library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_pytree.py
test_tree_leaves_with_path
def test_tree_leaves_with_path(self): class ANamedTuple(NamedTuple): x: torch.Tensor y: int z: str @dataclass class ACustomPytree: x: Any y: Any z: Any py_pytree.register_pytree_node( ACustomPytree, flatten_fn=lambda f: ([f.x, f.y], f.z), unflatten_fn=lambda xy, z: ACustomPytree(xy[0], xy[1], z), flatten_with_keys_fn=lambda f: ((("x", f.x), ("y", f.y)), f.z), ) SOME_PYTREES = [ (None,), ["hello", [1, 2], {"foo": [(3)]}], [ANamedTuple(x=torch.rand(2, 3), y=1, z="foo")], [ACustomPytree(x=12, y={"cin": [1, 4, 10], "bar": 18}, z="leaf"), 5], ] for pytree in SOME_PYTREES: flat_out, _ = py_pytree.tree_flatten_with_path(pytree) leaves_out = py_pytree.tree_leaves_with_path(pytree) self.assertEqual(flat_out, leaves_out)
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
test_flatten_flatten_with_key_consistency
def test_flatten_flatten_with_key_consistency(self): """Check that flatten and flatten_with_key produces consistent leaves/context.""" reg = py_pytree.SUPPORTED_NODES EXAMPLE_TREE = { list: [1, 2, 3], tuple: (1, 2, 3), dict: {"foo": 1, "bar": 2}, namedtuple: collections.namedtuple("ANamedTuple", ["x", "y"])(1, 2), OrderedDict: OrderedDict([("foo", 1), ("bar", 2)]), defaultdict: defaultdict(int, {"foo": 1, "bar": 2}), deque: deque([1, 2, 3]), torch.Size: torch.Size([1, 2, 3]), immutable_dict: immutable_dict({"foo": 1, "bar": 2}), immutable_list: immutable_list([1, 2, 3]), } for typ in reg: example = EXAMPLE_TREE.get(typ) if example is None: continue flat_with_path, spec1 = py_pytree.tree_flatten_with_path(example) flat, spec2 = py_pytree.tree_flatten(example) self.assertEqual(flat, [x[1] for x in flat_with_path]) self.assertEqual(spec1, spec2)
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
test_key_access
def test_key_access(self): class ANamedTuple(NamedTuple): x: str y: int tree = (["hello", [1, 2], {"foo": [(3)], "bar": [ANamedTuple(x="baz", y=10)]}],) flat, _ = py_pytree.tree_flatten_with_path(tree) for kp, val in flat: self.assertEqual(py_pytree.key_get(tree, kp), val)
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
setUp
def setUp(self): if IS_FBCODE: raise unittest.SkipTest("C++ pytree tests are not supported in fbcode")
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) import json class TestCxxPytree(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
test_pytree_serialize
def test_pytree_serialize(self, spec): # Ensure that the spec is valid self.assertEqual( spec, py_pytree.tree_structure( py_pytree.tree_unflatten([0] * spec.num_leaves, spec) ), ) serialized_spec = py_pytree.treespec_dumps(spec) self.assertIsInstance(serialized_spec, str) self.assertEqual(spec, py_pytree.treespec_loads(serialized_spec))
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
test_pytree_serialize_namedtuple
def test_pytree_serialize_namedtuple(self): Point1 = namedtuple("Point1", ["x", "y"]) py_pytree._register_namedtuple( Point1, serialized_type_name="test_pytree.test_pytree_serialize_namedtuple.Point1", ) spec = py_pytree.TreeSpec( namedtuple, Point1, [py_pytree.LeafSpec(), py_pytree.LeafSpec()] ) roundtrip_spec = py_pytree.treespec_loads(py_pytree.treespec_dumps(spec)) self.assertEqual(spec, roundtrip_spec) class Point2(NamedTuple): x: int y: int py_pytree._register_namedtuple( Point2, serialized_type_name="test_pytree.test_pytree_serialize_namedtuple.Point2", ) spec = py_pytree.TreeSpec( namedtuple, Point2, [py_pytree.LeafSpec(), py_pytree.LeafSpec()] ) roundtrip_spec = py_pytree.treespec_loads(py_pytree.treespec_dumps(spec)) self.assertEqual(spec, roundtrip_spec)
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
test_pytree_custom_type_serialize
def test_pytree_custom_type_serialize(self): class DummyType: def __init__(self, x, y): self.x = x self.y = y py_pytree.register_pytree_node( DummyType, lambda dummy: ([dummy.x, dummy.y], None), lambda xs, _: DummyType(*xs), serialized_type_name="test_pytree_custom_type_serialize.DummyType", to_dumpable_context=lambda context: "moo", from_dumpable_context=lambda dumpable_context: None, ) spec = py_pytree.TreeSpec( DummyType, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()] ) serialized_spec = py_pytree.treespec_dumps(spec, 1) self.assertIn("moo", serialized_spec) roundtrip_spec = py_pytree.treespec_loads(serialized_spec) self.assertEqual(roundtrip_spec, spec)
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class TestPythonPytree(TestCase): import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_pytree.py
__init__
instantiate_parametrized_tests(TestPytree) if __name__ == '__main__': run_tests()
def __init__(self, x, y): self.x = x self.y = y
import collections import inspect import os import re import subprocess import sys import unittest from collections import defaultdict, deque, namedtuple, OrderedDict, UserDict from dataclasses import dataclass from typing import Any, NamedTuple import torch import torch.utils._pytree as py_pytree from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, skipIfTorchDynamo, subtest, TEST_WITH_TORCHDYNAMO, TestCase, ) import torch.utils._cxx_pytree as cxx_pytree GlobalPoint = namedtuple("GlobalPoint", ["x", "y"]) class GlobalDummyType: import json
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
_amin_wrapper
def _amin_wrapper(x, dim=None, keepdims=False): with self.assertWarnsOnceRegex(UserWarning, "_aminmax is deprecated"): if dim is None: return torch._aminmax(x)[0] else: return torch._aminmax(x, dim, keepdims)[0]
def _amin_wrapper(x, dim=None, keepdims=False): return torch.aminmax(x, dim=dim, keepdim=keepdims)[0]
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
test_invalid_0dim_aminmax
# TODO: bincount isn't a classic reduction -- maybe this test suite is # reductions and summary ops?
def test_invalid_0dim_aminmax(self, device, dtype): with self.assertRaisesRegex(RuntimeError, 'not implemented'): torch.aminmax(torch.tensor(1., dtype=dtype, device=device), dim=0) # TODO: bincount isn't a classic reduction -- maybe this test suite is # reductions and summary ops?
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) class TestReductions(TestCase): from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
create_noncontig_inputs
def create_noncontig_inputs(x, ndim): if ndim == 2: return x[::2, ::2] elif ndim == 3: return x[::2, ::2, ::2] elif ndim == 4: return x[::2, ::2, ::2, ::2] elif ndim == 5: return x[::2, ::2, ::2, ::2, ::2]
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
normfn_attr
def normfn_attr(t, dim, keepdim=False, out=None): attr = torch.norm return attr(t, 2, dim, keepdim, out=out) for fn_name in dim_red_fns: fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr def fn(x, dim, keepdim=False, out=None): ans = fn_attr(x, dim, keepdim=keepdim, out=out) return ans if not isinstance(ans, tuple) else ans[0] def fn_tuple(x, dim, keepdim=False, out=None): return fn_attr(x, dim, keepdim=keepdim, out=out) def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, msg='{} values with out= kwarg'.format(fn_name)) self.assertEqual(indices[:, 1], indices_expected, msg='{} indices with out= kwarg'.format(fn_name)) continue x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
def normfn_attr(t, dim, keepdim=False, out=None): attr = torch.norm return attr(t, 2, dim, keepdim, out=out) fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
test_multidim
def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, msg='{} values with out= kwarg'.format(fn_name)) self.assertEqual(indices[:, 1], indices_expected, msg='{} indices with out= kwarg'.format(fn_name)) continue x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, msg=f'{fn_name} values with out= kwarg') self.assertEqual(indices[:, 1], indices_expected, msg=f'{fn_name} indices with out= kwarg') return x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, msg=f'{fn_name} with out= kwarg')
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
test_prod_lowp
def test_prod_lowp(self, device, dtype): x = torch.rand(100, 100, dtype=dtype, device=device) x_ref = x.float() res1 = torch.prod(x, 1) res2 = torch.prod(x_ref, 1) self.assertEqual(res1, res2.to(dtype=dtype)) res1 = torch.prod(x, 0) res2 = torch.prod(x_ref, 0) self.assertEqual(res1, res2.to(dtype=dtype))
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) class TestReductions(TestCase): from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
test_output_dtype
def test_output_dtype(dtype, is_int32): output = values_1d.to(dtype) with self.assertRaisesRegex( RuntimeError, "output tensor's dtype is wrong"): torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32) test_output_dtype(torch.float32, False) test_output_dtype(torch.int32, False) test_output_dtype(torch.int64, True) # invalid side argument with self.assertRaisesRegex(RuntimeError, "side can only be 'left' or 'right'"): torch.searchsorted(values_1d, values_1d, side='bad') # invalid sorter argument, wrong size with self.assertRaisesRegex(RuntimeError, "boundary and sorter must have the same size"): sequence = torch.rand_like(values_1d, dtype=torch.float) _, sorted_idx = torch.sort(sequence) torch.searchsorted(sequence, values_1d, sorter=sorted_idx[:-1]) # invalid sorter argument, is not dtype long with self.assertRaisesRegex(RuntimeError, "sorter must be a tensor of long dtype"): sequence = torch.rand_like(values_1d, dtype=torch.float) _, sorted_idx = torch.sort(sequence) torch.searchsorted(sequence, values_1d, sorter=sorted_idx.to(torch.float32)) # scalar type bfloat16 if self.device_type == 'cpu': def test_dtype_bfloat16(values_bf16=False, boundaries_bf16=False): values_1d_float = values_1d.to(torch.float32) boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32) if values_bf16: values_1d_float = values_1d_float.to(torch.bfloat16) if boundaries_bf16: boundaries = boundaries.to(torch.bfloat16) expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32) self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result) test_dtype_bfloat16(True, False) test_dtype_bfloat16(False, True) test_dtype_bfloat16(True, True)
def test_output_dtype(dtype, is_int32): output = values_1d.to(dtype) with self.assertRaisesRegex( RuntimeError, "output tensor's dtype is wrong"): torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32) test_output_dtype(torch.float32, False) test_output_dtype(torch.int32, False) test_output_dtype(torch.int64, True) # invalid side argument with self.assertRaisesRegex(RuntimeError, "side can only be 'left' or 'right'"): torch.searchsorted(values_1d, values_1d, side='bad') # invalid sorter argument, wrong size with self.assertRaisesRegex(RuntimeError, "boundary and sorter must have the same size"): sequence = torch.rand_like(values_1d, dtype=torch.float) _, sorted_idx = torch.sort(sequence) torch.searchsorted(sequence, values_1d, sorter=sorted_idx[:-1]) # invalid sorter argument, is not dtype long with self.assertRaisesRegex(RuntimeError, "sorter must be a tensor of long dtype"): sequence = torch.rand_like(values_1d, dtype=torch.float) _, sorted_idx = torch.sort(sequence) torch.searchsorted(sequence, values_1d, sorter=sorted_idx.to(torch.float32)) # invalid sorter value, out of bound (>= innermost size) with self.assertRaisesRegex(RuntimeError, "sorter index out of range"): torch.searchsorted(torch.tensor([1, 2, 3]), 2.5, sorter=torch.tensor([0, 1, 3])) # invalid sorter value, out of bound (< 0) with self.assertRaisesRegex(RuntimeError, "sorter index out of range"): torch.searchsorted(torch.tensor([1, 2, 3]), 2.5, sorter=torch.tensor([-1, 1, 2])) # scalar type bfloat16 if self.device_type == 'cpu': def test_dtype_bfloat16(values_bf16=False, boundaries_bf16=False): values_1d_float = values_1d.to(torch.float32) boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32) if values_bf16: values_1d_float = values_1d_float.to(torch.bfloat16) if boundaries_bf16: boundaries = boundaries.to(torch.bfloat16) expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32) self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result) test_dtype_bfloat16(True, False) test_dtype_bfloat16(False, True) test_dtype_bfloat16(True, True)
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
_get_relaxed_tolerances_for
def _get_relaxed_tolerances_for(self, dtype): if dtype == torch.float16: atol = 0.4 rtol = 1e-2 elif dtype == torch.float32: atol = 7e-05 rtol = 3e-06 else: # Default values atol = None rtol = None return atol, rtol
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) class TestReductions(TestCase): from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
is_integral
def is_integral(dtype): return dtype in integral_types() # On Windows CI, the current version of `numpy` promotes all lower integers # dtypes to int32 while `torch` promotes them to int64. Hence we skip on checking # the exact dtype. # Reference : https://dr.pytorch.org/api/view-log-full?build_id=122051580 # PR : https://github.com/pytorch/pytorch/pull/38628#issuecomment-655905370 exact_dtype = False if (IS_WINDOWS and is_integral(dtype)) else True if dtype == torch.uint8: with self.assertRaises(TypeError): self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, with_extremal=with_extremal) else: # TODO: Investigate why the output is not close to numpy. if dtype == torch.float16: atol = 0.4 rtol = 1e-2 elif dtype == torch.float32: atol = 7e-05 rtol = 3e-06 else: # Default values atol = None rtol = None self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, atol=atol, rtol=rtol, exact_dtype=exact_dtype, with_keepdim=with_keepdim, with_extremal=with_extremal)
def is_integral(dtype): return dtype in integral_types() exact_dtype = True # On Windows CI, the current version of `numpy` promotes all lower integers # dtypes to int32 while `torch` promotes them to int64. Hence we skip on checking # the exact dtype. # Reference : https://dr.pytorch.org/api/view-log-full?build_id=122051580 # PR : https://github.com/pytorch/pytorch/pull/38628#issuecomment-655905370 if IS_WINDOWS and is_integral(dtype): exact_dtype = False # For uint8, numpy promotes to uint64 while torch promotes to int64. # So we must skip this as well. if dtype == torch.uint8: exact_dtype = False # TODO: Investigate why the output is not close to numpy. atol, rtol = self._get_relaxed_tolerances_for(dtype) self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, atol=atol, rtol=rtol, exact_dtype=exact_dtype, with_keepdim=with_keepdim, with_extremal=with_extremal)
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
test_multidim
def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, msg='{} values with out= kwarg'.format(fn_name)) self.assertEqual(indices[:, 1], indices_expected, msg='{} indices with out= kwarg'.format(fn_name)) continue x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, msg=f'{fn_name} values with out= kwarg') self.assertEqual(indices[:, 1], indices_expected, msg=f'{fn_name} indices with out= kwarg') return x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, msg=f'{fn_name} with out= kwarg')
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_reductions.py
to_numpy
def to_numpy(input): if input.dtype is torch.bfloat16: return input.cpu().to(torch.float32).numpy() else: return input.cpu().numpy() samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) for sample_input in samples: t = sample_input.input actual = op(t, *sample_input.args, **sample_input.kwargs) exact_dtype = not (t.dtype is torch.bfloat16 or (op.promotes_int_to_float and not torch.is_floating_point(t))) expected = op.ref(to_numpy(t), *sample_input.args, **dict( # `identity` is mapped to numpy reduction `initial` argument identity=torch.masked._reduction_identity(op.name, t), **sample_input.kwargs)) # Workaround https://github.com/pytorch/pytorch/issues/66556 expected = np.asarray(expected) # transform numpy scalars to numpy.ndarray instances msg = ("Failed to produce expected results! Input tensor was" " {0}, torch result is {1}, and reference result is" " {2}.").format(t, actual, expected) if t.numel() < 10 else None self.assertEqual(actual, expected, msg, exact_dtype=exact_dtype)
def to_numpy(input): if input.dtype is torch.bfloat16: return input.cpu().to(torch.float32).numpy() else: return input.cpu().numpy() samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) for sample_input in samples: t = sample_input.input actual = op(t, *sample_input.args, **sample_input.kwargs) exact_dtype = not (t.dtype is torch.bfloat16 or (op.promotes_int_to_float and not torch.is_floating_point(t))) expected = op.ref(to_numpy(t), *sample_input.args, **dict( # `identity` is mapped to numpy reduction `initial` argument identity=torch.masked._reduction_identity(op.name, t), **sample_input.kwargs)) # Workaround https://github.com/pytorch/pytorch/issues/66556 expected = np.asarray(expected) # transform numpy scalars to numpy.ndarray instances # Numpy differs, producing uint32 on Windows if expected.dtype in [np.uint64, np.uint32]: exact_dtype = False msg = ("Failed to produce expected results! Input tensor was" f" {t}, torch result is {actual}, and reference result is" f" {expected}.") if t.numel() < 10 else None self.assertEqual(actual, expected, msg, exact_dtype=exact_dtype)
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_scatter_gather_ops.py
test_gather_expanded_index
def test_gather_expanded_index(self, device, dtype): def helper(input_size, idx_size): input = torch.randn(input_size, device=device).to(dtype=dtype) input2 = input.clone() shape = [1] * len(input_size) shape[0] = idx_size dim_size = input_size[0] idx = torch.randint(0, dim_size, shape) # Test the fast path on gather when index is expanded expanded_shape = input_size expanded_shape[0] = idx_size idx = idx.expand(expanded_shape) idx2 = idx.contiguous() out = torch.gather(input, 0, idx) out2 = torch.gather(input2, 0, idx2) self.assertEqual(out, out2) helper([50, 17], 100) helper([50, 1], 100) helper([50, 8, 7], 100) helper([50, 3, 4, 5], 100) # Generic Device Test Framework instantation, see # https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests # for details.
def test_gather_expanded_index(self, device, dtype): # Test when index is [N, 1], which would have stride [1, 0] # should be excluded from the fast path when index ix expanded input = torch.arange(25).view(5, 5) input2 = input.to(dtype=dtype) idx = torch.arange(5).view(5, 1) out = torch.gather(input, 0, idx) out2 = torch.gather(input2, 0, idx) self.assertEqual(out.to(dtype=dtype), out2) def helper(input_size, idx_size): input = torch.randn(input_size, device=device).to(dtype=dtype) input2 = input.clone() shape = [1] * len(input_size) shape[0] = idx_size dim_size = input_size[0] idx = torch.randint(0, dim_size, shape) # Test the fast path on gather when index is expanded expanded_shape = input_size expanded_shape[0] = idx_size idx = idx.expand(expanded_shape) idx2 = idx.contiguous() out = torch.gather(input, 0, idx) out2 = torch.gather(input2, 0, idx2) self.assertEqual(out, out2) helper([50, 17], 100) helper([50, 1], 100) helper([50, 8, 7], 100) helper([50, 3, 4, 5], 100) # Generic Device Test Framework instantation, see # https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests # for details.
import random import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (parametrize, run_tests, TestCase, DeterministicGuard) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, toleranceOverride, tol,) from torch.testing._internal.common_dtype import \ (get_all_dtypes,) class TestScatterGather(TestCase):
import random import torch from torch.testing import make_tensor from torch.testing._internal.common_utils import \ (parametrize, run_tests, TestCase, DeterministicGuard) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, toleranceOverride, tol,) from torch.testing._internal.common_dtype import \ (get_all_dtypes,) class TestScatterGather(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_schema_check.py
secretly_aliasing
def secretly_aliasing(x): return x.view(-1)
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_schema_check.py
secretly_mutating
def secretly_mutating(x): x.mul_(2) return x * 3
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_schema_check.py
setUp
# Tests that SchemaCheckMode records operator order with grad
def setUp(self): if TEST_WITH_TORCHDYNAMO: self.skipTest("SchemaCheckMode is ignored by dynamo") super().setUp() # Tests that SchemaCheckMode records operator order with grad
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901 custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901 custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901 class TestSchemaCheck(JitTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_reductions.py
_assert_warning
def _assert_warning(_func, _tensor, _correction): with warnings.catch_warnings(record=True) as w: _func(_tensor, dim=-1, correction=_correction) self.assertIn('degrees of freedom is <= 0', str(w[0].message)) correction = 20 size = (10, correction) tensor = make_tensor(size, dtype=dtype, device=device) for f in [torch.std, torch.var, torch.var_mean, torch.std_mean]: _assert_warning(f, tensor, correction)
import contextlib import torch import numpy as np import math from typing import Dict, List, Sequence import random from functools import partial from itertools import product, combinations, permutations import warnings from torch import inf, nan from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and, integral_types_and, floating_and_complex_types_and, all_types_and, all_types, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict, parametrize, IS_WINDOWS) from torch.testing._internal.common_device_type import ( OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU, onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride) from torch.testing._internal.common_methods_invocations import ( ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops) from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp from scipy.special import logsumexp
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_schema_check.py
f
def f(x): return torch.ops.bad_schemas.secretly_aliasing(x) x = torch.rand((3, 3)) with self.assertRaisesRegex(RuntimeError, "not defined to alias output but was aliasing"): with SchemaCheckMode() as s: out = f(x)
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901 custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901 custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_schema_check.py
f
def f(x): return torch.ops.bad_schemas.secretly_aliasing(x) x = torch.rand((3, 3)) with self.assertRaisesRegex(RuntimeError, "not defined to alias output but was aliasing"): with SchemaCheckMode() as s: out = f(x)
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901 custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901 custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_schema_check.py
f
# Tests that is_alias_of returns as expected
def f(x): return torch.ops.bad_schemas.secretly_aliasing(x) x = torch.rand((3, 3)) with self.assertRaisesRegex(RuntimeError, "not defined to alias output but was aliasing"): with SchemaCheckMode() as s: out = f(x)
import os import sys import torch from torch.utils._pytree import tree_map import unittest from torch.testing._internal.common_utils import run_tests, TEST_WITH_TORCHDYNAMO from torch.fx.operator_schemas import normalize_function from torch._subclasses.schema_check_mode import SchemaCheckMode from torch.utils._python_dispatch import TorchDispatchMode from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.jit_utils import JitTestCase from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) custom_lib = torch.library.Library("bad_schemas", "DEF") # noqa: TOR901 custom_lib_cpu = torch.library.Library("bad_schemas", "IMPL", "CPU") # noqa: TOR901 custom_lib_meta = torch.library.Library("bad_schemas", "IMPL", "Meta") # noqa: TOR901
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_segment_reductions.py
get_default_value
def get_default_value(initial_value, reduction): if initial_value is not None: return initial_value if reduction == "max": return -float("Inf") elif reduction == "mean": return float("nan") elif reduction == "min": return float("Inf") elif reduction == "sum": return 0.0 elif reduction == "prod": return 1.0 class TestSegmentReductions(TestCase): def _test_common( self, reduction, device, dtype, unsafe, axis, initial_value, data_arr, lengths_arr, expected_arr, expected_grad_arr, check_backward, lengths_dtype=torch.int, ): lengths = torch.tensor(lengths_arr, device=device, dtype=lengths_dtype) # generate offsets from lengths zeros_shape = list(lengths.shape) zeros_shape[-1] = 1 offsets = torch.cat((lengths.new_zeros(zeros_shape), lengths), -1).cumsum_(-1) data = torch.tensor( data_arr, device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor(expected_arr, device=device, dtype=dtype) expected_grad = torch.tensor(expected_grad_arr, device=device, dtype=dtype) for mode in ['lengths', 'offsets']: segment_reduce_kwargs = dict( axis=axis, unsafe=unsafe, initial=initial_value) if (mode == 'lengths'): segment_reduce_kwargs['lengths'] = lengths else: segment_reduce_kwargs['offsets'] = offsets actual_result = torch._segment_reduce( data=data, reduce=reduction, **segment_reduce_kwargs ) self.assertEqual( expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True ) if not check_backward: return # Test backward actual_result.sum().backward() self.assertEqual( expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True ) data = data.clone().detach().requires_grad_(True) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input, setting to random 10 d_non_nan = np.nan_to_num(data_arr, nan=10) new_data = torch.tensor( # [10 if v == float("nan") else v for v in data], d_non_nan, device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch._segment_reduce( data=x, reduce=reduction, **segment_reduce_kwargs ), (new_data,), ) ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_simple_1d(self, device, dtypes): val_dtype, length_type = dtypes lengths = [1, 2, 3, 0] data = [1, float("nan"), 3, 4, 5, 5] for reduction in reductions: for initial in [0, None]: check_backward = True if initial is not None else False initial_value = initial default_value = get_default_value(initial_value, reduction) if reduction == "max": expected_result = [1, float("nan"), 5, default_value] expected_grad = [1, 1, 0, 0, 0.5, 0.5] elif reduction == "mean": expected_result = [1, float("nan"), 4.666, default_value] expected_grad = [1.0, 0.5, 0.5, 0.333, 0.333, 0.333] elif reduction == "min": if initial is not None: initial_value = 1000 # some high number default_value = get_default_value(initial_value, reduction) expected_result = [1, float("nan"), 4, default_value] expected_grad = [1.0, 1.0, 0, 1, 0, 0] elif reduction == "sum": expected_result = [1, float("nan"), 14, default_value] expected_grad = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif reduction == "prod": if initial is not None: initial_value = 2 # 0 initial_value will zero out everything for prod default_value = get_default_value(initial_value, reduction) expected_result = [2, float("nan"), 200, default_value] expected_grad = [2.0, 6.0, float("nan"), 50.0, 40.0, 40.0] else: expected_result = [1, float("nan"), 100, default_value] expected_grad = [1.0, 3.0, float("nan"), 25.0, 20.0, 20.0] for axis in [0, -1]: for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, length_type, ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_multi_d_simple(self, device, dtypes): val_dtype, length_type = dtypes axis = 0 lengths = [1, 2, 3, 0] data = [[1, 1], [float("nan"), 1], [3, float("nan")], [4, 1], [3, 2], [2, 3]] for reduction in reductions: for initial in [0, None]: check_backward = True if initial is not None else False initial_value = initial default_value = get_default_value(initial_value, reduction) if reduction == "amax": expected_result = [ [1, 1], [float("nan"), float("nan")], [4, 3], [default_value, default_value], ] expected_grad = [ [1, 1], [1, 0], [0, 1], [1, 0], [0, 0], [0, 1], ] elif reduction == "mean": expected_result = [ [1, 1], [float("nan"), float("nan")], [3, 2], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [0.5, 0.5], [0.5, 0.5], [0.333, 0.333], [0.333, 0.333], [0.333, 0.333], ] elif reduction == "amin": if initial is not None: initial_value = 1000 # some high number default_value = get_default_value(initial_value, reduction) expected_result = [ [1, 1], [float("nan"), float("nan")], [2, 1], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [1, 0], [0, 1], [0, 1], [0, 0], [1, 0], ] elif reduction == "sum": expected_result = [ [1, 1], [float("nan"), float("nan")], [9, 6], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], ] elif reduction == "prod": if initial is not None: initial_value = 2 # 0 initial_value will zero out everything for prod default_value = get_default_value(initial_value, reduction) expected_result = [ [2, 2], [float("nan"), float("nan")], [48, 12], [default_value, default_value], ] expected_grad = [ [2.0, 2.0], [6.0, float("nan")], [float("nan"), 2.0], [12.0, 12.0], [16.0, 6.0], [24.0, 4.0], ] else: expected_result = [ [1, 1], [float("nan"), float("nan")], [24, 6], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [3.0, float("nan")], [float("nan"), 1.0], [6.0, 6.0], [8.0, 3.0], [12.0, 2.0], ] for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) @parametrize("reduce", ['sum', 'prod', 'amin', 'amax', 'mean']) def test_pytorch_scatter_test_cases(self, device, dtypes, reduce): val_dtype, length_dtype = dtypes # zero-length segments are filled with reduction inits contrary to pytorch_scatter. tests = [ { 'src': [1, 2, 3, 4, 5, 6], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [3, 12, 0, 6], 'prod': [2, 60, 1, 6], 'mean': [1.5, 4, float('nan'), 6], 'amin': [1, 3, float('inf'), 6], 'amax': [2, 5, -float('inf'), 6], }, { 'src': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [[4, 6], [21, 24], [0, 0], [11, 12]], 'prod': [[3, 8], [315, 480], [1, 1], [11, 12]], 'mean': [[2, 3], [7, 8], [float('nan'), float('nan')], [11, 12]], 'amin': [[1, 2], [5, 6], [float('inf'), float('inf')], [11, 12]], 'amax': [[3, 4], [9, 10], [-float('inf'), -float('inf')], [11, 12]], }, { 'src': [[1, 3, 5, 7, 9, 11], [2, 4, 6, 8, 10, 12]], 'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]], 'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]], 'sum': [[4, 21, 0, 11], [12, 18, 12, 0]], 'prod': [[3, 315, 1, 11], [48, 80, 12, 1]], 'mean': [[2, 7, float('nan'), 11], [4, 9, 12, float('nan')]], 'amin': [[1, 5, float('inf'), 11], [2, 8, 12, float('inf')]], 'amax': [[3, 9, -float('inf'), 11], [6, 10, 12, -float('inf')]], }, { 'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]], 'index': [[0, 0, 1], [0, 2, 2]], 'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]], 'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]], 'prod': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 143]]], 'mean': [[[2, 3], [5, 6], [float('nan'), float('nan')]], [[7, 9], [float('nan'), float('nan')], [11, 12]]], 'amin': [[[1, 2], [5, 6], [float('inf'), float('inf')]], [[7, 9], [float('inf'), float('inf')], [10, 11]]], 'amax': [[[3, 4], [5, 6], [-float('inf'), -float('inf')]], [[7, 9], [-float('inf'), -float('inf')], [12, 13]]], }, { 'src': [[1, 3], [2, 4]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[4], [6]], 'prod': [[3], [8]], 'mean': [[2], [3]], 'amin': [[1], [2]], 'amax': [[3], [4]], }, { 'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[[4, 4]], [[6, 6]]], 'prod': [[[3, 3]], [[8, 8]]], 'mean': [[[2, 2]], [[3, 3]]], 'amin': [[[1, 1]], [[2, 2]]], 'amax': [[[3, 3]], [[4, 4]]], }, ] for test in tests: data = torch.tensor(test['src'], dtype=val_dtype, device=device, requires_grad=True) indptr = torch.tensor(test['indptr'], dtype=length_dtype, device=device) dim = indptr.ndim - 1 # calculate lengths from indptr lengths = torch.diff(indptr, dim=dim) expected = torch.tensor(test[reduce], dtype=val_dtype, device=device) actual_result = torch._segment_reduce( data=data, reduce=reduce, lengths=lengths, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) # test offsets actual_result = torch._segment_reduce( data=data, reduce=reduce, offsets=indptr, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) if val_dtype == torch.float64: def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'amin': initial = 1000 elif reduce == 'amax': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch._segment_reduce(*segment_reduce_args, **segment_reduce_kwargs) self.assertTrue(gradcheck(partial(fn, mode='lengths'), (data.clone().detach().requires_grad_(True)))) self.assertTrue(gradcheck(partial(fn, mode='offsets'), (data.clone().detach().requires_grad_(True)))) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_multi_d(self, device, dtypes): val_dtype, length_type = dtypes axis = 0 lengths = [0, 2, 3, 0] data = np.arange(50).reshape(5, 2, 5).tolist() expected_grad = [] # TODO: calculate grad and check correctness check_backward = False for reduction in reductions: initial_value = 0 if reduction == "amax": expected_result = [ np.full((2, 5), initial_value).tolist(), np.max(data[:2], axis=0).tolist(), np.max(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "mean": expected_result = [ np.full((2, 5), initial_value).tolist(), np.mean(data[:2], axis=0).tolist(), np.mean(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "amin": initial_value = 1000 # some high number expected_result = [ np.full((2, 5), initial_value).tolist(), np.min(data[:2], axis=0).tolist(), np.min(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "sum": expected_result = [ np.full((2, 5), initial_value).tolist(), np.sum(data[:2], axis=0).tolist(), np.sum(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "prod": initial_value = 1 expected_result = [ np.full((2, 5), initial_value).tolist(), np.prod(data[:2], axis=0).tolist(), np.prod(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, ) @dtypes(torch.int, torch.int64) def test_unsafe_flag(self, device, dtype): length_type = dtype lengths = torch.tensor([0, 2, 3, 0], device=device, dtype=length_type) data = torch.arange(6, dtype=torch.float, device=device) # test for error on 1-D lenghts with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch._segment_reduce(data, 'sum', lengths=lengths, axis=0, unsafe=False) # test for error on multi-D lengths nd_lengths = torch.tensor([[0, 3, 3, 0], [2, 3, 0, 0]], dtype=length_type, device=device) nd_data = torch.arange(12, dtype=torch.float, device=device).reshape(2, 6) with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch._segment_reduce(nd_data, 'sum', lengths=nd_lengths, axis=1, unsafe=False) instantiate_device_type_tests(TestSegmentReductions, globals()) if __name__ == "__main__": run_tests()
