),) with self.assertRaisesRegex(RuntimeError, r'expected spacing to be'): torch.gradient(t, spacing=spacing) spacing = (make_tensor((2,), device=device, dtype=dtype),) * 2 torch.gradient(t, spacing=spacing) spacing = (make_tensor((2,), device=device, dtype=dtype),) * 3 with self.assertRaisesRegex(RuntimeError, r'expected spacing to be'): torch.gradient(t, spacing=spacing) spacing = (2,) with self.assertRaisesRegex(RuntimeError, r'expected spacing to be'): torch.gradient(t, spacing=spacing) spacing = (2, 2) torch.gradient(t, spacing=spacing) spacing = (2, 2, 2) with self.assertRaisesRegex(RuntimeError, r'expected spacing to be'): torch.gradient(t, spacing=spacing)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_masked_select
def test_masked_select(self, device, dtype): if device == 'cpu': warn = 'masked_select received a mask with dtype torch.uint8,' else: warn = 'indexing with dtype torch.uint8 is now deprecated, pl' for maskType in [torch.uint8, torch.bool]: num_src = 10 src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dtype, device=device) mask = torch.randint(2, (num_src,), device=device, dtype=maskType) with warnings.catch_warnings(record=True) as w: dst = src.masked_select(mask) if maskType is torch.uint8: self.assertEqual(len(w), 1) self.assertEqual(str(w[0].message)[0:53], str(warn)) dst2 = [] for i in range(num_src): if mask[i]: dst2 += [src[i]] self.assertEqual(dst, torch.tensor(dst2), atol=0, rtol=0) dst3 = torch.empty(0, device=device, dtype=dtype) torch.masked_select(src, mask, out=dst3) self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), atol=0, rtol=0) # Since half on CPU is not supported, need to skip the remaining test cases if dtype == torch.half and torch.device(device).type == 'cpu': return # Ensure that masks are expanded to match tensor properly a = torch.rand(100, 100, device=device).mul(100).to(dtype) mask_first_el_each_row = torch.zeros(100, device=device, dtype=torch.bool) mask_first_el_each_row[0] = True a_masked = a.masked_select(mask_first_el_each_row) self.assertEqual(a_masked, a[:, 0]) mask_first_row = torch.zeros(100, 1, device=device, dtype=torch.bool) mask_first_row[0][0] = True a_masked = a.masked_select(mask_first_row) self.assertEqual(a_masked, a[0, :]) # Ensure that tensor is expanded to match mask properly a = torch.rand(100, device=device).mul(100).to(dtype) mask_copy_3_times = torch.tensor([[True], [True], [False], [True]], device=device) a_masked = a.masked_select(mask_copy_3_times) self.assertEqual(a_masked, a.unsqueeze(0).expand(3, 100).flatten()) # FIXME: find a test suite for the masked select operator
def test_masked_select(self, device, dtype): if device == 'cpu': warn = 'masked_select received a mask with dtype torch.uint8,' else: warn = 'indexing with dtype torch.uint8 is now deprecated, pl' for maskType in integral_types_and(torch.bool): num_src = 10 src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dtype, device=device) mask = torch.randint(2, (num_src,), device=device, dtype=maskType) if maskType is not torch.bool: with self.assertRaisesRegex(RuntimeError, r'expected BoolTensor for mask'): dst = src.masked_select(mask) continue else: dst = src.masked_select(mask) dst2 = [] for i in range(num_src): if mask[i]: dst2 += [src[i]] self.assertEqual(dst, torch.tensor(dst2), atol=0, rtol=0) dst3 = torch.empty(0, device=device, dtype=dtype) torch.masked_select(src, mask, out=dst3) self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), atol=0, rtol=0) # Since half on CPU is not supported, need to skip the remaining test cases if dtype == torch.half and torch.device(device).type == 'cpu': return # Ensure that masks are expanded to match tensor properly a = torch.rand(100, 100, device=device).mul(100).to(dtype) mask_first_el_each_row = torch.zeros(100, device=device, dtype=torch.bool) mask_first_el_each_row[0] = True a_masked = a.masked_select(mask_first_el_each_row) self.assertEqual(a_masked, a[:, 0]) mask_first_row = torch.zeros(100, 1, device=device, dtype=torch.bool) mask_first_row[0][0] = True a_masked = a.masked_select(mask_first_row) self.assertEqual(a_masked, a[0, :]) # Ensure that tensor is expanded to match mask properly a = torch.rand(100, device=device).mul(100).to(dtype) mask_copy_3_times = torch.tensor([[True], [True], [False], [True]], device=device) a_masked = a.masked_select(mask_copy_3_times) self.assertEqual(a_masked, a.unsqueeze(0).expand(3, 100).flatten()) # FIXME: find a test suite for the masked select operator
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_masked_fill
def test_masked_fill(self, device, dtypes): dtype = dtypes[0] mask_dtype = dtypes[1] with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") num_dest = 10 dst = torch.zeros(num_dest, dtype=dtype) mask = torch.randint(2, (num_dest,), dtype=mask_dtype) val = random.random() dst2 = dst.clone() dst.masked_fill_(mask, val) for i in range(num_dest): if mask[i]: dst2[i] = val self.assertEqual(dst, dst2, atol=0, rtol=0) # test non-contiguous case dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1)) dst2 = dst.contiguous() if dtype.is_complex: mask = dst.abs() > 0 else: mask = dst > 0 self.assertTrue(not dst.is_contiguous()) self.assertTrue(dst2.is_contiguous()) dst.masked_fill_(mask.to(mask_dtype), val) dst2.masked_fill_(mask.to(mask_dtype), val) self.assertEqual(dst, dst2, atol=0, rtol=0) if mask_dtype == torch.uint8: self.assertEqual(len(w), 3) warn = 'masked_fill_ received a mask with dtype torch.uint8,' for wi in w: self.assertEqual(str(wi.message)[0:52], str(warn)) else: self.assertEqual(len(w), 0) # FIXME: find a test suite for the masked fill operator
def test_masked_fill(self, device, dtypes): dtype = dtypes[0] mask_dtype = dtypes[1] num_dest = 10 dst = torch.zeros(num_dest, dtype=dtype) mask = torch.randint(2, (num_dest,), dtype=mask_dtype) val = random.random() dst2 = dst.clone() if mask_dtype is not torch.bool: with self.assertRaisesRegex(RuntimeError, 'only supports boolean masks'): dst.masked_fill_(mask, val) return dst.masked_fill_(mask, val) for i in range(num_dest): if mask[i]: dst2[i] = val self.assertEqual(dst, dst2, atol=0, rtol=0) # test non-contiguous case dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1)) dst2 = dst.contiguous() if dtype.is_complex: mask = dst.abs() > 0 else: mask = dst > 0 self.assertTrue(not dst.is_contiguous()) self.assertTrue(dst2.is_contiguous()) dst.masked_fill_(mask.to(mask_dtype), val) dst2.masked_fill_(mask.to(mask_dtype), val) self.assertEqual(dst, dst2, atol=0, rtol=0) # FIXME: find a test suite for the masked fill operator
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
step
def step(self, closure=None, *, grad_scaler=None): self.tester.assertTrue(isinstance(grad_scaler, torch.amp.GradScaler)) self.tester.assertFalse(hasattr(self, "grad_scale")) self.tester.assertFalse(hasattr(self, "found_inf"))
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class Optimizer1(_PlaceHolderOptimizer): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
step
def step(self, closure=None, *, grad_scaler=None): self.tester.assertTrue(isinstance(grad_scaler, torch.amp.GradScaler)) self.tester.assertFalse(hasattr(self, "grad_scale")) self.tester.assertFalse(hasattr(self, "found_inf"))
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class Optimizer1(_PlaceHolderOptimizer): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_grad_scaling_state_dict
def test_grad_scaling_state_dict(self, device): device = torch.device(device) GradScaler = partial(torch.GradScaler, device=device.type) for lazy_init_scale in True, False: s0 = GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2) s1 = GradScaler(init_scale=6., growth_factor=7., backoff_factor=.8, growth_interval=1) # sets a random value for load_state_dict to overwrite s1._init_growth_tracker = 7 if lazy_init_scale: # Dummy scale() call to ensure the scale tensor is lazily initialized. s1.scale(torch.full((1,), 4.0, dtype=torch.float32, device=device)) if "cuda" == device.type: self.assertTrue(isinstance(s1._scale, torch.cuda.FloatTensor)) else: self.assertTrue(isinstance(s1._scale, torch.FloatTensor)) s1.load_state_dict(s0.state_dict()) self.assertEqual(s1.get_scale(), 3.) self.assertEqual(s1.get_growth_factor(), 4.) self.assertEqual(s1.get_backoff_factor(), .5) self.assertEqual(s1.get_growth_interval(), 2) self.assertEqual(s1._init_growth_tracker, 0) # _run_scaling_case generalizes some single-optimizer test logic to avoid too much copy-pasting below.
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_check
def test_check(self): test_cases = [ # check function, expected error (torch._check, RuntimeError), (torch._check_index, IndexError), (torch._check_value, ValueError), (torch._check_type, TypeError), (torch._check_not_implemented, NotImplementedError), ] for check_fn, expected_error in test_cases: # cond=True should not raise an error check_fn(True) # Test default failure message for cond=False default_message = 'Expected cond to be True' with self.assertRaisesRegex(expected_error, default_message): check_fn(False) # Test a simple failure message message = 'message' with self.assertRaisesRegex(expected_error, message): check_fn(False, lambda: message) # Test message with tensor def message(): return torch.arange(4) with self.assertRaisesRegex(expected_error, re.escape(str(message()))): check_fn(False, message) # Test format string message def message(): return f"{'test'} {[1, 2, 'a', True]} {True} {100} {torch.arange(4)}" with self.assertRaisesRegex(expected_error, re.escape(str(message()))): check_fn(False, message) # Test incorrect `cond` arg type with self.assertRaisesRegex(TypeError, 'cond must be a bool'): check_fn('wrong type') with self.assertRaisesRegex(TypeError, 'cond must be a bool'): check_fn(torch.tensor(True)) # FIXME: move to indexing test suite
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_pickle_gradscaler
def test_pickle_gradscaler(self, device): # This test is not in test_cuda.py because it should pass in 3 cases: # 1. cuda is not available. # 2. cuda is available but device is not cuda. # 3. cuda is available and device is cuda. # In case 1, a and b disable themselves on construction and shouldn't try to pickle workhorse attributes. # In case 2, a and b are enabled. Workhorse attributes participate in pickling, but none are lazy-inited # to cuda Tensors, because I don't want to do cuda things if device is not cuda. # In case 3, a and b are enabled and we may also try lazy-initing _scale to a cuda tensor. device = torch.device(device) try_lazy_inits = (True, False) if device.type == "cuda" else (False,) for lazy_init_scale in try_lazy_inits: a = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2) self.assertTrue(not a.is_enabled() if torch.cuda.amp.common.amp_definitely_not_available() else a.is_enabled()) if lazy_init_scale: # Dummy a.scale() call lazy-inits a._scale Tensor. a.scale(torch.tensor([4.0], dtype=torch.float32, device=device)) self.assertTrue(isinstance(a._scale, torch.cuda.FloatTensor)) # The following three lines should work whether or not cuda is available. serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertEqual(b.is_enabled(), a.is_enabled()) if a.is_enabled(): self.assertEqual(b.get_scale(), 3.) self.assertEqual(b.get_growth_factor(), 4.) self.assertEqual(b.get_backoff_factor(), .5) self.assertEqual(b.get_growth_interval(), 2) self.assertEqual(b._init_growth_tracker, 0) # supplies a dummy key to test the defaultdict's default_factory self.assertEqual(b._per_optimizer_states["fdsa"], torch.cuda.amp.grad_scaler._refresh_per_optimizer_state()) if lazy_init_scale: self.assertEqual(b.scale(torch.tensor([4.0], dtype=torch.float32, device=device)), 12.0) # FIXME: move to test distributions
def test_pickle_gradscaler(self, device): # This test should pass in 3 cases for cuda: # 1. cuda is not available. # 2. cuda is available but device is not cuda. # 3. cuda is available and device is cuda. # In case 1, a and b disable themselves on construction and shouldn't try to pickle workhorse attributes. # In case 2, a and b are enabled. Workhorse attributes participate in pickling, but none are lazy-inited # to cuda Tensors, because I don't want to do cuda things if device is not cuda. # In case 3, a and b are enabled and we may also try lazy-initing _scale to a cuda tensor. device = torch.device(device) try_lazy_inits = (True, False) GradScaler = partial(torch.GradScaler, device=device.type) for lazy_init_scale in try_lazy_inits: a = GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2) if device.type == "cuda": self.assertTrue(not a.is_enabled() if torch.cuda.amp.common.amp_definitely_not_available() else a.is_enabled()) else: self.assertTrue(a.is_enabled()) if lazy_init_scale: # Dummy a.scale() call lazy-inits a._scale Tensor. a.scale(torch.tensor([4.0], dtype=torch.float32, device=device)) self.assertTrue(a._scale.device.type == device.type) # The following three lines should work whether or not cuda is available. serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertEqual(b.is_enabled(), a.is_enabled()) if a.is_enabled(): self.assertEqual(b.get_scale(), 3.) self.assertEqual(b.get_growth_factor(), 4.) self.assertEqual(b.get_backoff_factor(), .5) self.assertEqual(b.get_growth_interval(), 2) self.assertEqual(b._init_growth_tracker, 0) # supplies a dummy key to test the defaultdict's default_factory self.assertEqual(b._per_optimizer_states["fdsa"], torch.amp.grad_scaler._refresh_per_optimizer_state()) if lazy_init_scale: self.assertEqual(b.scale(torch.tensor([4.0], dtype=torch.float32, device=device)), 12.0) # FIXME: move to test distributions
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) class TestTorchDeviceType(TestCase): from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_index_add_correctness
def test_index_add_correctness(self): # Check whether index_add can get correct result when # alpha is 1, and dtype of index is torch.long, # i.e., using scatter_add def helper(dim, dtype, device, size_result, size_source): tensor = torch.zeros(size_result, dtype=dtype, device=device) index = torch.randint(0, size_result[dim], (size_source[dim],), dtype=torch.long, device=device) if dtype.is_floating_point or dtype.is_complex: source = torch.rand(size_source, dtype=dtype, device=device) elif dtype.is_signed: source = torch.randint(-2, 5, size_source, dtype=dtype, device=device) else: source = torch.randint(0, 5, size_source, dtype=dtype, device=device) ref_out = tensor.index_add(dim, index, source, alpha=2.) / 2. ref_out = ref_out.to(dtype=dtype) out = tensor.index_add(dim, index, source) if device == 'cuda': self.assertEqual(out, ref_out, atol=1e-2, rtol=1e-2) else: self.assertEqual(out, ref_out.to(dtype=dtype)) for dim in [-1, -2, -3]: for dtype in all_types_and_complex_and(torch.half, torch.bfloat16): for device in get_all_device_types(): for size in [(2, 512, 256), (5, 256, 256)]: helper(dim, dtype, device, size, size) # Check broadcast cases on CPU size_result = (2, 512, 256) size_source = (1, 512, 256) helper(dim, dtype, 'cpu', size_result, size_source) size_result = (2, 512, 512) size_source = (1, 512, 1) helper(dim, dtype, 'cpu', size_result, size_source) size_result = (2, 512, 256) size_source = (2, 1, 256) helper(dim, dtype, 'cpu', size_result, size_source) # Check bound result = torch.zeros(1, 512, 256, dtype=dtype) source = torch.ones(1, 512, 256, dtype=dtype) index = torch.ones(257).to(dtype=torch.long) self.assertRaises(RuntimeError, lambda: result.index_add_(dim, index, source)) index = (torch.ones(256) * 257).to(dtype=torch.long) self.assertRaises(RuntimeError, lambda: result.index_add_(dim, index, source)) # FIXME: move to shape ops test suite
def test_index_add_correctness(self): # Check whether index_add can get correct result when # alpha is 1, and dtype of index is torch.long, # i.e., using scatter_add def helper(dim, dtype, device, size_result, size_source): tensor = torch.zeros(size_result, dtype=dtype, device=device) index = torch.randint(0, size_result[dim], (size_source[dim],), dtype=torch.long, device=device) if dtype.is_floating_point or dtype.is_complex: source = torch.rand(size_source, dtype=dtype, device=device) elif dtype.is_signed: source = torch.randint(-2, 5, size_source, dtype=dtype, device=device) else: source = torch.randint(0, 5, size_source, dtype=dtype, device=device) ref_out = tensor.index_add(dim, index, source, alpha=2.) / 2. ref_out = ref_out.to(dtype=dtype) out = tensor.index_add(dim, index, source) if device == 'cuda': self.assertEqual(out, ref_out, atol=1e-2, rtol=1e-2) else: # scatter_add uses fp32 as accumulate type, while index_add doesn't. self.assertEqual(out, ref_out.to(dtype=dtype), atol=1e-2, rtol=1e-2) for dim in [-1, -2, -3]: for dtype in all_types_and_complex_and(torch.half, torch.bfloat16): for device in get_all_device_types(): for size in [(2, 512, 256), (5, 256, 256)]: helper(dim, dtype, device, size, size) # Check bound result = torch.zeros(1, 512, 256, dtype=dtype) source = torch.ones(1, 512, 256, dtype=dtype) index = torch.ones(257).to(dtype=torch.long) self.assertRaises(RuntimeError, lambda: result.index_add_(dim, index, source)) index = (torch.ones(256) * 257).to(dtype=torch.long) self.assertRaises(RuntimeError, lambda: result.index_add_(dim, index, source))
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_index_add_cornercase
def test_index_add_cornercase(self): for device in get_all_device_types(): dest = torch.randn((), device=device) index = torch.tensor([0], device=device) source = torch.randn(1, 1, 1, device=device) with self.assertRaisesRegex( RuntimeError, r"source tensor shape must match self tensor shape, excluding the specified dimension", ): dest.index_add(0, index, source)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_linspace_logspace
# FIXME: move to shape ops test suite
def test_linspace_logspace(self): # Ensure the output does not require grad regardless of inputs requiring gard or not. # The output of factory functions should not be part of any computational graph. start = 0.0 end = 3.0 for step in [0, 1, 2]: self.assertFalse( torch.linspace( torch.tensor(start, requires_grad=True), torch.tensor(end, requires_grad=True), step ).requires_grad ) self.assertFalse(torch.linspace(torch.tensor(start, requires_grad=True), end, step).requires_grad) self.assertFalse(torch.linspace(start, torch.tensor(end, requires_grad=True), step).requires_grad) self.assertFalse( torch.logspace( torch.tensor(start, requires_grad=True), torch.tensor(end, requires_grad=True), step ).requires_grad ) self.assertFalse(torch.logspace(torch.tensor(start, requires_grad=True), end, step).requires_grad) self.assertFalse(torch.logspace(start, torch.tensor(end, requires_grad=True), step).requires_grad) # FIXME: move to shape ops test suite
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_equal
def test_equal(self): # Contiguous, 1D t1 = torch.tensor((3., 4., 9., 10.)) t2 = t1.contiguous() t3 = torch.tensor((1., 9., 3., 10.)) t4 = torch.tensor((3., 4., 9.)) t5 = torch.tensor([]) self.assertTrue(t1.equal(t2)) self.assertFalse(t1.equal(t3)) self.assertFalse(t1.equal(t4)) self.assertFalse(t1.equal(t5)) self.assertTrue(torch.equal(t1, t2)) self.assertFalse(torch.equal(t1, t3)) self.assertFalse(torch.equal(t1, t4)) self.assertFalse(torch.equal(t1, t5)) # Non contiguous, 2D s = torch.tensor(((1, 2, 3, 4), (5, 6, 7, 8))) s1 = s[:, 1:3] s2 = s1.clone() s3 = torch.tensor(((2, 3), (6, 7))) s4 = torch.tensor(((0, 0), (0, 0))) self.assertFalse(s1.is_contiguous()) self.assertTrue(s1.equal(s2)) self.assertTrue(s1.equal(s3)) self.assertFalse(s1.equal(s4)) self.assertTrue(torch.equal(s1, s2)) self.assertTrue(torch.equal(s1, s3)) self.assertFalse(torch.equal(s1, s4)) # Different dtypes x = torch.tensor((1, 2, 3), dtype=torch.float) y = torch.tensor((1, 2, 3), dtype=torch.int) z = torch.tensor((1, -1), dtype=torch.int) self.assertTrue(torch.equal(x, y)) self.assertFalse(torch.equal(z, x))
