library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
run_tests
def run_tests(S, td=None): D = S.coalesce().to_dense().detach().requires_grad_(True) if td is None: S_sum = torch.sparse.sum(S) D_sum = D.sum() self.assertEqual(S_sum.item(), D_sum.item()) def fn(S): res = torch.sparse.sum(S) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) else: S_sum = torch.sparse.sum(S, td) D_sum = D.sum(td) self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum) def fn(S): res = torch.sparse.sum(S, td) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) nnz = 10 sparse_dims = 2 with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze test_dims = [] for i in range(1, 5): test_dims += itertools.combinations(range(len(with_size)), i) # https://github.com/pytorch/pytorch/issues/16501 x = torch.tensor([[1., 0., 0., 1.], [0., 1., 0., 0.], [0., 1., 1., 0.], [0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse() self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2)) self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense()) S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] # dim out of range self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5)) # dim 0 appears multiple times in the list of dims self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0])) # sum an empty tensor empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device) self.assertEqual(torch.sparse.sum(empty_S, [0]).to_dense(), torch.sum(empty_S.to_dense(), [0])) self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device)) empty_S.requires_grad_(True) empty_S_sum = torch.sparse.sum(empty_S) empty_S_sum.backward() self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense()) # test values().sum() S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True)) for test_dim in test_dims: S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True), test_dim)
def run_tests(S, td=None): D = S.coalesce().to_dense().detach().requires_grad_(True) if td is None: S_sum = torch.sparse.sum(S) D_sum = D.sum() self.assertEqual(S_sum.item(), D_sum.item()) def fn(S): return torch.sparse.sum(S) gradcheck(fn, (S,), masked=True) else: S_sum = torch.sparse.sum(S, td) D_sum = D.sum(td) self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum) def fn(S): res = torch.sparse.sum(S, td) return res.to_dense(masked_grad=True) gradcheck(fn, (S,), masked=True) nnz = 10 sparse_dims = 2 with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze test_dims = [] for i in range(1, 5): test_dims += itertools.combinations(range(len(with_size)), i) # https://github.com/pytorch/pytorch/issues/16501 x = torch.tensor([[1., 0., 0., 1.], [0., 1., 0., 0.], [0., 1., 1., 0.], [0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse() self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2)) self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense()) S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] # dim out of range self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5)) # dim 0 appears multiple times in the list of dims self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0])) # sum an empty tensor empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device) self.assertEqual(torch.sparse.sum(empty_S, [0]).to_dense(), torch.sum(empty_S.to_dense(), [0])) self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device)) empty_S.requires_grad_(True) empty_S_sum = torch.sparse.sum(empty_S) empty_S_sum.backward() self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense()) # test values().sum() S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True)) for test_dim in test_dims: S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True), test_dim)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
_test_sparse_mask_fixed
def _test_sparse_mask_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce() dense = torch.tensor([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], ], dtype=dtype, device=device) exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse() res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce() dense = torch.empty([5, 4, 0], dtype=dtype, device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse(2) res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) _test_sparse_mask_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) # check repetitions and matchings in the intersection lhs = torch.randint(0, 5, (100,), device=device) rhs = torch.randint(0, 5, (100,), device=device).to_sparse() self.assertEqual(lhs.to_sparse().sparse_mask(rhs), lhs.sparse_mask(rhs))
def _test_sparse_mask_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce() dense = torch.tensor([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], ], dtype=dtype, device=device) exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse() res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce() dense = torch.empty([5, 4, 0], dtype=dtype, device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse(2) res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) _test_sparse_mask_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) # check repetitions and matchings in the intersection lhs = torch.randint(0, 5, (100,), device=device) rhs = torch.randint(0, 5, (100,), device=device).to_sparse() self.assertEqual(lhs.to_sparse().sparse_mask(rhs), lhs.sparse_mask(rhs)) # check coalesce sparse_c = torch.rand(3, 3, device=device).to_sparse() sparse_unc = torch.rand(3, 3, device=device).to_sparse()._coalesced_(False) for lhs, rhs in [(sparse_c, sparse_unc), (sparse_unc, sparse_c)]: res_all_sparse = lhs.sparse_mask(rhs) res_dense_sparse = lhs.to_dense().sparse_mask(rhs) self.assertEqual(res_all_sparse.coalesce(), res_dense_sparse.coalesce()) self.assertEqual(rhs.is_coalesced(), res_all_sparse.is_coalesced())
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_empty_full
def test_empty_full(self, device): all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.device_count() > 0: do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def test_empty_full(self, device, dtype, requires_grad): if requires_grad and not (dtype.is_floating_point or dtype.is_complex): self.skipTest(f'requires_grad==True requires float or complex dtype, got {dtype}') self._test_empty_full(device, dtype, requires_grad) if torch.cuda.is_available(): self._test_empty_full(None, dtype, requires_grad) self._test_empty_full(torch.device('cuda:0'), dtype, requires_grad)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_empty_full
def test_empty_full(self, device): all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.device_count() > 0: do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def test_empty_full(self, device, dtype, requires_grad): if requires_grad and not (dtype.is_floating_point or dtype.is_complex): self.skipTest(f'requires_grad==True requires float or complex dtype, got {dtype}') self._test_empty_full(device, dtype, requires_grad) if torch.cuda.is_available(): self._test_empty_full(None, dtype, requires_grad) self._test_empty_full(torch.device('cuda:0'), dtype, requires_grad)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_is_sparse
def test_is_sparse(self, device): x = torch.randn(3, 3) self.assertFalse(x.is_sparse) x = torch.randn(3, 3, 0) self.assertFalse(x.is_sparse) x = self.legacy_sparse_tensor() self.assertTrue(x.is_sparse) x = self.sparse_empty(1, 0, device=device) self.assertTrue(x.is_sparse)
def test_is_sparse(self, device): x = torch.randn(3, 3) self.assertFalse(x.is_sparse) x = torch.randn(3, 3, 0) self.assertFalse(x.is_sparse) x = self.sparse_empty(1, 0, device=device) self.assertTrue(x.is_sparse)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
do_test
def do_test(t): y = t.new().resize_as_(t).zero_() self.assertEqual(y.shape, t.shape) # Check that y can be added to t. Currently, this requires that # sparse_dim and dense_dim match. self.assertEqual(t, t + y) do_test(self.legacy_sparse_tensor()) do_test(self.sparse_empty([3, 0], device=device)) do_test(self.sparse_empty([3, 3], device=device))
def do_test(t): y = t.new().resize_as_(t).zero_() self.assertEqual(y.shape, t.shape) # Check that y can be added to t. Currently, this requires that # sparse_dim and dense_dim match. self.assertEqual(t, t + y) do_test(self.sparse_empty([3, 0], device=device)) do_test(self.sparse_empty([3, 3], device=device))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
check_device
def check_device(x, device_id): self.assertEqual(x.get_device(), device_id) self.assertEqual(x._values().get_device(), device_id) self.assertEqual(x._indices().get_device(), device_id) dev1, dev2 = devices[0], devices[1] i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev2) x = self.sparse_tensor(i, v, torch.Size([3]), device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev2) x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1) check_device(x, 1) x = self.sparse_empty(3, device=1) check_device(x, 1) x = self.sparse_empty(3, 0, device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3]))) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3, 0])))
def check_device(x, device_id): self.assertEqual(x.get_device(), device_id) self.assertEqual(x._values().get_device(), device_id) self.assertEqual(x._indices().get_device(), device_id) dev1, dev2 = devices[0], devices[1] i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev2) x = self.sparse_tensor(i, v, torch.Size([3]), device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev2) x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1) check_device(x, 1) x = self.sparse_empty(3, device=1) check_device(x, 1) x = self.sparse_empty(3, 0, device=1) check_device(x, 1)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_factory_default
def test_factory_default(self, device): tensor = self.legacy_sparse_tensor() expected_indices = self.index_tensor([[]], device=device) expected_size = torch.Size([0]) self.assertEqual(tensor._indices(), expected_indices) self.assertEqual(tensor.shape, expected_size)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_legacy_new_device
i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) x = torch.sparse_coo_tensor(i, v, size, device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) x = torch.sparse_coo_tensor(i, v, size, device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
def test_legacy_new_device(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) x = torch.sparse_coo_tensor(i, v, size, device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) if torch.cuda.is_available(): x = torch.sparse_coo_tensor(i, v, size, device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
test_legacy_constructor
def test_legacy_constructor(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v.storage())) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v)) self.assertEqual(torch.sparse_coo, torch.sparse.FloatTensor(torch.Size([2, 3])).layout) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor([6]))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_sparse.py
test_meta
def test_meta(self, dtype, layout): if layout is torch.sparse_coo: self._test_meta_sparse_coo(dtype) else: for batchsize, densesize in itertools.product([(), (2,)], [(), (3,)]): self._test_meta_sparse_compressed(dtype, layout, batchsize, densesize)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMeta(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
test_print_meta
def test_print_meta(self, dtype, layout): printed = [] for batchsize, sparsesize, densesize in itertools.product( [(), (2,)], [(4, 6), (3, 5, 7)], [(), (3,)] ): if layout is torch.sparse_coo and batchsize: # COO tensors don't have batch dimensions continue if layout is not torch.sparse_coo and len(sparsesize) != 2: # CSR/CSC/BSR/BSC tensors must have 2 sparse dimensions continue printed += self._test_print_meta_data(dtype, layout, batchsize, sparsesize, densesize) orig_maxDiff = self.maxDiff self.maxDiff = None try: self.assertExpected('\n'.join(printed)) self.maxDiff = orig_maxDiff except Exception: self.maxDiff = orig_maxDiff raise
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMeta(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
assertEqualAttrs
def assertEqualAttrs(x, y, expected_shape): self.assertEqual(x.shape, expected_shape) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.layout, y.layout) if not x.is_meta: self.assertEqual(x.device, y.device) if x.layout is torch.sparse_coo: assertEqualAttrs(x._indices(), y._indices(), (*y._indices().shape[:-1], expected_nnz)) assertEqualAttrs(x._values(), y._values(), (expected_nnz, *y._values().shape[1:])) elif x.layout in {torch.sparse_csr, torch.sparse_bsr}: assertEqualAttrs(x.crow_indices(), y.crow_indices(), y.crow_indices().shape) assertEqualAttrs(x.col_indices(), y.col_indices(), (*y.col_indices().shape[:-1], expected_nnz)) batch_dim = x.col_indices().ndim - 1 values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) self.assertEqual(x.values().layout, y.values().layout) self.assertEqual(x.values().dtype, y.values().dtype) self.assertEqual(x.values().shape, values_shape) elif x.layout in {torch.sparse_csc, torch.sparse_bsc}: assertEqualAttrs(x.ccol_indices(), y.ccol_indices(), y.ccol_indices().shape) assertEqualAttrs(x.row_indices(), y.row_indices(), (*y.row_indices().shape[:-1], expected_nnz)) batch_dim = x.row_indices().ndim - 1 values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) self.assertEqual(x.values().layout, y.values().layout) self.assertEqual(x.values().dtype, y.values().dtype) self.assertEqual(x.values().shape, values_shape)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
test_sparse_matmul
def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) # We convert grad to dense since dense and sparse mm # implementations handle materialized zeroes differently. self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) # Check result is truly coalesced self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), check_sparse_nnz=True, nondet_tol=1e-5) else: gradcheck(fn, (a, b), check_sparse_nnz=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b)
def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) # We convert grad to dense since dense and sparse mm # implementations handle materialized zeroes differently. self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) # Check result is truly coalesced self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), nondet_tol=1e-5, masked=True) else: gradcheck(fn, (a, b), masked=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_cuda_sparse_cpu_dense_add
def test_cuda_sparse_cpu_dense_add(self): x = torch.zeros(3, 4, 4) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4).cuda(), [3, 4, 4]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(3, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0).cuda(), [3, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(0, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(), torch.randn(0, 4, 4, 0).cuda(), [0, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y
def test_cuda_sparse_cpu_dense_add(self): x = torch.zeros(3, 4, 4) sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4).cuda(), [3, 4, 4]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(3, 4, 4, 0) sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0).cuda(), [3, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(0, 4, 4, 0) sparse_y = torch.sparse_coo_tensor(torch.empty(1, 0).long().cuda(), torch.randn(0, 4, 4, 0).cuda(), [0, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product class TestSparseOneOff(TestCase):
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product class TestSparseOneOff(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
_sparse_to_dense
def _sparse_to_dense(tensor): if tensor.dtype != torch.bool: return tensor.to_dense() # to_dense uses coalesce which isn't implemented for bool return tensor.to(torch.int8).to_dense().to(torch.bool) _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseUnaryUfuncs(TestCase): exact_dtype = True @_sparse_unary_ops def test_sparse_consistency(self, device, dtype, op): sample = first_sample(self, op.sample_inputs(device, dtype)) assert isinstance(sample.input, torch.Tensor) expected = op(sample.input, *sample.args, **sample.kwargs) assert torch.is_tensor(expected) output = op(sample.input.to_sparse(), *sample.args, **sample.kwargs) assert torch.is_tensor(output) self.assertEqual(_sparse_to_dense(output), expected) @_sparse_unary_ops def test_out(self, device, dtype, op): if not op.supports_out: self.skipTest("Skipped! Out not supported") sample = first_sample(self, op.sample_inputs(device, dtype)) sample.input = sample.input.to_sparse() expect = op(sample.input, *sample.args, **sample.kwargs) out = torch.zeros(sample.input.shape, device=device, dtype=expect.dtype, layout=torch.sparse_coo) op(sample.input, *sample.args, **sample.kwargs, out=out) self.assertEqual(out, expect) @_sparse_unary_ops def test_inplace(self, device, dtype, op): if op.inplace_variant is None: self.skipTest("Skipped! Out not supported") sample = first_sample(self, op.sample_inputs(device, dtype)) sample.input = sample.input.to_sparse().coalesce() expect = op(sample.input, *sample.args, **sample.kwargs) if not torch.can_cast(expect.dtype, dtype): with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) return actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) self.assertIs(actual, sample.input) self.assertEqual(actual, expect) @_sparse_unary_ops def test_sparse_zero_dims(self, device, dtype, op): # test 0x0 sparse_coo_tensor indices = torch.empty(2, 0, dtype=torch.int64) values = torch.empty(0, dtype=dtype) sparse_0x0 = torch.sparse_coo_tensor(indices, values, (0, 0)) expected = torch.sparse_coo_tensor(indices, op(values), (0, 0)) actual = op(sparse_0x0) self.assertEqual(expected, actual) @_sparse_unary_ops def test_sparse_zeros(self, device, dtype, op): samples = op.sample_inputs(device, dtype) zero_input = torch.zeros((), device=device, dtype=dtype) sparse_input = torch.zeros((), dtype=dtype, device=device, layout=torch.sparse_coo) expect = op(zero_input) actual = op(sparse_input) self.assertEqual(expect, _sparse_to_dense(actual)) @ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) def test_sparse_fn_grad(self, device, dtype, op): if not op.supports_autograd: self.skipTest("Skipped! Op doesn't support autograd") for sample in op.sample_inputs(device, dtype): sparse_input = sample.input.to_sparse().detach().requires_grad_(True) def fn(x): return _sparse_to_dense( op(x, *sample.args, **sample.kwargs)) self.assertTrue(gradcheck( fn, (sparse_input,), check_batched_grad=False, check_grad_dtypes=True, check_sparse_nnz=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode)) class TestSparseMaskedReductions(TestCase): exact_dtype = True @ops(sparse_masked_reduction_ops) def test_future_empty_dim(self, device, dtype, op): """Currently, `dim=()` in reductions operations means "reduce over all dimensions" while in future, it will read "no reduce". See https://github.com/pytorch/pytorch/issues/29137 For sparse masked reductions, we'll implement the current behavior. For testing, we'll use samples with `dim=0` and map it to `dim=()` until torch.testing._internal.common_methods_invocations._generate_reduction_kwargs is made to generate samples with `dim=()` for non-scalar inputs. With this and after gh-29137 is resolved, this test can be deleted. See also `torch.masked._canonical_dim` implementation about changing the `dim=()` behavior. """ samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) op_name = op.name.replace('masked.', '') for sample_input in samples: if sample_input.kwargs.get('dim') != 0: continue sample_input_kwargs = dict(sample_input.kwargs) sample_input_kwargs['dim'] = () # reduce over all dimensions t = sample_input.input mask = sample_input_kwargs.get('mask') if mask is None and op_name in {'prod', 'amax', 'amin'}: # FIXME: for now reductions with non-zero reduction identity and # unspecified mask are not supported for sparse COO # tensors, see torch.masked.prod implementation # for details. continue sparse_op_kwargs = dict(sample_input_kwargs) actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs) self.assertEqual(actual.layout, torch.sparse_coo) expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse() self.assertEqual(actual, expected) class TestSparseMeta(TestCase): exact_dtype = True def test_basic(self): r = torch.empty(4, 4, layout=torch.sparse_coo, device='meta') self.assertTrue(r.is_meta) self.assertEqual(r.device.type, "meta") r2 = torch.empty_like(r) self.assertTrue(r2.is_meta) self.assertEqual(r, r2) r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta') self.assertTrue(r3.is_meta) self.assertEqual(r, r3) r.sparse_resize_((4, 4), 1, 1) r.sparse_resize_and_clear_((4, 4, 4), 2, 1) self.assertEqual(r.sparse_dim(), 2) self.assertEqual(r.dense_dim(), 1) self.assertEqual(r._dimV(), 1) self.assertEqual(r._nnz(), 0) # nnz zero sparse tensors should always be coalesced at creation self.assertEqual(r.is_coalesced(), True) # but we can force them into the uncoalesed state r._coalesced_(False) self.assertEqual(r.is_coalesced(), False) # return the coalesced state for indices/values access r._coalesced_(True) # TODO: this sort of aliasing will need to be handled by # functionalization self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r._values(), torch.empty(0, 4, device='meta')) self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r.values(), torch.empty(0, 4, device='meta')) class TestSparseAny(TestCase): @onlyCPU @all_sparse_layouts('layout', include_strided=False) @torch.sparse.check_sparse_tensor_invariants(enable=False) def test_check_sparse_tensor_invariants(self, layout): if layout is torch.sparse_coo: def create_invalid_tensor(check_invariants=None): shape = (2, 2) invalid_indices = torch.tensor([[0], [3]]) # column index is out of range values = torch.tensor([1]) if check_invariants is None: return torch.sparse_coo_tensor(invalid_indices, values, shape) else: return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants) expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3' elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: def create_invalid_tensor(check_invariants=None): shape = (2, 2) compressed_indices = torch.tensor([0, 0, 1]) invalid_plain_indices = torch.tensor([3]) # index is out of range if layout in {torch.sparse_bsr, torch.sparse_bsc}: values = torch.tensor([[[1]]]) else: values = torch.tensor([1]) if check_invariants is None: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout) else: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout, check_invariants=check_invariants) if layout in {torch.sparse_csr, torch.sparse_bsr}: expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.' else: expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.' else: raise NotImplementedError(layout) # First, consider the case where invariant checks are disabled # "globally" (read: within the context of this test method # caller) as defined by check_sparse_tensor_invariants(False) # decorator: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Enable the invariant checks in a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Leaving the local context must restore the "global" state of # the invariant check feature: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are disabled by default, we can # create an invalid sparse tensor without raising an # exception: r = create_invalid_tensor() self.assertEqual(r.layout, layout) # Or, when disabling the invariants check explicitly: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Enabling invariant check via constructor's optional argument # will raise an exception when sparse tensor invariants are # violated: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # Check that the global invariant check flag has been restored # after raising the exception above: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Next, consider the case where invariant checks are enabled # within a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are now enabled by default, an # attempt to create an invalid sparse tensor will lead to # an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor() # Similarly, when enabling the invariant checks # explicitly, invalid sparse tensor construction will lead # to an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # However, invariants check can be disabled via # constructor's optional argument so that the invalid # tensor is succesfully constructed: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Check that the invariant check flag has been restored # when leaving the constructor: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Double-check restoring the global state when leaving the # local context: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) def test_generate_simple_inputs(self): layouts = [torch.strided, torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc] tested_combinations = set() for tensors in zip(*map(self.generate_simple_inputs, layouts)): for i, t in enumerate(tensors): self.assertEqual(t.layout, layouts[i]) # all layouts must produce semantically the same tensors self.assertEqual(t, tensors[0]) if t.layout is torch.strided: is_hybrid = None else: is_hybrid = t.dense_dim() > 0 if t.layout in {torch.sparse_csr, torch.sparse_bsr}: is_batch = t.crow_indices().ndim > 1 elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: is_batch = t.ccol_indices().ndim > 1 else: is_batch = None if t.layout in {torch.sparse_bsr, torch.sparse_bsc}: blocksize = t.values().shape[1:3] nontrivial_blocksize = 1 not in blocksize else: nontrivial_blocksize = None if t.layout in {torch.sparse_csr, torch.sparse_bsr}: contiguous_indices = t.crow_indices().is_contiguous() and t.col_indices().is_contiguous() contiguous_values = t.values().is_contiguous() elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: contiguous_indices = t.ccol_indices().is_contiguous() and t.row_indices().is_contiguous() contiguous_values = t.values().is_contiguous() elif t.layout is torch.sparse_coo: contiguous_indices = t._indices().is_contiguous() contiguous_values = t._values().is_contiguous() else: contiguous_indices = None contiguous_values = t.is_contiguous() tested_combinations.add((t.layout, is_hybrid, is_batch, nontrivial_blocksize, contiguous_indices, contiguous_values)) # Ensure that the inputs generation covers all layout, # non-hybrid/hybrid, non-batch/batch, and contiguity # combinations: untested_combinations = set() for layout in layouts: for is_hybrid in [False, True]: if layout is torch.strided: is_hybrid = None for is_batch in [False, True]: if layout in {torch.sparse_coo, torch.strided}: is_batch = None for nontrivial_blocksize in [False, True]: if layout not in {torch.sparse_bsr, torch.sparse_bsc}: nontrivial_blocksize = None for contiguous_indices in [False, True]: if layout is torch.strided: contiguous_indices = None elif not is_batch: # indices are contiguous per-patch contiguous_indices = True for contiguous_values in [False, True]: key = (layout, is_hybrid, is_batch, nontrivial_blocksize, contiguous_indices, contiguous_values) if key not in tested_combinations: untested_combinations.add( f'layout={layout}, is_hybrid={is_hybrid}, is_batch={is_batch},' f' nontrivial_blocksize={nontrivial_blocksize},' f' contiguous_indices{contiguous_indices}, contiguous_values={contiguous_values}') assert not untested_combinations, untested_combinations @all_sparse_layouts('from_layout', include_strided=False) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @parametrize("index_dtype", [torch.int32, torch.int64]) def test_to_dense(self, from_layout, device, dtype, index_dtype): """ This test tests conversion from any layout to any sparse layout. """ for t in self.generate_simple_inputs( from_layout, device=device, dtype=dtype, index_dtype=index_dtype): r = t.to_dense() self.assertEqual(r.layout, torch.strided) self.assertEqual(r, t) @all_sparse_layouts('from_layout', include_strided=True) @all_sparse_layouts('to_layout', include_strided=False) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @parametrize("index_dtype", [torch.int32, torch.int64]) def test_to_sparse(self, from_layout, to_layout, device, dtype, index_dtype): """ This test tests conversion from any layout to any sparse layout. """ for t in self.generate_simple_inputs( from_layout, device=device, dtype=dtype, index_dtype=index_dtype, enable_hybrid=( # TODO: to support conversion strided->hybrid # CSR/CSC/BSR/BSC, to_sparse() requires extra keyword # argument, either nof_batch_dims or # nof_dense_dims not (from_layout is torch.strided and to_layout in {torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc}))): if to_layout in {torch.sparse_bsr, torch.sparse_bsc}: if from_layout == torch.sparse_bsr: batch_ndim = t.crow_indices().dim() - 1 blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] elif from_layout == torch.sparse_bsc: batch_ndim = t.ccol_indices().dim() - 1 blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] else: blocksize = (1, 1) else: blocksize = None if from_layout is torch.strided: is_batch = None is_hybrid = None else: is_batch = t.dim() > (t.sparse_dim() + t.dense_dim()) is_hybrid = t.dense_dim() > 0 def explicit_to_sparse(x): # Used to check that the explicit conversion methods # are consistent with the `to_sparse(*, layout, # blocksize)` method. if to_layout is torch.sparse_coo: return x.to_sparse_coo() elif to_layout is torch.sparse_csr: return x.to_sparse_csr() elif to_layout is torch.sparse_csc: return x.to_sparse_csc() elif to_layout is torch.sparse_bsr: return x.to_sparse_bsr(blocksize) elif to_layout is torch.sparse_bsc: return x.to_sparse_bsc(blocksize) else: assert 0 # unreachable # TODO: The following exception cases all correspond to # not implemented conversions if from_layout in { torch.sparse_csr, torch.sparse_csc} and to_layout in {torch.sparse_bsr, torch.sparse_bsc} and is_batch: with self.assertRaisesRegex(RuntimeError, r"conversion from (Csr|Csc) to (Bsr|Bsc) for batched inputs is not implemented"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex(RuntimeError, r"conversion from (Csr|Csc) to (Bsr|Bsc) for batched inputs is not implemented"): explicit_to_sparse(t) continue elif from_layout is torch.sparse_coo and to_layout in { torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and t.sparse_dim() != 2: with self.assertRaisesRegex( RuntimeError, "Only tensors with two sparse dimensions can be converted to the Sparse(Csr|Csc) layout"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex( RuntimeError, "Only tensors with two sparse dimensions can be converted to the Sparse(Csr|Csc) layout"): explicit_to_sparse(t) continue elif from_layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and to_layout is torch.sparse_coo and is_batch: with self.assertRaisesRegex(RuntimeError, "crow_indices is supposed to be a vector, but got \\d+ dimensional tensor"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex(RuntimeError, "crow_indices is supposed to be a vector, but got \\d+ dimensional tensor"): explicit_to_sparse(t) continue elif (from_layout, to_layout) in {(torch.sparse_bsc, torch.sparse_csr), (torch.sparse_bsc, torch.sparse_csc), (torch.sparse_bsr, torch.sparse_csr), (torch.sparse_bsr, torch.sparse_csc)}: with self.assertRaisesRegex( RuntimeError, r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc) expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex( RuntimeError, r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc) expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): explicit_to_sparse(t) self.skipTest('NOT IMPL') else: r = t.to_sparse(layout=to_layout, blocksize=blocksize) self.assertEqual(r.layout, to_layout) # to_sparse method uses unsafe construction of sparse # tensors. Here we explicitly validate the results to # make sure that the sparse tensors are consistent # with the corresponding sparse tensor invariants. if r.layout in {torch.sparse_csr, torch.sparse_bsr, torch.sparse_csc, torch.sparse_bsc}: if r.layout in {torch.sparse_csr, torch.sparse_bsr}: compressed_indices, plain_indices = r.crow_indices(), r.col_indices() else: compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout) if from_layout in {torch.strided, torch.sparse_coo}: self.assertEqual(compressed_indices.dtype, torch.int64) self.assertEqual(plain_indices.dtype, torch.int64) else: self.assertEqual(compressed_indices.dtype, index_dtype) self.assertEqual(plain_indices.dtype, index_dtype) self.assertEqual(r.values().dtype, dtype) elif r.layout is torch.sparse_coo: if t.layout is torch.sparse_coo: self.assertEqual(t.is_coalesced(), r.is_coalesced()) # Check r is truly coalesced when r.is_coalesced == True if r.is_coalesced(): self.assertTrue(is_coalesced_indices(r)) torch._validate_sparse_coo_tensor_args(r._indices(), r._values(), r.shape) self.assertEqual(r._indices().dtype, torch.int64) self.assertEqual(r._values().dtype, dtype) else: assert 0 # unreachable # Finally, we'll test tensor equality: self.assertEqual(r, t) # Also, check consistency with explicit conversion methods: r2 = explicit_to_sparse(t) self.assertEqual(r2, r) # Check inverse conversion from sparse compressed block tensors if from_layout == torch.sparse_bsr: batch_ndim = t.crow_indices().dim() - 1 from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] elif from_layout == torch.sparse_bsc: batch_ndim = t.ccol_indices().dim() - 1 from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] else: continue if r.ndim != 2: continue t2 = r.to_sparse(layout=from_layout, blocksize=from_blocksize) self.assertEqual(t2, t) # extra tests if (from_layout, to_layout) == (torch.sparse_csr, torch.sparse_bsr): # See gh-90910 t = torch.tensor([[0, 0, 1, 0], [0, 1, 0, 0]], dtype=dtype, device=device).to_sparse_csr() r = t.to_sparse_bsr((2, 2)) torch._validate_sparse_compressed_tensor_args(r.crow_indices(), r.col_indices(), r.values(), r.shape, r.layout) self.assertEqual(r, t) if (from_layout, to_layout) in {(torch.sparse_csr, torch.sparse_csc), (torch.sparse_csc, torch.sparse_csr)}: # See gh-91007 compressed_indices = torch.tensor([0, 4, 8, 8, 12, 16, 20], dtype=index_dtype, device=device) plain_indices = torch.tensor([0, 1, 2, 3] * 5, dtype=index_dtype, device=device) t = torch.sparse_compressed_tensor(compressed_indices, plain_indices, range(20), dtype=dtype, device=device, layout=from_layout) r = t.to_sparse(layout=to_layout) if r.layout in {torch.sparse_csr, torch.sparse_bsr}: compressed_indices, plain_indices = r.crow_indices(), r.col_indices() else: compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout) self.assertEqual(r, t) @onlyNativeDeviceTypes @suppress_warnings @ops(reduction_ops_with_sparse_support) @precisionOverride({torch.bfloat16: 5e-4, torch.float16: 5e-3}) @all_sparse_layouts('layout', include_strided=False) def test_reductions(self, layout, device, dtype, op): count = 0 for sample in op.sample_inputs_sparse(layout, device, dtype): count += 1 t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs result = op.op(t_inp, *t_args, **t_kwargs) # Checking invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...) dense = op.op(t_inp.to_dense(), *t_args, **t_kwargs) self.assertEqual(result, dense) if count == 0: # we count samples to avoid false-positive test reports self.skipTest('no sample inputs') @onlyNativeDeviceTypes @suppress_warnings @ops(reduction_ops_with_sparse_support, allowed_dtypes=(torch.float32, torch.float64, torch.complex64, torch.complex128)) @all_sparse_layouts('layout', include_strided=False) def test_reductions_backward(self, layout, device, dtype, op): count = 0 for sample in op.sample_inputs_sparse(layout, device, dtype, requires_grad=True): t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs r = op.op(t_inp, *t_args, **t_kwargs) if r.numel() != 0: r = r.sum() if op.name == 'sum': count += 1 r.backward() self.assertEqual(t_inp.grad, torch.ones(t_inp.shape, dtype=dtype, device=device)) else: self.skipTest('NOT IMPL') if count == 0: # we count samples to avoid false-positive test reports self.skipTest('no sample inputs') @onlyNativeDeviceTypes @suppress_warnings @parametrize("mth", [subtest(mth, name=mth.__name__) for mth in [torch.Tensor.is_coalesced, torch.Tensor.coalesce, torch.Tensor.indices, torch.Tensor.values, torch.Tensor.crow_indices, torch.Tensor.col_indices, torch.Tensor.ccol_indices, torch.Tensor.row_indices, ]]) @all_sparse_layouts('layout', include_strided=True) def test_unsupported_backend_error_message(self, mth, layout, device): inp = torch.tensor([[1, 2], [3, 4]], device=device).to_sparse( layout=layout, blocksize=(1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None) assert inp.layout is layout expected_behaviour = dict( # <mth name> = (<supported layouts>, <exception message on other layouts>) is_coalesced=({torch.sparse_coo}, "is_coalesced expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), coalesce=({torch.sparse_coo}, "coalesce expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), indices=({torch.sparse_coo}, "indices expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), values=({torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}, "values expected sparse tensor layout but got Strided"), crow_indices=({torch.sparse_csr, torch.sparse_bsr}, "crow_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), col_indices=({torch.sparse_csr, torch.sparse_bsr}, "col_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), ccol_indices=({torch.sparse_csc, torch.sparse_bsc}, "ccol_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), row_indices=({torch.sparse_csc, torch.sparse_bsc}, "row_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), )[mth.__name__] if layout in expected_behaviour[0]: mth(inp) else: with self.assertRaisesRegex(RuntimeError, expected_behaviour[1]): mth(inp) # e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta') instantiate_device_type_tests(TestSparseMaskedReductions, globals(), except_for='meta') # e.g., TestSparseCPU and TestSparseCUDA instantiate_device_type_tests(TestSparse, globals(), except_for='meta') instantiate_device_type_tests(TestSparseAny, globals(), except_for='meta') if __name__ == '__main__': run_tests()
def _sparse_to_dense(tensor): if tensor.dtype != torch.bool: return tensor.to_dense(masked_grad=True) # to_dense uses coalesce which isn't implemented for bool return tensor.to(torch.int8).to_dense().to(torch.bool) _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseUnaryUfuncs(TestCase): exact_dtype = True @_sparse_unary_ops def test_sparse_consistency(self, device, dtype, op): sample = first_sample(self, op.sample_inputs(device, dtype)) assert isinstance(sample.input, torch.Tensor) expected = op(sample.input, *sample.args, **sample.kwargs) assert torch.is_tensor(expected) output = op(sample.input.to_sparse(), *sample.args, **sample.kwargs) assert torch.is_tensor(output) self.assertEqual(_sparse_to_dense(output), expected) @_sparse_unary_ops def test_out(self, device, dtype, op): if not op.supports_out: self.skipTest("Skipped! Out not supported") sample = first_sample(self, op.sample_inputs(device, dtype)) sample.input = sample.input.to_sparse() expect = op(sample.input, *sample.args, **sample.kwargs) out = torch.sparse_coo_tensor(sample.input.shape, device=device, dtype=expect.dtype) op(sample.input, *sample.args, **sample.kwargs, out=out) self.assertEqual(out, expect) @_sparse_unary_ops def test_inplace(self, device, dtype, op): if op.inplace_variant is None: self.skipTest("Skipped! Out not supported") sample = first_sample(self, op.sample_inputs(device, dtype)) sample.input = sample.input.to_sparse().coalesce() expect = op(sample.input, *sample.args, **sample.kwargs) if not torch.can_cast(expect.dtype, dtype): with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) return actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) self.assertIs(actual, sample.input) self.assertEqual(actual, expect) @_sparse_unary_ops def test_sparse_zero_dims(self, device, dtype, op): # test 0x0 sparse_coo_tensor indices = torch.empty(2, 0, dtype=torch.int64) values = torch.empty(0, dtype=dtype) sparse_0x0 = torch.sparse_coo_tensor(indices, values, (0, 0)) expected = torch.sparse_coo_tensor(indices, op(values), (0, 0)) actual = op(sparse_0x0) self.assertEqual(expected, actual) @_sparse_unary_ops def test_sparse_zeros(self, device, dtype, op): samples = op.sample_inputs(device, dtype) zero_input = torch.zeros((), device=device, dtype=dtype) sparse_input = torch.sparse_coo_tensor((), dtype=dtype, device=device) expect = op(zero_input) actual = op(sparse_input) self.assertEqual(expect, _sparse_to_dense(actual)) @ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) def test_sparse_fn_grad(self, device, dtype, op): if not op.supports_autograd: self.skipTest("Skipped! Op doesn't support autograd") for sample in op.sample_inputs(device, dtype): sparse_input = sample.input.to_sparse().detach().requires_grad_(True) def fn(x): return _sparse_to_dense( op(x, *sample.args, **sample.kwargs)) self.assertTrue(gradcheck( fn, (sparse_input,), check_batched_grad=False, check_grad_dtypes=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode, masked=True)) class TestSparseMaskedReductions(TestCase): exact_dtype = True fp16_low_precision_list = { 'masked.prod', } @ops(sparse_masked_reduction_ops) def test_future_empty_dim(self, device, dtype, op): """Currently, `dim=()` in reductions operations means "reduce over all dimensions" while in future, it will read "no reduce". See https://github.com/pytorch/pytorch/issues/29137 For sparse masked reductions, we'll implement the current behavior. For testing, we'll use samples with `dim=0` and map it to `dim=()` until torch.testing._internal.common_methods_invocations._generate_reduction_kwargs is made to generate samples with `dim=()` for non-scalar inputs. With this and after gh-29137 is resolved, this test can be deleted. See also `torch.masked._canonical_dim` implementation about changing the `dim=()` behavior. """ samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) op_name = op.name.replace('masked.', '') for sample_input in samples: if sample_input.kwargs.get('dim') != 0: continue sample_input_kwargs = dict(sample_input.kwargs) sample_input_kwargs['dim'] = () # reduce over all dimensions t = sample_input.input mask = sample_input_kwargs.get('mask') if mask is None and op_name in {'prod', 'amax', 'amin'}: # FIXME: for now reductions with non-zero reduction identity and # unspecified mask are not supported for sparse COO # tensors, see torch.masked.prod implementation # for details. continue sparse_op_kwargs = dict(sample_input_kwargs) actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs) self.assertEqual(actual.layout, torch.sparse_coo) expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse() atol = None rtol = None if op.name in self.fp16_low_precision_list and dtype == torch.half: atol = 1e-5 rtol = 2e-3 self.assertEqual(actual, expected, atol=atol, rtol=rtol) class TestSparseMeta(TestCase): exact_dtype = True def _test_meta_sparse_coo(self, dtype): r = torch.empty(4, 4, layout=torch.sparse_coo, device='meta', dtype=dtype) self.assertTrue(r.is_meta) self.assertEqual(r.device.type, "meta") r2 = torch.empty_like(r) self.assertTrue(r2.is_meta) self.assertEqual(r, r2) r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta', dtype=dtype) self.assertTrue(r3.is_meta) self.assertEqual(r, r3) r.sparse_resize_((4, 4), 1, 1) r.sparse_resize_and_clear_((4, 4, 4), 2, 1) self.assertEqual(r.sparse_dim(), 2) self.assertEqual(r.dense_dim(), 1) self.assertEqual(r._dimV(), 1) self.assertEqual(r._nnz(), 0) # nnz zero sparse tensors should always be coalesced at creation self.assertEqual(r.is_coalesced(), True) # but we can force them into the uncoalesed state r._coalesced_(False) self.assertEqual(r.is_coalesced(), False) # return the coalesced state for indices/values access r._coalesced_(True) # TODO: this sort of aliasing will need to be handled by # functionalization self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r._values(), torch.empty(0, 4, device='meta', dtype=dtype)) self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r.values(), torch.empty(0, 4, device='meta', dtype=dtype)) def _test_meta_sparse_compressed(self, dtype, layout, batchsize, densesize): index_dtype = torch.int64 blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () sparsesize = (4, 6) nnz = 0 shape = (*batchsize, *sparsesize, *densesize) compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1 nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize else sparsesize[compressed_dim] + 1) compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype) plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype) values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype) r = torch.sparse_compressed_tensor( compressed_indices, plain_indices, values, shape, layout=layout ) self.assertTrue(r.is_meta) self.assertEqual(r.device.type, "meta") self.assertEqual(r.sparse_dim(), 2) self.assertEqual(r.dense_dim(), len(densesize)) self.assertEqual(r._nnz(), nnz) batch_dims = r.ndim - r.sparse_dim() - r.dense_dim() r_blocksize = r.values().shape[batch_dims + 1: batch_dims + 1 + len(blocksize)] self.assertEqual(r_blocksize, blocksize) r_compressed_indices = r.crow_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.ccol_indices() r_plain_indices = r.col_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.row_indices() self.assertEqual(r_compressed_indices, torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype)) self.assertEqual(r_plain_indices, torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype)) self.assertEqual(r.values(), torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype)) r2 = torch.empty_like(r) self.assertTrue(r2.is_meta) self.assertEqual(r2, r) if layout in {torch.sparse_csr, torch.sparse_csc}: r3 = torch.empty((*batchsize, *sparsesize), dtype=dtype, layout=layout, device="meta") self.assertTrue(r3.is_meta) if not densesize: # dense dimensions cannot be specified for torch.empty self.assertEqual(r3, r) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_meta(self, dtype, layout): if layout is torch.sparse_coo: self._test_meta_sparse_coo(dtype) else: for batchsize, densesize in itertools.product([(), (2,)], [(), (3,)]): self._test_meta_sparse_compressed(dtype, layout, batchsize, densesize) def _test_print_meta_data(self, dtype, layout, batchsize, sparsesize, densesize): index_dtype = torch.int64 nnz = 0 blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () shape = (*batchsize, *sparsesize, *densesize) values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype) if layout is torch.sparse_coo: indices = torch.empty((len(sparsesize), nnz), device='meta', dtype=index_dtype) x = torch.sparse_coo_tensor(indices, values, shape) else: compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1 nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize else sparsesize[compressed_dim] + 1) compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype) plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype) x = torch.sparse_compressed_tensor( compressed_indices, plain_indices, values, shape, layout=layout ) printed = [] printed.append(f"########## {dtype}/{index_dtype}/size={batchsize}+{sparsesize}+{blocksize}+{densesize} ##########") printed.append("# sparse meta tensor") printed.append(str(x)) return printed @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_print_meta(self, dtype, layout): printed = [] for batchsize, sparsesize, densesize in itertools.product( [(), (2,)], [(4, 6), (3, 5, 7)], [(), (3,)] ): if layout is torch.sparse_coo and batchsize: # COO tensors don't have batch dimensions continue if layout is not torch.sparse_coo and len(sparsesize) != 2: # CSR/CSC/BSR/BSC tensors must have 2 sparse dimensions continue printed += self._test_print_meta_data(dtype, layout, batchsize, sparsesize, densesize) orig_maxDiff = self.maxDiff self.maxDiff = None try: self.assertExpected('\n'.join(printed)) self.maxDiff = orig_maxDiff except Exception: self.maxDiff = orig_maxDiff raise def assertEqualMeta(self, x, y, expected_nnz): self.assertEqual(x.layout, y.layout) self.assertEqual(x.shape, y.shape) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.sparse_dim(), y.sparse_dim()) self.assertEqual(x.dense_dim(), y.dense_dim()) def assertEqualAttrs(x, y, expected_shape): self.assertEqual(x.shape, expected_shape) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.layout, y.layout) if not x.is_meta: self.assertEqual(x.device, y.device) if x.layout is torch.sparse_coo: assertEqualAttrs(x._indices(), y._indices(), (*y._indices().shape[:-1], expected_nnz)) assertEqualAttrs(x._values(), y._values(), (expected_nnz, *y._values().shape[1:])) elif x.layout in {torch.sparse_csr, torch.sparse_bsr}: assertEqualAttrs(x.crow_indices(), y.crow_indices(), y.crow_indices().shape) assertEqualAttrs(x.col_indices(), y.col_indices(), (*y.col_indices().shape[:-1], expected_nnz)) batch_dim = x.col_indices().ndim - 1 values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) self.assertEqual(x.values().layout, y.values().layout) self.assertEqual(x.values().dtype, y.values().dtype) self.assertEqual(x.values().shape, values_shape) elif x.layout in {torch.sparse_csc, torch.sparse_bsc}: assertEqualAttrs(x.ccol_indices(), y.ccol_indices(), y.ccol_indices().shape) assertEqualAttrs(x.row_indices(), y.row_indices(), (*y.row_indices().shape[:-1], expected_nnz)) batch_dim = x.row_indices().ndim - 1 values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) self.assertEqual(x.values().layout, y.values().layout) self.assertEqual(x.values().dtype, y.values().dtype) self.assertEqual(x.values().shape, values_shape) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_to_meta(self, dtype, layout): index_dtype = torch.int64 device = 'cpu' for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): m = t.to(device="meta") self.assertEqual(m.device.type, "meta") self.assertEqualMeta(m, t, 0) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_zeros_like_meta(self, dtype, layout): index_dtype = torch.int64 device = 'cpu' for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): m = torch.zeros_like(t, device="meta") self.assertEqual(m.device.type, "meta") self.assertEqualMeta(m, t, 0) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_fake(self, dtype, layout): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor fake_mode = FakeTensorMode() index_dtype = torch.int64 device = 'cpu' for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): f = FakeTensor.from_tensor(t, fake_mode) self.assertIsInstance(f, FakeTensor) self.assertEqualMeta(f, t, 0) d = f.detach() self.assertIsInstance(d, FakeTensor) self.assertEqualMeta(d, t, 0) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_zeros_like_fake(self, dtype, layout): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch fake_mode = FakeTensorMode() index_dtype = torch.int64 device = 'cpu' for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): f = FakeTensor.from_tensor(t, fake_mode) expected = torch.zeros_like(t) with no_dispatch(): result = torch.zeros_like(f, device=f.fake_device) self.assertEqual(result, expected) self.assertEqualMeta(result, expected, 0) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_sum_meta(self, dtype, layout): device = 'cpu' index_dtype = torch.int64 for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): m = t.to(device='meta') r = torch.sum(m) expected = torch.sum(t).to(device="meta") self.assertTrue(r.is_meta) self.assertEqualMeta(r, expected, 0) @all_sparse_layouts('layout', include_strided=False) @parametrize("dtype", [torch.float64]) def test_add_meta(self, dtype, layout): device = 'cpu' index_dtype = torch.int64 for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): expected = torch.add(t, t).to(device='meta') m = t.to(device='meta') r = torch.add(m, m) self.assertEqualMeta(r, expected, 0) class _SparseDataset(torch.utils.data.Dataset): # An utility class used in TestSparseAny.test_dataloader method. def __init__(self, sparse_tensors): self.sparse_tensors = sparse_tensors def __len__(self): return len(self.sparse_tensors) def __getitem__(self, index): return self.sparse_tensors[index] class TestSparseAny(TestCase): @onlyCPU @all_sparse_layouts('layout', include_strided=False) @torch.sparse.check_sparse_tensor_invariants(enable=False) def test_check_sparse_tensor_invariants(self, layout): if layout is torch.sparse_coo: def create_invalid_tensor(check_invariants=None): shape = (2, 2) invalid_indices = torch.tensor([[0], [3]]) # column index is out of range values = torch.tensor([1]) if check_invariants is None: return torch.sparse_coo_tensor(invalid_indices, values, shape) else: return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants) expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3' elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: def create_invalid_tensor(check_invariants=None): shape = (2, 2) compressed_indices = torch.tensor([0, 0, 1]) invalid_plain_indices = torch.tensor([3]) # index is out of range if layout in {torch.sparse_bsr, torch.sparse_bsc}: values = torch.tensor([[[1]]]) else: values = torch.tensor([1]) if check_invariants is None: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout) else: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout, check_invariants=check_invariants) if layout in {torch.sparse_csr, torch.sparse_bsr}: expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.' else: expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.' else: raise NotImplementedError(layout) # First, consider the case where invariant checks are disabled # "globally" (read: within the context of this test method # caller) as defined by check_sparse_tensor_invariants(False) # decorator: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Enable the invariant checks in a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Leaving the local context must restore the "global" state of # the invariant check feature: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are disabled by default, we can # create an invalid sparse tensor without raising an # exception: r = create_invalid_tensor() self.assertEqual(r.layout, layout) # Or, when disabling the invariants check explicitly: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Enabling invariant check via constructor's optional argument # will raise an exception when sparse tensor invariants are # violated: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # Check that the global invariant check flag has been restored # after raising the exception above: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Next, consider the case where invariant checks are enabled # within a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are now enabled by default, an # attempt to create an invalid sparse tensor will lead to # an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor() # Similarly, when enabling the invariant checks # explicitly, invalid sparse tensor construction will lead # to an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # However, invariants check can be disabled via # constructor's optional argument so that the invalid # tensor is succesfully constructed: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Check that the invariant check flag has been restored # when leaving the constructor: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Double-check restoring the global state when leaving the # local context: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Test nesting of pre-defined context managers check_ctx = torch.sparse.check_sparse_tensor_invariants(True) no_check_ctx = torch.sparse.check_sparse_tensor_invariants(False) with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with no_check_ctx: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Test an attempt to re-use an activate context manager instance check_ctx2 = torch.sparse.check_sparse_tensor_invariants(True) with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with no_check_ctx: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with self.assertRaisesRegex(RuntimeError, "This context manager instance is already activated." " Use a different context manager instance for context nesting"): with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with check_ctx2: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) def test_generate_simple_inputs(self): layouts = [torch.strided, torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc] tested_combinations = set() for tensors in zip(*map(self.generate_simple_inputs, layouts)): for i, t in enumerate(tensors): self.assertEqual(t.layout, layouts[i]) # all layouts must produce semantically the same tensors self.assertEqual(t, tensors[0]) if t.layout is torch.strided: is_hybrid = None else: is_hybrid = t.dense_dim() > 0 if t.layout in {torch.sparse_csr, torch.sparse_bsr}: is_batch = t.crow_indices().ndim > 1 elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: is_batch = t.ccol_indices().ndim > 1 else: is_batch = None if t.layout in {torch.sparse_bsr, torch.sparse_bsc}: blocksize = t.values().shape[1:3] nontrivial_blocksize = 1 not in blocksize else: nontrivial_blocksize = None if t.layout in {torch.sparse_csr, torch.sparse_bsr}: contiguous_indices = t.crow_indices().is_contiguous() and t.col_indices().is_contiguous() contiguous_values = t.values().is_contiguous() elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: contiguous_indices = t.ccol_indices().is_contiguous() and t.row_indices().is_contiguous() contiguous_values = t.values().is_contiguous() elif t.layout is torch.sparse_coo: contiguous_indices = t._indices().is_contiguous() contiguous_values = t._values().is_contiguous() else: contiguous_indices = None contiguous_values = t.is_contiguous() tested_combinations.add((t.layout, is_hybrid, is_batch, nontrivial_blocksize, contiguous_indices, contiguous_values)) # Ensure that the inputs generation covers all layout, # non-hybrid/hybrid, non-batch/batch, and contiguity # combinations: untested_combinations = set() for layout in layouts: for is_hybrid in [False, True]: if layout is torch.strided: is_hybrid = None for is_batch in [False, True]: if layout in {torch.sparse_coo, torch.strided}: is_batch = None for nontrivial_blocksize in [False, True]: if layout not in {torch.sparse_bsr, torch.sparse_bsc}: nontrivial_blocksize = None for contiguous_indices in [False, True]: if layout is torch.strided: contiguous_indices = None elif not is_batch: # indices are contiguous per-patch contiguous_indices = True for contiguous_values in [False, True]: key = (layout, is_hybrid, is_batch, nontrivial_blocksize, contiguous_indices, contiguous_values) if key not in tested_combinations: untested_combinations.add( f'layout={layout}, is_hybrid={is_hybrid}, is_batch={is_batch},' f' nontrivial_blocksize={nontrivial_blocksize},' f' contiguous_indices{contiguous_indices}, contiguous_values={contiguous_values}') assert not untested_combinations, untested_combinations @all_sparse_layouts('layout', include_strided=False) def test_constructor_autograd(self, device, layout): def specific_constructor(*args, **kwargs): if layout is torch.sparse_csr: return torch.sparse_csr_tensor(*args, **kwargs) elif layout is torch.sparse_csc: return torch.sparse_csc_tensor(*args, **kwargs) elif layout is torch.sparse_bsc: return torch.sparse_bsc_tensor(*args, **kwargs) elif layout is torch.sparse_bsr: return torch.sparse_bsr_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout) def generic_constructor(*args, **kwargs): if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: kwargs.update(layout=layout) return torch.sparse_compressed_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout) if layout is torch.sparse_coo: constructors = (specific_constructor,) else: constructors = (specific_constructor, generic_constructor) for args, kwargs in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_batch=False, # TODO: remove after gh-104868 is resolved output_tensor=False): values_offset = 1 if layout is torch.sparse_coo else 2 for cnstr in constructors: for requires_grad in (False, True): values = args[values_offset].detach().requires_grad_(requires_grad) args = (*args[:values_offset], values, *args[values_offset + 1:]) kwargs_ = dict(kwargs) args_ = args + (kwargs_.pop('size'),) sparse = cnstr(*args, **kwargs) self.assertEqual(sparse.requires_grad, requires_grad) if requires_grad: for masked in (False, True): if layout is torch.sparse_coo: torch.autograd.gradcheck( lambda i, v: cnstr(i, v, **kwargs).to_dense(masked_grad=masked), args, masked=masked) torch.autograd.gradcheck( lambda i, v, sz: cnstr(i, v, sz, **kwargs_).to_dense(masked_grad=masked), args_, masked=masked) else: if layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and 0: # TODO: remove this if-block after gh-107370 is resolved continue torch.autograd.gradcheck( lambda ci, pi, v: cnstr(ci, pi, v, **kwargs).to_dense(masked_grad=masked), args, masked=masked) torch.autograd.gradcheck( lambda ci, pi, v, sz: cnstr(ci, pi, v, sz, **kwargs_).to_dense(masked_grad=masked), args_, masked=masked) @all_sparse_layouts('from_layout', include_strided=False) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @parametrize("index_dtype", [torch.int32, torch.int64]) def test_to_dense(self, from_layout, device, dtype, index_dtype): """ This test tests conversion from any layout to strided layout. """ for t in self.generate_simple_inputs( from_layout, device=device, dtype=dtype, index_dtype=index_dtype): r = t.to_dense() self.assertEqual(r.layout, torch.strided) self.assertEqual(r, t) @all_sparse_layouts('from_layout', include_strided=False) @dtypes(torch.float64, torch.complex128) @parametrize("index_dtype", [torch.int64]) @gradcheck_semantics() def test_gradcheck_to_dense(self, from_layout, device, dtype, index_dtype, gradcheck): for t in self.generate_simple_inputs( from_layout, device=device, dtype=dtype, index_dtype=index_dtype): batch_dim = t.dim() - t.dense_dim() - t.sparse_dim() if batch_dim > 0: # TODO: implement batch support in _convert_indices_from_csr_to_coo continue t = t.clone().detach().requires_grad_(True) r = gradcheck(lambda x: torch.Tensor.to_dense(x, masked_grad=gradcheck.masked), t) self.assertTrue(r) @all_sparse_layouts('from_layout', include_strided=True) @all_sparse_layouts('to_layout', include_strided=False) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @parametrize("index_dtype", [torch.int32, torch.int64]) def test_to_sparse(self, from_layout, to_layout, device, dtype, index_dtype): """ This test tests conversion from any layout to any sparse layout. """ for t in self.generate_simple_inputs( from_layout, device=device, dtype=dtype, index_dtype=index_dtype, enable_hybrid=( # TODO: to support conversion strided->hybrid # CSR/CSC/BSR/BSC, to_sparse() requires extra keyword # argument, either nof_batch_dims or # nof_dense_dims not (from_layout is torch.strided and to_layout in {torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc}))): if to_layout in {torch.sparse_bsr, torch.sparse_bsc}: if from_layout == torch.sparse_bsr: batch_ndim = t.crow_indices().dim() - 1 blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] elif from_layout == torch.sparse_bsc: batch_ndim = t.ccol_indices().dim() - 1 blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] else: blocksize = (1, 1) else: blocksize = None if from_layout is torch.strided: is_batch = None is_hybrid = None else: is_batch = t.dim() > (t.sparse_dim() + t.dense_dim()) is_hybrid = t.dense_dim() > 0 def explicit_to_sparse(x): # Used to check that the explicit conversion methods # are consistent with the `to_sparse(*, layout, # blocksize)` method. if to_layout is torch.sparse_coo: return x.to_sparse_coo() elif to_layout is torch.sparse_csr: return x.to_sparse_csr() elif to_layout is torch.sparse_csc: return x.to_sparse_csc() elif to_layout is torch.sparse_bsr: return x.to_sparse_bsr(blocksize) elif to_layout is torch.sparse_bsc: return x.to_sparse_bsc(blocksize) else: assert 0 # unreachable # TODO: The following exception cases all correspond to # not implemented conversions if from_layout in { torch.sparse_csr, torch.sparse_csc} and to_layout in {torch.sparse_bsr, torch.sparse_bsc} and is_batch: with self.assertRaisesRegex( RuntimeError, r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex( RuntimeError, r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"): explicit_to_sparse(t) continue elif from_layout is torch.sparse_coo and to_layout in { torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and t.sparse_dim() != 2: with self.assertRaisesRegex( RuntimeError, r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex( RuntimeError, r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"): explicit_to_sparse(t) continue elif (from_layout, to_layout) in {(torch.sparse_bsc, torch.sparse_csr), (torch.sparse_bsc, torch.sparse_csc), (torch.sparse_bsr, torch.sparse_csr), (torch.sparse_bsr, torch.sparse_csc)}: with self.assertRaisesRegex( RuntimeError, r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): t.to_sparse(layout=to_layout, blocksize=blocksize) with self.assertRaisesRegex( RuntimeError, r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): explicit_to_sparse(t) self.skipTest('NOT IMPL') else: r = t.to_sparse(layout=to_layout, blocksize=blocksize) self.assertEqual(r.layout, to_layout) # to_sparse method uses unsafe construction of sparse # tensors. Here we explicitly validate the results to # make sure that the sparse tensors are consistent # with the corresponding sparse tensor invariants. if r.layout in {torch.sparse_csr, torch.sparse_bsr, torch.sparse_csc, torch.sparse_bsc}: if r.layout in {torch.sparse_csr, torch.sparse_bsr}: compressed_indices, plain_indices = r.crow_indices(), r.col_indices() else: compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout) if from_layout in {torch.strided, torch.sparse_coo}: self.assertEqual(compressed_indices.dtype, torch.int64) self.assertEqual(plain_indices.dtype, torch.int64) else: self.assertEqual(compressed_indices.dtype, index_dtype) self.assertEqual(plain_indices.dtype, index_dtype) self.assertEqual(r.values().dtype, dtype) elif r.layout is torch.sparse_coo: if t.layout is torch.sparse_coo: self.assertEqual(t.is_coalesced(), r.is_coalesced()) # Check r is truly coalesced when r.is_coalesced == True if r.is_coalesced(): self.assertTrue(is_coalesced_indices(r)) torch._validate_sparse_coo_tensor_args(r._indices(), r._values(), r.shape) self.assertEqual(r._indices().dtype, torch.int64) self.assertEqual(r._values().dtype, dtype) else: assert 0 # unreachable # Finally, we'll test tensor equality: self.assertEqual(r, t) # Also, check consistency with explicit conversion methods: r2 = explicit_to_sparse(t) self.assertEqual(r2, r) # Check inverse conversion from sparse compressed block tensors if from_layout == torch.sparse_bsr: batch_ndim = t.crow_indices().dim() - 1 from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] elif from_layout == torch.sparse_bsc: batch_ndim = t.ccol_indices().dim() - 1 from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] else: continue if r.ndim != 2: continue t2 = r.to_sparse(layout=from_layout, blocksize=from_blocksize) self.assertEqual(t2, t) # extra tests if (from_layout, to_layout) == (torch.sparse_csr, torch.sparse_bsr): # See gh-90910 t = torch.tensor([[0, 0, 1, 0], [0, 1, 0, 0]], dtype=dtype, device=device).to_sparse_csr() r = t.to_sparse_bsr((2, 2)) torch._validate_sparse_compressed_tensor_args(r.crow_indices(), r.col_indices(), r.values(), r.shape, r.layout) self.assertEqual(r, t) if (from_layout, to_layout) in {(torch.sparse_csr, torch.sparse_csc), (torch.sparse_csc, torch.sparse_csr)}: # See gh-91007 compressed_indices = torch.tensor([0, 4, 8, 8, 12, 16, 20], dtype=index_dtype, device=device) plain_indices = torch.tensor([0, 1, 2, 3] * 5, dtype=index_dtype, device=device) t = torch.sparse_compressed_tensor(compressed_indices, plain_indices, range(20), dtype=dtype, device=device, layout=from_layout) r = t.to_sparse(layout=to_layout) if r.layout in {torch.sparse_csr, torch.sparse_bsr}: compressed_indices, plain_indices = r.crow_indices(), r.col_indices() else: compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout) self.assertEqual(r, t) @onlyNativeDeviceTypes @suppress_warnings @ops(reduction_ops_with_sparse_support) @precisionOverride({torch.bfloat16: 5e-4, torch.float16: 5e-3}) @all_sparse_layouts('layout', include_strided=False) def test_reductions(self, layout, device, dtype, op): count = 0 for sample in op.sample_inputs_sparse(layout, device, dtype): count += 1 t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs result = op.op(t_inp, *t_args, **t_kwargs) # Checking invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...) dense = op.op(t_inp.to_dense(), *t_args, **t_kwargs) self.assertEqual(result, dense) if count == 0: # we count samples to avoid false-positive test reports self.skipTest('no sample inputs') @onlyNativeDeviceTypes @suppress_warnings @ops(reduction_ops_with_sparse_support, allowed_dtypes=(torch.float32, torch.float64, torch.complex64, torch.complex128)) @all_sparse_layouts('layout', include_strided=False) def test_reductions_backward(self, layout, device, dtype, op): count = 0 for sample in op.sample_inputs_sparse(layout, device, dtype, requires_grad=True): t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs r = op.op(t_inp, *t_args, **t_kwargs) if r.numel() != 0: r = r.sum() if op.name == 'sum': count += 1 r.abs().backward() self.assertEqual(t_inp.grad, torch.ones(t_inp.shape, dtype=dtype, device=device) * torch.sgn(r)) else: self.skipTest('NOT IMPL') if count == 0: # we count samples to avoid false-positive test reports self.skipTest('no sample inputs') @onlyNativeDeviceTypes @suppress_warnings @parametrize("mth", [subtest(mth, name=mth.__name__) for mth in [torch.Tensor.is_coalesced, torch.Tensor.coalesce, torch.Tensor.indices, torch.Tensor.values, torch.Tensor.crow_indices, torch.Tensor.col_indices, torch.Tensor.ccol_indices, torch.Tensor.row_indices, ]]) @all_sparse_layouts('layout', include_strided=True) def test_unsupported_backend_error_message(self, mth, layout, device): inp = torch.tensor([[1, 2], [3, 4]], device=device).to_sparse( layout=layout, blocksize=(1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None) assert inp.layout is layout expected_behaviour = dict( # <mth name> = (<supported layouts>, <exception message on other layouts>) is_coalesced=({torch.sparse_coo}, "is_coalesced expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), coalesce=({torch.sparse_coo}, "coalesce expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), indices=({torch.sparse_coo}, "indices expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), values=({torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}, "values expected sparse tensor layout but got Strided"), crow_indices=({torch.sparse_csr, torch.sparse_bsr}, "crow_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), col_indices=({torch.sparse_csr, torch.sparse_bsr}, "col_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), ccol_indices=({torch.sparse_csc, torch.sparse_bsc}, "ccol_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), row_indices=({torch.sparse_csc, torch.sparse_bsc}, "row_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), )[mth.__name__] if layout in expected_behaviour[0]: mth(inp) else: with self.assertRaisesRegex(RuntimeError, expected_behaviour[1]): mth(inp) @onlyNativeDeviceTypes @all_sparse_layouts('layout', include_strided=not True) @dtypes(torch.float64, torch.cdouble) @parametrize("masked", [subtest(False, name='sparse'), subtest(True, name='masked')]) @parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')]) def test_gradcheck_mm(self, layout, dtype, device, masked, fast_mode): # This function does not check the following cases: # - batch or hybrid tensors because addmm does not support # such inputs yet # - check_forward_ad=True because of the lack of sparse tensor # support in aten::view_as_real, torch._VF._make_dual, etc. ref_x = torch.tensor([[1, 2, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0], [13, 14, 0, 15]], dtype=dtype, device=device) ref_y = torch.tensor([[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]], dtype=dtype, device=device) mm = torch.sparse.mm if masked else torch.mm blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None x = ref_x.to_sparse(layout=layout, blocksize=blocksize).requires_grad_(True) y = ref_y.requires_grad_(True) if layout is torch.sparse_bsr and not masked or layout is torch.sparse_bsc: with self.assertRaisesRegex( RuntimeError, r"addmm: computation on (CPU|CUDA) is not implemented for Strided \+ Sparse(Bsr|Bsc) @ Strided"): torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) self.skipTest('NOT IMPL') elif layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and masked: with self.assertRaisesRegex( RuntimeError, r"(sparse_addmm_sparse_backward: unsupported combination of layouts," r" grad: Strided, mat1: Sparse(Csc|Bsr|Bsc), mat2: Strided" r"|addmm: computation on (CPU|CUDA) is not implemented for " r"Strided \+ Sparse(Csc|Bsr|Bsc) @ Strided without MKL)"): torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) self.skipTest('NOT IMPL') else: torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) @onlyNativeDeviceTypes @suppress_warnings @ops(binary_ufuncs_with_sparse_support) @all_sparse_layouts('layout', include_strided=False) def test_binary_operation(self, layout, device, dtype, op): if not op.supports_sparse_layout(layout): self.skipTest(f'{layout} is not supported in `{op.name}` OpInfo definition. Skipping!') for sample in op.sample_inputs_sparse(layout, device, dtype): if validate_sample_input_sparse(op, sample, check_validate=False) is not sample: # that is, the validation returns the sparse sample # wrapped within ErrorInput instance continue t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim() result = op.op(t_inp, *t_args, **t_kwargs) # Check rop(inp, ...).shape == inp.shape self.assertEqual(result.shape, t_inp.shape) # Check rop(inp, ...).sparse_dim() == inp.sparse_dim() self.assertEqual(result.sparse_dim(), t_inp.sparse_dim()) # Check rop(inp, ...).dense_dim() == inp.dense_dim() self.assertEqual(result.dense_dim(), t_inp.dense_dim()) # Check invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...) try: dense = op.op(t_inp.to_dense(), *(t_args[0].to_dense(), *t_args[1:]), **t_kwargs) except Exception as msg: # this is strided op issue, so skipping the sample silently here if "\"cpublas_axpy_impl\" not implemented for 'ComplexHalf'" in str(msg): continue raise self.assertEqual(result, dense) @onlyCPU @all_sparse_layouts('layout', include_strided=True) @dtypes(torch.double) def test_to_sparse_identity(self, device, layout, dtype): for dense_dim in range(4): x_dense = torch.eye(dense_dim, dtype=dtype, device=device) for sparse_dim_in in range(1, dense_dim): x_sparse = x_dense.to_sparse(sparse_dim_in) for sparse_dim_out in range(0, dense_dim): if sparse_dim_out == sparse_dim_in: self.assertTrue(x_sparse.to_sparse(sparse_dim_out).sparse_dim() == sparse_dim_out) else: with self.assertRaisesRegex( RuntimeError, r"to_sparse: conversion from Sparse to Sparse with sparse_dim argument !=self.sparse_dim\(\)" " is not supported"): x_sparse.to_sparse(sparse_dim_out) @onlyNativeDeviceTypes @suppress_warnings @ops(like_fns_with_sparse_support) @all_sparse_layouts('layout', include_strided=False) def test_like_fns(self, layout, device, dtype, op): for sample in op.sample_inputs_sparse(layout, device, dtype): t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim() if t_inp.layout in {torch.sparse_bsr, torch.sparse_bsc}: expected_blocksize = t_inp.values().shape[batch_dim + 1:batch_dim + 3] else: expected_blocksize = None expected_dtype = t_kwargs.get('dtype', dtype) expected_device = torch.device(t_kwargs.get('device', device)) expected_layout = t_kwargs.get('layout', layout) result = op.op(t_inp, *t_args, **t_kwargs) self.assertEqual(result.dtype, expected_dtype) self.assertEqual(result.device.type, expected_device.type) self.assertEqual(result.layout, expected_layout) if result.layout in {torch.sparse_bsr, torch.sparse_bsc}: result_batch_dim = result.dim() - result.dense_dim() - result.sparse_dim() blocksize = result.values().shape[result_batch_dim + 1:result_batch_dim + 3] self.assertEqual(blocksize, expected_blocksize) # Check op(inp).shape == inp.shape self.assertEqual(result.shape, t_inp.shape) if expected_layout is torch.strided: self.assertEqual(result.sparse_dim(), 0) # Check op(inp, layout=torch.strided).dense_dim() == inp.dim() self.assertEqual(result.dense_dim(), t_inp.dim()) elif expected_layout is torch.sparse_coo: # Check op(inp, layout=torch.sparse_coo).sparse_dim() == batch_dim + inp.sparse_dim() self.assertEqual(result.sparse_dim(), batch_dim + t_inp.sparse_dim()) # Check op(inp, layout=torch.sparse_coo).dense_dim() == inp.dense_dim() self.assertEqual(result.dense_dim(), t_inp.dense_dim()) torch._validate_sparse_coo_tensor_args(result._indices(), result._values(), result.shape) else: # Check op(inp).sparse_dim() == inp.sparse_dim() self.assertEqual(result.sparse_dim(), t_inp.sparse_dim()) # Check op(inp).dense_dim() == inp.dense_dim() self.assertEqual(result.dense_dim(), t_inp.dense_dim()) if result.layout in {torch.sparse_csr, torch.sparse_bsr}: compressed_indices, plain_indices = result.crow_indices(), result.col_indices() else: compressed_indices, plain_indices = result.ccol_indices(), result.row_indices() torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(), result.shape, result.layout) @all_sparse_layouts('mask_layout', include_strided=False) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_mask(self, mask_layout, device, dtype): input_layout = torch.strided mask_dtype = torch.bool for mask in self.generate_simple_inputs(mask_layout, dtype=mask_dtype, device=device, enable_hybrid=False, enable_batch=False): x = make_tensor(mask.shape, dtype=dtype, device=device).to_sparse(layout=input_layout) result = x.sparse_mask(mask) # Check invariant `x.sparse_mask(mask).<indices> == mask.<indices>` if mask_layout is torch.sparse_coo: self.assertEqual(result._indices(), mask._indices()) ones = torch.sparse_coo_tensor(mask._indices(), torch.ones_like(mask._values(), dtype=x.dtype), mask.shape, is_coalesced=mask.is_coalesced()) elif mask_layout in {torch.sparse_csr, torch.sparse_bsr}: self.assertEqual(result.crow_indices(), mask.crow_indices()) self.assertEqual(result.col_indices(), mask.col_indices()) ones = torch.sparse_compressed_tensor(mask.crow_indices(), mask.col_indices(), torch.ones_like(mask.values(), dtype=x.dtype), mask.shape, layout=mask.layout) else: self.assertEqual(result.ccol_indices(), mask.ccol_indices()) self.assertEqual(result.row_indices(), mask.row_indices()) ones = torch.sparse_compressed_tensor(mask.ccol_indices(), mask.row_indices(), torch.ones_like(mask.values(), dtype=x.dtype), mask.shape, layout=mask.layout) # Check invariant: # x.sparse_mask(mask).to_dense() == x.mul(sparse_xyz_tensor(<mask indices>, # ones_like(<mask values>)).to_dense()) expected = x.mul(ones.to_dense()) self.assertEqual(result.to_dense(), expected) # Check invariant `mask.to_dense().sparse_mask(mask) == mask` result = mask.to_dense().sparse_mask(mask) self.assertEqual(result, mask) @all_sparse_layouts('layout', include_strided=False) @parametrize("masked", [subtest(False, name='nonmasked'), subtest(True, name='masked')]) @parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')]) def test_as_sparse_gradcheck(self, layout, device, masked, fast_mode): gradcheck = torch.sparse.as_sparse_gradcheck(torch.autograd.gradcheck) sparse_compressed_layouts = {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} def identity(x): return x for func in (torch.Tensor.to_dense, torch.Tensor.sum, identity, torch.Tensor.to_sparse, torch.Tensor.values, ): for x in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, # TODO: fix gh-104868 to enable batched samples: enable_batch=layout not in sparse_compressed_layouts, enable_hybrid=not ( layout in sparse_compressed_layouts and ( # FIXME: RuntimeError: sparse_mask(): the # number of sparse dimensions in `self` # should match that of the `mask`. Got # `self.sparse_dim() == 3` != # `mask.sparse_dim() == 2 func.__name__ == 'sum' # FIXME: RuntimeError: expected # col_indices to be a contiguous tensor # per batch or func.__name__ == 'to_sparse' ))): if layout is torch.sparse_coo and func.__name__ == 'values': x = x.coalesce() gradcheck(func, x.requires_grad_(True), masked=masked, fast_mode=fast_mode) @onlyCPU @all_sparse_layouts('layout', include_strided=False) @dtypes(torch.double) def test_dataloader(self, device, layout, dtype): data = list(self.generate_simple_inputs(layout, device=device, dtype=dtype)) dataset = _SparseDataset(data) loader = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=2) loaded_data = list(loader) self.assertEqual(data, loaded_data) @onlyCPU def test_invalid_blocksize(self): # Blocksize should be a tuple/list/torch.Size containing two values with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): torch.randn(1).to_sparse(blocksize=(1,)) with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): torch.randn(1).to_sparse(blocksize=[1]) with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): torch.randn(1).to_sparse(blocksize=torch.Size((1,))) with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): torch.randn(1).to_sparse(blocksize=(1, 1, 1)) with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): torch.randn(1).to_sparse(blocksize=[1, 1, 1]) with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): torch.randn(1).to_sparse(blocksize=torch.Size((1, 1, 1))) @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') @onlyCPU @all_sparse_layouts('layout', include_strided=True) def test_constructor_pin_memory(self, device, layout): """Tests sparse_xyz_tensor(indices, values, pin_memory=True) """ self.assertEqual(device, "cpu") for t in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_zero_sized=False, # pinning zero-sized tensors is a no-op pin_memory=True, enable_batch=False, # TODO: remove after gh-104868 is resolved ): if layout is torch.sparse_coo: self.assertTrue(t._indices().is_pinned()) self.assertTrue(t._values().is_pinned()) elif layout in {torch.sparse_csr, torch.sparse_bsr}: self.assertTrue(t.crow_indices().is_pinned()) self.assertTrue(t.col_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) elif layout in {torch.sparse_csc, torch.sparse_bsc}: self.assertTrue(t.ccol_indices().is_pinned()) self.assertTrue(t.row_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) elif layout is torch.strided: pass else: assert 0 # unreachable self.assertTrue(t.is_pinned()) @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') @onlyCPU @all_sparse_layouts('layout', include_strided=True) def test_method_pin_memory(self, device, layout): """Tests sparse_xyz_tensor(indices, values, pin_memory=False).pin_memory() """ for t_ in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_zero_sized=False, # pinning zero-sized tensors is a no-op pin_memory=False, # no pinning enable_batch=False, # TODO: remove after gh-104868 is resolved ): t = t_.pin_memory() self.assertTrue(t.is_pinned()) # registering a non-pinned tensor with CUDA memory is a # clone operation self.assertFalse(t_.is_pinned()) # registering already pinned tensor with CUDA memory is an # identity operation: t2 = t.pin_memory() self.assertTrue(t2 is t) if layout is torch.sparse_coo: self.assertTrue(t._indices().is_pinned()) self.assertTrue(t._values().is_pinned()) self.assertFalse(t_._indices().is_pinned()) self.assertFalse(t_._values().is_pinned()) elif layout in {torch.sparse_csr, torch.sparse_bsr}: self.assertTrue(t.crow_indices().is_pinned()) self.assertTrue(t.col_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) self.assertFalse(t_.crow_indices().is_pinned()) self.assertFalse(t_.col_indices().is_pinned()) self.assertFalse(t_.values().is_pinned()) elif layout in {torch.sparse_csc, torch.sparse_bsc}: self.assertTrue(t.ccol_indices().is_pinned()) self.assertTrue(t.row_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) self.assertFalse(t_.ccol_indices().is_pinned()) self.assertFalse(t_.row_indices().is_pinned()) self.assertFalse(t_.values().is_pinned()) elif layout is torch.strided: pass else: assert 0 # unreachable @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') @onlyCPU @all_sparse_layouts('layout', include_strided=True) def test_constructor_pinned_memory(self, device, layout): """Tests sparse_xyz_tensor(indices.pin_memory(device), values.pin_memory(device)) """ pin_memory_device = "cuda" for t in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_zero_sized=False, # pinning zero-sized tensors is a no-op pin_memory=None, # constructor does not specify pin_memory=... members_pin_memory=True, # indices and values are pinned enable_batch=False, # TODO: remove after gh-104868 is resolved ): if layout is torch.sparse_coo: self.assertTrue(t._indices().is_pinned()) self.assertTrue(t._values().is_pinned()) elif layout in {torch.sparse_csr, torch.sparse_bsr}: self.assertTrue(t.crow_indices().is_pinned()) self.assertTrue(t.col_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) elif layout in {torch.sparse_csc, torch.sparse_bsc}: self.assertTrue(t.ccol_indices().is_pinned()) self.assertTrue(t.row_indices().is_pinned()) self.assertTrue(t.values().is_pinned()) elif layout is torch.strided: pass else: assert 0 # unreachable self.assertTrue(t.is_pinned()) @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') @onlyCPU @all_sparse_layouts('layout', include_strided=False) def test_constructor_mismatched_pinned_memory(self, device, layout): """Test the failure to construct sparse tensor from indices and values that have different pinning states. """ def generic_constructor(*args, **kwargs): if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: kwargs.update(layout=layout) return torch.sparse_compressed_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout) for args, kwargs in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_zero_sized=False, # pinning zero-sized tensors is a no-op enable_batch=False, # TODO: remove after gh-104868 is resolved output_tensor=False): # indices are pinned, values is a non-pinned tensor args1 = (args[0].pin_memory(), *args[1:]) # indices are non-pinned, values is a pinned tensor args2 = (*args[:-1], args[-1].pin_memory()) with self.assertRaisesRegex( RuntimeError, r"memory pinning of \w*indices \(=1\) must match memory pinning of values \(=0\)"): generic_constructor(*args1, **kwargs) with self.assertRaisesRegex( RuntimeError, r"memory pinning of \w*indices \(=0\) must match memory pinning of values \(=1\)"): generic_constructor(*args2, **kwargs) # e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta') instantiate_device_type_tests(TestSparseMaskedReductions, globals(), except_for='meta') # e.g., TestSparseCPU and TestSparseCUDA instantiate_device_type_tests(TestSparse, globals(), except_for='meta') instantiate_device_type_tests(TestSparseAny, globals(), except_for='meta') instantiate_parametrized_tests(TestSparseMeta) instantiate_parametrized_tests(TestSparseLegacyAndDeprecation) if __name__ == '__main__': run_tests()
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_sparse_fn_grad
def test_sparse_fn_grad(self, device, dtype, op): if not op.supports_autograd: self.skipTest("Skipped! Op doesn't support autograd") for sample in op.sample_inputs(device, dtype): sparse_input = sample.input.to_sparse().detach().requires_grad_(True) def fn(x): return _sparse_to_dense( op(x, *sample.args, **sample.kwargs)) self.assertTrue(gradcheck( fn, (sparse_input,), check_batched_grad=False, check_grad_dtypes=True, check_sparse_nnz=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode))
def test_sparse_fn_grad(self, device, dtype, op): if not op.supports_autograd: self.skipTest("Skipped! Op doesn't support autograd") for sample in op.sample_inputs(device, dtype): sparse_input = sample.input.to_sparse().detach().requires_grad_(True) def fn(x): return _sparse_to_dense( op(x, *sample.args, **sample.kwargs)) self.assertTrue(gradcheck( fn, (sparse_input,), check_batched_grad=False, check_grad_dtypes=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode, masked=True))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseUnaryUfuncs(TestCase):
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseUnaryUfuncs(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_future_empty_dim
def test_future_empty_dim(self, device, dtype, op): """Currently, `dim=()` in reductions operations means "reduce over all dimensions" while in future, it will read "no reduce". See https://github.com/pytorch/pytorch/issues/29137 For sparse masked reductions, we'll implement the current behavior. For testing, we'll use samples with `dim=0` and map it to `dim=()` until torch.testing._internal.common_methods_invocations._generate_reduction_kwargs is made to generate samples with `dim=()` for non-scalar inputs. With this and after gh-29137 is resolved, this test can be deleted. See also `torch.masked._canonical_dim` implementation about changing the `dim=()` behavior. """ samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) op_name = op.name.replace('masked.', '') for sample_input in samples: if sample_input.kwargs.get('dim') != 0: continue sample_input_kwargs = dict(sample_input.kwargs) sample_input_kwargs['dim'] = () # reduce over all dimensions t = sample_input.input mask = sample_input_kwargs.get('mask') if mask is None and op_name in {'prod', 'amax', 'amin'}: # FIXME: for now reductions with non-zero reduction identity and # unspecified mask are not supported for sparse COO # tensors, see torch.masked.prod implementation # for details. continue sparse_op_kwargs = dict(sample_input_kwargs) actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs) self.assertEqual(actual.layout, torch.sparse_coo) expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse() self.assertEqual(actual, expected)
def test_future_empty_dim(self, device, dtype, op): """Currently, `dim=()` in reductions operations means "reduce over all dimensions" while in future, it will read "no reduce". See https://github.com/pytorch/pytorch/issues/29137 For sparse masked reductions, we'll implement the current behavior. For testing, we'll use samples with `dim=0` and map it to `dim=()` until torch.testing._internal.common_methods_invocations._generate_reduction_kwargs is made to generate samples with `dim=()` for non-scalar inputs. With this and after gh-29137 is resolved, this test can be deleted. See also `torch.masked._canonical_dim` implementation about changing the `dim=()` behavior. """ samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) op_name = op.name.replace('masked.', '') for sample_input in samples: if sample_input.kwargs.get('dim') != 0: continue sample_input_kwargs = dict(sample_input.kwargs) sample_input_kwargs['dim'] = () # reduce over all dimensions t = sample_input.input mask = sample_input_kwargs.get('mask') if mask is None and op_name in {'prod', 'amax', 'amin'}: # FIXME: for now reductions with non-zero reduction identity and # unspecified mask are not supported for sparse COO # tensors, see torch.masked.prod implementation # for details. continue sparse_op_kwargs = dict(sample_input_kwargs) actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs) self.assertEqual(actual.layout, torch.sparse_coo) expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse() atol = None rtol = None if op.name in self.fp16_low_precision_list and dtype == torch.half: atol = 1e-5 rtol = 2e-3 self.assertEqual(actual, expected, atol=atol, rtol=rtol)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMaskedReductions(TestCase):
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMaskedReductions(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
_test_meta_sparse_coo
self.assertTrue(r.is_meta) self.assertEqual(r.device.type, "meta") r2 = torch.empty_like(r) self.assertTrue(r2.is_meta) self.assertEqual(r, r2) r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta') self.assertTrue(r3.is_meta) self.assertEqual(r, r3) r.sparse_resize_((4, 4), 1, 1) r.sparse_resize_and_clear_((4, 4, 4), 2, 1) self.assertEqual(r.sparse_dim(), 2) self.assertEqual(r.dense_dim(), 1) self.assertEqual(r._dimV(), 1) self.assertEqual(r._nnz(), 0) # nnz zero sparse tensors should always be coalesced at creation self.assertEqual(r.is_coalesced(), True) # but we can force them into the uncoalesed state r._coalesced_(False) self.assertEqual(r.is_coalesced(), False) # return the coalesced state for indices/values access r._coalesced_(True) # TODO: this sort of aliasing will need to be handled by # functionalization self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r._values(), torch.empty(0, 4, device='meta')) self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r.values(), torch.empty(0, 4, device='meta'))
def _test_meta_sparse_coo(self, dtype): r = torch.empty(4, 4, layout=torch.sparse_coo, device='meta', dtype=dtype) self.assertTrue(r.is_meta) self.assertEqual(r.device.type, "meta") r2 = torch.empty_like(r) self.assertTrue(r2.is_meta) self.assertEqual(r, r2) r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta', dtype=dtype) self.assertTrue(r3.is_meta) self.assertEqual(r, r3) r.sparse_resize_((4, 4), 1, 1) r.sparse_resize_and_clear_((4, 4, 4), 2, 1) self.assertEqual(r.sparse_dim(), 2) self.assertEqual(r.dense_dim(), 1) self.assertEqual(r._dimV(), 1) self.assertEqual(r._nnz(), 0) # nnz zero sparse tensors should always be coalesced at creation self.assertEqual(r.is_coalesced(), True) # but we can force them into the uncoalesed state r._coalesced_(False) self.assertEqual(r.is_coalesced(), False) # return the coalesced state for indices/values access r._coalesced_(True) # TODO: this sort of aliasing will need to be handled by # functionalization self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r._values(), torch.empty(0, 4, device='meta', dtype=dtype)) self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) self.assertEqual(r.values(), torch.empty(0, 4, device='meta', dtype=dtype))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMeta(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
sparse_softmax
def sparse_softmax(sparse, dim): """Pure Python softmax of a sparse tensor. Assuming -inf for unspecified sparse tensor data. This is a prototype of sparse softmax algorithm in Python. """ dtype = sparse.dtype device = sparse.device # softmax is non-linear operation, so sparse tensors must # be coalesced. sparse = sparse.coalesce() inf = float('inf') indices = sparse._indices() values = sparse._values() if dim < sparse.sparse_dim(): nnz = sparse._nnz() # compute pool indices size = sparse.size() strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device) for i in reversed(range(sparse.sparse_dim() - 1)): strides[i, 0] = strides[i + 1, 0] * size[i + 1] strides[dim, 0] = 0 pool = (indices * strides).sum(dim=0) i2p = {} for i in range(nnz): c = int(pool[i]) if c not in i2p: i2p[c] = len(i2p) pool[i] = i2p[c] # compute max dense_size = tuple(size[sparse.sparse_dim():]) mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device) mx[:] = -inf for n in range(nnz): p = pool[n] mx[p] = torch.max(mx[p], values[n]) # apply exp to (v - mx) and sum the results exp_values = torch.empty_like(values) exp_sums = torch.zeros_like(mx) for n in range(nnz): p = pool[n] v = exp_values[n] = (values[n] - mx[p]).exp() exp_sums[p] = exp_sums[p] + v # normalize with the sum of exponents for n in range(nnz): p = pool[n] exp_values[n] = exp_values[n] / exp_sums[p] return torch.sparse_coo_tensor(indices, exp_values, sparse.size(), dtype=dtype, device=device) elif dim < sparse.sparse_dim() + sparse.dense_dim(): return torch.sparse_coo_tensor(indices, F.softmax(values, dim - sparse.sparse_dim() + 1), sparse.size(), dtype=dtype, device=device) else: raise ValueError( '`dim(=%s)` must be smaller than `sparse_dim(=%s) + dense_dim(=%s)`' % (dim, sparse.sparse_dim(), sparse.dense_dim()))
def sparse_softmax(sparse, dim): """Pure Python softmax of a sparse tensor. Assuming -inf for unspecified sparse tensor data. This is a prototype of sparse softmax algorithm in Python. """ dtype = sparse.dtype device = sparse.device # softmax is non-linear operation, so sparse tensors must # be coalesced. sparse = sparse.coalesce() inf = float('inf') indices = sparse._indices() values = sparse._values() if dim < sparse.sparse_dim(): nnz = sparse._nnz() # compute pool indices size = sparse.size() strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device) for i in reversed(range(sparse.sparse_dim() - 1)): strides[i, 0] = strides[i + 1, 0] * size[i + 1] strides[dim, 0] = 0 pool = (indices * strides).sum(dim=0) i2p = {} for i in range(nnz): c = int(pool[i]) if c not in i2p: i2p[c] = len(i2p) pool[i] = i2p[c] # compute max dense_size = tuple(size[sparse.sparse_dim():]) mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device) mx[:] = -inf for n in range(nnz): p = pool[n] mx[p] = torch.max(mx[p], values[n]) # apply exp to (v - mx) and sum the results exp_values = torch.empty_like(values) exp_sums = torch.zeros_like(mx) for n in range(nnz): p = pool[n] v = exp_values[n] = (values[n] - mx[p]).exp() exp_sums[p] = exp_sums[p] + v # normalize with the sum of exponents for n in range(nnz): p = pool[n] exp_values[n] = exp_values[n] / exp_sums[p] return torch.sparse_coo_tensor(indices, exp_values, sparse.size(), dtype=dtype, device=device) elif dim < sparse.sparse_dim() + sparse.dense_dim(): return torch.sparse_coo_tensor(indices, F.softmax(values, dim - sparse.sparse_dim() + 1), sparse.size(), dtype=dtype, device=device) else: raise ValueError( f'`dim(={dim})` must be smaller than `sparse_dim(={sparse.sparse_dim()}) + dense_dim(={sparse.dense_dim()})`')
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_op
def test_op(sparse_dims, nnz, with_size, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) for dim in range(x.sparse_dim() + x.dense_dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax y1 = torch.sparse.softmax(x, dim) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, dim) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype)) test_op(1, 10, [3], coalesced) test_op(1, 10, [2, 3], coalesced) test_op(1, 10, [3, 2], coalesced) test_op(2, 10, [2, 3, 4], coalesced) test_op(2, 10, [3, 4], coalesced) test_op(2, 5, [5, 4], coalesced) test_op(2, 10, [3, 4, 2], coalesced) test_op(3, 10, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2, 3], coalesced) test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced) test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced)
def test_op(sparse_dims, nnz, with_size, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) # Check dim out of bounds with self.assertRaisesRegex(IndexError, r"Dimension out of range"): torch.sparse.softmax(x, x.dim()) with self.assertRaisesRegex(IndexError, r"Dimension out of range"): torch.sparse.softmax(x, -x.dim() - 1) for dim in range(x.dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax for d in (dim, dim - x.dim()): y1 = torch.sparse.softmax(x, d) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, d) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype)) test_op(1, 10, [3], coalesced) test_op(1, 10, [2, 3], coalesced) test_op(1, 10, [3, 2], coalesced) test_op(2, 10, [2, 3, 4], coalesced) test_op(2, 10, [3, 4], coalesced) test_op(2, 5, [5, 4], coalesced) test_op(2, 10, [3, 4, 2], coalesced) test_op(3, 10, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2, 3], coalesced) test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced) test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
sparse_log
def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) for dim in range(x.sparse_dim() + x.dense_dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax y1 = torch.sparse.softmax(x, dim) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, dim) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype))
def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) # Check dim out of bounds with self.assertRaisesRegex(IndexError, r"Dimension out of range"): torch.sparse.softmax(x, x.dim()) with self.assertRaisesRegex(IndexError, r"Dimension out of range"): torch.sparse.softmax(x, -x.dim() - 1) for dim in range(x.dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax for d in (dim, dim - x.dim()): y1 = torch.sparse.softmax(x, d) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, d) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_sparse_matmul
def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) # We convert grad to dense since dense and sparse mm # implementations handle materialized zeroes differently. self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) # Check result is truly coalesced self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), check_sparse_nnz=True, nondet_tol=1e-5) else: gradcheck(fn, (a, b), check_sparse_nnz=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b)
def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) # We convert grad to dense since dense and sparse mm # implementations handle materialized zeroes differently. self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) # Check result is truly coalesced self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), nondet_tol=1e-5, masked=True) else: gradcheck(fn, (a, b), masked=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_add_meta
def test_add_meta(self, dtype, layout): device = 'cpu' index_dtype = torch.int64 for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): expected = torch.add(t, t).to(device='meta') m = t.to(device='meta') r = torch.add(m, m) self.assertEqualMeta(r, expected, 0)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseMeta(TestCase): from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
__len__
def __len__(self): return len(self.sparse_tensors)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch class _SparseDataset(torch.utils.data.Dataset):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
test_check_sparse_tensor_invariants
def test_check_sparse_tensor_invariants(self, layout): if layout is torch.sparse_coo: def create_invalid_tensor(check_invariants=None): shape = (2, 2) invalid_indices = torch.tensor([[0], [3]]) # column index is out of range values = torch.tensor([1]) if check_invariants is None: return torch.sparse_coo_tensor(invalid_indices, values, shape) else: return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants) expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3' elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: def create_invalid_tensor(check_invariants=None): shape = (2, 2) compressed_indices = torch.tensor([0, 0, 1]) invalid_plain_indices = torch.tensor([3]) # index is out of range if layout in {torch.sparse_bsr, torch.sparse_bsc}: values = torch.tensor([[[1]]]) else: values = torch.tensor([1]) if check_invariants is None: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout) else: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout, check_invariants=check_invariants) if layout in {torch.sparse_csr, torch.sparse_bsr}: expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.' else: expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.' else: raise NotImplementedError(layout) # First, consider the case where invariant checks are disabled # "globally" (read: within the context of this test method # caller) as defined by check_sparse_tensor_invariants(False) # decorator: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Enable the invariant checks in a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Leaving the local context must restore the "global" state of # the invariant check feature: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are disabled by default, we can # create an invalid sparse tensor without raising an # exception: r = create_invalid_tensor() self.assertEqual(r.layout, layout) # Or, when disabling the invariants check explicitly: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Enabling invariant check via constructor's optional argument # will raise an exception when sparse tensor invariants are # violated: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # Check that the global invariant check flag has been restored # after raising the exception above: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Next, consider the case where invariant checks are enabled # within a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are now enabled by default, an # attempt to create an invalid sparse tensor will lead to # an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor() # Similarly, when enabling the invariant checks # explicitly, invalid sparse tensor construction will lead # to an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # However, invariants check can be disabled via # constructor's optional argument so that the invalid # tensor is succesfully constructed: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Check that the invariant check flag has been restored # when leaving the constructor: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Double-check restoring the global state when leaving the # local context: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