def get_default_value(initial_value, reduction): if initial_value is not None: return initial_value if reduction == "max": return -float("Inf") elif reduction == "mean": return float("nan") elif reduction == "min": return float("Inf") elif reduction == "sum": return 0.0 elif reduction == "prod": return 1.0 class TestSegmentReductions(TestCase): def _test_common( self, reduction, device, dtype, unsafe, axis, initial_value, data_arr, lengths_arr, expected_arr, expected_grad_arr, check_backward, lengths_dtype=torch.int, ): lengths = torch.tensor(lengths_arr, device=device, dtype=lengths_dtype) # generate offsets from lengths zeros_shape = list(lengths.shape) zeros_shape[-1] = 1 offsets = torch.cat((lengths.new_zeros(zeros_shape), lengths), -1).cumsum_(-1) data = torch.tensor( data_arr, device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor(expected_arr, device=device, dtype=dtype) expected_grad = torch.tensor(expected_grad_arr, device=device, dtype=dtype) for mode in ['lengths', 'offsets']: segment_reduce_kwargs = dict( axis=axis, unsafe=unsafe, initial=initial_value) if (mode == 'lengths'): segment_reduce_kwargs['lengths'] = lengths else: segment_reduce_kwargs['offsets'] = offsets actual_result = torch._segment_reduce( data=data, reduce=reduction, **segment_reduce_kwargs ) self.assertEqual( expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True ) if not check_backward: return # Test backward actual_result.sum().backward() self.assertEqual( expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True ) data = data.clone().detach().requires_grad_(True) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input, setting to random 10 d_non_nan = np.nan_to_num(data_arr, nan=10) new_data = torch.tensor( # [10 if v == float("nan") else v for v in data], d_non_nan, device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch._segment_reduce( data=x, reduce=reduction, **segment_reduce_kwargs ), (new_data,), ) ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_simple_1d(self, device, dtypes): val_dtype, length_type = dtypes lengths = [1, 2, 3, 0] data = [1, float("nan"), 3, 4, 5, 5] for reduction in reductions: for initial in [0, None]: check_backward = True if initial is not None else False initial_value = initial default_value = get_default_value(initial_value, reduction) if reduction == "max": expected_result = [1, float("nan"), 5, default_value] expected_grad = [1, 1, 0, 0, 0.5, 0.5] elif reduction == "mean": expected_result = [1, float("nan"), 4.666, default_value] expected_grad = [1.0, 0.5, 0.5, 0.333, 0.333, 0.333] elif reduction == "min": if initial is not None: initial_value = 1000 # some high number default_value = get_default_value(initial_value, reduction) expected_result = [1, float("nan"), 4, default_value] expected_grad = [1.0, 1.0, 0, 1, 0, 0] elif reduction == "sum": expected_result = [1, float("nan"), 14, default_value] expected_grad = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif reduction == "prod": if initial is not None: initial_value = 2 # 0 initial_value will zero out everything for prod default_value = get_default_value(initial_value, reduction) expected_result = [2, float("nan"), 200, default_value] expected_grad = [2.0, 6.0, float("nan"), 50.0, 40.0, 40.0] else: expected_result = [1, float("nan"), 100, default_value] expected_grad = [1.0, 3.0, float("nan"), 25.0, 20.0, 20.0] for axis in [0, -1]: for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, length_type, ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_simple_zero_length(self, device, dtypes): val_dtype, length_type = dtypes lengths = [0, 0] data = torch.ones(0) for reduction in reductions: for initial in [0, None]: check_backward = True if initial is not None else False initial_value = initial default_value = get_default_value(initial_value, reduction) if reduction == "max": expected_result = [default_value, default_value] expected_grad = [] elif reduction == "mean": expected_result = [default_value, default_value] expected_grad = [] elif reduction == "min": if initial is not None: initial_value = 1000 # some high number default_value = get_default_value(initial_value, reduction) expected_result = [default_value, default_value] expected_grad = [] elif reduction == "sum": expected_result = [default_value, default_value] expected_grad = [] elif reduction == "prod": if initial is not None: initial_value = 2 # 0 initial_value will zero out everything for prod default_value = get_default_value(initial_value, reduction) expected_result = [default_value, default_value] expected_grad = [] else: expected_result = [default_value, default_value] expected_grad = [] for axis in [0]: for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, length_type, ) @skipIfRocm @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_multi_d_simple(self, device, dtypes): val_dtype, length_type = dtypes axis = 0 lengths = [1, 2, 3, 0] data = [[1, 1], [float("nan"), 1], [3, float("nan")], [4, 1], [3, 2], [2, 3]] for reduction in reductions: for initial in [0, None]: check_backward = True if initial is not None else False initial_value = initial default_value = get_default_value(initial_value, reduction) if reduction == "max": expected_result = [ [1, 1], [float("nan"), float("nan")], [4, 3], [default_value, default_value], ] expected_grad = [ [1, 1], [1, 0], [0, 1], [1, 0], [0, 0], [0, 1], ] elif reduction == "mean": expected_result = [ [1, 1], [float("nan"), float("nan")], [3, 2], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [0.5, 0.5], [0.5, 0.5], [0.333, 0.333], [0.333, 0.333], [0.333, 0.333], ] elif reduction == "min": if initial is not None: initial_value = 1000 # some high number default_value = get_default_value(initial_value, reduction) expected_result = [ [1, 1], [float("nan"), float("nan")], [2, 1], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [1, 0], [0, 1], [0, 1], [0, 0], [1, 0], ] elif reduction == "sum": expected_result = [ [1, 1], [float("nan"), float("nan")], [9, 6], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0], ] elif reduction == "prod": if initial is not None: initial_value = 2 # 0 initial_value will zero out everything for prod default_value = get_default_value(initial_value, reduction) expected_result = [ [2, 2], [float("nan"), float("nan")], [48, 12], [default_value, default_value], ] expected_grad = [ [2.0, 2.0], [6.0, float("nan")], [float("nan"), 2.0], [12.0, 12.0], [16.0, 6.0], [24.0, 4.0], ] else: expected_result = [ [1, 1], [float("nan"), float("nan")], [24, 6], [default_value, default_value], ] expected_grad = [ [1.0, 1.0], [3.0, float("nan")], [float("nan"), 1.0], [6.0, 6.0], [8.0, 3.0], [12.0, 2.0], ] for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, ) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) @parametrize("reduce", ['sum', 'prod', 'min', 'max', 'mean']) def test_pytorch_scatter_test_cases(self, device, dtypes, reduce): val_dtype, length_dtype = dtypes # zero-length segments are filled with reduction inits contrary to pytorch_scatter. tests = [ { 'src': [1, 2, 3, 4, 5, 6], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [3, 12, 0, 6], 'prod': [2, 60, 1, 6], 'mean': [1.5, 4, float('nan'), 6], 'min': [1, 3, float('inf'), 6], 'max': [2, 5, -float('inf'), 6], }, { 'src': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [[4, 6], [21, 24], [0, 0], [11, 12]], 'prod': [[3, 8], [315, 480], [1, 1], [11, 12]], 'mean': [[2, 3], [7, 8], [float('nan'), float('nan')], [11, 12]], 'min': [[1, 2], [5, 6], [float('inf'), float('inf')], [11, 12]], 'max': [[3, 4], [9, 10], [-float('inf'), -float('inf')], [11, 12]], }, { 'src': [[1, 3, 5, 7, 9, 11], [2, 4, 6, 8, 10, 12]], 'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]], 'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]], 'sum': [[4, 21, 0, 11], [12, 18, 12, 0]], 'prod': [[3, 315, 1, 11], [48, 80, 12, 1]], 'mean': [[2, 7, float('nan'), 11], [4, 9, 12, float('nan')]], 'min': [[1, 5, float('inf'), 11], [2, 8, 12, float('inf')]], 'max': [[3, 9, -float('inf'), 11], [6, 10, 12, -float('inf')]], }, { 'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]], 'index': [[0, 0, 1], [0, 2, 2]], 'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]], 'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]], 'prod': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 143]]], 'mean': [[[2, 3], [5, 6], [float('nan'), float('nan')]], [[7, 9], [float('nan'), float('nan')], [11, 12]]], 'min': [[[1, 2], [5, 6], [float('inf'), float('inf')]], [[7, 9], [float('inf'), float('inf')], [10, 11]]], 'max': [[[3, 4], [5, 6], [-float('inf'), -float('inf')]], [[7, 9], [-float('inf'), -float('inf')], [12, 13]]], }, { 'src': [[1, 3], [2, 4]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[4], [6]], 'prod': [[3], [8]], 'mean': [[2], [3]], 'min': [[1], [2]], 'max': [[3], [4]], }, { 'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[[4, 4]], [[6, 6]]], 'prod': [[[3, 3]], [[8, 8]]], 'mean': [[[2, 2]], [[3, 3]]], 'min': [[[1, 1]], [[2, 2]]], 'max': [[[3, 3]], [[4, 4]]], }, ] for test in tests: data = torch.tensor(test['src'], dtype=val_dtype, device=device, requires_grad=True) indptr = torch.tensor(test['indptr'], dtype=length_dtype, device=device) dim = indptr.ndim - 1 # calculate lengths from indptr lengths = torch.diff(indptr, dim=dim) expected = torch.tensor(test[reduce], dtype=val_dtype, device=device) actual_result = torch._segment_reduce( data=data, reduce=reduce, lengths=lengths, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) # test offsets actual_result = torch._segment_reduce( data=data, reduce=reduce, offsets=indptr, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) if val_dtype == torch.float64: def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'min': initial = 1000 elif reduce == 'max': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch._segment_reduce(*segment_reduce_args, **segment_reduce_kwargs) self.assertTrue(gradcheck(partial(fn, mode='lengths'), (data.clone().detach().requires_grad_(True)))) self.assertTrue(gradcheck(partial(fn, mode='offsets'), (data.clone().detach().requires_grad_(True)))) @dtypes( *product( (torch.half, torch.bfloat16, torch.float, torch.double), (torch.int, torch.int64), ) ) def test_multi_d(self, device, dtypes): val_dtype, length_type = dtypes axis = 0 lengths = [0, 2, 3, 0] data = np.arange(50).reshape(5, 2, 5).tolist() expected_grad = [] # TODO: calculate grad and check correctness check_backward = False for reduction in reductions: initial_value = 0 if reduction == "max": expected_result = [ np.full((2, 5), initial_value).tolist(), np.max(data[:2], axis=0).tolist(), np.max(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "mean": expected_result = [ np.full((2, 5), initial_value).tolist(), np.mean(data[:2], axis=0).tolist(), np.mean(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "min": initial_value = 1000 # some high number expected_result = [ np.full((2, 5), initial_value).tolist(), np.min(data[:2], axis=0).tolist(), np.min(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "sum": expected_result = [ np.full((2, 5), initial_value).tolist(), np.sum(data[:2], axis=0).tolist(), np.sum(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] elif reduction == "prod": initial_value = 1 expected_result = [ np.full((2, 5), initial_value).tolist(), np.prod(data[:2], axis=0).tolist(), np.prod(data[2:], axis=0).tolist(), np.full((2, 5), initial_value).tolist(), ] for unsafe in [True, False]: self._test_common( reduction, device, val_dtype, unsafe, axis, initial_value, data, lengths, expected_result, expected_grad, check_backward, ) @dtypes(torch.int, torch.int64) def test_unsafe_flag(self, device, dtype): length_type = dtype lengths = torch.tensor([0, 2, 3, 0], device=device, dtype=length_type) data = torch.arange(6, dtype=torch.float, device=device) # test for error on 1-D lenghts with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch._segment_reduce(data, 'sum', lengths=lengths, axis=0, unsafe=False) # test for error on multi-D lengths nd_lengths = torch.tensor([[0, 3, 3, 0], [2, 3, 0, 0]], dtype=length_type, device=device) nd_data = torch.arange(12, dtype=torch.float, device=device).reshape(2, 6) with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch._segment_reduce(nd_data, 'sum', lengths=nd_lengths, axis=1, unsafe=False) instantiate_device_type_tests(TestSegmentReductions, globals()) if __name__ == "__main__": run_tests()
from itertools import product from functools import partial import numpy as np import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, dtypes, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, gradcheck, parametrize, ) reductions = ["max", "mean", "min", "sum", "prod"]
from itertools import product from functools import partial import numpy as np import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, dtypes, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, gradcheck, parametrize, skipIfRocm, ) reductions = ["max", "mean", "min", "sum", "prod"]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_segment_reductions.py
fn
def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'amin': initial = 1000 elif reduce == 'amax': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch._segment_reduce(*segment_reduce_args, **segment_reduce_kwargs) self.assertTrue(gradcheck(partial(fn, mode='lengths'), (data.clone().detach().requires_grad_(True)))) self.assertTrue(gradcheck(partial(fn, mode='offsets'), (data.clone().detach().requires_grad_(True))))
def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'min': initial = 1000 elif reduce == 'max': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch._segment_reduce(*segment_reduce_args, **segment_reduce_kwargs) self.assertTrue(gradcheck(partial(fn, mode='lengths'), (data.clone().detach().requires_grad_(True)))) self.assertTrue(gradcheck(partial(fn, mode='offsets'), (data.clone().detach().requires_grad_(True))))
from itertools import product from functools import partial import numpy as np import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, dtypes, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, gradcheck, parametrize, ) reductions = ["max", "mean", "min", "sum", "prod"]
from itertools import product from functools import partial import numpy as np import torch from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, dtypes, ) from torch.testing._internal.common_utils import ( TestCase, run_tests, gradcheck, parametrize, skipIfRocm, ) reductions = ["max", "mean", "min", "sum", "prod"]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_dill
def test_serialization_dill(self): x = torch.randn(5, 5) with tempfile.NamedTemporaryFile() as f: torch.save(x, f, pickle_module=dill) f.seek(0) x2 = torch.load(f, pickle_module=dill, encoding='utf-8') self.assertIsInstance(x2, type(x)) self.assertEqual(x, x2) f.seek(0) x3 = torch.load(f, pickle_module=dill) self.assertIsInstance(x3, type(x)) self.assertEqual(x, x3)
def test_serialization_dill(self): x = torch.randn(5, 5) with tempfile.NamedTemporaryFile() as f: torch.save(x, f, pickle_module=dill) f.seek(0) # weights_only=False as True does not support custom pickle_module x2 = torch.load(f, pickle_module=dill, encoding='utf-8', weights_only=False) self.assertIsInstance(x2, type(x)) self.assertEqual(x, x2) f.seek(0) # weights_only=False as True does not support custom pickle_module x3 = torch.load(f, pickle_module=dill, weights_only=False) self.assertIsInstance(x3, type(x)) self.assertEqual(x, x3)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class SerializationMixin: import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True class SerializationMixin: import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_sparse_invalid
def test_serialization_sparse_invalid(self): x = torch.zeros(3, 3) x[1][1] = 1 x = x.to_sparse() class TensorSerializationSpoofer: def __init__(self, tensor): self.tensor = tensor def __reduce_ex__(self, proto): invalid_indices = self.tensor._indices().clone() invalid_indices[0][0] = 3 return ( torch._utils._rebuild_sparse_tensor, ( self.tensor.layout, ( invalid_indices, self.tensor._values(), self.tensor.size()))) with tempfile.NamedTemporaryFile() as f: torch.save({"spoofed": TensorSerializationSpoofer(x)}, f) f.seek(0) with self.assertRaisesRegex( RuntimeError, "size is inconsistent with indices"): y = torch.load(f)
def test_serialization_sparse_invalid(self): x = torch.zeros(3, 3) x[1][1] = 1 x = x.to_sparse() class TensorSerializationSpoofer: def __init__(self, tensor): self.tensor = tensor def __reduce_ex__(self, proto): invalid_indices = self.tensor._indices().clone() invalid_indices[0][0] = 3 return ( torch._utils._rebuild_sparse_tensor, ( self.tensor.layout, ( invalid_indices, self.tensor._values(), self.tensor.size()))) with tempfile.NamedTemporaryFile() as f: torch.save({"spoofed": TensorSerializationSpoofer(x)}, f) for weights_only in (False, True): f.seek(0) with self.assertRaisesRegex( RuntimeError, "size is inconsistent with indices"): y = torch.load(f, weights_only=weights_only)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class SerializationMixin: import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True class SerializationMixin: import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
generate_map_locations
def generate_map_locations(device_type): return [ {'cuda:0': device_type + ':0'}, device_type, device_type + ':0', torch.device(device_type), torch.device(device_type, 0) ]
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
load_bytes
def load_bytes(): with open(test_file_path, 'rb') as f: return io.BytesIO(f.read()) fileobject_lambdas = [lambda: test_file_path, load_bytes] cpu_map_locations = [ map_location, {'cuda:0': 'cpu'}, 'cpu', torch.device('cpu'), ] gpu_0_map_locations = [ {'cuda:0': 'cuda:0'}, 'cuda', 'cuda:0', torch.device('cuda'), torch.device('cuda', 0) ] gpu_last_map_locations = [ 'cuda:{}'.format(torch.cuda.device_count() - 1), ]
def load_bytes(): with open(test_file_path, 'rb') as f: return io.BytesIO(f.read()) fileobject_lambdas = [lambda: test_file_path, load_bytes] cpu_map_locations = [ map_location, {'cuda:0': 'cpu'}, 'cpu', torch.device('cpu'), ] gpu_0_map_locations = generate_map_locations('cuda') gpu_last_map_locations = [ f'cuda:{torch.cuda.device_count() - 1}', ] xpu_0_map_locations = generate_map_locations('xpu') xpu_last_map_locations = [ f'xpu:{torch.xpu.device_count() - 1}', ]
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
check_map_locations
def check_map_locations(map_locations, tensor_class, intended_device): for fileobject_lambda in fileobject_lambdas: for map_location in map_locations: tensor = torch.load(fileobject_lambda(), map_location=map_location) self.assertEqual(tensor.device, intended_device) self.assertIsInstance(tensor, tensor_class) self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]])) check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu')) if torch.cuda.is_available(): check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0)) check_map_locations( gpu_last_map_locations, torch.cuda.FloatTensor, torch.device('cuda', torch.cuda.device_count() - 1) )
def check_map_locations(map_locations, dtype, intended_device): for fileobject_lambda in fileobject_lambdas: for map_location in map_locations: tensor = torch.load(fileobject_lambda(), map_location=map_location) self.assertEqual(tensor.device, intended_device) self.assertEqual(tensor.dtype, dtype) self.assertEqual(tensor, torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=dtype, device=intended_device)) check_map_locations(cpu_map_locations, torch.float, torch.device('cpu')) if torch.cuda.is_available(): check_map_locations(gpu_0_map_locations, torch.float, torch.device('cuda', 0)) check_map_locations( gpu_last_map_locations, torch.float, torch.device('cuda', torch.cuda.device_count() - 1) ) if torch.xpu.is_available(): check_map_locations(xpu_0_map_locations, torch.float, torch.device('xpu', 0)) check_map_locations( xpu_last_map_locations, torch.float, torch.device('xpu', torch.xpu.device_count() - 1) )
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_load_unicode_error_msg
def test_load_unicode_error_msg(self): # This Pickle contains a Python 2 module with Unicode data and the # loading should fail if the user explicitly specifies ascii encoding! path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') self.assertRaises(UnicodeDecodeError, lambda: torch.load(path, encoding='ascii'))
def test_load_unicode_error_msg(self): # This Pickle contains a Python 2 module with Unicode data and the # loading should fail if the user explicitly specifies ascii encoding! path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') # weights_only=False as this is legacy code that saves the model self.assertRaises(UnicodeDecodeError, lambda: torch.load(path, encoding='ascii', weights_only=False))
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class SerializationMixin: import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True class SerializationMixin: import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_load_python2_unicode_module
def test_load_python2_unicode_module(self): # This Pickle contains some Unicode data! path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') with warnings.catch_warnings(record=True) as w: self.assertIsNotNone(torch.load(path))
def test_load_python2_unicode_module(self): # This Pickle contains some Unicode data! path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') with warnings.catch_warnings(record=True) as w: # weights_only=False as this is legacy code that saves the model self.assertIsNotNone(torch.load(path, weights_only=False))
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class SerializationMixin: import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True class SerializationMixin: import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_load_error_msg
def test_load_error_msg(self): expected_err_msg = (".*You can only torch.load from a file that is seekable. " + "Please pre-load the data into a buffer like io.BytesIO and " + "try to load from it instead.") resource = FilelikeMock(data=b"data") delattr(resource, "tell") delattr(resource, "seek") with self.assertRaisesRegex(AttributeError, expected_err_msg): torch.load(resource)
def test_load_error_msg(self): expected_err_msg = (".*You can only torch.load from a file that is seekable. " + "Please pre-load the data into a buffer like io.BytesIO and " + "try to load from it instead.") resource = FilelikeMock(data=b"data") delattr(resource, "tell") delattr(resource, "seek") with self.assertRaisesRegex(AttributeError, expected_err_msg): # weights_only=False as this is legacy code that saves the model torch.load(resource, weights_only=False)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class SerializationMixin: import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True class SerializationMixin: import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_new_format_old_format_compat
def test_serialization_new_format_old_format_compat(self, device): self._test_serialization_new_format_old_format_compat(device, False)
def test_serialization_new_format_old_format_compat(self, device, weights_only): x = [torch.ones(200, 200, device=device) for i in range(30)] def test(f_new, f_old): torch.save(x, f_new, _use_new_zipfile_serialization=True) f_new.seek(0) x_new_load = torch.load(f_new, weights_only=weights_only) self.assertEqual(x, x_new_load) torch.save(x, f_old, _use_new_zipfile_serialization=False) f_old.seek(0) x_old_load = torch.load(f_old, weights_only=weights_only) self.assertEqual(x_old_load, x_new_load) with AlwaysWarnTypedStorageRemoval(True), warnings.catch_warnings(record=True) as w: with tempfile.NamedTemporaryFile() as f_new, tempfile.NamedTemporaryFile() as f_old: test(f_new, f_old) self.assertTrue(len(w) == 0, msg=f"Expected no warnings but got {[str(x) for x in w]}")
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") class TestBothSerialization(TestCase): import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") class TestBothSerialization(TestCase): import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
_test_serialization_container
def _test_serialization_container(self, unique_key, filecontext_lambda): tmpmodule_name = 'tmpmodule{}'.format(unique_key) def import_module(name, filename): import importlib.util spec = importlib.util.spec_from_file_location(name, filename) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules[module.__name__] = module return module with filecontext_lambda() as checkpoint: fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network1.py') module = import_module(tmpmodule_name, fname) torch.save(module.Net(), checkpoint) # First check that the checkpoint can be loaded without warning about unsafe loads checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 0) # Replace the module with different source fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network2.py') module = import_module(tmpmodule_name, fname) checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 1) self.assertTrue(w[0].category, 'SourceChangeWarning')
def _test_serialization_container(self, unique_key, filecontext_lambda): tmpmodule_name = f'tmpmodule{unique_key}' def import_module(name, filename): import importlib.util spec = importlib.util.spec_from_file_location(name, filename) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules[module.__name__] = module return module with filecontext_lambda() as checkpoint: fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network1.py') module = import_module(tmpmodule_name, fname) torch.save(module.Net(), checkpoint) # First check that the checkpoint can be loaded without warning about unsafe loads checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: # weights_only=False as this is legacy code that saves the model loaded = torch.load(checkpoint, weights_only=False) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 0) # Replace the module with different source fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network2.py') module = import_module(tmpmodule_name, fname) checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: # weights_only=False as this is legacy code that saves the model loaded = torch.load(checkpoint, weights_only=False) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 1) self.assertEqual(w[0].category, SourceChangeWarning)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True class TestOldSerialization(TestCase, SerializationMixin): import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) class TestOldSerialization(TestCase, SerializationMixin): import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
import_module
def import_module(name, filename): import importlib.util spec = importlib.util.spec_from_file_location(name, filename) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules[module.__name__] = module return module with filecontext_lambda() as checkpoint: fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network1.py') module = import_module(tmpmodule_name, fname) torch.save(module.Net(), checkpoint) # First check that the checkpoint can be loaded without warning about unsafe loads checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 0) # Replace the module with different source fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network2.py') module = import_module(tmpmodule_name, fname) checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 1) self.assertTrue(w[0].category, 'SourceChangeWarning')