def test_equal(self): devices = [torch.cpu, torch.cuda] for device in ["cpu", "cuda"]: if device == "cuda" and not torch.cuda.is_available(): continue # Contiguous, 1D t1 = torch.tensor((3., 4., 9., 10.), device=device) t2 = t1.contiguous() t3 = torch.tensor((1., 9., 3., 10.), device=device) t4 = torch.tensor((3., 4., 9.), device=device) t5 = torch.tensor([], device=device) self.assertTrue(t1.equal(t2)) self.assertFalse(t1.equal(t3)) self.assertFalse(t1.equal(t4)) self.assertFalse(t1.equal(t5)) self.assertTrue(torch.equal(t1, t2)) self.assertFalse(torch.equal(t1, t3)) self.assertFalse(torch.equal(t1, t4)) self.assertFalse(torch.equal(t1, t5)) # Non contiguous, 2D s = torch.tensor(((1, 2, 3, 4), (5, 6, 7, 8)), device=device) s1 = s[:, 1:3] s2 = s1.clone() s3 = torch.tensor(((2, 3), (6, 7)), device=device) s4 = torch.tensor(((0, 0), (0, 0)), device=device) self.assertFalse(s1.is_contiguous()) self.assertTrue(s1.equal(s2)) self.assertTrue(s1.equal(s3)) self.assertFalse(s1.equal(s4)) self.assertTrue(torch.equal(s1, s2)) self.assertTrue(torch.equal(s1, s3)) self.assertFalse(torch.equal(s1, s4)) # Different dtypes x = torch.tensor((1, 2, 3), dtype=torch.float, device=device) y = torch.tensor((1, 2, 3), dtype=torch.int, device=device) z = torch.tensor((1, -1), dtype=torch.int, device=device) self.assertTrue(torch.equal(x, y)) self.assertFalse(torch.equal(z, x)) # Fast path test: tensor flags, like neg and conj neg_0 = torch.tensor((1, 2, 3), dtype=torch.float, device=device) neg_1 = neg_0._neg_view() self.assertTrue(neg_1.is_neg()) self.assertEqual(neg_0.data_ptr(), neg_1.data_ptr()) self.assertEqual(neg_0.storage_offset(), neg_1.storage_offset()) self.assertEqual(neg_0.stride(), neg_1.stride()) self.assertEqual(neg_0.size(), neg_1.size()) self.assertFalse(torch.equal(neg_0, neg_1)) # FIXME: Disable the following check due to the inductor failure # See https://github.com/pytorch/pytorch/issues/100340 and # https://github.com/pytorch/pytorch/issues/98175 if not TEST_WITH_TORCHINDUCTOR: self.assertTrue(torch.equal(neg_0, neg_1._neg_view())) conj_0 = torch.tensor([1.0 + 2.0j, 2.0 + 1.0j], device=device) conj_1 = conj_0.conj() self.assertTrue(conj_1.is_conj()) self.assertEqual(conj_0.data_ptr(), conj_1.data_ptr()) self.assertEqual(conj_0.storage_offset(), conj_1.storage_offset()) self.assertEqual(conj_0.stride(), conj_1.stride()) self.assertEqual(conj_0.size(), conj_1.size()) self.assertFalse(torch.equal(conj_0, conj_1)) # FIXME: Disable the following check due to the inductor failure # See https://github.com/pytorch/pytorch/issues/100340 and # https://github.com/pytorch/pytorch/issues/98175 if not TEST_WITH_TORCHINDUCTOR: self.assertTrue(torch.equal(conj_0, conj_1.conj())) # Fast path test: two tensors share the same storage, but different dtype s_0 = torch.rand((2, 3), dtype=torch.float, device=device) s_1 = s_0.view(dtype=torch.int32) self.assertEqual(s_0.data_ptr(), s_1.data_ptr()) self.assertEqual(s_0.storage_offset(), s_1.storage_offset()) self.assertEqual(s_0.stride(), s_1.stride()) self.assertEqual(s_0.size(), s_1.size()) self.assertFalse(torch.equal(s_0, s_1)) # Fast path test: two tensors share the same storage, but different strides t_0 = torch.rand((2, 3), dtype=torch.float, device=device) t_1 = t_0.t() self.assertEqual(t_0.data_ptr(), t_1.data_ptr()) self.assertEqual(t_0.storage_offset(), t_1.storage_offset()) self.assertNotEqual(t_0.stride(), t_1.stride()) self.assertNotEqual(t_0.size(), t_1.size()) self.assertFalse(torch.equal(t_0, t_1)) # Fast path: tensor containing `nan` is not equal to self for dtype in floating_and_complex_types(): t = torch.tensor([1., float('nan')], dtype=dtype) self.assertFalse(torch.equal(t, t))
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_element_size
def test_element_size(self): byte = torch.ByteStorage().element_size() char = torch.CharStorage().element_size() short = torch.ShortStorage().element_size() int = torch.IntStorage().element_size() long = torch.LongStorage().element_size() float = torch.FloatStorage().element_size() double = torch.DoubleStorage().element_size() bool = torch.BoolStorage().element_size() bfloat16 = torch.BFloat16Storage().element_size() complexfloat = torch.ComplexFloatStorage().element_size() complexdouble = torch.ComplexDoubleStorage().element_size() self.assertEqual(byte, torch.ByteTensor().element_size()) self.assertEqual(char, torch.CharTensor().element_size()) self.assertEqual(short, torch.ShortTensor().element_size()) self.assertEqual(int, torch.IntTensor().element_size()) self.assertEqual(long, torch.LongTensor().element_size()) self.assertEqual(float, torch.FloatTensor().element_size()) self.assertEqual(double, torch.DoubleTensor().element_size()) self.assertEqual(bool, torch.BoolTensor().element_size()) self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).element_size()) self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).element_size()) self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).element_size()) self.assertGreater(byte, 0) self.assertGreater(char, 0) self.assertGreater(short, 0) self.assertGreater(int, 0) self.assertGreater(long, 0) self.assertGreater(float, 0) self.assertGreater(double, 0) self.assertGreater(bool, 0) self.assertGreater(bfloat16, 0) self.assertGreater(complexfloat, 0) self.assertGreater(complexdouble, 0) # These tests are portable, not necessarily strict for your system. self.assertEqual(byte, 1) self.assertEqual(char, 1) self.assertEqual(bool, 1) self.assertGreaterEqual(short, 2) self.assertGreaterEqual(int, 2) self.assertGreaterEqual(int, short) self.assertGreaterEqual(long, 4) self.assertGreaterEqual(long, int) self.assertGreaterEqual(double, float)
def test_element_size(self): byte = torch.ByteStorage().element_size() char = torch.CharStorage().element_size() short = torch.ShortStorage().element_size() int = torch.IntStorage().element_size() long = torch.LongStorage().element_size() float = torch.FloatStorage().element_size() double = torch.DoubleStorage().element_size() bool = torch.BoolStorage().element_size() bfloat16 = torch.BFloat16Storage().element_size() complexfloat = torch.ComplexFloatStorage().element_size() complexdouble = torch.ComplexDoubleStorage().element_size() self.assertEqual(byte, torch.ByteTensor().element_size()) self.assertEqual(byte, torch.ByteTensor().itemsize) self.assertEqual(char, torch.CharTensor().element_size()) self.assertEqual(char, torch.CharTensor().itemsize) self.assertEqual(short, torch.ShortTensor().element_size()) self.assertEqual(short, torch.ShortTensor().itemsize) self.assertEqual(int, torch.IntTensor().element_size()) self.assertEqual(int, torch.IntTensor().itemsize) self.assertEqual(long, torch.LongTensor().element_size()) self.assertEqual(long, torch.LongTensor().itemsize) self.assertEqual(float, torch.FloatTensor().element_size()) self.assertEqual(float, torch.FloatTensor().itemsize) self.assertEqual(double, torch.DoubleTensor().element_size()) self.assertEqual(double, torch.DoubleTensor().itemsize) self.assertEqual(bool, torch.BoolTensor().element_size()) self.assertEqual(bool, torch.BoolTensor().itemsize) self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).element_size()) self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).itemsize) self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).element_size()) self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).itemsize) self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).element_size()) self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).itemsize) self.assertGreater(byte, 0) self.assertGreater(char, 0) self.assertGreater(short, 0) self.assertGreater(int, 0) self.assertGreater(long, 0) self.assertGreater(float, 0) self.assertGreater(double, 0) self.assertGreater(bool, 0) self.assertGreater(bfloat16, 0) self.assertGreater(complexfloat, 0) self.assertGreater(complexdouble, 0) # These tests are portable, not necessarily strict for your system. self.assertEqual(byte, 1) self.assertEqual(char, 1) self.assertEqual(bool, 1) self.assertGreaterEqual(short, 2) self.assertGreaterEqual(int, 2) self.assertGreaterEqual(int, short) self.assertGreaterEqual(long, 4) self.assertGreaterEqual(long, int) self.assertGreaterEqual(double, float)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_storage_byteswap
# Test that internal versions of functions related to TypedStorage do not # produce a deprecation warning
def test_storage_byteswap(self): input = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] swapped_8bytes = [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8] swapped_4bytes = [3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12] swapped_2bytes = [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14] swapped_1byte = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] storage = torch.storage.TypedStorage(input, dtype=torch.uint8)._untyped_storage storage_f64 = storage.__copy__() storage_f64.byteswap(torch.float64) self.assertEqual(storage_f64.tolist(), swapped_8bytes) storage_f32 = storage.__copy__() storage_f32.byteswap(torch.float32) self.assertEqual(storage_f32.tolist(), swapped_4bytes) storage_f16 = storage.__copy__() storage_f16.byteswap(torch.float16) self.assertEqual(storage_f16.tolist(), swapped_2bytes) storage_bf16 = storage.__copy__() storage_bf16.byteswap(torch.bfloat16) self.assertEqual(storage_bf16.tolist(), swapped_2bytes) storage_i64 = storage.__copy__() storage_i64.byteswap(torch.int64) self.assertEqual(storage_i64.tolist(), swapped_8bytes) storage_i32 = storage.__copy__() storage_i32.byteswap(torch.int32) self.assertEqual(storage_i32.tolist(), swapped_4bytes) storage_i16 = storage.__copy__() storage_i16.byteswap(torch.int16) self.assertEqual(storage_i16.tolist(), swapped_2bytes) storage_i8 = storage.__copy__() storage_i8.byteswap(torch.int8) self.assertEqual(storage_i8.tolist(), swapped_1byte) storage_ui8 = storage.__copy__() storage_ui8.byteswap(torch.uint8) self.assertEqual(storage_ui8.tolist(), swapped_1byte) storage_bool = storage.__copy__() storage_bool.byteswap(torch.bool) self.assertEqual(storage_bool.tolist(), swapped_1byte) storage_c128 = storage.__copy__() storage_c128.byteswap(torch.complex128) self.assertEqual(storage_c128.tolist(), swapped_8bytes) storage_c64 = storage.__copy__() storage_c64.byteswap(torch.complex64) self.assertEqual(storage_c64.tolist(), swapped_4bytes) # Test that internal versions of functions related to TypedStorage do not # produce a deprecation warning
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_typed_storage_deprecation_warning
def test_typed_storage_deprecation_warning(self): s0 = torch.FloatStorage(10) funcs = [ lambda: torch.FloatStorage(), lambda: torch.FloatStorage.dtype, lambda: s0.fill_(0), lambda: s0.is_cuda, lambda: s0.untyped(), lambda: len(s0), lambda: s0[0], ] if torch.cuda.is_available(): s1 = torch.cuda.FloatStorage(10) funcs += [ lambda: torch.cuda.FloatStorage(), lambda: torch.cuda.FloatStorage.dtype, lambda: s1.fill_(0), lambda: s1.is_cuda, lambda: s1.untyped(), lambda: len(s1), lambda: s1[0], ] # Check that each of the TypedStorage function calls produce a warning # if warnings are reset between each for f in funcs: with warnings.catch_warnings(record=True) as w: warnings.resetwarnings() f() self.assertEqual(len(w), 1, msg=str([str(a) for a in w])) warning = w[0].message self.assertTrue(warning, DeprecationWarning) self.assertTrue(re.search( '^TypedStorage is deprecated', str(warning)))
def test_typed_storage_deprecation_warning(self): s0 = torch.FloatStorage(10) funcs = [ lambda: torch.FloatStorage(), lambda: torch.FloatStorage.dtype, lambda: s0.fill_(0), lambda: s0.is_cuda, lambda: s0.untyped(), lambda: len(s0), lambda: s0[0], ] if torch.cuda.is_available(): s1 = torch.cuda.FloatStorage(10) funcs += [ lambda: torch.cuda.FloatStorage(), lambda: torch.cuda.FloatStorage.dtype, lambda: s1.fill_(0), lambda: s1.is_cuda, lambda: s1.untyped(), lambda: len(s1), lambda: s1[0], ] # Check that each of the TypedStorage function calls produce a warning # if warnings are reset between each for f in funcs: with AlwaysWarnTypedStorageRemoval(True): with warnings.catch_warnings(record=True) as w: warnings.resetwarnings() f() self.assertEqual(len(w), 1, msg=str([str(a) for a in w])) warning = w[0].message self.assertTrue(warning, DeprecationWarning) self.assertTrue(re.search( '^TypedStorage is deprecated', str(warning))) # Test that only the first warning is raised by default torch.storage._reset_warn_typed_storage_removal() with warnings.catch_warnings(record=True) as w: warnings.resetwarnings() torch.FloatStorage() torch.randn(10).storage() self.assertEqual(len(w), 1, msg=str([str(a) for a in w])) warning = w[0].message self.assertTrue(re.search( '^TypedStorage is deprecated', str(warning))) # Check the line of code from the warning's stack with open(w[0].filename, encoding="utf-8") as f: code_line = f.readlines()[w[0].lineno - 1] self.assertTrue(re.search(re.escape('torch.FloatStorage()'), code_line)) # Check that warnings are not emitted if it happened in the past with warnings.catch_warnings(record=True) as w: warnings.resetwarnings() torch.FloatStorage() torch.randn(10).storage() self.assertEqual(len(w), 0, msg=str([str(a) for a in w]))
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_pin_memory
def test_pin_memory(self): x = torch.randn(3, 5) self.assertFalse(x.is_pinned()) if not torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: x.pin_memory()) else: pinned = x.pin_memory() self.assertTrue(pinned.is_pinned()) self.assertEqual(pinned, x) self.assertNotEqual(pinned.data_ptr(), x.data_ptr()) # test that pin_memory on already pinned tensor has no effect self.assertIs(pinned, pinned.pin_memory()) self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
def test_pin_memory(self): x = torch.randn(3, 5) self.assertFalse(x.is_pinned()) if torch.cuda.is_available(): pinned = x.pin_memory() self.assertTrue(pinned.is_pinned()) self.assertEqual(pinned, x) self.assertNotEqual(pinned.data_ptr(), x.data_ptr()) # test that pin_memory on already pinned tensor has no effect self.assertIs(pinned, pinned.pin_memory()) self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_dim_order
def test_dim_order(self): shape = (2, 3, 5, 7) t = torch.empty(shape) self.assertSequenceEqual(t.dim_order(), (0, 1, 2, 3), seq_type=tuple) # transpose doesn't really change the underlying physical memory # so expecting dim_order change to reflect that (like strides) self.assertSequenceEqual(t.transpose(0, 1).dim_order(), (1, 0, 2, 3)) t = torch.empty(shape, memory_format=torch.channels_last) self.assertSequenceEqual(t.dim_order(), (0, 2, 3, 1)) t = torch.empty((2, 3, 5, 7, 8), memory_format=torch.channels_last_3d) self.assertSequenceEqual(t.dim_order(), (0, 2, 3, 4, 1)) for dim_order in itertools.permutations(range(4)): self.assertSequenceEqual( dim_order, torch.empty_permuted(shape, dim_order).dim_order() ) for shape in [(2, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2)]: for memory_format in (torch.contiguous_format, torch.channels_last): t = torch.empty(shape).to(memory_format=memory_format) if memory_format == torch.contiguous_format: dim_order_target = list(range(len(shape))) elif memory_format == torch.channels_last: dim_order_target = [0, *list(range(2, len(shape))), 1] self.assertSequenceEqual(dim_order_target, t.dim_order())
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_nbytes
def test_nbytes(self): a = torch.randn(1, 2, 3, dtype=torch.float64) self.assertEqual(a.numel() * a.element_size(), a.nbytes) b = torch.randn(()) self.assertEqual(b.numel() * b.element_size(), b.nbytes) c = torch.randn(1, 0) self.assertEqual(c.numel() * c.element_size(), c.nbytes)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_upsample_nearest2d_meta
def test_upsample_nearest2d_meta(self): # TODO: the out tests cannot be triggered by test_nn.py because # we don't actually do out= arguments for nn functions, so there # is no public API by which to get the out version # Make sure we don't clobber strides of out tensor. NB: this # test must be done on 2d/3d, because 1d doesn't have any meaningful # layout support x = torch.empty(4, 3, 8, 8, device='meta') out = torch.empty(4, 3, 16, 16, device='meta', memory_format=torch.channels_last) torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last) out = torch.empty(4, 3, 16, 16, device='meta') torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous()) # But if resize occurs, do clobber x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last) out = torch.empty(0, device='meta') torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) # Complain if out dtype mismatch x = torch.empty(4, 3, 8, 8, device='meta', dtype=torch.float) out = torch.empty(4, 3, 16, 16, device='meta', dtype=torch.double) self.assertExpectedRaisesInline( RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out), """Expected out tensor to have dtype float, but got double instead""" ) # Complain if out device mismatch x = torch.empty(0, 3, 8, 8, device='meta') out = torch.empty(0, 3, 16, 16, device='cpu') # FIXME: compiling should properly error with a device mismatch. if not TEST_WITH_TORCHINDUCTOR: self.assertExpectedRaisesInline( RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out), """Expected out tensor to have device meta, but got cpu instead""" )
def test_upsample_nearest2d_meta(self): # TODO: the out tests cannot be triggered by test_nn.py because # we don't actually do out= arguments for nn functions, so there # is no public API by which to get the out version # Make sure we don't clobber strides of out tensor. NB: this # test must be done on 2d/3d, because 1d doesn't have any meaningful # layout support x = torch.empty(4, 3, 8, 8, device='meta') out = torch.empty(4, 3, 16, 16, device='meta', memory_format=torch.channels_last) torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last) out = torch.empty(4, 3, 16, 16, device='meta') torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous()) # But if resize occurs, do clobber x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last) out = torch.empty(0, device='meta') torch._C._nn.upsample_nearest2d(x, (16, 16), out=out) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) # Complain if out dtype mismatch x = torch.empty(4, 3, 8, 8, device='meta', dtype=torch.float) out = torch.empty(4, 3, 16, 16, device='meta', dtype=torch.double) self.assertExpectedRaisesInline( RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out), """Expected out tensor to have dtype torch.float32 but got torch.float64 instead""" ) # Complain if out device mismatch x = torch.empty(0, 3, 8, 8, device='meta') out = torch.empty(0, 3, 16, 16, device='cpu') # FIXME: compiling should properly error with a device mismatch. if not TEST_WITH_TORCHINDUCTOR: self.assertExpectedRaisesInline( RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out), """Attempting to copy from device meta to device cpu, but cross-device copies are not allowed!""" )
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_manual_seed
def test_manual_seed(self): rng_state = torch.get_rng_state() torch.manual_seed(2) x = torch.randn(100) self.assertEqual(torch.initial_seed(), 2) torch.manual_seed(2) y = torch.randn(100) self.assertEqual(x, y) max_int64 = 0x7fff_ffff_ffff_ffff min_int64 = -max_int64 - 1 max_uint64 = 0xffff_ffff_ffff_ffff # Check all boundary cases of valid seed value inputs test_cases = [ # (seed, expected_initial_seed) # Positive seeds should be unchanged (max_int64, max_int64), (max_int64 + 1, max_int64 + 1), (max_uint64, max_uint64), (0, 0), # Negative seeds wrap around starting from the largest seed value (-1, max_uint64), (min_int64, max_int64 + 1) ] for seed, expected_initial_seed in test_cases: torch.manual_seed(seed) actual_initial_seed = torch.initial_seed() msg = "expected initial_seed() = %x after calling manual_seed(%x), but got %x instead" % ( expected_initial_seed, seed, actual_initial_seed) self.assertEqual(expected_initial_seed, actual_initial_seed, msg=msg) for invalid_seed in [min_int64 - 1, max_uint64 + 1]: with self.assertRaisesRegex(RuntimeError, r'Overflow when unpacking long'): torch.manual_seed(invalid_seed) torch.set_rng_state(rng_state) # FIXME: Describe this test and port to the generic device framework in a more # appropriate test suite for the copy operation
def test_manual_seed(self): rng_state = torch.get_rng_state() torch.manual_seed(2) x = torch.randn(100) self.assertEqual(torch.initial_seed(), 2) torch.manual_seed(2) y = torch.randn(100) self.assertEqual(x, y) max_int64 = 0x7fff_ffff_ffff_ffff min_int64 = -max_int64 - 1 max_uint64 = 0xffff_ffff_ffff_ffff # Check all boundary cases of valid seed value inputs test_cases = [ # (seed, expected_initial_seed) # Positive seeds should be unchanged (max_int64, max_int64), (max_int64 + 1, max_int64 + 1), (max_uint64, max_uint64), (0, 0), # Negative seeds wrap around starting from the largest seed value (-1, max_uint64), (min_int64, max_int64 + 1) ] for seed, expected_initial_seed in test_cases: torch.manual_seed(seed) actual_initial_seed = torch.initial_seed() msg = (f"expected initial_seed() = {expected_initial_seed:x} " f"after calling manual_seed({seed:x}), but got {actual_initial_seed:x} instead") self.assertEqual(expected_initial_seed, actual_initial_seed, msg=msg) for invalid_seed in [min_int64 - 1, max_uint64 + 1]: with self.assertRaisesRegex(RuntimeError, r'Overflow when unpacking long'): torch.manual_seed(invalid_seed) torch.set_rng_state(rng_state) # FIXME: Describe this test and port to the generic device framework in a more # appropriate test suite for the copy operation
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_copy_behavior
def test_copy_behavior(t, non_blocking=False): self.assertIs(t, t.to(t, non_blocking=non_blocking)) self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking)) self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking)) self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)) devices = [t.device] if t.device.type == 'cuda': if t.device.index == -1: devices.append('cuda:{}'.format(torch.cuda.current_device())) elif t.device.index == torch.cuda.current_device(): devices.append('cuda') for device in devices: self.assertIs(t, t.to(device, non_blocking=non_blocking)) self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)) a = torch.tensor(5) if layout == torch.sparse_csr: a = torch.tensor([[0, 1, 2], [2, 0, 3]]).to_sparse_csr() test_copy_behavior(a) self.assertEqual(a.device, a.to('cpu').device) self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device) self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype) self.assertEqual(a.device, a.to(torch.float32).device) self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