def test_check_sparse_tensor_invariants(self, layout): if layout is torch.sparse_coo: def create_invalid_tensor(check_invariants=None): shape = (2, 2) invalid_indices = torch.tensor([[0], [3]]) # column index is out of range values = torch.tensor([1]) if check_invariants is None: return torch.sparse_coo_tensor(invalid_indices, values, shape) else: return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants) expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3' elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: def create_invalid_tensor(check_invariants=None): shape = (2, 2) compressed_indices = torch.tensor([0, 0, 1]) invalid_plain_indices = torch.tensor([3]) # index is out of range if layout in {torch.sparse_bsr, torch.sparse_bsc}: values = torch.tensor([[[1]]]) else: values = torch.tensor([1]) if check_invariants is None: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout) else: return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout, check_invariants=check_invariants) if layout in {torch.sparse_csr, torch.sparse_bsr}: expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.' else: expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.' else: raise NotImplementedError(layout) # First, consider the case where invariant checks are disabled # "globally" (read: within the context of this test method # caller) as defined by check_sparse_tensor_invariants(False) # decorator: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Enable the invariant checks in a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Leaving the local context must restore the "global" state of # the invariant check feature: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are disabled by default, we can # create an invalid sparse tensor without raising an # exception: r = create_invalid_tensor() self.assertEqual(r.layout, layout) # Or, when disabling the invariants check explicitly: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Enabling invariant check via constructor's optional argument # will raise an exception when sparse tensor invariants are # violated: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # Check that the global invariant check flag has been restored # after raising the exception above: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Next, consider the case where invariant checks are enabled # within a local context: with torch.sparse.check_sparse_tensor_invariants(): self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Since invariant checks are now enabled by default, an # attempt to create an invalid sparse tensor will lead to # an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor() # Similarly, when enabling the invariant checks # explicitly, invalid sparse tensor construction will lead # to an exception: with self.assertRaisesRegex(RuntimeError, expected_exception_message): create_invalid_tensor(check_invariants=True) # However, invariants check can be disabled via # constructor's optional argument so that the invalid # tensor is succesfully constructed: r = create_invalid_tensor(check_invariants=False) self.assertEqual(r.layout, layout) # Check that the invariant check flag has been restored # when leaving the constructor: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Double-check restoring the global state when leaving the # local context: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Test nesting of pre-defined context managers check_ctx = torch.sparse.check_sparse_tensor_invariants(True) no_check_ctx = torch.sparse.check_sparse_tensor_invariants(False) with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with no_check_ctx: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) # Test an attempt to re-use an activate context manager instance check_ctx2 = torch.sparse.check_sparse_tensor_invariants(True) with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with no_check_ctx: self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with self.assertRaisesRegex(RuntimeError, "This context manager instance is already activated." " Use a different context manager instance for context nesting"): with check_ctx: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) with check_ctx2: self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseAny(TestCase):
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch class TestSparseAny(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
specific_constructor
def specific_constructor(*args, **kwargs): if layout is torch.sparse_csr: return torch.sparse_csr_tensor(*args, **kwargs) elif layout is torch.sparse_csc: return torch.sparse_csc_tensor(*args, **kwargs) elif layout is torch.sparse_bsc: return torch.sparse_bsc_tensor(*args, **kwargs) elif layout is torch.sparse_bsr: return torch.sparse_bsr_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
identity
def identity(x): return x for func in (torch.Tensor.to_dense, torch.Tensor.sum, identity, torch.Tensor.to_sparse, torch.Tensor.values, ): for x in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, # TODO: fix gh-104868 to enable batched samples: enable_batch=layout not in sparse_compressed_layouts, enable_hybrid=not ( layout in sparse_compressed_layouts and ( # FIXME: RuntimeError: sparse_mask(): the # number of sparse dimensions in `self` # should match that of the `mask`. Got # `self.sparse_dim() == 3` != # `mask.sparse_dim() == 2 func.__name__ == 'sum' # FIXME: RuntimeError: expected # col_indices to be a contiguous tensor # per batch or func.__name__ == 'to_sparse' ))): if layout is torch.sparse_coo and func.__name__ == 'values': x = x.coalesce() gradcheck(func, x.requires_grad_(True), masked=masked, fast_mode=fast_mode)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
test_constructor_mismatched_pinned_memory
def test_constructor_mismatched_pinned_memory(self, device, layout): """Test the failure to construct sparse tensor from indices and values that have different pinning states. """ def generic_constructor(*args, **kwargs): if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: kwargs.update(layout=layout) return torch.sparse_compressed_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout) for args, kwargs in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_zero_sized=False, # pinning zero-sized tensors is a no-op enable_batch=False, # TODO: remove after gh-104868 is resolved output_tensor=False): # indices are pinned, values is a non-pinned tensor args1 = (args[0].pin_memory(), *args[1:]) # indices are non-pinned, values is a pinned tensor args2 = (*args[:-1], args[-1].pin_memory()) with self.assertRaisesRegex( RuntimeError, r"memory pinning of \w*indices \(=1\) must match memory pinning of values \(=0\)"): generic_constructor(*args1, **kwargs) with self.assertRaisesRegex( RuntimeError, r"memory pinning of \w*indices \(=0\) must match memory pinning of values \(=1\)"): generic_constructor(*args2, **kwargs) # e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch class TestSparseAny(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
generic_constructor
# e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta') instantiate_device_type_tests(TestSparseMaskedReductions, globals(), except_for='meta') # e.g., TestSparseCPU and TestSparseCUDA instantiate_device_type_tests(TestSparse, globals(), except_for='meta') instantiate_device_type_tests(TestSparseAny, globals(), except_for='meta') if __name__ == '__main__': run_tests()
def generic_constructor(*args, **kwargs): if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: kwargs.update(layout=layout) return torch.sparse_compressed_tensor(*args, **kwargs) elif layout is torch.sparse_coo: return torch.sparse_coo_tensor(*args, **kwargs) else: raise NotImplementedError(layout) if layout is torch.sparse_coo: constructors = (specific_constructor,) else: constructors = (specific_constructor, generic_constructor) for args, kwargs in self.generate_simple_inputs( layout, device=device, dtype=torch.float64, enable_batch=False, # TODO: remove after gh-104868 is resolved output_tensor=False): values_offset = 1 if layout is torch.sparse_coo else 2 for cnstr in constructors: for requires_grad in (False, True): values = args[values_offset].detach().requires_grad_(requires_grad) args = (*args[:values_offset], values, *args[values_offset + 1:]) kwargs_ = dict(kwargs) args_ = args + (kwargs_.pop('size'),) sparse = cnstr(*args, **kwargs) self.assertEqual(sparse.requires_grad, requires_grad) if requires_grad: for masked in (False, True): if layout is torch.sparse_coo: torch.autograd.gradcheck( lambda i, v: cnstr(i, v, **kwargs).to_dense(masked_grad=masked), args, masked=masked) torch.autograd.gradcheck( lambda i, v, sz: cnstr(i, v, sz, **kwargs_).to_dense(masked_grad=masked), args_, masked=masked) else: if layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and 0: # TODO: remove this if-block after gh-107370 is resolved continue torch.autograd.gradcheck( lambda ci, pi, v: cnstr(ci, pi, v, **kwargs).to_dense(masked_grad=masked), args, masked=masked) torch.autograd.gradcheck( lambda ci, pi, v, sz: cnstr(ci, pi, v, sz, **kwargs_).to_dense(masked_grad=masked), args_, masked=masked)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
_check_cusparse_spgemm_available
def _check_cusparse_spgemm_available(): # cusparseSpGEMM was added in 11.0 version = _get_torch_cuda_version() min_supported_version = (11, 0) return version >= min_supported_version
def _check_cusparse_spgemm_available(): # cusparseSpGEMM was added in 11.0 return not TEST_WITH_ROCM
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
_check_cusparse_sddmm_available
def _check_cusparse_sddmm_available(): version = _get_torch_cuda_version() # cusparseSDDMM was added in 11.2.1 but we don't have access to patch version min_supported_version = (11, 3) return version >= min_supported_version _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] # This should be just an import from test_linalg instead of code duplication # but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701
def _check_cusparse_sddmm_available(): if TEST_WITH_ROCM: return True version = _get_torch_cuda_version() # cusparseSDDMM was added in 11.2.1 but we don't have access to patch version min_supported_version = (11, 3) return version >= min_supported_version _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] # This should be just an import from test_linalg instead of code duplication # but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_semi_structured.py
forward
def forward(self, x): x = self.linear(x) x = x.contiguous() return torch.nn.functional.relu(x)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class Model(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
fn
def fn(x, e): y = SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort(x) y = y.t() return x @ y # Eager output = fn(x, e) output.backward(output) # Torch compile output = torch.compile(fn)(x, e) output.backward(output)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
setUp
def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
is_view_of
def is_view_of(base, other): # a shameless copy of TestViewOps.is_view_of if ((not other._is_view() or other is base or other._base is not base or base.device != other.device)): return False if base.device.type == 'cpu' or base.device.type == 'cuda': if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr(): return False return True kwargs = dict(device=device, dtype=dtype, index_dtype=index_dtype) for sparse, dense in zip(self.generate_simple_inputs(layout, **kwargs), self.generate_simple_inputs(torch.strided, **kwargs)): if layout in {torch.sparse_csr, torch.sparse_bsr}: n_batchdim = sparse.crow_indices().ndim - 1 elif layout in {torch.sparse_csc, torch.sparse_bsc}: n_batchdim = sparse.ccol_indices().ndim - 1 else: assert 0 # unreachable self.assertEqual(sparse, dense) for dim in range(sparse.ndim): if sparse.shape[dim] == 0: with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(sparse, dim, 0) with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(dense, dim, 0) elif n_batchdim and dim >= n_batchdim and dim < n_batchdim + 2: with self.assertRaisesRegex( RuntimeError, "selecting sparse dimensions is not implemented for batched sparse compressed tensors"): torch.select_copy(sparse, dim, 0) else: for index in {0, sparse.shape[dim] // 2, sparse.shape[dim] - 1}: dense_select = torch.select_copy(dense, dim, index) sparse_select = torch.select_copy(sparse, dim, index) self.assertEqual(sparse_select, dense_select) self.assertFalse(is_view_of(sparse_select.values(), sparse.values()))
def is_view_of(base, other): # a shameless copy of TestViewOps.is_view_of if ( not other._is_view() or other is base or other._base is not base or base.device != other.device ): return False if base.device.type in ('cpu', 'cuda'): if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr(): return False return True kwargs = dict(device=device, dtype=dtype, index_dtype=index_dtype) for sparse, dense in zip(self.generate_simple_inputs(layout, **kwargs), self.generate_simple_inputs(torch.strided, **kwargs)): if layout in {torch.sparse_csr, torch.sparse_bsr}: n_batchdim = sparse.crow_indices().ndim - 1 elif layout in {torch.sparse_csc, torch.sparse_bsc}: n_batchdim = sparse.ccol_indices().ndim - 1 else: assert 0 # unreachable self.assertEqual(sparse, dense) for dim in range(sparse.ndim): if sparse.shape[dim] == 0: with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(sparse, dim, 0) with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(dense, dim, 0) elif n_batchdim and dim >= n_batchdim and dim < n_batchdim + 2: with self.assertRaisesRegex( RuntimeError, "selecting sparse dimensions is not supported for batched sparse compressed tensors"): torch.select_copy(sparse, dim, 0) else: for index in {0, sparse.shape[dim] // 2, sparse.shape[dim] - 1}: dense_select = torch.select_copy(dense, dim, index) sparse_select = torch.select_copy(sparse, dim, index) self.assertEqual(sparse_select, dense_select) self.assertFalse(is_view_of(sparse_select.values(), sparse.values()))
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
_npref_block_addmm_addmv
def _npref_block_addmm_addmv(c, a, b, alpha, beta): return alpha * (a @ b) + beta * c class TestSparseCSR(TestCase): def test_csr_stride(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): a.stride() with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): a.stride(-1) def test_csr_storage(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"): a.storage() def test_csr_is_contiguous(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have is_contiguous"): a.is_contiguous() def test_csr_double_to_sparse_csr(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) a.to_sparse_csr().to_sparse_csr() @all_sparse_compressed_layouts() @parametrize("index_dtype", [torch.int32, torch.int64]) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)) def test_select(self, device, dtype, index_dtype, layout): compressed_indices_mth = { torch.sparse_csr: torch.Tensor.crow_indices, torch.sparse_bsr: torch.Tensor.crow_indices, torch.sparse_csc: torch.Tensor.ccol_indices, torch.sparse_bsc: torch.Tensor.ccol_indices, }[layout] plain_indices_mth = { torch.sparse_csr: torch.Tensor.col_indices, torch.sparse_bsr: torch.Tensor.col_indices, torch.sparse_csc: torch.Tensor.row_indices, torch.sparse_bsc: torch.Tensor.row_indices, }[layout] create_tensor_mth = { torch.sparse_csr: torch.sparse_csr_tensor, torch.sparse_bsr: torch.sparse_bsr_tensor, torch.sparse_csc: torch.sparse_csc_tensor, torch.sparse_bsc: torch.sparse_bsc_tensor, }[layout] shape = (2, 3, 6, 10) nnz = 6 blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () sparse = self.genSparseCompressedTensor( shape, nnz, device=device, layout=layout, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize) comp_indices = compressed_indices_mth(sparse) plain_indices = plain_indices_mth(sparse) values = sparse.values() # select from batch dimensions sparse_selected12 = sparse.select(1, 2) expected_sparse_selected12 = create_tensor_mth(comp_indices.select(1, 2).contiguous(), plain_indices.select(1, 2).contiguous(), values.select(1, 2).contiguous(), size=(2, 6, 10), dtype=dtype, device=device) self.assertEqual(expected_sparse_selected12, sparse_selected12) # selecting rows/col with batch dims not allowed sparse_non_batched = sparse[0, 0] # select from sparse dimensions for select_args in [(0, 0), (1, 1)]: sparse_selected = sparse_non_batched.select(*select_args) dense_selected = sparse_non_batched.to_dense().select(*select_args) self.assertEqual(dense_selected, sparse_selected) self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0]) # assigning to sparse through indexing is disabled with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"): sparse[0, 0, 0, 0] = 99.0 # select from sparse dimensions without removing batch dims msg = "selecting sparse dimensions is not implemented for batched sparse compressed tensors." with self.assertRaisesRegex(RuntimeError, msg): sparse.select(-2, 0) with self.assertRaisesRegex(RuntimeError, msg): sparse.select(-1, 0) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_resize(self, device, dtype): def numel(tensor): r = 1 for s in tensor.shape: r *= s return r batch_shapes = [(), (2,), (2, 3)] for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes): shape = (*b, 2, 3) nnz = 6 a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) self.assertEqual(a.numel(), numel(a)) new_shape = (*b, 4, 5) a.resize_(new_shape) self.assertEqual(a.shape, new_shape) # resize to larger shape doesn't add specified elements self.assertEqual(a._nnz(), nnz) self.assertEqual(a.numel(), numel(a)) new_shape = (*b, 1, 5) a.resize_(new_shape) self.assertEqual(a.shape, new_shape) # resize to smaller shape trims specified elements self.assertEqual(a._nnz(), 5) self.assertEqual(a.numel(), numel(a)) # trim batched dimensions a.resize_(new_shape[-2], new_shape[-1]) self.assertEqual(a.shape, (new_shape[-2], new_shape[-1])) self.assertEqual(a._nnz(), 5) self.assertEqual(a.numel(), numel(a)) @skipMeta @dtypes(torch.float, torch.bool) @all_sparse_compressed_layouts() def test_resize_as_sparse_compressed(self, device, dtype, layout): def _check_resize_b_as_a(b, a): br = b.clone() br.resize_as_sparse_(a) # shape is inherited from a self.assertEqual(a.shape, br.shape) # other metadata is not affected self.assertEqual(b.layout, br.layout) self.assertEqual(b.device, br.device) self.assertEqual(b.dtype, br.dtype) def _get_compressed_plain_inds(t): compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[t.layout] return compressed_indices_mth(t), plain_indices_mth(t) br_compressed_indices, br_plain_indices = _get_compressed_plain_inds(br) br_values = br.values() b_compressed_indices, b_plain_indices = _get_compressed_plain_inds(b) a_compressed_indices, a_plain_indices = _get_compressed_plain_inds(a) self.assertEqual(a_plain_indices.shape, br_plain_indices.shape) self.assertEqual(a_compressed_indices.shape, br_compressed_indices.shape) # We don't check the content of br_plain_indices and br_compressed_indices # because it is not well-defined (the content depends on the original # shape of `b` that `resize_as` ought to discard) nor needed (the # subsequent operation likely updates the indices and values of `b` anyway). # the device/dtype of indices should always be unaffected self.assertEqual(b_plain_indices.dtype, br_plain_indices.dtype) self.assertEqual(b_plain_indices.device, br_plain_indices.device) self.assertEqual(b_compressed_indices.dtype, br_compressed_indices.dtype) self.assertEqual(b_compressed_indices.device, br_compressed_indices.device) # values are generated empty, shape is updated self.assertEqual(a.values().shape, br_values.shape) # the device/dtype of indices should always be unaffected b_values = b.values() self.assertEqual(b_values.dtype, br_values.dtype) self.assertEqual(b_values.device, br_values.device) # nnz will be picked up from a via new shape of values self.assertEqual(a._nnz(), br._nnz()) # post resize the invariants of the layout are respected torch._validate_sparse_compressed_tensor_args(br_compressed_indices, br_plain_indices, br_values, br.shape, br.layout) block_sparse = layout in (torch.sparse_bsr, torch.sparse_bsc) shape = (2, 1, 6, 4) nnz = 4 blocksize = (2, 1) if block_sparse else () for index_dtype in [torch.int32, torch.int64]: a = self.genSparseCompressedTensor(shape, layout=layout, device=device, index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) # same size, resize should not trigger b = self.genSparseCompressedTensor(shape, layout=layout, device=device, index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) # This test will not always trigger a resize, if the layouts are the same nothing should happen to b. # The invariants of the function as checked should still hold _check_resize_b_as_a(b, a) # same ndim, but bigger, more nnz, different dtype, different blocksize if blocked b = self.genSparseCompressedTensor(tuple(s * 2 for s in shape), layout=layout, device=device, dtype=torch.chalf, index_dtype=torch.int64 if index_dtype == torch.int32 else torch.int32, nnz=nnz * 2, blocksize=tuple(2 * bi for bi in blocksize)) _check_resize_b_as_a(b, a) # different device, only check on cuda pass as we know we are testing in an environment # that has multiple devices # TODO: .cpu() does not seem to work correctly for sparse. Causes a call to `copy_` which # complains about incompatible nnz between src and self? if torch.device(device).type == 'cuda' and (layout not in (torch.sparse_bsc, torch.sparse_bsr)): a_cpu = self.genSparseCompressedTensor(shape, layout=layout, device='cpu', index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) _check_resize_b_as_a(b, a) # error on a strided a_strided = a.to_dense() with self.assertRaisesRegex( RuntimeError, r'resize_as_sparse_compressed_: src expected sparse compressed tensor layout'): b.resize_as_sparse_(a_strided) # error on b strided b_strided = b.to_dense() with self.assertRaisesRegex( RuntimeError, r'resize_as_sparse_compressed_: self expected sparse compressed tensor layout'): b_strided.resize_as_sparse_(a) # error if layout does not match, transpose induces layout flip with self.assertRaisesRegex(RuntimeError, r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): b.transpose(-2, -1).resize_as_sparse_(a) with self.assertRaisesRegex(RuntimeError, r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): b.resize_as_sparse_(a.transpose(-2, -1)) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_resize_errors(self, device, dtype): for index_dtype in [torch.int32, torch.int64]: shape = (2, 3) nnz = 6 a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"): new_shape = (4,) a.resize_(new_shape) # resizing of columns to smaller size is not implemented with self.assertRaisesRegex( RuntimeError, "torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.", ): new_shape = (2, 2) a.resize_(new_shape) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csr_from_dense(self, device, dtype): dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values()) dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values()) dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values()) def _test_sparse_compressed_to_dense(self, device, dtype, layout): compressed_format_str = str(layout)[-3:] def to_compressed(t): return getattr(t, f"to_sparse_{compressed_format_str}")() def compressed_constructor(*input, **kwargs): constructor = getattr(torch, f"sparse_{compressed_format_str}_tensor") return constructor(*input, **kwargs) def get_dense_shape(shape, batch_ndim): if layout is torch.sparse_csc: compressed_dims_slice = slice(batch_ndim + 1, batch_ndim - 1, -1) else: compressed_dims_slice = slice(batch_ndim, batch_ndim + 2) return shape[:batch_ndim] + shape[compressed_dims_slice] + shape[batch_ndim + 2:] def transpose(t, batch_ndim): if layout is torch.sparse_csc: return t.transpose(batch_ndim, batch_ndim + 1) return t mn = [5, 2, 0] for (m, n) in itertools.product(mn, mn): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) sparse = to_compressed(dense) self.assertEqual(sparse.to_dense(), dense) batch_shape = (2, 3) compressed_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1) plain_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1) values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1) sparse = compressed_constructor(compressed_indices, plain_indices, values, dtype=dtype, device=device) dense_shape = get_dense_shape(sparse.shape, len(batch_shape)) dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(dense_shape) self.assertEqual(sparse.to_dense(), transpose(dense, len(batch_shape))) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csr_to_dense(self, device, dtype): self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csr) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csc_to_dense(self, device, dtype): self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csc) @skipMeta @skipCPUIfNoMklSparse @coalescedonoff @dtypes(torch.double) def test_coo_to_csr_convert(self, device, dtype, coalesced): with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"): torch._convert_indices_from_coo_to_csr( torch.randint(100, (5, 5), device=device), size=100) size = (5, 5) sparse_dim = 2 nnz = 10 sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype) sparse_csr = sparse_coo.to_sparse_csr() self.assertTrue(sparse_csr.is_sparse_csr) self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense()) vec = torch.randn((5, 1), dtype=dtype, device=device) coo_product = sparse_coo.matmul(vec) csr_product = sparse_csr.matmul(vec) self.assertEqual(coo_product, csr_product) vec = torch.randn((100, 1), dtype=dtype, device=device) index = torch.tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], dtype=torch.int32) values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device) csr = coo.to_sparse_csr() self.assertEqual(coo.matmul(vec), csr.matmul(vec)) col_indices = torch.tensor([ 31, 92, 65, 50, 34, 62, 22, 56, 74, 89 ], dtype=torch.int64, device=device) self.assertEqual(csr.col_indices(), col_indices) values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) self.assertEqual(csr.values(), values) @parametrize("blocksize", [2, 4]) @dtypes((torch.double, torch.int32), (torch.double, torch.int64)) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @skipMeta def test_csr_to_block_csr(self, device, dtypes, blocksize): for shape in [(24, 24), (12, 24)]: dtype, index_dtype = dtypes m, k = shape nnz = random.randint(0, m * k) t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype, device=device, index_dtype=index_dtype) st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size())) block_t = t.to_sparse_bsr((blocksize, blocksize)) self.assertEqual(block_t.values().dim(), 3) self.assertTrue(block_t.layout == torch.sparse_bsr) block_st = st.tobsr(blocksize=(blocksize, blocksize)) block_st.sort_indices() self.assertEqual(block_t.values().cpu(), block_st.data) self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype)) self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype)) @dtypes(torch.double) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_csr_to_block_csr_errors(self, device, dtype): for index_dtype in [torch.int32, torch.int64]: nnz = 15 t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, r"size \(16, 16\) with block size \(5, 5\)"): block_t = t.to_sparse_bsr((5, 5)) # TODO: Support auto generation of device check for sparse tensors # See: https://github.com/pytorch/pytorch/issues/59058 @onlyCUDA @dtypes(torch.double) def test_matmul_device_mismatch(self, device, dtype): cpu = torch.rand((10, 10)) cuda = cpu.cuda() for s, m1, m2 in itertools.product((cpu, cuda), repeat=3): csr = m1.to_sparse() if s.device == csr.device == m2.device: torch.addmm(s, csr, m2) else: with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.addmm(s, csr, m2) @skipCPUIfNoMklSparse @skipCUDAIfNoSparseGeneric @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater else [], *[torch.bfloat16] if SM80OrLater else [])) def test_csr_matvec(self, device, dtype): if TEST_WITH_ROCM and (dtype == torch.half or dtype == torch.bfloat16): self.skipTest("ROCm doesn't work with half dtypes correctly.") side = 100 for index_dtype in [torch.int32, torch.int64]: csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype) vec = torch.randn(side, dtype=dtype, device=device) res = csr.matmul(vec) expected = csr.to_dense().matmul(vec) self.assertEqual(res, expected) bad_vec = torch.randn(side + 10, dtype=dtype, device=device) err_msg = "size mismatch, got" with self.assertRaisesRegex(RuntimeError, err_msg): csr.matmul(bad_vec) @onlyCUDA # hmm, the test passes ok on CUDA when Rocm is not available: @skipCUDAIfRocmVersionLessThan((5, 2)) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_baddbmm(self, device, dtype): # TODO: disable the invariant checks within torch.baddbmm that # constructs unconventional csr tensors leading to # RuntimeError: tensor dimensionality must be sum of batch, # base, and dense dimensionalities (=0 + 2 + 0) but got 3 # when invariant checking is enabled. When done, undecorate run_test. @torch.sparse.check_sparse_tensor_invariants(enable=False) def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() b = b.mH if (op_b and a.shape == b.shape) else b actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta) out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out) expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])] expected = torch.stack(expected, 0) self.assertEqual(actual, out) self.assertEqual(actual, expected) for index_dtype in [torch.int32, torch.int64]: for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) # a_batched is a regular CSR tensor but with a batch dimension in the shape a_batched = torch.sparse_csr_tensor( a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False) b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device) @onlyCUDA @unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported") @skipCUDAIfNoSparseGeneric @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_bmm(self, device, dtype): def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): b = b.mH if (op_b and a.shape == b.shape) else b actual = torch.bmm(a_batched, b) out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual) torch.bmm(a_batched, b, out=out) expected = [torch.mm(a, b[i]) for i in range(b.shape[0])] expected = torch.stack(expected, 0) self.assertEqual(actual, out) self.assertEqual(actual, expected) for index_dtype in [torch.int32, torch.int64]: for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) # a_batched is a regular CSR tensor but with a batch # dimension in the shape. It is unorthodox in PyTorch # to represent a batch sparse tensor in this way, # hence checking the tensor invariants is locally # turned off. a_batched = torch.sparse_csr_tensor( a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False) b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device) def run_test_block_addmm_addmv(self, addmv_addmm, c, a, b, op_b=False, op_out=False, *, dtype=None, device=None, ref=_npref_block_addmm_addmv): alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() b = b.mH if (op_b and a.shape == b.shape) else b actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta) out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out) expected = ref(c, a, b, alpha, beta) self.assertEqual(actual, out) self.assertEqual(actual, expected) # TODO: block_size 1 is broken @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @skipCPUIfNoMklSparse @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater else [], *[torch.bfloat16] if SM80OrLater else [])) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-5, torch.complex128: 1e-5, torch.float16: 1e-3, torch.bfloat16: 1e-3}) def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous): def make_transposed_addmm_op(f): def tt(t): if isinstance(t, torch.Tensor): return t.transpose(-2, -1) else: # assume numpy/scipy spmatrix return t.transpose() @functools.wraps(f) def wrapper(c, a, b, alpha=None, beta=None, out=None): if out is not None: # the ref takes no out kwarg assert isinstance(out, torch.Tensor) # tranpose inplace to propogate out to checking context out.transpose_(-2, -1) return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta, out=out) else: return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta) return wrapper def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None): def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *map(lambda t: prep_input(t), (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res def ref_half_bfloat16(c, a, b, alpha=None, beta=None, out=None): res = alpha * (a.to_dense().to(torch.float32) @ b.to_dense().to(torch.float32)).to(a.dtype) + beta * c if out is not None: out.copy_(res) return out else: return res if dtype in (torch.half, torch.bfloat16): ref = ref_half_bfloat16 else: ref = ref_sp_numpy for (m, n, k) in itertools.product([2, 5], repeat=3): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device, ref=ref) self.run_test_block_addmm_addmv(make_transposed_addmm_op(torch.addmm), c, a, b, op_b, op_out, dtype=dtype, device=device, ref=make_transposed_addmm_op(ref)) @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @skipCPUIfNoMklSparse @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous): # TODO: Explicitly disable block size 1 support # if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1: # return for (m, k) in itertools.product([2, 5], repeat=2): nnz = random.randint(0, m * k) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device) @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @skipCPUIfNoMklSparse @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous): def run_test(a, b, upper, transpose, unitriangular, op_out): if unitriangular and self.device_type == 'cpu': # TODO: When unitriangular=True results are not correct on CPU return if not upper and self.device_type == 'cpu': # TODO: When upper=False some generated inputs might crash on CPU return actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose) actual_X = actual.solution actual_A_clone = actual.cloned_coefficient self.assertTrue(actual_A_clone.numel() == 0) if a._nnz() == 0: self.assertTrue(actual_X.isnan().all()) return # TODO: replace with torch method when implemented to_dense() on block sparse tensor a_bsr = sp.bsr_matrix( ( a.values().cpu().numpy(), a.col_indices().cpu().numpy(), a.crow_indices().cpu().numpy(), ), shape=a.shape, ) expected_X, _ = torch.triangular_solve( b, torch.tensor(a_bsr.todense(), device=device), transpose=transpose, upper=upper, unitriangular=unitriangular) if expected_X.isnan().any(): # TODO: zeros on the diagonal are not handled for CPU path # there's no way to query this info from MKL if self.device_type == 'cuda' and not TEST_WITH_ROCM: self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any()) return self.assertEqual(actual_X, expected_X) out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b) torch.triangular_solve( b, a, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, actual_X) self.assertEqual(out, expected_X) for (m, k) in itertools.product([2, 3], [1, 3]): nnz = random.randint(0, m * m) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, m * block_size), check_invariants=False) b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous) for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4): run_test(a, b, upper, unitriangular, transpose, op_out) @skipCPUIfNoMklSparse @unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported") @dtypes(torch.double) def test_mm(self, device, dtype): def test_shape(di, dj, dk, nnz0=None, nnz1=None): for index_dtype in [torch.int32, torch.int64]: alpha = random.random() beta = random.random() def _test_addmm(t, x, y): # TODO: addmm doesn't support strided result for sparse inputs. # res = beta * t + alpha * (x @ y) res = torch.addmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha) self.assertEqual(res, expected) res = torch.addmm(t, x, y) expected = torch.addmm(t, x.to_dense(), y.to_dense()) self.assertEqual(res, expected) def _test_mm(x, y): res = torch.mm(x, y) expected = torch.mm(x.to_dense(), y.to_dense()) if x.layout is torch.strided or y.layout is torch.strided: self.assertEqual(res.layout, torch.strided) else: self.assertEqual(res.layout, torch.sparse_csr) self.assertEqual(res.to_dense(), expected) def _test(t, x, y): _test_addmm(t, x, y) _test_mm(x, y) if nnz0 is None: nnz0 = random.randint(di * dk // 2, di * dk) t = torch.randn(di, dj, dtype=dtype, device=device) x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = torch.randn(dk, dj, dtype=dtype, device=device) _test(t, x, y) t = torch.randn(di, dj, dtype=dtype, device=device) x = self.genSparseCSCTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = torch.randn(dk, dj, dtype=dtype, device=device) _test(t, x, y) if nnz1 is None: nnz1 = random.randint(dk * dj // 2, dk * dj) t = torch.randn(di, dj, dtype=dtype, device=device) x = torch.randn(di, dk, dtype=dtype, device=device) y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test(t, x, y) t = torch.randn(di, dj, dtype=dtype, device=device) x = torch.randn(di, dk, dtype=dtype, device=device) y = self.genSparseCSCTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test(t, x, y) x_shape, y_shape = x.shape, y.shape gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor] # Test mm({CSR, CSC}, {CSR, CSC}) for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc): x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test_mm(x, y) def test_empty_inputs(lhs_layout, rhs_layout): xd = torch.rand(10, 0, device=device, dtype=dtype) yd = xd.transpose(-2, -1) zd = torch.rand(0, 0, device=device, dtype=dtype) xls, yls, zls = [t.to_sparse(layout=lhs_layout) for t in (xd, yd, zd)] xrs, yrs, zrs = [t.to_sparse(layout=rhs_layout) for t in (xd, yd, zd)] for ls, rs, ld, rd in [(xls, yrs, xd, yd), (xls, zrs, xd, zd), (zls, yrs, zd, yd), (zls, zrs, zd, zd)]: res_sparse = ls @ rs res_dense = ld @ rd self.assertEqual(res_sparse.to_dense(), res_dense) def test_orthogonal_inputs(lhs_layout, rhs_layout): ones = torch.ones(2, 2, device=device, dtype=dtype) zeros = torch.zeros(2, 2, device=device, dtype=dtype) x = torch.cat((ones, zeros), -1).to_sparse(layout=lhs_layout) y = torch.cat((zeros, ones), -2).to_sparse(layout=rhs_layout) res = x @ y res_expected = torch.zeros(*res.shape, device=device, dtype=dtype, layout=res.layout) self.assertEqual(res, res_expected) for lhs_layout, rhs_layout in itertools.product([torch.sparse_csr, torch.sparse_csc], repeat=2): test_empty_inputs(lhs_layout, rhs_layout) test_orthogonal_inputs(lhs_layout, rhs_layout) for i in [2, 4]: for j in [2, 4, 7]: for k in [2, 3, 7]: test_shape(i, j, k) test_shape(4, 4, 4, 0, 0) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_mm(self, device, dtype): def test_shape(d1, d2, d3, nnz, transposed, index_dtype): if transposed: D = torch.randn(d3, d2, dtype=dtype, device=device).t_() else: D = torch.randn(d2, d3, dtype=dtype, device=device) S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype) S_dense = S.to_dense() self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) for index_dtype in [torch.int32, torch.int64]: test_shape(7, 8, 9, 20, False, index_dtype) test_shape(7, 8, 9, 20, True, index_dtype) @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_addmm(self, device, dtype): def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None): if alpha_beta is None: alpha = random.random() beta = random.random() else: alpha, beta = alpha_beta if broadcast: D1 = make_tensor((), dtype=dtype, device=device) else: D1 = make_tensor([n, p], dtype=dtype, device=device) D2 = make_tensor([m, p], dtype=dtype, device=device) S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype) S_dense = S.to_dense() Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) self.assertEqual(Y, Y_dense) for index_dtype in [torch.int32, torch.int64]: test_shape(7, 8, 9, 20, False, index_dtype, None) test_shape(7, 8, 9, 20, True, index_dtype, None) test_shape(7, 8, 9, 20, False, index_dtype, (1, 0)) test_shape(7, 8, 9, 20, True, index_dtype, (1, 0)) test_shape(7, 8, 9, 20, False, index_dtype, (1, 1)) test_shape(7, 8, 9, 20, True, index_dtype, (1, 1)) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) @dtypesIfCUDA(*floating_types_and(torch.complex64, *[torch.bfloat16] if SM80OrLater else [], *[torch.half] if SM53OrLater else [], *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) @sparse_compressed_nonblock_layouts() @skipCUDAIf( not _check_cusparse_spgemm_available(), "cuSparse Generic API SpGEMM is not available" ) def test_addmm_all_sparse_csr(self, device, dtype, layout): M = torch.randn(10, 25, device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") # Test 0-strided M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") # Test beta=0, M=nan M = torch.full((10, 25), float('nan'), device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="all_sparse") # Test transpose for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): def maybe_transpose(cond, m): if not cond: return m return m.t().clone(memory_format=torch.contiguous_format).t() M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="all_sparse") @onlyCPU @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @sparse_compressed_nonblock_layouts() def test_addmm_dense_result(self, device, dtype, layout): M = torch.randn(10, 25, device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") # Test 0-strided M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") # Test beta=0, M=nan M = torch.full((10, 25), float('nan'), device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="dense_result") # Test transpose for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): def maybe_transpose(cond, m): if not cond: return m return m.t().clone(memory_format=torch.contiguous_format).t() M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="dense_result") @parametrize("k", [0, 1, 8]) @parametrize("n", [0, 1, 10]) @parametrize("m", [0, 1, 25]) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_types_and(torch.complex64, *[torch.bfloat16] if SM80OrLater else [], *[torch.half] if SM53OrLater else [], *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) @skipCUDAIf( not _check_cusparse_spgemm_available(), "cuSparse Generic API SpGEMM is not available" ) @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k): M = torch.randn(n, m, device=device).to(dtype) m1 = torch.randn(n, k, device=device).to(dtype) m2 = torch.randn(k, m, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse") M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr() m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr() m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr() self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2)) self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2)) @skipCPUIfNoMklSparse @dtypes(torch.float) def test_addmm_errors(self, device, dtype): # test that the errors are the same for dense and sparse versions import re def test1(*, is_sparse): # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a, a_sparse, a) else: return torch.addmm(a, a, a) def test2(*, is_sparse): # mat2 must be a matrix a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a, a_sparse, a.unsqueeze(0)) else: return torch.addmm(a, a, a.unsqueeze(0)) def test3(*, is_sparse): # the first input needs to be 1D or 2D a = make_tensor((3, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a.unsqueeze(0), a_sparse, a) else: return torch.addmm(a.unsqueeze(0), a, a) for test in (test1, test2, test3): try: test(is_sparse=False) except RuntimeError as msg: with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): test(is_sparse=True) @skipCPUIfNoMklSparse @dtypes(torch.float) def test_mm_errors(self, device, dtype): # test that the errors are the same for dense and sparse versions import re def test1(*, is_sparse): # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.mm(a_sparse, a) else: return torch.mm(a, a) def test2(*, is_sparse): # mat2 must be a matrix a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.mm(a_sparse, a.unsqueeze(0)) else: return torch.mm(a, a.unsqueeze(0)) for test in (test1, test2): try: test(is_sparse=False) except RuntimeError as msg: with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): test(is_sparse=True) @dtypes(torch.float, torch.double) def test_add(self, device, dtype): def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n)) @dtypes(torch.float, torch.double) def test_mul(self, device, dtype): # TODO: This whole test should be migrated to OpInfos def _test_spadd_shape(fn, nnz, shape): x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) # Forward comparison res_sparse_sparse = fn(y, x) res_dense_sparse = fn(y.to_dense(), x) res_sparse_dense = fn(y, x.to_dense()) expected = fn(y.to_dense(), x.to_dense()).to_sparse_csr() self.assertEqual(res_sparse_sparse, expected) # TODO: While result of mul(dense, csr) is csr, it is not fully compressed. # That means it may contain materialized zeros, since the dense argument # is converted according to the sparsity pattern of csr. In the future # we might require the result to be fully compressed. self.assertEqual(res_dense_sparse.to_dense(), expected.to_dense()) self.assertEqual(res_sparse_dense.to_dense(), expected.to_dense()) # Grad comparison x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) # csr * csr -> csr with csr, csr gradients x_a = x.clone().requires_grad_() y_a = y.clone().requires_grad_() fn(y_a, x_a).backward(z) x_dense_a = x.to_dense().requires_grad_() y_dense_a = y.to_dense().requires_grad_() fn(y_dense_a, x_dense_a).backward(z.to_dense()) self.assertEqual(x_a.grad.layout, torch.sparse_csr) self.assertEqual(y_a.grad.layout, torch.sparse_csr) self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad) self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad) # TODO: Currently strided Tensors cannot have csr gradients # dense * csr -> csr with csr, dense gradients x_a = x.clone().requires_grad_() y_a = y.to_dense().clone().requires_grad_() err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr" with self.assertRaisesRegex(RuntimeError, err_msg): fn(y_a, x_a).backward(z) # csr * dense -> csr with dense, csr gradients x_a = x.to_dense().clone().requires_grad_() y_a = y.clone().requires_grad_() err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr" with self.assertRaisesRegex(RuntimeError, err_msg): fn(y_a, x_a).backward(z) _test_spadd_shape(torch.mul, 100, [100, 100]) _test_spadd_shape(torch.mul, 0, [100, 100]) _test_spadd_shape(torch.mul, 100, [100, 1]) _test_spadd_shape(torch.mul, 100, [1, 100]) # TODO: enable hybrid once to_dense supports it @parametrize('enable_hybrid', [False]) @all_sparse_compressed_layouts() @dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half)) def test_mul_scalar(self, layout, device, dtype, enable_hybrid): for sparse in self.generate_simple_inputs( layout, device=device, dtype=dtype, index_dtype=torch.int32, enable_hybrid=enable_hybrid): for scalar_dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half): # ComplexHalf is experimental if dtype is torch.half and scalar_dtype.is_complex: continue scalar_t = torch.tensor(2, dtype=scalar_dtype) for scalar in (scalar_t, scalar_t.item()): res_out = sparse.mul(scalar) self.assertEqual(res_out, scalar * sparse) res_dense_out = sparse.to_dense().mul(scalar) # BUG: dispatcher ignores mul.Scalar(Tensor, Scalar) # This issues is circumvented in the mul(Tensor, Tensor) kernel. self.assertEqual(res_out, res_dense_out) if dtype == torch.result_type(sparse, scalar): res_in_dense = sparse.to_dense().mul_(scalar) res_in = sparse.clone().mul_(scalar) self.assertEqual(res_in, res_in_dense) self.assertEqual(res_out, res_in) @skipCPUIfNoMklSparse @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sparse_add(self, device, dtype): def run_test(m, n, index_dtype): alpha = random.random() nnz1 = random.randint(0, m * n) nnz2 = random.randint(0, m * n) nnz3 = random.randint(0, m * n) if TEST_WITH_ROCM: # ROCm fails when nnz = 0 nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3) S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype) S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype) S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype) expected = torch.add(S1.to_dense(), S2.to_dense(), alpha=alpha) actual = torch.add(S1, S2, alpha=alpha, out=S3) self.assertEqual(actual.to_dense(), expected) self.assertEqual(S3.to_dense(), expected) for index_dtype in [torch.int32, torch.int64]: for m, n in itertools.product([3, 5], [3, 5]): run_test(m, n, index_dtype) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sparse_add_errors(self, device, dtype): def run_test(index_type): a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype) b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"): torch.add(a, b) for index_dtype in [torch.int32, torch.int64]: run_test(index_dtype) @skipCPUIfNoMklSparse @skipCUDAIf( not _check_cusparse_triangular_solve_available(), "cuSparse Generic API SpSV is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sparse_triangular_solve(self, device, dtype): def run_test(n, k, upper, unitriangular, transpose, zero): if not unitriangular: triangle_function = torch.triu if upper else torch.tril else: # Make sure diagonal elements are not materialized. # This is to exercise `unitriangular=True` not relying on # explicit presence of these indices. if upper: def remove_diagonal(t): return t.triu(-1) else: def remove_diagonal(t): return t.tril(-1) triangle_function = remove_diagonal make_A = torch.zeros if zero else make_tensor A = make_A((n, n), dtype=dtype, device=device) A = triangle_function(A) A_sparse = A.to_sparse_csr() B = make_tensor((n, k), dtype=dtype, device=device) expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose) expected_X = expected.solution actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose) actual_X = actual.solution actual_A_clone = actual.cloned_coefficient self.assertTrue(actual_A_clone.numel() == 0) if A_sparse._nnz() == 0: self.assertTrue(actual_X.isnan().all()) return self.assertEqual(actual_X, expected_X) # test out with C contiguous strides out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device) torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) # test out with F contiguous strides out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device) torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) self.assertEqual(out.stride(), (1, n)) # test out with discontiguous strides out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2] if n > 0 and k > 0: self.assertFalse(out.is_contiguous()) self.assertFalse(out.t().is_contiguous()) before_stride = out.stride() torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) self.assertEqual(out.stride(), before_stride) ks = [0, 1, 3] ns = [5, 3, 0] for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns), itertools.product([True, False], repeat=4)): run_test(n, k, upper, unitriangular, transpose, zero) @skipCUDAIfRocm @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sampled_addmm(self, device, dtype): def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None): if dtype.is_complex: alpha = random.random() + 0.3j if alpha is None else alpha beta = random.random() + 0.6j if beta is None else beta else: alpha = random.random() if alpha is None else alpha beta = random.random() if beta is None else beta if op_a and a.shape == b.shape: a = a.mH if op_b and a.shape == b.shape: b = b.mH actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta) out = torch.sparse_csr_tensor( *map(torch.clone, (actual.crow_indices(), actual.col_indices())), torch.empty_like(actual.values()), size=actual.shape ) torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out) spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape) expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense() self.assertEqual(actual.to_dense(), out.to_dense()) self.assertEqual(actual.to_dense(), expected) mnk = list(itertools.product([2, 5], repeat=3)) # Add a test case for size 0 a and b tensors mnk = mnk + [(5, 5, 0)] batch_shapes = [(), (2,), (2, 3)] tf = [True, False] for index_dtype in [torch.int32, torch.int64]: for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf): if bcast_c and len(b) == 0: continue nnz = random.randint(0, m * n) c_batch = () if bcast_c else b c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous) b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_a, op_b in itertools.product([True, False], repeat=2): run_test(c, a, b, op_a, op_b) @skipCUDAIfRocm @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sampled_addmm_autograd(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True)) for sample, dense_covector in zip(samples, [True, False]): c = sample.input a = sample.args[0] b = sample.args[1] # Compute sparse result output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs) covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output) output.backward(covector) # Compute dense result and compare with sparse result c1, a1, b1 = map(lambda x: x.detach().to_dense().requires_grad_(True), [c, a, b]) dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1 self.assertEqual(output, dense_output) dense_covector = covector.to_dense() dense_output.backward(dense_covector) self.assertEqual(c.grad, c1.grad) self.assertEqual(a.grad, a1.grad) self.assertEqual(b.grad, b1.grad) @skipCUDAIfRocm @onlyCUDA @skipCUDAIf(True, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177") @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sampled_addmm_zero_sized(self, device, dtype): def run_test(c, a, b): actual = torch.sparse.sampled_addmm(c, a, b) self.assertEqual(actual.shape, c.shape) for m, n, k in itertools.product([0, 5], repeat=3): c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr) a = make_tensor((m, k), dtype=dtype, device=device) b = make_tensor((k, n), dtype=dtype, device=device) run_test(c, a, b) @onlyCUDA @skipCUDAIf( not (TEST_WITH_ROCM or _check_cusparse_sddmm_available()), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sampled_addmm_errors(self, device, dtype): # test that the errors are the same for dense and sparse sampled versions # import re # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) a_sparse = a.