def import_module(name, filename): import importlib.util spec = importlib.util.spec_from_file_location(name, filename) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules[module.__name__] = module return module with filecontext_lambda() as checkpoint: fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network1.py') module = import_module(tmpmodule_name, fname) torch.save(module.Net(), checkpoint) # First check that the checkpoint can be loaded without warning about unsafe loads checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: # weights_only=False as this is legacy code that saves the model loaded = torch.load(checkpoint, weights_only=False) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 0) # Replace the module with different source fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing', '_internal', 'data', 'network2.py') module = import_module(tmpmodule_name, fname) checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: # weights_only=False as this is legacy code that saves the model loaded = torch.load(checkpoint, weights_only=False) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEqual(len(w), 1) self.assertEqual(w[0].category, SourceChangeWarning)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_zipfile
def test_serialization_zipfile(self, weights_only): data = self._test_serialization_data() def test(name_or_buffer): torch.save(data, name_or_buffer) if hasattr(name_or_buffer, 'seek'): name_or_buffer.seek(0) result = torch.load(name_or_buffer, weights_only=weights_only) self.assertEqual(result, data) with tempfile.NamedTemporaryFile() as f: test(f) with TemporaryFileName() as fname: test(fname) test(io.BytesIO())
def test_serialization_zipfile(self, weights_only): data = self._test_serialization_data() def test(name_or_buffer): torch.save(data, name_or_buffer) if hasattr(name_or_buffer, 'seek'): name_or_buffer.seek(0) result = torch.load(name_or_buffer, weights_only=weights_only) self.assertEqual(result, data) with tempfile.NamedTemporaryFile() as f: test(f) with TemporaryFileName() as fname: test(fname) if IS_FILESYSTEM_UTF8_ENCODING: with TemporaryDirectoryName(suffix='\u975eASCII\u30d1\u30b9') as dname: with TemporaryFileName(dir=dname) as fname: test(fname) test(io.BytesIO())
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util class TestSerialization(TestCase, SerializationMixin):
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_new_format_old_format_compat
def test_serialization_new_format_old_format_compat(self, device): self._test_serialization_new_format_old_format_compat(device, False)
def test_serialization_new_format_old_format_compat(self, device, weights_only): x = [torch.ones(200, 200, device=device) for i in range(30)] def test(f_new, f_old): torch.save(x, f_new, _use_new_zipfile_serialization=True) f_new.seek(0) x_new_load = torch.load(f_new, weights_only=weights_only) self.assertEqual(x, x_new_load) torch.save(x, f_old, _use_new_zipfile_serialization=False) f_old.seek(0) x_old_load = torch.load(f_old, weights_only=weights_only) self.assertEqual(x_old_load, x_new_load) with AlwaysWarnTypedStorageRemoval(True), warnings.catch_warnings(record=True) as w: with tempfile.NamedTemporaryFile() as f_new, tempfile.NamedTemporaryFile() as f_old: test(f_new, f_old) self.assertTrue(len(w) == 0, msg=f"Expected no warnings but got {[str(x) for x in w]}")
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") class TestBothSerialization(TestCase): import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") class TestBothSerialization(TestCase): import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_weights_only_safe_globals_build
def test_weights_only_safe_globals_build(self): counter = 0 def fake_set_state(obj, *args): nonlocal counter counter += 1 c = ClassThatUsesBuildInstruction(2) with BytesIOContext() as f: torch.save(c, f) f.seek(0) with self.assertRaisesRegex(pickle.UnpicklingError, "GLOBAL __main__.ClassThatUsesBuildInstruction was not an allowed global by default"): torch.load(f, weights_only=True) try: torch.serialization.add_safe_globals([ClassThatUsesBuildInstruction]) # Test dict update path f.seek(0) loaded_c = torch.load(f, weights_only=True) self.assertEqual(loaded_c.num, 2) self.assertEqual(loaded_c.foo, 'bar') # Test setstate path ClassThatUsesBuildInstruction.__setstate__ = fake_set_state f.seek(0) loaded_c = torch.load(f, weights_only=True) self.assertEqual(loaded_c.num, 2) self.assertEqual(counter, 1) self.assertFalse(hasattr(loaded_c, 'foo')) finally: torch.serialization.clear_safe_globals() ClassThatUsesBuildInstruction.__setstate__ = None
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
fake_set_state
def fake_set_state(obj, *args): nonlocal counter counter += 1 c = ClassThatUsesBuildInstruction(2) with BytesIOContext() as f: torch.save(c, f) f.seek(0) with self.assertRaisesRegex(pickle.UnpicklingError, "GLOBAL __main__.ClassThatUsesBuildInstruction was not an allowed global by default"): torch.load(f, weights_only=True) try: torch.serialization.add_safe_globals([ClassThatUsesBuildInstruction]) # Test dict update path f.seek(0) loaded_c = torch.load(f, weights_only=True) self.assertEqual(loaded_c.num, 2) self.assertEqual(loaded_c.foo, 'bar') # Test setstate path ClassThatUsesBuildInstruction.__setstate__ = fake_set_state f.seek(0) loaded_c = torch.load(f, weights_only=True) self.assertEqual(loaded_c.num, 2) self.assertEqual(counter, 1) self.assertFalse(hasattr(loaded_c, 'foo')) finally: torch.serialization.clear_safe_globals() ClassThatUsesBuildInstruction.__setstate__ = None
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_efficient_zerotensor
def test_serialization_efficient_zerotensor(self, weights_only): # We don't support serializing `ZeroTensor` as it is not public # facing yet. # If in future, `ZeroTensor` serialization is supported, this test # should start failing! t = torch._efficientzerotensor((4, 5)) def _save_load_check(t): with BytesIOContext() as f: torch.save(t, f) f.seek(0) # Unsafe load should work self.assertEqual(torch.load(f, weights_only=weights_only), t) # NOTE: `torch.save` fails before we hit the TORCH_CHECK in `getTensoMetadata` # as nullptr storage is disabled. err_msg = (r'python bindings to nullptr storage \(e.g., from torch.Tensor._make_wrapper_subclass\)' ' are currently unsafe and thus disabled') with self.assertRaisesRegex(RuntimeError, err_msg): _save_load_check(t)
def test_serialization_efficient_zerotensor(self, weights_only): # We don't support serializing `ZeroTensor` as it is not public # facing yet. # If in future, `ZeroTensor` serialization is supported, this test # should start failing! t = torch._efficientzerotensor((4, 5)) def _save_load_check(t): with BytesIOContext() as f: torch.save(t, f) f.seek(0) # Unsafe load should work self.assertEqual(torch.load(f, weights_only=weights_only), t) # NOTE: `torch.save` fails before we hit the TORCH_CHECK in `getTensoMetadata` # as nullptr storage is disabled. with self.assertRaisesRegex(RuntimeError, 'ZeroTensor is not serializable'): _save_load_check(t)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util class TestSerialization(TestCase, SerializationMixin):
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_byteorder_mark
def test_serialization_byteorder_mark(self): lstm = torch.nn.LSTM(3, 3) inputs = [torch.randn(1, 3) for _ in range(5)] inputs = torch.cat(inputs).view(len(inputs), 1, -1) hidden = (torch.randn(1, 1, 3), torch.randn(1, 1, 3)) # clean out hidden state databuffer = io.BytesIO() torch.save(lstm.state_dict(), databuffer) databuffer.seek(0) with torch.serialization._open_zipfile_reader(databuffer) as zip_file: byteordername = 'byteorder' self.assertTrue(zip_file.has_record(byteordername)) byteorderdata = zip_file.get_record(byteordername) self.assertTrue(byteorderdata in [b'little', b'big']) self.assertEqual(byteorderdata.decode(), sys.byteorder)
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data
def test_serialization_load_bom_data(self): # 1. Generated on LE system using following commands: # # import torch # # lstm = torch.nn.LSTM(3, 3) # inputs = [torch.randn(1, 3) for _ in range(5)] # # inputs = torch.cat(inputs).view(len(inputs), 1, -1) # hidden = (torch.randn(1, 1, 3), torch.randn(1, 1, 3)) # # torch.save(lstm.state_dict(), "lstm.LE.pt", _disable_byteorder_record=True) # torch.save(lstm.state_dict(), "lstm.LE.BOM.pt") # # print(lstm.state_dict()) # # 2. After that it is resaved on BE system with following commands: # # import torch # # lstm = torch.nn.LSTM(3, 3) # lstm.load_state_dict(torch.load("lstm.LE.BOM.pt"), strict=True) # # torch.save(lstm.state_dict(), "lstm.BE.pt", _disable_byteorder_record=True) # torch.save(lstm.state_dict(), "lstm.BE.BOM.pt") # # print(lstm.state_dict()) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\r\x00\x15\x00lstm/data.pklFB\x11\x00ZZZZZZZZZZZZZZZZZ\x80\x02' b'ccollections\nOrderedDict\nq\x00)Rq\x01(X\x0c\x00\x00\x00weight_ih_l0q\x02ctor' b'ch._utils\n_rebuild_tensor_v2\nq\x03((X\x07\x00\x00\x00storageq\x04ctorch\nFloat' b'Storage\nq\x05X\x01\x00\x00\x000q\x06X\x03\x00\x00\x00cpuq\x07K$tq\x08QK\x00K\x0c' b'K\x03\x86q\tK\x03K\x01\x86q\n\x89h\x00)Rq\x0btq\x0cRq\rX\x0c\x00\x00\x00weight_' b'hh_l0q\x0eh\x03((h\x04h\x05X\x01\x00\x00\x001q\x0fh\x07K$tq\x10QK\x00K\x0cK\x03\x86' b'q\x11K\x03K\x01\x86q\x12\x89h\x00)Rq\x13tq\x14Rq\x15X\n\x00\x00\x00bias_ih_l0' b'q\x16h\x03((h\x04h\x05X\x01\x00\x00\x002q\x17h\x07K\x0ctq\x18QK\x00K\x0c\x85q\x19' b'K\x01\x85q\x1a\x89h\x00)Rq\x1btq\x1cRq\x1dX\n\x00\x00\x00bias_hh_l0q\x1eh\x03((' b'h\x04h\x05X\x01\x00\x00\x003q\x1fh\x07K\x0ctq QK\x00K\x0c\x85q!K\x01\x85q"\x89h\x00' b')Rq#tq$Rq%u}q&X\t\x00\x00\x00_metadataq\'h\x00)Rq(X\x00\x00\x00\x00q)}q*X\x07' b'\x00\x00\x00versionq+K\x01sssb.PK\x07\x08\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x0b\x00\x0f\x00lstm/data/0FB\x0b\x00ZZZZZZZZZZZ\nuJ\xbe' b'X*\xa2\xbe\xc4\xea\x10>\xd4\n\x8d\xbe\x1c\x10\x8a\xbe\xb02\xe4\xbe,\xcb4>\x00' b'\x17!>H\x9c\xe0\xbe\xd2\x15!\xbe6C\xc6>v\xc5\x89>\xae\x14\x81\xbeZ\xc7\x99>\x90P' b'\x01?`\xb9\x9a<\xc0 <=\'\xc7\x9e\xbe\xaa\xf4\x02?\x00\xf3\x0e\xbc\xd8\xb7v\xbe\xa0' b'\xcc\xcd=$/\xaf>\x00\xc4K=0\xb8\xe5\xbe\xb6\xc5U\xbe\xc4i\xf3\xbe\xa45\xdc>\x06' b'g\x8d>N!\xae>2Fr\xbe0hb\xbd\xf0we\xbd g\xa0<\xb6\xbe\x9e\xbe\x14\xd1\xc2>PK\x07' b'\x08j\xd9\xb9M\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x007\x00lst' b'm/data/1FB3\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ|[\xe1>\xa2Yd\xbe' b'\xa5o\t\xbfz\x1c\x05\xbe \xb1\xdb<\xf0\xcd\xfc>\xa2u\xcb>\x8c\x87{\xbe\x9c\x9b' b'^>\xacmG>\xae\x17\x93>\x8e\xc5\xf0\xbet\x1c\xfc>\xcb\x84\x81\xbe\xc8\xa6 >\x88\xee' b'\xaf=\n\xc9\x8d>\xc0\xc5\xee>\xf0E\x91>\xf4^\xa1>\xb8\xbbF>\x97\x97\xfe\xbe\xec' b'\x85\x03?h\x9c\xf3=\xf2\xa8\x97>^\xfa\r?6i\x94\xbe\xbc1w\xbeh\xc4\x8a=\x94\xc8' b'\x9f\xbd\x81\xb5\x89\xbe(K\xb0>\xf0:z\xbd\xb0\xc6\x9b\xbdX\x00\x88=\x05\xc7\x11\xbf' b'PK\x07\x08\x12\xc0\x87\x96\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b' b'\x007\x00lstm/data/2FB3\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'Z\xb0\xc2f=@\xdd1<\x864\xd8\xbe\xa0\t\x13?+g\x8f\xbeu\xb1\r\xbfbl\xc3>\xa8\\\x82' b'\xbe\xa4c\xf3\xbd,\x96\xdf\xbe\xfe\x05\xf1\xbe\xf8\xc9\x96>PK\x07\x08\x92\tK?0\x00' b'\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x00\x17\x00lstm/data/3FB\x13\x00ZZ' b'ZZZZZZZZZZZZZZZZZ\x04\xaai\xbe\xce\xd8\x8a\xbe\xe3O\xdf\xbe$\xc3\xd2\xbe\x06\xb1' b'\x80\xbe^&\x08?\x00\x1a}\xbd\x06\xde\r?\x04\xe7\xac>Z@\xe9\xbe\x14\xc2)>\x9c\xe9' b'/>PK\x07\x08\x1axU\xe80\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x16\x00' b'lstm/versionFB\x12\x00ZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xab\xf1' b'\xfb\x01\xb8\x01\x00\x00\xb8\x01\x00\x00\r\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00lstm/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00j\xd9\xb9M\x90\x00\x00\x00\x90\x00\x00\x00\x0b\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x02\x00\x00lstm/data/0PK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x12\xc0\x87\x96\x90\x00\x00\x00\x90' b'\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x02\x00' b'\x00lstm/data/1PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x92' b'\tK?0\x00\x00\x000\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\xe0\x03\x00\x00lstm/data/2PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x1axU\xe80\x00\x00\x000\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x80\x04\x00\x00lstm/data/3PK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x0c\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00lstm/versionPK\x06' b'\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06' b'\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00Y\x01\x00\x00\x00\x00' b'\x00\x00R\x05\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xab\x06\x00\x00' b'\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x06\x00\x06\x00Y\x01' b'\x00\x00R\x05\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x12\x00\x10\x00lstm.save/data.pklFB\x0c\x00ZZZZZZZZZZZZ\x80' b'\x02ccollections\nOrderedDict\nq\x00)Rq\x01(X\x0c\x00\x00\x00weight_ih_l0q\x02ct' b'orch._utils\n_rebuild_tensor_v2\nq\x03((X\x07\x00\x00\x00storageq\x04ctorch\nFlo' b'atStorage\nq\x05X\x01\x00\x00\x000q\x06X\x03\x00\x00\x00cpuq\x07K$tq\x08QK\x00K\x0c' b'K\x03\x86q\tK\x03K\x01\x86q\n\x89h\x00)Rq\x0btq\x0cRq\rX\x0c\x00\x00\x00weigh' b't_hh_l0q\x0eh\x03((h\x04h\x05X\x01\x00\x00\x001q\x0fh\x07K$tq\x10QK\x00K\x0cK\x03' b'\x86q\x11K\x03K\x01\x86q\x12\x89h\x00)Rq\x13tq\x14Rq\x15X\n\x00\x00\x00bias_ih_' b'l0q\x16h\x03((h\x04h\x05X\x01\x00\x00\x002q\x17h\x07K\x0ctq\x18QK\x00K\x0c\x85q\x19' b'K\x01\x85q\x1a\x89h\x00)Rq\x1btq\x1cRq\x1dX\n\x00\x00\x00bias_hh_l0q\x1eh\x03' b'((h\x04h\x05X\x01\x00\x00\x003q\x1fh\x07K\x0ctq QK\x00K\x0c\x85q!K\x01\x85q"\x89' b'h\x00)Rq#tq$Rq%u}q&X\t\x00\x00\x00_metadataq\'h\x00)Rq(X\x00\x00\x00\x00q)}q*X\x07' b'\x00\x00\x00versionq+K\x01sssb.PK\x07\x08\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x13\x00\x07\x00lstm.save/byteorderFB\x03\x00ZZZlit' b'tlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10' b'\x00<\x00lstm.save/data/0FB8\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZ\nuJ\xbeX*\xa2\xbe\xc4\xea\x10>\xd4\n\x8d\xbe\x1c\x10\x8a\xbe\xb02\xe4\xbe' b',\xcb4>\x00\x17!>H\x9c\xe0\xbe\xd2\x15!\xbe6C\xc6>v\xc5\x89>\xae\x14\x81\xbeZ\xc7' b'\x99>\x90P\x01?`\xb9\x9a<\xc0 <=\'\xc7\x9e\xbe\xaa\xf4\x02?\x00\xf3\x0e\xbc\xd8' b'\xb7v\xbe\xa0\xcc\xcd=$/\xaf>\x00\xc4K=0\xb8\xe5\xbe\xb6\xc5U\xbe\xc4i\xf3\xbe' b'\xa45\xdc>\x06g\x8d>N!\xae>2Fr\xbe0hb\xbd\xf0we\xbd g\xa0<\xb6\xbe\x9e\xbe\x14\xd1' b'\xc2>PK\x07\x08j\xd9\xb9M\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10' b'\x002\x00lstm.save/data/1FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ|' b'[\xe1>\xa2Yd\xbe\xa5o\t\xbfz\x1c\x05\xbe \xb1\xdb<\xf0\xcd\xfc>\xa2u\xcb>\x8c\x87' b'{\xbe\x9c\x9b^>\xacmG>\xae\x17\x93>\x8e\xc5\xf0\xbet\x1c\xfc>\xcb\x84\x81\xbe\xc8' b'\xa6 >\x88\xee\xaf=\n\xc9\x8d>\xc0\xc5\xee>\xf0E\x91>\xf4^\xa1>\xb8\xbbF>\x97\x97' b'\xfe\xbe\xec\x85\x03?h\x9c\xf3=\xf2\xa8\x97>^\xfa\r?6i\x94\xbe\xbc1w\xbeh\xc4' b'\x8a=\x94\xc8\x9f\xbd\x81\xb5\x89\xbe(K\xb0>\xf0:z\xbd\xb0\xc6\x9b\xbdX\x00\x88=' b'\x05\xc7\x11\xbfPK\x07\x08\x12\xc0\x87\x96\x90\x00\x00\x00\x90\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x10\x002\x00lstm.save/data/2FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZ\xb0\xc2f=@\xdd1<\x864\xd8\xbe\xa0\t\x13?+g\x8f\xbeu\xb1\r\xbfbl\xc3' b'>\xa8\\\x82\xbe\xa4c\xf3\xbd,\x96\xdf\xbe\xfe\x05\xf1\xbe\xf8\xc9\x96>PK\x07\x08' b'\x92\tK?0\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x12\x00lstm.save/' b'data/3FB\x0e\x00ZZZZZZZZZZZZZZ\x04\xaai\xbe\xce\xd8\x8a\xbe\xe3O\xdf\xbe$\xc3\xd2' b'\xbe\x06\xb1\x80\xbe^&\x08?\x00\x1a}\xbd\x06\xde\r?\x04\xe7\xac>Z@\xe9\xbe\x14\xc2' b')>\x9c\xe9/>PK\x07\x08\x1axU\xe80\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11' b'\x00\x11\x00lstm.save/versionFB\r\x00ZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02' b'\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01\x00\x00\x12\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00lstm.save/data.pklPK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00' b'\x00\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x02\x00\x00l' b'stm.save/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00j\xd9' b'\xb9M\x90\x00\x00\x00\x90\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00V\x02\x00\x00lstm.save/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x12\xc0\x87\x96\x90\x00\x00\x00\x90\x00\x00\x00\x10\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x03\x00\x00lstm.save/data/1PK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x92\tK?0\x00\x00\x000\x00\x00' b'\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x04\x00\x00lstm.' b'save/data/2PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x1axU\xe80' b'\x00\x00\x000\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x05\x00\x00lstm.save/data/3PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x80\x05\x00\x00lstm.save/versionPK\x06\x06,\x00\x00' b'\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00' b'\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\xb8\x01\x00\x00\x00\x00\x00\x00' b'\xd2\x05\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x8a\x07\x00\x00\x00' b'\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x07\x00\x07\x00\xb8\x01\x00' b'\x00\xd2\x05\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x12\x00\x10\x00lstm.save/data.pklFB\x0c\x00ZZZZZZZZZZZZ\x80' b'\x02ccollections\nOrderedDict\nq\x00)Rq\x01(X\x0c\x00\x00\x00weight_ih_l0q\x02ct' b'orch._utils\n_rebuild_tensor_v2\nq\x03((X\x07\x00\x00\x00storageq\x04ctorch\nFlo' b'atStorage\nq\x05X\x01\x00\x00\x000q\x06X\x03\x00\x00\x00cpuq\x07K$tq\x08QK\x00K\x0c' b'K\x03\x86q\tK\x03K\x01\x86q\n\x89h\x00)Rq\x0btq\x0cRq\rX\x0c\x00\x00\x00weigh' b't_hh_l0q\x0eh\x03((h\x04h\x05X\x01\x00\x00\x001q\x0fh\x07K$tq\x10QK\x00K\x0cK\x03' b'\x86q\x11K\x03K\x01\x86q\x12\x89h\x00)Rq\x13tq\x14Rq\x15X\n\x00\x00\x00bias_ih_' b'l0q\x16h\x03((h\x04h\x05X\x01\x00\x00\x002q\x17h\x07K\x0ctq\x18QK\x00K\x0c\x85q\x19' b'K\x01\x85q\x1a\x89h\x00)Rq\x1btq\x1cRq\x1dX\n\x00\x00\x00bias_hh_l0q\x1eh\x03' b'((h\x04h\x05X\x01\x00\x00\x003q\x1fh\x07K\x0ctq QK\x00K\x0c\x85q!K\x01\x85q"\x89' b'h\x00)Rq#tq$Rq%u}q&X\t\x00\x00\x00_metadataq\'h\x00)Rq(X\x00\x00\x00\x00q)}q*X\x07' b'\x00\x00\x00versionq+K\x01sssb.PK\x07\x08\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x10\x00\n\x00lstm.save/data/0FB\x06\x00ZZZZZZ\xbeJ' b'u\n\xbe\xa2*X>\x10\xea\xc4\xbe\x8d\n\xd4\xbe\x8a\x10\x1c\xbe\xe42\xb0>4\xcb,>!\x17' b'\x00\xbe\xe0\x9cH\xbe!\x15\xd2>\xc6C6>\x89\xc5v\xbe\x81\x14\xae>\x99\xc7Z?\x01' b'P\x90<\x9a\xb9`=< \xc0\xbe\x9e\xc7\'?\x02\xf4\xaa\xbc\x0e\xf3\x00\xbev\xb7\xd8=\xcd' b'\xcc\xa0>\xaf/$=K\xc4\x00\xbe\xe5\xb80\xbeU\xc5\xb6\xbe\xf3i\xc4>\xdc5\xa4>\x8d' b'g\x06>\xae!N\xberF2\xbdbh0\xbdew\xf0<\xa0g \xbe\x9e\xbe\xb6>\xc2\xd1\x14PK\x07' b'\x08\xc2yG\xba\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x002\x00lst' b'm.save/data/1FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ>\xe1[|\xbedY\xa2' b'\xbf\to\xa5\xbe\x05\x1cz<\xdb\xb1 >\xfc\xcd\xf0>\xcbu\xa2\xbe{\x87\x8c>^\x9b\x9c' b'>Gm\xac>\x93\x17\xae\xbe\xf0\xc5\x8e>\xfc\x1ct\xbe\x81\x84\xcb> \xa6\xc8=\xaf' b'\xee\x88>\x8d\xc9\n>\xee\xc5\xc0>\x91E\xf0>\xa1^\xf4>F\xbb\xb8\xbe\xfe\x97\x97?\x03' b'\x85\xec=\xf3\x9ch>\x97\xa8\xf2?\r\xfa^\xbe\x94i6\xbew1\xbc=\x8a\xc4h\xbd\x9f' b'\xc8\x94\xbe\x89\xb5\x81>\xb0K(\xbdz:\xf0\xbd\x9b\xc6\xb0=\x88\x00X\xbf\x11\xc7\x05' b'PK\x07\x08\xd0\xbftD\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00' b'2\x00lstm.save/data/2FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ=f\xc2' b'\xb0<1\xdd@\xbe\xd84\x86?\x13\t\xa0\xbe\x8fg+\xbf\r\xb1u>\xc3lb\xbe\x82\\\xa8\xbd' b'\xf3c\xa4\xbe\xdf\x96,\xbe\xf1\x05\xfe>\x96\xc9\xf8PK\x07\x08"\xc5\xc5O0\x00\x00' b'\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x12\x00lstm.save/data/3FB\x0e\x00Z' b'ZZZZZZZZZZZZZ\xbei\xaa\x04\xbe\x8a\xd8\xce\xbe\xdfO\xe3\xbe\xd2\xc3$\xbe\x80\xb1' b'\x06?\x08&^\xbd}\x1a\x00?\r\xde\x06>\xac\xe7\x04\xbe\xe9@Z>)\xc2\x14>/\xe9\x9cPK' b'\x07\x08\xfb\xfd/\x920\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x11\x00' b'lstm.save/versionFB\r\x00ZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02' b'\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xab\xf1' b'\xfb\x01\xb8\x01\x00\x00\xb8\x01\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00lstm.save/data.pklPK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\xc2yG\xba\x90\x00\x00\x00\x90\x00\x00\x00\x10\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x02\x00\x00lstm.save/data/0PK' b'\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd0\xbftD\x90\x00\x00\x00' b'\x90\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x02' b'\x00\x00lstm.save/data/1PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00"\xc5\xc5O0\x00\x00\x000\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\xe0\x03\x00\x00lstm.save/data/2PK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xfb\xfd/\x920\x00\x00\x000\x00\x00\x00\x10\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x04\x00\x00lstm.save/data/3PK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02' b'\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00' b'\x00lstm.save/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00' b'\x00\x00w\x01\x00\x00\x00\x00\x00\x00R\x05\x00\x00\x00\x00\x00\x00PK\x06\x07\x00' b'\x00\x00\x00\xc9\x06\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00' b'\x00\x00\x06\x00\x06\x00w\x01\x00\x00R\x05\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x12\x00\x10\x00lstm.save/data.pklFB\x0c\x00ZZZZZZZZZZZZ\x80' b'\x02ccollections\nOrderedDict\nq\x00)Rq\x01(X\x0c\x00\x00\x00weight_ih_l0q\x02ct' b'orch._utils\n_rebuild_tensor_v2\nq\x03((X\x07\x00\x00\x00storageq\x04ctorch\nFlo' b'atStorage\nq\x05X\x01\x00\x00\x000q\x06X\x03\x00\x00\x00cpuq\x07K$tq\x08QK\x00K\x0c' b'K\x03\x86q\tK\x03K\x01\x86q\n\x89h\x00)Rq\x0btq\x0cRq\rX\x0c\x00\x00\x00weigh' b't_hh_l0q\x0eh\x03((h\x04h\x05X\x01\x00\x00\x001q\x0fh\x07K$tq\x10QK\x00K\x0cK\x03' b'\x86q\x11K\x03K\x01\x86q\x12\x89h\x00)Rq\x13tq\x14Rq\x15X\n\x00\x00\x00bias_ih_' b'l0q\x16h\x03((h\x04h\x05X\x01\x00\x00\x002q\x17h\x07K\x0ctq\x18QK\x00K\x0c\x85q\x19' b'K\x01\x85q\x1a\x89h\x00)Rq\x1btq\x1cRq\x1dX\n\x00\x00\x00bias_hh_l0q\x1eh\x03' b'((h\x04h\x05X\x01\x00\x00\x003q\x1fh\x07K\x0ctq QK\x00K\x0c\x85q!K\x01\x85q"\x89' b'h\x00)Rq#tq$Rq%u}q&X\t\x00\x00\x00_metadataq\'h\x00)Rq(X\x00\x00\x00\x00q)}q*X\x07' b'\x00\x00\x00versionq+K\x01sssb.PK\x07\x08\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x13\x00\x07\x00lstm.save/byteorderFB\x03\x00ZZZbig' b'PK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00' b'?\x00lstm.save/data/0FB;\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZ\xbeJu\n\xbe\xa2*X>\x10\xea\xc4\xbe\x8d\n\xd4\xbe\x8a\x10\x1c\xbe\xe42\xb0' b'>4\xcb,>!\x17\x00\xbe\xe0\x9cH\xbe!\x15\xd2>\xc6C6>\x89\xc5v\xbe\x81\x14\xae>\x99' b'\xc7Z?\x01P\x90<\x9a\xb9`=< \xc0\xbe\x9e\xc7\'?\x02\xf4\xaa\xbc\x0e\xf3\x00\xbe' b'v\xb7\xd8=\xcd\xcc\xa0>\xaf/$=K\xc4\x00\xbe\xe5\xb80\xbeU\xc5\xb6\xbe\xf3i\xc4' b'>\xdc5\xa4>\x8dg\x06>\xae!N\xberF2\xbdbh0\xbdew\xf0<\xa0g \xbe\x9e\xbe\xb6>\xc2\xd1' b'\x14PK\x07\x08\xc2yG\xba\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10' b'\x002\x00lstm.save/data/1FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ>' b'\xe1[|\xbedY\xa2\xbf\to\xa5\xbe\x05\x1cz<\xdb\xb1 >\xfc\xcd\xf0>\xcbu\xa2\xbe{\x87' b'\x8c>^\x9b\x9c>Gm\xac>\x93\x17\xae\xbe\xf0\xc5\x8e>\xfc\x1ct\xbe\x81\x84\xcb> ' b'\xa6\xc8=\xaf\xee\x88>\x8d\xc9\n>\xee\xc5\xc0>\x91E\xf0>\xa1^\xf4>F\xbb\xb8\xbe\xfe' b'\x97\x97?\x03\x85\xec=\xf3\x9ch>\x97\xa8\xf2?\r\xfa^\xbe\x94i6\xbew1\xbc=\x8a' b'\xc4h\xbd\x9f\xc8\x94\xbe\x89\xb5\x81>\xb0K(\xbdz:\xf0\xbd\x9b\xc6\xb0=\x88\x00X' b'\xbf\x11\xc7\x05PK\x07\x08\xd0\xbftD\x90\x00\x00\x00\x90\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x10\x002\x00lstm.save/data/2FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZ=f\xc2\xb0<1\xdd@\xbe\xd84\x86?\x13\t\xa0\xbe\x8fg+\xbf\r\xb1u>\xc3lb\xbe' b'\x82\\\xa8\xbd\xf3c\xa4\xbe\xdf\x96,\xbe\xf1\x05\xfe>\x96\xc9\xf8PK\x07\x08"\xc5' b'\xc5O0\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x12\x00lstm.save/data' b'/3FB\x0e\x00ZZZZZZZZZZZZZZ\xbei\xaa\x04\xbe\x8a\xd8\xce\xbe\xdfO\xe3\xbe\xd2\xc3' b'$\xbe\x80\xb1\x06?\x08&^\xbd}\x1a\x00?\r\xde\x06>\xac\xe7\x04\xbe\xe9@Z>)\xc2\x14' b'>/\xe9\x9cPK\x07\x08\xfb\xfd/\x920\x00\x00\x000\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11' b'\x00\x11\x00lstm.save/versionFB\r\x00ZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xab\xf1\xfb\x01\xb8\x01\x00\x00\xb8\x01\x00\x00\x12\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00lstm.save/data.pklPK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00' b'\x00\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x02\x00\x00ls' b'tm.save/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xc2y' b'G\xba\x90\x00\x00\x00\x90\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00S\x02\x00\x00lstm.save/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\xd0\xbftD\x90\x00\x00\x00\x90\x00\x00\x00\x10\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x03\x00\x00lstm.save/data/1PK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00"\xc5\xc5O0\x00\x00\x000\x00\x00\x00' b'\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x04\x00\x00lstm.save/' b'data/2PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xfb\xfd/\x920\x00' b'\x00\x000\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x05\x00\x00lstm.save/data/3PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x80\x05\x00\x00lstm.save/versionPK\x06\x06,\x00\x00\x00' b'\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00' b'\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\xb8\x01\x00\x00\x00\x00\x00\x00' b'\xd2\x05\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x8a\x07\x00\x00\x00\x00' b'\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x07\x00\x07\x00\xb8\x01\x00' b'\x00\xd2\x05\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) lstm_le_no_bom = torch.nn.LSTM(3, 3) lstm_le_bom = torch.nn.LSTM(3, 3) lstm_be_no_bom = torch.nn.LSTM(3, 3) lstm_be_bom = torch.nn.LSTM(3, 3) lstm_le_no_bom_little = torch.nn.LSTM(3, 3) lstm_be_no_bom_little = torch.nn.LSTM(3, 3) lstm_le_no_bom_big = torch.nn.LSTM(3, 3) lstm_be_no_bom_big = torch.nn.LSTM(3, 3) try: set_default_load_endianness(LoadEndianness.NATIVE) lstm_le_no_bom.load_state_dict(torch.load(buf_le_no_bom), strict=True) lstm_be_no_bom.load_state_dict(torch.load(buf_be_no_bom), strict=True) finally: set_default_load_endianness(current_load_endian) lstm_le_bom.load_state_dict(torch.load(buf_le_bom), strict=True) lstm_be_bom.load_state_dict(torch.load(buf_be_bom), strict=True) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) lstm_le_no_bom_little.load_state_dict(torch.load(buf_le_no_bom), strict=True) lstm_be_no_bom_little.load_state_dict(torch.load(buf_be_no_bom), strict=True) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) lstm_le_no_bom_big.load_state_dict(torch.load(buf_le_no_bom), strict=True) lstm_be_no_bom_big.load_state_dict(torch.load(buf_be_no_bom), strict=True) finally: set_default_load_endianness(current_load_endian) self.assertEqual(lstm_le_bom.state_dict(), lstm_be_bom.state_dict()) self.assertNotEqual(lstm_le_no_bom.state_dict(), lstm_be_no_bom.state_dict()) self.assertEqual(lstm_le_no_bom_little.state_dict(), lstm_le_bom.state_dict()) self.assertNotEqual(lstm_be_no_bom_little.state_dict(), lstm_be_bom.state_dict()) self.assertNotEqual(lstm_le_no_bom_big.state_dict(), lstm_le_bom.state_dict()) self.assertEqual(lstm_be_no_bom_big.state_dict(), lstm_be_bom.state_dict()) if (sys.byteorder == 'little'): self.assertEqual(lstm_le_no_bom.state_dict(), lstm_le_bom.state_dict()) self.assertEqual(lstm_le_no_bom.state_dict(), lstm_be_bom.state_dict()) self.assertNotEqual(lstm_be_no_bom.state_dict(), lstm_le_bom.state_dict()) self.assertNotEqual(lstm_be_no_bom.state_dict(), lstm_be_bom.state_dict()) else: self.assertNotEqual(lstm_le_no_bom.state_dict(), lstm_le_bom.state_dict()) self.assertNotEqual(lstm_le_no_bom.state_dict(), lstm_be_bom.state_dict()) self.assertEqual(lstm_be_no_bom.state_dict(), lstm_le_bom.state_dict()) self.assertEqual(lstm_be_no_bom.state_dict(), lstm_be_bom.state_dict())
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
_test_save_load_attr
def _test_save_load_attr(t): t.foo = 'foo' t.pi = 3.14 with BytesIOContext() as f: torch.save(t, f) f.seek(0) loaded_t = torch.load(f) self.assertEqual(t, loaded_t) self.assertEqual(t.foo, loaded_t.foo) self.assertEqual(t.pi, loaded_t.pi) t = torch.zeros(3, 3) _test_save_load_attr(t) _test_save_load_attr(torch.nn.Parameter(t))
def _test_save_load_attr(t): t.foo = 'foo' t.pi = 3.14 with BytesIOContext() as f: torch.save(t, f) f.seek(0) loaded_t = torch.load(f, weights_only=weights_only) self.assertEqual(t, loaded_t) self.assertEqual(t.foo, loaded_t.foo) self.assertEqual(t.pi, loaded_t.pi) t = torch.zeros(3, 3) _test_save_load_attr(t) _test_save_load_attr(torch.nn.Parameter(t))
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_weights_only_safe_globals_newobj
torch.load(f, weights_only=True)
def test_weights_only_safe_globals_newobj(self): # This will use NEWOBJ p = Point(x=1, y=2) with BytesIOContext() as f: torch.save(p, f) f.seek(0) with self.assertRaisesRegex(pickle.UnpicklingError, "GLOBAL __main__.Point was not an allowed global by default"): torch.load(f, weights_only=True) f.seek(0) try: torch.serialization.add_safe_globals([Point]) loaded_p = torch.load(f, weights_only=True) self.assertEqual(loaded_p, p) finally: torch.serialization.clear_safe_globals()
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_double