def test_copy_behavior(t, non_blocking=False): self.assertIs(t, t.to(t, non_blocking=non_blocking)) self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking)) self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking)) self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)) devices = [t.device] if t.device.type == 'cuda': if t.device.index == -1: devices.append(f'cuda:{torch.cuda.current_device()}') elif t.device.index == torch.cuda.current_device(): devices.append('cuda') for device in devices: self.assertIs(t, t.to(device, non_blocking=non_blocking)) self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)) a = torch.tensor(5) if layout == torch.sparse_csr: a = torch.tensor([[0, 1, 2], [2, 0, 3]]).to_sparse_csr() test_copy_behavior(a) self.assertEqual(a.device, a.to('cpu').device) self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device) self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype) self.assertEqual(a.device, a.to(torch.float32).device) self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_split_with_sizes_copy_out
def test_split_with_sizes_copy_out(self): device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") shape = (30, 40, 50) x = torch.rand(*shape, device=device) cases = [ (0, [3, 7, 8, 12]), (1, [3, 7, 10, 20]), (-2, [3, 7, 10, 20]), (2, [3, 7, 10, 12, 18]), (-1, [3, 7, 10, 12, 18]), (2, [3, 7, 10, 0, 30]), ] for dim, split_sizes in cases: views = x.split_with_sizes(split_sizes, dim=dim) expects = [v.clone() for v in views] out = [torch.zeros_like(v) for v in views] for expect, t in zip(expects, out): if expect.numel() != 0: self.assertFalse(expect.eq(t).all().item()) torch.split_with_sizes_copy(x, split_sizes, dim=dim, out=out) for expect, t in zip(expects, out): self.assertTrue(expect.eq(t).all().item()) if not torch.cuda.is_available(): continue # Test with cuda graph out = [torch.zeros_like(v) for v in views] for expect, t in zip(expects, out): if expect.numel() != 0: self.assertFalse(expect.eq(t).all().item()) g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): torch.split_with_sizes_copy(x, split_sizes, dim=dim, out=out) g.replay() for expect, t in zip(expects, out): self.assertTrue(expect.eq(t).all().item())
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_storage_dealloc_subclass_resurrected
def test_storage_dealloc_subclass_resurrected(self): class MyStorage(torch.UntypedStorage): finalized_count = 0 def __del__(self): MyStorage.finalized_count += 1 m, t = Tracker.make() s = MyStorage(10) s._tracker = t del t a = torch.tensor(s) self.assertFalse(m[0]) del s self.assertEqual(MyStorage.finalized_count, 0) self.assertFalse(m[0]) s = a.untyped_storage() del a self.assertFalse(m[0]) self.assertEqual(MyStorage.finalized_count, 0) self.assertTrue(isinstance(s, MyStorage)) del s self.assertEqual(MyStorage.finalized_count, 1) self.assertTrue(m[0])
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_doc
def test_doc(self): checked_types = (types.MethodType, types.FunctionType, types.BuiltinFunctionType, types.BuiltinMethodType) def _test_namespace(ns, *skips): if isinstance(ns, object): ns_name = ns.__class__.__name__ else: ns_name = ns.__name__ skip_regexes = [] for r in skips: if isinstance(r, str): skip_regexes.append(re.compile('^{}$'.format(re.escape(r)))) else: skip_regexes.append(r) for name in dir(ns): if name.startswith('_'): continue if name in ['real', 'imag']: y = torch.randn(1, dtype=torch.cfloat) var = getattr(y, name) elif name in ["H", "mT", "mH"]: y = torch.randn(1, 1) var = getattr(y, name) else: var = getattr(ns, name) if not isinstance(var, checked_types): continue doc = var.__doc__ has_doc = doc is not None and len(doc.strip()) > 0 full_name = ns_name + '.' + name if any(r.match(name) for r in skip_regexes): self.assertFalse(has_doc, 'New docs have been added for {}, please remove ' 'it from the skipped list in TestTorch.test_doc'.format(full_name)) else: self.assertTrue(has_doc, '{} is missing documentation'.format(full_name)) # FIXME: All of the following should be marked as expected failures # so that it is easier to tell when missing has been added. # FIXME: fix all the skipped ones below! test_namespace(torch.randn(1), 'as_strided_', re.compile('^clamp_(min|max)_?$'), 'is_distributed', 'is_nonzero', 'is_same_size', 'log_softmax', 'map2_', 'new', 'reinforce', 'relu', 'relu_', 'prelu', 'resize', 'resize_as', 'softmax', 'split_with_sizes', 'unsafe_split_with_sizes', '_autocast_to_fp16', '_autocast_to_fp32', ) test_namespace(torch.nn) test_namespace(torch.nn.functional, 'assert_int_or_pair') # TODO: add torch.* tests when we have proper namespacing on ATen functions # test_namespace(torch) # FIXME: deprecate torch.Tensor constructor
def test_doc(self): checked_types = (types.MethodType, types.FunctionType, types.BuiltinFunctionType, types.BuiltinMethodType) def _test_namespace(ns, *skips): if isinstance(ns, object): ns_name = ns.__class__.__name__ else: ns_name = ns.__name__ skip_regexes = [] for r in skips: if isinstance(r, str): skip_regexes.append(re.compile(f'^{re.escape(r)}$')) else: skip_regexes.append(r) for name in dir(ns): if name.startswith('_'): continue if name in ['real', 'imag']: y = torch.randn(1, dtype=torch.cfloat) var = getattr(y, name) elif name in ["H", "mT", "mH"]: y = torch.randn(1, 1) var = getattr(y, name) else: var = getattr(ns, name) if not isinstance(var, checked_types): continue doc = var.__doc__ has_doc = doc is not None and len(doc.strip()) > 0 full_name = ns_name + '.' + name if any(r.match(name) for r in skip_regexes): self.assertFalse(has_doc, f'New docs have been added for {full_name}, please remove ' 'it from the skipped list in TestTorch.test_doc') else: self.assertTrue(has_doc, f'{full_name} is missing documentation') # FIXME: All of the following should be marked as expected failures # so that it is easier to tell when missing has been added. # FIXME: fix all the skipped ones below! test_namespace(torch.randn(1), # noqa: F821 'as_strided_', re.compile('^clamp_(min|max)_?$'), 'is_distributed', 'is_nonzero', 'is_same_size', 'log_softmax', 'map2_', 'new', 'reinforce', 'relu', 'relu_', 'prelu', 'resize', 'resize_as', 'softmax', 'split_with_sizes', 'unsafe_split_with_sizes', '_autocast_to_fp16', '_autocast_to_fp32', ) test_namespace(torch.nn) # noqa: F821 test_namespace(torch.nn.functional, 'assert_int_or_pair') # noqa: F821 # TODO: add torch.* tests when we have proper namespacing on ATen functions # test_namespace(torch) # FIXME: deprecate torch.Tensor constructor
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
_test_namespace
def _test_namespace(ns, *skips): if isinstance(ns, object): ns_name = ns.__class__.__name__ else: ns_name = ns.__name__ skip_regexes = [] for r in skips: if isinstance(r, str): skip_regexes.append(re.compile('^{}$'.format(re.escape(r)))) else: skip_regexes.append(r) for name in dir(ns): if name.startswith('_'): continue if name in ['real', 'imag']: y = torch.randn(1, dtype=torch.cfloat) var = getattr(y, name) elif name in ["H", "mT", "mH"]: y = torch.randn(1, 1) var = getattr(y, name) else: var = getattr(ns, name) if not isinstance(var, checked_types): continue doc = var.__doc__ has_doc = doc is not None and len(doc.strip()) > 0 full_name = ns_name + '.' + name if any(r.match(name) for r in skip_regexes): self.assertFalse(has_doc, 'New docs have been added for {}, please remove ' 'it from the skipped list in TestTorch.test_doc'.format(full_name)) else: self.assertTrue(has_doc, '{} is missing documentation'.format(full_name)) # FIXME: All of the following should be marked as expected failures # so that it is easier to tell when missing has been added. # FIXME: fix all the skipped ones below! test_namespace(torch.randn(1), 'as_strided_', re.compile('^clamp_(min|max)_?$'), 'is_distributed', 'is_nonzero', 'is_same_size', 'log_softmax', 'map2_', 'new', 'reinforce', 'relu', 'relu_', 'prelu', 'resize', 'resize_as', 'softmax', 'split_with_sizes', 'unsafe_split_with_sizes', '_autocast_to_fp16', '_autocast_to_fp32', ) test_namespace(torch.nn) test_namespace(torch.nn.functional, 'assert_int_or_pair') # TODO: add torch.* tests when we have proper namespacing on ATen functions # test_namespace(torch) # FIXME: deprecate torch.Tensor constructor
def _test_namespace(ns, *skips): if isinstance(ns, object): ns_name = ns.__class__.__name__ else: ns_name = ns.__name__ skip_regexes = [] for r in skips: if isinstance(r, str): skip_regexes.append(re.compile(f'^{re.escape(r)}$')) else: skip_regexes.append(r) for name in dir(ns): if name.startswith('_'): continue if name in ['real', 'imag']: y = torch.randn(1, dtype=torch.cfloat) var = getattr(y, name) elif name in ["H", "mT", "mH"]: y = torch.randn(1, 1) var = getattr(y, name) else: var = getattr(ns, name) if not isinstance(var, checked_types): continue doc = var.__doc__ has_doc = doc is not None and len(doc.strip()) > 0 full_name = ns_name + '.' + name if any(r.match(name) for r in skip_regexes): self.assertFalse(has_doc, f'New docs have been added for {full_name}, please remove ' 'it from the skipped list in TestTorch.test_doc') else: self.assertTrue(has_doc, f'{full_name} is missing documentation') # FIXME: All of the following should be marked as expected failures # so that it is easier to tell when missing has been added. # FIXME: fix all the skipped ones below! test_namespace(torch.randn(1), # noqa: F821 'as_strided_', re.compile('^clamp_(min|max)_?$'), 'is_distributed', 'is_nonzero', 'is_same_size', 'log_softmax', 'map2_', 'new', 'reinforce', 'relu', 'relu_', 'prelu', 'resize', 'resize_as', 'softmax', 'split_with_sizes', 'unsafe_split_with_sizes', '_autocast_to_fp16', '_autocast_to_fp32', ) test_namespace(torch.nn) # noqa: F821 test_namespace(torch.nn.functional, 'assert_int_or_pair') # noqa: F821 # TODO: add torch.* tests when we have proper namespacing on ATen functions # test_namespace(torch) # FIXME: deprecate torch.Tensor constructor
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_tensor_base_init
def test_tensor_base_init(self): # Direct construction not OK self.assertRaises(RuntimeError, lambda: torch._C._TensorBase()) # But construction of subclass is OK class T(torch._C._TensorBase): pass T()
def test_tensor_base_init(self): # Direct construction not OK self.assertRaises(RuntimeError, lambda: torch._C.TensorBase()) # Subclassing it directly no OK with self.assertRaisesRegex(RuntimeError, "Cannot subclass"): class Tfail(torch._C.TensorBase): pass # Doing so with Tensor is ok though class T(torch.Tensor): pass T()
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_storage_base_init
# But construction of subclass is OK class T(torch._C._TensorBase): pass T()
def test_storage_base_init(self): # Direct construction not OK self.assertRaises(RuntimeError, lambda: torch._C.StorageBase()) # But construction of subclass is OK class T(torch._C.StorageBase): pass T()
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_tensor_base_new
def test_tensor_base_new(self): # OK to call super().__new__, see # https://github.com/pytorch/pytorch/issues/57421 class TestTensor(torch._C._TensorBase): @staticmethod def __new__(cls, x, *args, **kwargs): return super().__new__(cls, x, *args, **kwargs) x = torch.ones(5) test_tensor = TestTensor(x)
def test_tensor_base_new(self): # OK to call super().__new__, see # https://github.com/pytorch/pytorch/issues/57421 class TestTensor(torch.Tensor): @staticmethod def __new__(cls, x, *args, **kwargs): return super().__new__(cls, x, *args, **kwargs) x = torch.ones(5) test_tensor = TestTensor(x)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_storage_base_new
def test_storage_base_new(self): # OK to call super().__new__, see # https://github.com/pytorch/pytorch/issues/57421 class TestStorage(torch._C.StorageBase): @staticmethod def __new__(cls, x, *args, **kwargs): return super().__new__(cls, x, *args, **kwargs) x = torch.UntypedStorage(5) test_storage = TestStorage(x)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
_spawn_method
def _spawn_method(self, method, arg): try: mp.set_start_method('spawn') except RuntimeError: pass with mp.Pool(1) as pool: out: list = pool.map(method, [arg]) self.assertTrue(out[0])
def _spawn_method(self, method, arg): try: mp.set_start_method('spawn') except RuntimeError: pass with mp.Pool(1) as pool: out = pool.map(method, [arg]) self.assertTrue(out[0])
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys from torch import inf, nan from itertools import product, combinations, permutations from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TEST_WITH_TORCHINDUCTOR, TestCase, TEST_WITH_ROCM, run_tests, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, skipIfTorchInductor, slowTest, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN) from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, ) load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy import weakref
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_torch.py
test_deterministic_fill_uninitialized_memory
def test_deterministic_fill_uninitialized_memory(self): with DeterministicGuard(True, fill_uninitialized_memory=False): self.assertFalse(torch.utils.deterministic.fill_uninitialized_memory) self.assertFalse(torch._C._get_deterministic_fill_uninitialized_memory()) with DeterministicGuard(True, fill_uninitialized_memory=True): self.assertTrue(torch.utils.deterministic.fill_uninitialized_memory) self.assertTrue(torch._C._get_deterministic_fill_uninitialized_memory()) self.assertFalse(torch.utils.deterministic.fill_uninitialized_memory) self.assertFalse(torch._C._get_deterministic_fill_uninitialized_memory()) torch.utils.deterministic.fill_uninitialized_memory = False self.assertFalse(torch.utils.deterministic.fill_uninitialized_memory) self.assertFalse(torch._C._get_deterministic_fill_uninitialized_memory()) torch.utils.deterministic.fill_uninitialized_memory = True self.assertTrue(torch.utils.deterministic.fill_uninitialized_memory) self.assertTrue(torch._C._get_deterministic_fill_uninitialized_memory()) torch._C._set_deterministic_fill_uninitialized_memory(False) self.assertFalse(torch.utils.deterministic.fill_uninitialized_memory) self.assertFalse(torch._C._get_deterministic_fill_uninitialized_memory()) torch._C._set_deterministic_fill_uninitialized_memory(True) self.assertTrue(torch.utils.deterministic.fill_uninitialized_memory) self.assertTrue(torch._C._get_deterministic_fill_uninitialized_memory()) with self.assertRaisesRegex(RuntimeError, r"expected a bool, but got int"): torch.utils.deterministic.fill_uninitialized_memory = 1
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_storage_dict_dealloc
def test_storage_dict_dealloc(self): m, t = Tracker.make() x = torch.UntypedStorage(2) x.arf = t del t self.assertFalse(m[0]) del x self.assertTrue(m[0])
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_decoder_padding_and_src_mask_bool
def test_decoder_padding_and_src_mask_bool(self): def transformer_decoder(inputs, input_seq_len, memory): decoder_layer = nn.TransformerDecoderLayer( d_model=16, nhead=2, dim_feedforward=32, dropout=0.1, activation='relu', batch_first=True, ) decoder_norm = nn.LayerNorm(16) decoder = nn.TransformerDecoder( decoder_layer, 2, decoder_norm ) src_mask = torch.ones( inputs.shape[1], inputs.shape[1], dtype=torch.bool ).triu_(diagonal=1) padding_mask = ( torch.arange(inputs.shape[1])[None, :].cpu() >= input_seq_len[:, None] ) return decoder( inputs, memory, tgt_mask=src_mask, tgt_key_padding_mask=padding_mask, memory_key_padding_mask=padding_mask, ) inputs = torch.randn(2, 3, 16) memory = torch.randn(2, 3, 16) input_seq_len = torch.tensor([3, 2]) with self.assertNoLogs(None): transformer_decoder(inputs, input_seq_len, memory)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
transformer_decoder
def transformer_decoder(inputs, input_seq_len, memory): decoder_layer = nn.TransformerDecoderLayer( d_model=16, nhead=2, dim_feedforward=32, dropout=0.1, activation='relu', batch_first=True, ) decoder_norm = nn.LayerNorm(16) decoder = nn.TransformerDecoder( decoder_layer, 2, decoder_norm ) src_mask = torch.ones( inputs.shape[1], inputs.shape[1], dtype=torch.bool ).triu_(diagonal=1) padding_mask = ( torch.arange(inputs.shape[1])[None, :].cpu() >= input_seq_len[:, None] ) return decoder( inputs, memory, tgt_mask=src_mask, tgt_key_padding_mask=padding_mask, memory_key_padding_mask=padding_mask, ) inputs = torch.randn(2, 3, 16) memory = torch.randn(2, 3, 16) input_seq_len = torch.tensor([3, 2]) with self.assertNoLogs(None): transformer_decoder(inputs, input_seq_len, memory)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_mha_native_args
def test_mha_native_args(self, nb_heads, bias): B, L, F = 8, 100, 128 batch_first = True fast_path = True use_pad_mask = (bias % 2) == 1 mha = nn.MultiheadAttention( embed_dim=F, num_heads=nb_heads, batch_first=batch_first, bias=bias ).cuda() mha.eval() ctx = torch.no_grad if fast_path else contextlib.nullcontext with ctx(): x = torch.randn(B, L, F).cuda() if not batch_first: x = x.transpose(0, 1) pad_mask = None if use_pad_mask: pad_mask = torch.zeros((B, L), dtype=torch.bool).cuda() mha(query=x, key=x, value=x, key_padding_mask=pad_mask)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_with_nested_tensor_input
def test_with_nested_tensor_input(self, device): encoder_layer = nn.TransformerEncoderLayer( d_model=256, nhead=4, dim_feedforward=512, activation='gelu', norm_first=False, batch_first=True, ) transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=3, enable_nested_tensor=True).to(device) transformer_encoder.eval() with torch.no_grad(): x = torch.randn(6, 10, 256).to(device) mask = torch.ones(6, 10) mask[0, 0:] = 0 # here I masked 5 columns instead of just one mask[2, 2:] = 0 # here I masked 5 columns instead of just one mask[4, 4:] = 0 # here I masked 5 columns instead of just one mask[5, 8:] = 0 # here I masked 5 columns instead of just one mask = mask.bool().to(device) x = torch._nested_tensor_from_mask(x, mask.logical_not(), mask_check=False) out = transformer_encoder(src=x, src_key_padding_mask=None) self.assertEqual(out.is_nested, True)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_script_encoder_subclass
def test_script_encoder_subclass(self, device): class MyCustomLayer(nn.TransformerEncoderLayer): pass encoder = nn.TransformerEncoder( MyCustomLayer(d_model=256, nhead=8), num_layers=6 ).to(device=device) torch.jit.script(encoder) # brazenly adapted from test_transformerencoderlayer_src_mask to test execution of # torchscripted transformerencoderlayer subclass
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_transformerencoderlayer_subclass
def test_transformerencoderlayer_subclass(self, device): class MyCustomLayer(nn.TransformerEncoderLayer): pass nhead = 4 batch_size = 2 seqlen = 4 d_model = 8 dim_feedforward = 32 model = MyCustomLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, batch_first=True).to(device) script_model = torch.jit.script(model) src = torch.rand(batch_size, seqlen, d_model).to(device) # bs, seqlen, d_model src_mask = torch.zeros(seqlen, seqlen).to(torch.bool).to(device) torch.manual_seed(42) result = model(src, src_mask=src_mask) torch.manual_seed(42) scripted_result = script_model(src, src_mask=src_mask) self.assertEqual(result, scripted_result) model.eval() script_model = torch.jit.script(model) with torch.no_grad(): result = model(src, src_mask=src_mask) scripted_result = script_model(src, src_mask=src_mask) self.assertEqual(result, scripted_result)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
torch_to_fairseq
def torch_to_fairseq(torch_encoder, fairseq_encoder): for src_layer, dst_layer in zip(torch_encoder.layers, fairseq_encoder.layers): w_q, w_k, w_v = src_layer.self_attn.in_proj_weight.chunk(3, dim=0) b_q, b_k, b_v = src_layer.self_attn.in_proj_bias.chunk(3, dim=0) dst_layer.self_attn.q_proj.weight = torch.nn.Parameter(w_q) dst_layer.self_attn.q_proj.bias = torch.nn.Parameter(b_q) dst_layer.self_attn.k_proj.weight = torch.nn.Parameter(w_k) dst_layer.self_attn.k_proj.bias = torch.nn.Parameter(b_k) dst_layer.self_attn.v_proj.weight = torch.nn.Parameter(w_v) dst_layer.self_attn.v_proj.bias = torch.nn.Parameter(b_v) dst_layer.self_attn.out_proj.weight = src_layer.self_attn.out_proj.weight dst_layer.self_attn.out_proj.bias = src_layer.self_attn.out_proj.bias dst_layer.fc1.weight = src_layer.linear1.weight dst_layer.fc1.bias = src_layer.linear1.bias # fairseq may use fusedlayernorm from nvidia apex - diff properties dst_layer.self_attn_layer_norm.load_state_dict(src_layer.norm1.state_dict()) dst_layer.fc2.weight = src_layer.linear2.weight dst_layer.fc2.bias = src_layer.linear2.bias dst_layer.final_layer_norm.load_state_dict(src_layer.norm2.state_dict()) return fairseq_encoder