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"): torch.sparse.sampled_addmm(a_sparse, a, a) # mat1 must be a matrix with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"): torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a) # mat2 must be a matrix with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"): torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :]) a = make_tensor((2, 2), dtype=dtype, device=device) b = make_tensor((3, 3), dtype=dtype, device=device) b_sparse = b.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"): torch.sparse.sampled_addmm(b_sparse, a, a) b = make_tensor((2, 3), dtype=dtype, device=device) b_sparse = b.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"): torch.sparse.sampled_addmm(b_sparse, a, a) a = make_tensor((2, 2), dtype=dtype, device=device) a_sparse = a.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"): torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse) with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"): torch.sparse.sampled_addmm(a_sparse, a, a_sparse) @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16) def test_sparse_mm_reduce_sum(self, device, dtype): def run_test(m, n, k, nnz, train): sparse = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=torch.int64) dense = sparse.to_dense() mat = torch.randn(k, n, dtype=dtype) ref_mat = mat.clone() if train: sparse.requires_grad_() mat.requires_grad_() dense.requires_grad_() ref_mat.requires_grad_() ref_out = torch.mm(dense, ref_mat) out = torch.sparse.mm(sparse, mat, 'sum') self.assertEqual(out, ref_out) if train: ref_out.sum().backward() out.sum().backward() grad_input = sparse.grad ref_grad_input = dense.grad grad_mat = mat.grad ref_grad_mat = ref_mat.grad self.assertEqual(grad_input.to_dense(), ref_grad_input) self.assertEqual(grad_mat, ref_grad_mat) run_test(4, 5, 4, 10, False) run_test(4, 4, 4, 16, True) @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16) def test_sparse_mm_reduce(self, device, dtype): def run_test(m, n, k, nnz, reduce_type, index_dtype, train): csr = self.genSparseCSRTensor((m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype) mat = torch.randn(n, k, dtype=dtype) ref_mat = mat.clone() ref_values = csr.values().clone() out_int32 = index_dtype == torch.int32 coo_indices = torch._convert_indices_from_csr_to_coo( csr.crow_indices(), csr.col_indices(), out_int32=out_int32) row, col = coo_indices[0], coo_indices[1] def ref(row, col, val, mat): out = torch.zeros([m, k], dtype=dtype) weight = mat.index_select(0, col) src = weight.mul(val.view(-1, 1)) index = row.view(-1, 1).expand_as(weight) index = index.to(dtype=torch.int64) # scatter_reduce expect index to be int64 out.scatter_reduce_(0, index, src, reduce=reduce_type, include_self=False) return out if train: csr.requires_grad_() mat.requires_grad_() ref_values.requires_grad_() ref_mat.requires_grad_() ref_out = ref(row, col, ref_values, ref_mat) out = torch.sparse.mm(csr, mat, reduce_type) self.assertEqual(out, ref_out) if train and dtype is not torch.bfloat16: ref_out.sum().backward() out.sum().backward() grad_values = csr.grad.values() grad_weight = mat.grad ref_grad_values = ref_values.grad ref_grad_weight = ref_mat.grad self.assertEqual(grad_values, ref_grad_values) self.assertEqual(grad_weight, ref_grad_weight) for train in [False, True]: for index_dtype in [torch.int32, torch.int64]: for reduce_type in ["sum", "mean", "amax", "amin"]: # by setting nnz < M, create empty rows run_test(3, 4, 11, 1, reduce_type, index_dtype, train) run_test(3, 4, 11, 6, reduce_type, index_dtype, train) run_test(3, 4, 11, 12, reduce_type, index_dtype, train) # we are doing blocking with 4x vector length in the kernel, # so need to test when K > 4x vector length run_test(4, 7, 33, 13, reduce_type, index_dtype, train) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_coo_csr_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) coo_sparse = dense.to_sparse() csr_sparse = coo_sparse.to_sparse_csr() self.assertEqual(csr_sparse.to_dense(), dense) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_csr_coo_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) csr_sparse = dense.to_sparse_csr() coo_sparse = csr_sparse.to_sparse() self.assertEqual(coo_sparse.to_dense(), dense) # Currently, there is no rule in PyTorch for filling zeros in the outputs # from operations on Sparse CSR tensors. Hence only those operators are supported # which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but # cos(0) = 1 (and hence it's not supported). # Note: here, we do this test only for unary operators @ops(sparse_csr_unary_ufuncs) def test_zero_to_zero_correspondence_unary(self, device, dtype, op): zero = torch.zeros((1, 2), dtype=dtype, device=device) tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device) output_zero = op(zero) expected_zero = zero.to(output_zero.dtype) output_explicit_zeros = op(tensor_explicit_zeros).to_dense() expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype) for (output, expected) in [ (output_zero, expected_zero), (output_explicit_zeros, expected_explicit_zeros) ]: self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for " "Sparse CSR as it breaks 0->0 correspondence.") for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]: self.assertEqual(op(inp).values().numel(), inp.values().numel(), f"{op.name} fails to preserve sparsity pattern.") @ops(sparse_csr_unary_ufuncs) def test_sparse_csr_unary_out(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if not op.supports_out: self.skipTest("Skipped! Out not supported") for sample in samples: assert torch.is_tensor(sample.input) # Sparse CSR only supports 2D tensors as inputs # Fail early to prevent silent success with this test if sample.input.ndim != 2: raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") sample.input = sample.input.to_sparse_csr() expect = op(sample.input, *sample.args, **sample.kwargs) out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(), device=sample.input.device, dtype=expect.dtype, index_dtype=sample.input.crow_indices().dtype) op(sample.input, *sample.args, **sample.kwargs, out=out) self.assertEqual(out, expect) @ops(sparse_csr_unary_ufuncs) def test_sparse_csr_unary_inplace(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if op.inplace_variant is None: self.skipTest("Skipped! Inplace variant not supported!") for sample in samples: assert torch.is_tensor(sample.input) # Sparse CSR only supports 2D tensors as inputs # Fail early to prevent silent success with this test if sample.input.ndim != 2: raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") sample.input = sample.input.to_sparse_csr() expect = op(sample.input, *sample.args, **sample.kwargs) if not torch.can_cast(expect.dtype, dtype): with self.assertRaisesRegex(RuntimeError, "result type"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) continue if sample.input.is_complex() and op.name == "abs": with self.assertRaisesRegex(RuntimeError, "not supported"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) continue actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) self.assertIs(actual, sample.input) self.assertEqual(actual, expect) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) def test_autograd_sparse_csr_unary(self, device, dtype, op): if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD: self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd") samples = list(op.sample_inputs(device, dtype)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.input.ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples.") for sample in samples: # We must skip samples of low dimensionality, we can't covert them to sparsed compressed layouts if sample.input.ndim < 2: continue sparse_input = sample.input.to_sparse_csr().requires_grad_(True) def fn(input): output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output # Compute sparse result output = fn(sparse_input) covector = torch.randn_like(output) output.backward(covector) self.assertTrue(torch.is_tensor(sparse_input.grad)) self.assertTrue(sparse_input.grad.is_sparse_csr) # Compute dense result and compare with sparse result dense_input = sparse_input.detach().to_dense().requires_grad_(True) dense_output = fn(dense_input) dense_covector = covector.to_dense() dense_output.backward(dense_covector) self.assertEqual(sparse_input.grad, dense_input.grad) @skipCUDAIfRocm @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float64) def test_autograd_dense_output_addmm(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_addmm samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") for sample in samples: a = sample.args[0].relu().to_sparse_csr() # This path tests the autograd path wrt dense inputs for addmm in [torch.addmm, torch.sparse.addmm]: def fn(c, b): output = addmm(c, a, b, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) # noncontiguous c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) # Now test the autograd path wrt sparse inputs for reverse in [True, False]: c, b = sample.input, sample.args[1] if reverse and a.shape != b.shape: continue def fn(a): inputs = (c, b, a) if reverse else (c, a, b) output = addmm(*inputs, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output # gradcheck doesn't work for sparse CSR yet, compare against dense path # Compute sparse result a = a.detach().requires_grad_(True) output = fn(a) covector = torch.randn_like(output) output.backward(covector) self.assertTrue(torch.is_tensor(a.grad)) if addmm == torch.sparse.addmm: self.assertTrue(a.grad.is_sparse_csr) else: self.assertTrue(a.grad.layout == torch.strided) # Compute dense result and compare with sparse result dense_a = a.detach().to_dense().requires_grad_(True) dense_output = fn(dense_a) self.assertEqual(output, dense_output) dense_covector = covector.to_dense() dense_output.backward(dense_covector) if addmm == torch.sparse.addmm: self.assertEqual(a.grad, dense_a.grad.sparse_mask(a)) else: self.assertEqual(a.grad, dense_a.grad) @skipCUDAIfRocm @skipCPUIfNoMklSparse @dtypes(torch.float64) def test_autograd_dense_output_addmv(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_addmv samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") for sample in samples: # TODO: Remove detach once we have autograd support for CSR input a = sample.args[0].to_sparse_csr().detach() def fn(c, b): output = torch.addmv(c, a, b, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) # noncontiguous c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ]) def test_autograd_dense_output(self, device, dtype, op): if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu': self.skipTest("MKL Sparse is not available") if op.name == "mv" and TEST_WITH_ROCM and self.device_type == 'cuda': # mv currently work only on CUDA self.skipTest("ROCm is not supported") samples = list(op.sample_inputs(device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.input.ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples.") # Here we assume that the signature is op(sparse_input, dense_input) -> dense_output for sample in samples: # TODO: Remove detach once we have autograd support for CSR input sparse_input = sample.input.to_sparse_csr().detach() def fn(*args): output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True)) # noncontiguous args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args] self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True)) @dtypes(*all_types_and_complex()) def test_direct_coo_csr_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) coo_sparse = dense.to_sparse_coo() self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sum(self, device, dtype): def run_test(shape, nnz, index_type): a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) self.assertEqual(a.sum(), a.values().sum()) if dtype in floating_types(): a.requires_grad_(True) a.sum().backward() self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device)) for shape, index_dtype in itertools.product( [(10, 5), (10, 10)], [torch.int32, torch.int64]): run_test(shape, 0, index_dtype) run_test(shape, max(shape), index_dtype) run_test(shape, shape[0] * shape[1], index_dtype) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @all_sparse_compressed_layouts() def test_transpose(self, device, dtype, layout): def _check_transpose_view(subject, transpose): self.assertTrue(transpose.values()._is_view()) self.assertTrue(transpose._is_view()) self.assertTrue(transpose._base is subject) def _check_layout_invariants(transpose): self.assertEqual(transpose.device, torch.device(device)) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[transpose.layout] compressed_indices, plain_indices = compressed_indices_mth(transpose), plain_indices_mth(transpose) torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values(), transpose.shape, transpose.layout) def check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout): transpose = subject.transpose(dim0, dim1) # correct layout self.assertEqual(transpose.layout, expected_layout) # transpose must be return a view _check_transpose_view(subject, transpose) # result uses unsafe construction, so we check invariants _check_layout_invariants(transpose) self.assertEqual(transpose.to_dense(), subject_dense.transpose(dim0, dim1)) round_trip = transpose.transpose(dim0, dim1) self.assertEqual(round_trip.layout, subject.layout) # transpose must be return a view _check_transpose_view(subject, round_trip) # result uses unsafe construction, so we check invariants _check_layout_invariants(round_trip) self.assertEqual(round_trip.to_dense(), subject_dense) def check_same_dim_transpose(subject, subject_dense, dim): transpose = subject.transpose(dim, dim) # correct layout self.assertEqual(transpose.layout, subject.layout) # transpose must be return a view _check_transpose_view(subject, transpose) # result uses unsafe construction, so we check invariants _check_layout_invariants(transpose) self.assertEqual(transpose.to_dense(), subject_dense) def check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1): mismatch_name = f"{dim0}\\({name0}\\) and {dim1}\\({name1}\\)" err = r"transpose\(\): can only transpose dimensions of the same type \(Batch, Sparse, Dense\), got " + mismatch_name with self.assertRaisesRegex(RuntimeError, err): subject.transpose(dim0, dim1) def run_test(shape, nnz, index_type, n_dense, blocksize=()): subject = self.genSparseCompressedTensor(shape, nnz, layout=layout, device=device, index_dtype=index_type, blocksize=blocksize, dense_dims=n_dense, dtype=dtype) sparse0 = len(shape) - n_dense - 1 sparse1 = sparse0 - 1 dense0 = sparse0 + 1 if n_dense > 0 else None dense1 = dense0 + 1 if n_dense > 1 else None n_batch = len(shape) - n_dense - 2 batch0 = sparse1 - 1 if n_batch > 0 else None batch1 = 0 if n_batch > 1 else None sparse_dims = (sparse0, sparse1) dense_dims = (dense0, dense1) batch_dims = (batch0, batch1) named0 = [(name, d[0]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] named1 = [(name, d[1]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] flipped_layout = { torch.sparse_csr: torch.sparse_csc, torch.sparse_csc: torch.sparse_csr, torch.sparse_bsr: torch.sparse_bsc, torch.sparse_bsc: torch.sparse_bsr }[layout] if n_dense > 0: # expect all transpose to throw for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): msg = r"transpose\(\): hybrid sparse compressed tensors with dense dimensions are not supported" if (dim0 is not None) and (dim1 is not None): with self.assertRaisesRegex(RuntimeError, msg): subject.transpose(dim0, dim1) else: subject_dense = subject.to_dense() for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): if dim0 is not None: check_same_dim_transpose(subject, subject_dense, dim0) if dim1 is not None: if name0 == name1: expected_layout = flipped_layout if name0 == "Sparse" else layout check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout) else: check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1) # batch/sparse, sparse/dense only and full hybrid cases shape_ndense = list(itertools.product([(2, 4, 6, 2), (10, 6, 4, 2), (2, 4, 4, 2, 6)], [0, 1, 2])) # sparse only cases shape_ndense += [[(4, 8), 0], [(2, 2), 0], [(8, 4), 0]] for (shape, n_dense), index_dtype in itertools.product(shape_ndense, [torch.int32, torch.int64]): n_batch = len(shape) - n_dense - 2 sparse_shape = shape[n_batch: n_batch + 2] if layout in (torch.sparse_bsr, torch.sparse_bsc): # for blocked all combinations of 2,1 shoudl be valid blocksizes run_test(shape, 0, index_dtype, n_dense, blocksize=(2, 2)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 2)) run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense, blocksize=(2, 2)) # repeat the realistic sparseity case with varried block sizes run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 1)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 2)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 1)) else: run_test(shape, 0, index_dtype, n_dense) run_test(shape, max(sparse_shape), index_dtype, n_dense) run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense) # TODO: This is a stopgap for a rigorous extension of our autograd tests # to test the functionality of detach @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_exercise_detach(self, device, dtype): shape = (3, 3) nnz = 4 for index_dtype in [torch.int32, torch.int64]: inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) detached_inp = inp.detach() self.assertEqual(inp, detached_inp) def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)): if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]: tensor = tensor.to_dense() else: raise NotImplementedError(repr(tensor)) if layout is torch.sparse_csr: return sp.csr_matrix(tensor.cpu().numpy()) if layout is torch.sparse_csc: return sp.csc_matrix(tensor.cpu().numpy()) if layout is torch.sparse_bsr: return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices() # No native scipy BSC support? raise NotImplementedError(repr(tensor)) @skipMeta @all_sparse_compressed_layouts('to_layout') @all_sparse_compressed_layouts('from_layout') def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout): """This test performs a smoke test for covered conversion and verifies that an exception is thrown for unsupported conversions. TODO: This test covers a subset of TestSparseAny.test_to_sparse tests and can be eliminated. Keeping the test until the new `Tensor.to_sparse(*, layout, blocksize)` has landed. """ allowed_pairwise_layouts_sets = { frozenset({torch.sparse_csc}), frozenset({torch.sparse_csr}), frozenset({torch.sparse_csc, torch.sparse_csr}), frozenset({torch.sparse_csc, torch.sparse_bsc}), frozenset({torch.sparse_csc, torch.sparse_bsr}), frozenset({torch.sparse_csr, torch.sparse_bsc}), frozenset({torch.sparse_csr, torch.sparse_bsr}), frozenset({torch.sparse_bsc}), frozenset({torch.sparse_bsr}), frozenset({torch.sparse_bsc, torch.sparse_bsr}), } block_layouts = (torch.sparse_bsr, torch.sparse_bsc) def _to_from_layout(layout_a, layout_b, a): expect_error = True if {layout_a, layout_b} in allowed_pairwise_layouts_sets: expect_error = False # BSR -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr): expect_error = True # BSR -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csc): expect_error = True # BSC -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csr): expect_error = True # BSC -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csc): expect_error = True # CSR -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSR -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsc): if a.dim() > 2: expect_error = True # CSC -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSC -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsc): if a.dim() > 2: expect_error = True blocksize_a = (1, 1) if layout_a in {torch.sparse_bsr, torch.sparse_bsc} else None blocksize_b = (1, 1) if layout_b in {torch.sparse_bsr, torch.sparse_bsc} else None b = a.to_sparse(layout=layout_a, blocksize=blocksize_a) if expect_error: with self.assertRaises(RuntimeError): b.to_sparse(layout=layout_b, blocksize=blocksize_b) else: c = b.to_sparse(layout=layout_b, blocksize=blocksize_b) self.assertEqual(a.to_dense(), c.to_dense()) # change of blocksize upon conversion is not yet supported. if b.layout in block_layouts: for block_layout in block_layouts: with self.assertRaisesRegex(RuntimeError, "conversion from.*to.*is not implemented"): b.to_sparse(layout=block_layout, blocksize=(3, 3)) batch_dims = [(), (2,), (2, 2), (2, 2, 2)] sparse_dims = (6, 12) for batch_dim in batch_dims: a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device) _to_from_layout(from_layout, to_layout, a) @skipMeta @all_sparse_compressed_layouts() @batched_nonbatched() @hybrid_nonhybrid() @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_dense_to_from_sparse_compressed(self, device, hybrid, batched, layout): """This test tests conversion from dense to/from CSR and CSC by comparing to SciPy's implementation. Here we test only those conversion combinations that SciPy supports to ensure that PyTorch conversions are in the same page with SciPy. Independent from SciPy, all conversion combinations are tested in TestSparseAny.test_to_sparse. """ blocked_layouts = (torch.sparse_bsr, torch.sparse_bsc) # helpers def _check_against_scipy_matrix(pt_matrix, dense, blocksize, **kwargs): # scipy has no bsc layout, so we check against the bsr layout of the tranposed dense if layout == torch.sparse_bsc: sp_matrix = self._construct_sp_matrix(dense.t(), layout=torch.sparse_bsr, blocksize=blocksize[::-1]) else: sp_matrix = self._construct_sp_matrix(dense, layout=layout, blocksize=blocksize) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] self.assertEqual(layout, pt_matrix.layout) if layout == torch.sparse_bsc: self.assertEqual(sp_matrix.shape[::-1], pt_matrix.shape) else: self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) if layout == torch.sparse_bsc: # we must tranpose the blocks before comparing self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values().transpose(-2, -1)) else: self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) def _check_hybrid_matrix(pt_matrix, dense, blocksize, **kwargs): # Calculate COO indices for sparse matrix. compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] compressed_indices = compressed_indices_mth(pt_matrix) plain_indices = plain_indices_mth(pt_matrix) coo_indices = torch._convert_indices_from_csr_to_coo(compressed_indices, plain_indices) row_indices, col_indices = { torch.sparse_csr: (coo_indices[0, ], coo_indices[1, ]), torch.sparse_csc: (coo_indices[1, ], coo_indices[0, ]), torch.sparse_bsr: (coo_indices[0, ], coo_indices[1, ]), torch.sparse_bsc: (coo_indices[1, ], coo_indices[0, ]), }[pt_matrix.layout] # If sparse matrix layout blocked, rearrange dense matrix # so that the shape past first two dimensions match the # shape of sparse matrix values. dense_to_check = dense if blocksize: dense_shape = dense.shape dense_to_check_shape = (dense.shape[0] // blocksize[0], blocksize[0], dense.shape[1] // blocksize[1], blocksize[1]) + dense.shape[2:] dense_to_check = dense_to_check.reshape(dense_to_check_shape).transpose(1, 2) # Verify that non-zero values of the sparse matrix are # equal to corresponding values of the dense matrix. self.assertEqual(pt_matrix.values(), dense_to_check[row_indices, col_indices]) # Verify that the remaining elements of the dense matrix # are 0, i.e. that dense are sparse matrix are fully # equal. mask = torch.ones_like(dense_to_check, dtype=torch.bool) mask[row_indices, col_indices] = False self.assertTrue(torch.all(torch.masked_select(dense_to_check, mask) == 0)) def _check_batched(pt_tensor, dense, check_batch=None, batch_shape=(), blocksize=(), **kwargs): self.assertEqual(layout, pt_tensor.layout) self.assertEqual(pt_tensor.shape, dense.shape) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] for batch_index in np.ndindex(batch_shape): pt_matrix = pt_tensor[batch_index] dense_matrix = dense[batch_index] dense_dim = pt_matrix.dim() - 2 dense_matrix_pt = dense_matrix.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=dense_dim) # sanity check, selecting batch of to_<layout> and dense[batch].to_<layout> should give the same result self.assertEqual(pt_matrix, dense_matrix_pt) check_batch(pt_matrix, dense_matrix, blocksize, **kwargs) def _generate_subject(sparse_shape, batch_shape, hybrid_shape): shape = batch_shape + sparse_shape + hybrid_shape n_batch_dim = len(batch_shape) n_hybrid_dim = len(hybrid_shape) # generate a dense tensor dense = make_tensor(shape, dtype=torch.float, device=device) # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is # applied to each batch mask = make_tensor(sparse_shape, dtype=torch.bool, device=device) # manually expand to match hybrid shape if hybrid: mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim))) mask = mask.expand(sparse_shape + hybrid_shape) # mask will broadcast over the batch dims if present return dense * mask # note: order is important here, the hybrid-ness decides the inner content check which is used to build the # batched checker (if needed) check_content = _check_against_scipy_matrix if hybrid: check_content = _check_hybrid_matrix if batched: check_content = functools.partial(_check_batched, check_batch=check_content) sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)] blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()] batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()] hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()] # general cases, always run for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product( sparse_sizes, blocksizes, batch_sizes, hybrid_sizes): dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape) sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # special cases for batched tensors if batched: # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the # same sparsity pattern in each batch sparse_shape = sparse_sizes[0] hybrid_shape = hybrid_sizes[0] batch_shape = batch_sizes[0] shape = batch_shape + sparse_shape + hybrid_shape dense = make_tensor(shape, dtype=torch.float, device=device) blocksize = blocksizes[0] # number of elements/blocks in each batch (total not nnz) batch_mask_shape = sparse_shape if layout in blocked_layouts: # if we are blocked the mask is genereated for the block valued elemetns batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1] # random bool vector w/ length equal to max possible nnz for the sparse_shape mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten() n_batch = functools.reduce(lambda x, y: x * y, batch_shape, 1) # stack random permutations of the source for each batch mask = torch.stack([mask_source[torch.randperm(mask_source.numel())] for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape) if layout in blocked_layouts: # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space mask_shape = mask.shape mask = mask.view(mask_shape + (1, 1)) mask = mask.expand(mask_shape + blocksize) mask = mask.transpose(-3, -2) mask = mask.flatten(-4, -3).flatten(-2, -1) mask_shape = mask.shape mask = mask.view(mask_shape + (1,) * len(hybrid_shape)) mask = mask.expand(mask_shape + hybrid_shape) dense = dense * mask sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # if batches have different nnz we expect the conversion to throw mask_0 = mask[0] mask_1 = mask[0].clone().fill_(True) mask_2 = mask[0].clone().fill_(False) mask_true = mask_source.clone().fill_(True) mask_false = mask_source.clone().fill_(False) mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape) dense = make_tensor(shape, dtype=torch.float, device=device) dense = dense * mask msg = "Expect the same number of specified elements per batch." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) # Should throw if there is a zero in the batch size dense = make_tensor((0,) + shape, dtype=torch.float, device=device) layout_code = str(layout).split("_")[-1] msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) @skipMeta @all_sparse_compressed_layouts() @coalescedonoff @dtypes(torch.double) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout): """ This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC by comparing to SciPy's implementation. Here we test only those conversion combinations that SciPy supports to ensure that PyTorch conversions are in the same page with SciPy. Independent from SciPy, all conversion combinations are tested in TestSparseAny.test_to_sparse. """ if layout is torch.sparse_bsc: # TODO: Remove this once support has been enabled self.skipTest('NOT IMPL') if layout is torch.sparse_bsr: # TODO: Remove this once support has been enabled self.skipTest('NOT IMPL') for shape in [(0, 10), (6, 0), (6, 10), (0, 0)]: sparse_dim = 2 nnz = shape[0] * shape[1] // 2 sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype) sp_matrix = self._construct_sp_matrix(sparse, layout) pt_matrix = sparse.to_sparse(layout=layout) compressed_indices_mth = { torch.sparse_csr: torch.Tensor.crow_indices, torch.sparse_csc: torch.Tensor.ccol_indices, }[layout] plain_indices_mth = { torch.sparse_csr: torch.Tensor.col_indices, torch.sparse_csc: torch.Tensor.row_indices, }[layout] self.assertEqual(layout, pt_matrix.layout) self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) sparse_csc = sparse.to_sparse_csc() sp_matrix = self._construct_sp_matrix(sparse_csc, layout) pt_matrix = sparse_csc.to_sparse(layout=layout) self.assertEqual(layout, pt_matrix.layout) self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) # e.g., TestSparseCSRCPU and TestSparseCSRCUDA instantiate_device_type_tests(TestSparseCSR, globals()) instantiate_device_type_tests(TestSparseCompressed, globals()) if __name__ == '__main__': run_tests()
def _npref_block_addmm_addmv(c, a, b, alpha, beta): return alpha * (a @ b) + beta * c class TestSparseCSR(TestCase): def test_csr_stride(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): a.stride() with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"): a.stride(-1) def test_csr_storage(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"): a.storage() def test_csr_is_contiguous(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have is_contiguous"): a.is_contiguous() @onlyCPU @largeTensorTest("20GB", "cpu") def test_csr_nnz(self): # Tests the limits of the number of specified elements in CSR tensors, see gh-102520. for nnz in [0, 2**31]: rows, cols = 1, max(nnz, 1) crow_indices = torch.tensor([0, nnz], dtype=torch.int64) col_indices = torch.arange(nnz, dtype=torch.int64) values = torch.ones(nnz, dtype=torch.int8) a = torch.sparse_csr_tensor(crow_indices, col_indices, values, (rows, cols)) self.assertEqual(a._nnz(), nnz) def test_csr_double_to_sparse_csr(self): a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64) a.to_sparse_csr().to_sparse_csr() @all_sparse_compressed_layouts() @parametrize("index_dtype", [torch.int32, torch.int64]) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)) def test_select(self, device, dtype, index_dtype, layout): compressed_indices_mth = { torch.sparse_csr: torch.Tensor.crow_indices, torch.sparse_bsr: torch.Tensor.crow_indices, torch.sparse_csc: torch.Tensor.ccol_indices, torch.sparse_bsc: torch.Tensor.ccol_indices, }[layout] plain_indices_mth = { torch.sparse_csr: torch.Tensor.col_indices, torch.sparse_bsr: torch.Tensor.col_indices, torch.sparse_csc: torch.Tensor.row_indices, torch.sparse_bsc: torch.Tensor.row_indices, }[layout] create_tensor_mth = { torch.sparse_csr: torch.sparse_csr_tensor, torch.sparse_bsr: torch.sparse_bsr_tensor, torch.sparse_csc: torch.sparse_csc_tensor, torch.sparse_bsc: torch.sparse_bsc_tensor, }[layout] shape = (2, 3, 6, 10) nnz = 6 blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () sparse = self.genSparseCompressedTensor( shape, nnz, device=device, layout=layout, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize) comp_indices = compressed_indices_mth(sparse) plain_indices = plain_indices_mth(sparse) values = sparse.values() # select from batch dimensions sparse_selected12 = sparse.select(1, 2) expected_sparse_selected12 = create_tensor_mth(comp_indices.select(1, 2).contiguous(), plain_indices.select(1, 2).contiguous(), values.select(1, 2).contiguous(), size=(2, 6, 10), dtype=dtype, device=device) self.assertEqual(expected_sparse_selected12, sparse_selected12) # selecting rows/col with batch dims not allowed sparse_non_batched = sparse[0, 0] # select from sparse dimensions for select_args in [(0, 0), (1, 1)]: sparse_selected = sparse_non_batched.select(*select_args) dense_selected = sparse_non_batched.to_dense().select(*select_args) self.assertEqual(dense_selected, sparse_selected) self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0]) # assigning to sparse through indexing is disabled with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"): sparse[0, 0, 0, 0] = 99.0 # select from sparse dimensions without removing batch dims msg = "selecting sparse dimensions is not supported for batched sparse compressed tensors." with self.assertRaisesRegex(RuntimeError, msg): sparse.select(-2, 0) with self.assertRaisesRegex(RuntimeError, msg): sparse.select(-1, 0) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_resize(self, device, dtype): def numel(tensor): r = 1 for s in tensor.shape: r *= s return r batch_shapes = [(), (2,), (2, 3)] for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes): shape = (*b, 2, 3) nnz = 6 a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) self.assertEqual(a.numel(), numel(a)) new_shape = (*b, 4, 5) a.resize_(new_shape) self.assertEqual(a.shape, new_shape) # resize to larger shape doesn't add specified elements self.assertEqual(a._nnz(), nnz) self.assertEqual(a.numel(), numel(a)) new_shape = (*b, 1, 5) a.resize_(new_shape) self.assertEqual(a.shape, new_shape) # resize to smaller shape trims specified elements self.assertEqual(a._nnz(), 5) self.assertEqual(a.numel(), numel(a)) # trim batched dimensions a.resize_(new_shape[-2], new_shape[-1]) self.assertEqual(a.shape, (new_shape[-2], new_shape[-1])) self.assertEqual(a._nnz(), 5) self.assertEqual(a.numel(), numel(a)) @skipMeta @dtypes(torch.float, torch.bool) @all_sparse_compressed_layouts() def test_resize_as_sparse_compressed(self, device, dtype, layout): def _check_resize_b_as_a(b, a): br = b.clone() br.resize_as_sparse_(a) # shape is inherited from a self.assertEqual(a.shape, br.shape) # other metadata is not affected self.assertEqual(b.layout, br.layout) self.assertEqual(b.device, br.device) self.assertEqual(b.dtype, br.dtype) def _get_compressed_plain_inds(t): compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[t.layout] return compressed_indices_mth(t), plain_indices_mth(t) br_compressed_indices, br_plain_indices = _get_compressed_plain_inds(br) br_values = br.values() b_compressed_indices, b_plain_indices = _get_compressed_plain_inds(b) a_compressed_indices, a_plain_indices = _get_compressed_plain_inds(a) self.assertEqual(a_plain_indices.shape, br_plain_indices.shape) self.assertEqual(a_compressed_indices.shape, br_compressed_indices.shape) # We don't check the content of br_plain_indices and br_compressed_indices # because it is not well-defined (the content depends on the original # shape of `b` that `resize_as` ought to discard) nor needed (the # subsequent operation likely updates the indices and values of `b` anyway). # the device/dtype of indices should always be unaffected self.assertEqual(b_plain_indices.dtype, br_plain_indices.dtype) self.assertEqual(b_plain_indices.device, br_plain_indices.device) self.assertEqual(b_compressed_indices.dtype, br_compressed_indices.dtype) self.assertEqual(b_compressed_indices.device, br_compressed_indices.device) # values are generated empty, shape is updated self.assertEqual(a.values().shape, br_values.shape) # the device/dtype of indices should always be unaffected b_values = b.values() self.assertEqual(b_values.dtype, br_values.dtype) self.assertEqual(b_values.device, br_values.device) # nnz will be picked up from a via new shape of values self.assertEqual(a._nnz(), br._nnz()) # post resize the invariants of the layout are respected torch._validate_sparse_compressed_tensor_args(br_compressed_indices, br_plain_indices, br_values, br.shape, br.layout) block_sparse = layout in (torch.sparse_bsr, torch.sparse_bsc) shape = (2, 1, 6, 4) nnz = 4 blocksize = (2, 1) if block_sparse else () for index_dtype in [torch.int32, torch.int64]: a = self.genSparseCompressedTensor(shape, layout=layout, device=device, index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) # same size, resize should not trigger b = self.genSparseCompressedTensor(shape, layout=layout, device=device, index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) # This test will not always trigger a resize, if the layouts are the same nothing should happen to b. # The invariants of the function as checked should still hold _check_resize_b_as_a(b, a) # same ndim, but bigger, more nnz, different dtype, different blocksize if blocked b = self.genSparseCompressedTensor(tuple(s * 2 for s in shape), layout=layout, device=device, dtype=torch.chalf, index_dtype=torch.int64 if index_dtype == torch.int32 else torch.int32, nnz=nnz * 2, blocksize=tuple(2 * bi for bi in blocksize)) _check_resize_b_as_a(b, a) # different device, only check on cuda pass as we know we are testing in an environment # that has multiple devices # TODO: .cpu() does not seem to work correctly for sparse. Causes a call to `copy_` which # complains about incompatible nnz between src and self? if torch.device(device).type == 'cuda' and (layout not in (torch.sparse_bsc, torch.sparse_bsr)): a_cpu = self.genSparseCompressedTensor(shape, layout=layout, device='cpu', index_dtype=index_dtype, dtype=dtype, nnz=nnz, blocksize=blocksize) _check_resize_b_as_a(b, a) # error on a strided a_strided = a.to_dense() with self.assertRaisesRegex( RuntimeError, r'resize_as_sparse_compressed_: src expected sparse compressed tensor layout'): b.resize_as_sparse_(a_strided) # error on b strided b_strided = b.to_dense() with self.assertRaisesRegex( RuntimeError, r'resize_as_sparse_compressed_: self expected sparse compressed tensor layout'): b_strided.resize_as_sparse_(a) # error if layout does not match, transpose induces layout flip with self.assertRaisesRegex(RuntimeError, r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): b.transpose(-2, -1).resize_as_sparse_(a) with self.assertRaisesRegex(RuntimeError, r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"): b.resize_as_sparse_(a.transpose(-2, -1)) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_resize_errors(self, device, dtype): for index_dtype in [torch.int32, torch.int64]: shape = (2, 3) nnz = 6 a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"): new_shape = (4,) a.resize_(new_shape) # resizing of columns to smaller size is not implemented with self.assertRaisesRegex( RuntimeError, "torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.", ): new_shape = (2, 2) a.resize_(new_shape) @skipIfTorchDynamo() @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csr_from_dense(self, device, dtype): dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values()) dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values()) dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device) sparse = dense.to_sparse_csr() self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices()) self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices()) self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values()) def _test_sparse_compressed_to_dense(self, device, dtype, layout): compressed_format_str = str(layout)[-3:] def to_compressed(t): return getattr(t, f"to_sparse_{compressed_format_str}")() def compressed_constructor(*input, **kwargs): constructor = getattr(torch, f"sparse_{compressed_format_str}_tensor") return constructor(*input, **kwargs) def get_dense_shape(shape, batch_ndim): if layout is torch.sparse_csc: compressed_dims_slice = slice(batch_ndim + 1, batch_ndim - 1, -1) else: compressed_dims_slice = slice(batch_ndim, batch_ndim + 2) return shape[:batch_ndim] + shape[compressed_dims_slice] + shape[batch_ndim + 2:] def transpose(t, batch_ndim): if layout is torch.sparse_csc: return t.transpose(batch_ndim, batch_ndim + 1) return t mn = [5, 2, 0] for (m, n) in itertools.product(mn, mn): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) sparse = to_compressed(dense) self.assertEqual(sparse.to_dense(), dense) batch_shape = (2, 3) compressed_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1) plain_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1) values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1) sparse = compressed_constructor(compressed_indices, plain_indices, values, dtype=dtype, device=device) dense_shape = get_dense_shape(sparse.shape, len(batch_shape)) dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(dense_shape) self.assertEqual(sparse.to_dense(), transpose(dense, len(batch_shape))) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csr_to_dense(self, device, dtype): self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csr) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sparse_csc_to_dense(self, device, dtype): self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csc) @skipMeta @skipCPUIfNoMklSparse @coalescedonoff @dtypes(torch.double) def test_coo_to_csr_convert(self, device, dtype, coalesced): with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"): torch._convert_indices_from_coo_to_csr( torch.randint(100, (5, 5), device=device), size=100) size = (5, 5) sparse_dim = 2 nnz = 10 sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype) sparse_csr = sparse_coo.to_sparse_csr() self.assertTrue(sparse_csr.is_sparse_csr) self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense()) vec = torch.randn((5, 1), dtype=dtype, device=device) coo_product = sparse_coo.matmul(vec) csr_product = sparse_csr.matmul(vec) self.assertEqual(coo_product, csr_product) vec = torch.randn((100, 1), dtype=dtype, device=device) index = torch.tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], dtype=torch.int32) values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device) csr = coo.to_sparse_csr() self.assertEqual(coo.matmul(vec), csr.matmul(vec)) col_indices = torch.tensor([ 31, 92, 65, 50, 34, 62, 22, 56, 74, 89 ], dtype=torch.int64, device=device) self.assertEqual(csr.col_indices(), col_indices) values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) self.assertEqual(csr.values(), values) @parametrize("blocksize", [2, 4]) @dtypes((torch.double, torch.int32), (torch.double, torch.int64)) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @skipMeta def test_csr_to_block_csr(self, device, dtypes, blocksize): for shape in [(24, 24), (12, 24)]: dtype, index_dtype = dtypes m, k = shape nnz = random.randint(0, m * k) t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype, device=device, index_dtype=index_dtype) st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size())) block_t = t.to_sparse_bsr((blocksize, blocksize)) self.assertEqual(block_t.values().dim(), 3) self.assertTrue(block_t.layout == torch.sparse_bsr) block_st = st.tobsr(blocksize=(blocksize, blocksize)) block_st.sort_indices() self.assertEqual(block_t.values().cpu(), block_st.data) self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype)) self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype)) @dtypes(torch.double) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_csr_to_block_csr_errors(self, device, dtype): for index_dtype in [torch.int32, torch.int64]: nnz = 15 t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, r"tensor sparse size \(.*,.*\) must be divisible by given blocksize \(.*,.*\)"): block_t = t.to_sparse_bsr((5, 5)) # TODO: Support auto generation of device check for sparse tensors # See: https://github.com/pytorch/pytorch/issues/59058 @onlyCUDA @dtypes(torch.double) def test_matmul_device_mismatch(self, device, dtype): cpu = torch.rand((10, 10)) cuda = cpu.cuda() for s, m1, m2 in itertools.product((cpu, cuda), repeat=3): csr = m1.to_sparse() if s.device == csr.device == m2.device: torch.addmm(s, csr, m2) else: with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.addmm(s, csr, m2) @skipCPUIfNoMklSparse @skipCUDAIfNoSparseGeneric @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater else [], *[torch.bfloat16] if SM80OrLater else [])) def test_csr_matvec(self, device, dtype): if TEST_WITH_ROCM and (dtype == torch.half or dtype == torch.bfloat16): self.skipTest("ROCm doesn't work with half dtypes correctly.") side = 100 for index_dtype in [torch.int32, torch.int64]: csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype) vec = torch.randn(side, dtype=dtype, device=device) res = csr.matmul(vec) expected = csr.to_dense().matmul(vec) self.assertEqual(res, expected) bad_vec = torch.randn(side + 10, dtype=dtype, device=device) err_msg = "size mismatch, got" with self.assertRaisesRegex(RuntimeError, err_msg): csr.matmul(bad_vec) @onlyCUDA # hmm, the test passes ok on CUDA when Rocm is not available: @skipCUDAIfRocmVersionLessThan((5, 2)) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_baddbmm(self, device, dtype): # TODO: disable the invariant checks within torch.baddbmm that # constructs unconventional csr tensors leading to # RuntimeError: tensor dimensionality must be sum of batch, # base, and dense dimensionalities (=0 + 2 + 0) but got 3 # when invariant checking is enabled. When done, undecorate run_test. @torch.sparse.check_sparse_tensor_invariants(enable=False) def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() b = b.mH if (op_b and a.shape == b.shape) else b actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta) out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out) expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])] expected = torch.stack(expected, 0) self.assertEqual(actual, out) self.assertEqual(actual, expected) for index_dtype in [torch.int32, torch.int64]: for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) # a_batched is a regular CSR tensor but with a batch dimension in the shape a_batched = torch.sparse_csr_tensor( a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False) b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device) @onlyCUDA @unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported") @skipCUDAIfNoSparseGeneric @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_bmm(self, device, dtype): def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None): b = b.mH if (op_b and a.shape == b.shape) else b actual = torch.bmm(a_batched, b) out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual) torch.bmm(a_batched, b, out=out) expected = [torch.mm(a, b[i]) for i in range(b.shape[0])] expected = torch.stack(expected, 0) self.assertEqual(actual, out) self.assertEqual(actual, expected) for index_dtype in [torch.int32, torch.int64]: for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) # a_batched is a regular CSR tensor but with a batch # dimension in the shape. It is unorthodox in PyTorch # to represent a batch sparse tensor in this way, # hence checking the tensor invariants is locally # turned off. a_batched = torch.sparse_csr_tensor( a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False) b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device) def run_test_block_addmm_addmv(self, addmv_addmm, c, a, b, op_b=False, op_out=False, *, dtype=None, device=None, ref=_npref_block_addmm_addmv): alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random() beta = complex(random.random(), random.random()) if dtype.is_complex else random.random() b = b.mH if (op_b and a.shape == b.shape) else b actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta) out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c) addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out) expected = ref(c, a, b, alpha, beta) self.assertEqual(actual, out) self.assertEqual(actual, expected, lambda msg: f"{msg}\na={a}\nc={c}\nb={b}\nalpha={alpha} beta={beta}") # TODO: block_size 1 is broken @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @skipCPUIfNoMklSparse @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @skipIfTorchDynamo("raises 'sparse matrix length is ambiguous; use getnnz()'") @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater else [], *[torch.bfloat16] if SM80OrLater else [])) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-5, torch.complex128: 1e-5, torch.float16: 1e-3, torch.bfloat16: 1e-3}) def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous): def make_transposed_addmm_op(f): def tt(t): if isinstance(t, torch.Tensor): return t.transpose(-2, -1) else: # assume numpy/scipy spmatrix return t.transpose() @functools.wraps(f) def wrapper(c, a, b, alpha=None, beta=None, out=None): if out is not None: # the ref takes no out kwarg assert isinstance(out, torch.Tensor) # transpose inplace to propagate out to checking context out.transpose_(-2, -1) return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta, out=out) else: return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta) return wrapper def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None): def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *(prep_input(t) for t in (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res def ref_half_bfloat16(c, a, b, alpha=None, beta=None, out=None): res = alpha * (a.to_dense().to(torch.float32) @ b.to_dense().to(torch.float32)).to(a.dtype) + beta * c if out is not None: out.copy_(res) return out else: return res if dtype in (torch.half, torch.bfloat16): ref = ref_half_bfloat16 else: ref = ref_sp_numpy for (m, n, k) in itertools.product([2, 5], repeat=3): nnz = random.randint(0, m * k) a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_b, op_out in itertools.product([True, False], repeat=2): self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device, ref=ref) self.run_test_block_addmm_addmv(make_transposed_addmm_op(torch.addmm), c, a, b, op_b, op_out, dtype=dtype, device=device, ref=make_transposed_addmm_op(ref)) @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous): # TODO: Explicitly disable block size 1 support # if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1: # return def ref_block_addmv(c, a, b, alpha, beta): return _npref_block_addmm_addmv(c, a.to_dense(), b, alpha, beta) for (m, k) in itertools.product([2, 5], repeat=2): nnz = random.randint(0, m * k) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device, ref=ref_block_addmv) @parametrize("matrix_shape", [(3, 3), (5, 7), (11, 9)], name_fn=lambda x: "shape_{}x{}".format(*x)) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @onlyCPU def test_addmv(self, device, dtype, matrix_shape): mat = torch.randn(matrix_shape, dtype=dtype, device=device) mat[mat.real < 0] = 0 sparse_mat = mat.to_sparse_csr() mvec = torch.randn((mat.size(1),), dtype=dtype, device=device) avec = torch.randn((mat.size(0),), dtype=torch.float64, device=device) ref_output = torch.addmv(avec, mat, mvec) output = torch.addmv(avec, sparse_mat, mvec) self.assertEqual(ref_output, output) @parametrize("block_size", [2, 3]) @parametrize("index_dtype", [torch.int32, torch.int64]) @parametrize("noncontiguous", [True, False]) @skipCPUIfNoMklSparse @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous): def run_test(a, b, upper, transpose, unitriangular, op_out): if unitriangular and self.device_type == 'cpu': # TODO: When unitriangular=True results are not correct on CPU return if not upper and self.device_type == 'cpu': # TODO: When upper=False some generated inputs might crash on CPU return actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose) actual_X = actual.solution actual_A_clone = actual.cloned_coefficient self.assertTrue(actual_A_clone.numel() == 0) if a._nnz() == 0: self.assertTrue(actual_X.isnan().all()) return # TODO: replace with torch method when implemented to_dense() on block sparse tensor a_bsr = sp.bsr_matrix( ( a.values().cpu().numpy(), a.col_indices().cpu().numpy(), a.crow_indices().cpu().numpy(), ), shape=a.shape, ) expected_X, _ = torch.triangular_solve( b, torch.tensor(a_bsr.todense(), device=device), transpose=transpose, upper=upper, unitriangular=unitriangular) if expected_X.isnan().any(): # TODO: zeros on the diagonal are not handled for CPU path # there's no way to query this info from MKL if self.device_type == 'cuda' and not TEST_WITH_ROCM: self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any()) return self.assertEqual(actual_X, expected_X) out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b) torch.triangular_solve( b, a, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, actual_X) self.assertEqual(out, expected_X) for (m, k) in itertools.product([2, 3], [1, 3]): nnz = random.randint(0, m * m) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, m * block_size), check_invariants=False) b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous) for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4): run_test(a, b, upper, unitriangular, transpose, op_out) @skipCPUIfNoMklSparse @unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported") @dtypes(torch.double) def test_mm(self, device, dtype): def test_shape(di, dj, dk, nnz0=None, nnz1=None): for index_dtype in [torch.int32, torch.int64]: alpha = random.random() beta = random.random() def _test_addmm(t, x, y): # TODO: addmm doesn't support strided result for sparse inputs. # res = beta * t + alpha * (x @ y) res = torch.addmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha) self.assertEqual(res, expected) res = torch.addmm(t, x, y) expected = torch.addmm(t, x.to_dense(), y.to_dense()) self.assertEqual(res, expected) def _test_mm(x, y): res = torch.mm(x, y) expected = torch.mm(x.to_dense(), y.to_dense()) if x.layout is torch.strided or y.layout is torch.strided: self.assertEqual(res.layout, torch.strided) else: self.assertEqual(res.layout, torch.sparse_csr) self.assertEqual(res.to_dense(), expected) def _test(t, x, y): _test_addmm(t, x, y) _test_mm(x, y) if nnz0 is None: nnz0 = random.randint(di * dk // 2, di * dk) t = torch.randn(di, dj, dtype=dtype, device=device) x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = torch.randn(dk, dj, dtype=dtype, device=device) _test(t, x, y) t = torch.randn(di, dj, dtype=dtype, device=device) x = self.genSparseCSCTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = torch.randn(dk, dj, dtype=dtype, device=device) _test(t, x, y) if nnz1 is None: nnz1 = random.randint(dk * dj // 2, dk * dj) t = torch.randn(di, dj, dtype=dtype, device=device) x = torch.randn(di, dk, dtype=dtype, device=device) y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test(t, x, y) t = torch.randn(di, dj, dtype=dtype, device=device) x = torch.randn(di, dk, dtype=dtype, device=device) y = self.genSparseCSCTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test(t, x, y) x_shape, y_shape = x.shape, y.shape gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor] # Test mm({CSR, CSC}, {CSR, CSC}) for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc): x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype) y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype) _test_mm(x, y) def test_empty_inputs(lhs_layout, rhs_layout): xd = torch.rand(10, 0, device=device, dtype=dtype) yd = xd.transpose(-2, -1) zd = torch.rand(0, 0, device=device, dtype=dtype) xls, yls, zls = (t.to_sparse(layout=lhs_layout) for t in (xd, yd, zd)) xrs, yrs, zrs = (t.to_sparse(layout=rhs_layout) for t in (xd, yd, zd)) for ls, rs, ld, rd in [(xls, yrs, xd, yd), (xls, zrs, xd, zd), (zls, yrs, zd, yd), (zls, zrs, zd, zd)]: res_sparse = ls @ rs res_dense = ld @ rd self.assertEqual(res_sparse.to_dense(), res_dense) def test_orthogonal_inputs(lhs_layout, rhs_layout): ones = torch.ones(2, 2, device=device, dtype=dtype) zeros = torch.zeros(2, 2, device=device, dtype=dtype) x = torch.cat((ones, zeros), -1).to_sparse(layout=lhs_layout) y = torch.cat((zeros, ones), -2).to_sparse(layout=rhs_layout) res = x @ y res_expected = torch.zeros(*res.shape, device=device, dtype=dtype, layout=res.layout) self.assertEqual(res, res_expected) for lhs_layout, rhs_layout in itertools.product([torch.sparse_csr, torch.sparse_csc], repeat=2): test_empty_inputs(lhs_layout, rhs_layout) test_orthogonal_inputs(lhs_layout, rhs_layout) for i in [2, 4]: for j in [2, 4, 7]: for k in [2, 3, 7]: test_shape(i, j, k) test_shape(4, 4, 4, 0, 0) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_mm(self, device, dtype): def test_shape(d1, d2, d3, nnz, transposed, index_dtype): if transposed: D = torch.randn(d3, d2, dtype=dtype, device=device).t_() else: D = torch.randn(d2, d3, dtype=dtype, device=device) S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype) S_dense = S.to_dense() self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) for index_dtype in [torch.int32, torch.int64]: test_shape(7, 8, 9, 20, False, index_dtype) test_shape(7, 8, 9, 20, True, index_dtype) @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_and_complex_types_and( *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [], *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else [])) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_addmm(self, device, dtype): def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None): if alpha_beta is None: alpha = random.random() beta = random.random() else: alpha, beta = alpha_beta if broadcast: D1 = make_tensor((), dtype=dtype, device=device) else: D1 = make_tensor([n, p], dtype=dtype, device=device) D2 = make_tensor([m, p], dtype=dtype, device=device) S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype) S_dense = S.to_dense() Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) self.assertEqual(Y, Y_dense) for index_dtype in [torch.int32, torch.int64]: test_shape(7, 8, 9, 20, False, index_dtype, None) test_shape(7, 8, 9, 20, True, index_dtype, None) test_shape(7, 8, 9, 20, False, index_dtype, (1, 0)) test_shape(7, 8, 9, 20, True, index_dtype, (1, 0)) test_shape(7, 8, 9, 20, False, index_dtype, (1, 1)) test_shape(7, 8, 9, 20, True, index_dtype, (1, 1)) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) @dtypesIfCUDA(*floating_types_and(torch.complex64, *[torch.bfloat16] if SM80OrLater else [], *[torch.half] if SM53OrLater else [], *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) @sparse_compressed_nonblock_layouts() @skipCUDAIf( not _check_cusparse_spgemm_available(), "cuSparse Generic API SpGEMM is not available" ) def test_addmm_all_sparse_csr(self, device, dtype, layout): M = torch.randn(10, 25, device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") # Test 0-strided M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse") # Test beta=0, M=nan M = torch.full((10, 25), float('nan'), device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="all_sparse") # Test transpose for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): def maybe_transpose(cond, m): if not cond: return m return m.t().clone(memory_format=torch.contiguous_format).t() M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="all_sparse") @onlyCPU @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @sparse_compressed_nonblock_layouts() def test_addmm_dense_result(self, device, dtype, layout): M = torch.randn(10, 25, device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") # Test 0-strided M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25) m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result") # Test beta=0, M=nan M = torch.full((10, 25), float('nan'), device=device).to(dtype) m1 = torch.randn(10, 50, device=device).to(dtype) m2 = torch.randn(50, 25, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="dense_result") # Test transpose for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): def maybe_transpose(cond, m): if not cond: return m return m.t().clone(memory_format=torch.contiguous_format).t() M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="dense_result") @parametrize("k", [0, 1, 8]) @parametrize("n", [0, 1, 10]) @parametrize("m", [0, 1, 25]) @skipCPUIfNoMklSparse @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_types_and(torch.complex64, *[torch.bfloat16] if SM80OrLater else [], *[torch.half] if SM53OrLater else [], *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED or HIPSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6, torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8}) def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k): if (TEST_WITH_ROCM and k != 0 and n != 0 and m != 0): self.skipTest("Skipped on ROCm") M = torch.randn(n, m, device=device).to(dtype) m1 = torch.randn(n, k, device=device).to(dtype) m2 = torch.randn(k, m, device=device).to(dtype) _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse") M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr() m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr() m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr() self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2)) self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2)) @skipCPUIfNoMklSparse @dtypes(torch.float) def test_addmm_errors(self, device, dtype): # test that the errors are the same for dense and sparse versions import re def test1(*, is_sparse): # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a, a_sparse, a) else: return torch.addmm(a, a, a) def test2(*, is_sparse): # mat2 must be a matrix a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a, a_sparse, a.unsqueeze(0)) else: return torch.addmm(a, a, a.unsqueeze(0)) def test3(*, is_sparse): # the first input needs to be 1D or 2D a = make_tensor((3, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.addmm(a.unsqueeze(0), a_sparse, a) else: return torch.addmm(a.unsqueeze(0), a, a) for test in (test1, test2, test3): try: test(is_sparse=False) except RuntimeError as msg: with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): test(is_sparse=True) @skipCPUIfNoMklSparse @dtypes(torch.float) def test_mm_errors(self, device, dtype): # test that the errors are the same for dense and sparse versions import re def test1(*, is_sparse): # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.mm(a_sparse, a) else: return torch.mm(a, a) def test2(*, is_sparse): # mat2 must be a matrix a = make_tensor((2, 3), dtype=dtype, device=device) if is_sparse: a_sparse = a.to_sparse_csr() return torch.mm(a_sparse, a.unsqueeze(0)) else: return torch.mm(a, a.unsqueeze(0)) for test in (test1, test2): try: test(is_sparse=False) except RuntimeError as msg: with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))): test(is_sparse=True) @sparse_compressed_nonblock_layouts() @dtypes(torch.float, torch.double) def test_add(self, device, layout, dtype): def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32, layout=layout, blocksize=()) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) res_perm = torch.add(x, y, alpha=r) self.assertEqual(res_perm, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() res_perm = torch.add(x, y, alpha=r) self.assertEqual(res, expected) self.assertEqual(res_perm, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n)) @dtypes(torch.float, torch.double) def test_mul(self, device, dtype): # TODO: This whole test should be migrated to OpInfos def _test_spadd_shape(fn, nnz, shape): x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) # Forward comparison res_sparse_sparse = fn(y, x) res_dense_sparse = fn(y.to_dense(), x) res_sparse_dense = fn(y, x.to_dense()) expected = fn(y.to_dense(), x.to_dense()) self.assertEqual(res_sparse_sparse, expected) # TODO: While result of mul(dense, csr) is csr, it is not fully compressed. # That means it may contain materialized zeros, since the dense argument # is converted according to the sparsity pattern of csr. In the future # we might require the result to be fully compressed. self.assertEqual(res_dense_sparse, expected) self.assertEqual(res_sparse_dense, expected) # Grad comparison x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) # csr * csr -> csr with csr, csr gradients x_a = x.clone().requires_grad_() y_a = y.clone().requires_grad_() fn(y_a, x_a).backward(z) x_dense_a = x.to_dense().requires_grad_() y_dense_a = y.to_dense().requires_grad_() fn(y_dense_a, x_dense_a).backward(z.to_dense()) self.assertEqual(x_a.grad.layout, torch.sparse_csr) self.assertEqual(y_a.grad.layout, torch.sparse_csr) self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad) self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad) # TODO: Currently strided Tensors cannot have csr gradients # dense * csr -> csr with csr, dense gradients x_a = x.clone().requires_grad_() y_a = y.to_dense().clone().requires_grad_() err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr" with self.assertRaisesRegex(RuntimeError, err_msg): fn(y_a, x_a).backward(z) # csr * dense -> csr with dense, csr gradients x_a = x.to_dense().clone().requires_grad_() y_a = y.clone().requires_grad_() err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr" with self.assertRaisesRegex(RuntimeError, err_msg): fn(y_a, x_a).backward(z) _test_spadd_shape(torch.mul, 100, [100, 100]) _test_spadd_shape(torch.mul, 0, [100, 100]) _test_spadd_shape(torch.mul, 100, [100, 1]) _test_spadd_shape(torch.mul, 100, [1, 100]) # TODO: enable hybrid once to_dense supports it @parametrize('enable_hybrid', [False]) @all_sparse_compressed_layouts() @dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half)) def test_mul_scalar(self, layout, device, dtype, enable_hybrid): for sparse in self.generate_simple_inputs( layout, device=device, dtype=dtype, index_dtype=torch.int32, enable_hybrid=enable_hybrid): for scalar_dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half): # ComplexHalf is experimental if dtype is torch.half and scalar_dtype.is_complex: continue scalar_t = torch.tensor(2, dtype=scalar_dtype) for scalar in (scalar_t, scalar_t.item()): res_out = sparse.mul(scalar) self.assertEqual(res_out, scalar * sparse) res_dense_out = sparse.to_dense().mul(scalar) # BUG: dispatcher ignores mul.Scalar(Tensor, Scalar) # This issues is circumvented in the mul(Tensor, Tensor) kernel. self.assertEqual(res_out, res_dense_out) if dtype == torch.result_type(sparse, scalar): res_in_dense = sparse.to_dense().mul_(scalar) res_in = sparse.clone().mul_(scalar) self.assertEqual(res_in, res_in_dense) self.assertEqual(res_out, res_in) @skipCPUIfNoMklSparse @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sparse_add(self, device, dtype): def run_test(m, n, index_dtype): alpha = random.random() nnz1 = random.randint(0, m * n) nnz2 = random.randint(0, m * n) nnz3 = random.randint(0, m * n) if TEST_WITH_ROCM: # ROCm fails when nnz = 0 nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3) S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype) S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype) S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype) sparse_args = [S1, S2, S3] dense_args = [t.to_dense() for t in sparse_args] arg_idx = list(range(len(sparse_args))) out_idx = arg_idx + [None] for idx1, idx2, idx3 in itertools.product(arg_idx, arg_idx, out_idx): s1 = sparse_args[idx1] s2 = sparse_args[idx2] s3 = None if idx3 is None else sparse_args[idx3] d1 = dense_args[idx1] d2 = dense_args[idx2] d3 = None if idx3 is None else dense_args[idx3] expected = torch.add(d1, d2, alpha=alpha, out=d3) actual = torch.add(s1, s2, alpha=alpha, out=s3) self.assertEqual(actual.crow_indices().dtype, index_dtype) self.assertEqual(actual.col_indices().dtype, index_dtype) self.assertEqual(actual, expected) self.assertEqual(s3, d3) if s3 is not None: self.assertEqual(s3.crow_indices().dtype, index_dtype) self.assertEqual(s3.col_indices().dtype, index_dtype) for index_dtype in [torch.int32, torch.int64]: for m, n in itertools.product([3, 5], [3, 5]): run_test(m, n, index_dtype) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sparse_add_errors(self, device, dtype): def run_test(index_type): a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype) b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype) with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"): torch.add(a, b) for index_dtype in [torch.int32, torch.int64]: run_test(index_dtype) @skipCPUIfNoMklSparse @skipCUDAIf( not _check_cusparse_triangular_solve_available(), "cuSparse Generic API SpSV is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sparse_triangular_solve(self, device, dtype): def run_test(n, k, upper, unitriangular, transpose, zero): if not unitriangular: triangle_function = torch.triu if upper else torch.tril else: # Make sure diagonal elements are not materialized. # This is to exercise `unitriangular=True` not relying on # explicit presence of these indices. if upper: def remove_diagonal(t): return t.triu(-1) else: def remove_diagonal(t): return t.tril(-1) triangle_function = remove_diagonal make_A = torch.zeros if zero else make_tensor A = make_A((n, n), dtype=dtype, device=device) A = triangle_function(A) A_sparse = A.to_sparse_csr() B = make_tensor((n, k), dtype=dtype, device=device) expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose) expected_X = expected.solution actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose) actual_X = actual.solution actual_A_clone = actual.cloned_coefficient self.assertTrue(actual_A_clone.numel() == 0) if A_sparse._nnz() == 0: self.assertTrue(actual_X.isnan().all()) return self.assertEqual(actual_X, expected_X) # test out with C contiguous strides out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device) torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) # test out with F contiguous strides out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device) torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) self.assertEqual(out.stride(), (1, n)) # test out with discontiguous strides out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2] if n > 0 and k > 0: self.assertFalse(out.is_contiguous()) self.assertFalse(out.t().is_contiguous()) before_stride = out.stride() torch.triangular_solve( B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone) ) self.assertEqual(out, expected_X) self.assertEqual(out.stride(), before_stride) ks = [0, 1, 3] ns = [5, 3, 0] for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns), itertools.product([True, False], repeat=4)): run_test(n, k, upper, unitriangular, transpose, zero) @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sampled_addmm(self, device, dtype): def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None): if dtype.is_complex: alpha = random.random() + 0.3j if alpha is None else alpha beta = random.random() + 0.6j if beta is None else beta else: alpha = random.random() if alpha is None else alpha beta = random.random() if beta is None else beta if op_a and a.shape == b.shape: a = a.mH if op_b and a.shape == b.shape: b = b.mH actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta) out = torch.sparse_csr_tensor( *map(torch.clone, (actual.crow_indices(), actual.col_indices())), torch.empty_like(actual.values()), size=actual.shape ) torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out) spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape) expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense() self.assertEqual(actual.to_dense(), out.to_dense()) self.assertEqual(actual.to_dense(), expected) mnk = list(itertools.product([2, 5], repeat=3)) # Add a test case for size 0 a and b tensors mnk = mnk + [(5, 5, 0)] batch_shapes = [(), (2,), (2, 3)] tf = [True, False] for index_dtype in [torch.int32, torch.int64]: for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf): if bcast_c and len(b) == 0: continue nnz = random.randint(0, m * n) c_batch = () if bcast_c else b c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous) b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous) for op_a, op_b in itertools.product([True, False], repeat=2): run_test(c, a, b, op_a, op_b) @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sampled_addmm_autograd(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True)) for sample, dense_covector in zip(samples, [True, False]): c = sample.input a = sample.args[0] b = sample.args[1] # Compute sparse result output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs) covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output) output.backward(covector) # Compute dense result and compare with sparse result c1, a1, b1 = (x.detach().to_dense().requires_grad_(True) for x in [c, a, b]) dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1 self.assertEqual(output, dense_output) dense_covector = covector.to_dense() dense_output.backward(dense_covector) self.assertEqual(c.grad, c1.grad) self.assertEqual(a.grad, a1.grad) self.assertEqual(b.grad, b1.grad) @onlyCUDA # It works on ROCm and CUDA issue is currently active @skipCUDAIf(not TEST_WITH_ROCM, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177") @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3, torch.float64: 1e-8, torch.complex128: 1e-8}) def test_sampled_addmm_zero_sized(self, device, dtype): def run_test(c, a, b): actual = torch.sparse.sampled_addmm(c, a, b) self.assertEqual(actual.shape, c.shape) for m, n, k in itertools.product([0, 5], repeat=3): c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr) a = make_tensor((m, k), dtype=dtype, device=device) b = make_tensor((k, n), dtype=dtype, device=device) run_test(c, a, b) @onlyCUDA @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128) def test_sampled_addmm_errors(self, device, dtype): # test that the errors are the same for dense and sparse sampled versions # import re # shapes must be compatible for matrix multiplication a = make_tensor((2, 3), dtype=dtype, device=device) a_sparse = a.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"): torch.sparse.sampled_addmm(a_sparse, a, a) # mat1 must be a matrix with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"): torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a) # mat2 must be a matrix with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"): torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :]) a = make_tensor((2, 2), dtype=dtype, device=device) b = make_tensor((3, 3), dtype=dtype, device=device) b_sparse = b.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"): torch.sparse.sampled_addmm(b_sparse, a, a) b = make_tensor((2, 3), dtype=dtype, device=device) b_sparse = b.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"): torch.sparse.sampled_addmm(b_sparse, a, a) a = make_tensor((2, 2), dtype=dtype, device=device) a_sparse = a.to_sparse_csr() with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"): torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse) with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"): torch.sparse.sampled_addmm(a_sparse, a, a_sparse) @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16) @precisionOverride({torch.bfloat16: 0.01}) def test_sparse_mm_reduce_sum(self, device, dtype): def run_test(m, n, k, nnz, train): sparse = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=torch.int64) dense = sparse.to_dense() mat = torch.randn(k, n, dtype=dtype) ref_mat = mat.clone() if train: sparse.requires_grad_() mat.requires_grad_() dense.requires_grad_() ref_mat.requires_grad_() ref_out = torch.mm(dense, ref_mat) out = torch.sparse.mm(sparse, mat, 'sum') self.assertEqual(out, ref_out) if train: ref_out.sum().backward() out.sum().backward() grad_input = sparse.grad ref_grad_input = dense.grad grad_mat = mat.grad ref_grad_mat = ref_mat.grad self.assertEqual(grad_input.to_dense(), ref_grad_input) self.assertEqual(grad_mat, ref_grad_mat) run_test(4, 5, 4, 10, False) run_test(4, 4, 4, 16, True) @skipIfTorchDynamo() @onlyCPU @dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16) @precisionOverride({torch.bfloat16: 0.01, torch.float16: 0.01}) def test_sparse_mm_reduce(self, device, dtype): def run_test(m, n, k, nnz, reduce_type, index_dtype, train): csr = self.genSparseCSRTensor((m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype) mat = torch.randn(n, k, dtype=dtype) ref_mat = mat.clone() ref_values = csr.values().clone() out_int32 = index_dtype == torch.int32 coo_indices = torch._convert_indices_from_csr_to_coo( csr.crow_indices(), csr.col_indices(), out_int32=out_int32) row, col = coo_indices[0], coo_indices[1] def ref(row, col, val, mat): out = torch.zeros([m, k], dtype=dtype) weight = mat.index_select(0, col) src = weight.mul(val.view(-1, 1)) index = row.view(-1, 1).expand_as(weight) index = index.to(dtype=torch.int64) # scatter_reduce expect index to be int64 out.scatter_reduce_(0, index, src, reduce=reduce_type, include_self=False) return out if train: csr.requires_grad_() mat.requires_grad_() ref_values.requires_grad_() ref_mat.requires_grad_() ref_out = ref(row, col, ref_values, ref_mat) out = torch.sparse.mm(csr, mat, reduce_type) self.assertEqual(out, ref_out) if train and dtype not in (torch.bfloat16, torch.float16): ref_out.sum().backward() out.sum().backward() grad_values = csr.grad.values() grad_weight = mat.grad ref_grad_values = ref_values.grad ref_grad_weight = ref_mat.grad self.assertEqual(grad_values, ref_grad_values) self.assertEqual(grad_weight, ref_grad_weight) for train in [False, True]: for index_dtype in [torch.int32, torch.int64]: for reduce_type in ["sum", "mean", "amax", "amin"]: # by setting nnz < M, create empty rows run_test(3, 4, 11, 1, reduce_type, index_dtype, train) run_test(3, 4, 11, 6, reduce_type, index_dtype, train) run_test(3, 4, 11, 12, reduce_type, index_dtype, train) # we are doing blocking with 4x vector length in the kernel, # so need to test when K > 4x vector length run_test(4, 7, 33, 13, reduce_type, index_dtype, train) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_coo_csr_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) coo_sparse = dense.to_sparse() csr_sparse = coo_sparse.to_sparse_csr() self.assertEqual(csr_sparse.to_dense(), dense) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_csr_coo_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) csr_sparse = dense.to_sparse_csr() coo_sparse = csr_sparse.to_sparse() self.assertEqual(coo_sparse.to_dense(), dense) # Currently, there is no rule in PyTorch for filling zeros in the outputs # from operations on Sparse CSR tensors. Hence only those operators are supported # which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but # cos(0) = 1 (and hence it's not supported). # Note: here, we do this test only for unary operators @ops(sparse_csr_unary_ufuncs) def test_zero_to_zero_correspondence_unary(self, device, dtype, op): zero = torch.zeros((1, 2), dtype=dtype, device=device) tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device) output_zero = op(zero) expected_zero = zero.to(output_zero.dtype) output_explicit_zeros = op(tensor_explicit_zeros).to_dense() expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype) for (output, expected) in [ (output_zero, expected_zero), (output_explicit_zeros, expected_explicit_zeros) ]: self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for " "Sparse CSR as it breaks 0->0 correspondence.") for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]: self.assertEqual(op(inp).values().numel(), inp.values().numel(), f"{op.name} fails to preserve sparsity pattern.") @ops(sparse_csr_unary_ufuncs) def test_sparse_csr_unary_out(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if not op.supports_out: self.skipTest("Skipped! Out not supported") for sample in samples: assert torch.is_tensor(sample.input) # Sparse CSR only supports 2D tensors as inputs # Fail early to prevent silent success with this test if sample.input.ndim != 2: raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") sample.input = sample.input.to_sparse_csr() expect = op(sample.input, *sample.args, **sample.kwargs) out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(), device=sample.input.device, dtype=expect.dtype, index_dtype=sample.input.crow_indices().dtype) op(sample.input, *sample.args, **sample.kwargs, out=out) self.assertEqual(out, expect) @ops(sparse_csr_unary_ufuncs) def test_sparse_csr_unary_inplace(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if op.inplace_variant is None: self.skipTest("Skipped! Inplace variant not supported!") for sample in samples: assert torch.is_tensor(sample.input) # Sparse CSR only supports 2D tensors as inputs # Fail early to prevent silent success with this test if sample.input.ndim != 2: raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.") sample.input = sample.input.to_sparse_csr() expect = op(sample.input, *sample.args, **sample.kwargs) if not torch.can_cast(expect.dtype, dtype): with self.assertRaisesRegex(RuntimeError, "result type"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) continue if sample.input.is_complex() and op.name == "abs": with self.assertRaisesRegex(RuntimeError, "not supported"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) continue actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) self.assertIs(actual, sample.input) self.assertEqual(actual, expect) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) def test_autograd_sparse_csr_unary(self, device, dtype, op): if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD: self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd") samples = list(op.sample_inputs(device, dtype)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.input.ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples.") for sample in samples: # We must skip samples of low dimensionality, we can't covert them to sparsed compressed layouts if sample.input.ndim < 2: continue sparse_input = sample.input.to_sparse_csr().requires_grad_(True) def fn(input): output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output # Compute sparse result output = fn(sparse_input) covector = torch.randn_like(output) output.backward(covector) self.assertTrue(torch.is_tensor(sparse_input.grad)) self.assertTrue(sparse_input.grad.is_sparse_csr) # Compute dense result and compare with sparse result dense_input = sparse_input.detach().to_dense().requires_grad_(True) dense_output = fn(dense_input) dense_covector = covector.to_dense() dense_output.backward(dense_covector) self.assertEqual(sparse_input.grad, dense_input.grad) @skipCUDAIf( not _check_cusparse_sddmm_available(), "cuSparse Generic API SDDMM is not available" ) @dtypes(torch.float64) def test_autograd_dense_output_addmm(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_addmm samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") for sample in samples: a = sample.args[0].relu().to_sparse_csr() if sample.args[0].shape == sample.args[1].shape: import warnings warnings.warn("Broken for square matrices, see https://github.com/pytorch/pytorch/issues/116565") continue # This path tests the autograd path wrt dense inputs for addmm in [torch.addmm, torch.sparse.addmm]: def fn(c, b): output = addmm(c, a, b, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) # noncontiguous c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) # Now test the autograd path wrt sparse inputs for reverse in [True, False]: c, b = sample.input, sample.args[1] if reverse and a.shape != b.shape: continue def fn(a): inputs = (c, b, a) if reverse else (c, a, b) output = addmm(*inputs, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output # gradcheck doesn't work for sparse CSR yet, compare against dense path # Compute sparse result a = a.detach().requires_grad_(True) output = fn(a) covector = torch.randn_like(output) output.backward(covector) self.assertTrue(torch.is_tensor(a.grad)) if addmm == torch.sparse.addmm: self.assertTrue(a.grad.is_sparse_csr) else: self.assertTrue(a.grad.layout == torch.strided) # Compute dense result and compare with sparse result dense_a = a.detach().to_dense().requires_grad_(True) dense_output = fn(dense_a) self.assertEqual(output, dense_output) dense_covector = covector.to_dense() dense_output.backward(dense_covector) if addmm == torch.sparse.addmm: self.assertEqual(a.grad, dense_a.grad.sparse_mask(a)) else: self.assertEqual(a.grad, dense_a.grad) @skipCPUIfNoMklSparse @dtypes(torch.float64) def test_autograd_dense_output_addmv(self, device, dtype): from torch.testing._internal.common_methods_invocations import sample_inputs_addmv samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.args[0].ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.") for sample in samples: # TODO: Remove detach once we have autograd support for CSR input a = sample.args[0].to_sparse_csr().detach() def fn(c, b): output = torch.addmv(c, a, b, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True)) # noncontiguous c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True)) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ]) def test_autograd_dense_output(self, device, dtype, op): if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu': self.skipTest("MKL Sparse is not available") samples = list(op.sample_inputs(device, dtype, requires_grad=True)) # Fail early to prevent silent success with this test ndims_equals_2d = (s.input.ndim == 2 for s in samples) if not any(ndims_equals_2d): raise ValueError("Expected at least one 2D tensor in samples.") # Here we assume that the signature is op(sparse_input, dense_input) -> dense_output for sample in samples: # TODO: Remove detach once we have autograd support for CSR input sparse_input = sample.input.to_sparse_csr().detach() def fn(*args): output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True)) # noncontiguous args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args] self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True)) @dtypes(*all_types_and_complex()) def test_direct_coo_csr_conversion(self, device, dtype): for m, n in itertools.product([5, 2, 0], [5, 2, 0]): size = (m, n) dense = make_tensor(size, dtype=dtype, device=device) coo_sparse = dense.to_sparse_coo() self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_sum(self, device, dtype): def run_test(shape, nnz, index_type): a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) self.assertEqual(a.sum(), a.values().sum()) if dtype in floating_types(): a.requires_grad_(True) a.sum().backward() self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device)) for shape, index_dtype in itertools.product( [(10, 5), (10, 10)], [torch.int32, torch.int64]): run_test(shape, 0, index_dtype) run_test(shape, max(shape), index_dtype) run_test(shape, shape[0] * shape[1], index_dtype) @skipIfTorchDynamo() @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) @all_sparse_compressed_layouts() def test_transpose(self, device, dtype, layout): def _check_transpose_view(subject, transpose): self.assertTrue(transpose.values()._is_view()) self.assertTrue(transpose._is_view()) self.assertTrue(transpose._base is subject) def _check_layout_invariants(transpose): self.assertEqual(transpose.device, torch.device(device)) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[transpose.layout] compressed_indices, plain_indices = compressed_indices_mth(transpose), plain_indices_mth(transpose) torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values(), transpose.shape, transpose.layout) def check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout): transpose = subject.transpose(dim0, dim1) # correct layout self.assertEqual(transpose.layout, expected_layout) # transpose must be return a view _check_transpose_view(subject, transpose) # result uses unsafe construction, so we check invariants _check_layout_invariants(transpose) self.assertEqual(transpose.to_dense(), subject_dense.transpose(dim0, dim1)) round_trip = transpose.transpose(dim0, dim1) self.assertEqual(round_trip.layout, subject.layout) # transpose must be return a view _check_transpose_view(subject, round_trip) # result uses unsafe construction, so we check invariants _check_layout_invariants(round_trip) self.assertEqual(round_trip.to_dense(), subject_dense) def check_same_dim_transpose(subject, subject_dense, dim): transpose = subject.transpose(dim, dim) # correct layout self.assertEqual(transpose.layout, subject.layout) # transpose must be return a view _check_transpose_view(subject, transpose) # result uses unsafe construction, so we check invariants _check_layout_invariants(transpose) self.assertEqual(transpose.to_dense(), subject_dense) def check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1): mismatch_name = f"{dim0}\\({name0}\\) and {dim1}\\({name1}\\)" err = r"transpose\(\): can only transpose dimensions of the same type \(Batch, Sparse, Dense\), got " + mismatch_name with self.assertRaisesRegex(RuntimeError, err): subject.transpose(dim0, dim1) def run_test(shape, nnz, index_type, n_dense, blocksize=()): subject = self.genSparseCompressedTensor(shape, nnz, layout=layout, device=device, index_dtype=index_type, blocksize=blocksize, dense_dims=n_dense, dtype=dtype) sparse0 = len(shape) - n_dense - 1 sparse1 = sparse0 - 1 dense0 = sparse0 + 1 if n_dense > 0 else None dense1 = dense0 + 1 if n_dense > 1 else None n_batch = len(shape) - n_dense - 2 batch0 = sparse1 - 1 if n_batch > 0 else None batch1 = 0 if n_batch > 1 else None sparse_dims = (sparse0, sparse1) dense_dims = (dense0, dense1) batch_dims = (batch0, batch1) named0 = [(name, d[0]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] named1 = [(name, d[1]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))] flipped_layout = { torch.sparse_csr: torch.sparse_csc, torch.sparse_csc: torch.sparse_csr, torch.sparse_bsr: torch.sparse_bsc, torch.sparse_bsc: torch.sparse_bsr }[layout] if n_dense > 0: # expect all transpose to throw for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): msg = r"transpose\(\): hybrid sparse compressed tensors with dense dimensions are not supported" if (dim0 is not None) and (dim1 is not None): with self.assertRaisesRegex(RuntimeError, msg): subject.transpose(dim0, dim1) else: subject_dense = subject.to_dense() for (name0, dim0), (name1, dim1) in itertools.product(named0, named1): if dim0 is not None: check_same_dim_transpose(subject, subject_dense, dim0) if dim1 is not None: if name0 == name1: expected_layout = flipped_layout if name0 == "Sparse" else layout check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout) else: check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1) # batch/sparse, sparse/dense only and full hybrid cases shape_ndense = list(itertools.product([(2, 4, 6, 2), (10, 6, 4, 2), (2, 4, 4, 2, 6)], [0, 1, 2])) # sparse only cases shape_ndense += [[(4, 8), 0], [(2, 2), 0], [(8, 4), 0]] for (shape, n_dense), index_dtype in itertools.product(shape_ndense, [torch.int32, torch.int64]): n_batch = len(shape) - n_dense - 2 sparse_shape = shape[n_batch: n_batch + 2] if layout in (torch.sparse_bsr, torch.sparse_bsc): # for blocked all combinations of 2,1 should be valid blocksizes run_test(shape, 0, index_dtype, n_dense, blocksize=(2, 2)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 2)) run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense, blocksize=(2, 2)) # repeat the realistic sparseity case with varried block sizes run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 1)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 2)) run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 1)) else: run_test(shape, 0, index_dtype, n_dense) run_test(shape, max(sparse_shape), index_dtype, n_dense) run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense) # TODO: This is a stopgap for a rigorous extension of our autograd tests # to test the functionality of detach @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_exercise_detach(self, device, dtype): shape = (3, 3) nnz = 4 for index_dtype in [torch.int32, torch.int64]: inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype) detached_inp = inp.detach() self.assertEqual(inp, detached_inp) def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)): if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]: tensor = tensor.to_dense() else: raise NotImplementedError(repr(tensor)) if layout is torch.sparse_csr: return sp.csr_matrix(tensor.cpu().numpy()) if layout is torch.sparse_csc: return sp.csc_matrix(tensor.cpu().numpy()) if layout is torch.sparse_bsr: return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices() if layout is torch.sparse_bsc: # SciPy doesn't have native BSC support - but our tests don't need the full # functionality so fake it by using a transposed BSR matrix. class FakeBscMatrix: def __init__(self, matrix): self._matrix = matrix self.shape = tuple(reversed(matrix.shape)) self.indptr = matrix.indptr self.indices = matrix.indices self.data = [x.transpose() for x in matrix.data] @staticmethod def from_matrix(matrix, blocksize): blocksize = tuple(reversed(blocksize)) matrix = matrix.transpose() return FakeBscMatrix(sp.bsr_matrix(matrix, blocksize=blocksize)) def sorted_indices(self): sub = self._matrix.sorted_indices() return FakeBscMatrix(sub) return FakeBscMatrix.from_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices() raise NotImplementedError(repr(tensor)) @skipMeta @all_sparse_compressed_layouts('to_layout') @all_sparse_compressed_layouts('from_layout') def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout): """This test performs a smoke test for covered conversion and verifies that an exception is thrown for unsupported conversions. TODO: This test covers a subset of TestSparseAny.test_to_sparse tests and can be eliminated. Keeping the test until the new `Tensor.to_sparse(*, layout, blocksize)` has landed. """ allowed_pairwise_layouts_sets = { frozenset({torch.sparse_csc}), frozenset({torch.sparse_csr}), frozenset({torch.sparse_csc, torch.sparse_csr}), frozenset({torch.sparse_csc, torch.sparse_bsc}), frozenset({torch.sparse_csc, torch.sparse_bsr}), frozenset({torch.sparse_csr, torch.sparse_bsc}), frozenset({torch.sparse_csr, torch.sparse_bsr}), frozenset({torch.sparse_bsc}), frozenset({torch.sparse_bsr}), frozenset({torch.sparse_bsc, torch.sparse_bsr}), } block_layouts = (torch.sparse_bsr, torch.sparse_bsc) def _to_from_layout(layout_a, layout_b, a): expect_error = True if {layout_a, layout_b} in allowed_pairwise_layouts_sets: expect_error = False # BSR -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr): expect_error = True # BSR -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csc): expect_error = True # BSC -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csr): expect_error = True # BSC -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csc): expect_error = True # CSR -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSR -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsc): if a.dim() > 2: expect_error = True # CSC -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSC -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsc): if a.dim() > 2: expect_error = True blocksize_a = (1, 1) if layout_a in {torch.sparse_bsr, torch.sparse_bsc} else None blocksize_b = (1, 1) if layout_b in {torch.sparse_bsr, torch.sparse_bsc} else None b = a.to_sparse(layout=layout_a, blocksize=blocksize_a) if expect_error: with self.assertRaises(RuntimeError): b.to_sparse(layout=layout_b, blocksize=blocksize_b) else: c = b.to_sparse(layout=layout_b, blocksize=blocksize_b) self.assertEqual(a.to_dense(), c.to_dense()) # change of blocksize upon conversion is not yet supported. if b.layout in block_layouts: for block_layout in block_layouts: with self.assertRaisesRegex(RuntimeError, "conversion from.*to.*with blocksize changed from.*to.*is not supported"): b.to_sparse(layout=block_layout, blocksize=(3, 3)) batch_dims = [(), (2,), (2, 2), (2, 2, 2)] sparse_dims = (6, 12) for batch_dim in batch_dims: a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device) _to_from_layout(from_layout, to_layout, a) @skipMeta @all_sparse_compressed_layouts() @batched_nonbatched() @hybrid_nonhybrid() @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_dense_to_from_sparse_compressed(self, device, hybrid, batched, layout): """This test tests conversion from dense to/from CSR and CSC by comparing to SciPy's implementation. Here we test only those conversion combinations that SciPy supports to ensure that PyTorch conversions are in the same page with SciPy. Independent from SciPy, all conversion combinations are tested in TestSparseAny.test_to_sparse. """ blocked_layouts = (torch.sparse_bsr, torch.sparse_bsc) # helpers def _check_against_scipy_matrix(pt_matrix, dense, blocksize, **kwargs): # scipy has no bsc layout, so we check against the bsr layout of the tranposed dense if layout == torch.sparse_bsc: sp_matrix = self._construct_sp_matrix(dense.t(), layout=torch.sparse_bsr, blocksize=blocksize[::-1]) else: sp_matrix = self._construct_sp_matrix(dense, layout=layout, blocksize=blocksize) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] self.assertEqual(layout, pt_matrix.layout) if layout == torch.sparse_bsc: self.assertEqual(sp_matrix.shape[::-1], pt_matrix.shape) else: self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) if layout == torch.sparse_bsc: # we must tranpose the blocks before comparing self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values().transpose(-2, -1)) else: self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) def _check_hybrid_matrix(pt_matrix, dense, blocksize, **kwargs): # Calculate COO indices for sparse matrix. compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] compressed_indices = compressed_indices_mth(pt_matrix) plain_indices = plain_indices_mth(pt_matrix) coo_indices = torch._convert_indices_from_csr_to_coo(compressed_indices, plain_indices) row_indices, col_indices = { torch.sparse_csr: (coo_indices[0, ], coo_indices[1, ]), torch.sparse_csc: (coo_indices[1, ], coo_indices[0, ]), torch.sparse_bsr: (coo_indices[0, ], coo_indices[1, ]), torch.sparse_bsc: (coo_indices[1, ], coo_indices[0, ]), }[pt_matrix.layout] # If sparse matrix layout blocked, rearrange dense matrix # so that the shape past first two dimensions match the # shape of sparse matrix values. dense_to_check = dense if blocksize: dense_shape = dense.shape dense_to_check_shape = (dense.shape[0] // blocksize[0], blocksize[0], dense.shape[1] // blocksize[1], blocksize[1]) + dense.shape[2:] dense_to_check = dense_to_check.reshape(dense_to_check_shape).transpose(1, 2) # Verify that non-zero values of the sparse matrix are # equal to corresponding values of the dense matrix. self.assertEqual(pt_matrix.values(), dense_to_check[row_indices, col_indices]) # Verify that the remaining elements of the dense matrix # are 0, i.e. that dense are sparse matrix are fully # equal. mask = torch.ones_like(dense_to_check, dtype=torch.bool) mask[row_indices, col_indices] = False self.assertTrue(torch.all(torch.masked_select(dense_to_check, mask) == 0)) def _check_batched(pt_tensor, dense, check_batch=None, batch_shape=(), blocksize=(), **kwargs): self.assertEqual(layout, pt_tensor.layout) self.assertEqual(pt_tensor.shape, dense.shape) compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout] for batch_index in np.ndindex(batch_shape): pt_matrix = pt_tensor[batch_index] dense_matrix = dense[batch_index] dense_dim = pt_matrix.dim() - 2 dense_matrix_pt = dense_matrix.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=dense_dim) # sanity check, selecting batch of to_<layout> and dense[batch].to_<layout> should give the same result self.assertEqual(pt_matrix, dense_matrix_pt) check_batch(pt_matrix, dense_matrix, blocksize, **kwargs) def _generate_subject(sparse_shape, batch_shape, hybrid_shape): shape = batch_shape + sparse_shape + hybrid_shape n_batch_dim = len(batch_shape) n_hybrid_dim = len(hybrid_shape) # generate a dense tensor dense = make_tensor(shape, dtype=torch.float, device=device) # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is # applied to each batch mask = make_tensor(sparse_shape, dtype=torch.bool, device=device) # manually expand to match hybrid shape if hybrid: mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim))) mask = mask.expand(sparse_shape + hybrid_shape) # mask will broadcast over the batch dims if present return dense * mask # note: order is important here, the hybrid-ness decides the inner content check which is used to build the # batched checker (if needed) check_content = _check_against_scipy_matrix if hybrid: check_content = _check_hybrid_matrix if batched: check_content = functools.partial(_check_batched, check_batch=check_content) sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)] blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()] batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()] hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()] # general cases, always run for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product( sparse_sizes, blocksizes, batch_sizes, hybrid_sizes): dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape) sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # special cases for batched tensors if batched: # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the # same sparsity pattern in each batch sparse_shape = sparse_sizes[0] hybrid_shape = hybrid_sizes[0] batch_shape = batch_sizes[0] shape = batch_shape + sparse_shape + hybrid_shape dense = make_tensor(shape, dtype=torch.float, device=device) blocksize = blocksizes[0] # number of elements/blocks in each batch (total not nnz) batch_mask_shape = sparse_shape if layout in blocked_layouts: # if we are blocked the mask is genereated for the block valued elemetns batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1] # random bool vector w/ length equal to max possible nnz for the sparse_shape mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten() n_batch = functools.reduce(operator.mul, batch_shape, 1) # stack random permutations of the source for each batch mask = torch.stack([mask_source[torch.randperm(mask_source.numel())] for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape) if layout in blocked_layouts: # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space mask_shape = mask.shape mask = mask.view(mask_shape + (1, 1)) mask = mask.expand(mask_shape + blocksize) mask = mask.transpose(-3, -2) mask = mask.flatten(-4, -3).flatten(-2, -1) mask_shape = mask.shape mask = mask.view(mask_shape + (1,) * len(hybrid_shape)) mask = mask.expand(mask_shape + hybrid_shape) dense = dense * mask sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # if batches have different nnz we expect the conversion to throw mask_0 = mask[0] mask_1 = mask[0].clone().fill_(True) mask_2 = mask[0].clone().fill_(False) mask_true = mask_source.clone().fill_(True) mask_false = mask_source.clone().fill_(False) mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape) dense = make_tensor(shape, dtype=torch.float, device=device) dense = dense * mask msg = "Expect the same number of specified elements per batch." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) # Should throw if there is a zero in the batch size dense = make_tensor((0,) + shape, dtype=torch.float, device=device) layout_code = str(layout).split("_")[-1] msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) @skipMeta @all_sparse_compressed_layouts() @coalescedonoff @dtypes(torch.double) @unittest.skipIf(not TEST_SCIPY, "SciPy not found") def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout): """ This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC by comparing to SciPy's implementation. Here we test only those conversion combinations that SciPy supports to ensure that PyTorch conversions are in the same page with SciPy. Independent from SciPy, all conversion combinations are tested in TestSparseAny.test_to_sparse. """ blocksize_kw = {} if layout in (torch.sparse_bsc, torch.sparse_bsr): blocksize_kw['blocksize'] = (2, 2) # block modes don't support 0 width/height shapes = [(6, 10)] elif layout in (torch.sparse_csc, torch.sparse_csr): shapes = [(0, 10), (6, 0), (6, 10), (0, 0)] else: raise NotImplementedError("unhandled layout") if layout in (torch.sparse_bsc, torch.sparse_csc): compressed_indices_mth = torch.Tensor.ccol_indices plain_indices_mth = torch.Tensor.row_indices elif layout in (torch.sparse_bsr, torch.sparse_csr): compressed_indices_mth = torch.Tensor.crow_indices plain_indices_mth = torch.Tensor.col_indices else: raise NotImplementedError("unhandled layout") for shape in shapes: sparse_dim = 2 nnz = shape[0] * shape[1] // 2 sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype) sp_matrix = self._construct_sp_matrix(sparse, layout) pt_matrix = sparse.to_sparse(layout=layout, **blocksize_kw) self.assertEqual(layout, pt_matrix.layout) self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) sparse_csc = sparse.to_sparse_csc() sp_matrix = self._construct_sp_matrix(sparse_csc, layout) pt_matrix = sparse_csc.to_sparse(layout=layout, **blocksize_kw) self.assertEqual(layout, pt_matrix.layout) self.assertEqual(sp_matrix.shape, pt_matrix.shape) self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix)) self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values()) @unittest.skipIf(not TEST_CUDA_CUDSS, "The test requires cudss") @dtypes(*floating_types()) def test_linalg_solve_sparse_csr_cusolver(self, device, dtype): # https://github.com/krshrimali/pytorch/blob/f5ee21dd87a7c5e67ba03bfd77ea22246cabdf0b/test/test_sparse_csr.py try: spd = torch.rand(4, 3) A = spd.T @ spd b = torch.rand(3).cuda() A = A.to_sparse_csr().cuda() x = torch.sparse.spsolve(A, b) except RuntimeError as e: if "Calling linear solver with sparse tensors requires compiling " in str(e): self.skipTest("PyTorch was not built with cuDSS support") samples = sample_inputs_linalg_solve(None, device, dtype) for sample in samples: if sample.input.ndim != 2: continue out = torch.zeros(sample.args[0].size(), dtype=dtype, device=device) if sample.args[0].ndim != 1 and sample.args[0].size(-1) != 1: with self.assertRaisesRegex(RuntimeError, "b must be a 1D tensor"): out = torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs) break if not sample.args[0].numel(): with self.assertRaisesRegex(RuntimeError, "Expected non-empty other tensor, but found empty tensor"): torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs, out=out) break expect = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs) sample.input = sample.input.to_sparse_csr() if sample.args[0].ndim != 1 and sample.args[0].size(-1) == 1: expect = expect.squeeze(-1) sample.args = (sample.args[0].squeeze(-1), ) out = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs) self.assertEqual(expect, out)