def test_serialization_load_bom_data_double(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randn(2,2, dtype=torch.double) # # torch.save(x, "tensor.double.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.double.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.double.LE.BOM.pt') # # torch.save(x, 'tensor.double.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.double.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x19\x00\t\x00tensor.double.LE/data.pklFB\x05\x00ZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'DoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x17\x00 \x00tensor.double.LE/data/0FB\x1c\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'\x97v\xa4\xff|^\xc9?\xce\xbc\x8cP\x8d\xb0\xe9\xbf\xdc\x0e\xef[\xb7\xdb\xd3\xbf4\xb1' b'\x08Q\xf9\x00\xde?PK\x07\x08\xae\x92t\x0f \x00\x00\x00 \x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x18\x00\x1a\x00tensor.double.LE/versionFB\x16\x00ZZZZZZZZZZZZZZZZZZZZZZ' b'3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00\x19\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.double' b'.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xae\x92t\x0f' b' \x00\x00\x00 \x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\xeb\x00\x00\x00tensor.double.LE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x18\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00p\x01\x00\x00tensor.double.LE/versionPK\x06' b'\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xd2\x00\x00\x00' b'\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa4\x02' b'\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03' b'\x00\xd2\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1d\x00\x05\x00tensor.double.LE.BOM/data.pklFB\x01\x00Z\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1e\x00\x19\x00tensor.double.LE.BOM/byteorderFB\x15\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1b\x001\x00tensor.double.LE.BOM/data/0FB-\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZ\x97v\xa4\xff|^\xc9?\xce\xbc\x8cP\x8d\xb0\xe9\xbf\xdc\x0e\xef[\xb7' b'\xdb\xd3\xbf4\xb1\x08Q\xf9\x00\xde?PK\x07\x08\xae\x92t\x0f \x00\x00\x00 \x00\x00' b'\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x1c\x00\x16\x00tensor.double.LE.BOM/versionFB\x12\x00ZZ' b'ZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00S\xd3\xba&\x9b\x00\x00\x00\x9b\x00' b'\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'tensor.double.LE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\xeb\x00\x00\x00tensor.double.LE.BOM/byteorderPK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xae\x92t\x0f ' b'\x00\x00\x00 \x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'V\x01\x00\x00tensor.double.LE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1c\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0\x01\x00\x00tensor.double.LE.BOM/versio' b'nPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00*\x01\x00\x00' b'\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00|\x03\x00' b'\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00' b'*\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x19\x00\t\x00tensor.double.BE/data.pklFB\x05\x00ZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'DoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x17\x00 \x00tensor.double.BE/data/0FB\x1c\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'?\xc9^|\xff\xa4v\x97\xbf\xe9\xb0\x8dP\x8c\xbc\xce\xbf\xd3\xdb\xb7[\xef\x0e\xdc?\xde' b'\x00\xf9Q\x08\xb14PK\x07\x083@\x82/ \x00\x00\x00 \x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x18\x00\x1a\x00tensor.double.BE/versionFB\x16\x00ZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07' b'\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00\x19\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.double.BE/da' b'ta.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x003@\x82/ ' b'\x00\x00\x00 \x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\xeb\x00\x00\x00tensor.double.BE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x18\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00p\x01\x00\x00tensor.double.BE/versionPK\x06\x06' b',\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03' b'\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xd2\x00\x00\x00\x00' b'\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa4\x02\x00' b'\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00' b'\xd2\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1d\x00\x05\x00tensor.double.BE.BOM/data.pklFB\x01\x00Z\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1e\x00\x19\x00tensor.double.BE.BOM/byteorderFB\x15\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x1b\x004\x00tensor.double.BE.BOM/data/0FB0\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZ?\xc9^|\xff\xa4v\x97\xbf\xe9\xb0\x8dP\x8c\xbc\xce\xbf\xd3\xdb\xb7' b'[\xef\x0e\xdc?\xde\x00\xf9Q\x08\xb14PK\x07\x083@\x82/ \x00\x00\x00 \x00\x00\x00' b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x1c\x00\x16\x00tensor.double.BE.BOM/versionFB\x12\x00ZZZZZZZZ' b'ZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00S\xd3\xba&\x9b\x00\x00\x00\x9b\x00\x00' b'\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00ten' b'sor.double.BE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\xeb\x00\x00\x00tensor.double.BE.BOM/byteorderPK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x003@\x82/ \x00\x00\x00 \x00\x00\x00' b'\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x01\x00\x00tensor.do' b'uble.BE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1' b'\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\xf0\x01\x00\x00tensor.double.BE.BOM/versionPK\x06\x06,\x00\x00\x00' b'\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00' b'\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00*\x01\x00\x00\x00\x00\x00\x00R\x02' b'\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00|\x03\x00\x00\x00\x00\x00\x00\x01' b'\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00*\x01\x00\x00R\x02\x00\x00' b'\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_float
def test_serialization_load_bom_data_float(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randn(2,2, dtype=torch.float) # # torch.save(x, "tensor.float.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.float.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.float.LE.BOM.pt') # # torch.save(x, 'tensor.float.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.float.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.float.LE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'FloatStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05Q' b'K\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16' b'\x00"\x00tensor.float.LE/data/0FB\x1e\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\x01h\x9e' b'?\r\xb7A?\x1a\x1e\x07\xbf\xd4|\x02?PK\x07\x08\x8fq]\x8c\x10\x00\x00\x00\x10\x00' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x17\x00+\x00tensor.float.LE/versionFB\'\x00ZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00%Y"N\x9a\x00\x00' b'\x00\x9a\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00tensor.float.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\x8fq]\x8c\x10\x00\x00\x00\x10\x00\x00\x00\x16\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.float.LE/data/0PK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x01\x00\x00t' b'ensor.float.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00' b'\x00\x00\xcf\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06' b'\x07\x00\x00\x00\x00\xa1\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00' b'\x00\x00\x00\x03\x00\x03\x00\xcf\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.float.LE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nFloatStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x1d\x00\x1b\x00tensor.float.LE.BOM/byteorderFB\x17\x00ZZZZZZZZZZZZZZZZZZZZZZZl' b'ittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a' b'\x002\x00tensor.float.LE.BOM/data/0FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZ\x01h\x9e?\r\xb7A?\x1a\x1e\x07\xbf\xd4|\x02?PK\x07\x08\x8fq]\x8c\x10\x00' b'\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\'\x00tensor.float.LE.BOM/ve' b'rsionFB#\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00tensor.float.LE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x1d' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.fl' b'oat.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x8f' b'q]\x8c\x10\x00\x00\x00\x10\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00V\x01\x00\x00tensor.float.LE.BOM/data/0PK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1b\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00tensor.float.' b'LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00' b'&\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00' b'\x00x\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04' b'\x00\x04\x00&\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.float.BE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'FloatStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05Q' b'K\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16' b'\x00"\x00tensor.float.BE/data/0FB\x1e\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ?\x9eh' b'\x01?A\xb7\r\xbf\x07\x1e\x1a?\x02|\xd4PK\x07\x089D\xd6\x8a\x10\x00\x00\x00\x10\x00' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x17\x00+\x00tensor.float.BE/versionFB\'\x00ZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00%Y"N\x9a\x00\x00' b'\x00\x9a\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00tensor.float.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x009D\xd6\x8a\x10\x00\x00\x00\x10\x00\x00\x00\x16\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.float.BE/data/0PK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x01\x00\x00t' b'ensor.float.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00' b'\x00\x00\xcf\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06' b'\x07\x00\x00\x00\x00\xa1\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00' b'\x00\x00\x00\x03\x00\x03\x00\xcf\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.float.BE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nFloatStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x1d\x00\x1b\x00tensor.float.BE.BOM/byteorderFB\x17\x00ZZZZZZZZZZZZZZZZZZZZZZZb' b'igPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00' b'5\x00tensor.float.BE.BOM/data/0FB1\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZ?\x9eh\x01?A\xb7\r\xbf\x07\x1e\x1a?\x02|\xd4PK\x07\x089D\xd6\x8a\x10\x00' b'\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\'\x00tensor.float.BE.BOM/ve' b'rsionFB#\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'%Y"N\x9a\x00\x00\x00\x9a\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00tensor.float.BE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00\x1d' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.fl' b'oat.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x009D' b'\xd6\x8a\x10\x00\x00\x00\x10\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00S\x01\x00\x00tensor.float.BE.BOM/data/0PK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1b\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00tensor.float.' b'BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00' b'&\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00' b'\x00x\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04' b'\x00\x04\x00&\x01\x00\x00R\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_half
def test_serialization_load_bom_data_half(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randn(2,2, dtype=torch.half) # # torch.save(x, "tensor.half.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.half.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.half.LE.BOM.pt') # # torch.save(x, 'tensor.half.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.half.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.half.LE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nHalfStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08E\xabQ\x8c\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x15\x00$\x00tensor.half.LE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ0' b'\xbbf;\xcd\xbd\xab9PK\x07\x08,D\x96\x91\x08\x00\x00\x00\x08\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x16\x004\x00tensor.half.LE/versionFB0\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00E\xabQ\x8c\x99\x00\x00\x00\x99' b'\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00tensor.half.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00,D\x96\x91\x08\x00\x00\x00\x08\x00\x00\x00\x15\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.half.LE/data/0PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00' b'\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00X\x01\x00\x00tensor.ha' b'lf.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00' b'\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00' b'\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00' b'\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.half.LE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nHalfStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08E\xabQ\x8c\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1c\x00\x1d\x00tensor.half.LE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x003\x00tensor.half.LE.BOM/data/0FB/\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZ0\xbbf;\xcd\xbd\xab9PK\x07\x08,D\x96\x91\x08\x00\x00\x00\x08\x00' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x1a\x000\x00tensor.half.LE.BOM/versionFB,\x00ZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00E\xabQ\x8c\x99' b'\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00tensor.half.LE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x1c\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.half.LE.' b'BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00,D\x96\x91' b'\x08\x00\x00\x00\x08\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00V\x01\x00\x00tensor.half.LE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1a\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd8\x01\x00\x00tensor.half.LE.BOM/ve' b'rsionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00"\x01\x00' b'\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00t\x03' b'\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04' b'\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.half.BE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nHalfStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08E\xabQ\x8c\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x15\x00$\x00tensor.half.BE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\xbb' b'0;f\xbd\xcd9\xabPK\x07\x08\xc7\xa1\xfd\x07\x08\x00\x00\x00\x08\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x16\x004\x00tensor.half.BE/versionFB0\x00ZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00E\xabQ\x8c\x99\x00\x00' b'\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00tensor.half.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\xc7\xa1\xfd\x07\x08\x00\x00\x00\x08\x00\x00\x00\x15\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.half.BE/data/0PK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02' b'\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00X\x01\x00\x00' b'tensor.half.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00' b'\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06' b'\x07\x00\x00\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06' b'\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.half.BE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nHalfStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05' b'QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08E\xabQ\x8c\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1c\x00\x1d\x00tensor.half.BE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x19\x006\x00tensor.half.BE.BOM/data/0FB2\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZ\xbb0;f\xbd\xcd9\xabPK\x07\x08\xc7\xa1\xfd\x07\x08\x00\x00\x00\x08' b'\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x000\x00tensor.half.BE.BOM/versionFB,\x00ZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00E\xab' b'Q\x8c\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00tensor.half.BE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00\x1c' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.ha' b'lf.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xc7' b'\xa1\xfd\x07\x08\x00\x00\x00\x08\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00S\x01\x00\x00tensor.half.BE.BOM/data/0PK\x01\x02\x00\x00\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1a' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd8\x01\x00\x00tensor.ha' b'lf.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00' b'\x00"\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00' b'\x00\x00t\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00' b'\x04\x00\x04\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_long
def test_serialization_load_bom_data_long(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(-4294967295, 4294967295, [4, 4], dtype=torch.long) # # torch.save(x, "tensor.long.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.long.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.long.LE.BOM.pt') # # torch.save(x, 'tensor.long.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.long.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.long.LE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nLongStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x15\x00$\x00tensor.long.LE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZl\xfa\xda\xbe\x00\x00\x00\x00GQ^\xa9\xff\xff\xff\xff\xc5\xa4\x19\xa4\x00\x00\x00' b'\x00\xda\x9f\x04\xdd\xff\xff\xff\xff\x9b\xfc\x98\r\x00\x00\x00\x00\x8e\xb3\xb6' b'=\x00\x00\x00\x00n}\xd2\x8f\xff\xff\xff\xff\xe2\xfe\x14u\xff\xff\xff\xff\xf1\x01' b'T\x07\xff\xff\xff\xff\x9b\xb3"\x7f\xff\xff\xff\xff\xb2p\x07\xfc\xff\xff\xff\xff\x1f' b'1\xa6M\x00\x00\x00\x00a\xaa|u\xff\xff\xff\xff2Y\x12;\x00\x00\x00\x00\'J\xb7\xcb' b'\x00\x00\x00\x00m\xb2\x1c\xe1\xff\xff\xff\xffPK\x07\x08\xd5\x00\xa1r\x80\x00\x00' b'\x00\x80\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00<\x00tensor.long.LE/versionFB8\x00' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9eg' b'U\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.long.LE/data.pklPK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd5\x00\xa1r\x80\x00\x00\x00\x80' b'\x00\x00\x00\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00' b'\x00tensor.long.LE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\xd0\x01\x00\x00tensor.long.LE/versionPK\x06\x06,\x00\x00' b'\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00' b'\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00' b'R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x1e\x03\x00\x00\x00\x00' b'\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00' b'R\x02\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.long.LE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nLongStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1c\x00\x1d\x00tensor.long.LE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x003\x00tensor.long.LE.BOM/data/0FB/\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZl\xfa\xda\xbe\x00\x00\x00\x00GQ^\xa9\xff\xff\xff\xff\xc5\xa4\x19' b'\xa4\x00\x00\x00\x00\xda\x9f\x04\xdd\xff\xff\xff\xff\x9b\xfc\x98\r\x00\x00\x00' b'\x00\x8e\xb3\xb6=\x00\x00\x00\x00n}\xd2\x8f\xff\xff\xff\xff\xe2\xfe\x14u\xff\xff' b'\xff\xff\xf1\x01T\x07\xff\xff\xff\xff\x9b\xb3"\x7f\xff\xff\xff\xff\xb2p\x07\xfc' b'\xff\xff\xff\xff\x1f1\xa6M\x00\x00\x00\x00a\xaa|u\xff\xff\xff\xff2Y\x12;\x00\x00' b'\x00\x00\'J\xb7\xcb\x00\x00\x00\x00m\xb2\x1c\xe1\xff\xff\xff\xffPK\x07\x08\xd5\x00' b'\xa1r\x80\x00\x00\x00\x80\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x008\x00tensor.lon' b'g.LE.BOM/versionFB4\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK' b'\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.long.LE.' b'BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19' b'\x06\x00\x00\x00\x06\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\xe9\x00\x00\x00tensor.long.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\xd5\x00\xa1r\x80\x00\x00\x00\x80\x00\x00\x00\x19' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00V\x01\x00\x00tensor.long.L' b'E.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU' b'\x02\x00\x00\x00\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00P\x02\x00\x00tensor.long.LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00' b'\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00' b'\x04\x00\x00\x00\x00\x00\x00\x00"\x01\x00\x00\x00\x00\x00\x00\xd2\x02\x00\x00' b'\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xf4\x03\x00\x00\x00\x00\x00\x00\x01\x00' b'\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00"\x01\x00\x00\xd2\x02\x00\x00' b'\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.long.BE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nLongStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x15\x00$\x00tensor.long.BE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZ\x00\x00\x00\x00\xbe\xda\xfal\xff\xff\xff\xff\xa9^QG\x00\x00\x00\x00\xa4\x19\xa4' b'\xc5\xff\xff\xff\xff\xdd\x04\x9f\xda\x00\x00\x00\x00\r\x98\xfc\x9b\x00\x00\x00' b'\x00=\xb6\xb3\x8e\xff\xff\xff\xff\x8f\xd2}n\xff\xff\xff\xffu\x14\xfe\xe2\xff\xff' b'\xff\xff\x07T\x01\xf1\xff\xff\xff\xff\x7f"\xb3\x9b\xff\xff\xff\xff\xfc\x07p\xb2\x00' b'\x00\x00\x00M\xa61\x1f\xff\xff\xff\xffu|\xaaa\x00\x00\x00\x00;\x12Y2\x00\x00\x00' b'\x00\xcb\xb7J\'\xff\xff\xff\xff\xe1\x1c\xb2mPK\x07\x08\xb9\x1b\x81j\x80\x00\x00' b'\x00\x80\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00<\x00tensor.long.BE/versionFB8\x00' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9eg' b'U\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.long.BE/data.pklPK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xb9\x1b\x81j\x80\x00\x00\x00\x80' b'\x00\x00\x00\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00' b'\x00tensor.long.BE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\xd0\x01\x00\x00tensor.long.BE/versionPK\x06\x06,\x00\x00' b'\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00' b'\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00' b'R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x1e\x03\x00\x00\x00\x00' b'\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00' b'R\x02\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.long.BE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nLongStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1c\x00\x1d\x00tensor.long.BE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x006\x00tensor.long.BE.BOM/data/0FB2\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\x00\x00\x00\x00\xbe\xda\xfal\xff\xff\xff\xff\xa9^QG\x00\x00\x00' b'\x00\xa4\x19\xa4\xc5\xff\xff\xff\xff\xdd\x04\x9f\xda\x00\x00\x00\x00\r\x98\xfc' b'\x9b\x00\x00\x00\x00=\xb6\xb3\x8e\xff\xff\xff\xff\x8f\xd2}n\xff\xff\xff\xffu\x14' b'\xfe\xe2\xff\xff\xff\xff\x07T\x01\xf1\xff\xff\xff\xff\x7f"\xb3\x9b\xff\xff\xff\xff' b'\xfc\x07p\xb2\x00\x00\x00\x00M\xa61\x1f\xff\xff\xff\xffu|\xaaa\x00\x00\x00\x00' b';\x12Y2\x00\x00\x00\x00\xcb\xb7J\'\xff\xff\xff\xff\xe1\x1c\xb2mPK\x07\x08\xb9\x1b' b'\x81j\x80\x00\x00\x00\x80\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x008\x00tensor.lon' b'g.BE.BOM/versionFB4\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK' b'\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00 \xbd\xd7\xb0\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.long.BE.' b'BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3' b'\x03\x00\x00\x00\x03\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\xe9\x00\x00\x00tensor.long.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\xb9\x1b\x81j\x80\x00\x00\x00\x80\x00\x00\x00\x19' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x01\x00\x00tensor.long.B' b'E.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU' b'\x02\x00\x00\x00\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00P\x02\x00\x00tensor.long.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00' b'\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00' b'\x04\x00\x00\x00\x00\x00\x00\x00"\x01\x00\x00\x00\x00\x00\x00\xd2\x02\x00\x00' b'\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xf4\x03\x00\x00\x00\x00\x00\x00\x01\x00' b'\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00"\x01\x00\x00\xd2\x02\x00\x00' b'\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_int
def test_serialization_load_bom_data_int(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(-2147483648, 2147483648, [4, 4], dtype=torch.int) # # torch.save(x, "tensor.int.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.int.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.int.LE.BOM.pt') # # torch.save(x, 'tensor.int.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.int.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x16\x00\x0c\x00tensor.int.LE/data.pklFB\x08\x00ZZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nIntStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q' b'K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08\xdd\xa0\'\xa8\x98\x00\x00\x00\x98\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x14\x00&\x00tensor.int.LE/data/0FB"\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZ\xf6\x19\x95i\xfaL\x1f\t%\xa3\r\xb8\xe5\xcfN\xe2\xa2\xc7\x8f\xb4\xfd\xf5(2\xe3' b'YX\xf5\x1dhO}\xeb\xba\xcf\x02\x8b\x84\xdd>L\xbc(\xc7\x92Q\x98\xa6\x1aQ^w\xea\x93' b'2>\xad\x87D\xdd\x9el\xb6\x15PK\x07\x08W\x1c\xcd\x19@\x00\x00\x00@\x00\x00\x00PK' b'\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x15\x00=\x00tensor.int.LE/versionFB9\x00ZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xdd\xa0\'\xa8' b'\x98\x00\x00\x00\x98\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00tensor.int.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00W\x1c\xcd\x19@\x00\x00\x00@\x00\x00\x00\x14\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x00\x00\x00tensor.int.LE/data/0PK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x01' b'\x00\x00tensor.int.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00' b'\x00\x00\x00\x00\xc9\x00\x00\x00\x00\x00\x00\x00\x12\x02\x00\x00\x00\x00\x00\x00' b'PK\x06\x07\x00\x00\x00\x00\xdb\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x03\x00\x03\x00\xc9\x00\x00\x00\x12\x02\x00\x00\x00\x00') data_le_bom = (b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x1a\x00\x08\x00tensor.int.LE.BOM/data.pklFB\x04\x00ZZZZ\x80" b"\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc" b"h\nIntStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q" b"K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)" b"Rq\ttq\nRq\x0b.PK\x07\x08\xdd\xa0'\xa8\x98\x00\x00\x00\x98\x00\x00\x00PK\x03\x04" b"\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x1b\x00\x1f\x00tensor.int.LE.BOM/byteorderFB\x1b\x00ZZZZZZZZZZZZZZZZZZZ" b"ZZZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x18\x004\x00tensor.int.LE.BOM/data/0FB0\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" b"ZZZZZZZZZZZZZZZZZZZ\xf6\x19\x95i\xfaL\x1f\t%\xa3\r\xb8\xe5\xcfN\xe2\xa2\xc7\x8f\xb4" b"\xfd\xf5(2\xe3YX\xf5\x1dhO}\xeb\xba\xcf\x02\x8b\x84\xdd>L\xbc(\xc7\x92Q\x98\xa6" b"\x1aQ^w\xea\x932>\xad\x87D\xdd\x9el\xb6\x15PK\x07\x08W\x1c\xcd\x19@\x00\x00\x00" b"@\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x19\x009\x00tensor.int.LE.BOM/versionFB5\x00ZZZ" b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00" b"\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00" b"\xdd\xa0'\xa8\x98\x00\x00\x00\x98\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.int.LE.BOM/data.pklPK\x01\x02\x00" b"\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00" b"\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x00\x00\x00" b"tensor.int.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00" b"\x00W\x1c\xcd\x19@\x00\x00\x00@\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00V\x01\x00\x00tensor.int.LE.BOM/data/0PK\x01\x02\x00\x00\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x19" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x02\x00\x00tensor.int" b".LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00" b"\x1e\x01\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00" b"\x00\x00\x00\xb0\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00" b"\x00\x04\x00\x04\x00\x1e\x01\x00\x00\x92\x02\x00\x00\x00\x00") data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x16\x00\x0c\x00tensor.int.BE/data.pklFB\x08\x00ZZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nIntStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q' b'K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08\xdd\xa0\'\xa8\x98\x00\x00\x00\x98\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x14\x00&\x00tensor.int.BE/data/0FB"\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZi\x95\x19\xf6\t\x1fL\xfa\xb8\r\xa3%\xe2N\xcf\xe5\xb4\x8f\xc7\xa22(\xf5\xfd\xf5' b'XY\xe3}Oh\x1d\x02\xcf\xba\xeb>\xdd\x84\x8b\xc7(\xbcL\xa6\x98Q\x92w^Q\x1a>2\x93\xea' b'\xddD\x87\xad\x15\xb6l\x9ePK\x07\x08rq\x19^@\x00\x00\x00@\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x15\x00=\x00tensor.int.BE/versionFB9\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xdd\xa0\'\xa8\x98\x00' b'\x00\x00\x98\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00tensor.int.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00rq\x19^@\x00\x00\x00@\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\xe8\x00\x00\x00tensor.int.BE/data/0PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x01\x00\x00tens' b'or.int.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00' b'\x00\xc9\x00\x00\x00\x00\x00\x00\x00\x12\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00' b'\x00\x00\x00\xdb\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00' b'\x00\x00\x03\x00\x03\x00\xc9\x00\x00\x00\x12\x02\x00\x00\x00\x00') data_be_bom = (b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x1a\x00\x08\x00tensor.int.BE.BOM/data.pklFB\x04\x00ZZZZ\x80" b"\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc" b"h\nIntStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q" b"K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)" b"Rq\ttq\nRq\x0b.PK\x07\x08\xdd\xa0'\xa8\x98\x00\x00\x00\x98\x00\x00\x00PK\x03\x04" b"\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x1b\x00\x1f\x00tensor.int.BE.BOM/byteorderFB\x1b\x00ZZZZZZZZZZZZZZZZZZZ" b"ZZZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x18\x007\x00tensor.int.BE.BOM/data/0FB3\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" b"ZZZZZZZZZZZZZZZZZZZi\x95\x19\xf6\t\x1fL\xfa\xb8\r\xa3%\xe2N\xcf\xe5\xb4\x8f\xc7\xa2" b"2(\xf5\xfd\xf5XY\xe3}Oh\x1d\x02\xcf\xba\xeb>\xdd\x84\x8b\xc7(\xbcL\xa6\x98Q\x92" b"w^Q\x1a>2\x93\xea\xddD\x87\xad\x15\xb6l\x9ePK\x07\x08rq\x19^@\x00\x00\x00@\x00" b"\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x19\x009\x00tensor.int.BE.BOM/versionFB5\x00ZZZZZZZZZ" b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00" b"\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xdd" b"\xa0'\xa8\x98\x00\x00\x00\x98\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00tensor.int.BE.BOM/data.pklPK\x01\x02\x00\x00\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00" b"\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x00\x00\x00tenso" b"r.int.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00" b"rq\x19^@\x00\x00\x00@\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00S\x01\x00\x00tensor.int.BE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08" b"\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x19\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x02\x00\x00tensor.int.BE.BOM/vers" b"ionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x1e\x01\x00" b"\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00" b"\xb0\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00" b"\x04\x00\x1e\x01\x00\x00\x92\x02\x00\x00\x00\x00") current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_int16