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_transformers.py
rand_tensor
def rand_tensor(*shape): return torch.randn(shape, device=device, dtype=dtype) # This test compares python and C++ implementations of SDP. N, N_prime, L, S, E = 5, 2, 4, 3, 6 if input_dim == 3: query = rand_tensor(N, L, E) key = rand_tensor(N, S, E) value = rand_tensor(N, S, E) elif input_dim == 4: query = rand_tensor(N, N_prime, L, E) key = rand_tensor(N, N_prime, S, E) value = rand_tensor(N, N_prime, S, E) else: self.fail(f'Invalid input_dim {input_dim} encountered in SDP test') attn_mask = None if attn_mask_dim is not None: assert attn_mask_dim in [2, input_dim] mask_size = (L, S) if attn_mask_dim == 2 else ((N, L, S) if input_dim == 3 else (N, N_prime, L, S)) attn_mask = (torch.ones(mask_size, device=device, dtype=torch.bool).tril() if is_causal else torch.randint(0, 2, size=mask_size, device=device, dtype=torch.bool)) with freeze_rng_state(): # Python impl only supports float mask and 3D inputs. attn_mask_float = attn_mask if attn_mask_float is not None: attn_mask_float = torch.zeros_like(attn_mask, dtype=query.dtype) attn_mask_float.masked_fill_(attn_mask.logical_not(), float("-inf")) q, k, v = query.view(-1, L, E), key.view(-1, S, E), value.view(-1, S, E) a = attn_mask_float if a is not None and attn_mask_dim > 3: a = a.view(-1, L, S) expected = sdp_ref(q, k, v, attn_mask=a, dropout_p=dropout_p) if input_dim > 3: expected = expected.view(-1, N_prime, L, E) with freeze_rng_state(): if is_causal: # NB: Don't pass attn_mask here actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, None, dropout_p, is_causal) # Error case: both explicit attn_mask and is_causal are set with self.assertRaisesRegex(RuntimeError, "Explicit attn_mask should not be set when is_causal=True"): torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask, dropout_p, is_causal) else: actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask, dropout_p, is_causal) self.assertEqual(actual, expected)
def rand_tensor(*shape): return torch.randn(shape, device=device, dtype=dtype) # This test compares python and C++ implementations of SDP. N, N_prime, L, S, E = 5, 2, 4, 3, 6 if input_dim == 3: query = rand_tensor(N, L, E) key = rand_tensor(N, S, E) value = rand_tensor(N, S, E) elif input_dim == 4: query = rand_tensor(N, N_prime, L, E) key = rand_tensor(N, N_prime, S, E) value = rand_tensor(N, N_prime, S, E) else: self.fail(f'Invalid input_dim {input_dim} encountered in SDP test') attn_mask = None if attn_mask_dim is not None: assert attn_mask_dim in [2, input_dim] mask_size = (L, S) if attn_mask_dim == 2 else ((N, L, S) if input_dim == 3 else (N, N_prime, L, S)) attn_mask = (torch.ones(mask_size, device=device, dtype=torch.bool).tril() if is_causal else torch.randint(0, 2, size=mask_size, device=device, dtype=torch.bool)) with freeze_rng_state(): # Python impl only supports float mask and 3D inputs. attn_mask_float = attn_mask if attn_mask_float is not None: attn_mask_float = torch.zeros_like(attn_mask, dtype=query.dtype) attn_mask_float.masked_fill_(attn_mask.logical_not(), float("-inf")) q, k, v = query.view(-1, L, E), key.view(-1, S, E), value.view(-1, S, E) a = attn_mask_float if a is not None and attn_mask_dim > 3: a = a.view(-1, L, S) expected = sdp_ref(q, k, v, attn_mask=a, dropout_p=dropout_p) if input_dim > 3: expected = expected.view(-1, N_prime, L, E) with freeze_rng_state(): if is_causal: # NB: Don't pass attn_mask here actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, None, dropout_p, is_causal) # Error case: both explicit attn_mask and is_causal are set with self.assertRaisesRegex(RuntimeError, "Explicit attn_mask should not be set when is_causal=True"): torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask, dropout_p, is_causal) else: actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask, dropout_p, is_causal) # This test the fully masked out rows case if torch.isnan(expected).any(): row_sums = attn_mask.sum(dim=-1) masked_out_rows = (row_sums == 0) for _ in range((input_dim - attn_mask_dim) - 1): masked_out_rows = masked_out_rows.unsqueeze(0) masked_out_rows = masked_out_rows.expand(expected.shape[:-1]) # Slice out the fully masked rows from expected and actual expected_masked_out = expected[masked_out_rows] actual_masked_out = actual[masked_out_rows] expected_all_nan = torch.isnan(expected_masked_out).all() actual_all_zero = (actual_masked_out.abs().sum() == 0) self.assertTrue(expected_all_nan) self.assertTrue(actual_all_zero) return self.assertEqual(actual, expected)
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6) class TestSDPA(NNTestCase):
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
ones_tensor
def ones_tensor(*shape): return torch.ones(shape, device=device, dtype=torch.float32).to(device) S, L, E, H = 1, 2, 4, 1 qkv = ones_tensor(S, L, E) mha = nn.MultiheadAttention(E, H).to(device) mha.in_proj_weight = Parameter(torch.ones((E * 3, E), device=device)) mha.out_proj.weight = Parameter(torch.ones((E, E), device=device)) expected = torch.ones(size=(S, L, E)).to(device) * 16 for kernel in kernels: with torch.backends.cuda.sdp_kernel( enable_math=(kernel == 'math'), enable_flash=(kernel == 'flash'), enable_mem_efficient=(kernel == 'meff') ): actual, _ = mha(qkv, qkv, qkv, need_weights=False, is_causal=True) self.assertTrue(torch.equal(actual, expected)) if kernel != 'math': # fails with embedding size not multiple of 4 with self.assertRaisesRegex(RuntimeError, "No available kernel"): qkv_f, mha_f = ones_tensor(S, L, 2), nn.MultiheadAttention(2, H).to(device) _ = mha_f(qkv_f, qkv_f, qkv_f, need_weights=False, is_causal=True) torch.cuda.synchronize()
def ones_tensor(*shape): return torch.ones(shape, dtype=torch.float32) S, L, E, H = 1, 2, 4, 1 qkv = ones_tensor(S, L, E) mha = nn.MultiheadAttention(E, H) mha.in_proj_weight = Parameter(torch.ones((E * 3, E))) mha.out_proj.weight = Parameter(torch.ones((E, E))) qkv = qkv.to(float) kpm = ones_tensor(S, L) * float("-inf") am = ones_tensor(L, L).to(bool)
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
_test_te_fastpath_called
def _test_te_fastpath_called(model, args, kwargs=None, return_value=None, is_called=True): if kwargs is None: kwargs = {} with patch('torch._transformer_encoder_layer_fwd') as fastpath_mock: fastpath_mock.return_value = return_value output = model(*args, **kwargs) self.assertTrue(fastpath_mock.called == is_called)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_transformer_bias_is_none
def test_transformer_bias_is_none(self, device): batch_size = 2 seqlen = 3 d_model = 8 nhead = 4 encoder_layer = torch.nn.TransformerEncoderLayer(d_model, nhead, bias=False, batch_first=True, device=device) encoder_layer.eval() x = torch.randn(batch_size, seqlen, d_model, device=device) # runs without error encoder_layer(x) with self.assertWarnsRegex(UserWarning, "encoder_layer.self_attn was passed bias=False"): encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=1).eval() encoder(x) with self.assertWarnsRegex(UserWarning, "self_attn was passed bias=False"): transformer = torch.nn.Transformer( d_model=d_model, nhead=nhead, bias=False, batch_first=True, device=device ).eval() transformer(x, x)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_train_with_is_causal
def test_train_with_is_causal(self, device): # training with is_causal S, L, E, H = 1, 2, 2, 1 layer = nn.TransformerEncoderLayer( d_model=2, dim_feedforward=4, nhead=H, batch_first=True, activation="gelu", dropout=0, ) criterion = nn.MSELoss() encoder = nn.TransformerEncoder(layer, 2).to(device) optimizer = optim.SGD(encoder.parameters(), lr=0.1, momentum=0.9) encoder.train() encoder.train() optimizer.zero_grad() inputs = torch.randn(S, L, E).to(device) outputs = encoder(inputs, is_causal=True) loss = criterion(outputs[:, 0:2, :], inputs[:, 0:2, :]) loss.backward() optimizer.step() # inference with is_causal t_qvk = torch.randn((S, L, E), device=device, dtype=torch.float32) mha = nn.MultiheadAttention(E, H).to(device) attn_out, _ = mha(t_qvk, t_qvk, t_qvk, is_causal=True) # Can't give both attn_mask AND is_causal attn_mask = torch.randint(0, 2, size=(L, L), device=device, dtype=torch.bool) with self.assertRaisesRegex(AssertionError, "Only allow causal mask or attn_mask"): _ = mha(t_qvk, t_qvk, t_qvk, attn_mask=attn_mask, is_causal=True) # # Passing a causal mask sets is_causal to 1 causal_mask = torch.triu( torch.ones(L, L, device=inputs.device) * float('-inf'), diagonal=1 ).to(torch.bool) mock_layer = MagicMock(torch.nn.MultiheadAttention(E, H), return_value=inputs) encoder.layers[0] = mock_layer outputs = encoder(inputs, mask=causal_mask) mock_layer.assert_called_with(ANY, src_mask=ANY, is_causal=True, src_key_padding_mask=ANY) # check expected numerical values with all kernels self.is_causal_kernels(["math"], device)
def test_train_with_is_causal(self, device): # training with is_causal S, L, E, H = 1, 2, 2, 1 layer = nn.TransformerEncoderLayer( d_model=2, dim_feedforward=4, nhead=H, batch_first=True, activation="gelu", dropout=0, ) criterion = nn.MSELoss() encoder = nn.TransformerEncoder(layer, 2).to(device) optimizer = optim.SGD(encoder.parameters(), lr=0.1, momentum=0.9) encoder.train() encoder.train() optimizer.zero_grad() inputs = torch.randn(S, L, E).to(device) mask = torch.nn.Transformer.generate_square_subsequent_mask( inputs.size(1), device=device ) outputs = encoder(inputs, mask=mask, is_causal=True) loss = criterion(outputs[:, 0:2, :], inputs[:, 0:2, :]) loss.backward() optimizer.step() # inference with is_causal t_qvk = torch.randn((S, L, E), device=device, dtype=torch.float32) mha = nn.MultiheadAttention(E, H).to(device) mask = torch.nn.Transformer.generate_square_subsequent_mask( S, device=device ) attn_out, _ = mha(t_qvk, t_qvk, t_qvk, attn_mask=mask, is_causal=True) # Can't give only is_causal attn_mask = torch.randint(0, 2, size=(L, L), device=device, dtype=torch.bool) with self.assertRaises(RuntimeError): _ = mha(t_qvk, t_qvk, t_qvk, is_causal=True) # # Passing a causal mask sets is_causal to 1 causal_mask = torch.triu( torch.ones(L, L, device=inputs.device) * float('-inf'), diagonal=1 ).to(torch.bool) mock_layer = MagicMock(torch.nn.MultiheadAttention(E, H), return_value=inputs) encoder.layers[1] = mock_layer outputs = encoder(inputs, mask=causal_mask) mock_layer.assert_called_with(ANY, src_mask=ANY, is_causal=True, src_key_padding_mask=ANY) # check expected numerical values with all kernels self.is_causal_kernels([SDPBackend.MATH], device)
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6) class TestTransformers(NNTestCase):
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
ones_tensor
def ones_tensor(*shape): return torch.ones(shape, device=device, dtype=torch.float32).to(device) S, L, E, H = 1, 2, 4, 1 qkv = ones_tensor(S, L, E) mha = nn.MultiheadAttention(E, H).to(device) mha.in_proj_weight = Parameter(torch.ones((E * 3, E), device=device)) mha.out_proj.weight = Parameter(torch.ones((E, E), device=device)) expected = torch.ones(size=(S, L, E)).to(device) * 16 for kernel in kernels: with torch.backends.cuda.sdp_kernel( enable_math=(kernel == 'math'), enable_flash=(kernel == 'flash'), enable_mem_efficient=(kernel == 'meff') ): actual, _ = mha(qkv, qkv, qkv, need_weights=False, is_causal=True) self.assertTrue(torch.equal(actual, expected)) if kernel != 'math': # fails with embedding size not multiple of 4 with self.assertRaisesRegex(RuntimeError, "No available kernel"): qkv_f, mha_f = ones_tensor(S, L, 2), nn.MultiheadAttention(2, H).to(device) _ = mha_f(qkv_f, qkv_f, qkv_f, need_weights=False, is_causal=True) torch.cuda.synchronize()
def ones_tensor(*shape): return torch.ones(shape, dtype=torch.float32) S, L, E, H = 1, 2, 4, 1 qkv = ones_tensor(S, L, E) mha = nn.MultiheadAttention(E, H) mha.in_proj_weight = Parameter(torch.ones((E * 3, E))) mha.out_proj.weight = Parameter(torch.ones((E, E))) qkv = qkv.to(float) kpm = ones_tensor(S, L) * float("-inf") am = ones_tensor(L, L).to(bool)
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
test_is_causal_gpu
def test_is_causal_gpu(self): device = 'cuda' self.is_causal_kernels(["math", "meff"], device)
def test_is_causal_gpu(self): device = 'cuda' self.is_causal_kernels([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION], device)
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6) class TestTransformers(NNTestCase):
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestTransformers(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
pad_last_dim
def pad_last_dim(input_tensor, alignment_size, slice: bool = False): last_dim_size = input_tensor.size(-1) if (last_dim_size % alignment_size == 0): return input_tensor, last_dim_size pad_count = alignment_size - (last_dim_size % alignment_size) padded_tensor = F.pad(input_tensor, (0, pad_count)) if slice: return padded_tensor[..., :last_dim_size], last_dim_size return padded_tensor, last_dim_size class TestSDPA(NNTestCase): """ Used to test generic functionality of scaled_dot_product_attention Summary: If you are adding a new test to this class, make sure that it runs for both cpu and cuda. If you're test is only applicable to cuda, add it to TestSDPACudaOnly. """ @parametrize("contiguous_inputs", [True, False]) def test_sdp_math_gradcheck(self, device, contiguous_inputs: bool): batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16 shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float64, requires_grad=True, packed=True) qkv = make_tensor(shape) query, key, value = qkv.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) if contiguous_inputs: query = query.contiguous() key = key.contiguous() value = value.contiguous() with sdpa_kernel(backends=[SDPBackend.MATH]): assert gradcheck(lambda *args, **kwargs: wrapper_set_seed(torch.nn.functional.scaled_dot_product_attention, *args, **kwargs), (query, key, value, None, 0.0, False) ) @parametrize("kernel", [SDPBackend.MATH]) def test_scaled_dot_product_attention_math_with_negative_scale(self, device, kernel: SDPBackend): # https://github.com/pytorch/pytorch/issues/105190. def ref(x): v1 = torch.matmul(x, x.transpose(-1, -2)) v2 = v1 / -0.0001 v3 = v2.softmax(dim=-1) v4 = torch.matmul(v3, x) return v4 x = torch.randn(1, 3, 64, 64, device=device) ref_result = ref(x) with sdpa_kernel(backends=[kernel]): sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001) self.assertEqual(ref_result, sdp_math) class TestSDPACpuOnly(NNTestCase): """ Used to test CPU only functionality of scaled_dot_product_attention """ @parametrize("type", ["dense", "nested"]) @parametrize("dropout", [0.0, 0.7]) @parametrize("dtype", [torch.float64, torch.float32, torch.bfloat16, torch.half]) @skipIfTorchDynamo() def test_fused_sdp_choice_cpu(self, device, type: str, dropout: float, dtype: torch.dtype): # Test that cpu and nestedtensor cpu return MATH backend make_tensor = partial(rand_sdpa_tensor, type=type, device=device, dtype=dtype) size = SdpaShape(2, 8, 128, 64) q, k, v = make_tensor(size), make_tensor(size), make_tensor(size) if type == "nested" \ or dropout > 0.0 \ or dtype not in [torch.float32, torch.float64, torch.bfloat16, torch.float16]: assert torch._fused_sdp_choice(q, k, v, dropout_p=dropout) == SDPBackend.MATH.value else: assert torch._fused_sdp_choice(q, k, v, dropout_p=dropout) == SDPBackend.FLASH_ATTENTION.value @parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION]) @parametrize("dtype", [torch.float64, torch.float32, torch.bfloat16, torch.float16]) @parametrize("batch_size", [2, 12]) @parametrize("q_seq_len", [11, 514, 1030]) @parametrize("kv_seq_len", [17, 514]) @parametrize("n_head", [1, 3]) @parametrize("head_dim", [8]) @parametrize("mask_dim", [2, 4]) @parametrize("bool_mask", [False, True]) @parametrize("train", [True, False]) @parametrize("casual", [True, False]) @parametrize("set_attn_mask", [True, False]) def test_scaled_dot_product_fused_attention_mask_vs_math_cpu( self, device, fused_kernel, dtype, batch_size, q_seq_len, kv_seq_len, n_head, head_dim, mask_dim, bool_mask, train, casual, set_attn_mask, ): tol = Tolerances(1e-5, 5e-6) if dtype is torch.bfloat16: tol = Tolerances(5e-2, 5e-2) if dtype is torch.float16: tol = Tolerances(1e-2, 1e-2) for mask_shape in itertools.product( [q_seq_len, 1], [kv_seq_len, 1] ) if mask_dim == 2 else itertools.product( [batch_size, 1], [n_head, 1], [q_seq_len, 1], [kv_seq_len, 1] ): make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=dtype, requires_grad=False) q_shape = SdpaShape(batch_size, n_head, q_seq_len, head_dim) kv_shape = SdpaShape(batch_size, n_head, kv_seq_len, head_dim) q = make_tensor(q_shape) k = make_tensor(kv_shape) v = make_tensor(kv_shape) q2, k2, v2 = q.clone(), k.clone(), v.clone() if train: q.requires_grad_(True) k.requires_grad_(True) v.requires_grad_(True) q2.requires_grad_(True) k2.requires_grad_(True) v2.requires_grad_(True) if dtype in [torch.bfloat16, torch.float16]: q2, k2, v2 = q2.float(), k2.float(), v2.float() # (B, nh, T, hs) q = q.view(batch_size, q_seq_len, n_head, head_dim).transpose(1, 2) k = k.view(batch_size, kv_seq_len, n_head, head_dim).transpose(1, 2) v = v.view(batch_size, kv_seq_len, n_head, head_dim).transpose(1, 2) if set_attn_mask and not casual: if bool_mask: attn_mask = torch.randint(0, 2, size=mask_shape, dtype=torch.bool, device=device) else: attn_mask = torch.randn(mask_shape, dtype=dtype, device=device) else: attn_mask = None q2 = q2.view(batch_size, q_seq_len, n_head, head_dim).transpose(1, 2) k2 = k2.view(batch_size, kv_seq_len, n_head, head_dim).transpose(1, 2) v2 = v2.view(batch_size, kv_seq_len, n_head, head_dim).transpose(1, 2) with sdpa_kernel(backends=[fused_kernel]): actual = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=casual) with sdpa_kernel(backends=[SDPBackend.MATH]): if not bool_mask and dtype in [torch.bfloat16, torch.float16] and attn_mask is not None: attn_mask = attn_mask.float() math_ref = torch.nn.functional.scaled_dot_product_attention( q2, k2, v2, attn_mask=attn_mask, dropout_p=0.0, is_causal=casual) if dtype in [torch.bfloat16, torch.float16]: math_ref = math_ref.to(dtype) self.assertFalse(torch.isnan(math_ref).any()) self.assertFalse(torch.isnan(actual).any()) self.assertEqual(actual, math_ref, atol=tol.atol, rtol=tol.rtol) if train: actual.sum().backward() math_ref.sum().backward() grad_q_actual, grad_k_actual, grad_v_actual = q.grad, k.grad, v.grad grad_q_ref, grad_k_ref, grad_v_ref = q2.grad, k2.grad, v2.grad self.assertEqual(grad_q_actual, grad_q_ref, atol=tol.atol, rtol=tol.rtol) self.assertEqual(grad_k_actual, grad_k_ref, atol=tol.atol, rtol=tol.rtol) self.assertEqual(grad_v_actual, grad_v_ref, atol=tol.atol, rtol=tol.rtol) def test_sdpa_with_inf(self, device): # https://github.com/pytorch/pytorch/issues/127055. full = torch.full((600, 600), float("-inf"), device=device) mask = torch.triu(full, diagonal=1) + torch.tril(full, diagonal=-10) make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float32, requires_grad=False) input_shape = SdpaShape(1, 600, 2, 8) q = make_tensor(input_shape) k = make_tensor(input_shape) v = make_tensor(input_shape) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask) with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): actual = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask) self.assertEqual(math_ref, actual) def test_sdpa_backward_with_gradient(self, device): # https://github.com/pytorch/pytorch/issues/133671. def sdpa_helper(): torch.manual_seed(777) query = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) key = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) value = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) res = torch.nn.functional.scaled_dot_product_attention( query, key, value, None, 0.0, False ) res_grad = ( torch.empty_like(res, device=device) .uniform_(-1, 1) ) res.backward(res_grad, retain_graph=True) return res, query.grad, key.grad, value.grad with sdpa_kernel(backends=[SDPBackend.MATH]): res_ref, query_grad_ref, key_grad_ref, value_grad_ref = sdpa_helper() with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): res_actual, query_grad_actual, key_grad_actual, value_grad_actual = sdpa_helper() self.assertEqual(res_ref, res_actual) self.assertEqual(query_grad_ref, query_grad_actual) self.assertEqual(key_grad_ref, key_grad_actual) self.assertEqual(value_grad_ref, value_grad_actual) @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system") @parametrize("backend", [SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION]) @parametrize("seq_len", [32, 64, 128]) @parametrize("head_dim", [16, 32]) @parametrize("dtype", [torch.float32, torch.float16]) def test_fully_masked_out_rows(self, backend, device, seq_len, head_dim, dtype): def attention_inputs(seq_len, head_dim, device, dtype, mask_every_n_rows=4): query = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) key = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) value = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) # Create