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
test_csr_nnz
def test_csr_nnz(self): # Tests the limits of the number of specified elements in CSR tensors, see gh-102520. for nnz in [0, 2**31]: rows, cols = 1, max(nnz, 1) crow_indices = torch.tensor([0, nnz], dtype=torch.int64) col_indices = torch.arange(nnz, dtype=torch.int64) values = torch.ones(nnz, dtype=torch.int8) a = torch.sparse_csr_tensor(crow_indices, col_indices, values, (rows, cols)) self.assertEqual(a._nnz(), nnz)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle class TestSparseCSR(TestCase): import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
test_unsupported_dim
def test_unsupported_dim(self, device, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = torch.rand(128, 128, 128, device=device, dtype=torch.float16) with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dim"): A_sparse = to_sparse_semi_structured(A)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class TestSparseSemiStructured(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
setUp
def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
setUp
def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
run_test
def run_test(batch_shape, m, n, k, device, dtype, dtype_out, add_bias, activation, rtol, atol): weight = rand_sparse_semi_structured(m, k, dtype, device) input = make_tensor((*batch_shape, n, k), dtype=dtype, device=device) bias = make_tensor((m,), dtype=dtype_out, device=device) if add_bias else None dtype_dense = torch.float32 input_dense = input.to(dtype_dense) weight_dense = weight.to(dtype_dense) bias_dense = bias.to(dtype_dense) if add_bias else None output0 = torch.nn.functional.linear(input_dense, weight_dense, bias=bias_dense) if activation == "relu": relu = torch.nn.ReLU() output0 = relu(output0) elif activation == "silu": silu = torch.nn.SiLU() output0 = silu(output0) compressed = to_sparse_semi_structured(weight) weight_sparse = compressed.values() meta = compressed.indices() output1 = torch._sparse_semi_structured_linear(input, weight_sparse, meta, bias=bias, activation=activation, out_dtype=dtype_out if dtype == torch.int8 else None) torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol) if dtype == torch.float32: # Inputs are converted to TF32 internally for sparse GEMM, # so make dense GEMM to do the same for matching results. orig = torch.backends.cuda.matmul.allow_tf32 torch.backends.cuda.matmul.allow_tf32 = True batch_shapes = [[], [3], [3, 1]] dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32} activations = [None, "relu", "silu"] rtol, atol = 1e-3, 1e-3 if dtype == torch.bfloat16: rtol, atol = 5e-3, 5e-3 elif dtype == torch.float32: rtol, atol = 1e-3, 75e-2 for batch_shape, m, n, k, add_bias, activation in \ itertools.product(batch_shapes, range(3), range(3), range(3), (False, True), activations): if activation == "silu" and dtype == torch.int8: continue # SiLU not supported for integer inputs m = 2 ** m * 32 n = 2 ** n * 32 k = 2 ** k * 128 run_test(batch_shape, m, n, k, device, dtype, dtype_out[dtype], add_bias, activation, rtol, atol) if dtype == torch.float32: torch.backends.cuda.matmul.allow_tf32 = orig
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
run_test
def run_test(batch_shape, m, n, k, device, dtype, dtype_out, add_bias, activation, rtol, atol): weight = rand_sparse_semi_structured(m, k, dtype, device) input = make_tensor((*batch_shape, n, k), dtype=dtype, device=device) bias = make_tensor((m,), dtype=dtype_out, device=device) if add_bias else None dtype_dense = torch.float32 input_dense = input.to(dtype_dense) weight_dense = weight.to(dtype_dense) bias_dense = bias.to(dtype_dense) if add_bias else None output0 = torch.nn.functional.linear(input_dense, weight_dense, bias=bias_dense) if activation == "relu": relu = torch.nn.ReLU() output0 = relu(output0) elif activation == "silu": silu = torch.nn.SiLU() output0 = silu(output0) compressed = to_sparse_semi_structured(weight) weight_sparse = compressed.values() meta = compressed.indices() output1 = torch._sparse_semi_structured_linear(input, weight_sparse, meta, bias=bias, activation=activation, out_dtype=dtype_out if dtype == torch.int8 else None) torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol) if dtype == torch.float32: # Inputs are converted to TF32 internally for sparse GEMM, # so make dense GEMM to do the same for matching results. orig = torch.backends.cuda.matmul.allow_tf32 torch.backends.cuda.matmul.allow_tf32 = True batch_shapes = [[], [3], [3, 1]] dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32} activations = [None, "relu", "silu"] rtol, atol = 1e-3, 1e-3 if dtype == torch.bfloat16: rtol, atol = 5e-3, 5e-3 elif dtype == torch.float32: rtol, atol = 1e-3, 75e-2 for batch_shape, m, n, k, add_bias, activation in \ itertools.product(batch_shapes, range(3), range(3), range(3), (False, True), activations): if activation == "silu" and dtype == torch.int8: continue # SiLU not supported for integer inputs m = 2 ** m * 32 n = 2 ** n * 32 k = 2 ** k * 128 run_test(batch_shape, m, n, k, device, dtype, dtype_out[dtype], add_bias, activation, rtol, atol) if dtype == torch.float32: torch.backends.cuda.matmul.allow_tf32 = orig
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
run_test
def run_test(batch_shape, m, n, k, device, dtype, dtype_out, add_bias, activation, rtol, atol): weight = rand_sparse_semi_structured(m, k, dtype, device) input = make_tensor((*batch_shape, n, k), dtype=dtype, device=device) bias = make_tensor((m,), dtype=dtype_out, device=device) if add_bias else None dtype_dense = torch.float32 input_dense = input.to(dtype_dense) weight_dense = weight.to(dtype_dense) bias_dense = bias.to(dtype_dense) if add_bias else None output0 = torch.nn.functional.linear(input_dense, weight_dense, bias=bias_dense) if activation == "relu": relu = torch.nn.ReLU() output0 = relu(output0) elif activation == "silu": silu = torch.nn.SiLU() output0 = silu(output0) compressed = to_sparse_semi_structured(weight) weight_sparse = compressed.values() meta = compressed.indices() output1 = torch._sparse_semi_structured_linear(input, weight_sparse, meta, bias=bias, activation=activation, out_dtype=dtype_out if dtype == torch.int8 else None) torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol) if dtype == torch.float32: # Inputs are converted to TF32 internally for sparse GEMM, # so make dense GEMM to do the same for matching results. orig = torch.backends.cuda.matmul.allow_tf32 torch.backends.cuda.matmul.allow_tf32 = True batch_shapes = [[], [3], [3, 1]] dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32} activations = [None, "relu", "silu"] rtol, atol = 1e-3, 1e-3 if dtype == torch.bfloat16: rtol, atol = 5e-3, 5e-3 elif dtype == torch.float32: rtol, atol = 1e-3, 75e-2 for batch_shape, m, n, k, add_bias, activation in \ itertools.product(batch_shapes, range(3), range(3), range(3), (False, True), activations): if activation == "silu" and dtype == torch.int8: continue # SiLU not supported for integer inputs m = 2 ** m * 32 n = 2 ** n * 32 k = 2 ** k * 128 run_test(batch_shape, m, n, k, device, dtype, dtype_out[dtype], add_bias, activation, rtol, atol) if dtype == torch.float32: torch.backends.cuda.matmul.allow_tf32 = orig
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
test_conversions_all_patterns
def test_conversions_all_patterns(self, device, dtype): r, c = 32, 128 dense_inv, dense_val = rand_sparse_semi_structured_all_patterns(r, c, dtype, device) compressed = to_sparse_semi_structured(dense_inv) dense = compressed.to_dense() torch.testing.assert_close(dense, dense_val, rtol=0, atol=0)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class TestSparseSemiStructuredCUTLASS(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
setUp
def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
test_cslt_sparse_mm_search
def test_cslt_sparse_mm_search(self, device, dtype): A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype) A_compressed = torch._cslt_compress(A) B = torch.ones((128, 128), device=device).to(dtype) A_compressed = torch._cslt_compress(A) alg_id = torch._cslt_sparse_mm_search(A_compressed, B.t()) # for cuSPARSELt v0.4.0 there is a bug where although there are 5 alg_ids, we run into an error # when setting using the last one (4) # in cuSPARSELt v0.5.0 there are only 4 alg_ids total, so we should remove the +1 here when we update. # TODO Move this into the cuSPARSELt backendk assert alg_id in range(CUSPARSELT_NUM_ALG_IDS + 1)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } CUSPARSELT_NUM_ALG_IDS = 4 CUSPARSELT_MIXED_DTYPE_SUPPORT = [torch.float16, torch.bfloat16, torch.int32] class TestSparseSemiStructuredCUSPARSELT(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
test_cusparselt_backend
def test_cusparselt_backend(self): version = _get_torch_cuda_version() assert torch.backends.cusparselt.is_available() # CUDA 11.8 has cuSPARSELt v0.4.0 support if version == (11, 8): assert torch.backends.cusparselt.version() == 400 # CUDA 12.1 has cuSPARSELt v0.5.2 support elif version == (12, 1): assert torch.backends.cusparselt.version() == 502 # CUDA 12.4+ has cuSPARSELt v0.6.2 support elif version >= (12, 4): assert torch.backends.cusparselt.version() == 602 else: assert torch.backends.cusparselt.version() is None
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } CUSPARSELT_NUM_ALG_IDS = 4 CUSPARSELT_MIXED_DTYPE_SUPPORT = [torch.float16, torch.bfloat16, torch.int32] class TestSparseSemiStructuredCUSPARSELT(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_spectral_ops.py
skip_helper_for_fft
def skip_helper_for_fft(device, dtype): device_type = torch.device(device).type if dtype not in (torch.half, torch.complex32): return if device_type == 'cpu': raise unittest.SkipTest("half and complex32 are not supported on CPU") if TEST_WITH_ROCM: raise unittest.SkipTest("half and complex32 are not supported on ROCM") if not SM53OrLater: raise unittest.SkipTest("half and complex32 are only supported on CUDA device with SM>53") # Tests of functions related to Fourier analysis in the torch.fft namespace class TestFFT(TestCase): exact_dtype = True @onlyNativeDeviceTypes @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.OneD], allowed_dtypes=(torch.float, torch.cfloat)) def test_reference_1d(self, device, dtype, op): if op.ref is None: raise unittest.SkipTest("No reference implementation") norm_modes = REFERENCE_NORM_MODES test_args = [ *product( # input (torch.randn(67, device=device, dtype=dtype), torch.randn(80, device=device, dtype=dtype), torch.randn(12, 14, device=device, dtype=dtype), torch.randn(9, 6, 3, device=device, dtype=dtype)), # n (None, 50, 6), # dim (-1, 0), # norm norm_modes ), # Test transforming middle dimensions of multi-dim tensor *product( (torch.randn(4, 5, 6, 7, device=device, dtype=dtype),), (None,), (1, 2, -2,), norm_modes ) ] for iargs in test_args: args = list(iargs) input = args[0] args = args[1:] expected = op.ref(input.cpu().numpy(), *args) exact_dtype = dtype in (torch.double, torch.complex128) actual = op(input, *args) self.assertEqual(actual, expected, exact_dtype=exact_dtype) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), torch.chalf : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fft_round_trip(self, device, dtype): skip_helper_for_fft(device, dtype) # Test that round trip through ifft(fft(x)) is the identity if dtype not in (torch.half, torch.complex32): test_args = list(product( # input (torch.randn(67, device=device, dtype=dtype), torch.randn(80, device=device, dtype=dtype), torch.randn(12, 14, device=device, dtype=dtype), torch.randn(9, 6, 3, device=device, dtype=dtype)), # dim (-1, 0), # norm (None, "forward", "backward", "ortho") )) else: # cuFFT supports powers of 2 for half and complex half precision test_args = list(product( # input (torch.randn(64, device=device, dtype=dtype), torch.randn(128, device=device, dtype=dtype), torch.randn(4, 16, device=device, dtype=dtype), torch.randn(8, 6, 2, device=device, dtype=dtype)), # dim (-1, 0), # norm (None, "forward", "backward", "ortho") )) fft_functions = [(torch.fft.fft, torch.fft.ifft)] # Real-only functions if not dtype.is_complex: # NOTE: Using ihfft as "forward" transform to avoid needing to # generate true half-complex input fft_functions += [(torch.fft.rfft, torch.fft.irfft), (torch.fft.ihfft, torch.fft.hfft)] for forward, backward in fft_functions: for x, dim, norm in test_args: kwargs = { 'n': x.size(dim), 'dim': dim, 'norm': norm, } y = backward(forward(x, **kwargs), **kwargs) if x.dtype is torch.half and y.dtype is torch.complex32: # Since type promotion currently doesn't work with complex32 # manually promote `x` to complex32 x = x.to(torch.complex32) # For real input, ifft(fft(x)) will convert to complex self.assertEqual(x, y, exact_dtype=( forward != torch.fft.fft or x.is_complex())) # Note: NumPy will throw a ValueError for an empty input @onlyNativeDeviceTypes @ops(spectral_funcs, allowed_dtypes=(torch.half, torch.float, torch.complex32, torch.cfloat)) def test_empty_fft(self, device, dtype, op): t = torch.empty(1, 0, device=device, dtype=dtype) match = r"Invalid number of data points \([-\d]*\) specified" with self.assertRaisesRegex(RuntimeError, match): op(t) @onlyNativeDeviceTypes def test_empty_ifft(self, device): t = torch.empty(2, 1, device=device, dtype=torch.complex64) match = r"Invalid number of data points \([-\d]*\) specified" for f in [torch.fft.irfft, torch.fft.irfft2, torch.fft.irfftn, torch.fft.hfft, torch.fft.hfft2, torch.fft.hfftn]: with self.assertRaisesRegex(RuntimeError, match): f(t) @onlyNativeDeviceTypes def test_fft_invalid_dtypes(self, device): t = torch.randn(64, device=device, dtype=torch.complex128) with self.assertRaisesRegex(RuntimeError, "rfft expects a real input tensor"): torch.fft.rfft(t) with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input tensor"): torch.fft.rfftn(t) with self.assertRaisesRegex(RuntimeError, "ihfft expects a real input tensor"): torch.fft.ihfft(t) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.int8, torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fft_type_promotion(self, device, dtype): skip_helper_for_fft(device, dtype) if dtype.is_complex or dtype.is_floating_point: t = torch.randn(64, device=device, dtype=dtype) else: t = torch.randint(-2, 2, (64,), device=device, dtype=dtype) PROMOTION_MAP = { torch.int8: torch.complex64, torch.half: torch.complex32, torch.float: torch.complex64, torch.double: torch.complex128, torch.complex32: torch.complex32, torch.complex64: torch.complex64, torch.complex128: torch.complex128, } T = torch.fft.fft(t) self.assertEqual(T.dtype, PROMOTION_MAP[dtype]) PROMOTION_MAP_C2R = { torch.int8: torch.float, torch.half: torch.half, torch.float: torch.float, torch.double: torch.double, torch.complex32: torch.half, torch.complex64: torch.float, torch.complex128: torch.double, } if dtype in (torch.half, torch.complex32): # cuFFT supports powers of 2 for half and complex half precision # NOTE: With hfft and default args where output_size n=2*(input_size - 1), # we make sure that logical fft size is a power of two. x = torch.randn(65, device=device, dtype=dtype) R = torch.fft.hfft(x) else: R = torch.fft.hfft(t) self.assertEqual(R.dtype, PROMOTION_MAP_C2R[dtype]) if not dtype.is_complex: PROMOTION_MAP_R2C = { torch.int8: torch.complex64, torch.half: torch.complex32, torch.float: torch.complex64, torch.double: torch.complex128, } C = torch.fft.rfft(t) self.assertEqual(C.dtype, PROMOTION_MAP_R2C[dtype]) @onlyNativeDeviceTypes @ops(spectral_funcs, dtypes=OpDTypes.unsupported, allowed_dtypes=[torch.half, torch.bfloat16]) def test_fft_half_and_bfloat16_errors(self, device, dtype, op): # TODO: Remove torch.half error when complex32 is fully implemented sample = first_sample(self, op.sample_inputs(device, dtype)) device_type = torch.device(device).type if dtype is torch.half and device_type == 'cuda' and TEST_WITH_ROCM: err_msg = "Unsupported dtype " elif dtype is torch.half and device_type == 'cuda' and not SM53OrLater: err_msg = "cuFFT doesn't support signals of half type with compute capability less than SM_53" else: err_msg = "Unsupported dtype " with self.assertRaisesRegex(RuntimeError, err_msg): op(sample.input, *sample.args, **sample.kwargs) @onlyNativeDeviceTypes @ops(spectral_funcs, allowed_dtypes=(torch.half, torch.chalf)) def test_fft_half_and_chalf_not_power_of_two_error(self, device, dtype, op): t = make_tensor(13, 13, device=device, dtype=dtype) err_msg = "cuFFT only supports dimensions whose sizes are powers of two" with self.assertRaisesRegex(RuntimeError, err_msg): op(t) if op.ndimensional in (SpectralFuncType.ND, SpectralFuncType.TwoD): kwargs = {'s': (12, 12)} else: kwargs = {'n': 12} with self.assertRaisesRegex(RuntimeError, err_msg): op(t, **kwargs) # nd-fft tests @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND], allowed_dtypes=(torch.cfloat, torch.cdouble)) def test_reference_nd(self, device, dtype, op): if op.ref is None: raise unittest.SkipTest("No reference implementation") norm_modes = REFERENCE_NORM_MODES # input_ndim, s, dim transform_desc = [ *product(range(2, 5), (None,), (None, (0,), (0, -1))), *product(range(2, 5), (None, (4, 10)), (None,)), (6, None, None), (5, None, (1, 3, 4)), (3, None, (1,)), (1, None, (0,)), (4, (10, 10), None), (4, (10, 10), (0, 1)) ] for input_ndim, s, dim in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) input = torch.randn(*shape, device=device, dtype=dtype) for norm in norm_modes: expected = op.ref(input.cpu().numpy(), s, dim, norm) exact_dtype = dtype in (torch.double, torch.complex128) actual = op(input, s, dim, norm) self.assertEqual(actual, expected, exact_dtype=exact_dtype) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), torch.chalf : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fftn_round_trip(self, device, dtype): skip_helper_for_fft(device, dtype) norm_modes = (None, "forward", "backward", "ortho") # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (7, None), (5, (1, 3, 4)), (3, (1,)), (1, 0), ] fft_functions = [(torch.fft.fftn, torch.fft.ifftn)] # Real-only functions if not dtype.is_complex: # NOTE: Using ihfftn as "forward" transform to avoid needing to # generate true half-complex input fft_functions += [(torch.fft.rfftn, torch.fft.irfftn), (torch.fft.ihfftn, torch.fft.hfftn)] for input_ndim, dim in transform_desc: if dtype in (torch.half, torch.complex32): # cuFFT supports powers of 2 for half and complex half precision shape = itertools.islice(itertools.cycle((2, 4, 8)), input_ndim) else: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) x = torch.randn(*shape, device=device, dtype=dtype) for (forward, backward), norm in product(fft_functions, norm_modes): if isinstance(dim, tuple): s = [x.size(d) for d in dim] else: s = x.size() if dim is None else x.size(dim) kwargs = {'s': s, 'dim': dim, 'norm': norm} y = backward(forward(x, **kwargs), **kwargs) # For real input, ifftn(fftn(x)) will convert to complex if x.dtype is torch.half and y.dtype is torch.chalf: # Since type promotion currently doesn't work with complex32 # manually promote `x` to complex32 self.assertEqual(x.to(torch.chalf), y) else: self.assertEqual(x, y, exact_dtype=( forward != torch.fft.fftn or x.is_complex())) @onlyNativeDeviceTypes @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND], allowed_dtypes=[torch.float, torch.cfloat]) def test_fftn_invalid(self, device, dtype, op): a = torch.rand(10, 10, 10, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, "dims must be unique"): op(a, dim=(0, 1, 0)) with self.assertRaisesRegex(RuntimeError, "dims must be unique"): op(a, dim=(2, -1)) with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"): op(a, s=(1,), dim=(0, 1)) with self.assertRaisesRegex(IndexError, "Dimension out of range"): op(a, dim=(3,)) with self.assertRaisesRegex(RuntimeError, "tensor only has 3 dimensions"): op(a, s=(10, 10, 10, 10)) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double) def test_hfftn(self, device, dtype): skip_helper_for_fft(device, dtype) # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (6, None), (5, (1, 3, 4)), (3, (1,)), (1, (0,)), (4, (0, 1)) ] for input_ndim, dim in transform_desc: actual_dims = list(range(input_ndim)) if dim is None else dim if dtype is torch.half: shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim)) else: shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim)) expect = torch.randn(*shape, device=device, dtype=dtype) input = torch.fft.ifftn(expect, dim=dim, norm="ortho") lastdim = actual_dims[-1] lastdim_size = input.size(lastdim) // 2 + 1 idx = [slice(None)] * input_ndim idx[lastdim] = slice(0, lastdim_size) input = input[idx] s = [shape[dim] for dim in actual_dims] actual = torch.fft.hfftn(input, s=s, dim=dim, norm="ortho") self.assertEqual(expect, actual) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double) def test_ihfftn(self, device, dtype): skip_helper_for_fft(device, dtype) # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (6, None), (5, (1, 3, 4)), (3, (1,)), (1, (0,)), (4, (0, 1)) ] for input_ndim, dim in transform_desc: if dtype is torch.half: shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim)) else: shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim)) input = torch.randn(*shape, device=device, dtype=dtype) expect = torch.fft.ifftn(input, dim=dim, norm="ortho") # Slice off the half-symmetric component lastdim = -1 if dim is None else dim[-1] lastdim_size = expect.size(lastdim) // 2 + 1 idx = [slice(None)] * input_ndim idx[lastdim] = slice(0, lastdim_size) expect = expect[idx] actual = torch.fft.ihfftn(input, dim=dim, norm="ortho") self.assertEqual(expect, actual) # 2d-fft tests # NOTE: 2d transforms are only thin wrappers over n-dim transforms, # so don't require exhaustive testing. @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double, torch.complex128) def test_fft2_numpy(self, device, dtype): norm_modes = REFERENCE_NORM_MODES # input_ndim, s transform_desc = [ *product(range(2, 5), (None, (4, 10))), ] fft_functions = ['fft2', 'ifft2', 'irfft2', 'hfft2'] if dtype.is_floating_point: fft_functions += ['rfft2', 'ihfft2'] for input_ndim, s in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) input = torch.randn(*shape, device=device, dtype=dtype) for fname, norm in product(fft_functions, norm_modes): torch_fn = getattr(torch.fft, fname) if "hfft" in fname: if not has_scipy_fft: continue # Requires scipy to compare against numpy_fn = getattr(scipy.fft, fname) else: numpy_fn = getattr(np.fft, fname) def fn(t: torch.Tensor, s: Optional[List[int]], dim: List[int] = (-2, -1), norm: Optional[str] = None): return torch_fn(t, s, dim, norm) torch_fns = (torch_fn, torch.jit.script(fn)) # Once with dim defaulted input_np = input.cpu().numpy() expected = numpy_fn(input_np, s, norm=norm) for fn in torch_fns: actual = fn(input, s, norm=norm) self.assertEqual(actual, expected) # Once with explicit dims dim = (1, 0) expected = numpy_fn(input_np, s, dim, norm) for fn in torch_fns: actual = fn(input, s, dim, norm) self.assertEqual(actual, expected) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.float, torch.complex64) def test_fft2_fftn_equivalence(self, device, dtype): norm_modes = (None, "forward", "backward", "ortho") # input_ndim, s, dim transform_desc = [ *product(range(2, 5), (None, (4, 10)), (None, (1, 0))), (3, None, (0, 2)), ] fft_functions = ['fft', 'ifft', 'irfft', 'hfft'] # Real-only functions if dtype.is_floating_point: fft_functions += ['rfft', 'ihfft'] for input_ndim, s, dim in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) x = torch.randn(*shape, device=device, dtype=dtype) for func, norm in product(fft_functions, norm_modes): f2d = getattr(torch.fft, func + '2') fnd = getattr(torch.fft, func + 'n') kwargs = {'s': s, 'norm': norm} if dim is not None: kwargs['dim'] = dim expect = fnd(x, **kwargs) else: expect = fnd(x, dim=(-2, -1), **kwargs) actual = f2d(x, **kwargs) self.assertEqual(actual, expect) @skipCPUIfNoFFT @onlyNativeDeviceTypes def test_fft2_invalid(self, device): a = torch.rand(10, 10, 10, device=device) fft_funcs = (torch.fft.fft2, torch.fft.ifft2, torch.fft.rfft2, torch.fft.irfft2) for func in fft_funcs: with self.assertRaisesRegex(RuntimeError, "dims must be unique"): func(a, dim=(0, 0)) with self.assertRaisesRegex(RuntimeError, "dims must be unique"): func(a, dim=(2, -1)) with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"): func(a, s=(1,)) with self.assertRaisesRegex(IndexError, "Dimension out of range"): func(a, dim=(2, 3)) c = torch.complex(a, a) with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input"): torch.fft.rfft2(c) # Helper functions @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double) def test_fftfreq_numpy(self, device, dtype): test_args = [ *product( # n range(1, 20), # d (None, 10.0), ) ] functions = ['fftfreq', 'rfftfreq'] for fname in functions: torch_fn = getattr(torch.fft, fname) numpy_fn = getattr(np.fft, fname) for n, d in test_args: args = (n,) if d is None else (n, d) expected = numpy_fn(*args) actual = torch_fn(*args, device=device, dtype=dtype) self.assertEqual(actual, expected, exact_dtype=False) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) def test_fftfreq_out(self, device, dtype): for func in (torch.fft.fftfreq, torch.fft.rfftfreq): expect = func(n=100, d=.5, device=device, dtype=dtype) actual = torch.empty((), device=device, dtype=dtype) with self.assertWarnsRegex(UserWarning, "out tensor will be resized"): func(n=100, d=.5, out=actual) self.assertEqual(actual, expect) @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_fftshift_numpy(self, device, dtype): test_args = [ # shape, dim *product(((11,), (12,)), (None, 0, -1)), *product(((4, 5), (6, 6)), (None, 0, (-1,))), *product(((1, 1, 4, 6, 7, 2),), (None, (3, 4))), ] functions = ['fftshift', 'ifftshift'] for shape, dim in test_args: input = torch.rand(*shape, device=device, dtype=dtype) input_np = input.cpu().numpy() for fname in functions: torch_fn = getattr(torch.fft, fname) numpy_fn = getattr(np.fft, fname) expected = numpy_fn(input_np, axes=dim) actual = torch_fn(input, dim=dim) self.assertEqual(actual, expected) @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double) def test_fftshift_frequencies(self, device, dtype): for n in range(10, 15): sorted_fft_freqs = torch.arange(-(n // 2), n - (n // 2), device=device, dtype=dtype) x = torch.fft.fftfreq(n, d=1 / n, device=device, dtype=dtype) # Test fftshift sorts the fftfreq output shifted = torch.fft.fftshift(x) self.assertEqual(shifted, shifted.sort().values) self.assertEqual(sorted_fft_freqs, shifted) # And ifftshift is the inverse self.assertEqual(x, torch.fft.ifftshift(shifted)) # Legacy fft tests def _test_fft_ifft_rfft_irfft(self, device, dtype): complex_dtype = corresponding_complex_dtype(dtype) def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=complex_dtype, device=device)) dim = tuple(range(-signal_ndim, 0)) for norm in ('ortho', None): res = torch.fft.fftn(x, dim=dim, norm=norm) rec = torch.fft.ifftn(res, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='fft and ifft') res = torch.fft.ifftn(x, dim=dim, norm=norm) rec = torch.fft.fftn(res, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='ifft and fft') def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device)) signal_numel = 1 signal_sizes = x.size()[-signal_ndim:] dim = tuple(range(-signal_ndim, 0)) for norm in (None, 'ortho'): res = torch.fft.rfftn(x, dim=dim, norm=norm) rec = torch.fft.irfftn(res, s=signal_sizes, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='rfft and irfft') res = torch.fft.fftn(x, dim=dim, norm=norm) rec = torch.fft.ifftn(res, dim=dim, norm=norm) x_complex = torch.complex(x, torch.zeros_like(x)) self.assertEqual(x_complex, rec, atol=1e-8, rtol=0, msg='fft and ifft (from real)') # contiguous case _test_real((100,), 1) _test_real((10, 1, 10, 100), 1) _test_real((100, 100), 2) _test_real((2, 2, 5, 80, 60), 2) _test_real((50, 40, 70), 3) _test_real((30, 1, 50, 25, 20), 3) _test_complex((100,), 1) _test_complex((100, 100), 1) _test_complex((100, 100), 2) _test_complex((1, 20, 80, 60), 2) _test_complex((50, 40, 70), 3) _test_complex((6, 5, 50, 25, 20), 3) # non-contiguous case _test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type _test_real((100, 100, 3), 1, lambda x: x[:, :, 0]) _test_real((100, 100), 2, lambda x: x.t()) _test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60]) _test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80]) _test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3)) _test_complex((100,), 1, lambda x: x.expand(100, 100)) _test_complex((20, 90, 110), 2, lambda x: x[:, 5:85].narrow(2, 5, 100)) _test_complex((40, 60, 3, 80), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:]) _test_complex((30, 55, 50, 22), 3, lambda x: x[:, 3:53, 15:40, 1:21]) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_fft_ifft_rfft_irfft(self, device, dtype): self._test_fft_ifft_rfft_irfft(device, dtype) @deviceCountAtLeast(1) @onlyCUDA @dtypes(torch.double) def test_cufft_plan_cache(self, devices, dtype): @contextmanager def plan_cache_max_size(device, n): if device is None: plan_cache = torch.backends.cuda.cufft_plan_cache else: plan_cache = torch.backends.cuda.cufft_plan_cache[device] original = plan_cache.max_size plan_cache.max_size = n yield plan_cache.max_size = original with plan_cache_max_size(devices[0], max(1, torch.backends.cuda.cufft_plan_cache.size - 10)): self._test_fft_ifft_rfft_irfft(devices[0], dtype) with plan_cache_max_size(devices[0], 0): self._test_fft_ifft_rfft_irfft(devices[0], dtype) torch.backends.cuda.cufft_plan_cache.clear() # check that stll works after clearing cache with plan_cache_max_size(devices[0], 10): self._test_fft_ifft_rfft_irfft(devices[0], dtype) with self.assertRaisesRegex(RuntimeError, r"must be non-negative"): torch.backends.cuda.cufft_plan_cache.max_size = -1 with self.assertRaisesRegex(RuntimeError, r"read-only property"): torch.backends.cuda.cufft_plan_cache.size = -1 with self.assertRaisesRegex(RuntimeError, r"but got device with index"): torch.backends.cuda.cufft_plan_cache[torch.cuda.device_count() + 10] # Multigpu tests if len(devices) > 1: # Test that different GPU has different cache x0 = torch.randn(2, 3, 3, device=devices[0]) x1 = x0.to(devices[1]) self.assertEqual(torch.fft.rfftn(x0, dim=(-2, -1)), torch.fft.rfftn(x1, dim=(-2, -1))) # If a plan is used across different devices, the following line (or # the assert above) would trigger illegal memory access. Other ways # to trigger the error include # (1) setting CUDA_LAUNCH_BLOCKING=1 (pytorch/pytorch#19224) and # (2) printing a device 1 tensor. x0.copy_(x1) # Test that un-indexed `torch.backends.cuda.cufft_plan_cache` uses current device with plan_cache_max_size(devices[0], 10): with plan_cache_max_size(devices[1], 11): self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11) self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 with torch.cuda.device(devices[1]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 with torch.cuda.device(devices[0]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) with torch.cuda.device(devices[1]): with plan_cache_max_size(None, 11): # default is cuda:1 self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11) self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 with torch.cuda.device(devices[0]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 # passes on ROCm w/ python 2.7, fails w/ python 3.6 @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_stft(self, device, dtype): if not TEST_LIBROSA: raise unittest.SkipTest('librosa not found') def librosa_stft(x, n_fft, hop_length, win_length, window, center): if window is None: window = np.ones(n_fft if win_length is None else win_length) else: window = window.cpu().numpy() input_1d = x.dim() == 1 if input_1d: x = x.view(1, -1) # NOTE: librosa 0.9 changed default pad_mode to 'constant' (zero padding) # however, we use the pre-0.9 default ('reflect') pad_mode = 'reflect' result = [] for xi in x: ri = librosa.stft(xi.cpu().numpy(), n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1))) result = torch.stack(result, 0) if input_1d: result = result[0] return result def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None, center=True, expected_error=None): x = torch.randn(*sizes, dtype=dtype, device=device) if win_sizes is not None: window = torch.randn(*win_sizes, dtype=dtype, device=device) else: window = None if expected_error is None: result = x.stft(n_fft, hop_length, win_length, window, center=center, return_complex=False) # NB: librosa defaults to np.complex64 output, no matter what # the input dtype ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center) self.assertEqual(result, ref_result, atol=7e-6, rtol=0, msg='stft comparison against librosa', exact_dtype=False) # With return_complex=True, the result is the same but viewed as complex instead of real result_complex = x.stft(n_fft, hop_length, win_length, window, center=center, return_complex=True) self.assertEqual(result_complex, torch.view_as_complex(result)) else: self.assertRaises(expected_error, lambda: x.stft(n_fft, hop_length, win_length, window, center=center)) for center in [True, False]: _test((10,), 7, center=center) _test((10, 4000), 1024, center=center) _test((10,), 7, 2, center=center) _test((10, 4000), 1024, 512, center=center) _test((10,), 7, 2, win_sizes=(7,), center=center) _test((10, 4000), 1024, 512, win_sizes=(1024,), center=center) # spectral oversample _test((10,), 7, 2, win_length=5, center=center) _test((10, 4000), 1024, 512, win_length=100, center=center) _test((10, 4, 2), 1, 1, expected_error=RuntimeError) _test((10,), 11, 1, center=False, expected_error=RuntimeError) _test((10,), -1, 1, expected_error=RuntimeError) _test((10,), 3, win_length=5, expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_istft_against_librosa(self, device, dtype): if not TEST_LIBROSA: raise unittest.SkipTest('librosa not found') def librosa_istft(x, n_fft, hop_length, win_length, window, length, center): if window is None: window = np.ones(n_fft if win_length is None else win_length) else: window = window.cpu().numpy() return librosa.istft(x.cpu().numpy(), n_fft=n_fft, hop_length=hop_length, win_length=win_length, length=length, window=window, center=center) def _test(size, n_fft, hop_length=None, win_length=None, win_sizes=None, length=None, center=True): x = torch.randn(size, dtype=dtype, device=device) if win_sizes is not None: window = torch.randn(*win_sizes, dtype=dtype, device=device) else: window = None x_stft = x.stft(n_fft, hop_length, win_length, window, center=center, onesided=True, return_complex=True) ref_result = librosa_istft(x_stft, n_fft, hop_length, win_length, window, length, center) result = x_stft.istft(n_fft, hop_length, win_length, window, length=length, center=center) self.assertEqual(result, ref_result) for center in [True, False]: _test(10, 7, center=center) _test(4000, 1024, center=center) _test(4000, 1024, center=center, length=4000) _test(10, 7, 2, center=center) _test(4000, 1024, 512, center=center) _test(4000, 1024, 512, center=center, length=4000) _test(10, 7, 2, win_sizes=(7,), center=center) _test(4000, 1024, 512, win_sizes=(1024,), center=center) _test(4000, 1024, 512, win_sizes=(1024,), center=center, length=4000) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double, torch.cdouble) def test_complex_stft_roundtrip(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype), torch.randn(12, 60, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # center (True,), # pad_mode ("constant", "reflect", "circular"), # normalized (True, False), # onesided (True, False) if not dtype.is_complex else (False,), )) for args in test_args: x, n_fft, hop_length, center, pad_mode, normalized, onesided = args common_kwargs = { 'n_fft': n_fft, 'hop_length': hop_length, 'center': center, 'normalized': normalized, 'onesided': onesided, } # Functional interface x_stft = torch.stft(x, pad_mode=pad_mode, return_complex=True, **common_kwargs) x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex, length=x.size(-1), **common_kwargs) self.assertEqual(x_roundtrip, x) # Tensor method interface x_stft = x.stft(pad_mode=pad_mode, return_complex=True, **common_kwargs) x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex, length=x.size(-1), **common_kwargs) self.assertEqual(x_roundtrip, x) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double, torch.cdouble) def test_stft_roundtrip_complex_window(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype), torch.randn(12, 60, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # pad_mode ("constant", "reflect", "replicate", "circular"), # normalized (True, False), )) for args in test_args: x, n_fft, hop_length, pad_mode, normalized = args window = torch.rand(n_fft, device=device, dtype=torch.cdouble) x_stft = torch.stft( x, n_fft=n_fft, hop_length=hop_length, window=window, center=True, pad_mode=pad_mode, normalized=normalized) self.assertEqual(x_stft.dtype, torch.cdouble) self.assertEqual(x_stft.size(-2), n_fft) # Not onesided x_roundtrip = torch.istft( x_stft, n_fft=n_fft, hop_length=hop_length, window=window, center=True, normalized=normalized, length=x.size(-1), return_complex=True) self.assertEqual(x_stft.dtype, torch.cdouble) if not dtype.is_complex: self.assertEqual(x_roundtrip.imag, torch.zeros_like(x_roundtrip.imag), atol=1e-6, rtol=0) self.assertEqual(x_roundtrip.real, x) else: self.assertEqual(x_roundtrip, x) @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_stft_definition(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (10, 15) )) for args in test_args: window = torch.randn(args[1], device=device, dtype=dtype) expected = _stft_reference(args[0], args[2], window) actual = torch.stft(*args, window=window, center=False) self.assertEqual(actual, expected) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_stft_real_equiv(self, device, dtype): test_args = list(product( # input (torch.rand(600, device=device, dtype=dtype), torch.rand(807, device=device, dtype=dtype), torch.rand(14, 50, device=device, dtype=dtype), torch.rand(6, 51, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # win_length (None, 20), # center (False, True), # pad_mode ("constant", "reflect", "circular"), # normalized (True, False), )) for args in test_args: x, n_fft, hop_length, win_length, center, pad_mode, normalized = args expected = _complex_stft(x, n_fft, hop_length=hop_length, win_length=win_length, pad_mode=pad_mode, center=center, normalized=normalized) actual = torch.stft(x, n_fft, hop_length=hop_length, win_length=win_length, pad_mode=pad_mode, center=center, normalized=normalized) self.assertEqual(expected, actual) @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_istft_real_equiv(self, device, dtype): test_args = list(product( # input (torch.rand(40, 20, device=device, dtype=dtype), torch.rand(25, 1, device=device, dtype=dtype), torch.rand(4, 20, 10, device=device, dtype=dtype)), # hop_length (None, 10), # center (False, True), # normalized (True, False), )) for args in test_args: x, hop_length, center, normalized = args n_fft = x.size(-2) expected = _complex_istft(x, n_fft, hop_length=hop_length, center=center, normalized=normalized) actual = torch.istft(x, n_fft, hop_length=hop_length, center=center, normalized=normalized, return_complex=True) self.assertEqual(expected, actual) @skipCPUIfNoFFT def test_complex_stft_onesided(self, device): # stft of complex input cannot be onesided for x_dtype, window_dtype in product((torch.double, torch.cdouble), repeat=2): x = torch.rand(100, device=device, dtype=x_dtype) window = torch.rand(10, device=device, dtype=window_dtype) if x_dtype.is_complex or window_dtype.is_complex: with self.assertRaisesRegex(RuntimeError, 'complex'): x.stft(10, window=window, pad_mode='constant', onesided=True) else: y = x.stft(10, window=window, pad_mode='constant', onesided=True, return_complex=True) self.assertEqual(y.dtype, torch.cdouble) self.assertEqual(y.size(), (6, 51)) x = torch.rand(100, device=device, dtype=torch.cdouble) with self.assertRaisesRegex(RuntimeError, 'complex'): x.stft(10, pad_mode='constant', onesided=True) # stft is currently warning that it requires return-complex while an upgrader is written @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_stft_requires_complex(self, device): x = torch.rand(100) with self.assertRaisesRegex(RuntimeError, 'stft requires the return_complex parameter'): y = x.stft(10, pad_mode='constant') @skipCPUIfNoFFT def test_fft_input_modification(self, device): # FFT functions should not modify their input (gh-34551) signal = torch.ones((2, 2, 2), device=device) signal_copy = signal.clone() spectrum = torch.fft.fftn(signal, dim=(-2, -1)) self.assertEqual(signal, signal_copy) spectrum_copy = spectrum.clone() _ = torch.fft.ifftn(spectrum, dim=(-2, -1)) self.assertEqual(spectrum, spectrum_copy) half_spectrum = torch.fft.rfftn(signal, dim=(-2, -1)) self.assertEqual(signal, signal_copy) half_spectrum_copy = half_spectrum.clone() _ = torch.fft.irfftn(half_spectrum_copy, s=(2, 2), dim=(-2, -1)) self.assertEqual(half_spectrum, half_spectrum_copy) @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_fft_plan_repeatable(self, device): # Regression test for gh-58724 and gh-63152 for n in [2048, 3199, 5999]: a = torch.randn(n, device=device, dtype=torch.complex64) res1 = torch.fft.fftn(a) res2 = torch.fft.fftn(a.clone()) self.assertEqual(res1, res2) a = torch.randn(n, device=device, dtype=torch.float64) res1 = torch.fft.rfft(a) res2 = torch.fft.rfft(a.clone()) self.assertEqual(res1, res2) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_simple_cases(self, device, dtype): """stft -> istft should recover the original signale""" def _test(input, n_fft, length): stft = torch.stft(input, n_fft=n_fft, return_complex=True) inverse = torch.istft(stft, n_fft=n_fft, length=length) self.assertEqual(input, inverse, exact_dtype=True) _test(torch.ones(4, dtype=dtype, device=device), 4, 4) _test(torch.zeros(4, dtype=dtype, device=device), 4, 4) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_various_params(self, device, dtype): """stft -> istft should recover the original signale""" def _test_istft_is_inverse_of_stft(stft_kwargs): # generates a random sound signal for each tril and then does the stft/istft # operation to check whether we can reconstruct signal data_sizes = [(2, 20), (3, 15), (4, 10)] num_trials = 100 istft_kwargs = stft_kwargs.copy() del istft_kwargs['pad_mode'] for sizes in data_sizes: for i in range(num_trials): original = torch.randn(*sizes, dtype=dtype, device=device) stft = torch.stft(original, return_complex=True, **stft_kwargs) inversed = torch.istft(stft, length=original.size(1), **istft_kwargs) self.assertEqual( inversed, original, msg='istft comparison against original', atol=7e-6, rtol=0, exact_dtype=True) patterns = [ # hann_window, centered, normalized, onesided { 'n_fft': 12, 'hop_length': 4, 'win_length': 12, 'window': torch.hann_window(12, dtype=dtype, device=device), 'center': True, 'pad_mode': 'reflect', 'normalized': True, 'onesided': True, }, # hann_window, centered, not normalized, not onesided { 'n_fft': 12, 'hop_length': 2, 'win_length': 8, 'window': torch.hann_window(8, dtype=dtype, device=device), 'center': True, 'pad_mode': 'reflect', 'normalized': False, 'onesided': False, }, # hamming_window, centered, normalized, not onesided { 'n_fft': 15, 'hop_length': 3, 'win_length': 11, 'window': torch.hamming_window(11, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': True, 'onesided': False, }, # hamming_window, centered, not normalized, onesided # window same size as n_fft { 'n_fft': 5, 'hop_length': 2, 'win_length': 5, 'window': torch.hamming_window(5, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': False, 'onesided': True, }, ] for i, pattern in enumerate(patterns): _test_istft_is_inverse_of_stft(pattern) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_with_padding(self, device, dtype): """long hop_length or not centered may cause length mismatch in the inversed signal""" def _test_istft_is_inverse_of_stft_with_padding(stft_kwargs): # generates a random sound signal for each tril and then does the stft/istft # operation to check whether we can reconstruct signal num_trials = 100 sizes = stft_kwargs['size'] del stft_kwargs['size'] istft_kwargs = stft_kwargs.copy() del istft_kwargs['pad_mode'] for i in range(num_trials): original = torch.randn(*sizes, dtype=dtype, device=device) stft = torch.stft(original, return_complex=True, **stft_kwargs) with self.assertWarnsOnceRegex(UserWarning, "The length of signal is shorter than the length parameter."): inversed = torch.istft(stft, length=original.size(-1), **istft_kwargs) n_frames = stft.size(-1) if stft_kwargs["center"] is True: len_expected = stft_kwargs["n_fft"] // 2 + stft_kwargs["hop_length"] * (n_frames - 1) else: len_expected = stft_kwargs["n_fft"] + stft_kwargs["hop_length"] * (n_frames - 1) # trim the original for case when constructed signal is shorter than original padding = inversed[..., len_expected:] inversed = inversed[..., :len_expected] original = original[..., :len_expected] # test the padding points of the inversed signal are all zeros zeros = torch.zeros_like(padding, device=padding.device) self.assertEqual( padding, zeros, msg='istft padding values against zeros', atol=7e-6, rtol=0, exact_dtype=True) self.assertEqual( inversed, original, msg='istft comparison against original', atol=7e-6, rtol=0, exact_dtype=True) patterns = [ # hamming_window, not centered, not normalized, not onesided # window same size as n_fft { 'size': [2, 20], 'n_fft': 3, 'hop_length': 2, 'win_length': 3, 'window': torch.hamming_window(3, dtype=dtype, device=device), 'center': False, 'pad_mode': 'reflect', 'normalized': False, 'onesided': False, }, # hamming_window, centered, not normalized, onesided, long hop_length # window same size as n_fft { 'size': [2, 500], 'n_fft': 256, 'hop_length': 254, 'win_length': 256, 'window': torch.hamming_window(256, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': False, 'onesided': True, }, ] for i, pattern in enumerate(patterns): _test_istft_is_inverse_of_stft_with_padding(pattern) @onlyNativeDeviceTypes def test_istft_throws(self, device): """istft should throw exception for invalid parameters""" stft = torch.zeros((3, 5, 2), device=device) # the window is size 1 but it hops 20 so there is a gap which throw an error self.assertRaises( RuntimeError, torch.istft, stft, n_fft=4, hop_length=20, win_length=1, window=torch.ones(1)) # A window of zeros does not meet NOLA invalid_window = torch.zeros(4, device=device) self.assertRaises( RuntimeError, torch.istft, stft, n_fft=4, win_length=4, window=invalid_window) # Input cannot be empty self.assertRaises(RuntimeError, torch.istft, torch.zeros((3, 0, 2)), 2) self.assertRaises(RuntimeError, torch.istft, torch.zeros((0, 3, 2)), 2) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_of_sine(self, device, dtype): complex_dtype = corresponding_complex_dtype(dtype) def _test(amplitude, L, n): # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L x = torch.arange(2 * L + 1, device=device, dtype=dtype) original = amplitude * torch.sin(2 * math.pi / L * x * n) # stft = torch.stft(original, L, hop_length=L, win_length=L, # window=torch.ones(L), center=False, normalized=False) stft = torch.zeros((L // 2 + 1, 2), device=device, dtype=complex_dtype) stft_largest_val = (amplitude * L) / 2.0 if n < stft.size(0): stft[n].imag = torch.tensor(-stft_largest_val, dtype=dtype) if 0 <= L - n < stft.size(0): # symmetric about L // 2 stft[L - n].imag = torch.tensor(stft_largest_val, dtype=dtype) inverse = torch.istft( stft, L, hop_length=L, win_length=L, window=torch.ones(L, device=device, dtype=dtype), center=False, normalized=False) # There is a larger error due to the scaling of amplitude original = original[..., :inverse.size(-1)] self.assertEqual(inverse, original, atol=1e-3, rtol=0) _test(amplitude=123, L=5, n=1) _test(amplitude=150, L=5, n=2) _test(amplitude=111, L=5, n=3) _test(amplitude=160, L=7, n=4) _test(amplitude=145, L=8, n=5) _test(amplitude=80, L=9, n=6) _test(amplitude=99, L=10, n=7) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_linearity(self, device, dtype): num_trials = 100 complex_dtype = corresponding_complex_dtype(dtype) def _test(data_size, kwargs): for i in range(num_trials): tensor1 = torch.randn(data_size, device=device, dtype=complex_dtype) tensor2 = torch.randn(data_size, device=device, dtype=complex_dtype) a, b = torch.rand(2, dtype=dtype, device=device) # Also compare method vs. functional call signature istft1 = tensor1.istft(**kwargs) istft2 = tensor2.istft(**kwargs) istft = a * istft1 + b * istft2 estimate = torch.istft(a * tensor1 + b * tensor2, **kwargs) self.assertEqual(istft, estimate, atol=1e-5, rtol=0) patterns = [ # hann_window, centered, normalized, onesided ( (2, 7, 7), { 'n_fft': 12, 'window': torch.hann_window(12, device=device, dtype=dtype), 'center': True, 'normalized': True, 'onesided': True, }, ), # hann_window, centered, not normalized, not onesided ( (2, 12, 7), { 'n_fft': 12, 'window': torch.hann_window(12, device=device, dtype=dtype), 'center': True, 'normalized': False, 'onesided': False, }, ), # hamming_window, centered, normalized, not onesided ( (2, 12, 7), { 'n_fft': 12, 'window': torch.hamming_window(12, device=device, dtype=dtype), 'center': True, 'normalized': True, 'onesided': False, }, ), # hamming_window, not centered, not normalized, onesided ( (2, 7, 3), { 'n_fft': 12, 'window': torch.hamming_window(12, device=device, dtype=dtype), 'center': False, 'normalized': False, 'onesided': True, }, ) ] for data_size, kwargs in patterns: _test(data_size, kwargs) @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_batch_istft(self, device): original = torch.tensor([ [4., 4., 4., 4., 4.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.] ], device=device, dtype=torch.complex64) single = original.repeat(1, 1, 1) multi = original.repeat(4, 1, 1) i_original = torch.istft(original, n_fft=4, length=4) i_single = torch.istft(single, n_fft=4, length=4) i_multi = torch.istft(multi, n_fft=4, length=4) self.assertEqual(i_original.repeat(1, 1), i_single, atol=1e-6, rtol=0, exact_dtype=True) self.assertEqual(i_original.repeat(4, 1), i_multi, atol=1e-6, rtol=0, exact_dtype=True) @onlyCUDA @skipIf(not TEST_MKL, "Test requires MKL") def test_stft_window_device(self, device): # Test the (i)stft window must be on the same device as the input x = torch.randn(1000, dtype=torch.complex64) window = torch.randn(100, dtype=torch.complex64) with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"): torch.stft(x, n_fft=100, window=window.to(device)) with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"): torch.stft(x.to(device), n_fft=100, window=window) X = torch.stft(x, n_fft=100, window=window) with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"): torch.istft(X, n_fft=100, window=window.to(device)) with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"): torch.istft(x.to(device), n_fft=100, window=window) class FFTDocTestFinder: '''The default doctest finder doesn't like that function.__module__ doesn't match torch.fft. It assumes the functions are leaked imports. ''' def __init__(self): self.parser = doctest.DocTestParser() def find(self, obj, name=None, module=None, globs=None, extraglobs=None): doctests = [] modname = name if name is not None else obj.__name__ globs = {} if globs is None else globs for fname in obj.__all__: func = getattr(obj, fname) if inspect.isroutine(func): qualname = modname + '.' + fname docstring = inspect.getdoc(func) if docstring is None: continue examples = self.parser.get_doctest( docstring, globs=globs, name=fname, filename=None, lineno=None) doctests.append(examples) return doctests class TestFFTDocExamples(TestCase): pass