def test_serialization_load_bom_data_int16(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(-32768, 32768, [4, 4], dtype=torch.int16) # # torch.save(x, "tensor.int16.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.int16.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.int16.LE.BOM.pt') # # torch.save(x, 'tensor.int16.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.int16.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.int16.LE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'ShortStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q' b'K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x16\x00"\x00tensor.int16.LE/data/0FB\x1e\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZO\xa4\x9bJ_Z-\xa5#\xf1y\xef\xb1@\x061"\xe3\x83\x07;\x83\x80\x08\xf1\x18q\xf6\xfe' b'\xf3\xc9,PK\x07\x08\xa0\x98\xd9\xdf \x00\x00\x00 \x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x17\x00\x1b\x00tensor.int16.LE/versionFB\x17\x00ZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07' b'\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00\x18\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.int16.LE/' b'data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xa0\x98\xd9\xdf' b' \x00\x00\x00 \x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\xea\x00\x00\x00tensor.int16.LE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x17\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00p\x01\x00\x00tensor.int16.LE/versionPK\x06' b'\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03' b'\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x00' b'\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa1\x02' b'\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00' b'\xcf\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.int16.LE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nShortStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1d\x00\x1b\x00tensor.int16.LE.BOM/byteorderFB\x17\x00ZZZZZZZZZZZZZZZ' b'ZZZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1a\x002\x00tensor.int16.LE.BOM/data/0FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZO\xa4\x9bJ_Z-\xa5#\xf1y\xef\xb1@\x061"\xe3\x83\x07;\x83\x80\x08' b'\xf1\x18q\xf6\xfe\xf3\xc9,PK\x07\x08\xa0\x98\xd9\xdf \x00\x00\x00 \x00\x00\x00' b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x1b\x00\x17\x00tensor.int16.LE.BOM/versionFB\x13\x00ZZZZZZZZZ' b'ZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00' b'\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'tensor.int16.LE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.int16.LE.BOM/byteorderPK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xa0\x98\xd9\xdf \x00\x00\x00 ' b'\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00V\x01\x00\x00' b'tensor.int16.LE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\xf0\x01\x00\x00tensor.int16.LE.BOM/versionPK\x06\x06,\x00' b'\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00' b'\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00&\x01\x00\x00\x00\x00\x00\x00' b'R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00x\x03\x00\x00\x00\x00\x00' b'\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00&\x01\x00\x00R\x02' b'\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.int16.BE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'ShortStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05Q' b'K\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)' b'Rq\ttq\nRq\x0b.PK\x07\x08\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x16\x00"\x00tensor.int16.BE/data/0FB\x1e\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZ\xa4OJ\x9bZ_\xa5-\xf1#\xefy@\xb11\x06\xe3"\x07\x83\x83;\x08\x80\x18\xf1\xf6q\xf3' b'\xfe,\xc9PK\x07\x08\x8a\xeb\x9b[ \x00\x00\x00 \x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x17' b'\x00\x1b\x00tensor.int16.BE/versionFB\x17\x00ZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07' b'\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00\x18\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.int16.BE/dat' b'a.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x8a\xeb\x9b[ ' b'\x00\x00\x00 \x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\xea\x00\x00\x00tensor.int16.BE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x17\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00p\x01\x00\x00tensor.int16.BE/versionPK\x06\x06' b',\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00' b'\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x00\x00' b'\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa1\x02\x00' b'\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcf' b'\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.int16.BE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nShortStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1d\x00\x1b\x00tensor.int16.BE.BOM/byteorderFB\x17\x00ZZZZZZZZZZZZZZZ' b'ZZZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1a\x005\x00tensor.int16.BE.BOM/data/0FB1\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\xa4OJ\x9bZ_\xa5-\xf1#\xefy@\xb11\x06\xe3"\x07\x83\x83;\x08\x80' b'\x18\xf1\xf6q\xf3\xfe,\xc9PK\x07\x08\x8a\xeb\x9b[ \x00\x00\x00 \x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x1b\x00\x17\x00tensor.int16.BE.BOM/versionFB\x13\x00ZZZZZZZZZZZZ' b'ZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xf6\xc8K\xd8\x9a\x00\x00\x00\x9a\x00\x00' b'\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00ten' b'sor.int16.BE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00tensor.int16.BE.BOM/byteorderPK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x8a\xeb\x9b[ \x00\x00\x00 \x00\x00' b'\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x01\x00\x00tenso' b'r.int16.BE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1' b'\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\xf0\x01\x00\x00tensor.int16.BE.BOM/versionPK\x06\x06,\x00\x00\x00' b'\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00' b'\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00&\x01\x00\x00\x00\x00\x00\x00R\x02' b'\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00x\x03\x00\x00\x00\x00\x00\x00' b'\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00&\x01\x00\x00R\x02\x00' b'\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_int8
def test_serialization_load_bom_data_int8(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(-128, 128, [4, 4], dtype=torch.int8) # # torch.save(x, "tensor.int8.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.int8.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.int8.LE.BOM.pt') # # torch.save(x, 'tensor.int8.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.int8.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.int8.LE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nCharStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x15\x00$\x00tensor.int8.LE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZ\x9d\x1en\xb4\xe0l"s\x15bs\x8aa\xa0\xc6+PK\x07\x08\xe0\xffgs\x10\x00\x00\x00\x10' b'\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00,\x00tensor.int8.LE/versionFB(\x00ZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xdb6\x08\xe7' b'\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00tensor.int8.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xe0\xffgs\x10\x00\x00\x00\x10\x00\x00\x00\x15\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.int8.LE/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x01' b'\x00\x00tensor.int8.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00' b'\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00' b'PK\x06\x07\x00\x00\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.int8.LE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nCharStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1c\x00\x1d\x00tensor.int8.LE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x003\x00tensor.int8.LE.BOM/data/0FB/\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\x9d\x1en\xb4\xe0l"s\x15bs\x8aa\xa0\xc6+PK\x07\x08\xe0\xffgs\x10' b'\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00(\x00tensor.int8.LE.BOM' b'/versionFB$\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.int8.LE.BOM/data.pklPK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00' b'\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00' b'tensor.int8.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\xe0\xffgs\x10\x00\x00\x00\x10\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00V\x01\x00\x00tensor.int8.LE.BOM/data/0PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00ten' b'sor.int8.LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00' b'\x00\x00"\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00' b'\x00\x00\x00t\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00' b'\x00\x04\x00\x04\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.int8.BE/data.pklFB\x07\x00ZZZZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nCharStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x15\x00$\x00tensor.int8.BE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZ\x9d\x1en\xb4\xe0l"s\x15bs\x8aa\xa0\xc6+PK\x07\x08\xe0\xffgs\x10\x00\x00\x00\x10' b'\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00,\x00tensor.int8.BE/versionFB(\x00ZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00' b'\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xdb6\x08\xe7' b'\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00tensor.int8.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\xe0\xffgs\x10\x00\x00\x00\x10\x00\x00\x00\x15\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.int8.BE/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00`\x01' b'\x00\x00tensor.int8.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00' b'\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00' b'PK\x06\x07\x00\x00\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.int8.BE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nCharStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1c\x00\x1d\x00tensor.int8.BE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x006\x00tensor.int8.BE.BOM/data/0FB2\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\x9d\x1en\xb4\xe0l"s\x15bs\x8aa\xa0\xc6+PK\x07\x08\xe0\xffgs\x10' b'\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00(\x00tensor.int8.BE.BOM' b'/versionFB$\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\xdb6\x08\xe7\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.int8.BE.BOM/data.pklPK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00' b'\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00' b'tensor.int8.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\xe0\xffgs\x10\x00\x00\x00\x10\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00S\x01\x00\x00tensor.int8.BE.BOM/data/0PK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00ten' b'sor.int8.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00' b'\x00\x00"\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00' b'\x00\x00\x00t\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00' b'\x00\x04\x00\x04\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) # 1-byte types are same on BE and LE self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_uint8
def test_serialization_load_bom_data_uint8(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(0, 256, [4, 4], dtype=torch.uint8) # # torch.save(x, "tensor.uint8.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.uint8.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.uint8.LE.BOM.pt') # # torch.save(x, 'tensor.uint8.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.uint8.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.uint8.LE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'ByteStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05QK' b'\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)R' b'q\ttq\nRq\x0b.PK\x07\x08\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x16\x00#\x00tensor.uint8.LE/data/0FB\x1f\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZ\xf7\xf20\x04\t\x8a!\xbev\xf4\xbe\x0e";\xbb\tPK\x07\x08\xa8\x94#\x08\x10\x00\x00' b'\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x17\x00+\x00tensor.uint8.LE/versionFB\'' b'\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xff' b'\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00tensor.uint8.LE/data.pklPK\x01\x02\x00\x00\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\xa8\x94#\x08\x10\x00\x00\x00\x10\x00\x00\x00' b'\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.' b'uint8.LE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9e' b'gU\x02\x00\x00\x00\x02\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00`\x01\x00\x00tensor.uint8.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00' b'\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00' b'\x03\x00\x00\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00' b'\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa1\x02\x00\x00\x00\x00\x00\x00\x01' b'\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcf\x00\x00\x00\xd2\x01\x00' b'\x00\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.uint8.LE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nByteStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1d\x00\x1c\x00tensor.uint8.LE.BOM/byteorderFB\x18\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1a\x002\x00tensor.uint8.LE.BOM/data/0FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\xf7\xf20\x04\t\x8a!\xbev\xf4\xbe\x0e";\xbb\tPK\x07\x08\xa8\x94' b'#\x08\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\'\x00tensor.ui' b'nt8.LE.BOM/versionFB#\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9e' b'gU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00\x1c\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.uint8.LE.BOM/data.pklPK' b'\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00' b'\x00\x06\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9' b'\x00\x00\x00tensor.uint8.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\xa8\x94#\x08\x10\x00\x00\x00\x10\x00\x00\x00\x1a\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00V\x01\x00\x00tensor.uint8.LE.BOM/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0' b'\x01\x00\x00tensor.uint8.LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e' b'\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00' b'\x00\x00\x00\x00\x00\x00&\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00' b'\x00PK\x06\x07\x00\x00\x00\x00x\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x04\x00\x04\x00&\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x18\x00\n\x00tensor.uint8.BE/data.pklFB\x06\x00ZZZZZZ\x80\x02' b'ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\n' b'ByteStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05QK' b'\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)R' b'q\ttq\nRq\x0b.PK\x07\x08\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x16\x00#\x00tensor.uint8.BE/data/0FB\x1f\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZ\xf7\xf20\x04\t\x8a!\xbev\xf4\xbe\x0e";\xbb\tPK\x07\x08\xa8\x94#\x08\x10\x00\x00' b'\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x17\x00+\x00tensor.uint8.BE/versionFB\'' b'\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xff' b'\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00tensor.uint8.BE/data.pklPK\x01\x02\x00\x00\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\xa8\x94#\x08\x10\x00\x00\x00\x10\x00\x00\x00' b'\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.' b'uint8.BE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9e' b'gU\x02\x00\x00\x00\x02\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00`\x01\x00\x00tensor.uint8.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00' b'\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00' b'\x03\x00\x00\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00' b'\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xa1\x02\x00\x00\x00\x00\x00\x00\x01' b'\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcf\x00\x00\x00\xd2\x01\x00' b'\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1c\x00\x06\x00tensor.uint8.BE.BOM/data.pklFB\x02\x00ZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nByteStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x1d\x00\x1c\x00tensor.uint8.BE.BOM/byteorderFB\x18\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1a\x005\x00tensor.uint8.BE.BOM/data/0FB1\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZ\xf7\xf20\x04\t\x8a!\xbev\xf4\xbe\x0e";\xbb\tPK\x07\x08\xa8\x94' b'#\x08\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\'\x00tensor.ui' b'nt8.BE.BOM/versionFB#\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9e' b'gU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\xff\xb9!\x97\x99\x00\x00\x00\x99\x00\x00\x00\x1c\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.uint8.BE.BOM/data.pklPK' b'\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00' b'\x00\x03\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9' b'\x00\x00\x00tensor.uint8.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\xa8\x94#\x08\x10\x00\x00\x00\x10\x00\x00\x00\x1a\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x01\x00\x00tensor.uint8.BE.BOM/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0' b'\x01\x00\x00tensor.uint8.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e' b'\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00' b'\x00\x00\x00\x00\x00\x00&\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00' b'\x00PK\x06\x07\x00\x00\x00\x00x\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x04\x00\x04\x00&\x01\x00\x00R\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) # 1-byte types are same on BE and LE self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_bool
def test_serialization_load_bom_data_bool(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randint(0, 2, [4, 4], dtype=torch.bool) # # torch.save(x, "tensor.bool.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.bool.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.bool.LE.BOM.pt') # # torch.save(x, 'tensor.bool.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.bool.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.bool.LE/data.pklFB\x07\x00ZZZZZZZ\x80" b"\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc" b"h\nBoolStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05" b"QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08" b")Rq\ttq\nRq\x0b.PK\x07\x08\x9a\xab='\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x15\x00$\x00tensor.bool.LE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\x01" b"\x00\x00\x01\x00\x01\x00\x00\x00\x00\x01\x00\x01\x00\x01\x00PK\x07\x08\x00Y04" b"\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00,\x00tensor.bool.LE/ve" b"rsionFB(\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00" b"\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00" b"\x00\x9a\xab='\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.bool.LE/data.pklPK\x01\x02\x00\x00" b"\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00\x15" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.bo" b"ol.LE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU" b"\x02\x00\x00\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00`\x01\x00\x00tensor.bool.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00" b"\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03" b"\x00\x00\x00\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00" b"\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00" b"\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00" b"\x00\x00") data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.bool.LE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nBoolStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\x9a\xab=\'\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1c\x00\x1d\x00tensor.bool.LE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZlittlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x19\x003\x00tensor.bool.LE.BOM/data/0FB/\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZ\x01\x00\x00\x01\x00\x01\x00\x00\x00\x00\x01\x00\x01\x00\x01\x00' b'PK\x07\x08\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00(\x00' b'tensor.bool.LE.BOM/versionFB$\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08' b'\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x9a\xab=\'\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.bool.LE.BOM/dat' b'a.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06' b'\x00\x00\x00\x06\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\xe9\x00\x00\x00tensor.bool.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00\x19\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00V\x01\x00\x00tensor.bool.LE.BOM/data/0P' b'K\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01' b'\x00\x00tensor.bool.LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e' b'\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00' b'\x00\x00\x00\x00\x00\x00"\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00' b'PK\x06\x07\x00\x00\x00\x00t\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x04\x00\x04\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') data_be_no_bom = (b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x17\x00\x0b\x00tensor.bool.BE/data.pklFB\x07\x00ZZZZZZZ\x80" b"\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc" b"h\nBoolStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05" b"QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08" b")Rq\ttq\nRq\x0b.PK\x07\x08\x9a\xab='\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00" b"\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x15\x00$\x00tensor.bool.BE/data/0FB \x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\x01" b"\x00\x00\x01\x00\x01\x00\x00\x00\x00\x01\x00\x01\x00\x01\x00PK\x07\x08\x00Y04" b"\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00,\x00tensor.bool.BE/ve" b"rsionFB(\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00" b"\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00" b"\x00\x9a\xab='\x99\x00\x00\x00\x99\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.bool.BE/data.pklPK\x01\x02\x00\x00" b"\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00\x15" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00tensor.bo" b"ol.BE/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU" b"\x02\x00\x00\x00\x02\x00\x00\x00\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00`\x01\x00\x00tensor.bool.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00" b"\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03" b"\x00\x00\x00\x00\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00" b"\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\x9e\x02\x00\x00\x00\x00\x00\x00\x01\x00" b"\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xcc\x00\x00\x00\xd2\x01\x00\x00" b"\x00\x00") data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.bool.BE.BOM/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nBoolStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x10tq\x05' b'QK\x00K\x04K\x04\x86q\x06K\x04K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08' b')Rq\ttq\nRq\x0b.PK\x07\x08\x9a\xab=\'\x99\x00\x00\x00\x99\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1c\x00\x1d\x00tensor.bool.BE.BOM/byteorderFB\x19\x00ZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZbigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x19\x006\x00tensor.bool.BE.BOM/data/0FB2\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZ\x01\x00\x00\x01\x00\x01\x00\x00\x00\x00\x01\x00\x01\x00\x01\x00' b'PK\x07\x08\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00(\x00' b'tensor.bool.BE.BOM/versionFB$\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08' b'\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x9a\xab=\'\x99\x00\x00\x00\x99\x00\x00\x00\x1b\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00tensor.bool.BE.BOM/dat' b'a.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03' b'\x00\x00\x00\x03\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\xe9\x00\x00\x00tensor.bool.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x00Y04\x10\x00\x00\x00\x10\x00\x00\x00\x19\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x01\x00\x00tensor.bool.BE.BOM/data/0P' b'K\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00' b'\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01' b'\x00\x00tensor.bool.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e' b'\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00' b'\x00\x00\x00\x00\x00\x00"\x01\x00\x00\x00\x00\x00\x00R\x02\x00\x00\x00\x00\x00\x00' b'PK\x06\x07\x00\x00\x00\x00t\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05' b'\x06\x00\x00\x00\x00\x04\x00\x04\x00"\x01\x00\x00R\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) # 1-byte types are same on BE and LE self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_load_bom_data_bfloat16
def test_serialization_load_bom_data_bfloat16(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randn(2,2, dtype=torch.bfloat16) # # torch.save(x, "tensor.bfloat16.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.bfloat16.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.bfloat16.LE.BOM.pt') # # torch.save(x, 'tensor.bfloat16.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.bfloat16.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.bfloat16.LE/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nBFloat16Storage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq' b'\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq' b'\x08)Rq\ttq\nRq\x0b.PK\x07\x08\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x19\x00\x1c\x00tensor.bfloat16.LE/data/0FB\x18\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZZZZ\r@i\xber?\xbc\xbfPK\x07\x085\xd2\x8f\xc7\x08\x00\x00\x00\x08\x00\x00\x00' b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x1a\x000\x00tensor.bfloat16.LE/versionFB,\x00ZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x1f>\xd9\x7f\x9d\x00' b'\x00\x00\x9d\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00tensor.bfloat16.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x005\xd2\x8f\xc7\x08\x00\x00\x00\x08\x00\x00\x00\x19\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xed\x00\x00\x00tensor.bfloat16.LE/' b'data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'X\x01\x00\x00tensor.bfloat16.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00' b'\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03' b'\x00\x00\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00' b'\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xaa\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00' b'\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xd8\x00\x00\x00\xd2\x01\x00\x00' b'\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1f\x00C\x00tensor.bfloat16.LE.BOM/data.pklFB?\x00ZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\x80\x02ctorch._utils\n_re' b'build_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nBFloat16Storage\nq\x02' b'X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05QK\x00K\x02K\x02\x86' b'q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)Rq\ttq\nRq\x0b.PK' b'\x07\x08\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x15' b'\x00tensor.bfloat16.LE.BOM/byteorderFB\x11\x00ZZZZZZZZZZZZZZZZZlittlePK\x07\x08\x85' b'=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x00/\x00tenso' b'r.bfloat16.LE.BOM/data/0FB+\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\r@i\xbe' b'r?\xbc\xbfPK\x07\x085\xd2\x8f\xc7\x08\x00\x00\x00\x08\x00\x00\x00PK\x03\x04\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x1e\x00,\x00tensor.bfloat16.LE.BOM/versionFB(\x00ZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02' b'\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d' b'\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00tensor.bfloat16.LE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00 \x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00-\x01\x00\x00tensor.bfloat16.LE.BOM/byteorderPK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x005\xd2\x8f\xc7\x08\x00\x00' b'\x00\x08\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96' b'\x01\x00\x00tensor.bfloat16.LE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00' b'\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1e\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x02\x00\x00tensor.bfloat16.LE.BOM/vers' b'ionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x002\x01\x00' b'\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xc4' b'\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00' b'\x04\x002\x01\x00\x00\x92\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1b\x00\x07\x00tensor.bfloat16.BE/data.pklFB\x03\x00ZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nBFloat16Storage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq' b'\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq' b'\x08)Rq\ttq\nRq\x0b.PK\x07\x08\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x19\x00\x1c\x00tensor.bfloat16.BE/data/0FB\x18\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZZZZ@\r\xbei?r\xbf\xbcPK\x07\x08d\x02=\xc7\x08\x00\x00\x00\x08\x00\x00\x00PK' b'\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x1a\x000\x00tensor.bfloat16.BE/versionFB,\x00ZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x1f>\xd9\x7f\x9d\x00' b'\x00\x00\x9d\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00tensor.bfloat16.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00d\x02=\xc7\x08\x00\x00\x00\x08\x00\x00\x00\x19\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\xed\x00\x00\x00tensor.bfloat16.BE/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00X\x01' b'\x00\x00tensor.bfloat16.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03' b'-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00' b'\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00' b'\x00PK\x06\x07\x00\x00\x00\x00\xaa\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00' b'PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xd8\x00\x00\x00\xd2\x01\x00\x00\x00\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1f\x00C\x00tensor.bfloat16.BE.BOM/data.pklFB?\x00ZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ\x80\x02ctorch._utils\n_re' b'build_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nBFloat16Storage\nq\x02' b'X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04tq\x05QK\x00K\x02K\x02\x86' b'q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDict\nq\x08)Rq\ttq\nRq\x0b.PK' b'\x07\x08\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x15' b'\x00tensor.bfloat16.BE.BOM/byteorderFB\x11\x00ZZZZZZZZZZZZZZZZZbigPK\x07\x08I\xe2' b'\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x002\x00tensor.b' b'float16.BE.BOM/data/0FB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ@\r\xbe' b'i?r\xbf\xbcPK\x07\x08d\x02=\xc7\x08\x00\x00\x00\x08\x00\x00\x00PK\x03\x04\x00\x00' b'\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x1e\x00,\x00tensor.bfloat16.BE.BOM/versionFB(\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00PK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x1f>\xd9\x7f\x9d\x00\x00\x00\x9d\x00' b'\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'tensor.bfloat16.BE.BOM/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00' b'\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00 \x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00-\x01\x00\x00tensor.bfloat16.BE.BOM/byteorderPK\x01' b'\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00d\x02=\xc7\x08\x00\x00\x00\x08' b'\x00\x00\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x93\x01\x00' b'\x00tensor.bfloat16.BE.BOM/data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00' b'\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x18\x02\x00\x00tensor.bfloat16.BE.BOM/versionPK\x06' b'\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x002\x01\x00\x00\x00' b'\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xc4\x03' b'\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00' b'2\x01\x00\x00\x92\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
fn
def fn(t): return converter.from_real_tensor(mode, t) if materialize_fake else t sd = {'t_v2': fn(t_v2), 't_v3': fn(t_v3), 'tt': fn(tt)} sd_expected = { 't_v2': torch.zeros(2, 3, device=t_device), 't_v3': torch.zeros(2, 3, dtype=torch.complex32, device=t_device), 'tt': TwoTensor(torch.zeros(2, device=t_device), torch.zeros(2, device=t_device)), } if not materialize_fake: sd['st'] = st sd_expected['st'] = torch.sparse_coo_tensor(torch.zeros(2, 3), torch.zeros(3), (2, 4)) with BytesIOContext() as f: with skip_data(materialize_fake_tensors=materialize_fake): torch.save(sd, f) f.seek(0) with safe_globals([TwoTensor]): sd_loaded = torch.load(f, weights_only=True) self.assertEqual(sd_loaded, sd_expected, exact_device=True) self.assertFalse(getattr(torch.serialization._serialization_tls, "materialize_fake_tensors", False)) self.assertFalse(getattr(torch.serialization._serialization_tls, "skip_data", False)) # Test that without materialize_fake_tensor, behavior for fake_tensors is not altered by ctx if not materialize_fake: ft = converter.from_real_tensor(mode, torch.randn(2, device=t_device)) with self.assertRaisesRegex( AttributeError, "Can't (get|pickle) local object 'WeakValueDictionary.__init__.<locals>.remove'" ): with skip_data(), BytesIOContext() as f: torch.save(ft, f)