a mask with deterministic row masking mask = torch.ones(1, 1, seq_len, seq_len, dtype=torch.bool, device=device) # Mask every nth row mask[0, 0, ::mask_every_n_rows, :] = False # Create a fixed pattern for element-wise masking element_mask = torch.zeros(seq_len, seq_len, dtype=torch.bool, device=device) element_mask[torch.arange(seq_len)[:, None] % 5 == torch.arange(seq_len) % 5] = True # Combine row masking and element-wise masking mask = mask & element_mask.unsqueeze(0).unsqueeze(0) return query, key, value, mask def compute_output_and_grads(query, key, value, mask, backend): with sdpa_kernel(backend): masked_out = scaled_dot_product_attention(query, key, value, attn_mask=mask) loss = masked_out.sum() grads = torch.autograd.grad(loss, [query, key, value]) return masked_out, grads if backend == SDPBackend.FLASH_ATTENTION and "cuda" in str(device): unittest.skip("FlashAttention does not support masks on cuda") return if backend == SDPBackend.EFFICIENT_ATTENTION and "cpu" in str(device): unittest.skip("EfficientAttention does not support masks on cpu") return query, key, value, mask = attention_inputs(seq_len, head_dim, device, dtype) # Compute results for the tested backend backend_out, backend_grads = compute_output_and_grads(query, key, value, mask, backend) # Compute results for the Math backend math_out, math_grads = compute_output_and_grads(query, key, value, mask, SDPBackend.MATH) # Compare outputs torch.testing.assert_close(backend_out, math_out, atol=5e-3, rtol=0) self.assertFalse(backend_out.isnan().any()) self.assertFalse(math_out.isnan().any()) # Compare gradients for bg, mg in zip(backend_grads, math_grads): torch.testing.assert_close(bg, mg, atol=3e-3, rtol=0) self.assertFalse(bg.isnan().any()) self.assertFalse(mg.isnan().any()) # Check if masked rows are zero in output mask_sum = mask.sum(dim=-1, keepdim=True) masked_rows = (mask_sum == 0).expand_as(backend_out) self.assertTrue((mask_sum == 0).sum() > 0, "No fully masked out rows found") assert torch.all(backend_out[masked_rows] == 0), \ f"Non-zero values in fully masked rows for {backend=}" # Check if gradients for masked rows are zero grad_query = backend_grads[0] assert torch.all(grad_query[masked_rows] == 0), f"Non-zero gradients in fully masked rows for {backend=}" @parametrize("dtype", [torch.float32, torch.float16]) @parametrize("fill_val", [float("inf")]) def test_non_masked_rows_nan_props(self, device, dtype, fill_val): query = torch.randn(1, 2, 4, 16, device=device, dtype=dtype) # a single NaN in the query input query[0, 1, 2, 3] = fill_val query = query.detach().requires_grad_(True) key = torch.randn(1, 2, 4, 16, device=device, dtype=dtype, requires_grad=True) value = torch.randn(1, 2, 4, 16, device=device, dtype=dtype, requires_grad=True) out = torch.nn.functional.scaled_dot_product_attention(query, key, value) self.assertTrue(torch.isnan(out).any()) out.sum().backward() self.assertTrue(torch.isnan(query.grad).any()) @parametrize("kernel", [SDPBackend.MATH]) def test_scaled_dot_product_attention_math_with_negative_scale(self, device, kernel: SDPBackend): # https://github.com/pytorch/pytorch/issues/105190. def ref(x): v1 = torch.matmul(x, x.transpose(-1, -2)) v2 = v1 / -0.0001 v3 = v2.softmax(dim=-1) v4 = torch.matmul(v3, x) return v4 x = torch.randn(1, 3, 64, 64, device=device) ref_result = ref(x) with sdpa_kernel(backends=[kernel]): sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001) self.assertEqual(ref_result, sdp_math) class TestSDPACudaOnly(NNTestCase): """ Used to test CUDA only functionality of scaled_dot_product_attention Quarks: There is some trickiness with this function. Its runtime behavior is dependent on the CUDA architecture you are testing it on. See `PLATFORM_SUPPORTS_FUSED_ATTENTION` at the top of the file. Summary: Math: always supported FlashAttention: Supported on sm80 or newer hardware MemEfficientAttention: Supported on sm50 or newer hardware """ _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True # TODO USED FOR TESTING THE SCORES, e.g. testing ALIBI we don't need this now def normalize_flash_attn_S( self, attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None, attn_bias=None, is_dropout=False, causal=False, window_size=(-1, -1), # -1 means infinite window size scale=None, ): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k, v: (batch_size, seqlen_k, nheads, head_dim) key_padding_mask: (batch_size, seqlen_q) attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k) Output: softmax_lse: (batch_size, nheads, seqlen_q) softmax_max: (batch_size, nheads, seqlen_q) """ q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) if causal: window_size = (window_size[0], 0) q, k, v = q.float(), k.float(), v.float() _, seqlen_q, _, head_dim = q.shape seqlen_k = k.shape[1] b = q.shape[0] from torch.nn.attention.bias import _calculate_scale scale = _calculate_scale(head_dim, scale) scores = torch.matmul(q.transpose(1, 2) * scale, k.permute(0, 2, 3, 1)) if key_padding_mask is not None: scores.masked_fill_(~key_padding_mask.view(b, 1, 1, -1), float("-inf")) if window_size[0] >= 0 or window_size[1] >= 0: local_mask = self.construct_local_mask( seqlen_q, seqlen_k, window_size, query_padding_mask, key_padding_mask, q.device, ) scores.masked_fill_(local_mask, float("-inf")) if attn_bias is not None: scores = scores + attn_bias.to(dtype=scores.dtype) block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal) scores_block = scores.split(block_size_n, dim=-1) lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1) lse = torch.logsumexp(lse_block, dim=-1) # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN. lse[lse == float("-inf")] = float("inf") scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1) cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1) attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1) attn_norm = torch.cat( [ a * (torch.exp(m - lse)).unsqueeze(-1) for a, m in zip(attn_unnorm_block, cummax_block) ], dim=-1, ) if query_padding_mask is not None: attn_norm.masked_fill_(~query_padding_mask.view(b, 1, -1, 1), 0.0) # attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0) return attn_norm.to(dtype=attn_unnorm.dtype) def construct_local_mask(self, seqlen_q, seqlen_k, window_size, query_padding_mask, key_padding_mask, device): # row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1") row_idx = torch.arange(seqlen_q, device=device, dtype=torch.long).view(-1, 1) col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) sk = ( seqlen_k if key_padding_mask is None else key_padding_mask.sum(-1).view(-1, 1, 1, 1) # else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") ) sq = ( seqlen_q if query_padding_mask is None else query_padding_mask.sum(-1).view(-1, 1, 1, 1) # else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") ) if window_size[0] < 0: return col_idx > row_idx + sk - sq + window_size[1] else: sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk return torch.logical_or( col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk), col_idx < row_idx + sk - sq - window_size[0], ) def convert_flash_attn_S_to_softmax( self, S, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=False, window_size=(-1, -1), # -1 means infinite window size ): """FlashAttention stores the S matrix in a different way. Arguments: S: (batch_size, nheads, seqlen_q, seqlen_k) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ if TEST_WITH_ROCM: return S b = S.shape[0] if causal: window_size = (window_size[0], 0) seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:] S_converted = S if window_size[0] >= 0 or window_size[1] >= 0: local_mask = self.construct_local_mask( seqlen_q, seqlen_k, window_size, query_padding_mask, key_padding_mask, S.device, ) local_mask = F.pad( local_mask, (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q), value=True, ) S_converted = S_converted.masked_fill(local_mask, 0.0) # Need to zero out things not in attention_mask in case S was initialized with random values # and some of those values aren't overwritten. seqlen_q_og = ( query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded ) if query_padding_mask is not None: query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og)) # S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0) S_converted = S_converted.masked_fill(~query_padding_mask.view(b, 1, -1, 1), 0.0) seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k if key_padding_mask is not None: key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og)) S_converted = S_converted.masked_fill(~key_padding_mask.view(b, 1, 1, -1), 0.0) # S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0) S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded)) S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded)) return S_converted[:, :, :seqlen_q, :seqlen_k] @skipIfRocm # No cuDNN Attention @unittest.skipIf(not PLATFORM_SUPPORTS_CUDNN_ATTENTION, "cuDNN Attention is not supported on this system") def test_cudnn_attention_different_dk_dv(self, device): dtype = torch.bfloat16 make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True) batch, num_heads, head_dim_k, head_dim_v = 32, 16, 128, 64 seq_len = 640 q_shape = SdpaShape(batch, num_heads, seq_len, head_dim_k) k_shape = SdpaShape(batch, num_heads, seq_len, head_dim_k) v_shape = SdpaShape(batch, num_heads, seq_len, head_dim_v) query, key, value = make_tensor(q_shape), make_tensor(k_shape), make_tensor(v_shape) with sdpa_kernel(backends=[SDPBackend.CUDNN_ATTENTION]): actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention( query.contiguous().to(torch.float32), key.contiguous().to(torch.float32), value.contiguous().to(torch.float32), attn_mask=None, dropout_p=0.0, is_causal=False) self.assertEqual(actual.contiguous(), math_ref.contiguous().to(dtype), atol=1e-3, rtol=1e-2) @skipIfRocm # No cuDNN Attention @unittest.skipIf(not PLATFORM_SUPPORTS_CUDNN_ATTENTION, "cuDNN Attention is not supported on this system") def test_cudnn_attention_fail_d128(self, device): # Test that cuDNN attention dispatching correctly bails out on d > 128 b, h = 1, 2 s_q, s_kv = 128, 128 d_qk, d_v = 128, 144 q = torch.randn(b, h, s_q, d_qk, device=device, dtype=torch.bfloat16) k = torch.randn(b, h, s_kv, d_qk, device=device, dtype=torch.bfloat16) v = torch.randn(b, h, s_kv, d_v, device=device, dtype=torch.bfloat16) with sdpa_kernel(backends=[SDPBackend.CUDNN_ATTENTION]): with self.assertRaisesRegex(RuntimeError, "No available kernel."): o = torch.nn.functional.scaled_dot_product_attention(q, k, v) @skipIfRocm # No cuDNN Attention @unittest.skipIf(not PLATFORM_SUPPORTS_CUDNN_ATTENTION, "cudnn Attention is not supported on this system") def test_cudnn_attention_trivial_output_transpose(self, device): # see also: https://github.com/pytorch/pytorch/issues/134001 x = torch.randn(2, 4, 1, 64, device='cuda', dtype=torch.float16, requires_grad=True) x2 = x.transpose(1, 2) with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.CUDNN_ATTENTION): o = torch.nn.functional.scaled_dot_product_attention(x2, x2, x2).transpose(1, 2).reshape(2, 64, 4) o.backward(o) x_cpu = x.clone().cpu().detach() x_cpu.requires_grad = True x2_cpu = x_cpu.transpose(1, 2) o = torch.nn.functional.scaled_dot_product_attention(x2_cpu, x2_cpu, x2_cpu).transpose(1, 2).reshape(2, 64, 4) o.backward(o) torch.testing.assert_close(x.grad, x_cpu.grad.cuda(), atol=7e-3, rtol=7e-3) @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") @parametrize("mask_dim", [1, 2, 3, 4]) def test_mem_efficient_attention_mask_variants(self, device, mask_dim: List[int]): dtype = torch.float16 make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True) batch, num_heads, head_dim = 8, 8, 64 seq_len_q, seq_len_kv = 64, 15 query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim)) kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim) key, value = make_tensor(kv_shape), make_tensor(kv_shape) if mask_dim == 1: mask = torch.randn((seq_len_kv,), device=device, dtype=dtype) elif mask_dim == 2: mask = torch.randn((seq_len_q, seq_len_kv), device=device, dtype=dtype) elif mask_dim == 3: mask = torch.randn((num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype) elif mask_dim == 4: mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): out = F.scaled_dot_product_attention(query, key, value, mask) out.sum().backward() @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") @parametrize("dtype", [torch.float, torch.float16]) def test_mem_eff_attention_non_contiguous_mask(self, device, dtype): make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True) batch, num_heads, head_dim = 8, 8, 64 seq_len_q, seq_len_kv = 64, 16 query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim)) kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim) key, value = make_tensor(kv_shape), make_tensor(kv_shape) mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype) mask = torch.as_strided(mask, (batch, num_heads, seq_len_q, seq_len_kv), (0, 0, 0, 1)) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): out = F.scaled_dot_product_attention(query, key, value, mask) out.sum().backward() @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") @parametrize("dtype", [torch.float, torch.float16]) def test_mem_eff_attention_long_sequence_mask(self, device, dtype): if torch.cuda.get_device_properties('cuda').total_memory < 80 * 2**30: unittest.skip("This test requires substatnial GPU memory.") return make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True) batch, num_heads, head_dim = 1, 32, 64 seq_len_q, seq_len_kv = 8192, 8192 query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim)) kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim) key, value = make_tensor(kv_shape), make_tensor(kv_shape) mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): out = F.scaled_dot_product_attention(query, key, value, mask) out.sum().backward() @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") def test_mem_eff_attention_non_contig_mask_bug(self, device): # Without the fix this produces `AssertionError: assert 0.07352933287620544 < 1e-07` # Shapes taken from repro query_size = (3, 16, 1, 128) query_strides = (2304, 128, 2048, 1) key_size = (3, 16, 14, 128) key_strides = (3584, 0, 256, 1) value_size = (3, 16, 14, 128) value_strides = (3584, 0, 256, 1) attention_mask_size = (3, 1, 1, 14) attn_mask_strides = (14, 14, 14, 1) # Calculate the number of elements needed for each tensor query_num_elements = max(size * stride for size, stride in zip(query_size, query_strides)) key_num_elements = max(size * stride for size, stride in zip(key_size, key_strides)) value_num_elements = max(size * stride for size, stride in zip(value_size, value_strides)) attention_mask_num_elements = max(size * stride for size, stride in zip(attention_mask_size, attn_mask_strides)) # Create the tensors with the specified sizes and strides query = torch.randn(query_num_elements, device=device).as_strided(query_size, query_strides) key = torch.randn(key_num_elements, device=device).as_strided(key_size, key_strides) value = torch.randn(value_num_elements, device=device).as_strided(value_size, value_strides) bias = torch.randn(attention_mask_num_elements, device=device).as_strided(attention_mask_size, attn_mask_strides) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): out = F.scaled_dot_product_attention(query, key, value, bias) out_contig = F.scaled_dot_product_attention(query, key, value, bias.contiguous()) max_diff = (out - out_contig).abs().mean() self.assertTrue(max_diff.item() < 1e-7) @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Fused SDPA was not built for this system") def test_singelton_head_dim_stride_ne_1(self, device): query = torch.tensor([[[[1, 2]]]], dtype=torch.float16, device=device) query = query.transpose(-1, -2) key = torch.tensor([[[[1]]]], dtype=torch.float16, device=device) value = torch.tensor([[[[1]]]], dtype=torch.float16, device=device) with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False): scaled_dot_product_attention(query, key, value) @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") @parametrize("type", ["dense", "nested"]) @parametrize("is_contiguous", [True, False]) def test_scaled_dot_product_attention_fused_kernels_packed(self, device, type: str, is_contiguous: bool): if TEST_WITH_ROCM and type == 'nested': self.skipTest("ROCM does not support efficient attention on nested tensors, for now") make_tensor = partial(rand_sdpa_tensor, type=type, device=device, dtype=torch.float16, packed=True) batch_size, seq_len, num_heads, head_dim = 32, 64, 16, 64 shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) # Test Packed qkv = make_tensor(shape) query, key, value = qkv.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) if is_contiguous: query = query.contiguous() key = key.contiguous() value = value.contiguous() with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention( query.contiguous(), key.contiguous(), value.contiguous(), attn_mask=None, dropout_p=0.0, is_causal=False) self.assertEqual(actual.contiguous(), math_ref.contiguous(), atol=2e-3, rtol=1e-2) @skipIfRocm # Missing nested and EFFICIENT_ATTENTION @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system") @parametrize("type", ["dense", "nested"]) @parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION]) def test_scaled_dot_product_attention_fused_kernels_packed_accuracy(self, device, type: str, fused_kernel: str): def rand_nt(shape): batch, seq_len, num_heads, head_dim = shape tensors = [6 * torch.rand((seq_len, 3 * num_heads * head_dim), device=device, dtype=torch.float32) - 3 for _ in range(batch)] return (torch.nested.nested_tensor(tensors, device=device, dtype=torch.float32), torch.nested.nested_tensor(tensors, device=device, dtype=torch.float16)) def rand_tensor(shape): batch, seq_len, num_heads, head_dim = shape tensor = 6 * torch.rand((batch, seq_len, 3 * num_heads * head_dim), device=device, dtype=torch.float32) - 3 return tensor, tensor.to(dtype=torch.float16) batch_size, seq_len, num_heads, head_dim = 16, 8, 4, 64 shape = (batch_size, seq_len, num_heads, head_dim) # Test Packed qkv, qkv_low_precision = rand_tensor(shape) if type == "dense" else rand_nt(shape) query, key, value = qkv.chunk(3, dim=-1) query_lp, key_lp, value_lp = qkv_low_precision.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) with sdpa_kernel(backends=[fused_kernel]): actual = torch.nn.functional.scaled_dot_product_attention( query_lp, key_lp, value_lp, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref_lp = torch.nn.functional.scaled_dot_product_attention( query_lp.contiguous(), key_lp.contiguous(), value_lp.contiguous(), attn_mask=None, dropout_p=0.0, is_causal=False) math_query = query.contiguous() math_key = key.contiguous() math_value = value.contiguous() math_ref = torch.nn.functional.scaled_dot_product_attention( math_query, math_key, math_value, attn_mask=None, dropout_p=0.0, is_causal=False) actual_test = actual math_ref_test = math_ref math_ref_lp_test = math_ref_lp if actual_test.is_nested: actual_test = torch.nested.to_padded_tensor(actual_test.contiguous(), padding=0.0) math_ref_test = torch.nested.to_padded_tensor(math_ref_test, padding=0.0) math_ref_lp_test = torch.nested.to_padded_tensor(math_ref_lp_test, padding=0.0) actual_test = actual_test.to(dtype=torch.float32).contiguous() math_ref_test = math_ref_test.to(dtype=torch.float32).contiguous() math_ref_lp_test = math_ref_lp_test.to(dtype=torch.float32).contiguous() self.assertEqual(math_ref_test, math_ref_lp_test, atol=7e-3, rtol=7e-3) self.assertEqual(actual_test, math_ref_test, atol=7e-3, rtol=7e-3) @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Efficient Attention was not built for this system") @parametrize("contiguous_inputs", [True, False]) @parametrize("is_causal", [True, False]) def test_sdp_mem_efficient_grad_against_math(self, device, contiguous_inputs: bool, is_causal: bool): batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16 make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float64, requires_grad=True, packed=True) qkv = make_tensor(SdpaShape(batch_size, num_heads, seq_len, head_dim)) qkv_lp = qkv.detach().clone().to(torch.float32).requires_grad_() query, key, value = qkv.chunk(3, dim=-1) query_lp, key_lp, value_lp = qkv_lp.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) if contiguous_inputs: query = query.contiguous() key = key.contiguous() value = value.contiguous() query_lp = query_lp.contiguous() key_lp = key_lp.contiguous() value_lp = value_lp.contiguous() with sdpa_kernel(backends=[SDPBackend.MATH]): out = torch.nn.functional.scaled_dot_product_attention(query, key, value, None, 0.0, is_causal) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): out_lp = torch.nn.functional.scaled_dot_product_attention( query_lp, key_lp, value_lp, None, 0.0, is_causal) rand_upward = torch.rand_like(out) rand_upward_lp = rand_upward.to(torch.float32) out.backward(rand_upward) out_lp.backward(rand_upward_lp) # Cast up and compare self.assertEqual(qkv.grad, qkv_lp.grad.to(torch.float64), atol=1e-5, rtol=1e-5) @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Flash Attention was not built for this system") @parametrize("contiguous_inputs", [True, False]) @parametrize("is_causal", [True, False]) @parametrize("dtype", [torch.float16, torch.bfloat16]) def test_sdp_flash_attention_grad_against_math(self, device, contiguous_inputs: bool, is_causal: bool, dtype: torch.dtype): batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16 make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float64, requires_grad=True, packed=True) qkv = make_tensor(SdpaShape(batch_size, num_heads, seq_len, head_dim)) qkv_lp = qkv.detach().clone().to(dtype).requires_grad_() query, key, value = qkv.chunk(3, dim=-1) query_lp, key_lp, value_lp = qkv_lp.