def skip_helper_for_fft(device, dtype): device_type = torch.device(device).type if dtype not in (torch.half, torch.complex32): return if device_type == 'cpu': raise unittest.SkipTest("half and complex32 are not supported on CPU") if not SM53OrLater: raise unittest.SkipTest("half and complex32 are only supported on CUDA device with SM>53") # Tests of functions related to Fourier analysis in the torch.fft namespace class TestFFT(TestCase): exact_dtype = True @onlyNativeDeviceTypes @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.OneD], allowed_dtypes=(torch.float, torch.cfloat)) def test_reference_1d(self, device, dtype, op): if op.ref is None: raise unittest.SkipTest("No reference implementation") norm_modes = REFERENCE_NORM_MODES test_args = [ *product( # input (torch.randn(67, device=device, dtype=dtype), torch.randn(80, device=device, dtype=dtype), torch.randn(12, 14, device=device, dtype=dtype), torch.randn(9, 6, 3, device=device, dtype=dtype)), # n (None, 50, 6), # dim (-1, 0), # norm norm_modes ), # Test transforming middle dimensions of multi-dim tensor *product( (torch.randn(4, 5, 6, 7, device=device, dtype=dtype),), (None,), (1, 2, -2,), norm_modes ) ] for iargs in test_args: args = list(iargs) input = args[0] args = args[1:] expected = op.ref(input.cpu().numpy(), *args) exact_dtype = dtype in (torch.double, torch.complex128) actual = op(input, *args) self.assertEqual(actual, expected, exact_dtype=exact_dtype) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), torch.chalf : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fft_round_trip(self, device, dtype): skip_helper_for_fft(device, dtype) # Test that round trip through ifft(fft(x)) is the identity if dtype not in (torch.half, torch.complex32): test_args = list(product( # input (torch.randn(67, device=device, dtype=dtype), torch.randn(80, device=device, dtype=dtype), torch.randn(12, 14, device=device, dtype=dtype), torch.randn(9, 6, 3, device=device, dtype=dtype)), # dim (-1, 0), # norm (None, "forward", "backward", "ortho") )) else: # cuFFT supports powers of 2 for half and complex half precision test_args = list(product( # input (torch.randn(64, device=device, dtype=dtype), torch.randn(128, device=device, dtype=dtype), torch.randn(4, 16, device=device, dtype=dtype), torch.randn(8, 6, 2, device=device, dtype=dtype)), # dim (-1, 0), # norm (None, "forward", "backward", "ortho") )) fft_functions = [(torch.fft.fft, torch.fft.ifft)] # Real-only functions if not dtype.is_complex: # NOTE: Using ihfft as "forward" transform to avoid needing to # generate true half-complex input fft_functions += [(torch.fft.rfft, torch.fft.irfft), (torch.fft.ihfft, torch.fft.hfft)] for forward, backward in fft_functions: for x, dim, norm in test_args: kwargs = { 'n': x.size(dim), 'dim': dim, 'norm': norm, } y = backward(forward(x, **kwargs), **kwargs) if x.dtype is torch.half and y.dtype is torch.complex32: # Since type promotion currently doesn't work with complex32 # manually promote `x` to complex32 x = x.to(torch.complex32) # For real input, ifft(fft(x)) will convert to complex self.assertEqual(x, y, exact_dtype=( forward != torch.fft.fft or x.is_complex())) # Note: NumPy will throw a ValueError for an empty input @onlyNativeDeviceTypes @ops(spectral_funcs, allowed_dtypes=(torch.half, torch.float, torch.complex32, torch.cfloat)) def test_empty_fft(self, device, dtype, op): t = torch.empty(1, 0, device=device, dtype=dtype) match = r"Invalid number of data points \([-\d]*\) specified" with self.assertRaisesRegex(RuntimeError, match): op(t) @onlyNativeDeviceTypes def test_empty_ifft(self, device): t = torch.empty(2, 1, device=device, dtype=torch.complex64) match = r"Invalid number of data points \([-\d]*\) specified" for f in [torch.fft.irfft, torch.fft.irfft2, torch.fft.irfftn, torch.fft.hfft, torch.fft.hfft2, torch.fft.hfftn]: with self.assertRaisesRegex(RuntimeError, match): f(t) @onlyNativeDeviceTypes def test_fft_invalid_dtypes(self, device): t = torch.randn(64, device=device, dtype=torch.complex128) with self.assertRaisesRegex(RuntimeError, "rfft expects a real input tensor"): torch.fft.rfft(t) with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input tensor"): torch.fft.rfftn(t) with self.assertRaisesRegex(RuntimeError, "ihfft expects a real input tensor"): torch.fft.ihfft(t) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.int8, torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fft_type_promotion(self, device, dtype): skip_helper_for_fft(device, dtype) if dtype.is_complex or dtype.is_floating_point: t = torch.randn(64, device=device, dtype=dtype) else: t = torch.randint(-2, 2, (64,), device=device, dtype=dtype) PROMOTION_MAP = { torch.int8: torch.complex64, torch.half: torch.complex32, torch.float: torch.complex64, torch.double: torch.complex128, torch.complex32: torch.complex32, torch.complex64: torch.complex64, torch.complex128: torch.complex128, } T = torch.fft.fft(t) self.assertEqual(T.dtype, PROMOTION_MAP[dtype]) PROMOTION_MAP_C2R = { torch.int8: torch.float, torch.half: torch.half, torch.float: torch.float, torch.double: torch.double, torch.complex32: torch.half, torch.complex64: torch.float, torch.complex128: torch.double, } if dtype in (torch.half, torch.complex32): # cuFFT supports powers of 2 for half and complex half precision # NOTE: With hfft and default args where output_size n=2*(input_size - 1), # we make sure that logical fft size is a power of two. x = torch.randn(65, device=device, dtype=dtype) R = torch.fft.hfft(x) else: R = torch.fft.hfft(t) self.assertEqual(R.dtype, PROMOTION_MAP_C2R[dtype]) if not dtype.is_complex: PROMOTION_MAP_R2C = { torch.int8: torch.complex64, torch.half: torch.complex32, torch.float: torch.complex64, torch.double: torch.complex128, } C = torch.fft.rfft(t) self.assertEqual(C.dtype, PROMOTION_MAP_R2C[dtype]) @onlyNativeDeviceTypes @ops(spectral_funcs, dtypes=OpDTypes.unsupported, allowed_dtypes=[torch.half, torch.bfloat16]) def test_fft_half_and_bfloat16_errors(self, device, dtype, op): # TODO: Remove torch.half error when complex32 is fully implemented sample = first_sample(self, op.sample_inputs(device, dtype)) device_type = torch.device(device).type default_msg = "Unsupported dtype" if dtype is torch.half and device_type == 'cuda' and TEST_WITH_ROCM: err_msg = default_msg elif dtype is torch.half and device_type == 'cuda' and not SM53OrLater: err_msg = "cuFFT doesn't support signals of half type with compute capability less than SM_53" else: err_msg = default_msg with self.assertRaisesRegex(RuntimeError, err_msg): op(sample.input, *sample.args, **sample.kwargs) @onlyNativeDeviceTypes @ops(spectral_funcs, allowed_dtypes=(torch.half, torch.chalf)) def test_fft_half_and_chalf_not_power_of_two_error(self, device, dtype, op): t = make_tensor(13, 13, device=device, dtype=dtype) err_msg = "cuFFT only supports dimensions whose sizes are powers of two" with self.assertRaisesRegex(RuntimeError, err_msg): op(t) if op.ndimensional in (SpectralFuncType.ND, SpectralFuncType.TwoD): kwargs = {'s': (12, 12)} else: kwargs = {'n': 12} with self.assertRaisesRegex(RuntimeError, err_msg): op(t, **kwargs) # nd-fft tests @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND], allowed_dtypes=(torch.cfloat, torch.cdouble)) def test_reference_nd(self, device, dtype, op): if op.ref is None: raise unittest.SkipTest("No reference implementation") norm_modes = REFERENCE_NORM_MODES # input_ndim, s, dim transform_desc = [ *product(range(2, 5), (None,), (None, (0,), (0, -1))), *product(range(2, 5), (None, (4, 10)), (None,)), (6, None, None), (5, None, (1, 3, 4)), (3, None, (1,)), (1, None, (0,)), (4, (10, 10), None), (4, (10, 10), (0, 1)) ] for input_ndim, s, dim in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) input = torch.randn(*shape, device=device, dtype=dtype) for norm in norm_modes: expected = op.ref(input.cpu().numpy(), s, dim, norm) exact_dtype = dtype in (torch.double, torch.complex128) actual = op(input, s, dim, norm) self.assertEqual(actual, expected, exact_dtype=exact_dtype) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), torch.chalf : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_fftn_round_trip(self, device, dtype): skip_helper_for_fft(device, dtype) norm_modes = (None, "forward", "backward", "ortho") # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (7, None), (5, (1, 3, 4)), (3, (1,)), (1, 0), ] fft_functions = [(torch.fft.fftn, torch.fft.ifftn)] # Real-only functions if not dtype.is_complex: # NOTE: Using ihfftn as "forward" transform to avoid needing to # generate true half-complex input fft_functions += [(torch.fft.rfftn, torch.fft.irfftn), (torch.fft.ihfftn, torch.fft.hfftn)] for input_ndim, dim in transform_desc: if dtype in (torch.half, torch.complex32): # cuFFT supports powers of 2 for half and complex half precision shape = itertools.islice(itertools.cycle((2, 4, 8)), input_ndim) else: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) x = torch.randn(*shape, device=device, dtype=dtype) for (forward, backward), norm in product(fft_functions, norm_modes): if isinstance(dim, tuple): s = [x.size(d) for d in dim] else: s = x.size() if dim is None else x.size(dim) kwargs = {'s': s, 'dim': dim, 'norm': norm} y = backward(forward(x, **kwargs), **kwargs) # For real input, ifftn(fftn(x)) will convert to complex if x.dtype is torch.half and y.dtype is torch.chalf: # Since type promotion currently doesn't work with complex32 # manually promote `x` to complex32 self.assertEqual(x.to(torch.chalf), y) else: self.assertEqual(x, y, exact_dtype=( forward != torch.fft.fftn or x.is_complex())) @onlyNativeDeviceTypes @ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND], allowed_dtypes=[torch.float, torch.cfloat]) def test_fftn_invalid(self, device, dtype, op): a = torch.rand(10, 10, 10, device=device, dtype=dtype) # FIXME: https://github.com/pytorch/pytorch/issues/108205 errMsg = "dims must be unique" with self.assertRaisesRegex(RuntimeError, errMsg): op(a, dim=(0, 1, 0)) with self.assertRaisesRegex(RuntimeError, errMsg): op(a, dim=(2, -1)) with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"): op(a, s=(1,), dim=(0, 1)) with self.assertRaisesRegex(IndexError, "Dimension out of range"): op(a, dim=(3,)) with self.assertRaisesRegex(RuntimeError, "tensor only has 3 dimensions"): op(a, s=(10, 10, 10, 10)) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.half, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_fftn_noop_transform(self, device, dtype): skip_helper_for_fft(device, dtype) RESULT_TYPE = { torch.half: torch.chalf, torch.float: torch.cfloat, torch.double: torch.cdouble, } for op in [ torch.fft.fftn, torch.fft.ifftn, torch.fft.fft2, torch.fft.ifft2, ]: inp = make_tensor((10, 10), device=device, dtype=dtype) out = torch.fft.fftn(inp, dim=[]) expect_dtype = RESULT_TYPE.get(inp.dtype, inp.dtype) expect = inp.to(expect_dtype) self.assertEqual(expect, out) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double) def test_hfftn(self, device, dtype): skip_helper_for_fft(device, dtype) # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (6, None), (5, (1, 3, 4)), (3, (1,)), (1, (0,)), (4, (0, 1)) ] for input_ndim, dim in transform_desc: actual_dims = list(range(input_ndim)) if dim is None else dim if dtype is torch.half: shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim)) else: shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim)) expect = torch.randn(*shape, device=device, dtype=dtype) input = torch.fft.ifftn(expect, dim=dim, norm="ortho") lastdim = actual_dims[-1] lastdim_size = input.size(lastdim) // 2 + 1 idx = [slice(None)] * input_ndim idx[lastdim] = slice(0, lastdim_size) input = input[idx] s = [shape[dim] for dim in actual_dims] actual = torch.fft.hfftn(input, s=s, dim=dim, norm="ortho") self.assertEqual(expect, actual) @skipCPUIfNoFFT @onlyNativeDeviceTypes @toleranceOverride({ torch.half : tol(1e-2, 1e-2), }) @dtypes(torch.half, torch.float, torch.double) def test_ihfftn(self, device, dtype): skip_helper_for_fft(device, dtype) # input_ndim, dim transform_desc = [ *product(range(2, 5), (None, (0,), (0, -1))), (6, None), (5, (1, 3, 4)), (3, (1,)), (1, (0,)), (4, (0, 1)) ] for input_ndim, dim in transform_desc: if dtype is torch.half: shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim)) else: shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim)) input = torch.randn(*shape, device=device, dtype=dtype) expect = torch.fft.ifftn(input, dim=dim, norm="ortho") # Slice off the half-symmetric component lastdim = -1 if dim is None else dim[-1] lastdim_size = expect.size(lastdim) // 2 + 1 idx = [slice(None)] * input_ndim idx[lastdim] = slice(0, lastdim_size) expect = expect[idx] actual = torch.fft.ihfftn(input, dim=dim, norm="ortho") self.assertEqual(expect, actual) # 2d-fft tests # NOTE: 2d transforms are only thin wrappers over n-dim transforms, # so don't require exhaustive testing. @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double, torch.complex128) def test_fft2_numpy(self, device, dtype): norm_modes = REFERENCE_NORM_MODES # input_ndim, s transform_desc = [ *product(range(2, 5), (None, (4, 10))), ] fft_functions = ['fft2', 'ifft2', 'irfft2', 'hfft2'] if dtype.is_floating_point: fft_functions += ['rfft2', 'ihfft2'] for input_ndim, s in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) input = torch.randn(*shape, device=device, dtype=dtype) for fname, norm in product(fft_functions, norm_modes): torch_fn = getattr(torch.fft, fname) if "hfft" in fname: if not has_scipy_fft: continue # Requires scipy to compare against numpy_fn = getattr(scipy.fft, fname) else: numpy_fn = getattr(np.fft, fname) def fn(t: torch.Tensor, s: Optional[List[int]], dim: List[int] = (-2, -1), norm: Optional[str] = None): return torch_fn(t, s, dim, norm) torch_fns = (torch_fn, torch.jit.script(fn)) # Once with dim defaulted input_np = input.cpu().numpy() expected = numpy_fn(input_np, s, norm=norm) for fn in torch_fns: actual = fn(input, s, norm=norm) self.assertEqual(actual, expected) # Once with explicit dims dim = (1, 0) expected = numpy_fn(input_np, s, dim, norm) for fn in torch_fns: actual = fn(input, s, dim, norm) self.assertEqual(actual, expected) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.float, torch.complex64) def test_fft2_fftn_equivalence(self, device, dtype): norm_modes = (None, "forward", "backward", "ortho") # input_ndim, s, dim transform_desc = [ *product(range(2, 5), (None, (4, 10)), (None, (1, 0))), (3, None, (0, 2)), ] fft_functions = ['fft', 'ifft', 'irfft', 'hfft'] # Real-only functions if dtype.is_floating_point: fft_functions += ['rfft', 'ihfft'] for input_ndim, s, dim in transform_desc: shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim) x = torch.randn(*shape, device=device, dtype=dtype) for func, norm in product(fft_functions, norm_modes): f2d = getattr(torch.fft, func + '2') fnd = getattr(torch.fft, func + 'n') kwargs = {'s': s, 'norm': norm} if dim is not None: kwargs['dim'] = dim expect = fnd(x, **kwargs) else: expect = fnd(x, dim=(-2, -1), **kwargs) actual = f2d(x, **kwargs) self.assertEqual(actual, expect) @skipCPUIfNoFFT @onlyNativeDeviceTypes def test_fft2_invalid(self, device): a = torch.rand(10, 10, 10, device=device) fft_funcs = (torch.fft.fft2, torch.fft.ifft2, torch.fft.rfft2, torch.fft.irfft2) for func in fft_funcs: with self.assertRaisesRegex(RuntimeError, "dims must be unique"): func(a, dim=(0, 0)) with self.assertRaisesRegex(RuntimeError, "dims must be unique"): func(a, dim=(2, -1)) with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"): func(a, s=(1,)) with self.assertRaisesRegex(IndexError, "Dimension out of range"): func(a, dim=(2, 3)) c = torch.complex(a, a) with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input"): torch.fft.rfft2(c) # Helper functions @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double) def test_fftfreq_numpy(self, device, dtype): test_args = [ *product( # n range(1, 20), # d (None, 10.0), ) ] functions = ['fftfreq', 'rfftfreq'] for fname in functions: torch_fn = getattr(torch.fft, fname) numpy_fn = getattr(np.fft, fname) for n, d in test_args: args = (n,) if d is None else (n, d) expected = numpy_fn(*args) actual = torch_fn(*args, device=device, dtype=dtype) self.assertEqual(actual, expected, exact_dtype=False) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) def test_fftfreq_out(self, device, dtype): for func in (torch.fft.fftfreq, torch.fft.rfftfreq): expect = func(n=100, d=.5, device=device, dtype=dtype) actual = torch.empty((), device=device, dtype=dtype) with self.assertWarnsRegex(UserWarning, "out tensor will be resized"): func(n=100, d=.5, out=actual) self.assertEqual(actual, expect) @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_fftshift_numpy(self, device, dtype): test_args = [ # shape, dim *product(((11,), (12,)), (None, 0, -1)), *product(((4, 5), (6, 6)), (None, 0, (-1,))), *product(((1, 1, 4, 6, 7, 2),), (None, (3, 4))), ] functions = ['fftshift', 'ifftshift'] for shape, dim in test_args: input = torch.rand(*shape, device=device, dtype=dtype) input_np = input.cpu().numpy() for fname in functions: torch_fn = getattr(torch.fft, fname) numpy_fn = getattr(np.fft, fname) expected = numpy_fn(input_np, axes=dim) actual = torch_fn(input, dim=dim) self.assertEqual(actual, expected) @skipCPUIfNoFFT @onlyNativeDeviceTypes @unittest.skipIf(not TEST_NUMPY, 'NumPy not found') @dtypes(torch.float, torch.double) def test_fftshift_frequencies(self, device, dtype): for n in range(10, 15): sorted_fft_freqs = torch.arange(-(n // 2), n - (n // 2), device=device, dtype=dtype) x = torch.fft.fftfreq(n, d=1 / n, device=device, dtype=dtype) # Test fftshift sorts the fftfreq output shifted = torch.fft.fftshift(x) self.assertEqual(shifted, shifted.sort().values) self.assertEqual(sorted_fft_freqs, shifted) # And ifftshift is the inverse self.assertEqual(x, torch.fft.ifftshift(shifted)) # Legacy fft tests def _test_fft_ifft_rfft_irfft(self, device, dtype): complex_dtype = corresponding_complex_dtype(dtype) def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=complex_dtype, device=device)) dim = tuple(range(-signal_ndim, 0)) for norm in ('ortho', None): res = torch.fft.fftn(x, dim=dim, norm=norm) rec = torch.fft.ifftn(res, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='fft and ifft') res = torch.fft.ifftn(x, dim=dim, norm=norm) rec = torch.fft.fftn(res, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='ifft and fft') def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device)) signal_numel = 1 signal_sizes = x.size()[-signal_ndim:] dim = tuple(range(-signal_ndim, 0)) for norm in (None, 'ortho'): res = torch.fft.rfftn(x, dim=dim, norm=norm) rec = torch.fft.irfftn(res, s=signal_sizes, dim=dim, norm=norm) self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='rfft and irfft') res = torch.fft.fftn(x, dim=dim, norm=norm) rec = torch.fft.ifftn(res, dim=dim, norm=norm) x_complex = torch.complex(x, torch.zeros_like(x)) self.assertEqual(x_complex, rec, atol=1e-8, rtol=0, msg='fft and ifft (from real)') # contiguous case _test_real((100,), 1) _test_real((10, 1, 10, 100), 1) _test_real((100, 100), 2) _test_real((2, 2, 5, 80, 60), 2) _test_real((50, 40, 70), 3) _test_real((30, 1, 50, 25, 20), 3) _test_complex((100,), 1) _test_complex((100, 100), 1) _test_complex((100, 100), 2) _test_complex((1, 20, 80, 60), 2) _test_complex((50, 40, 70), 3) _test_complex((6, 5, 50, 25, 20), 3) # non-contiguous case _test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type _test_real((100, 100, 3), 1, lambda x: x[:, :, 0]) _test_real((100, 100), 2, lambda x: x.t()) _test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60]) _test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80]) _test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3)) _test_complex((100,), 1, lambda x: x.expand(100, 100)) _test_complex((20, 90, 110), 2, lambda x: x[:, 5:85].narrow(2, 5, 100)) _test_complex((40, 60, 3, 80), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:]) _test_complex((30, 55, 50, 22), 3, lambda x: x[:, 3:53, 15:40, 1:21]) @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_fft_ifft_rfft_irfft(self, device, dtype): self._test_fft_ifft_rfft_irfft(device, dtype) @deviceCountAtLeast(1) @onlyCUDA @dtypes(torch.double) def test_cufft_plan_cache(self, devices, dtype): @contextmanager def plan_cache_max_size(device, n): if device is None: plan_cache = torch.backends.cuda.cufft_plan_cache else: plan_cache = torch.backends.cuda.cufft_plan_cache[device] original = plan_cache.max_size plan_cache.max_size = n try: yield finally: plan_cache.max_size = original with plan_cache_max_size(devices[0], max(1, torch.backends.cuda.cufft_plan_cache.size - 10)): self._test_fft_ifft_rfft_irfft(devices[0], dtype) with plan_cache_max_size(devices[0], 0): self._test_fft_ifft_rfft_irfft(devices[0], dtype) torch.backends.cuda.cufft_plan_cache.clear() # check that stll works after clearing cache with plan_cache_max_size(devices[0], 10): self._test_fft_ifft_rfft_irfft(devices[0], dtype) with self.assertRaisesRegex(RuntimeError, r"must be non-negative"): torch.backends.cuda.cufft_plan_cache.max_size = -1 with self.assertRaisesRegex(RuntimeError, r"read-only property"): torch.backends.cuda.cufft_plan_cache.size = -1 with self.assertRaisesRegex(RuntimeError, r"but got device with index"): torch.backends.cuda.cufft_plan_cache[torch.cuda.device_count() + 10] # Multigpu tests if len(devices) > 1: # Test that different GPU has different cache x0 = torch.randn(2, 3, 3, device=devices[0]) x1 = x0.to(devices[1]) self.assertEqual(torch.fft.rfftn(x0, dim=(-2, -1)), torch.fft.rfftn(x1, dim=(-2, -1))) # If a plan is used across different devices, the following line (or # the assert above) would trigger illegal memory access. Other ways # to trigger the error include # (1) setting CUDA_LAUNCH_BLOCKING=1 (pytorch/pytorch#19224) and # (2) printing a device 1 tensor. x0.copy_(x1) # Test that un-indexed `torch.backends.cuda.cufft_plan_cache` uses current device with plan_cache_max_size(devices[0], 10): with plan_cache_max_size(devices[1], 11): self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11) self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 with torch.cuda.device(devices[1]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 with torch.cuda.device(devices[0]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) with torch.cuda.device(devices[1]): with plan_cache_max_size(None, 11): # default is cuda:1 self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10) self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11) self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 with torch.cuda.device(devices[0]): self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0 self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1 @onlyCUDA @dtypes(torch.cfloat, torch.cdouble) def test_cufft_context(self, device, dtype): # Regression test for https://github.com/pytorch/pytorch/issues/109448 x = torch.randn(32, dtype=dtype, device=device, requires_grad=True) dout = torch.zeros(32, dtype=dtype, device=device) # compute iFFT(FFT(x)) out = torch.fft.ifft(torch.fft.fft(x)) out.backward(dout, retain_graph=True) dx = torch.fft.fft(torch.fft.ifft(dout)) self.assertTrue((x.grad - dx).abs().max() == 0) self.assertFalse((x.grad - x).abs().max() == 0) # passes on ROCm w/ python 2.7, fails w/ python 3.6 @skipIfTorchDynamo("cannot set WRITEABLE flag to True of this array") @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_stft(self, device, dtype): if not TEST_LIBROSA: raise unittest.SkipTest('librosa not found') def librosa_stft(x, n_fft, hop_length, win_length, window, center): if window is None: window = np.ones(n_fft if win_length is None else win_length) else: window = window.cpu().numpy() input_1d = x.dim() == 1 if input_1d: x = x.view(1, -1) # NOTE: librosa 0.9 changed default pad_mode to 'constant' (zero padding) # however, we use the pre-0.9 default ('reflect') pad_mode = 'reflect' result = [] for xi in x: ri = librosa.stft(xi.cpu().numpy(), n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode) result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1))) result = torch.stack(result, 0) if input_1d: result = result[0] return result def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None, center=True, expected_error=None): x = torch.randn(*sizes, dtype=dtype, device=device) if win_sizes is not None: window = torch.randn(*win_sizes, dtype=dtype, device=device) else: window = None if expected_error is None: result = x.stft(n_fft, hop_length, win_length, window, center=center, return_complex=False) # NB: librosa defaults to np.complex64 output, no matter what # the input dtype ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center) self.assertEqual(result, ref_result, atol=7e-6, rtol=0, msg='stft comparison against librosa', exact_dtype=False) # With return_complex=True, the result is the same but viewed as complex instead of real result_complex = x.stft(n_fft, hop_length, win_length, window, center=center, return_complex=True) self.assertEqual(result_complex, torch.view_as_complex(result)) else: self.assertRaises(expected_error, lambda: x.stft(n_fft, hop_length, win_length, window, center=center)) for center in [True, False]: _test((10,), 7, center=center) _test((10, 4000), 1024, center=center) _test((10,), 7, 2, center=center) _test((10, 4000), 1024, 512, center=center) _test((10,), 7, 2, win_sizes=(7,), center=center) _test((10, 4000), 1024, 512, win_sizes=(1024,), center=center) # spectral oversample _test((10,), 7, 2, win_length=5, center=center) _test((10, 4000), 1024, 512, win_length=100, center=center) _test((10, 4, 2), 1, 1, expected_error=RuntimeError) _test((10,), 11, 1, center=False, expected_error=RuntimeError) _test((10,), -1, 1, expected_error=RuntimeError) _test((10,), 3, win_length=5, expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError) @skipIfTorchDynamo("double") @skipCPUIfNoFFT @onlyNativeDeviceTypes @dtypes(torch.double) def test_istft_against_librosa(self, device, dtype): if not TEST_LIBROSA: raise unittest.SkipTest('librosa not found') def librosa_istft(x, n_fft, hop_length, win_length, window, length, center): if window is None: window = np.ones(n_fft if win_length is None else win_length) else: window = window.cpu().numpy() return librosa.istft(x.cpu().numpy(), n_fft=n_fft, hop_length=hop_length, win_length=win_length, length=length, window=window, center=center) def _test(size, n_fft, hop_length=None, win_length=None, win_sizes=None, length=None, center=True): x = torch.randn(size, dtype=dtype, device=device) if win_sizes is not None: window = torch.randn(*win_sizes, dtype=dtype, device=device) else: window = None x_stft = x.stft(n_fft, hop_length, win_length, window, center=center, onesided=True, return_complex=True) ref_result = librosa_istft(x_stft, n_fft, hop_length, win_length, window, length, center) result = x_stft.istft(n_fft, hop_length, win_length, window, length=length, center=center) self.assertEqual(result, ref_result) for center in [True, False]: _test(10, 7, center=center) _test(4000, 1024, center=center) _test(4000, 1024, center=center, length=4000) _test(10, 7, 2, center=center) _test(4000, 1024, 512, center=center) _test(4000, 1024, 512, center=center, length=4000) _test(10, 7, 2, win_sizes=(7,), center=center) _test(4000, 1024, 512, win_sizes=(1024,), center=center) _test(4000, 1024, 512, win_sizes=(1024,), center=center, length=4000) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double, torch.cdouble) def test_complex_stft_roundtrip(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype), torch.randn(12, 60, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # center (True,), # pad_mode ("constant", "reflect", "circular"), # normalized (True, False), # onesided (True, False) if not dtype.is_complex else (False,), )) for args in test_args: x, n_fft, hop_length, center, pad_mode, normalized, onesided = args common_kwargs = { 'n_fft': n_fft, 'hop_length': hop_length, 'center': center, 'normalized': normalized, 'onesided': onesided, } # Functional interface x_stft = torch.stft(x, pad_mode=pad_mode, return_complex=True, **common_kwargs) x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex, length=x.size(-1), **common_kwargs) self.assertEqual(x_roundtrip, x) # Tensor method interface x_stft = x.stft(pad_mode=pad_mode, return_complex=True, **common_kwargs) x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex, length=x.size(-1), **common_kwargs) self.assertEqual(x_roundtrip, x) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double, torch.cdouble) def test_stft_roundtrip_complex_window(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype), torch.randn(12, 60, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # pad_mode ("constant", "reflect", "replicate", "circular"), # normalized (True, False), )) for args in test_args: x, n_fft, hop_length, pad_mode, normalized = args window = torch.rand(n_fft, device=device, dtype=torch.cdouble) x_stft = torch.stft( x, n_fft=n_fft, hop_length=hop_length, window=window, center=True, pad_mode=pad_mode, normalized=normalized) self.assertEqual(x_stft.dtype, torch.cdouble) self.assertEqual(x_stft.size(-2), n_fft) # Not onesided x_roundtrip = torch.istft( x_stft, n_fft=n_fft, hop_length=hop_length, window=window, center=True, normalized=normalized, length=x.size(-1), return_complex=True) self.assertEqual(x_stft.dtype, torch.cdouble) if not dtype.is_complex: self.assertEqual(x_roundtrip.imag, torch.zeros_like(x_roundtrip.imag), atol=1e-6, rtol=0) self.assertEqual(x_roundtrip.real, x) else: self.assertEqual(x_roundtrip, x) @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_stft_definition(self, device, dtype): test_args = list(product( # input (torch.randn(600, device=device, dtype=dtype), torch.randn(807, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (10, 15) )) for args in test_args: window = torch.randn(args[1], device=device, dtype=dtype) expected = _stft_reference(args[0], args[2], window) actual = torch.stft(*args, window=window, center=False) self.assertEqual(actual, expected) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_stft_real_equiv(self, device, dtype): test_args = list(product( # input (torch.rand(600, device=device, dtype=dtype), torch.rand(807, device=device, dtype=dtype), torch.rand(14, 50, device=device, dtype=dtype), torch.rand(6, 51, device=device, dtype=dtype)), # n_fft (50, 27), # hop_length (None, 10), # win_length (None, 20), # center (False, True), # pad_mode ("constant", "reflect", "circular"), # normalized (True, False), )) for args in test_args: x, n_fft, hop_length, win_length, center, pad_mode, normalized = args expected = _complex_stft(x, n_fft, hop_length=hop_length, win_length=win_length, pad_mode=pad_mode, center=center, normalized=normalized) actual = torch.stft(x, n_fft, hop_length=hop_length, win_length=win_length, pad_mode=pad_mode, center=center, normalized=normalized) self.assertEqual(expected, actual) @skipCPUIfNoFFT @dtypes(torch.cdouble) def test_complex_istft_real_equiv(self, device, dtype): test_args = list(product( # input (torch.rand(40, 20, device=device, dtype=dtype), torch.rand(25, 1, device=device, dtype=dtype), torch.rand(4, 20, 10, device=device, dtype=dtype)), # hop_length (None, 10), # center (False, True), # normalized (True, False), )) for args in test_args: x, hop_length, center, normalized = args n_fft = x.size(-2) expected = _complex_istft(x, n_fft, hop_length=hop_length, center=center, normalized=normalized) actual = torch.istft(x, n_fft, hop_length=hop_length, center=center, normalized=normalized, return_complex=True) self.assertEqual(expected, actual) @skipCPUIfNoFFT def test_complex_stft_onesided(self, device): # stft of complex input cannot be onesided for x_dtype, window_dtype in product((torch.double, torch.cdouble), repeat=2): x = torch.rand(100, device=device, dtype=x_dtype) window = torch.rand(10, device=device, dtype=window_dtype) if x_dtype.is_complex or window_dtype.is_complex: with self.assertRaisesRegex(RuntimeError, 'complex'): x.stft(10, window=window, pad_mode='constant', onesided=True) else: y = x.stft(10, window=window, pad_mode='constant', onesided=True, return_complex=True) self.assertEqual(y.dtype, torch.cdouble) self.assertEqual(y.size(), (6, 51)) x = torch.rand(100, device=device, dtype=torch.cdouble) with self.assertRaisesRegex(RuntimeError, 'complex'): x.stft(10, pad_mode='constant', onesided=True) # stft is currently warning that it requires return-complex while an upgrader is written @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_stft_requires_complex(self, device): x = torch.rand(100) with self.assertRaisesRegex(RuntimeError, 'stft requires the return_complex parameter'): y = x.stft(10, pad_mode='constant') # stft and istft are currently warning if a window is not provided @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_stft_requires_window(self, device): x = torch.rand(100) with self.assertWarnsOnceRegex(UserWarning, "A window was not provided"): y = x.stft(10, pad_mode='constant', return_complex=True) @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_istft_requires_window(self, device): stft = torch.rand((51, 5), dtype=torch.cdouble) # 51 = 2 * n_fft + 1, 5 = number of frames with self.assertWarnsOnceRegex(UserWarning, "A window was not provided"): x = torch.istft(stft, n_fft=100, length=100) @skipCPUIfNoFFT def test_fft_input_modification(self, device): # FFT functions should not modify their input (gh-34551) signal = torch.ones((2, 2, 2), device=device) signal_copy = signal.clone() spectrum = torch.fft.fftn(signal, dim=(-2, -1)) self.assertEqual(signal, signal_copy) spectrum_copy = spectrum.clone() _ = torch.fft.ifftn(spectrum, dim=(-2, -1)) self.assertEqual(spectrum, spectrum_copy) half_spectrum = torch.fft.rfftn(signal, dim=(-2, -1)) self.assertEqual(signal, signal_copy) half_spectrum_copy = half_spectrum.clone() _ = torch.fft.irfftn(half_spectrum_copy, s=(2, 2), dim=(-2, -1)) self.assertEqual(half_spectrum, half_spectrum_copy) @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_fft_plan_repeatable(self, device): # Regression test for gh-58724 and gh-63152 for n in [2048, 3199, 5999]: a = torch.randn(n, device=device, dtype=torch.complex64) res1 = torch.fft.fftn(a) res2 = torch.fft.fftn(a.clone()) self.assertEqual(res1, res2) a = torch.randn(n, device=device, dtype=torch.float64) res1 = torch.fft.rfft(a) res2 = torch.fft.rfft(a.clone()) self.assertEqual(res1, res2) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_simple_cases(self, device, dtype): """stft -> istft should recover the original signale""" def _test(input, n_fft, length): stft = torch.stft(input, n_fft=n_fft, return_complex=True) inverse = torch.istft(stft, n_fft=n_fft, length=length) self.assertEqual(input, inverse, exact_dtype=True) _test(torch.ones(4, dtype=dtype, device=device), 4, 4) _test(torch.zeros(4, dtype=dtype, device=device), 4, 4) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_various_params(self, device, dtype): """stft -> istft should recover the original signale""" def _test_istft_is_inverse_of_stft(stft_kwargs): # generates a random sound signal for each tril and then does the stft/istft # operation to check whether we can reconstruct signal data_sizes = [(2, 20), (3, 15), (4, 10)] num_trials = 100 istft_kwargs = stft_kwargs.copy() del istft_kwargs['pad_mode'] for sizes in data_sizes: for i in range(num_trials): original = torch.randn(*sizes, dtype=dtype, device=device) stft = torch.stft(original, return_complex=True, **stft_kwargs) inversed = torch.istft(stft, length=original.size(1), **istft_kwargs) self.assertEqual( inversed, original, msg='istft comparison against original', atol=7e-6, rtol=0, exact_dtype=True) patterns = [ # hann_window, centered, normalized, onesided { 'n_fft': 12, 'hop_length': 4, 'win_length': 12, 'window': torch.hann_window(12, dtype=dtype, device=device), 'center': True, 'pad_mode': 'reflect', 'normalized': True, 'onesided': True, }, # hann_window, centered, not normalized, not onesided { 'n_fft': 12, 'hop_length': 2, 'win_length': 8, 'window': torch.hann_window(8, dtype=dtype, device=device), 'center': True, 'pad_mode': 'reflect', 'normalized': False, 'onesided': False, }, # hamming_window, centered, normalized, not onesided { 'n_fft': 15, 'hop_length': 3, 'win_length': 11, 'window': torch.hamming_window(11, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': True, 'onesided': False, }, # hamming_window, centered, not normalized, onesided # window same size as n_fft { 'n_fft': 5, 'hop_length': 2, 'win_length': 5, 'window': torch.hamming_window(5, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': False, 'onesided': True, }, ] for i, pattern in enumerate(patterns): _test_istft_is_inverse_of_stft(pattern) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_round_trip_with_padding(self, device, dtype): """long hop_length or not centered may cause length mismatch in the inversed signal""" def _test_istft_is_inverse_of_stft_with_padding(stft_kwargs): # generates a random sound signal for each tril and then does the stft/istft # operation to check whether we can reconstruct signal num_trials = 100 sizes = stft_kwargs['size'] del stft_kwargs['size'] istft_kwargs = stft_kwargs.copy() del istft_kwargs['pad_mode'] for i in range(num_trials): original = torch.randn(*sizes, dtype=dtype, device=device) stft = torch.stft(original, return_complex=True, **stft_kwargs) with self.assertWarnsOnceRegex(UserWarning, "The length of signal is shorter than the length parameter."): inversed = torch.istft(stft, length=original.size(-1), **istft_kwargs) n_frames = stft.size(-1) if stft_kwargs["center"] is True: len_expected = stft_kwargs["n_fft"] // 2 + stft_kwargs["hop_length"] * (n_frames - 1) else: len_expected = stft_kwargs["n_fft"] + stft_kwargs["hop_length"] * (n_frames - 1) # trim the original for case when constructed signal is shorter than original padding = inversed[..., len_expected:] inversed = inversed[..., :len_expected] original = original[..., :len_expected] # test the padding points of the inversed signal are all zeros zeros = torch.zeros_like(padding, device=padding.device) self.assertEqual( padding, zeros, msg='istft padding values against zeros', atol=7e-6, rtol=0, exact_dtype=True) self.assertEqual( inversed, original, msg='istft comparison against original', atol=7e-6, rtol=0, exact_dtype=True) patterns = [ # hamming_window, not centered, not normalized, not onesided # window same size as n_fft { 'size': [2, 20], 'n_fft': 3, 'hop_length': 2, 'win_length': 3, 'window': torch.hamming_window(3, dtype=dtype, device=device), 'center': False, 'pad_mode': 'reflect', 'normalized': False, 'onesided': False, }, # hamming_window, centered, not normalized, onesided, long hop_length # window same size as n_fft { 'size': [2, 500], 'n_fft': 256, 'hop_length': 254, 'win_length': 256, 'window': torch.hamming_window(256, dtype=dtype, device=device), 'center': True, 'pad_mode': 'constant', 'normalized': False, 'onesided': True, }, ] for i, pattern in enumerate(patterns): _test_istft_is_inverse_of_stft_with_padding(pattern) @onlyNativeDeviceTypes def test_istft_throws(self, device): """istft should throw exception for invalid parameters""" stft = torch.zeros((3, 5, 2), device=device) # the window is size 1 but it hops 20 so there is a gap which throw an error self.assertRaises( RuntimeError, torch.istft, stft, n_fft=4, hop_length=20, win_length=1, window=torch.ones(1)) # A window of zeros does not meet NOLA invalid_window = torch.zeros(4, device=device) self.assertRaises( RuntimeError, torch.istft, stft, n_fft=4, win_length=4, window=invalid_window) # Input cannot be empty self.assertRaises(RuntimeError, torch.istft, torch.zeros((3, 0, 2)), 2) self.assertRaises(RuntimeError, torch.istft, torch.zeros((0, 3, 2)), 2) @skipIfTorchDynamo("Failed running call_function") @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_of_sine(self, device, dtype): complex_dtype = corresponding_complex_dtype(dtype) def _test(amplitude, L, n): # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L x = torch.arange(2 * L + 1, device=device, dtype=dtype) original = amplitude * torch.sin(2 * math.pi / L * x * n) # stft = torch.stft(original, L, hop_length=L, win_length=L, # window=torch.ones(L), center=False, normalized=False) stft = torch.zeros((L // 2 + 1, 2), device=device, dtype=complex_dtype) stft_largest_val = (amplitude * L) / 2.0 if n < stft.size(0): stft[n].imag = torch.tensor(-stft_largest_val, dtype=dtype) if 0 <= L - n < stft.size(0): # symmetric about L // 2 stft[L - n].imag = torch.tensor(stft_largest_val, dtype=dtype) inverse = torch.istft( stft, L, hop_length=L, win_length=L, window=torch.ones(L, device=device, dtype=dtype), center=False, normalized=False) # There is a larger error due to the scaling of amplitude original = original[..., :inverse.size(-1)] self.assertEqual(inverse, original, atol=1e-3, rtol=0) _test(amplitude=123, L=5, n=1) _test(amplitude=150, L=5, n=2) _test(amplitude=111, L=5, n=3) _test(amplitude=160, L=7, n=4) _test(amplitude=145, L=8, n=5) _test(amplitude=80, L=9, n=6) _test(amplitude=99, L=10, n=7) @onlyNativeDeviceTypes @skipCPUIfNoFFT @dtypes(torch.double) def test_istft_linearity(self, device, dtype): num_trials = 100 complex_dtype = corresponding_complex_dtype(dtype) def _test(data_size, kwargs): for i in range(num_trials): tensor1 = torch.randn(data_size, device=device, dtype=complex_dtype) tensor2 = torch.randn(data_size, device=device, dtype=complex_dtype) a, b = torch.rand(2, dtype=dtype, device=device) # Also compare method vs. functional call signature istft1 = tensor1.istft(**kwargs) istft2 = tensor2.istft(**kwargs) istft = a * istft1 + b * istft2 estimate = torch.istft(a * tensor1 + b * tensor2, **kwargs) self.assertEqual(istft, estimate, atol=1e-5, rtol=0) patterns = [ # hann_window, centered, normalized, onesided ( (2, 7, 7), { 'n_fft': 12, 'window': torch.hann_window(12, device=device, dtype=dtype), 'center': True, 'normalized': True, 'onesided': True, }, ), # hann_window, centered, not normalized, not onesided ( (2, 12, 7), { 'n_fft': 12, 'window': torch.hann_window(12, device=device, dtype=dtype), 'center': True, 'normalized': False, 'onesided': False, }, ), # hamming_window, centered, normalized, not onesided ( (2, 12, 7), { 'n_fft': 12, 'window': torch.hamming_window(12, device=device, dtype=dtype), 'center': True, 'normalized': True, 'onesided': False, }, ), # hamming_window, not centered, not normalized, onesided ( (2, 7, 3), { 'n_fft': 12, 'window': torch.hamming_window(12, device=device, dtype=dtype), 'center': False, 'normalized': False, 'onesided': True, }, ) ] for data_size, kwargs in patterns: _test(data_size, kwargs) @onlyNativeDeviceTypes @skipCPUIfNoFFT def test_batch_istft(self, device): original = torch.tensor([ [4., 4., 4., 4., 4.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.] ], device=device, dtype=torch.complex64) single = original.repeat(1, 1, 1) multi = original.repeat(4, 1, 1) i_original = torch.istft(original, n_fft=4, length=4) i_single = torch.istft(single, n_fft=4, length=4) i_multi = torch.istft(multi, n_fft=4, length=4) self.assertEqual(i_original.repeat(1, 1), i_single, atol=1e-6, rtol=0, exact_dtype=True) self.assertEqual(i_original.repeat(4, 1), i_multi, atol=1e-6, rtol=0, exact_dtype=True) @onlyCUDA @skipIf(not TEST_MKL, "Test requires MKL") def test_stft_window_device(self, device): # Test the (i)stft window must be on the same device as the input x = torch.randn(1000, dtype=torch.complex64) window = torch.randn(100, dtype=torch.complex64) with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"): torch.stft(x, n_fft=100, window=window.to(device)) with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"): torch.stft(x.to(device), n_fft=100, window=window) X = torch.stft(x, n_fft=100, window=window) with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"): torch.istft(X, n_fft=100, window=window.to(device)) with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"): torch.istft(x.to(device), n_fft=100, window=window) class FFTDocTestFinder: '''The default doctest finder doesn't like that function.__module__ doesn't match torch.fft. It assumes the functions are leaked imports. ''' def __init__(self) -> None: self.parser = doctest.DocTestParser() def find(self, obj, name=None, module=None, globs=None, extraglobs=None): doctests = [] modname = name if name is not None else obj.__name__ globs = {} if globs is None else globs for fname in obj.__all__: func = getattr(obj, fname) if inspect.isroutine(func): qualname = modname + '.' + fname docstring = inspect.getdoc(func) if docstring is None: continue examples = self.parser.get_doctest( docstring, globs=globs, name=fname, filename=None, lineno=None) doctests.append(examples) return doctests class TestFFTDocExamples(TestCase): pass
import torch import unittest import math from contextlib import contextmanager from itertools import product import itertools import doctest import inspect from torch.testing._internal.common_utils import \ (TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL, first_sample, TEST_WITH_ROCM, make_tensor) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, onlyNativeDeviceTypes, skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf, toleranceOverride, tol) from torch.testing._internal.common_methods_invocations import ( spectral_funcs, SpectralFuncType) from torch.testing._internal.common_cuda import SM53OrLater from torch._prims_common import corresponding_complex_dtype from setuptools import distutils from typing import Optional, List import numpy as np import librosa has_scipy_fft = False import scipy.fft LooseVersion = distutils.version.LooseVersion REFERENCE_NORM_MODES = ( (None, "forward", "backward", "ortho") if LooseVersion(np.__version__) >= '1.20.0' and ( not has_scipy_fft or LooseVersion(scipy.__version__) >= '1.6.0') else (None, "ortho"))
import torch import unittest import math from contextlib import contextmanager from itertools import product import itertools import doctest import inspect from torch.testing._internal.common_utils import \ (TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL, first_sample, TEST_WITH_ROCM, make_tensor, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, onlyNativeDeviceTypes, skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf, toleranceOverride, tol) from torch.testing._internal.common_methods_invocations import ( spectral_funcs, SpectralFuncType) from torch.testing._internal.common_cuda import SM53OrLater from torch._prims_common import corresponding_complex_dtype from typing import Optional, List from packaging import version import numpy as np import librosa has_scipy_fft = False import scipy.fft REFERENCE_NORM_MODES = ( (None, "forward", "backward", "ortho") if version.parse(np.__version__) >= version.parse('1.20.0') and ( not has_scipy_fft or version.parse(scipy.__version__) >= version.parse('1.6.0')) else (None, "ortho"))
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
make_zero_batched
for index_dtype in [torch.int32, torch.int64]: for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs( layout, device=device, dtype=dtype, index_dtype=index_dtype, output_tensor=False): size = kwargs['size'] torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout)
def make_zero_batched(t): return torch.empty(*((0,) + t.shape), dtype=t.dtype, device=t.device) for index_dtype in [torch.int32, torch.int64]: for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs( layout, device=device, dtype=dtype, index_dtype=index_dtype, output_tensor=False): size = kwargs['size'] torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout) # check empty batch torch._validate_sparse_compressed_tensor_args( *(make_zero_batched(t) for t in (compressed_indices, plain_indices, values)), (0,) + size, layout ) compressed_indices = torch.tensor([0, 0], dtype=index_dtype) plain_indices = torch.tensor([], dtype=index_dtype) torch._validate_compressed_sparse_indices(layout in {torch.sparse_csr, torch.sparse_bsr}, compressed_indices, plain_indices, 1, 1, 0)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
values
def values(lst, device=device): if layout in {torch.sparse_bsr, torch.sparse_bsc}: lst = [[[item]] for item in lst] return torch.tensor(lst, device=device) tensor = partial(torch.tensor, device=device) values = partial(values, device=device) yield ('incontiguous compressed_indices', tensor([0, -1, 2, -1, 4, -1])[::2], tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'expected compressed_indices to be a contiguous tensor per batch') yield ('incontiguous plain_indices', tensor([0, 2, 4]), tensor([0, -1, 1, -1, 0, -1, 2, -1])[::2], values([1, 2, 3, 4]), shape((2, 3)), 'expected plain_indices to be a contiguous tensor per batch') yield ('0-D compressed_indices', tensor(0), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'compressed_indices must have dimensionality >= 1 but got 0') yield ('compressed/plain_indices mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'compressed_indices and plain_indices dimensionalities must be equal but got 2 and 1, respectively') if layout in {torch.sparse_csr, torch.sparse_csc}: yield ('indices and values mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([1, 2, 3, 4]), shape((2, 3)), r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 0\) but got 1') else: yield ('indices and values mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([1, 2, 3, 4]), shape((2, 3)), r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 2\) but got 3') yield ('invalid size', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), (2,), r'tensor dimensionality must be sum of batch, base, and dense dimensionalities \(=0 \+ 2 \+ 0\) but got 1') yield ('invalid batchsize', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([[1, 2, 3, 4]]), shape((2, 2, 3), 1), r'all batch dimensions of compressed_indices \(=\[1\]\), plain_indices \(=\[1\]\), ' r'and values \(=\[1\]\) must be equal to tensor batch dimensions \(=\[2\]\)') if layout is torch.sparse_bsr: yield ('invalid blocksize', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), shape((2, 3)), r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') if layout is torch.sparse_bsc: yield ('invalid blocksize', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), shape((3, 2)), r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') yield ('invalid compressed_indices shape', tensor([0, 2, 3, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices.shape\[-1\] must be equal to the number of compressed_indices_names \+ 1 \(=3\), but got 4') yield ('invalid compressed_indices shape', tensor([0, 2, 4]), tensor([0, 1, 0, 1, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'plain_indices.shape\[-1\] must be equal to nnz \(=4\) as defined by values.shape\[0\], but got 5') yield ('compressed/plain_indices mismatch of dtype', tensor([0, 2, 4], dtype=torch.int32), tensor([0, 1, 0, 2], dtype=torch.int64), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices and plain_indices must have the same dtype, bot got Int and Long, respectively') yield ('invalid compressed/plain_indices dtype', tensor([0, 2, 4], dtype=torch.int16), tensor([0, 1, 0, 2], dtype=torch.int16), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices and plain_indices dtype must be Int or Long, but got Short') # CUDA kernel asserts are not recoverable, so we skip these for now if torch.device(device).type == 'cpu': yield ('invalid compressed_indices[0]', tensor([1, 2, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`compressed_indices\[..., 0\] == 0` is not satisfied.') yield ('invalid compressed_indices[-1]', tensor([0, 2, 5]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`compressed_indices\[..., -1\] == nnz` is not satisfied.') yield ('invalid compressed_indices.diff(dim=-1)', tensor([0, 0, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') yield ('invalid compressed_indices.diff(dim=-1)', tensor([0, 5, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') yield ('invalid min(plain_indices)', tensor([0, 2, 4]), tensor([0, -1, 0, 3]), values([1, 2, 3, 4]), shape((2, 3)), r'`0 <= plain_indices < plain_dim` is not satisfied.') yield ('invalid max(plain_indices)', tensor([0, 2, 4]), tensor([0, 1, 0, 3]), values([1, 2, 3, 4]), shape((2, 3)), r'`0 <= plain_indices < plain_dim` is not satisfied.') yield ('non-coalesced', tensor([0, 2, 4]), tensor([1, 0, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`plain_indices\[..., compressed_indices\[..., i - 1\]:compressed_indices\[..., i\]\] ' 'for all i = 1, ..., compressed_dim ' 'are sorted and distinct along the last dimension values` is not satisfied.') if TEST_CUDA and torch.device(device).type == 'cpu': yield ('indices and values mismatch of device', torch.tensor([0, 2, 4]), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4], device='cuda'), shape((2, 3)), r'device of compressed_indices \(=cpu\) must match device of values \(=cuda:0\)') yield ('compressed_indices and values mismatch of device', torch.tensor([0, 2, 4], device='cuda'), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4]), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') yield ('compressed/plain_indices mismatch of device', torch.tensor([0, 2, 4], device='cuda'), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4], device='cuda'), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2: yield ('indices and values mismatch of device index', torch.tensor([0, 2, 4], device='cuda:0'), torch.tensor([0, 1, 0, 1], device='cuda:0'), values([1, 2, 3, 4], device='cuda:1'), shape((2, 3)), r'device of compressed_indices \(=cuda:0\) must match device of values \(=cuda:1\)') yield ('compressed_indices and values mismatch of device index', torch.tensor([0, 2, 4], device='cuda:0'), torch.tensor([0, 1, 0, 1], device='cuda:1'), values([1, 2, 3, 4], device='cuda:0'), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!')