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_skip_data_serialization_preserves_views
def test_skip_data_serialization_preserves_views(self, materialize_fake): ctx = FakeTensorMode if materialize_fake else contextlib.nullcontext with ctx(): t = torch.randn(2, 3) t_view = t.view(-1) t_slice = t[1] sd = {'t': t, 't_view': t_view, 't_slice': t_slice} with BytesIOContext() as f: with skip_data(materialize_fake_tensors=materialize_fake): torch.save(sd, f) f.seek(0) sd_loaded = torch.load(f, weights_only=True) self.assertTrue(id(sd_loaded['t_view'].untyped_storage()) == id(sd_loaded['t'].untyped_storage())) self.assertTrue(id(sd_loaded['t_slice'].untyped_storage()) == id(sd_loaded['t'].untyped_storage()))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
_save_load
def _save_load(t): with BytesIOContext() as f: with skip_data(): torch.save(t, f) f.seek(0) torch.load(f, weights_only=True) nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)]) t = torch.randn(2, 3, device="meta") with self.assertRaisesRegex(RuntimeError, "Cannot serialize nested tensor under skip_data context manager"): _save_load(nt) with self.assertWarnsRegex(UserWarning, "meta device under skip_data context manager is a no-op"): _save_load(t) with self.assertRaisesRegex(RuntimeError, "Please call torch.load outside the skip_data context manager"): with skip_data(), BytesIOContext() as f: torch.save(torch.randn(2, 3), f) f.seek(0) torch.load(f, weights_only=True)
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_tensor_subclass_wrapper_serialization
def test_tensor_subclass_wrapper_serialization(self): wrapped_tensor = torch.rand(2) my_tensor = TestWrapperSubclass(wrapped_tensor) foo_val = "bar" my_tensor.foo = foo_val self.assertEqual(my_tensor.foo, foo_val) with BytesIOContext() as f: torch.save(my_tensor, f) f.seek(0) new_tensor = torch.load(f) self.assertIsInstance(new_tensor, TestWrapperSubclass) self.assertEqual(new_tensor.elem, my_tensor.elem) self.assertEqual(new_tensor.foo, foo_val)
def test_tensor_subclass_wrapper_serialization(self): wrapped_tensor = torch.rand(2) my_tensor = TestWrapperSubclass(wrapped_tensor) foo_val = "bar" my_tensor.foo = foo_val self.assertEqual(my_tensor.foo, foo_val) with BytesIOContext() as f: torch.save(my_tensor, f) f.seek(0) with safe_globals([TestWrapperSubclass]): new_tensor = torch.load(f) self.assertIsInstance(new_tensor, TestWrapperSubclass) self.assertEqual(new_tensor.elem, my_tensor.elem) self.assertEqual(new_tensor.foo, foo_val)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util class TestSubclassSerialization(TestCase):
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSubclassSerialization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_serialization_load_bom_data_cdouble
def test_serialization_load_bom_data_cdouble(self): # 1. Generated on LE system using following commands: # # import torch # # x = torch.randn(2,2, dtype=torch.cdouble) # # torch.save(x, "tensor.cdouble.LE.pt", _disable_byteorder_record=True) # torch.save(x, "tensor.cdouble.LE.BOM.pt") # # print(x) # # 2. After that it is resaved on BE system with following commands: # # import torch # # x = torch.load('tensor.cdouble.LE.BOM.pt') # # torch.save(x, 'tensor.cdouble.BE.pt', _disable_byteorder_record=True) # torch.save(x, 'tensor.cdouble.BE.BOM.pt') # # print(x) # # Following commands and a bit of manual work were used to produce python bytes from resulting files: # # file = open('filename', 'rb') # data = file.read() # file.close() # print("\n".join(textwrap.wrap(str(data), 80))) # # BOM in this context is used as Byte Order Mark. # data_le_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1a\x00\x08\x00tensor.cdouble.LE/data.pklFB\x04\x00ZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nComplexDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04' b'tq\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDi' b'ct\nq\x08)Rq\ttq\nRq\x0b.PK\x07\x08(W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x18\x00\x18\x00tensor.cdouble.LE/data/0FB\x14\x00ZZZZZZZZZZZZZZZZZZ' b'ZZ\xd1/\x84\xd8,\x00\xcd\xbf|L\xcf\xd0O\xee\xd7\xbfb\xb6<\xb4\xe2_\xec?v+\x86\xd9' b'\xca\x0e\xf8?i#\xbb\xfcU\x1b\xe0\xbf\x984\xcd\x02q\x8a\xe9?\xc1_\xd7R\xe3\xfb\xe3' b'\xbf\xcf\xce>\xcd\xa2\x9f\xe8?PK\x07\x08\x1d\xed\xed\xa0@\x00\x00\x00@\x00\x00' b'\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x19\x009\x00tensor.cdouble.LE/versionFB5\x00ZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02' b'\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00(W{\xca' b'\xa2\x00\x00\x00\xa2\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00tensor.cdouble.LE/data.pklPK\x01\x02\x00\x00\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x1d\xed\xed\xa0@\x00\x00\x00@\x00\x00\x00\x18\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf2\x00\x00\x00tensor.cdouble.LE/' b'data/0PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x90\x01\x00\x00tensor.cdouble.LE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00' b'\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03' b'\x00\x00\x00\x00\x00\x00\x00\xd5\x00\x00\x00\x00\x00\x00\x00\x12\x02\x00\x00\x00' b'\x00\x00\x00PK\x06\x07\x00\x00\x00\x00\xe7\x02\x00\x00\x00\x00\x00\x00\x01\x00' b'\x00\x00PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xd5\x00\x00\x00\x12\x02\x00\x00' b'\x00\x00') data_le_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1e\x00\x04\x00tensor.cdouble.LE.BOM/data.pklFB\x00\x00\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nComplexDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04' b'tq\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDi' b'ct\nq\x08)Rq\ttq\nRq\x0b.PK\x07\x08(W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x1f\x00\x11\x00tensor.cdouble.LE.BOM/byteorderFB\r\x00ZZZZZZZZZZZZZ' b'littlePK\x07\x08\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c' b'\x000\x00tensor.cdouble.LE.BOM/data/0FB,\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZ\xd1/\x84\xd8,\x00\xcd\xbf|L\xcf\xd0O\xee\xd7\xbfb\xb6<\xb4\xe2_\xec?' b'v+\x86\xd9\xca\x0e\xf8?i#\xbb\xfcU\x1b\xe0\xbf\x984\xcd\x02q\x8a\xe9?\xc1_\xd7R\xe3' b'\xfb\xe3\xbf\xcf\xce>\xcd\xa2\x9f\xe8?PK\x07\x08\x1d\xed\xed\xa0@\x00\x00\x00' b'@\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x1d\x005\x00tensor.cdouble.LE.BOM/versionFB1\x00' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00' b'\x00\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00' b'(W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00tensor.cdouble.LE.BOM/data.pklPK\x01\x02\x00\x00' b'\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00' b'\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf2\x00\x00\x00te' b'nsor.cdouble.LE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\x1d\xed\xed\xa0@\x00\x00\x00@\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00V\x01\x00\x00tensor.cdouble.LE.BOM/data/0PK\x01\x02\x00' b'\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00' b'\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x02\x00\x00te' b'nsor.cdouble.LE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00' b'\x00\x00\x00.\x01\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06' b'\x07\x00\x00\x00\x00\xc0\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06' b'\x00\x00\x00\x00\x04\x00\x04\x00.\x01\x00\x00\x92\x02\x00\x00\x00\x00') data_be_no_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1a\x00\x08\x00tensor.cdouble.BE/data.pklFB\x04\x00ZZZZ\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nComplexDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04' b'tq\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDi' b'ct\nq\x08)Rq\ttq\nRq\x0b.PK\x07\x08(W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x18\x00\x18\x00tensor.cdouble.BE/data/0FB\x14\x00ZZZZZZZZZZZZZZZZZZ' b'ZZ\xbf\xcd\x00,\xd8\x84/\xd1\xbf\xd7\xeeO\xd0\xcfL|?\xec_\xe2\xb4<\xb6b?\xf8\x0e' b'\xca\xd9\x86+v\xbf\xe0\x1bU\xfc\xbb#i?\xe9\x8aq\x02\xcd4\x98\xbf\xe3\xfb\xe3R\xd7' b'_\xc1?\xe8\x9f\xa2\xcd>\xce\xcfPK\x07\x08\x91\xbey\x14@\x00\x00\x00@\x00\x00\x00' b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x19\x009\x00tensor.cdouble.BE/versionFB5\x00ZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00\x00\x02' b'\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00(W{\xca\xa2' b'\x00\x00\x00\xa2\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00tensor.cdouble.BE/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08' b'\x00\x00\x00\x00\x00\x00\x91\xbey\x14@\x00\x00\x00@\x00\x00\x00\x18\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf2\x00\x00\x00tensor.cdouble.BE/data/0' b'PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90' b'\x01\x00\x00tensor.cdouble.BE/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e' b'\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x03\x00' b'\x00\x00\x00\x00\x00\x00\xd5\x00\x00\x00\x00\x00\x00\x00\x12\x02\x00\x00\x00\x00' b'\x00\x00PK\x06\x07\x00\x00\x00\x00\xe7\x02\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00' b'PK\x05\x06\x00\x00\x00\x00\x03\x00\x03\x00\xd5\x00\x00\x00\x12\x02\x00\x00\x00' b'\x00') data_be_bom = (b'PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x1e\x00\x04\x00tensor.cdouble.BE.BOM/data.pklFB\x00\x00\x80' b'\x02ctorch._utils\n_rebuild_tensor_v2\nq\x00((X\x07\x00\x00\x00storageq\x01ctorc' b'h\nComplexDoubleStorage\nq\x02X\x01\x00\x00\x000q\x03X\x03\x00\x00\x00cpuq\x04K\x04' b'tq\x05QK\x00K\x02K\x02\x86q\x06K\x02K\x01\x86q\x07\x89ccollections\nOrderedDi' b'ct\nq\x08)Rq\ttq\nRq\x0b.PK\x07\x08(W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00PK\x03' b'\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x1f\x00\x11\x00tensor.cdouble.BE.BOM/byteorderFB\r\x00ZZZZZZZZZZZZZ' b'bigPK\x07\x08I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00PK\x03\x04\x00\x00\x08' b'\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c' b'\x003\x00tensor.cdouble.BE.BOM/data/0FB/\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' b'ZZZZZZZZZZZ\xbf\xcd\x00,\xd8\x84/\xd1\xbf\xd7\xeeO\xd0\xcfL|?\xec_\xe2\xb4<\xb6b' b'?\xf8\x0e\xca\xd9\x86+v\xbf\xe0\x1bU\xfc\xbb#i?\xe9\x8aq\x02\xcd4\x98\xbf\xe3\xfb' b'\xe3R\xd7_\xc1?\xe8\x9f\xa2\xcd>\xce\xcfPK\x07\x08\x91\xbey\x14@\x00\x00\x00@\x00' b'\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x1d\x005\x00tensor.cdouble.BE.BOM/versionFB1\x00ZZZ' b'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00' b'\x00\x02\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00(' b'W{\xca\xa2\x00\x00\x00\xa2\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00tensor.cdouble.BE.BOM/data.pklPK\x01\x02\x00\x00\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00I\xe2\xfb\xd3\x03\x00\x00\x00\x03\x00\x00\x00' b'\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf2\x00\x00\x00tenso' b'r.cdouble.BE.BOM/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00' b'\x00\x91\xbey\x14@\x00\x00\x00@\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00S\x01\x00\x00tensor.cdouble.BE.BOM/data/0PK\x01\x02\x00\x00\x00' b'\x00\x08\x08\x00\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00' b'\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x02\x00\x00tensor.c' b'double.BE.BOM/versionPK\x06\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00' b'\x00\x00.\x01\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00PK\x06\x07' b'\x00\x00\x00\x00\xc0\x03\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00PK\x05\x06\x00\x00' b'\x00\x00\x04\x00\x04\x00.\x01\x00\x00\x92\x02\x00\x00\x00\x00') current_load_endian = get_default_load_endianness() buf_le_no_bom = io.BytesIO(data_le_no_bom) buf_le_bom = io.BytesIO(data_le_bom) buf_be_no_bom = io.BytesIO(data_be_no_bom) buf_be_bom = io.BytesIO(data_be_bom) try: set_default_load_endianness(LoadEndianness.NATIVE) tensor_le_no_bom = torch.load(buf_le_no_bom) tensor_be_no_bom = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) tensor_le_bom = torch.load(buf_le_bom) tensor_be_bom = torch.load(buf_be_bom) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.LITTLE) tensor_le_no_bom_little = torch.load(buf_le_no_bom) tensor_be_no_bom_little = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) buf_le_no_bom.seek(0) buf_be_no_bom.seek(0) try: set_default_load_endianness(LoadEndianness.BIG) tensor_le_no_bom_big = torch.load(buf_le_no_bom) tensor_be_no_bom_big = torch.load(buf_be_no_bom) finally: set_default_load_endianness(current_load_endian) self.assertTrue(torch.equal(tensor_le_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_no_bom)) self.assertTrue(torch.equal(tensor_le_no_bom_little, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom_little, tensor_be_bom)) self.assertFalse(torch.equal(tensor_le_no_bom_big, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom_big, tensor_be_bom)) if (sys.byteorder == 'little'): self.assertTrue(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_be_no_bom, tensor_be_bom)) else: self.assertFalse(torch.equal(tensor_le_no_bom, tensor_le_bom)) self.assertFalse(torch.equal(tensor_le_no_bom, tensor_be_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_le_bom)) self.assertTrue(torch.equal(tensor_be_no_bom, tensor_be_bom))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
forward
def forward(self, input): return self.fc2(self.fc1(input))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class DummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_serialization_mmap_loading_with_map_location
def test_serialization_mmap_loading_with_map_location(self): class DummyModel(torch.nn.Module): def __init__(self) -> None: super().__init__() self.fc1 = torch.nn.Linear(3, 1024) self.fc2 = torch.nn.Linear(1024, 5) def forward(self, input): return self.fc2(self.fc1(input)) # make sure mmap where tensors' location tags are not CPU does not crash # zipfile will first be mmap-ed on CPU and storages are extracted using # overall_storage[start_offset:end_offset] before running # _{device}_deserialize, which moves the storage to device with TemporaryFileName() as f: with torch.device('cuda'): m = DummyModel() state_dict = m.state_dict() torch.save(state_dict, f) result = torch.load(f, mmap=True) for v in result.values(): self.assertTrue(v.is_cuda)
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSerialization(TestCase, SerializationMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
forward
def forward(self, input): return self.fc2(self.fc1(input))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class DummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_shape_ops.py
test_nonzero
def test_nonzero(self, device, dtype): shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != 'xla': # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.float, device=device)) ) if self.device_type == 'cuda': self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.long)) ) np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0)
def test_nonzero(self, device, dtype): shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to( dtype ) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != "xla": # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.float, device=device) ), ) if ( self.device_type == "cuda" or self.device_type == TEST_PRIVATEUSE1_DEVICE_TYPE ): self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.long) ), ) np_array = ( tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() ) np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0)
import torch import numpy as np from itertools import product, combinations, permutations, chain from functools import partial import random import warnings from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfTorchDynamo, torch_to_numpy_dtype_dict) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyCPU, onlyCUDA, dtypes, onlyNativeDeviceTypes, dtypesIfCUDA, largeTensorTest) from torch.testing._internal.common_dtype import all_types_and_complex_and, all_types, all_types_and class TestShapeOps(TestCase):
import random import unittest import warnings from functools import partial from itertools import chain, combinations, permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, all_types_and_complex_and, ) from torch.testing._internal.common_utils import ( IS_JETSON, run_tests, skipIfTorchDynamo, TEST_PRIVATEUSE1_DEVICE_TYPE, TestCase, torch_to_numpy_dtype_dict, ) class TestShapeOps(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_shape_ops.py
gen_nontrivial_input
def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != 'xla': # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.float, device=device)) ) if self.device_type == 'cuda': self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.long)) ) np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0)
def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to( dtype ) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != "xla": # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.float, device=device) ), ) if ( self.device_type == "cuda" or self.device_type == TEST_PRIVATEUSE1_DEVICE_TYPE ): self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.long) ), ) np_array = ( tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() ) np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0)
import torch import numpy as np from itertools import product, combinations, permutations, chain from functools import partial import random import warnings from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfTorchDynamo, torch_to_numpy_dtype_dict) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyCPU, onlyCUDA, dtypes, onlyNativeDeviceTypes, dtypesIfCUDA, largeTensorTest) from torch.testing._internal.common_dtype import all_types_and_complex_and, all_types, all_types_and
import random import unittest import warnings from functools import partial from itertools import chain, combinations, permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, all_types_and_complex_and, ) from torch.testing._internal.common_utils import ( IS_JETSON, run_tests, skipIfTorchDynamo, TEST_PRIVATEUSE1_DEVICE_TYPE, TestCase, torch_to_numpy_dtype_dict, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sort_and_select.py
assertIsOrdered
def assertIsOrdered(self, order, x, mxx, ixx, task): SIZE = x.size(1) if order == 'descending': def check_order(a, b): # `a != a` because we put NaNs # at the end of ascending sorted lists, # and the beginning of descending ones. return ((a != a) | (a >= b)).all().item() elif order == 'ascending': def check_order(a, b): # see above return ((b != b) | (a <= b)).all().item() else: error('unknown order "{}", must be "ascending" or "descending"'.format(order)) are_ordered = True for k in range(1, SIZE): self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]), 'torch.sort ({}) values unordered for {}'.format(order, task)) seen = set() indicesCorrect = True size0 = x.size(0) size = x.size(x.dim() - 1) x = x.tolist() mxx = mxx.tolist() ixx = ixx.tolist() for k in range(size0): seen.clear() for j in range(size): self.assertEqual(x[k][ixx[k][j]], mxx[k][j], msg='torch.sort ({}) indices wrong for {}'.format(order, task)) seen.add(ixx[k][j]) self.assertEqual(len(seen), size)
def assertIsOrdered(self, order, x, mxx, ixx, task): SIZE = x.size(1) if order == "descending": def check_order(a, b): # `a != a` because we put NaNs # at the end of ascending sorted lists, # and the beginning of descending ones. return ((a != a) | (a >= b)).all().item() elif order == "ascending": def check_order(a, b): # see above return ((b != b) | (a <= b)).all().item() else: error( # noqa: F821 f'unknown order "{order}", must be "ascending" or "descending"' ) are_ordered = True for k in range(1, SIZE): self.assertTrue( check_order(mxx[:, k - 1], mxx[:, k]), f"torch.sort ({order}) values unordered for {task}", ) seen = set() indicesCorrect = True size0 = x.size(0) size = x.size(x.dim() - 1) x = x.tolist() mxx = mxx.tolist() ixx = ixx.tolist() for k in range(size0): seen.clear() for j in range(size): self.assertEqual( x[k][ixx[k][j]], mxx[k][j], msg=f"torch.sort ({order}) indices wrong for {task}", ) seen.add(ixx[k][j]) self.assertEqual(len(seen), size)
import torch import numpy as np import random from torch import nan from itertools import permutations, product from torch.testing import make_tensor from torch.testing._internal.common_dtype import all_types, all_types_and, floating_types_and from torch.testing._internal.common_utils import \ (TestCase, run_tests, slowTest) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, dtypes, onlyNativeDeviceTypes, onlyCUDA, dtypesIfCUDA, dtypesIfCPU, onlyCPU, largeTensorTest) SIZE = 100 class TestSortAndSelect(TestCase): from itertools import chain, combinations
import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) class TestSortAndSelect(TestCase): from itertools import chain, combinations
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_tensor_subclass_getstate_overwrite
def test_tensor_subclass_getstate_overwrite(self): wrapped_tensor = torch.rand(2) my_tensor = TestGetStateSubclass(wrapped_tensor) foo_val = "bar" my_tensor.foo = foo_val self.assertEqual(my_tensor.foo, foo_val) with BytesIOContext() as f: torch.save(my_tensor, f) f.seek(0) new_tensor = torch.load(f) self.assertIsInstance(new_tensor, TestGetStateSubclass) self.assertEqual(new_tensor.elem, my_tensor.elem) self.assertEqual(new_tensor.foo, foo_val) self.assertTrue(new_tensor.reloaded)
def test_tensor_subclass_getstate_overwrite(self): wrapped_tensor = torch.rand(2) my_tensor = TestGetStateSubclass(wrapped_tensor) foo_val = "bar" my_tensor.foo = foo_val self.assertEqual(my_tensor.foo, foo_val) with BytesIOContext() as f: torch.save(my_tensor, f) f.seek(0) with safe_globals([TestGetStateSubclass]): new_tensor = torch.load(f) self.assertIsInstance(new_tensor, TestGetStateSubclass) self.assertEqual(new_tensor.elem, my_tensor.elem) self.assertEqual(new_tensor.foo, foo_val) self.assertTrue(new_tensor.reloaded)
import torch import unittest import io import tempfile import os import gc import sys import zipfile import warnings import gzip import copy import pickle import shutil import pathlib from copy import deepcopy from itertools import product from torch._utils_internal import get_file_path_2 from torch._utils import _rebuild_tensor from torch.serialization import check_module_version_greater_or_equal from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \ run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and import dill can_retrieve_source = True import importlib.util class TestSubclassSerialization(TestCase):
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSubclassSerialization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_serialization.py
test_safe_globals_for_weights_only
def test_safe_globals_for_weights_only(self): ''' Tests import semantic for tensor subclass and the {add/get/clear}_safe_globals APIs ''' t = TwoTensor(torch.randn(2, 3), torch.randn(2, 3)) p = torch.nn.Parameter(t) sd = OrderedDict([('t', t), ('p', p)]) with tempfile.NamedTemporaryFile() as f: torch.save(sd, f) # Loading tensor subclass with weights_only=True should fail # since tensor subclass is not in safe_globals with self.assertRaisesRegex(pickle.UnpicklingError, "Unsupported global: GLOBAL torch.testing._internal.two_tensor.TwoTensor"): f.seek(0) sd = torch.load(f, weights_only=True) # Loading tensor subclass should work if the class is marked safe f.seek(0) try: torch.serialization.add_safe_globals([TwoTensor]) self.assertTrue(torch.serialization.get_safe_globals() == [TwoTensor]) sd = torch.load(f, weights_only=True) self.assertEqual(sd['t'], t) self.assertEqual(sd['p'], p) # Should fail again when safe globals are cleared torch.serialization.clear_safe_globals() f.seek(0) with self.assertRaisesRegex(pickle.UnpicklingError, "Unsupported global: GLOBAL torch.testing._internal.two_tensor.TwoTensor"): torch.load(f, weights_only=True) finally: torch.serialization.clear_safe_globals()
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSubclassSerialization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_serialization.py
test_tensor_subclass_map_location
instantiate_device_type_tests(TestBothSerialization, globals()) instantiate_parametrized_tests(TestSubclassSerialization) instantiate_parametrized_tests(TestOldSerialization) instantiate_parametrized_tests(TestSerialization) if __name__ == '__main__': run_tests()
def test_tensor_subclass_map_location(self): t = TwoTensor(torch.randn(2, 3), torch.randn(2, 3)) sd = {'t': t} with TemporaryFileName() as f: torch.save(sd, f) with safe_globals([TwoTensor]): sd_loaded = torch.load(f, map_location=torch.device('cuda:0')) self.assertTrue(sd_loaded['t'].device == torch.device('cuda:0')) self.assertTrue(sd_loaded['t'].a.device == torch.device('cuda:0')) self.assertTrue(sd_loaded['t'].b.device == torch.device('cuda:0')) # make sure map_location is not propagated over multiple torch.load calls sd_loaded = torch.load(f) self.assertTrue(sd_loaded['t'].device == torch.device('cpu')) self.assertTrue(sd_loaded['t'].a.device == torch.device('cpu')) self.assertTrue(sd_loaded['t'].b.device == torch.device('cpu'))
import contextlib import copy import gc import gzip import io import os import pickle import platform import shutil import sys import tempfile import unittest import warnings import zipfile from collections import namedtuple, OrderedDict from copy import deepcopy from itertools import product from pathlib import Path import torch from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensorConverter from torch._utils import _rebuild_tensor from torch._utils_internal import get_file_path_2 from torch.serialization import ( check_module_version_greater_or_equal, get_default_load_endianness, LoadEndianness, safe_globals, set_default_load_endianness, skip_data, SourceChangeWarning, ) from torch.testing._internal.common_device_type import instantiate_device_type_tests from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import ( AlwaysWarnTypedStorageRemoval, BytesIOContext, download_file, instantiate_parametrized_tests, IS_FBCODE, IS_FILESYSTEM_UTF8_ENCODING, IS_WINDOWS, parametrize, run_tests, serialTest, skipIfTorchDynamo, TemporaryDirectoryName, TemporaryFileName, TEST_DILL, TestCase, ) from torch.testing._internal.two_tensor import TwoTensor # noqa: F401 from torch.utils._import_utils import import_dill from mmap import MAP_PRIVATE, MAP_SHARED dill = import_dill() HAS_DILL_AT_LEAST_0_3_1 = dill is not None and check_module_version_greater_or_equal(dill, (0, 3, 1)) can_retrieve_source = True Point = namedtuple('Point', ['x', 'y']) import importlib.util class TestSubclassSerialization(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_shape_ops.py
_generate_input