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) if contiguous_inputs: query = query.contiguous() key = key.contiguous() value = value.contiguous() query_lp = query_lp.contiguous() key_lp = key_lp.contiguous() value_lp = value_lp.contiguous() with sdpa_kernel(backends=[SDPBackend.MATH]): out = torch.nn.functional.scaled_dot_product_attention(query, key, value, None, 0.0, is_causal) with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): out_lp = torch.nn.functional.scaled_dot_product_attention( query_lp, key_lp, value_lp, None, 0.0, is_causal) rand_upward = torch.rand_like(out) rand_upward_lp = rand_upward.to(dtype) out.backward(rand_upward) out_lp.backward(rand_upward_lp) # Cast up and compare # Since we are doing the compute on fp16 we have to bump the tolerance # Bump down the tolearnce for blfoat16 atol = 7e-4 if dtype == torch.float16 else 7e-3 rtol = 7e-4 if dtype == torch.float16 else 7e-3 if TEST_WITH_ROCM: atol = 9e-4 if dtype == torch.float16 else 9e-3 self.assertEqual(qkv.grad, qkv_lp.grad.to(torch.float64), atol=atol, rtol=rtol) @skipIfRocm # Missing nested and EFFICIENT_ATTENTION @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Platform does not support fused SDPA") @parametrize("type", ["dense", "nested"]) def test_fused_sdp_choice(self, device, type: str): batch_size, seq_len, num_heads, head_dim = 2, 128, 8, 64 shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) make_tensor = partial(rand_sdpa_tensor, device=device, dtype=torch.float16, packed=True, requires_grad=True) qkv = make_tensor(shape, type=type) query, key, value = qkv.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) if type != "nested" and PLATFORM_SUPPORTS_CUDNN_ATTENTION and SM90OrLater: self.assertEqual(torch._fused_sdp_choice(query, key, value), SDPBackend.CUDNN_ATTENTION.value) elif PLATFORM_SUPPORTS_FLASH_ATTENTION: self.assertEqual(torch._fused_sdp_choice(query, key, value), SDPBackend.FLASH_ATTENTION.value) elif type != "nested" and PLATFORM_SUPPORTS_CUDNN_ATTENTION: # e.g., we're on Windows self.assertEqual(torch._fused_sdp_choice(query, key, value), SDPBackend.CUDNN_ATTENTION.value) else: self.assertEqual(torch._fused_sdp_choice(query, key, value), SDPBackend.EFFICIENT_ATTENTION.value) # Change dtype to float32 so that efficient attention should get chosen make_tensor = partial(rand_sdpa_tensor, device=device, dtype=torch.float32, packed=True) qkv = make_tensor(shape, type=type) query, key, value = qkv.chunk(3, dim=-1) query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2) assert torch._fused_sdp_choice(query, key, value) == SDPBackend.EFFICIENT_ATTENTION.value @skipIfRocm # Missing triton.float32 ("triton" prefix is to locate skipped UTs), and deterministic algo @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Platform does not support fused SDPA") @parametrize("warn_only", [True, False]) def test_sdp_choice_with_determinism(self, device, warn_only): batch_size, seq_len, num_heads, head_dim = 1, 64, 8, 64 shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float32, packed=False) query, key, value = make_tensor(shape), make_tensor(shape), make_tensor(shape) with use_deterministic_algorithims(True, warn_only=warn_only): with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH]): assert torch._fused_sdp_choice(query, key, value) == SDPBackend.EFFICIENT_ATTENTION.value @skipIfRocm # Missing deterministic algo @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system") @parametrize("fused_kernel", PLATFORM_SPECIFIC_SDPA) @parametrize("warn_only", [True, False]) def test_fused_backwards_throws_determinism_warning(self, device, warn_only, fused_kernel): batch_size, seq_len, num_heads, head_dim = 1, 64, 8, 64 shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float16, packed=False, requires_grad=True) query, key, value = make_tensor(shape), make_tensor(shape), make_tensor(shape) kernel_name = "Memory Efficient attention" if fused_kernel == SDPBackend.EFFICIENT_ATTENTION else \ "Flash Attention" if fused_kernel == SDPBackend.FLASH_ATTENTION else "cuDNN Attention" warning_context = ( self.assertWarnsRegex( UserWarning, f"{kernel_name} defaults to a non-deterministic algorithm.", ) if warn_only else contextlib.nullcontext() ) with use_deterministic_algorithims(True, warn_only=warn_only): with sdpa_kernel(backends=[fused_kernel]): with warning_context: if warn_only or fused_kernel != SDPBackend.CUDNN_ATTENTION: torch.nn.functional.scaled_dot_product_attention(query, key, value).sum().backward() else: # cuDNN attention has no deterministic fallback self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(query, key, value).sum().backward()) @unittest.skip("This test is not behaving deterministaclly non-deterministaclly on CI/CD") @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Platform does not support fused SDPA") def test_mem_eff_backwards_determinism(self, device): # Need big seq_len to ensure that num_splits > 1 dtype = torch.float32 batch_size, seq_len, n_heads, head_dim = 1, 1024, 8, 64 query = torch.rand(batch_size, n_heads, seq_len, head_dim, device=device, dtype=dtype, requires_grad=True) key = torch.rand(batch_size, n_heads, seq_len, head_dim, device=device, dtype=dtype, requires_grad=True) value = torch.rand(batch_size, n_heads, seq_len, head_dim, device=device, dtype=dtype, requires_grad=True) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): # Run once to establish baseline out = F.scaled_dot_product_attention(query, key, value) upward_grad = torch.rand_like(out) out.backward(upward_grad) intial_query_grad = query.grad # Re-run the op with the same upward grad and check that the backward is # not deterministic diff_anwser_once = False for _ in range(100): query.grad = None out = F.scaled_dot_product_attention(query, key, value) out.backward(upward_grad) if not torch.equal(intial_query_grad, query.grad): diff_anwser_once = True break self.assertTrue(diff_anwser_once) with use_deterministic_algorithims(True, warn_only=False): query.grad = None out = F.scaled_dot_product_attention(query, key, value) upward_grad = torch.rand_like(out) out.backward(upward_grad) intial_query_grad = query.grad # Re-run the op with the same upward grad and check that the backward is # deterministic now that we have enforced it diff_anwser_once = False for _ in range(100): query.grad = None out = F.scaled_dot_product_attention(query, key, value) out.backward(upward_grad) if not torch.equal(intial_query_grad, query.grad): diff_anwser_once = True break self.assertFalse(diff_anwser_once) # verified passing successfully on H100 @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Does not support SDPA") @unittest.skipIf(IS_JETSON, "causing sigkill on Jetson") @parametrize("batch_size", [1, 8]) @parametrize("seq_len_q", [8, 103, 1024, 2048] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [4, 8, 256, 512]) @parametrize("seq_len_k", [8, 103, 1024, 2048] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [4, 8, 256, 512]) @parametrize("head_dim", [8, 16, 96, 128] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [8, 16, 32, 64]) @parametrize("is_causal", [False, True]) @parametrize("dropout_p", [0.0, 0.22]) @parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [torch.float16, torch.float32]) @parametrize("scale", [None, "l1"]) def test_mem_efficient_attention_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int, seq_len_k: int, head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype, scale: str): def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, p, seed, offset, device=device): mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32) rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, p, seed, offset) mask = (rand_uniform > p).to(torch.float32) return mask if max(seq_len_q, seq_len_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory < 40 * 2**30: unittest.skip("Reference implementation OOM") return if TEST_WITH_ROCM and seq_len_q * seq_len_k * head_dim * batch_size > 1024 * 1024 * 128: torch.cuda.empty_cache() # Prevent memory fragmentation if TEST_WITH_ROCM and is_causal and seq_len_q != seq_len_k: self.skipTest("ROCm does not accept is_casual when seq_len_q != seq_len_k") seed = 42 scale = scale if scale is None else (1 / head_dim) n_heads = 4 query = torch.rand(batch_size, n_heads, seq_len_q, head_dim, device=device, dtype=dtype, requires_grad=True) key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) value = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) higher_precision_dtype = torch.float64 query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype) # Create real output with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): # Set the seed and run the kernel torch.manual_seed(seed) out = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale) if dropout_p == 0.0: with sdpa_kernel(backends=[SDPBackend.MATH]): # High Precision Math Reference out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale) # Low Precision Math Reference out_lp_ref = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale) else: if seq_len_q > 1024: self.skipTest("Will call _fill_mem_eff_dropout_mask with too many threads!") # Create the dropout_mask torch.manual_seed(seed) dropout_mask = _get_mem_eff_drop_mask(batch_size, n_heads, seq_len_q, seq_len_k, dropout_p, seed, 0, device=device) # High Precision Math Reference out_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0] # Low Precision Math Reference out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0] upstream_grad = torch.rand_like(out, requires_grad=False) grads = torch.autograd.grad(out, (query, key, value), upstream_grad) grads_ref_lp = torch.autograd.grad(out_lp_ref, (query, key, value), upstream_grad) grads_ref = torch.autograd.grad(out_ref, (query_ref, key_ref, value_ref), upstream_grad) fudge_factors = { 'out': 3.0 , 'grad_query': 150.0 , 'grad_key': 25.0, 'grad_value': 8.5, } if TEST_WITH_ROCM: fudge_factors['grad_key'] = 45.0 fudge_factors['grad_query'] = 360.0 if seq_len_k >= 1024: fudge_factors['grad_key'] = 70.0 if seq_len_k >= 2048: fudge_factors['grad_key'] = 160.0 fudge_factors['grad_query'] = 650.0 if dtype == torch.float32: fudge_factors['grad_key'] = 90.0 check_out_and_grad( (out_ref, out_lp_ref, out), *zip(grads_ref, grads_ref_lp, grads), fudge_factors=fudge_factors, ) @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Does not support SDPA") @unittest.skipIf(IS_JETSON, "causing sigkill on Jetson") @parametrize("batch_size", [1, 8]) @parametrize("seq_len_q", [8, 312, 1024, 2048] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [8, 152, 512]) @parametrize("seq_len_k", [8, 408, 1024, 2048] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [8, 37, 512]) @parametrize("head_dim", [8, 16, 96, 128] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [8, 16, 32, 64]) @parametrize("is_causal", [False]) @parametrize("dropout_p", [0.0, 0.22]) @parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if MEM_EFF_CAPABILITY_MATCHES_SM80 else [torch.float16, torch.float32]) @parametrize("scale", [None, "l1"]) def test_mem_efficient_attention_attn_mask_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int, seq_len_k: int, head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype, scale: str): def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, p, seed, offset, device=device): mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32) rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, p, seed, offset) mask = (rand_uniform > p).to(torch.float32) return mask if max(seq_len_q, seq_len_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory < 40 * 2**30: unittest.skip("Reference implementation OOM") return if TEST_WITH_ROCM and dtype == torch.float32: unittest.skip("Skip fp32 attn_mask gradients on ROCM, for now.") return if TEST_WITH_ROCM and seq_len_q * seq_len_k * head_dim * batch_size > 1024 * 1024 * 128: torch.cuda.empty_cache() # Prevent memory fragmentation seed = 42 scale = scale if scale is None else (1 / head_dim) n_heads = 4 query = torch.rand(batch_size, n_heads, seq_len_q, head_dim, device=device, dtype=dtype, requires_grad=True) key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) value = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) attn_mask = torch.rand(seq_len_q, seq_len_k, device=device, dtype=dtype, requires_grad=True) higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32 query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype) attn_mask_ref = attn_mask.detach().to(higher_precision_dtype).requires_grad_(True) # Create real output with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): # Set the seed and run the kernel torch.manual_seed(seed) out = F.scaled_dot_product_attention(query, key, value, attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale) if dropout_p == 0.0: with sdpa_kernel(backends=[SDPBackend.MATH]): # High Precision Math Reference out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref, attn_mask_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale) # Low Precision Math Reference out_lp_ref = F.scaled_dot_product_attention(query, key, value, attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale) else: if seq_len_q > 1024: self.skipTest("Will call _fill_mem_eff_dropout_mask with too many threads!") # Create the dropout_mask torch.manual_seed(seed) dropout_mask = _get_mem_eff_drop_mask(batch_size, n_heads, seq_len_q, seq_len_k, dropout_p, seed, 0, device=device) # High Precision Math Reference out_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref, key_ref, value_ref, attn_mask_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0] # Low Precision Math Reference out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( query, key, value, attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0] upstream_grad = torch.rand_like(out, requires_grad=False) grads = torch.autograd.grad(out, (query, key, value, attn_mask), upstream_grad) grads_ref_lp = torch.autograd.grad(out_lp_ref, (query, key, value, attn_mask), upstream_grad) grads_ref = torch.autograd.grad(out_ref, (query_ref, key_ref, value_ref, attn_mask_ref), upstream_grad) fudge_factors = { "out": 4, "grad_query": 150.0, "grad_key": 25.0, "grad_value": 8.0, "grad_attn_mask": 45.0, } if TEST_WITH_ROCM: fudge_factors['grad_key'] = 45.0 fudge_factors['grad_query'] = 360.0 if seq_len_k >= 1024: fudge_factors['grad_key'] = 70.0 if seq_len_k >= 2048: fudge_factors['grad_key'] = 160.0 fudge_factors['grad_query'] = 650.0 if dtype == torch.float32: fudge_factors['grad_key'] = 90.0 check_out_and_grad( (out_ref, out_lp_ref, out), *zip(grads_ref, grads_ref_lp, grads), fudge_factors=fudge_factors, ) @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware") @unittest.skipIf(IS_JETSON, "causing sigkill on Jetson") @parametrize("batch_size", [1, 8]) @parametrize("seq_len_q", [4, 143, 2048]) @parametrize("seq_len_k", [4, 127, 579, 2048]) @parametrize("head_dim", [8, 203, 256]) @parametrize("is_causal", [True, False]) @parametrize("dropout_p", [0.0, 0.22, 0.48]) @parametrize("dtype", [torch.float16, torch.bfloat16]) @parametrize("scale", [None, "l1"]) @parametrize("enable_gqa", [True, False] if not TEST_WITH_ROCM else [False]) @parametrize("n_heads", [[16, 8], [10, 2]]) def test_flash_attention_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int, seq_len_k: int, head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype, scale: str, enable_gqa: bool, n_heads: List[int]): if isSM8XDevice and head_dim in range(193, 256 + 1): self.skipTest("Flash attention on sm86, sm87, and sm89 for headdim > 192 currently disabled") if is_causal and seq_len_q != seq_len_k: self.skipTest("Flash V2 does not accept is_casual when seq_len_q != seq_len_k") if TEST_WITH_ROCM and seq_len_q >= 1024 and seq_len_k >= 1024 and batch_size > 1: torch.cuda.empty_cache() # Prevent memory fragmentation if max(seq_len_q, seq_len_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory < 40 * 2**30: unittest.skip("Reference implementation OOM") return scale = scale if scale is None else (1 / head_dim) num_heads_q = num_heads_kv = 4 if enable_gqa: num_heads_q = n_heads[0] num_heads_kv = n_heads[1] query = torch.rand(batch_size, num_heads_q, seq_len_q, head_dim, device=device, dtype=dtype, requires_grad=True) key = torch.rand(batch_size, num_heads_kv, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) value = torch.rand(batch_size, num_heads_kv, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32 query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype) is_dropout = dropout_p > 0.0 if not is_dropout: with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): out = F.scaled_dot_product_attention( query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale, enable_gqa=enable_gqa) with sdpa_kernel(backends=[SDPBackend.MATH]): # High Precision Math Reference out_ref = F.scaled_dot_product_attention( query_ref, key_ref, value_ref, is_causal=is_causal, scale=scale, enable_gqa=enable_gqa) # Low Precision Math Reference out_lp_ref = F.scaled_dot_product_attention( query, key, value, is_causal=is_causal, scale=scale, enable_gqa=enable_gqa) else: # Problem: We pad sizes in the composite region of the top level SDPA. But we need the # Debug mask when have dropout. So I am going to manualy pad up here when testing dropout q_padded, q_og_size = pad_last_dim(query, 8) k_padded, k_og_size = pad_last_dim(key, 8) v_padded, v_og_size = pad_last_dim(value, 8) # scale needs to be calculated on the og head_size if scale is None: scale = 1 / math.sqrt(q_og_size) output_tuple = torch.ops.aten._scaled_dot_product_flash_attention( q_padded, k_padded, v_padded, dropout_p=dropout_p, is_causal=is_causal, scale=scale, return_debug_mask=is_dropout) out = output_tuple[0] out = out[..., :v_og_size] # Build dropout_mask dbug_mask = output_tuple[-1] query_padding_mask = torch.ones( batch_size, seq_len_q, device=device, dtype=torch.bool) key_padding_mask = torch.ones( batch_size, seq_len_k, device=device, dtype=torch.bool) softmax_mask = self.convert_flash_attn_S_to_softmax( dbug_mask, seq_len_q, seq_len_k, query_padding_mask, key_padding_mask, causal=is_causal)[:, :, :seq_len_q, :seq_len_k] dropout_mask = softmax_mask >= 0 # High Precision Math Reference out_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask, enable_gqa=enable_gqa)[0] # Low Precision Math Reference out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask, enable_gqa=enable_gqa)[0] upstream_grad = torch.rand_like(out, requires_grad=False) # backward for flash attention on sm86, sm87, and sm89 for headdim >= 193 currently disabled if isSM8XDevice and head_dim in range(193, 256): self.assertRaises(RuntimeError, lambda: out.backward(upstream_grad)) return grads = torch.autograd.grad(out, (query, key, value), upstream_grad) grads_ref_lp = torch.autograd.grad(out_lp_ref, (query, key, value), upstream_grad) grads_ref = torch.autograd.grad(out_ref, (query_ref, key_ref, value_ref), upstream_grad) fudge_factors = { 'out': 4, 'grad_query': 160.0, 'grad_key': 16, 'grad_value': 4, } if TEST_WITH_ROCM: fudge_factors['grad_key'] = 45.0 fudge_factors['grad_query'] = 360.0 if seq_len_k >= 1024: fudge_factors['grad_key'] = 70.0 if seq_len_k >= 2048: fudge_factors['grad_key'] = 190.0 fudge_factors['grad_query'] = 650.0 if seq_len_q >= 2048: fudge_factors['grad_query'] = 1100.0 if dtype == torch.float32: fudge_factors['grad_key'] = 90.0 check_out_and_grad( (out_ref, out_lp_ref, out), *zip(grads_ref, grads_ref_lp, grads), fudge_factors=fudge_factors, ) @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware") @parametrize("batch_size", [1, 8]) @parametrize("seq_len_q", [256, 1024]) @parametrize("seq_len_k", [256, 1024]) @parametrize("head_dim", [32, 64]) @parametrize("is_causal", [True, False]) @parametrize("dropout_p", [0.0, 0.22]) @parametrize("dtype", [torch.float16]) @parametrize("scale", [None, "l1"]) @parametrize("fused_kernel", PLATFORM_SPECIFIC_SDPA) def test_fused_attention_vs_math_ref_grads_cudagraph(self, device, batch_size: int, seq_len_q: int, seq_len_k: int, head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype, scale: str, fused_kernel: SDPBackend): def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, dropout_p, seed, offset, device=device): mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32) rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, dropout_p, seed, offset) mask = (rand_uniform > dropout_p).to(torch.float32) return mask def get_dropout_mask(output, fused_kernel, batch_size, n_heads, q_len, kv_len, dropout_p, device=device): if fused_kernel == SDPBackend.EFFICIENT_ATTENTION: output_seed, output_offset = output_tuple[2], output_tuple[3] output_seed = output_seed.item() output_offset = output_offset.item() return _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, dropout_p, output_seed, output_offset, device=device) else: # Build dropout_mask dbug_mask = output_tuple[-1] query_padding_mask = torch.ones( batch_size, seq_len_q, device=device, dtype=torch.bool) key_padding_mask = torch.ones( batch_size, seq_len_k, device=device, dtype=torch.bool) softmax_mask = self.convert_flash_attn_S_to_softmax( dbug_mask, seq_len_q, seq_len_k, query_padding_mask, key_padding_mask, causal=is_causal)[:, :, :seq_len_q, :seq_len_k] dropout_mask = softmax_mask >= 0 return dropout_mask if fused_kernel == SDPBackend.FLASH_ATTENTION and is_causal and seq_len_q != seq_len_k: self.skipTest("Flash V2 does not accept is_casual when seq_len_q != seq_len_k") if TEST_WITH_ROCM and is_causal and seq_len_q != seq_len_k: self.skipTest("ROCm does not accept is_casual when seq_len_q != seq_len_k") seed = 42 n_heads = 4 query = torch.rand(batch_size, n_heads, seq_len_q, head_dim, device=device, dtype=dtype, requires_grad=True) key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) value = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device, dtype=dtype, requires_grad=True) fused_op = (torch.ops.aten._scaled_dot_product_efficient_attention if fused_kernel == SDPBackend.EFFICIENT_ATTENTION else torch.ops.aten._scaled_dot_product_flash_attention if fused_kernel == SDPBackend.FLASH_ATTENTION else torch.ops.aten._scaled_dot_product_cudnn_attention) higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32 query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype) # warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) # Set the global seed before capture torch.manual_seed(seed) kwargs = {"dropout_p": dropout_p, "is_causal": is_causal} if fused_kernel == SDPBackend.EFFICIENT_ATTENTION: kwargs["compute_log_sumexp"] = True kwargs["attn_bias"] = None if fused_kernel == SDPBackend.FLASH_ATTENTION: kwargs['return_debug_mask'] = dropout_p > 0.0 if fused_kernel == SDPBackend.CUDNN_ATTENTION: kwargs["compute_log_sumexp"] = True kwargs["attn_bias"] = None if "return_debug_mask" in kwargs: kwargs.pop("return_debug_mask") with torch.cuda.stream(s): # Create real output output_tuple = fused_op(query, key, value, **kwargs) torch.cuda.current_stream().wait_stream(s) out = output_tuple[0] upstream_grad = torch.rand_like(out, requires_grad=False) s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): out.backward(upstream_grad) for x in (query, key, value): x.grad = None g = torch.cuda.CUDAGraph() # Create real output with torch.cuda.graph(g): tmp = torch.rand_like(query, device=query.device) # test non-zero intragraph offset # Create real output output_tuple = fused_op(query, key, value, **kwargs) assert all(not isinstance(o, torch.Tensor) or o.is_cuda for o in output_tuple) g.replay() out_first = output_tuple[0].clone() g.replay() out = output_tuple[0] if dropout_p == 0.0: self.assertEqual(out_first, out, atol=0, rtol=0) else: # replays produce different results self.assertNotEqual(out_first, out) with sdpa_kernel(backends=[SDPBackend.MATH]): if dropout_p == 0.0: # High Precision Math Reference out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal) # Low Precision Math Reference out_lp_ref = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal) # cuDNN attention doesn't support returning dropout mask elif fused_kernel != SDPBackend.CUDNN_ATTENTION: # Create the dropout_mask dropout_mask = get_dropout_mask(output_tuple, fused_kernel, batch_size, n_heads, seq_len_q, seq_len_k, dropout_p, device) # High Precision Math Reference out_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, dropout_mask=dropout_mask)[0] # Low Precision Math Reference out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( query, key, value, dropout_p=dropout_p, is_causal=is_causal, dropout_mask=dropout_mask)[0] g1 = torch.cuda.CUDAGraph() with torch.cuda.graph(g1): grads = torch.autograd.grad(out, (query, key, value), upstream_grad) g1.replay() if fused_kernel != SDPBackend.CUDNN_ATTENTION or dropout_p == 0.0: grads_ref_lp = torch.autograd.grad(out_lp_ref, (query, key, value), upstream_grad) grads_ref = torch.autograd.grad(out_ref, (query_ref, key_ref, value_ref), upstream_grad) check_out_and_grad( (out_ref, out_lp_ref, out), *zip(grads_ref, grads_ref_lp, grads), fudge_factors={ 'out': 3.0, 'grad_query': 100.0, 'grad_key': 8.0, 'grad_value': 3.0, } ) @skipIfRocm # Nested Tensor @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system") @parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION]) def test_fused_kernels_seq_len_1_inputs(self, device, fused_kernel): rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float16) batch, num_heads, head_dim = 32, 16, 64 seq_lens = torch.randint(low=1, high=32, size=(batch,)) # make sure some seq_lens are 1 num_ones = 10 indices = torch.randint(low=0, high=batch, size=(num_ones,)) seq_lens.scatter_(0, indices, 1) shape = SdpaShape(batch, num_heads, seq_lens.tolist(), head_dim) query = rand_nested_tensor(shape) key = rand_nested_tensor(shape) value = rand_nested_tensor(shape) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) with sdpa_kernel(backends=[fused_kernel]): actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention( query.contiguous().to(torch.float32), key.contiguous().to(torch.float32), value.contiguous().to(torch.float32), attn_mask=None, dropout_p=0.0, is_causal=False) self.assertEqual(actual.contiguous(), math_ref.contiguous().to(torch.float16), atol=1e-3, rtol=1e-2) @skipIfRocm # Nested tensor @unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system") @parametrize("kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION]) @parametrize("expand_q_batch", [True, False]) @parametrize("expand_k_batch", [True, False]) @parametrize("expand_v_batch", [True, False]) @parametrize("expand_q_num_heads", [True, False]) @parametrize("expand_k_num_heads", [True, False]) @parametrize("expand_v_num_heads", [True, False]) def test_fused_kernels_nested_broadcasting( self, device, kernel, expand_q_batch, expand_k_batch, expand_v_batch, expand_q_num_heads, expand_k_num_heads, expand_v_num_heads, ): is_efficient = kernel == SDPBackend.EFFICIENT_ATTENTION dtype = torch.float32 if is_efficient else torch.float16 rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=dtype) batch, num_heads, head_dim = 32, 8, 64 head_dim_v = 32 if is_efficient else head_dim seq_lens_q = (torch.randint(low=1, high=5, size=(1,)).item() if expand_q_batch else torch.randint(low=1, high=32, size=(batch,)).tolist()) seq_lens_kv = (torch.randint(low=1, high=5, size=(1,)).item() if (expand_k_batch or expand_v_batch) else torch.randint(low=1, high=32, size=(batch,)).tolist()) batch_q = 1 if expand_q_batch else batch batch_k = 1 if expand_k_batch else batch batch_v = 1 if expand_v_batch else batch # handle case where all batch_sizes are 1 batch = max(batch_q, batch_k, batch_v) num_heads_q = 1 if expand_q_num_heads else num_heads num_heads_k = 1 if expand_k_num_heads else num_heads num_heads_v = 1 if expand_v_num_heads else num_heads # handle case where all num_heads are 1 num_heads = max(num_heads_q, num_heads_k, num_heads_v) q_shape = SdpaShape(batch_q, num_heads_q, seq_lens_q, head_dim) k_shape = SdpaShape(batch_k, num_heads_k, seq_lens_kv, head_dim) v_shape = SdpaShape(batch_v, num_heads_v, seq_lens_kv, head_dim_v) query = rand_nested_tensor(q_shape) key = rand_nested_tensor(k_shape) value = rand_nested_tensor(v_shape) def _broadcast(t, batch_broadcasted, num_heads_broadcasted): if batch_broadcasted and num_heads_broadcasted: # (1, seq_len, 1, head_dim) -> (batch, seq_len, num_heads, head_dim) result = torch.nested.nested_tensor( [t[0].expand(-1, num_heads, t.size(-1)) for _ in range(batch)], dtype=torch.float32) elif batch_broadcasted: # (1, seq_len, num_heads, head_dim) -> (batch, seq_len, num_heads, head_dim) result = torch.nested.nested_tensor([t[0] for _ in range(batch)], dtype=torch.float32) elif num_heads_broadcasted: # (batch, seq_len, 1, head_dim) -> (batch, seq_len, num_heads, head_dim) result = torch.nested.nested_tensor([x.expand(-1, num_heads, t.size(-1)) for x in t.unbind()], dtype=torch.float32) else: result = t.to(torch.float32) return result query_expanded = _broadcast(query, expand_q_batch, expand_q_num_heads).transpose(1, 2) key_expanded = _broadcast(key, expand_k_batch, expand_k_num_heads).transpose(1, 2) value_expanded = _broadcast(value, expand_v_batch, expand_v_num_heads).transpose(1, 2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) with sdpa_kernel(backends=[kernel]): actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention( query_expanded.contiguous(), key_expanded.contiguous(), value_expanded.contiguous(), attn_mask=None, dropout_p=0.0, is_causal=False) self.assertEqual(actual.contiguous(), math_ref.contiguous().to(dtype), atol=1.5e-3, rtol=1e-2) @skipIfRocm # Nested tensor @unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system") def test_fused_kernels_nested_broadcasting_query_dense(self, device): rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float32) batch, num_heads, head_dim, head_dim_v = 32, 16, 64, 96 seq_lens = torch.randint(low=1, high=32, size=(batch,)).tolist() q_shape = (1, 1, num_heads, head_dim) k_shape = SdpaShape(batch, num_heads, seq_lens, head_dim) v_shape = SdpaShape(batch, 1, seq_lens, head_dim_v) # create a dense query query = torch.randn(q_shape, device=device, dtype=torch.float32) key = rand_nested_tensor(k_shape) value = rand_nested_tensor(v_shape) # (1, 1, num_heads, head_dim) -> (batch, 1, num_heads, head_dim) query_expanded = torch.nested.nested_tensor([query.squeeze(0) for _ in range(batch)]).transpose(1, 2) # (batch, seq_lens, 1, head_dim) -> (batch, seq_lens, num_heads, head_dim) value_expanded = torch.nested.nested_tensor( [t.expand(-1, num_heads, head_dim_v) for t in value.unbind()]).transpose(1, 2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention( query_expanded.contiguous(), key.contiguous(), value_expanded.contiguous(), attn_mask=None, dropout_p=0.0, is_causal=False) self.assertEqual(actual.contiguous(), math_ref.contiguous(), atol=1e-3, rtol=1e-2) @skipIfRocm # Nested tensor @unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware") @parametrize("batch_size", [8, 32]) @parametrize("max_seq_len_q", [32, 256]) @parametrize("max_seq_len_kv", [32, 256]) @parametrize("head_dim", [8, 64]) @parametrize("dropout_p", [0.0, 0.1]) @parametrize("dtype", [torch.float16]) @parametrize("scale", [None, "l1"]) @parametrize("is_causal", [True, False]) def test_flash_attention_vs_math_ref_grads_nestedtensor(self, device, batch_size: int, max_seq_len_q: int, max_seq_len_kv: int, head_dim: int, dropout_p: float, dtype: torch.dtype, scale: str, is_causal: bool): if is_causal: # TODO we should support this self.assertRaisesRegex(RuntimeError, "Nested tensors for query / key are not supported when is_causal=True") return scale = scale if scale is None else (1 / head_dim) n_heads = 4 seq_lens_q = torch.randint(low=1, high=max_seq_len_q, size=(batch_size,)) # Set one entry to max length seq_lens_q[torch.randint(0, batch_size, size=(1,))] = max_seq_len_q seq_lens_kv = torch.randint(low=1, high=max_seq_len_kv, size=(batch_size,)) seq_lens_kv[torch.randint(0, batch_size, size=(1,))] = max_seq_len_kv def rand_nt(sequence_list, num_heads, head_dim): tensors = [torch.rand((num_heads, seq_len, head_dim)) for seq_len in sequence_list] return torch.nested.nested_tensor(tensors, requires_grad=True, device=device, dtype=dtype) query = rand_nt(seq_lens_q, n_heads, head_dim) key = rand_nt(seq_lens_kv, n_heads, head_dim) value = rand_nt(seq_lens_kv, n_heads, head_dim) # Run the math kernel on low precision references query_ref_lp = query.clone().detach().requires_grad_(True) key_ref_lp = key.clone().detach().requires_grad_(True) value_ref_lp = value.clone().detach().requires_grad_(True) query_ref = query.clone().detach().to(torch.float32).requires_grad_(True) key_ref = key.clone().detach().to(torch.float32).requires_grad_(True) value_ref = value.clone().detach().to(torch.float32).requires_grad_(True) is_dropout = dropout_p > 0.0 if not is_dropout: with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): out = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale) with sdpa_kernel(backends=[SDPBackend.MATH]): # High Precision Math Reference out_ref = F.scaled_dot_product_attention( query_ref, key_ref, value_ref, is_causal=is_causal, scale=scale) # Low Precision Math Reference out_lp_ref = F.scaled_dot_product_attention( query_ref_lp, key_ref_lp, value_ref_lp, is_causal=is_causal, scale=scale) else: # Create real output output_tuple = torch.ops.aten._scaled_dot_product_flash_attention( query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale, return_debug_mask=is_dropout) out = output_tuple[0] dbug_mask = output_tuple[-1] query_padding_mask = torch.arange(max_seq_len_q).unsqueeze(0).expand( batch_size, max_seq_len_q ) < seq_lens_q.unsqueeze(-1) query_padding_mask = query_padding_mask.to("cuda") key_padding_mask = torch.arange(max_seq_len_kv).unsqueeze(0).expand( batch_size, max_seq_len_kv ) < seq_lens_kv.unsqueeze(-1) key_padding_mask = key_padding_mask.to("cuda") softmax_mask = self.convert_flash_attn_S_to_softmax( dbug_mask, max_seq_len_q, max_seq_len_kv, query_padding_mask, key_padding_mask, causal=is_causal) dropout_mask = softmax_mask >= 0 nt_stack = [] for tensor_component in range(batch_size): batch_stack = [] for head in range(n_heads): batch_stack.append(dropout_mask[tensor_component, head, 0:seq_lens_q[tensor_component], 0:seq_lens_kv[tensor_component]].unsqueeze(0)) nt_stack.append(torch.cat(batch_stack)) nested_dropout_mask = torch.nested.nested_tensor(nt_stack) # High Precision Math Reference out_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=nested_dropout_mask)[0] # Low Precision Math Reference out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( query_ref_lp, key_ref_lp, value_ref_lp, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=nested_dropout_mask)[0] upstream_grad = out.detach().clone().contiguous() out.backward(upstream_grad) out_ref.backward(upstream_grad.to(out_ref.dtype)) out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype)) dropout_fudge_factor = 1.0 if dropout_p == 0.0 else 2.0 check_out_and_grad( (out_ref, out_lp_ref, out), (query_ref, query_ref_lp, query), (key_ref, key_ref_lp, key), (value_ref, value_ref_lp, value), fudge_factors={ 'out': 1.5 * dropout_fudge_factor, 'grad_query': 12.0 * dropout_fudge_factor, 'grad_key': 1.5 * dropout_fudge_factor, 'grad_value': 2.0 * dropout_fudge_factor, } ) class TestAttnBias(NNTestCase): def run_test( self, device, make_q, make_kv, attn_bias=None, forw_tolerances: Optional[Tolerances] = None, grad_tolerances: Optional[Tolerances] = None, backend=None, causal_variant=None, ): if backend is not None: torch._dynamo.reset() query, key, value = make_q(), make_kv(), make_kv() query_prototype, key_prototype, value_prototype = query_key_value_clones(query, key, value) realized = attn_bias._materialize(device) if attn_bias is not None else None pytorch_output = scaled_dot_product_attention( query, key, value, attn_mask=realized, dropout_p=0.0, is_causal=False ) sdpa_op = ( torch.compile(scaled_dot_product_attention, backend=backend) if backend is not None else scaled_dot_product_attention ) sdpa_output = sdpa_op( query_prototype, key_prototype, value_prototype, attn_mask=attn_bias, dropout_p=0.0, is_causal=False, scale=None, ) dOut = torch.randn_like(pytorch_output) pytorch_output.backward(dOut) sdpa_output.backward(dOut) # Use default assert_close tolerances for dtypes if forw_tolerances is None: forw_tolerances = Tolerances(atol=None, rtol=None) if grad_tolerances is None: grad_tolerances = Tolerances(atol=None, rtol=None) torch.testing.assert_close(pytorch_output, sdpa_output, rtol=forw_tolerances.rtol, atol=forw_tolerances.atol) torch.testing.assert_close(query.grad, query_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol) torch.testing.assert_close(key.grad, key_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol) torch.testing.assert_close(value.grad, value_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol) @skipIfRocm # No support for the second variant for now @parametrize("causal_variant", [CausalVariant.UPPER_LEFT, CausalVariant.LOWER_RIGHT]) @parametrize( "shape", [(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)], ) def test_causal_variants(self, device, causal_variant: CausalVariant, shape: List[Tuple[int]]): make_tensor = partial( torch.rand, device=device, dtype=torch.float16, requires_grad=True ) bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim)) make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim)) if causal_variant == CausalVariant.LOWER_RIGHT and seq_len_q > seq_len_kv: self.skipTest( "Lower right causal mask will produce NaNs in the output when seq_len_q > seq_len_kv!" ) forw_tol = Tolerances(1e-3, 1e-3) grad_tol = Tolerances(5e-3, 5e-3) if causal_variant == CausalVariant.UPPER_LEFT: attn_bias = causal_upper_left(seq_len_q, seq_len_kv) else: attn_bias = causal_lower_right(seq_len_q, seq_len_kv) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.MATH, SDPBackend.CUDNN_ATTENTION]): self.run_test(device, make_q_tensor, make_kv_tensor, attn_bias, forw_tol, grad_tol, backend=None) @skipIfRocm # CausalVariant @parametrize("causal_variant", [CausalVariant.UPPER_LEFT, CausalVariant.LOWER_RIGHT]) @parametrize( "shape", [(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)], ) @unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on windows") @skipIfTorchDynamo("This function already calls torch.compile.") def test_causal_variants_compile(self, device, causal_variant: CausalVariant, shape: List[Tuple[int]]): cnts = CompileCounterWithBackend("aot_eager") make_tensor = partial( torch.rand, device=device, dtype=torch.float16, requires_grad=True ) bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim)) make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim)) if causal_variant == CausalVariant.LOWER_RIGHT and seq_len_q > seq_len_kv: self.skipTest( "Lower right causal mask will produce NaNs in the output when seq_len_q > seq_len_kv!" ) forw_tol = Tolerances(1e-3, 1e-3) grad_tol = Tolerances(5e-3, 5e-3) if causal_variant == CausalVariant.UPPER_LEFT: attn_bias = causal_upper_left(seq_len_q, seq_len_kv) else: attn_bias = causal_lower_right(seq_len_q, seq_len_kv) with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.MATH, SDPBackend.CUDNN_ATTENTION]): self.run_test(device, make_q_tensor, make_kv_tensor, attn_bias, forw_tol, grad_tol, backend=cnts) self.assertEqual(cnts.frame_count, 1, "Compiled graph should have 1 frame!") @skipIfRocm @parametrize("shape", [(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)]) def test_is_causal_equals_upper_left(self, device, shape: List[Tuple[int]]): make_tensor = partial( torch.rand, device=device, dtype=torch.float16, requires_grad=True ) bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim)) make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim)) forw_tol = Tolerances(1e-3, 1e-3) grad_tol = Tolerances(5e-3, 5e-3) query = make_q_tensor() key = make_kv_tensor() value = make_kv_tensor() attn_bias = causal_upper_left(seq_len_q, seq_len_kv) out_attn_bias = scaled_dot_product_attention(query, key, value, attn_mask=attn_bias, dropout_p=0.0) out_is_causal = scaled_dot_product_attention(query, key, value, is_causal=True, dropout_p=0.0) torch.testing.assert_close(out_attn_bias, out_is_causal, rtol=forw_tol.rtol, atol=forw_tol.atol) def test_is_causal_and_mask_fails(self, device): make_tensor = partial( torch.rand, device=device, dtype=torch.float16, requires_grad=True ) make_q_tensor = partial(make_tensor, SdpaShape(16, 16, 128, 16)) make_kv_tensor = partial(make_tensor, SdpaShape(16, 16, 128, 16)) query = make_q_tensor() key = make_kv_tensor() value = make_kv_tensor() attn_bias = causal_upper_left(128, 128) with self.assertRaisesRegex(ValueError, "CausalBias should not be used with causal=True"): scaled_dot_product_attention(query, key, value, attn_mask=attn_bias, is_causal=True, dropout_p=0.0) @unittest.skipIf(TEST_XPU, "XPU does not support cppextension currently") @unittest.skipIf(IS_FBCODE, "Ninja is required to load C++ extensions and it's not compatible with Buck ") class TestSDPAPrivateUse1Only(NNTestCase): @classmethod def setUpClass(cls): remove_build_path() cls.module = torch.utils.cpp_extension.load( name="custom_device_extension", sources=[ f"{'test/' if not os.getcwd().endswith('test') else ''}cpp_extensions/open_registration_extension.cpp", ], extra_include_paths=["cpp_extensions"], extra_cflags=["-g"], verbose=True, ) # register torch.foo module and foo device to torch torch.utils.rename_privateuse1_backend("foo") torch.utils.generate_methods_for_privateuse1_backend(for_storage=True) torch._register_device_module("foo", generate_faked_module()) @skipIfTorchDynamo() def test_fused_sdp_choice_privateuseone(self): batch_size, seq_len, num_heads, head_dim = 4, 256, 2, 128 make_tensor = partial(torch.rand, device="cpu", dtype=torch.float16) shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) q_cpu, k_cpu, v_cpu = make_tensor(shape), make_tensor(shape), make_tensor(shape) q_privateuse1 = q_cpu.to("foo") k_privateuse1 = k_cpu.to("foo") v_privateuse1 = v_cpu.to("foo") assert torch._fused_sdp_choice(q_privateuse1, k_privateuse1, v_privateuse1) == SDPBackend.OVERRIDEABLE.value def test_scaled_dot_product_fused_attention_overrideable(self): batch_size, seq_len, num_heads, head_dim = 4, 256, 2, 128 make_tensor = partial(torch.rand, device="cpu", dtype=torch.float16) shape = SdpaShape(batch_size, num_heads, seq_len, head_dim) q_cpu, k_cpu, v_cpu = make_tensor(shape), make_tensor(shape), make_tensor(shape) q_privateuse1 = q_cpu.to("foo") k_privateuse1 = k_cpu.to("foo") v_privateuse1 = v_cpu.to("foo") actual = torch.nn.functional.scaled_dot_product_attention( q_privateuse1, k_privateuse1, v_privateuse1, attn_mask=None, dropout_p=0.0) def test_scaled_dot_product_fused_attention_overrideable_backward(self): batch_size, seq_len, num_heads, head_dim = 4, 256, 2, 128 make_tensor = partial(torch.rand, device="cpu", dtype=torch.float16, requires_grad=True) shape = (batch_size, num_heads, seq_len, head_dim) q_cpu, k_cpu, v_cpu = make_tensor(shape), make_tensor(shape), make_tensor(shape) attn_mask = make_tensor((batch_size, num_heads, seq_len, seq_len)) q_privateuse1 = q_cpu.to("foo") k_privateuse1 = k_cpu.to("foo") v_privateuse1 = v_cpu.to("foo") attn_mask_privateuse1 = attn_mask.to("foo") output, logsumexp, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = \ torch.ops.aten._scaled_dot_product_fused_attention_overrideable( q_privateuse1, k_privateuse1, v_privateuse1, attn_bias=attn_mask_privateuse1) rand_upward = torch.rand(shape, device="cpu", dtype=torch.float16, requires_grad=False) rand_upward_privateuse1 = rand_upward.to("foo") grad_input_mask = [True, True, True, True] grad_q, grad_k, grad_v, grad_attn_mask = torch.ops.aten._scaled_dot_product_fused_attention_overrideable_backward( rand_upward_privateuse1, q_privateuse1, k_privateuse1, v_privateuse1, attn_mask_privateuse1, grad_input_mask, output, logsumexp, cum_seq_q, cum_seq_k, max_q, max_k, dropout_p=0.0, is_causal=False, philox_seed=philox_seed, philox_offset=philox_offset) if NOTEST_CPU: device_types = ("cuda", ) else: device_types = ("cpu", "cuda") instantiate_device_type_tests(TestTransformers, globals(), only_for=device_types) instantiate_device_type_tests(TestSDPAFailureModes, globals(), only_for=device_types) instantiate_device_type_tests(TestSDPA, globals(), only_for=device_types) instantiate_device_type_tests(TestSDPACudaOnly, globals(), only_for=("cuda")) instantiate_device_type_tests(TestSDPACpuOnly, globals(), only_for=("cpu")) instantiate_device_type_tests(TestAttnBias, globals(), only_for=device_types) if __name__ == '__main__': run_tests()