def values(lst, device=device): if layout in {torch.sparse_bsr, torch.sparse_bsc}: lst = [[[item]] for item in lst] return torch.tensor(lst, device=device) tensor = partial(torch.tensor, device=device) values = partial(values, device=device) yield ('incontiguous compressed_indices', tensor([0, -1, 2, -1, 4, -1])[::2], tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'expected compressed_indices to be a contiguous tensor per batch') yield ('incontiguous plain_indices', tensor([0, 2, 4]), tensor([0, -1, 1, -1, 0, -1, 2, -1])[::2], values([1, 2, 3, 4]), shape((2, 3)), 'expected plain_indices to be a contiguous tensor per batch') yield ('0-D compressed_indices', tensor(0), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'compressed_indices must have dimensionality >= 1 but got 0') yield ('compressed/plain_indices mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), 'compressed_indices and plain_indices dimensionalities must be equal but got 2 and 1, respectively') if layout in {torch.sparse_csr, torch.sparse_csc}: yield ('indices and values mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([1, 2, 3, 4]), shape((2, 3)), r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 0\) but got 1') else: yield ('indices and values mismatch of dimensionalities', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([1, 2, 3, 4]), shape((2, 3)), r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 2\) but got 3') yield ('invalid size', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), (2,), r'tensor dimensionality must be sum of batch, base, and dense dimensionalities \(=0 \+ 2 \+ 0\) but got 1') yield ('invalid batchsize', tensor([[0, 2, 4]]), tensor([[0, 1, 0, 2]]), values([[1, 2, 3, 4]]), shape((2, 2, 3), 1), r'all batch dimensions of compressed_indices \(=\[1\]\), plain_indices \(=\[1\]\), ' r'and values \(=\[1\]\) must be equal to tensor batch dimensions \(=\[2\]\)') if layout is torch.sparse_bsr: yield ('invalid blocksize', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), shape((2, 3)), r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') if layout is torch.sparse_bsc: yield ('invalid blocksize', tensor([0, 2, 4]), tensor([0, 1, 0, 2]), tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]), shape((3, 2)), r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape') yield ('invalid compressed_indices shape', tensor([0, 2, 3, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices.shape\[-1\] must be equal to the number of compressed_indices_names \+ 1 \(=3\), but got 4') yield ('invalid compressed_indices shape', tensor([0, 2, 4]), tensor([0, 1, 0, 1, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'plain_indices.shape\[-1\] must be equal to nnz \(=4\) as defined by values.shape\[0\], but got 5') yield ('compressed/plain_indices mismatch of dtype', tensor([0, 2, 4], dtype=torch.int32), tensor([0, 1, 0, 2], dtype=torch.int64), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices and plain_indices must have the same dtype, bot got Int and Long, respectively') yield ('invalid compressed/plain_indices dtype', tensor([0, 2, 4], dtype=torch.int16), tensor([0, 1, 0, 2], dtype=torch.int16), values([1, 2, 3, 4]), shape((2, 3)), r'compressed_indices and plain_indices dtype must be Int or Long, but got Short') # CUDA kernel asserts are not recoverable, so we skip these for now if torch.device(device).type == 'cpu': yield ('invalid compressed_indices[0]', tensor([1, 2, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`compressed_indices\[..., 0\] == 0` is not satisfied.') yield ('invalid compressed_indices[0] when nnz == 0', tensor([1, 0], dtype=torch.int64), tensor([], dtype=torch.int64), values([1])[:0], shape((1, 1)), r'`compressed_indices\[..., 0\] == 0` is not satisfied.') yield ('invalid compressed_indices[-1]', tensor([0, 2, 5]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`compressed_indices\[..., -1\] == nnz` is not satisfied.') yield ('invalid compressed_indices[-1] when nnz == 0', tensor([0, 1], dtype=torch.int64), tensor([], dtype=torch.int64), values([1])[:0], shape((1, 1)), r'`compressed_indices\[..., -1\] == nnz` is not satisfied.') yield ('invalid compressed_indices.diff(dim=-1)', tensor([0, 0, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') yield ('invalid compressed_indices.diff(dim=-1)', tensor([0, 5, 4]), tensor([0, 1, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.') yield ('invalid min(plain_indices)', tensor([0, 2, 4]), tensor([0, -1, 0, 3]), values([1, 2, 3, 4]), shape((2, 3)), r'`0 <= plain_indices < plain_dim` is not satisfied.') yield ('invalid max(plain_indices)', tensor([0, 2, 4]), tensor([0, 1, 0, 3]), values([1, 2, 3, 4]), shape((2, 3)), r'`0 <= plain_indices < plain_dim` is not satisfied.') yield ('non-coalesced', tensor([0, 2, 4]), tensor([1, 0, 0, 2]), values([1, 2, 3, 4]), shape((2, 3)), r'`plain_indices\[..., compressed_indices\[..., i - 1\]:compressed_indices\[..., i\]\] ' 'for all i = 1, ..., compressed_dim ' 'are sorted and distinct along the last dimension values` is not satisfied.') if TEST_CUDA and torch.device(device).type == 'cpu': yield ('indices and values mismatch of device', torch.tensor([0, 2, 4]), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4], device='cuda'), shape((2, 3)), r'device of compressed_indices \(=cpu\) must match device of values \(=cuda:0\)') yield ('compressed_indices and values mismatch of device', torch.tensor([0, 2, 4], device='cuda'), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4]), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') yield ('compressed/plain_indices mismatch of device', torch.tensor([0, 2, 4], device='cuda'), torch.tensor([0, 1, 0, 1]), values([1, 2, 3, 4], device='cuda'), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!') if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2: yield ('indices and values mismatch of device index', torch.tensor([0, 2, 4], device='cuda:0'), torch.tensor([0, 1, 0, 1], device='cuda:0'), values([1, 2, 3, 4], device='cuda:1'), shape((2, 3)), r'device of compressed_indices \(=cuda:0\) must match device of values \(=cuda:1\)') yield ('compressed_indices and values mismatch of device index', torch.tensor([0, 2, 4], device='cuda:0'), torch.tensor([0, 1, 0, 1], device='cuda:1'), values([1, 2, 3, 4], device='cuda:0'), shape((2, 3)), r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!')
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
test_select_copy
def test_select_copy(self, device, dtype, index_dtype, layout): def is_view_of(base, other): # a shameless copy of TestViewOps.is_view_of if ((not other._is_view() or other is base or other._base is not base or base.device != other.device)): return False if base.device.type == 'cpu' or base.device.type == 'cuda': if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr(): return False return True kwargs = dict(device=device, dtype=dtype, index_dtype=index_dtype) for sparse, dense in zip(self.generate_simple_inputs(layout, **kwargs), self.generate_simple_inputs(torch.strided, **kwargs)): if layout in {torch.sparse_csr, torch.sparse_bsr}: n_batchdim = sparse.crow_indices().ndim - 1 elif layout in {torch.sparse_csc, torch.sparse_bsc}: n_batchdim = sparse.ccol_indices().ndim - 1 else: assert 0 # unreachable self.assertEqual(sparse, dense) for dim in range(sparse.ndim): if sparse.shape[dim] == 0: with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(sparse, dim, 0) with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(dense, dim, 0) elif n_batchdim and dim >= n_batchdim and dim < n_batchdim + 2: with self.assertRaisesRegex( RuntimeError, "selecting sparse dimensions is not implemented for batched sparse compressed tensors"): torch.select_copy(sparse, dim, 0) else: for index in {0, sparse.shape[dim] // 2, sparse.shape[dim] - 1}: dense_select = torch.select_copy(dense, dim, index) sparse_select = torch.select_copy(sparse, dim, index) self.assertEqual(sparse_select, dense_select) self.assertFalse(is_view_of(sparse_select.values(), sparse.values()))
def test_select_copy(self, device, dtype, index_dtype, layout): def is_view_of(base, other): # a shameless copy of TestViewOps.is_view_of if ( not other._is_view() or other is base or other._base is not base or base.device != other.device ): return False if base.device.type in ('cpu', 'cuda'): if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr(): return False return True kwargs = dict(device=device, dtype=dtype, index_dtype=index_dtype) for sparse, dense in zip(self.generate_simple_inputs(layout, **kwargs), self.generate_simple_inputs(torch.strided, **kwargs)): if layout in {torch.sparse_csr, torch.sparse_bsr}: n_batchdim = sparse.crow_indices().ndim - 1 elif layout in {torch.sparse_csc, torch.sparse_bsc}: n_batchdim = sparse.ccol_indices().ndim - 1 else: assert 0 # unreachable self.assertEqual(sparse, dense) for dim in range(sparse.ndim): if sparse.shape[dim] == 0: with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(sparse, dim, 0) with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"): torch.select_copy(dense, dim, 0) elif n_batchdim and dim >= n_batchdim and dim < n_batchdim + 2: with self.assertRaisesRegex( RuntimeError, "selecting sparse dimensions is not supported for batched sparse compressed tensors"): torch.select_copy(sparse, dim, 0) else: for index in {0, sparse.shape[dim] // 2, sparse.shape[dim] - 1}: dense_select = torch.select_copy(dense, dim, index) sparse_select = torch.select_copy(sparse, dim, index) self.assertEqual(sparse_select, dense_select) self.assertFalse(is_view_of(sparse_select.values(), sparse.values()))
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } class TestSparseCompressed(TestCase): from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } class TestSparseCompressed(TestCase): from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
get_current_meta
def get_current_meta(): version = (0, dtype, sparsity) meta_key = (M, K, N, *blocksize, False, True, True) return get_meta(op, meta_key, version=version, exact=True)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
test_triton_bsr_dense_addmm_meta
def test_triton_bsr_dense_addmm_meta(self, device): from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta dtype = torch.float32 Ms = Ks = 16 beta = 0.0 alpha = 1.0 def get_meta(M, K, N, sparsity=None): return bsr_dense_addmm_meta(M, K, N, Ms, Ks, beta, alpha, dtype=dtype, sparsity=sparsity, _version="test_triton_bsr_dense_addmm_meta") def update_meta(M, K, N, value, sparsity=0.5): key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1) update_bsr_dense_addmm_meta("bsr_dense_addmm", torch.cuda.get_device_name(), ("test_triton_bsr_dense_addmm_meta", dtype, sparsity), key, value) def get_meta_with_checks(M, K, N, warn_count=0, sparsity=None): f = io.StringIO() with redirect_stderr(f): result = get_meta(M, K, N, sparsity=sparsity) msg = f.getvalue() FileCheck().check_count( str=f"UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M={M} K={K} N={N}", count=warn_count, exactly=True ).run(msg) return result # Test warn_once when requesting non-existing tuned parameters multiple times f = io.StringIO() with redirect_stderr(f): for i in range(5): get_meta(16, 16, 16) for i in range(5): get_meta(16, 16, 32) msg = f.getvalue() FileCheck().check_count( str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=16", count=1, exactly=True ).run(msg) FileCheck().check_count( str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=32", count=1, exactly=True ).run(msg) # Test warn_once when tuned parameters are missing default_meta = dict(GROUP_SIZE_ROW=4, SPLIT_N=2, num_stages=1, num_warps=4) self.assertEqual(get_meta_with_checks(32, 32, 32, warn_count=1), default_meta) # Test (no)warn_once when tuned parameters are available update_meta(32, 32, 48, (2, 8, 5, 6)) expected_meta = dict(GROUP_SIZE_ROW=2, SPLIT_N=8, num_stages=5, num_warps=6) self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0), expected_meta) # Test non-existing tuned parameters with non-default sparsity # while for default sparsity 0.5 the parameters are available self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0, sparsity=0.6), expected_meta) # Test non-existing tuned parameters while there exists # parameters with consistent N // SPLIT_N ratio: self.assertEqual(get_meta_with_checks(32, 32, 72, warn_count=0), dict(GROUP_SIZE_ROW=2, SPLIT_N=12, num_stages=5, num_warps=6)) # ... or not: self.assertEqual(get_meta_with_checks(32, 32, 64, warn_count=1), dict(GROUP_SIZE_ROW=4, SPLIT_N=4, num_stages=1, num_warps=4)) # e.g., TestSparseCSRCPU and TestSparseCSRCUDA
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton @skipIfNoTriton class TestSparseCompressedTritonKernels(TestCase): from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
get_meta
def get_meta(M, K, N, sparsity=None): return bsr_dense_addmm_meta(M, K, N, Ms, Ks, beta, alpha, dtype=dtype, sparsity=sparsity, _version="test_triton_bsr_dense_addmm_meta")
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
update_meta
def update_meta(M, K, N, value, sparsity=0.5): key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1) update_bsr_dense_addmm_meta("bsr_dense_addmm", torch.cuda.get_device_name(), ("test_triton_bsr_dense_addmm_meta", dtype, sparsity), key, value)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
sparse24_largest_mask_2d
def sparse24_largest_mask_2d(original): sparse = SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort(original) return sparse.to_dense().bool()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
sparsify24_dense
def sparsify24_dense(original): return sparse24_largest_mask_2d(original) * original
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
rand_sparse_semi_structured
def rand_sparse_semi_structured(r, c, dtype, device, choice=None): pattern = '2by4' if dtype != torch.float32 else '1by2' if pattern == '1by2': ksparse = 2 choices = [ [0, 1], [1, 0] ] elif pattern == '2by4': ksparse = 4 choices = [ [1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1] ] mask_entries = [choice or random.choice(choices) for i in range(r * c // ksparse)] mask = torch.tensor(mask_entries, dtype=torch.bool).view(r, c).to(device) dense = make_tensor(r, c, dtype=dtype, device=device) dense[dense == 0] = 1 # To prevent zeros except where mask applied. dense = dense.masked_fill(~mask, 0) return dense
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
rand_sparse_semi_structured_all_patterns
def rand_sparse_semi_structured_all_patterns(r, c, dtype, device): pattern = '2by4' if dtype != torch.float32 else '1by2' if pattern == '1by2': ksparse = 2 choices = [ [[0, 0], [0, 1]], [[0, 1], [0, 1]], [[1, 0], [1, 0]], [[1, 1], [1, 0]] ] elif pattern == '2by4': ksparse = 4 choices = [ [[0, 0, 0, 0], [0, 0, 1, 1]], [[0, 0, 0, 1], [0, 0, 1, 1]], [[0, 0, 1, 0], [0, 0, 1, 1]], [[0, 0, 1, 1], [0, 0, 1, 1]], [[0, 1, 0, 0], [0, 1, 1, 0]], [[0, 1, 0, 1], [0, 1, 0, 1]], [[0, 1, 1, 0], [0, 1, 1, 0]], [[0, 1, 1, 1], [0, 1, 0, 1]], [[1, 0, 0, 0], [1, 0, 1, 0]], [[1, 0, 0, 1], [1, 0, 0, 1]], [[1, 0, 1, 0], [1, 0, 1, 0]], [[1, 0, 1, 1], [1, 0, 0, 1]], [[1, 1, 0, 0], [1, 1, 0, 0]], [[1, 1, 0, 1], [1, 1, 0, 0]], [[1, 1, 1, 0], [1, 1, 0, 0]], [[1, 1, 1, 1], [1, 1, 0, 0]], ] mask_rows = [random.randint(0, len(choices) - 1) for i in range(r * c // ksparse)] COL_INV, COL_VAL = 0, 1 mask_entries_inv = [choices[i][COL_INV] for i in mask_rows] mask_entries_val = [choices[i][COL_VAL] for i in mask_rows] mask_inv = torch.tensor(mask_entries_inv, dtype=torch.bool).view(r, c).to(device) mask_val = torch.tensor(mask_entries_val, dtype=torch.bool).view(r, c).to(device) dense = make_tensor(r, c, dtype=dtype, device=device) dense[dense == 0] = 1 # To prevent zeros except where mask below applied. dense_inv = dense.masked_fill(~mask_inv, 0) dense_val = dense_inv.masked_fill(~mask_val, 0) return dense_inv, dense_val class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase): def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp() def tearDown(self): super().tearDown() @staticmethod def _test_mlp_contiguous_relu_compile(backend, dense_input_shape): """ Test nn.Linear + .contiguous() + nn.ReLU with SparseSemiStructuredTensor + torch.compile We expect: (1) The sparse tensor subclass should turn nn.Linear into `aten._structured_sparse_addmm` + `aten.contiguous()` (2) Inductor should fuse the .contiguous() call into the relu """ class Model(nn.Module): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(128, 128) def forward(self, x): x = self.linear(x) x = x.contiguous() return torch.nn.functional.relu(x) input = torch.rand(dense_input_shape, device="cuda").half() model = Model().eval().cuda().half() mod_linear = model.linear m, n = mod_linear.weight.shape mask = torch.Tensor([1, 0, 0, 1]).tile((m, n // 4)).bool().cuda() # set masked weight mod_linear.weight = nn.Parameter(mod_linear.weight * mask) dense_result = model(input) mod_linear.weight = nn.Parameter(SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend].from_dense(mod_linear.weight)) sparse_result = model(input) model = torch.compile(model, backend="inductor", fullgraph=True) sparse_compile_result = model(input) # test that sparse_compile_result and dense_result are numerically close torch.testing.assert_close(dense_result, sparse_compile_result, rtol=1e-3, atol=1e-3) # assert sparse and sparse_compile have the same strides, # as meta registrations may return contiguous tensors when the output is transposed # https://github.com/pytorch/pytorch/pull/114477 assert sparse_result.stride() == sparse_compile_result.stride() @unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows") @unittest.skipIf("cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cusparselt not supported on this machine") def test_mlp_contiguous_relu_compile_cusparselt(self): """ test for cuSPASRELt meta registrations (_cslt_sparse_mm) + torch.compile """ for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]: SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cusparselt", dense_input_shape) @unittest.skipIf("cutlass" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cutlass not supported on this machine") @unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows") def test_mlp_contiguous_relu_compile_cutlass(self): """ test for CUTLASS meta registrations (_sparse_semi_structured_addmm) + torch.compile """ for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]: SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cutlass", dense_input_shape) @unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows") @unittest.skipIf("cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cusparselt not supported on this machine") def test_sp24_compile(self) -> None: x = torch.randn([1024, 512], device="cuda", dtype=torch.float16, requires_grad=True) e = torch.eye(x.shape[0], x.shape[0], device="cuda", dtype=torch.float16) def fn(x, e): y = SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort(x) y = y.t() return x @ y # Eager output = fn(x, e) output.backward(output) # Torch compile output = torch.compile(fn)(x, e) output.backward(output) class TestSparseSemiStructured(TestCase): def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') if IS_WINDOWS: self.skipTest("torch.compile not supported on windows") @inference_dtypes @parametrize_backends def test_to_sparse_semi_structured(self, dtype, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype) A_sparse = to_sparse_semi_structured(A) assert A.shape == A_sparse.shape assert A.device == A_sparse.device assert A.dtype == A_sparse.dtype assert isinstance(A, torch.Tensor) assert isinstance(A_sparse, SparseSemiStructuredTensor) @inference_dtypes @parametrize_backends @parametrize("dense_input_shape", [(128, 1), (128, 64), (128, 128)]) def test_mm_sparse_first_NN(self, dense_input_shape, dtype, device, backend): """ Ensure torch.mm(A_sparse, B) is correct for float16 and will throw error for int8 """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype) A_sparse = to_sparse_semi_structured(A) B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype) # Currently we don't support int matmul on GPU, so evaluate on CPU and copy over if dtype is torch.int8: if backend == "cutlass": with self.assertRaisesRegex(RuntimeError, "spgemm_cutlass_dispatch_layouts"): sparse_result = torch.mm(A_sparse, B) else: with self.assertRaisesRegex(RuntimeError, "CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"): sparse_result = torch.mm(A_sparse, B) else: dense_result = torch.mm(A, B) sparse_result = torch.mm(A_sparse, B) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) @inference_dtypes @parametrize_backends @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)]) def test_mm_sparse_first_NT(self, dense_input_shape, dtype, device, backend): """ Ensure torch.mm(A_sparse, B.t()) is correct for float16/bfloat16 and will throw an error for int8 + padding """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype) A_sparse = to_sparse_semi_structured(A) B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype) # Currently we don't support int matmul on GPU, so evaluate on CPU and copy over if dtype is torch.int8 and dense_input_shape in {(1, 128)}: # padding with int8 throws an error because transposing B yields a contiguous output # and row-row 2:4 sparse @ dense with NN is not supported by cuSPARSELt or CUTLASS. if backend == "cutlass": with self.assertRaisesRegex(RuntimeError, "spgemm_cutlass_dispatch_layouts"): sparse_result = torch.mm(A_sparse, B.t()) else: with self.assertRaisesRegex(RuntimeError, "CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"): sparse_result = torch.mm(A_sparse, B.t()) elif dtype is torch.int8: # test transpose dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8) sparse_result = torch.mm(A_sparse, B.t()) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) else: # test transpose dense_result = torch.mm(A, B.t()) sparse_result = torch.mm(A_sparse, B.t()) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) @inference_dtypes @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)]) @parametrize_backends def test_mm_sparse_first_TN(self, dtype, dense_input_shape, device, backend): """ Ensure torch.mm(A_sparse.t(), B) throws error """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype) A_sparse = to_sparse_semi_structured(A) B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype) with self.assertRaisesRegex( NotImplementedError, r"`SparseSemiStructuredTensor.*` matmul: operation is not supported", ): torch.mm(A_sparse.t(), B) @inference_dtypes @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)]) @parametrize_backends def test_mm_sparse_second_NT(self, dense_input_shape, dtype, device, backend): """ Ensure torch.mm(A, B_sparse.t()) is correct """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype) B_sparse = to_sparse_semi_structured(B) A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype) # Currently we don't support int matmul on GPU, so evaluate on CPU and copy over if dtype is torch.int8: dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8) sparse_result = torch.mm(A, B_sparse.t()) else: dense_result = torch.mm(A, B.t()) sparse_result = torch.mm(A, B_sparse.t()) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) @inference_dtypes @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)]) @parametrize_backends def test_mm_sparse_second_NN(self, dense_input_shape, dtype, device, backend): """ Ensure torch.mm(A, B_sparse) throws error """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype) B_sparse = to_sparse_semi_structured(B) A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype) with self.assertRaisesRegex( NotImplementedError, r"`SparseSemiStructuredTensor.*` matmul: operation is not supported", ): sparse_result = torch.mm(A, B_sparse) @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)]) @parametrize("inference_mode", [subtest(True), subtest(False)]) @parametrize_backends def test_linear(self, dense_input_shape, inference_mode, device, backend): """ Test nn.Linear has the same numerics """ SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") input = torch.rand((dense_input_shape), device=device).half() model = nn.Linear(128, 256).to(device).half() m, n = model.weight.shape mask = rand_sparse_semi_structured_mask(m, n, device=device, dtype=torch.bool) # set masked weight model.weight = nn.Parameter(model.weight * mask) dense_result = model(input) model.weight = nn.Parameter(to_sparse_semi_structured(model.weight)) if inference_mode: with torch.inference_mode(): sparse_result = model(input) else: sparse_result = model(input) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) @parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)]) @parametrize_backends def test_mlp(self, device, dense_input_shape, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") input = torch.rand(dense_input_shape, device=device).half() model = ( nn.Sequential( nn.Linear(128, 256), nn.Linear(256, 128), ) .half() .to(device) ) for i in range(2): m, n = model[i].weight.shape mask = rand_sparse_semi_structured_mask( m, n, device=device, dtype=torch.bool ) # set masked weight model[i].weight = nn.Parameter(model[i].weight * mask) dense_result = model(input) for i in range(2): model[i].weight = nn.Parameter(to_sparse_semi_structured(model[i].weight)) sparse_result = model(input) torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3) @parametrize_backends def test_values(self, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = rand_sparse_semi_structured_mask(128, 128) A_sparse = to_sparse_semi_structured(A) assert A_sparse.values().shape == (128, 64) assert (A_sparse.values() == 1).all() @parametrize_backends def test_indices(self, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = rand_sparse_semi_structured_mask(128, 128) A_sparse = to_sparse_semi_structured(A) assert A_sparse.indices().shape == (128, 8) @inference_dtypes @parametrize_backends def test_min_sparse_shape(self, dtype, device, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") config = SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend]._DTYPE_SHAPE_CONSTRAINTS[dtype] A = rand_sparse_semi_structured_mask(config.sparse_min_rows, config.sparse_min_cols, dtype=dtype, device=device) A_sparse = to_sparse_semi_structured(A) B = torch.rand((config.sparse_min_cols, config.dense_min_cols), device=device).to(dtype) if dtype == torch.int8: dense_res = torch.mm(A.cpu(), B.cpu()).to(device, dtype=torch.int8) # int8 sparse matmul not supported for R/R -> R layout, so we transpose one of the arguments to get R/C -> R B_t = B.t().contiguous() sparse_res = torch.mm(A_sparse, B_t.t()) else: dense_res = torch.mm(A, B) sparse_res = torch.mm(A_sparse, B) torch.testing.assert_close(sparse_res, dense_res, rtol=1e-3, atol=1e-3) @inference_dtypes @parametrize_backends def test_unsupported_shape(self, dtype, device, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = rand_sparse_semi_structured_mask(2, 2, dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, "Error original_tensor.shape"): A_sparse = to_sparse_semi_structured(A) @dtypes(*all_types_and_complex()) @parametrize_backends def test_unsupported_dtype(self, dtype, device, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype, device=device) if dtype not in SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend]._DTYPE_SHAPE_CONSTRAINTS: with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dtype"): A_sparse = to_sparse_semi_structured(A) else: A_sparse = to_sparse_semi_structured(A) @parametrize_backends def test_unsupported_dim(self, device, backend): SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass") if backend == "cutlass" and IS_WINDOWS: self.skipTest("CUTLASS not supported on Windows") A = torch.rand(128, 128, 128, device=device, dtype=torch.float16) with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dim"): A_sparse = to_sparse_semi_structured(A)
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, }
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_semi_structured.py
setUp
def setUp(self): if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0: self.skipTest('semi-structured sparsity has no available backend!') super().setUp()
import itertools import random import unittest import torch from torch import nn import torch.nn.functional as F from torch.sparse import ( SparseSemiStructuredTensor, SparseSemiStructuredTensorCUSPARSELT, SparseSemiStructuredTensorCUTLASS, to_sparse_semi_structured, ) from torch.sparse._semi_structured_conversions import ( sparse_semi_structured_from_dense_cutlass, _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask, ) from torch.testing import make_tensor from torch.testing._internal.common_cuda import _get_torch_cuda_version from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, ) from torch.testing._internal.common_dtype import all_types_and_complex import torch._dynamo.test_case from torch.testing._internal.common_utils import ( parametrize, run_tests, subtest, TestCase, TEST_WITH_ROCM, IS_WINDOWS, ) import pytest from torch.utils._triton import has_triton SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict() _IS_SM8X = False _IS_SM9X = False inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8) training_dtypes = dtypes(torch.float16, torch.bfloat16) parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS) atol_rtol_kw = { torch.float16: { "rtol": 1e-3, "atol": 1e-3, }, torch.bfloat16: { "rtol": 1e-1, "atol": 1e-1, }, } class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
ref_sp_numpy
def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None): def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *map(lambda t: prep_input(t), (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res
def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None): def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *(prep_input(t) for t in (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
prep_input
def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *map(lambda t: prep_input(t), (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res
def prep_input(t): def to_sp_block_compressed(t): if t.layout is torch.sparse_bsc: tt = t.transpose(-1, -2) else: tt = t t_sp_bsr = sp.bsr_matrix( ( tt.values().cpu().numpy(), tt.col_indices().cpu().numpy(), tt.crow_indices().cpu().numpy(), ), shape=tt.shape, ) if t.layout is torch.sparse_bsc: return t_sp_bsr.transpose() else: return t_sp_bsr if t.layout is not torch.strided: return to_sp_block_compressed(t) else: return t.cpu().resolve_conj().numpy() res = _npref_block_addmm_addmv( *(prep_input(t) for t in (c, a, b)), alpha, beta ) if out is not None: out.copy_(res) return out else: return res
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
ref_block_addmv
for (m, k) in itertools.product([2, 5], repeat=2): nnz = random.randint(0, m * k) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device)
def ref_block_addmv(c, a, b, alpha, beta): return _npref_block_addmm_addmv(c, a.to_dense(), b, alpha, beta) for (m, k) in itertools.product([2, 5], repeat=2): nnz = random.randint(0, m * k) if not noncontiguous: a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a = a.to_sparse_bsr((block_size, block_size)) else: a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype) a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device) a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(), a_data, (m * block_size, k * block_size), check_invariants=False) b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous) self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device, ref=ref_block_addmv)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
test_empty_inputs
def test_empty_inputs(lhs_layout, rhs_layout): xd = torch.rand(10, 0, device=device, dtype=dtype) yd = xd.transpose(-2, -1) zd = torch.rand(0, 0, device=device, dtype=dtype) xls, yls, zls = [t.to_sparse(layout=lhs_layout) for t in (xd, yd, zd)] xrs, yrs, zrs = [t.to_sparse(layout=rhs_layout) for t in (xd, yd, zd)] for ls, rs, ld, rd in [(xls, yrs, xd, yd), (xls, zrs, xd, zd), (zls, yrs, zd, yd), (zls, zrs, zd, zd)]: res_sparse = ls @ rs res_dense = ld @ rd self.assertEqual(res_sparse.to_dense(), res_dense)
def test_empty_inputs(lhs_layout, rhs_layout): xd = torch.rand(10, 0, device=device, dtype=dtype) yd = xd.transpose(-2, -1) zd = torch.rand(0, 0, device=device, dtype=dtype) xls, yls, zls = (t.to_sparse(layout=lhs_layout) for t in (xd, yd, zd)) xrs, yrs, zrs = (t.to_sparse(layout=rhs_layout) for t in (xd, yd, zd)) for ls, rs, ld, rd in [(xls, yrs, xd, yd), (xls, zrs, xd, zd), (zls, yrs, zd, yd), (zls, zrs, zd, zd)]: res_sparse = ls @ rs res_dense = ld @ rd self.assertEqual(res_sparse.to_dense(), res_dense)
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
_test_spadd_shape
def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n))
def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32, layout=layout, blocksize=()) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) res_perm = torch.add(x, y, alpha=r) self.assertEqual(res_perm, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() res_perm = torch.add(x, y, alpha=r) self.assertEqual(res, expected) self.assertEqual(res_perm, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n))
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
_test_spadd_shape
def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n))
def _test_spadd_shape(nnz, shape): # sparse.to_dense() uses torch.add internally so if torch.add is wrong, # the dense tensor will be wrong but this test would still pass # there's a separate test that checks for the correctness of the .to_dense() call x = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32, layout=layout, blocksize=()) y = torch.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() self.assertEqual(res, expected) res_perm = torch.add(x, y, alpha=r) self.assertEqual(res_perm, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = torch.randn(*s, dtype=torch.double, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * x.to_dense() res_perm = torch.add(x, y, alpha=r) self.assertEqual(res, expected) self.assertEqual(res_perm, expected) ns = [2, 5] batch_shapes = [(), (2,), (2, 3)] for b, m, n in itertools.product(batch_shapes, ns, ns): _test_spadd_shape(0, (*b, m, n)) _test_spadd_shape(m * n // 2, (*b, m, n)) _test_spadd_shape(m * n, (*b, m, n))
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
broadcast_input
def broadcast_input(*ts): batch_dims = torch.broadcast_shapes(*(t.shape[:-2] for t in ts)) yield from (torch.broadcast_to(t, batch_dims + t.shape[-2:]) for t in ts) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [128, 256, 0] for bam, bq, bk, bv, m, n, k in itertools.product(batches, batches, batches, batches, size, size, size): query = tensor(bq + (m, k)) key = tensor(bk + (n, k)) value = tensor(bv + (n, k)) # We make attn_mask block lower/upper triangular so that BSR and Strided # function variants are directly comparable. attn_mask = torch.ones(bam + (m, n), device=device, dtype=torch.bool) attn_mask = self._to_block_triangular_inplace(attn_mask, block_size, block_size) attn_mask_bsr = attn_mask.to_sparse_bsr(block_size) # NOTE: only boolean mask is directly compatible with the Strided version # without any pre-/post-processing. Hence we test against a boolean mask. for scale in (None, 1. / 16): if scale is None and query.size(-1) == 0: scale = 1 expected = torch.nn.functional.scaled_dot_product_attention( *broadcast_input(query, key, value, attn_mask), scale=scale ) for mask_dtype in (torch.bool, dtype): res = _scaled_dot_product_attention(query, key, value, attn_mask_bsr.to(mask_dtype), scale=scale) self.assertEqual(res, expected)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
test_triton_bsr_scatter_mm
def test_triton_bsr_scatter_mm(self, device, dtype, blocksize): import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial if isinstance(blocksize, str): blocksize = tuple(map(int, blocksize.split('x'))) else: blocksize = (blocksize,) * 2 # Note that each value in a non-zero block is in range blocksize * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] sizes = [blocksize[0], 2 * blocksize[0], 4 * blocksize[0]] sizes_K = [blocksize[1], 2 * blocksize[1]] for bd, bs, M, K, N, has_zero_row_block in itertools.product(batches, batches[:1], sizes, sizes_K, sizes, (False, True)): bsr_dense = tensor(bs + (M, K)) if has_zero_row_block: if M > blocksize[0]: bsr_dense[:blocksize[0]].zero_() else: continue bsr = bsr_dense.to_sparse_bsr(blocksize) dense = tensor(bd + (K, N)) expected = bsr.to_dense() @ dense for indices_format in ('bsr_strided_mm', 'bsr_strided_mm_compressed', 'scatter_mm'): if indices_format in {'bsr_strided_mm', 'bsr_strided_mm_compressed'}: SPLIT_N_list = [N] while SPLIT_N_list[-1] > 1: SPLIT_N_list.append(max(1, SPLIT_N_list[-1] // 2)) else: SPLIT_N_list = [1] for SPLIT_N in SPLIT_N_list: indices_data = bsr_scatter_mm_indices_data( bsr, dense, indices_format=indices_format, SPLIT_N=SPLIT_N) try: result = bsr_scatter_mm(bsr, dense, indices_data=indices_data) except triton.compiler.OutOfResources: # ensure that there was at least one succesful test: assert SPLIT_N < SPLIT_N_list[0] break self.assertEqual(result, expected) torch.sparse._triton_ops._bsr_scatter_mm_indices_data.cache_clear()
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton @skipIfNoTriton class TestSparseCompressedTritonKernels(TestCase): from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
bsr_dense_linear
def bsr_dense_linear(input, weights, bias=None): return torch.nn.functional.linear(input, weights, bias=bias).transpose(-1, -2) operation = dict(bsr_dense_addmm=bsr_dense_addmm, bsr_dense_mm=bsr_dense_mm, bsr_dense_linear=bsr_dense_linear, _int_bsr_dense_addmm=_int_bsr_dense_addmm)[op]
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
reference
def reference(input, mat1, mat2, beta=1, alpha=1, op=op): assert mat1.layout is torch.strided assert mat2.layout is torch.strided if dtype is torch.int8: if op == '_int_bsr_dense_addmm': return beta * input + alpha * torch._int_mm(mat1, mat2) # workaround RuntimeError: "addmm_cuda" not implemented for 'Char' return beta * input + alpha * torch._int_mm(mat1, mat2).to(torch.int8) return beta * input + alpha * (mat1 @ mat2) if op == '_int_bsr_dense_addmm': # _int_bsr_dense_addmm is same as bsr_dense_addmm except # with int8 inputs, _int_bsr_dense_addmm returns int32 # result. This is covered by operation and reference # definitions above and all other definitions below are # identical between _int_bsr_dense_addmm and # bsr_dense_addmm. op = 'bsr_dense_addmm'
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added