def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float('nan') x[torch.randn(*shape) > 0.5] = float('inf') x[torch.randn(*shape) > 0.5] = float('-inf') elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex('nan') x[torch.randn(*shape) > 0.5] = complex('inf') x[torch.randn(*shape) > 0.5] = complex('-inf') elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x class TestShapeOps(TestCase): # TODO: update to work on CUDA, too @onlyCPU def test_unbind(self, device): x = torch.rand(2, 3, 4, 5) for dim in range(4): res = torch.unbind(x, dim) res2 = x.unbind(dim) self.assertEqual(x.size(dim), len(res)) self.assertEqual(x.size(dim), len(res2)) for i in range(dim): self.assertEqual(x.select(dim, i), res[i]) self.assertEqual(x.select(dim, i), res2[i]) # TODO: update to work on CUDA, too? @skipIfTorchDynamo("TorchDynamo fails with an unknown error") @onlyCPU def test_tolist(self, device): list0D = [] tensor0D = torch.tensor(list0D) self.assertEqual(tensor0D.tolist(), list0D) table1D = [1., 2., 3.] tensor1D = torch.tensor(table1D) storage = torch.Storage(table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) table2D = [[1, 2], [3, 4]] tensor2D = torch.tensor(table2D) self.assertEqual(tensor2D.tolist(), table2D) tensor3D = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensorNonContig = tensor3D.select(1, 1) self.assertFalse(tensorNonContig.is_contiguous()) self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim_invalid(self, device, dtype): shape = self._rand_shape(4, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, False) for fn in [torch.movedim, torch.moveaxis]: # Invalid `source` and `destination` dimension with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 5, 0) with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 0, 5) # Mismatch in size of `source` and `destination` with self.assertRaisesRegex(RuntimeError, "movedim: Invalid source or destination dims:"): fn(x, (1, 0), (0, )) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"): fn(x, (0, 0), (0, 1)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"): fn(x, (0, 1, 0), (0, 1, 2)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"): fn(x, (0, 1), (1, 1)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"): fn(x, (0, 1, 2), (1, 0, 1)) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim(self, device, dtype): for fn in [torch.moveaxis, torch.movedim]: for nd in range(5): shape = self._rand_shape(nd, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, with_extremal=False) for random_negative in [True, False]: for src_dim, dst_dim in permutations(range(nd), r=2): random_prob = random.random() if random_negative and random_prob > 0.66: src_dim = src_dim - nd elif random_negative and random_prob > 0.33: dst_dim = dst_dim - nd elif random_negative: src_dim = src_dim - nd dst_dim = dst_dim - nd # Integer `source` and `destination` torch_fn = partial(fn, source=src_dim, destination=dst_dim) np_fn = partial(np.moveaxis, source=src_dim, destination=dst_dim) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) if nd == 0: continue def make_index_negative(sequence, idx): sequence = list(sequence) sequence[random_idx] = sequence[random_idx] - nd return tuple(src_sequence) for src_sequence in permutations(range(nd), r=random.randint(1, nd)): # Sequence `source` and `destination` dst_sequence = tuple(random.sample(range(nd), len(src_sequence))) # Randomly change a dim to a negative dim representation of itself. random_prob = random.random() if random_negative and random_prob > 0.66: random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) elif random_negative and random_prob > 0.33: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) elif random_negative: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) torch_fn = partial(fn, source=src_sequence, destination=dst_sequence) np_fn = partial(np.moveaxis, source=src_sequence, destination=dst_sequence) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) # Move dim to same position x = torch.randn(2, 3, 5, 7, 11) torch_fn = partial(fn, source=(0, 1), destination=(0, 1)) np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1)) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) torch_fn = partial(fn, source=1, destination=1) np_fn = partial(np.moveaxis, source=1, destination=1) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) # Empty Sequence torch_fn = partial(fn, source=(), destination=()) np_fn = partial(np.moveaxis, source=(), destination=()) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) @dtypes(torch.float, torch.bool) def test_diag(self, device, dtype): if dtype is torch.bool: x = torch.rand(100, 100, device=device) >= 0.5 else: x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.diag(x) res2 = torch.tensor((), dtype=dtype, device=device) torch.diag(x, out=res2) self.assertEqual(res1, res2) def test_diagonal(self, device): x = torch.randn((100, 100), device=device) result = torch.diagonal(x) expected = torch.diag(x) self.assertEqual(result, expected) x = torch.randn((100, 100), device=device) result = torch.diagonal(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) @onlyCPU @dtypes(torch.float) def test_diagonal_multidim(self, device, dtype): x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device) xn = x.numpy() for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]: result = torch.diagonal(x, *args) expected = xn.diagonal(*args) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) # test non-continguous xp = x.permute(1, 2, 3, 0) result = torch.diagonal(xp, 0, -2, -1) expected = xp.numpy().diagonal(0, -2, -1) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) @onlyNativeDeviceTypes @dtypes(*all_types()) @dtypesIfCUDA(*all_types_and(torch.half)) def test_trace(self, device, dtype): def test(shape): tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9) expected_dtype = tensor.sum().dtype expected_dtype = torch_to_numpy_dtype_dict[expected_dtype] result = np.trace(tensor.cpu().numpy(), dtype=expected_dtype) expected = torch.tensor(result, device=device) self.assertEqual(tensor.trace(), expected) shapes = ( [10, 1], [1, 10], [100, 100], [20, 100], [100, 20], ) for shape in shapes: test(shape) def generate_clamp_baseline(self, device, dtype, *, min_vals, max_vals, with_nans): """ Creates a random tensor for a given device and dtype, and computes the expected clamped values given the min_vals and/or max_vals. If with_nans is provided, then some values are randomly set to nan. """ X = torch.rand(100, device=device).mul(50).add(-25) # uniform in [-25, 25] X = X.to(dtype) if with_nans: mask = torch.randint(0, 2, X.shape, dtype=torch.bool, device=device) X[mask] = nan if isinstance(min_vals, torch.Tensor): min_vals = min_vals.cpu().numpy() if isinstance(max_vals, torch.Tensor): max_vals = max_vals.cpu().numpy() # Use NumPy implementation as reference X_clamped = torch.tensor(np.clip(X.cpu().numpy(), a_min=min_vals, a_max=max_vals), device=device) return X, X_clamped # Tests clamp and its alias, clip @dtypes(torch.int64, torch.float32) def test_clamp(self, device, dtype): op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline(device, dtype, min_vals=min_val, max_vals=max_val, with_nans=False) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, Y_actual) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min=min_val, max=max_val, out=Y_out) self.assertEqual(Y_expected, Y_out) def test_clamp_propagates_nans(self, device): op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline(device, torch.float, min_vals=min_val, max_vals=max_val, with_nans=True) Y_expected = torch.isnan(Y_expected) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, torch.isnan(Y_actual)) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min_val, max_val, out=Y_out) self.assertEqual(Y_expected, torch.isnan(Y_out)) def test_clamp_raises_arg_errors(self, device): X = torch.randn(100, dtype=torch.float, device=device) error_msg = 'At least one of \'min\' or \'max\' must not be None' with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp() with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp_() with self.assertRaisesRegex(RuntimeError, error_msg): torch.clamp(X) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip(self, device, dtype): make_from_data = partial(torch.tensor, device=device, dtype=dtype) make_from_size = partial(make_tensor, device=device, dtype=dtype) def test_flip_impl(input_t, dims, output_t): def all_t(): yield input_t, output_t if dtype is torch.float: # We generate quantized versions as well for qdtype in (torch.quint8, torch.qint8, torch.qint32): qinput_t = torch.quantize_per_tensor(input_t, 0.1, 5, qdtype) qoutput_t = torch.quantize_per_tensor(output_t, 0.1, 5, qdtype) yield qinput_t, qoutput_t for in_t, out_t in all_t(): self.assertEqual(in_t.flip(dims), out_t) n = in_t.ndim if not isinstance(dims, tuple): # Wrap dim self.assertEqual(in_t.flip(-n + dims), out_t) else: # Permute dimensions for p_dims in permutations(dims): self.assertEqual(in_t.flip(p_dims), out_t) if len(p_dims) > 0: # Wrap 1st dim self.assertEqual(in_t.flip((-n + p_dims[0],) + p_dims[1:]), out_t) def gen_data(): # Basic tests data = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2) nonctg = make_from_size((2, 2, 2), noncontiguous=True).copy_(data) dims_result = ((0, make_from_data([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2)), (1, make_from_data([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2)), (2, make_from_data([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2)), ((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2)), ((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2))) for in_tensor, (dims, out_tensor) in product((data, nonctg), dims_result): yield in_tensor, dims, out_tensor # Expanded in_t = make_from_data([1, 2, 3]).view(3, 1).expand(3, 2) dims = 0 out_t = make_from_data([3, 3, 2, 2, 1, 1]).view(3, 2) yield in_t, dims, out_t # Noop on expanded dimension yield in_t, 1, in_t # Transposed in_t = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2).transpose(0, 1) dims = (0, 1, 2) out_t = make_from_data([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2) yield in_t, dims, out_t # Rectangular case in_t = make_from_data([1, 2, 3, 4, 5, 6]).view(2, 3) dims = 0 out_t = make_from_data([[4, 5, 6], [1, 2, 3]]) yield in_t, dims, out_t dims = 1 out_t = make_from_data([[3, 2, 1], [6, 5, 4]]) yield in_t, dims, out_t # vectorized NCHW cases (images) if device == "cpu" and dtype != torch.bfloat16: for mf in [torch.contiguous_format, torch.channels_last]: for c in [2, 3, 8, 16]: in_t = make_from_size((2, c, 32, 32)).contiguous(memory_format=mf) np_in_t = in_t.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_t, 3, out_t np_out_t = np_in_t[:, :, ::-1, :].copy() out_t = torch.from_numpy(np_out_t) yield in_t, 2, out_t # non-contig cases in_tt = in_t[..., ::2, :] np_in_t = in_tt.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_tt, 3, out_t in_tt = in_t[..., ::2] np_in_t = in_tt.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_tt, 3, out_t # Noops (edge cases) # Size 0 in_t = make_from_data(()) yield in_t, 0, in_t yield in_t, (), in_t # dims = () in_t = make_from_size((3, 2, 1)) yield in_t, (), in_t # Zero elements, non-zero size in_t = make_from_size((3, 0, 2)) for i in range(in_t.ndim): yield in_t, i, in_t # Size 1 in_t = make_from_size(()) yield in_t, 0, in_t in_t = make_from_size((1,)) yield in_t, 0, in_t for in_tensor, dims, out_tensor in gen_data(): test_flip_impl(in_tensor, dims, out_tensor) # test for shape size = [2, 3, 4] data = make_from_size(size) possible_dims = range(len(size)) test_dims = chain(combinations(possible_dims, 1), combinations(possible_dims, 2)) for dims in test_dims: self.assertEqual(size, list(data.flip(dims).size())) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_errors(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) data = make_arg((2, 2, 2)) # not allow flip on the same dim more than once self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) # not allow empty list as input self.assertRaises(TypeError, lambda: data.flip()) # not allow dim > max dim self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3)) self.assertRaises(IndexError, lambda: data.flip(3)) def _rand_shape(self, dim, min_size, max_size): return tuple(torch.randint(min_size, max_size + 1, (dim,))) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_numpy(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) for ndim in [3, 4]: shape = self._rand_shape(ndim, 5, 10) data = make_arg(shape) # Axis to sample for given shape. for i in range(1, ndim + 1): # Check all combinations of `i` axis. for flip_dim in combinations(range(ndim), i): torch_fn = partial(torch.flip, dims=flip_dim) np_fn = partial(np.flip, axis=flip_dim) self.compare_with_numpy(torch_fn, np_fn, data) @onlyCUDA # CPU is too slow @largeTensorTest('17GB') # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB @largeTensorTest("81GB", "cpu") # even for CUDA test, sufficient system memory is required def test_flip_large_tensor(self, device): t_in = torch.empty(2**32 + 1, dtype=torch.uint8).random_() torch_fn = partial(torch.flip, dims=(0,)) np_fn = partial(np.flip, axis=0) self.compare_with_numpy(torch_fn, np_fn, t_in) del t_in def _test_fliplr_flipud(self, torch_fn, np_fn, min_dim, max_dim, device, dtype): for dim in range(min_dim, max_dim + 1): shape = self._rand_shape(dim, 5, 10) # Randomly scale the input if dtype.is_floating_point or dtype.is_complex: data = torch.randn(*shape, device=device, dtype=dtype) else: data = torch.randint(0, 10, shape, device=device, dtype=dtype) self.compare_with_numpy(torch_fn, np_fn, data) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr(self, device, dtype): self._test_fliplr_flipud(torch.fliplr, np.fliplr, 2, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr_invalid(self, device, dtype): x = torch.randn(42).to(dtype) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(x) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(torch.tensor(42, device=device, dtype=dtype)) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud(self, device, dtype): self._test_fliplr_flipud(torch.flipud, np.flipud, 1, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud_invalid(self, device, dtype): with self.assertRaisesRegex(RuntimeError, "Input must be >= 1-d."): torch.flipud(torch.tensor(42, device=device, dtype=dtype)) def test_rot90(self, device): data = torch.arange(1, 5, device=device).view(2, 2) self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1])) self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1])) self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1])) self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1])) # test for default args k=1, dims=[0, 1] self.assertEqual(data.rot90(), data.rot90(1, [0, 1])) # test for reversed order of dims self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0])) # test for modulo of k self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1])) self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1])) self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1])) # test for dims out-of-range error self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2])) # test tensor with more than 2D data = torch.arange(1, 9, device=device).view(2, 2, 2) self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2])) self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2])) # test for errors self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0])) @skipIfTorchDynamo("TorchDynamo fails with an unknown error") @dtypes(torch.cfloat, torch.cdouble) def test_complex_rot90(self, device, dtype): shape = self._rand_shape(random.randint(2, 4), 5, 10) for rot_times in range(4): data = torch.randn(*shape, device=device, dtype=dtype) torch_fn = partial(torch.rot90, k=rot_times, dims=[0, 1]) np_fn = partial(np.rot90, k=rot_times, axes=[0, 1]) self.compare_with_numpy(torch_fn, np_fn, data) # TODO: update once warning flag is available to always trigger ONCE warnings # Ensures nonzero does not throw a warning, even when the as_tuple argument # is not provided def test_nonzero_no_warning(self, device): t = torch.randn((2, 2), device=device) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") torch.nonzero(t) t.nonzero() self.assertEqual(len(w), 0) @dtypes(*all_types_and(torch.half, torch.bool, torch.bfloat16)) def test_nonzero(self, device, dtype): shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != 'xla': # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.float, device=device)) ) if self.device_type == 'cuda': self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.long)) ) np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0) def test_nonzero_astuple_out(self, device): t = torch.randn((3, 3, 3), device=device) out = torch.empty_like(t, dtype=torch.long) with self.assertRaises(RuntimeError): torch.nonzero(t, as_tuple=True, out=out) self.assertEqual(torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out)) # Verifies that JIT script cannot handle the as_tuple kwarg # See Issue https://github.com/pytorch/pytorch/issues/45499. def _foo(t): tuple_result = torch.nonzero(t, as_tuple=True) nontuple_result = torch.nonzero(t, as_tuple=False) out = torch.empty_like(nontuple_result) torch.nonzero(t, as_tuple=False, out=out) return tuple_result, nontuple_result, out with self.assertRaises(RuntimeError): scripted_foo = torch.jit.script(_foo) # Verifies that JIT tracing works fine traced_foo = torch.jit.trace(_foo, t) traced_tuple, traced_nontuple, traced_out = traced_foo(t) expected_tuple = torch.nonzero(t, as_tuple=True) expected_nontuple = torch.nonzero(t) self.assertEqual(traced_tuple, expected_tuple) self.assertEqual(traced_nontuple, expected_nontuple) self.assertEqual(traced_out, expected_nontuple) @onlyNativeDeviceTypes def test_nonzero_discontiguous(self, device): shape = (4, 4) tensor = torch.randint(2, shape, device=device) tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_(tensor) dst1 = tensor.nonzero(as_tuple=False) dst2 = tensor_nc.nonzero(as_tuple=False) self.assertEqual(dst1, dst2, atol=0, rtol=0) dst3 = torch.empty_like(dst1) data_ptr = dst3.data_ptr() # expect dst3 storage to be reused torch.nonzero(tensor, out=dst3) self.assertEqual(data_ptr, dst3.data_ptr()) self.assertEqual(dst1, dst3, atol=0, rtol=0) # discontiguous out dst4 = torch.empty(dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device)[:, ::2] data_ptr = dst4.data_ptr() strides = dst4.stride() torch.nonzero(tensor, out=dst4) self.assertEqual(data_ptr, dst4.data_ptr()) self.assertEqual(dst1, dst4, atol=0, rtol=0) self.assertEqual(strides, dst4.stride()) def test_nonzero_non_diff(self, device): x = torch.randn(10, requires_grad=True) nz = x.nonzero() self.assertFalse(nz.requires_grad) @dtypes(torch.int64, torch.float, torch.complex128) def test_sparse_dense_dim(self, device, dtype): for shape in [(), (2, ), (2, 3)]: if dtype.is_complex or dtype.is_floating_point: x = torch.rand(shape, device=device, dtype=dtype) else: x = torch.randint(-9, 9, shape, device=device, dtype=dtype) self.assertEqual(x.sparse_dim(), 0) self.assertEqual(x.dense_dim(), len(shape)) instantiate_device_type_tests(TestShapeOps, globals()) if __name__ == '__main__': run_tests()
def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint( 30, 100 ) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float("nan") x[torch.randn(*shape) > 0.5] = float("inf") x[torch.randn(*shape) > 0.5] = float("-inf") elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex("nan") x[torch.randn(*shape) > 0.5] = complex("inf") x[torch.randn(*shape) > 0.5] = complex("-inf") elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x class TestShapeOps(TestCase): # TODO: update to work on CUDA, too @onlyCPU def test_unbind(self, device): x = torch.rand(2, 3, 4, 5) for dim in range(4): res = torch.unbind(x, dim) res2 = x.unbind(dim) self.assertEqual(x.size(dim), len(res)) self.assertEqual(x.size(dim), len(res2)) for i in range(dim): self.assertEqual(x.select(dim, i), res[i]) self.assertEqual(x.select(dim, i), res2[i]) # TODO: update to work on CUDA, too? @skipIfTorchDynamo("TorchDynamo fails with an unknown error") @onlyCPU def test_tolist(self, device): list0D = [] tensor0D = torch.tensor(list0D) self.assertEqual(tensor0D.tolist(), list0D) table1D = [1.0, 2.0, 3.0] tensor1D = torch.tensor(table1D) storage = torch.Storage(table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) table2D = [[1, 2], [3, 4]] tensor2D = torch.tensor(table2D) self.assertEqual(tensor2D.tolist(), table2D) tensor3D = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensorNonContig = tensor3D.select(1, 1) self.assertFalse(tensorNonContig.is_contiguous()) self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim_invalid(self, device, dtype): shape = self._rand_shape(4, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, False) for fn in [torch.movedim, torch.moveaxis]: # Invalid `source` and `destination` dimension with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 5, 0) with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 0, 5) # Mismatch in size of `source` and `destination` with self.assertRaisesRegex( RuntimeError, "movedim: Invalid source or destination dims:" ): fn(x, (1, 0), (0,)) with self.assertRaisesRegex( RuntimeError, "movedim: repeated dim in `source`" ): fn(x, (0, 0), (0, 1)) with self.assertRaisesRegex( RuntimeError, "movedim: repeated dim in `source`" ): fn(x, (0, 1, 0), (0, 1, 2)) with self.assertRaisesRegex( RuntimeError, "movedim: repeated dim in `destination`" ): fn(x, (0, 1), (1, 1)) with self.assertRaisesRegex( RuntimeError, "movedim: repeated dim in `destination`" ): fn(x, (0, 1, 2), (1, 0, 1)) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim(self, device, dtype): for fn in [torch.moveaxis, torch.movedim]: for nd in range(5): shape = self._rand_shape(nd, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, with_extremal=False) for random_negative in [True, False]: for src_dim, dst_dim in permutations(range(nd), r=2): random_prob = random.random() if random_negative and random_prob > 0.66: src_dim = src_dim - nd elif random_negative and random_prob > 0.33: dst_dim = dst_dim - nd elif random_negative: src_dim = src_dim - nd dst_dim = dst_dim - nd # Integer `source` and `destination` torch_fn = partial(fn, source=src_dim, destination=dst_dim) np_fn = partial( np.moveaxis, source=src_dim, destination=dst_dim ) self.compare_with_numpy( torch_fn, np_fn, x, device=None, dtype=None ) if nd == 0: continue def make_index_negative(sequence, idx): sequence = list(sequence) sequence[random_idx] = sequence[random_idx] - nd return tuple(src_sequence) for src_sequence in permutations( range(nd), r=random.randint(1, nd) ): # Sequence `source` and `destination` dst_sequence = tuple( random.sample(range(nd), len(src_sequence)) ) # Randomly change a dim to a negative dim representation of itself. random_prob = random.random() if random_negative and random_prob > 0.66: random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) elif random_negative and random_prob > 0.33: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) elif random_negative: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) torch_fn = partial( fn, source=src_sequence, destination=dst_sequence ) np_fn = partial( np.moveaxis, source=src_sequence, destination=dst_sequence ) self.compare_with_numpy( torch_fn, np_fn, x, device=None, dtype=None ) # Move dim to same position x = torch.randn(2, 3, 5, 7, 11) torch_fn = partial(fn, source=(0, 1), destination=(0, 1)) np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1)) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) torch_fn = partial(fn, source=1, destination=1) np_fn = partial(np.moveaxis, source=1, destination=1) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) # Empty Sequence torch_fn = partial(fn, source=(), destination=()) np_fn = partial(np.moveaxis, source=(), destination=()) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) @dtypes(torch.float, torch.bool) def test_diag(self, device, dtype): if dtype is torch.bool: x = torch.rand(100, 100, device=device) >= 0.5 else: x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.diag(x) res2 = torch.tensor((), dtype=dtype, device=device) torch.diag(x, out=res2) self.assertEqual(res1, res2) def test_diagonal(self, device): x = torch.randn((100, 100), device=device) result = torch.diagonal(x) expected = torch.diag(x) self.assertEqual(result, expected) x = torch.randn((100, 100), device=device) result = torch.diagonal(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) @onlyCPU @dtypes(torch.float) def test_diagonal_multidim(self, device, dtype): x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device) xn = x.numpy() for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]: result = torch.diagonal(x, *args) expected = xn.diagonal(*args) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) # test non-continguous xp = x.permute(1, 2, 3, 0) result = torch.diagonal(xp, 0, -2, -1) expected = xp.numpy().diagonal(0, -2, -1) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) @onlyNativeDeviceTypes @dtypes(*all_types()) @dtypesIfCUDA(*all_types_and(torch.half)) def test_trace(self, device, dtype): def test(shape): tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9) expected_dtype = tensor.sum().dtype expected_dtype = torch_to_numpy_dtype_dict[expected_dtype] result = np.trace(tensor.cpu().numpy(), dtype=expected_dtype) expected = torch.tensor(result, device=device) self.assertEqual(tensor.trace(), expected) shapes = ( [10, 1], [1, 10], [100, 100], [20, 100], [100, 20], ) for shape in shapes: test(shape) def generate_clamp_baseline(self, device, dtype, *, min_vals, max_vals, with_nans): """ Creates a random tensor for a given device and dtype, and computes the expected clamped values given the min_vals and/or max_vals. If with_nans is provided, then some values are randomly set to nan. """ X = torch.rand(100, device=device).mul(50).add(-25) # uniform in [-25, 25] X = X.to(dtype) if with_nans: mask = torch.randint(0, 2, X.shape, dtype=torch.bool, device=device) X[mask] = nan if isinstance(min_vals, torch.Tensor): min_vals = min_vals.cpu().numpy() if isinstance(max_vals, torch.Tensor): max_vals = max_vals.cpu().numpy() # Use NumPy implementation as reference X_clamped = torch.tensor( np.clip(X.cpu().numpy(), a_min=min_vals, a_max=max_vals), device=device ) return X, X_clamped # Tests clamp and its alias, clip @dtypes(torch.int64, torch.float32) def test_clamp(self, device, dtype): op_list = ( torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_, ) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline( device, dtype, min_vals=min_val, max_vals=max_val, with_nans=False ) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, Y_actual) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min=min_val, max=max_val, out=Y_out) self.assertEqual(Y_expected, Y_out) def test_clamp_propagates_nans(self, device): op_list = ( torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_, ) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline( device, torch.float, min_vals=min_val, max_vals=max_val, with_nans=True, ) Y_expected = torch.isnan(Y_expected) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, torch.isnan(Y_actual)) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min_val, max_val, out=Y_out) self.assertEqual(Y_expected, torch.isnan(Y_out)) def test_clamp_raises_arg_errors(self, device): X = torch.randn(100, dtype=torch.float, device=device) error_msg = "At least one of 'min' or 'max' must not be None" with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp() with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp_() with self.assertRaisesRegex(RuntimeError, error_msg): torch.clamp(X) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip(self, device, dtype): make_from_data = partial(torch.tensor, device=device, dtype=dtype) make_from_size = partial(make_tensor, device=device, dtype=dtype) def test_flip_impl(input_t, dims, output_t): def all_t(): yield input_t, output_t if dtype is torch.float: # We generate quantized versions as well for qdtype in (torch.quint8, torch.qint8, torch.qint32): qinput_t = torch.quantize_per_tensor(input_t, 0.1, 5, qdtype) qoutput_t = torch.quantize_per_tensor(output_t, 0.1, 5, qdtype) yield qinput_t, qoutput_t for in_t, out_t in all_t(): self.assertEqual(in_t.flip(dims), out_t) n = in_t.ndim if not isinstance(dims, tuple): # Wrap dim self.assertEqual(in_t.flip(-n + dims), out_t) else: # Permute dimensions for p_dims in permutations(dims): self.assertEqual(in_t.flip(p_dims), out_t) if len(p_dims) > 0: # Wrap 1st dim self.assertEqual( in_t.flip((-n + p_dims[0],) + p_dims[1:]), out_t ) def gen_data(): # Basic tests data = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2) nonctg = make_from_size((2, 2, 2), noncontiguous=True).copy_(data) dims_result = ( (0, make_from_data([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2)), (1, make_from_data([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2)), (2, make_from_data([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2)), ((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2)), ((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2)), ) for in_tensor, (dims, out_tensor) in product((data, nonctg), dims_result): yield in_tensor, dims, out_tensor # Expanded in_t = make_from_data([1, 2, 3]).view(3, 1).expand(3, 2) dims = 0 out_t = make_from_data([3, 3, 2, 2, 1, 1]).view(3, 2) yield in_t, dims, out_t # Noop on expanded dimension yield in_t, 1, in_t # Transposed in_t = ( make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2).transpose(0, 1) ) dims = (0, 1, 2) out_t = make_from_data([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2) yield in_t, dims, out_t # Rectangular case in_t = make_from_data([1, 2, 3, 4, 5, 6]).view(2, 3) dims = 0 out_t = make_from_data([[4, 5, 6], [1, 2, 3]]) yield in_t, dims, out_t dims = 1 out_t = make_from_data([[3, 2, 1], [6, 5, 4]]) yield in_t, dims, out_t # vectorized NCHW cases (images) if device == "cpu" and dtype != torch.bfloat16: for mf in [torch.contiguous_format, torch.channels_last]: for c in [2, 3, 8, 16]: in_t = make_from_size((2, c, 32, 32)).contiguous( memory_format=mf ) np_in_t = in_t.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_t, 3, out_t np_out_t = np_in_t[:, :, ::-1, :].copy() out_t = torch.from_numpy(np_out_t) yield in_t, 2, out_t # non-contig cases in_tt = in_t[..., ::2, :] np_in_t = in_tt.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_tt, 3, out_t in_tt = in_t[..., ::2] np_in_t = in_tt.numpy() np_out_t = np_in_t[:, :, :, ::-1].copy() out_t = torch.from_numpy(np_out_t) yield in_tt, 3, out_t # Noops (edge cases) # Size 0 in_t = make_from_data(()) yield in_t, 0, in_t yield in_t, (), in_t # dims = () in_t = make_from_size((3, 2, 1)) yield in_t, (), in_t # Zero elements, non-zero size in_t = make_from_size((3, 0, 2)) for i in range(in_t.ndim): yield in_t, i, in_t # Size 1 in_t = make_from_size(()) yield in_t, 0, in_t in_t = make_from_size((1,)) yield in_t, 0, in_t for in_tensor, dims, out_tensor in gen_data(): test_flip_impl(in_tensor, dims, out_tensor) # test for shape size = [2, 3, 4] data = make_from_size(size) possible_dims = range(len(size)) test_dims = chain( combinations(possible_dims, 1), combinations(possible_dims, 2) ) for dims in test_dims: self.assertEqual(size, list(data.flip(dims).size())) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_errors(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) data = make_arg((2, 2, 2)) # not allow flip on the same dim more than once self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) # not allow empty list as input self.assertRaises(TypeError, lambda: data.flip()) # not allow dim > max dim self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3)) self.assertRaises(IndexError, lambda: data.flip(3)) def _rand_shape(self, dim, min_size, max_size): return tuple(torch.randint(min_size, max_size + 1, (dim,))) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_numpy(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) for ndim in [3, 4]: shape = self._rand_shape(ndim, 5, 10) data = make_arg(shape) # Axis to sample for given shape. for i in range(1, ndim + 1): # Check all combinations of `i` axis. for flip_dim in combinations(range(ndim), i): torch_fn = partial(torch.flip, dims=flip_dim) np_fn = partial(np.flip, axis=flip_dim) self.compare_with_numpy(torch_fn, np_fn, data) @onlyCUDA # CPU is too slow @largeTensorTest("17GB") # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB @largeTensorTest( "81GB", "cpu" ) # even for CUDA test, sufficient system memory is required @unittest.skipIf(IS_JETSON, "Too large for Jetson") def test_flip_large_tensor(self, device): t_in = torch.empty(2**32 + 1, dtype=torch.uint8).random_() torch_fn = partial(torch.flip, dims=(0,)) np_fn = partial(np.flip, axis=0) self.compare_with_numpy(torch_fn, np_fn, t_in) del t_in def _test_fliplr_flipud(self, torch_fn, np_fn, min_dim, max_dim, device, dtype): for dim in range(min_dim, max_dim + 1): shape = self._rand_shape(dim, 5, 10) # Randomly scale the input if dtype.is_floating_point or dtype.is_complex: data = torch.randn(*shape, device=device, dtype=dtype) else: data = torch.randint(0, 10, shape, device=device, dtype=dtype) self.compare_with_numpy(torch_fn, np_fn, data) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr(self, device, dtype): self._test_fliplr_flipud(torch.fliplr, np.fliplr, 2, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr_invalid(self, device, dtype): x = torch.randn(42).to(dtype) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(x) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(torch.tensor(42, device=device, dtype=dtype)) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud(self, device, dtype): self._test_fliplr_flipud(torch.flipud, np.flipud, 1, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud_invalid(self, device, dtype): with self.assertRaisesRegex(RuntimeError, "Input must be >= 1-d."): torch.flipud(torch.tensor(42, device=device, dtype=dtype)) def test_rot90(self, device): data = torch.arange(1, 5, device=device).view(2, 2) self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1])) self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1])) self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1])) self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1])) # test for default args k=1, dims=[0, 1] self.assertEqual(data.rot90(), data.rot90(1, [0, 1])) # test for reversed order of dims self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0])) # test for modulo of k self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1])) self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1])) self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1])) # test for dims out-of-range error self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2])) # test tensor with more than 2D data = torch.arange(1, 9, device=device).view(2, 2, 2) self.assertEqual( torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2]) ) self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2])) # test for errors self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0])) @skipIfTorchDynamo("TorchDynamo fails with an unknown error") @dtypes(torch.cfloat, torch.cdouble) def test_complex_rot90(self, device, dtype): shape = self._rand_shape(random.randint(2, 4), 5, 10) for rot_times in range(4): data = torch.randn(*shape, device=device, dtype=dtype) torch_fn = partial(torch.rot90, k=rot_times, dims=[0, 1]) np_fn = partial(np.rot90, k=rot_times, axes=[0, 1]) self.compare_with_numpy(torch_fn, np_fn, data) # TODO: update once warning flag is available to always trigger ONCE warnings # Ensures nonzero does not throw a warning, even when the as_tuple argument # is not provided def test_nonzero_no_warning(self, device): t = torch.randn((2, 2), device=device) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") torch.nonzero(t) t.nonzero() self.assertEqual(len(w), 0) @dtypes(*all_types_and(torch.half, torch.bool, torch.bfloat16)) def test_nonzero(self, device, dtype): shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to( dtype ) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != "xla": # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.float, device=device) ), ) if ( self.device_type == "cuda" or self.device_type == TEST_PRIVATEUSE1_DEVICE_TYPE ): self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero( tensor, out=torch.empty([], dtype=torch.long) ), ) np_array = ( tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() ) np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0) def test_nonzero_astuple_out(self, device): t = torch.randn((3, 3, 3), device=device) out = torch.empty_like(t, dtype=torch.long) with self.assertRaises(RuntimeError): torch.nonzero(t, as_tuple=True, out=out) self.assertEqual( torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out) ) # Verifies that JIT script cannot handle the as_tuple kwarg # See Issue https://github.com/pytorch/pytorch/issues/45499. def _foo(t): tuple_result = torch.nonzero(t, as_tuple=True) nontuple_result = torch.nonzero(t, as_tuple=False) out = torch.empty_like(nontuple_result) torch.nonzero(t, as_tuple=False, out=out) return tuple_result, nontuple_result, out with self.assertRaises(RuntimeError): scripted_foo = torch.jit.script(_foo) # Verifies that JIT tracing works fine traced_foo = torch.jit.trace(_foo, t) traced_tuple, traced_nontuple, traced_out = traced_foo(t) expected_tuple = torch.nonzero(t, as_tuple=True) expected_nontuple = torch.nonzero(t) self.assertEqual(traced_tuple, expected_tuple) self.assertEqual(traced_nontuple, expected_nontuple) self.assertEqual(traced_out, expected_nontuple) @onlyNativeDeviceTypes def test_nonzero_discontiguous(self, device): shape = (4, 4) tensor = torch.randint(2, shape, device=device) tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_( tensor ) dst1 = tensor.nonzero(as_tuple=False) dst2 = tensor_nc.nonzero(as_tuple=False) self.assertEqual(dst1, dst2, atol=0, rtol=0) dst3 = torch.empty_like(dst1) data_ptr = dst3.data_ptr() # expect dst3 storage to be reused torch.nonzero(tensor, out=dst3) self.assertEqual(data_ptr, dst3.data_ptr()) self.assertEqual(dst1, dst3, atol=0, rtol=0) # discontiguous out dst4 = torch.empty( dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device )[:, ::2] data_ptr = dst4.data_ptr() strides = dst4.stride() torch.nonzero(tensor, out=dst4) self.assertEqual(data_ptr, dst4.data_ptr()) self.assertEqual(dst1, dst4, atol=0, rtol=0) self.assertEqual(strides, dst4.stride()) def test_nonzero_non_diff(self, device): x = torch.randn(10, requires_grad=True) nz = x.nonzero() self.assertFalse(nz.requires_grad) @dtypes(torch.int64, torch.float, torch.complex128) def test_sparse_dense_dim(self, device, dtype): for shape in [(), (2,), (2, 3)]: if dtype.is_complex or dtype.is_floating_point: x = torch.rand(shape, device=device, dtype=dtype) else: x = torch.randint(-9, 9, shape, device=device, dtype=dtype) self.assertEqual(x.sparse_dim(), 0) self.assertEqual(x.dense_dim(), len(shape)) instantiate_device_type_tests(TestShapeOps, globals()) if __name__ == "__main__": run_tests()