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_scaled_dot_product_attention_math_with_negative_scale
def test_scaled_dot_product_attention_math_with_negative_scale(self, device, kernel: SDPBackend): # https://github.com/pytorch/pytorch/issues/105190. def ref(x): v1 = torch.matmul(x, x.transpose(-1, -2)) v2 = v1 / -0.0001 v3 = v2.softmax(dim=-1) v4 = torch.matmul(v3, x) return v4 x = torch.randn(1, 3, 64, 64, device=device) ref_result = ref(x) with sdpa_kernel(backends=[kernel]): sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001) self.assertEqual(ref_result, sdp_math)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestSDPA(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
ref
def ref(x): v1 = torch.matmul(x, x.transpose(-1, -2)) v2 = v1 / -0.0001 v3 = v2.softmax(dim=-1) v4 = torch.matmul(v3, x) return v4 x = torch.randn(1, 3, 64, 64, device=device) ref_result = ref(x) with sdpa_kernel(backends=[kernel]): sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001) self.assertEqual(ref_result, sdp_math)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_sdpa_with_inf
def test_sdpa_with_inf(self, device): # https://github.com/pytorch/pytorch/issues/127055. full = torch.full((600, 600), float("-inf"), device=device) mask = torch.triu(full, diagonal=1) + torch.tril(full, diagonal=-10) make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float32, requires_grad=False) input_shape = SdpaShape(1, 600, 2, 8) q = make_tensor(input_shape) k = make_tensor(input_shape) v = make_tensor(input_shape) with sdpa_kernel(backends=[SDPBackend.MATH]): math_ref = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask) with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): actual = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask) self.assertEqual(math_ref, actual)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestSDPACpuOnly(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
sdpa_helper
def sdpa_helper(): torch.manual_seed(777) query = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) key = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) value = ( torch.empty(size=[2, 2, 49, 32], dtype=torch.float32, device=device) .uniform_(-1, 1) .requires_grad_(True) ) res = torch.nn.functional.scaled_dot_product_attention( query, key, value, None, 0.0, False ) res_grad = ( torch.empty_like(res, device=device) .uniform_(-1, 1) ) res.backward(res_grad, retain_graph=True) return res, query.grad, key.grad, value.grad with sdpa_kernel(backends=[SDPBackend.MATH]): res_ref, query_grad_ref, key_grad_ref, value_grad_ref = sdpa_helper() with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): res_actual, query_grad_actual, key_grad_actual, value_grad_actual = sdpa_helper() self.assertEqual(res_ref, res_actual) self.assertEqual(query_grad_ref, query_grad_actual) self.assertEqual(key_grad_ref, key_grad_actual) self.assertEqual(value_grad_ref, value_grad_actual)
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
attention_inputs
def attention_inputs(seq_len, head_dim, device, dtype, mask_every_n_rows=4): query = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) key = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) value = torch.rand(1, 1, seq_len, head_dim, requires_grad=True, device=device, dtype=dtype) # Create a mask with deterministic row masking mask = torch.ones(1, 1, seq_len, seq_len, dtype=torch.bool, device=device) # Mask every nth row mask[0, 0, ::mask_every_n_rows, :] = False # Create a fixed pattern for element-wise masking element_mask = torch.zeros(seq_len, seq_len, dtype=torch.bool, device=device) element_mask[torch.arange(seq_len)[:, None] % 5 == torch.arange(seq_len) % 5] = True # Combine row masking and element-wise masking mask = mask & element_mask.unsqueeze(0).unsqueeze(0) return query, key, value, mask
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
compute_output_and_grads
def compute_output_and_grads(query, key, value, mask, backend): with sdpa_kernel(backend): masked_out = scaled_dot_product_attention(query, key, value, attn_mask=mask) loss = masked_out.sum() grads = torch.autograd.grad(loss, [query, key, value]) return masked_out, grads if backend == SDPBackend.FLASH_ATTENTION and "cuda" in str(device): unittest.skip("FlashAttention does not support masks on cuda") return if backend == SDPBackend.EFFICIENT_ATTENTION and "cpu" in str(device): unittest.skip("EfficientAttention does not support masks on cpu") return query, key, value, mask = attention_inputs(seq_len, head_dim, device, dtype) # Compute results for the tested backend backend_out, backend_grads = compute_output_and_grads(query, key, value, mask, backend) # Compute results for the Math backend math_out, math_grads = compute_output_and_grads(query, key, value, mask, SDPBackend.MATH) # Compare outputs torch.testing.assert_close(backend_out, math_out, atol=5e-3, rtol=0) self.assertFalse(backend_out.isnan().any()) self.assertFalse(math_out.isnan().any()) # Compare gradients for bg, mg in zip(backend_grads, math_grads): torch.testing.assert_close(bg, mg, atol=3e-3, rtol=0) self.assertFalse(bg.isnan().any()) self.assertFalse(mg.isnan().any()) # Check if masked rows are zero in output mask_sum = mask.sum(dim=-1, keepdim=True) masked_rows = (mask_sum == 0).expand_as(backend_out) self.assertTrue((mask_sum == 0).sum() > 0, "No fully masked out rows found") assert torch.all(backend_out[masked_rows] == 0), \ f"Non-zero values in fully masked rows for {backend=}" # Check if gradients for masked rows are zero grad_query = backend_grads[0] assert torch.all(grad_query[masked_rows] == 0), f"Non-zero gradients in fully masked rows for {backend=}"
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_storage_dead_weak_ref
def test_storage_dead_weak_ref(self): x = torch.UntypedStorage(2) w_x = weakref.ref(x) y = torch.tensor(x) del x x = w_x() # Ideally, x would keep the storage live. But CPython doesn't # provide enough hooks to do this. So it will go dead and x # will transmute into storage with null StorageImpl. Not great, but the # best we can do. del y self.assertRaisesRegex(RuntimeError, "Got a null Storage", lambda: x[0]) self.assertRaisesRegex(RuntimeError, "Got a null Storage", lambda: x.float())
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_tensor_resurrected_weak_ref
x = torch.empty(2) w_x = weakref.ref(x) y = torch.empty(2) y.grad = x del x x = w_x() # Use this to manually fix weak references after dereferencing them x._fix_weakref() del y x.sigmoid()
def test_tensor_resurrected_weak_ref(self): x = torch.empty(2) w_x = weakref.ref(x) y = torch.empty(2) y.grad = x del x x = w_x() # Use this to manually fix weak references after dereferencing them x._fix_weakref() del y x.sigmoid()
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
test_flash_attention_fail_with_non_square_causal_attention
def test_flash_attention_fail_with_non_square_causal_attention(self, device): dtype = torch.bfloat16 q_shape = SdpaShape(1, 1, 8, 16) kv_shape = SdpaShape(1, 1, 12, 16) make_q = partial(torch.rand, q_shape, device=device, dtype=dtype) make_kv = partial(torch.rand, kv_shape, device=device, dtype=dtype) q, k, v = make_q(), make_kv(), make_kv() warning_str = "Flash attention does not support the is_causal flag when seqlen_q != seqlen_k." with sdpa_kernel(backends=[SDPBackend.FLASH_ATTENTION]): with self.assertWarnsRegex(UserWarning, warning_str): self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention( q, k, v, None, 0.0, is_causal=True))
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM class TestSDPAFailureModes(NNTestCase): from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
_get_block_size_n
def _get_block_size_n(device, head_dim, is_dropout, is_causal): # This should match the block sizes in the CUDA kernel assert head_dim <= 256 major, minor = torch.cuda.get_device_capability(device) is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100) is_sm80 = major == 8 and minor == 0 is_sm90 = major == 9 and minor == 0 if head_dim <= 32: return 128 if head_dim <= 64: return 128 if not is_dropout else 64 elif head_dim <= 96: return 64 elif head_dim <= 128: if is_sm8x: return 64 if (not is_dropout and is_causal) else 32 else: return 64 if not is_dropout else 32 elif head_dim <= 160: if is_sm8x: return 64 else: return 32 elif head_dim <= 192: return 64 elif head_dim <= 224: return 64 elif head_dim <= 256: return 64
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_data_ptr_of_empty_view_with_storage
def test_data_ptr_of_empty_view_with_storage(self): t = torch.empty((2, 2)) self.assertNotEqual(t.data_ptr(), 0) t2 = t[0:0].view(0, 1) self.assertEqual(t2.data_ptr(), 0)
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
_get_tensor_prop
def _get_tensor_prop(self, t): preserved = ( id(t), # Refcount values get modified by Dynamo resume frames 0 if TEST_WITH_TORCHDYNAMO else sys.getrefcount(t), ) slotnames = copyreg._slotnames(t.__class__) moved = ( slotnames, id(t.__dict__), tuple(t.__dict__.keys()), [getattr(t, name, None) for name in slotnames] ) return preserved, moved
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_torch.py
test_bf16_supported_on_cpu
# The following block extends TestTorch with negative dim wrapping tests # FIXME: replace these with OpInfo sample inputs or systemic OpInfo tests # Functions to test negative dimension wrapping METHOD = 1 INPLACE_METHOD = 2 FUNCTIONAL = 4 DIM_ARG = None
def test_bf16_supported_on_cpu(self): self.assertFalse(torch.cuda.is_bf16_supported()) # The following block extends TestTorch with negative dim wrapping tests # FIXME: replace these with OpInfo sample inputs or systemic OpInfo tests # Functions to test negative dimension wrapping
import torch import torch.utils.data import numpy as np import contextlib import gc import io import inspect import itertools import math import random import re import copy import os import tempfile import unittest import warnings import types import pickle import textwrap import subprocess import weakref import sys import copyreg from torch import inf, nan from itertools import product, combinations, permutations, chain from functools import partial from torch import multiprocessing as mp from torch.testing import make_tensor from torch.testing._internal.common_optimizers import ( optim_db, optims, _get_optim_inputs_including_global_cliquey_kwargs) from torch.testing._internal.common_utils import ( # type: ignore[attr-defined] TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, run_tests, IS_JETSON, IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, skipIfTorchInductor, load_tests, slowTest, slowTestIf, TEST_WITH_CROSSREF, skipIfTorchDynamo, skipRocmIfTorchInductor, set_default_dtype, skipCUDAMemoryLeakCheckIf, BytesIOContext, skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName, wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like, AlwaysWarnTypedStorageRemoval, TEST_WITH_TORCHDYNAMO, xfailIfTorchDynamo) from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import ( expectedFailureMeta, expectedFailureXLA, instantiate_device_type_tests, onlyCUDA, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipMeta, PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes, get_all_device_types, skipXLA) from typing import Tuple import torch.backends.quantized import torch.testing._internal.data from torch.testing._internal.common_cuda import ( tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN, TEST_MULTIGPU, _create_scaling_case, _create_scaling_models_optimizers) from torch.testing._internal.common_mkldnn import bf32_on_and_off from torch.testing._internal.common_dtype import ( floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types, all_types_and, floating_types, floating_and_complex_types, integral_types_and, get_all_qint_dtypes, ) from torch.testing._internal.two_tensor import TwoTensor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import TestCase # type: ignore[assignment] load_tests = load_tests AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() is_cuda_sm86 = torch.cuda.is_available() and torch.cuda.get_device_capability(0) == (8, 6) from copy import deepcopy from copy import deepcopy from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from scipy import stats from copy import copy from functools import partial class TestTorch(TestCase): from copy import deepcopy import pickle import pickle import pickle from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args from copy import deepcopy from torch.library import Library, impl import weakref import weakref
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
use_deterministic_algorithims
def use_deterministic_algorithims(mode: bool, warn_only: bool): r""" This context manager can be used to temporarily enable or disable deterministic algorithms. Upon exiting the context manager, the previous state of the flag will be restored. """ previous_mode: bool = torch.are_deterministic_algorithms_enabled() previous_warn_only: bool = torch.is_deterministic_algorithms_warn_only_enabled() try: torch.use_deterministic_algorithms(mode, warn_only=warn_only) yield{} except RuntimeError as err: raise err finally: torch.use_deterministic_algorithms(previous_mode, warn_only=previous_warn_only) # Found in torch/testing/_comparison.py default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM86Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (8, 6)
def use_deterministic_algorithims(mode: bool, warn_only: bool): r""" This context manager can be used to temporarily enable or disable deterministic algorithms. Upon exiting the context manager, the previous state of the flag will be restored. """ previous_mode: bool = torch.are_deterministic_algorithms_enabled() previous_warn_only: bool = torch.is_deterministic_algorithms_warn_only_enabled() try: torch.use_deterministic_algorithms(mode, warn_only=warn_only) yield {} finally: torch.use_deterministic_algorithms(previous_mode, warn_only=previous_warn_only) # Found in torch/testing/_comparison.py default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8
import contextlib from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math from torch.backends.cuda import sdp_kernel, SDPBackend import torch.optim as optim from torch.testing._internal.common_dtype import floating_types_and_half from typing import Tuple from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( TEST_FAIRSEQ, run_tests, parametrize, instantiate_parametrized_tests, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck ) from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import TEST_CUDA, SM80OrLater, PLATFORM_SUPPORTS_FUSED_SDPA import fairseq.models.transformer as fairseq_transformer
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_transformers.py
query_key_value_clones
def query_key_value_clones(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, dtype: torch.dtype = None): """ Clones the query, key, and value tensors and moves them to the specified dtype. """ if dtype is None: dtype = query.dtype query_ref = query.clone().detach().to(dtype).requires_grad_(query.requires_grad) key_ref = key.clone().detach().to(dtype).requires_grad_(key.requires_grad) value_ref = value.clone().detach().to(dtype).requires_grad_(value.requires_grad) return query_ref, key_ref, value_ref
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_transformers.py
get_platform_specific_sdpa
def get_platform_specific_sdpa(): ret = [] if PLATFORM_SUPPORTS_FLASH_ATTENTION: ret.append(SDPBackend.FLASH_ATTENTION) if PLATFORM_SUPPORTS_MEM_EFF_ATTENTION: ret.append(SDPBackend.EFFICIENT_ATTENTION) if PLATFORM_SUPPORTS_CUDNN_ATTENTION: ret.append(SDPBackend.CUDNN_ATTENTION) if not ret: # Add a placeholder, an empty list causes "An empty arg_values was passed to @parametrize" ret.append(SDPBackend.EFFICIENT_ATTENTION) return ret PLATFORM_SPECIFIC_SDPA = get_platform_specific_sdpa() # Indicate the Efficient attention backend can support: # 1. sequence longher than 512 # 2. head dimsion larger than 64 MEM_EFF_CAPABILITY_MATCHES_SM80 = SM80OrLater or TEST_WITH_ROCM
import contextlib from functools import partial from collections import namedtuple import sys import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left from torch.nn.parameter import Parameter import unittest from unittest.mock import patch, MagicMock, ANY import math import itertools import torch.optim as optim from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU from typing import List, Tuple, Optional, Dict import torch.utils.cpp_extension from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( IS_FBCODE, TEST_WITH_ROCM, skipIfRocm, skipIfTorchDynamo, TEST_FAIRSEQ, run_tests, parametrize, freeze_rng_state, TEST_WITH_CROSSREF, slowTest, set_default_dtype, gradcheck, make_tensor, NOTEST_CPU, IS_WINDOWS, TEST_WITH_TORCHDYNAMO, TEST_XPU, ) from torch._dynamo.testing import CompileCounterWithBackend from torch.testing._internal.common_methods_invocations import wrapper_set_seed from torch.testing._internal.common_cuda import ( IS_JETSON, SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION, PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, PLATFORM_SUPPORTS_FUSED_ATTENTION, PLATFORM_SUPPORTS_CUDNN_ATTENTION, SM90OrLater, tf32_on_and_off ) from test_cpp_extensions_open_device_registration import ( remove_build_path, generate_faked_module ) import fairseq.models.transformer as fairseq_transformer SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim']) Tolerances = namedtuple('Tolerances', ['atol', 'rtol']) default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} isSM8XDevice = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 7), (8, 9)] isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0) isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5 isLessThanSM80Device = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] < 8 from torch.nn.attention.bias import _calculate_scale
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added