import torch import numpy as np from itertools import product, combinations, permutations, chain from functools import partial import random import warnings from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, skipIfTorchDynamo, torch_to_numpy_dtype_dict) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyCPU, onlyCUDA, dtypes, onlyNativeDeviceTypes, dtypesIfCUDA, largeTensorTest) from torch.testing._internal.common_dtype import all_types_and_complex_and, all_types, all_types_and
import random import unittest import warnings from functools import partial from itertools import chain, combinations, permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, all_types_and_complex_and, ) from torch.testing._internal.common_utils import ( IS_JETSON, run_tests, skipIfTorchDynamo, TEST_PRIVATEUSE1_DEVICE_TYPE, TestCase, torch_to_numpy_dtype_dict, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sort_and_select.py
compare
def compare(t, k, dim, dir): topKVal, topKInd = t.topk(k, dim, dir, True) sortKVal, sortKInd = topKViaSort(t, k, dim, dir) compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) t = torch.rand(random.randint(1, SIZE), random.randint(1, SIZE), random.randint(1, SIZE), device=device) for _kTries in range(3): for _dimTries in range(3): for transpose in (True, False): for dir in (True, False): testTensor = t if transpose: dim1 = random.randrange(t.ndimension()) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(t.ndimension()) testTensor = t.transpose(dim1, dim2) dim = random.randrange(testTensor.ndimension()) k = random.randint(1, testTensor.size(dim)) compare(testTensor, k, dim, dir) # This tests the code path where on CUDA, topk is implemented with sort. t = torch.randn((2, 100000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False) # This tests the code path where on CUDA, topk is implemented with multiblock t = torch.randn((2, 10000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False)
def compare(t, k, dim, dir): topKVal, topKInd = t.topk(k, dim, dir, True) sortKVal, sortKInd = topKViaSort(t, k, dim, dir) compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) SIZE = 100 t = torch.rand( random.randint(1, SIZE), random.randint(1, SIZE), random.randint(1, SIZE), device=device, ) for _kTries in range(3): for _dimTries in range(3): for transpose in (True, False): for dir in (True, False): testTensor = t if transpose: dim1 = random.randrange(t.ndimension()) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(t.ndimension()) testTensor = t.transpose(dim1, dim2) dim = random.randrange(testTensor.ndimension()) k = random.randint(1, testTensor.size(dim)) compare(testTensor, k, dim, dir) # This tests the code path where on CUDA, topk is implemented with sort. t = torch.randn((2, 100000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False) # This tests the code path where on CUDA, topk is implemented with multiblock t = torch.randn((2, 10000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False)
import torch import numpy as np import random from torch import nan from itertools import permutations, product from torch.testing import make_tensor from torch.testing._internal.common_dtype import all_types, all_types_and, floating_types_and from torch.testing._internal.common_utils import \ (TestCase, run_tests, slowTest) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, dtypes, onlyNativeDeviceTypes, onlyCUDA, dtypesIfCUDA, dtypesIfCPU, onlyCPU, largeTensorTest) SIZE = 100 from itertools import chain, combinations
import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) from itertools import chain, combinations
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sort_and_select.py
test_topk_quantized_scalar_input
def test_topk_quantized_scalar_input(self): # Calling topk on a quantized scalar input used to segfault, # see https://github.com/pytorch/pytorch/issues/116324 x = torch.quantize_per_tensor(torch.randn(()), 0.1, 10, torch.qint8) x.topk(1)
import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) class TestSortAndSelect(TestCase): from itertools import chain, combinations
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sort_and_select.py
run_test
def run_test(device, dtype): x = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]], [[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) x_empty = torch.empty(5, 0, dtype=dtype, device=device) x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device) x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device) if dtype in floating_types_and(torch.float16, torch.bfloat16): x_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device) expected_unique_dim0 = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) expected_inverse_dim0 = torch.tensor([0, 0]) expected_counts_dim0 = torch.tensor([2]) expected_unique_dim1 = torch.tensor([[[0., 1.], [1., 1.], [2., 1.]], [[0., 1.], [1., 1.], [2., 1.]]], dtype=dtype, device=device) expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]], [[False, True], [True, True]]], dtype=torch.bool, device=device) expected_inverse_dim1 = torch.tensor([1, 0, 2, 0]) expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0]) expected_counts_dim1 = torch.tensor([2, 1, 1]) expected_counts_dim1_bool = torch.tensor([2, 2]) expected_unique_dim2 = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]], [[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) expected_inverse_dim2 = torch.tensor([0, 1]) expected_counts_dim2 = torch.tensor([1, 1]) expected_unique_empty = torch.empty(5, 0, dtype=dtype, device=device) expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device) expected_counts_empty = torch.tensor([], dtype=torch.long, device=device) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device) expected_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device) expected_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device) # dim0 x_unique = torch.unique(x, dim=0) self.assertEqual(expected_unique_dim0, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_counts_dim0, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) self.assertEqual(expected_counts_dim0, x_counts) # dim1 x_unique = torch.unique(x, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) else: self.assertEqual(expected_unique_dim1, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_counts_dim1, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) self.assertEqual(expected_counts_dim1, x_counts) # dim2 x_unique = torch.unique(x, dim=2) self.assertEqual(expected_unique_dim2, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_counts_dim2, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) self.assertEqual(expected_counts_dim2, x_counts) # test empty tensor x_unique, x_inverse, x_counts = torch.unique( x_empty, return_inverse=True, return_counts=True, dim=1) self.assertEqual(expected_unique_empty, x_unique) self.assertEqual(expected_inverse_empty, x_inverse) self.assertEqual(expected_counts_empty, x_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): x_unique, x_inverse, x_counts = torch.unique( x_nan, return_inverse=True, return_counts=True, dim=0) self.assertEqual(expected_unique_nan, x_unique) self.assertEqual(expected_inverse_nan, x_inverse) self.assertEqual(expected_counts_nan, x_counts) # test not a well formed tensor # Checking for runtime error, as this is the expected behaviour with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty, return_inverse=True, return_counts=True, dim=1) # test along dim2 with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty_another, return_inverse=True, return_counts=True, dim=2) # test consecutive version y = torch.tensor( [[0, 1], [0, 1], [0, 1], [1, 2], [1, 2], [3, 4], [0, 1], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device ) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device) expected_y_unique = torch.tensor( [[0, 1], [1, 2], [3, 4], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device ) expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device) expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device) expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device) expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_y_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device) expected_y_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device) expected_y_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device) y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0) if x.dtype == torch.bool: self.assertEqual(expected_y_inverse_bool, y_inverse) self.assertEqual(expected_y_counts_bool, y_counts) else: self.assertEqual(expected_y_inverse, y_inverse) self.assertEqual(expected_y_counts, y_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_unique, y_inverse, y_counts = torch.unique_consecutive( y_nan, return_inverse=True, return_counts=True, dim=0) self.assertEqual(expected_y_unique_nan, y_unique) self.assertEqual(expected_y_inverse_nan, y_inverse) self.assertEqual(expected_y_counts_nan, y_counts) run_test(device, torch.float) run_test(device, torch.double) run_test(device, torch.long) run_test(device, torch.uint8) run_test(device, torch.bool)
def run_test(device, dtype): x = torch.tensor( [ [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], ], dtype=dtype, device=device, ) x_empty = torch.empty(5, 0, dtype=dtype, device=device) x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device) x_ill_formed_empty_another = torch.empty( 5, 0, 5, dtype=dtype, device=device ) if dtype in floating_types_and(torch.float16, torch.bfloat16): x_nan = torch.tensor( [float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_unique_dim0 = torch.tensor( [[[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]]], dtype=dtype, device=device, ) expected_inverse_dim0 = torch.tensor([0, 0]) expected_counts_dim0 = torch.tensor([2]) expected_unique_dim1 = torch.tensor( [ [[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]], [[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]], ], dtype=dtype, device=device, ) expected_unique_dim1_bool = torch.tensor( [[[False, True], [True, True]], [[False, True], [True, True]]], dtype=torch.bool, device=device, ) expected_inverse_dim1 = torch.tensor([1, 0, 2, 0]) expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0]) expected_counts_dim1 = torch.tensor([2, 1, 1]) expected_counts_dim1_bool = torch.tensor([2, 2]) expected_unique_dim2 = torch.tensor( [ [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], ], dtype=dtype, device=device, ) expected_inverse_dim2 = torch.tensor([0, 1]) expected_counts_dim2 = torch.tensor([1, 1]) expected_unique_empty = torch.empty(5, 0, dtype=dtype, device=device) expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device) expected_counts_empty = torch.tensor([], dtype=torch.long, device=device) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_unique_nan = torch.tensor( [float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_inverse_nan = torch.tensor( [0, 1, 1, 2, 3, 4], dtype=torch.long, device=device ) expected_counts_nan = torch.tensor( [1, 2, 1, 1, 1], dtype=torch.long, device=device ) # dim0 x_unique = torch.unique(x, dim=0) self.assertEqual(expected_unique_dim0, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=0 ) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_counts_dim0, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) self.assertEqual(expected_counts_dim0, x_counts) # dim1 x_unique = torch.unique(x, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) else: self.assertEqual(expected_unique_dim1, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=1 ) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_counts_dim1, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=1 ) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) self.assertEqual(expected_counts_dim1, x_counts) # dim2 x_unique = torch.unique(x, dim=2) self.assertEqual(expected_unique_dim2, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=2 ) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_counts_dim2, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=2 ) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) self.assertEqual(expected_counts_dim2, x_counts) # test empty tensor x_unique, x_inverse, x_counts = torch.unique( x_empty, return_inverse=True, return_counts=True, dim=1 ) self.assertEqual(expected_unique_empty, x_unique) self.assertEqual(expected_inverse_empty, x_inverse) self.assertEqual(expected_counts_empty, x_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): x_unique, x_inverse, x_counts = torch.unique( x_nan, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_unique_nan, x_unique) self.assertEqual(expected_inverse_nan, x_inverse) self.assertEqual(expected_counts_nan, x_counts) # test not a well formed tensor # Checking for runtime error, as this is the expected behaviour with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty, return_inverse=True, return_counts=True, dim=1 ) # test along dim2 with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty_another, return_inverse=True, return_counts=True, dim=2, ) # test consecutive version y = torch.tensor( [ [0, 1], [0, 1], [0, 1], [1, 2], [1, 2], [3, 4], [0, 1], [0, 1], [3, 4], [1, 2], ], dtype=dtype, device=device, ) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_nan = torch.tensor( [float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_y_unique = torch.tensor( [[0, 1], [1, 2], [3, 4], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device, ) expected_y_inverse = torch.tensor( [0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device ) expected_y_counts = torch.tensor( [3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device ) expected_y_inverse_bool = torch.tensor( [0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device ) expected_y_counts_bool = torch.tensor( [3, 3, 2, 2], dtype=torch.int64, device=device ) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_y_unique_nan = torch.tensor( [float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_y_inverse_nan = torch.tensor( [0, 1, 1, 2, 3, 4], dtype=torch.long, device=device ) expected_y_counts_nan = torch.tensor( [1, 2, 1, 1, 1], dtype=torch.long, device=device ) y_unique, y_inverse, y_counts = torch.unique_consecutive( y, return_inverse=True, return_counts=True, dim=0 ) if x.dtype == torch.bool: self.assertEqual(expected_y_inverse_bool, y_inverse) self.assertEqual(expected_y_counts_bool, y_counts) else: self.assertEqual(expected_y_inverse, y_inverse) self.assertEqual(expected_y_counts, y_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_unique, y_inverse, y_counts = torch.unique_consecutive( y_nan, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_y_unique_nan, y_unique) self.assertEqual(expected_y_inverse_nan, y_inverse) self.assertEqual(expected_y_counts_nan, y_counts) # Test dim is sorted same as NumPy with dims >= 3 x = torch.tensor( [ [ [[1, 0, 1, 0, 1, 1], [0, 1, 1, 0, 1, 1]], [[0, 1, 1, 0, 0, 1], [0, 0, 0, 1, 0, 0]], ], [ [[0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 1, 1]], [[0, 0, 1, 1, 0, 1], [1, 1, 0, 0, 0, 0]], ], ], dtype=dtype, device=device, ) xn = x.cpu().numpy() for d in range(x.dim()): t = torch.unique(x, dim=d) n = np.unique(xn, axis=d) self.assertEqual(t.cpu().numpy(), n) run_test(device, torch.float) run_test(device, torch.double) run_test(device, torch.long) run_test(device, torch.uint8) run_test(device, torch.bool)
import torch import numpy as np import random from torch import nan from itertools import permutations, product from torch.testing import make_tensor from torch.testing._internal.common_dtype import all_types, all_types_and, floating_types_and from torch.testing._internal.common_utils import \ (TestCase, run_tests, slowTest) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, dtypes, onlyNativeDeviceTypes, onlyCUDA, dtypesIfCUDA, dtypesIfCPU, onlyCPU, largeTensorTest) SIZE = 100 from itertools import chain, combinations
import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) from itertools import chain, combinations
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sort_and_select.py
test_sort_overflow
instantiate_device_type_tests(TestSortAndSelect, globals()) if __name__ == '__main__': run_tests()
def test_sort_overflow(self, device, dtype): "Regression test for https://github.com/pytorch/pytorch/issues/111189" prev_num_threads = torch.get_num_threads() try: low = 0 if dtype == torch.uint8 else -1 x = torch.full((32768,), low, dtype=dtype, device=device) x[:100] = torch.iinfo(x.dtype).max torch.set_num_threads(1) uv = x.sort().values.unique() self.assertEqual(uv.size(0), 2) finally: torch.set_num_threads(prev_num_threads)
import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) class TestSortAndSelect(TestCase): from itertools import chain, combinations
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
_op_supports_any_sparse
reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] if TEST_SCIPY: import scipy.sparse # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests # batched grad doesn't support sparse gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM)
def _op_supports_any_sparse(op): return (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] if TEST_SCIPY: import scipy.sparse # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests # batched grad doesn't support sparse gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0")
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) import scipy.sparse from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
all_sparse_layouts
def all_sparse_layouts(test_name='layout', include_strided=False): return parametrize(test_name, [ subtest(torch.strided, name='Strided'), subtest(torch.sparse_coo, name='SparseCOO'), subtest(torch.sparse_csr, name='SparseCSR'), subtest(torch.sparse_csc, name='SparseCSC'), subtest(torch.sparse_bsr, name='SparseBSR'), subtest(torch.sparse_bsc, name='SparseBSC'), ][(0 if include_strided else 1):]) class CrossRefSparseFakeMode(torch._subclasses.CrossRefFakeMode): def __init__(self): super().__init__( self.ignore_op, check_strides=False, check_aliasing=False, ) # TODO: enable stride/alias checking # empty_like excluded for now due to sparse complex # aten._to_dense.default this one is getting called with csc @staticmethod def ignore_op(func): return func in ( torch.ops.aten.empty_like.default, torch.ops.aten.set_.source_Storage_storage_offset, torch.ops.aten.sspaddmm.out, torch.ops.aten._spdiags.default, torch.ops.aten._to_dense.default, torch.ops.aten.indices.default, torch.ops.aten._indices.default, torch.ops.aten.values.default, torch.ops.aten._values.default, ) class TestSparseBase(TestCase): def run(self, result=None): if TEST_WITH_CROSSREF: with CrossRefSparseFakeMode(): return super().run(result) else: return super().run(result) class TestSparse(TestSparseBase): def setUp(self): TestCase.setUp(self) self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64) def sparse_empty_factory(*args, **kwargs): kwargs['layout'] = kwargs.get('layout', torch.sparse_coo) return torch.empty(*args, **kwargs) self.sparse_empty = sparse_empty_factory def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory self.legacy_sparse_tensor = torch.sparse.DoubleTensor def _gen_sparse(self, sparse_dim, nnz, with_size, dtype, device, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dim x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, not coalesced, dtype=dtype, device=device) if not coalesced: self.assert_uncoalesced(x) return x, i, v def assert_uncoalesced(self, x): """ Test if a CPU tensor is uncoalesced. This is used to ensure correctness of the uncoalesced tensor generation algorithm. """ assert not x.is_coalesced() existing_indices = set() for i in range(x._nnz()): index = str(x._indices()[:, i]) if index in existing_indices: return True else: existing_indices.add(index) def randn(self, *args, **kwargs): """ Variant of torch.randn that also works in the TEST_CUDA case. """ # TODO: Put this in torch.cuda.randn return torch.empty(*args, **kwargs).normal_() @dtypes(torch.double) def test_print_coalesced(self, device, dtype): self._test_print(device, dtype, True) @dtypes(torch.double) def test_print_uncoalesced(self, device, dtype): self._test_print(device, dtype, False) def _test_print(self, device, dtype, coalesced): shape_sparse_dim_nnz = [ ((), 0, 2), ((0,), 0, 10), ((2,), 0, 3), ((100, 3), 1, 3), ((100, 20, 3), 2, 0), ((10, 0, 3), 0, 3), ((10, 0, 3), 0, 0), ] printed = [] for shape, sparse_dim, nnz in shape_sparse_dim_nnz: indices_shape = torch.Size((sparse_dim, nnz)) values_shape = torch.Size((nnz,) + shape[sparse_dim:]) printed.append("# shape: {}".format(torch.Size(shape))) printed.append("# nnz: {}".format(nnz)) printed.append("# sparse_dim: {}".format(sparse_dim)) printed.append("# indices shape: {}".format(indices_shape)) printed.append("# values shape: {}".format(values_shape)) indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, device=device).view(indices_shape) for d in range(sparse_dim): indices[d].clamp_(max=(shape[d] - 1)) # make it valid index if not coalesced and indices.numel() > 0: indices[:, -1] = indices[:, 0] # make it uncoalesced values_numel = values_shape.numel() values = torch.arange(values_numel, dtype=dtype, device=device).view(values_shape).div_(values_numel / 2.) sp_tensor = self.sparse_tensor(indices, values, shape, dtype=dtype, device=device) dtypes = [torch.int32] if values.dtype == torch.double: dtypes.append(torch.float) else: dtypes.append(torch.double) for dtype in dtypes: printed.append("########## {} ##########".format(dtype)) x = sp_tensor.detach().to(dtype) printed.append("# sparse tensor") printed.append(str(x)) if x.dtype.is_floating_point: printed.append("# after requires_grad_") printed.append(str(x.requires_grad_())) printed.append("# after addition") printed.append(str(x + x)) printed.append("# _indices") printed.append(str(x._indices())) printed.append("# _values") printed.append(str(x._values())) printed.append('') self.assertExpected('\n'.join(printed)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_basic(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0) @coalescedonoff @dtypes(torch.double, torch.cdouble, torch.bfloat16) @precisionOverride({torch.bfloat16: 1e-2}) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") def test_coalesce(self, device, dtype, coalesced): def _test_coalesce(t): tc = t.coalesce() self.assertEqual(tc.to_dense(), t.to_dense()) self.assertTrue(tc.is_coalesced()) # Our code below doesn't work when nnz is 0, because # then it's a 0D tensor, not a 2D tensor. if t._nnz() == 0: self.assertEqual(t._indices(), tc._indices()) self.assertEqual(t._values(), tc._values()) return tc value_map: Dict[Any, Any] = {} for idx, val in zip(t._indices().t(), t._values()): idx_tup = tuple(idx.tolist()) if idx_tup in value_map: value_map[idx_tup] += val else: value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val new_indices = sorted(value_map.keys()) _new_values = [value_map[idx] for idx in new_indices] if t._values().ndimension() < 2: new_values = t._values().new(_new_values) else: new_values = torch.stack(_new_values) new_indices = t._indices().new(new_indices).t() tg = t.new(new_indices, new_values, t.size()) self.assertEqual(tc._indices(), tg._indices()) self.assertEqual(tc._values(), tg._values()) if t.is_coalesced(): self.assertEqual(tc._indices(), t._indices()) self.assertEqual(tc._values(), t._values()) for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3): sparse_size = [] if empty_i else [2, 1] dense_size = [1, 0, 2] if empty_v else [1, 2] nnz = 0 if empty_nnz else 5 t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size, dtype, device, coalesced) _test_coalesce(t) # this tests correctness @dtypes(torch.double) @skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/89395") def test_coalesce_reference_cycle(self, device, dtype): # Test coalesce doesn't create autograd graph cycles (gh-52253) # Sanity check that the helper class works as expected t = torch.rand(2) t_ref = torch._C._WeakTensorRef(t) self.assertFalse(t_ref.expired()) del t self.assertTrue(t_ref.expired()) def test_sparse_sum(): i = torch.tensor([[0], [4]], dtype=torch.long, device=device) v = torch.tensor([[[-0.4567, -1.8797, 0.0380, 1.4316]]], dtype=dtype, device=device) S = torch.sparse_coo_tensor(i, v) S = S.coalesce() S.requires_grad_(True) S2 = S.coalesce() self.assertTrue(S2.is_coalesced()) return torch._C._WeakTensorRef(S2) ref = test_sparse_sum() self.assertTrue(ref.expired()) @dtypes(torch.double) def test_ctor_large_sizes(self, device, dtype): # Test that integer overflow is detected when computing numel # of a sparse tensor with large dimensions (gh-57416). Notice # that numel is computed internally when constructing a # tensor, hence the overflow may appear during the tensor # construction step. N = 100000 indices = torch.tensor([[N, N - 1]] * 4, dtype=torch.int64, device=device) values = torch.tensor([1, 2], dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.sparse_coo_tensor( indices, values, (N + 1,) * 4, device=device)) @dtypes(torch.double, torch.cdouble) def test_ctor_size_checks(self, device, dtype): indices = self.index_tensor([ [0, 0, 0], [0, 3, 0], [0, 0, 0], [0, 0, 0], ], device=device) values = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) # indices inconsistent with size self.assertRaises( RuntimeError, lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1]))) # values inconsistent with size values = torch.tensor([ [2, 1, 2, 1], [1, 0, 5, 2], ], dtype=dtype, device=device) self.assertRaises( RuntimeError, lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1]))) @dtypes(*floating_and_complex_types_and(torch.float16, torch.bfloat16)) @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") def test_to_dense(self, device, dtype): def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res) @coalescedonoff @dtypes(torch.float16, torch.bfloat16, torch.float64, torch.int, torch.cfloat, torch.cdouble) def test_to_sparse(self, device, dtype, coalesced): shape = [5, 2, 10, 4] max_nnz = 1 for value_type in [torch.double, torch.cdouble]: for dim, dim_sz in enumerate(shape, 1): max_nnz *= dim_sz rnnz = torch.randint(2, max_nnz, (1,)).item() for nnz in [0, 1, rnnz]: expected, _, _ = self._gen_sparse(dim, nnz, shape, dtype=value_type, device=device, coalesced=coalesced) expected = expected.to(dtype) d = expected.to_dense() result = d.to_sparse(dim) self.assertEqual(d, result.to_dense()) self.assertEqual(expected.size(), result.size()) self.assertEqual(dim, result.sparse_dim()) @dtypes(torch.double, torch.cdouble) def test_sparse_bool(self, device, dtype): a = torch.tensor([True, False], dtype=dtype, device=device).to(torch.bool) b = a.to_sparse().to_dense() self.assertEqual(a, b) @dtypes(torch.double, torch.cdouble) def test_scalar(self, device, dtype): # tensor with value a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1), 12.3, [], dtype=dtype, device=device) self.assertEqual(1, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(12.3, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a, a.to_dense().to_sparse()) # tensor with multiple values a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1).expand(0, 2), [12.3, 12.3], [], dtype=dtype, device=device) self.assertEqual(2, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(12.3 * 2, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a.coalesce(), a.coalesce().to_dense().to_sparse()) # tensor without value a = self.sparse_empty((), dtype=dtype, device=device) self.assertEqual(0, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(0, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a, a.to_dense().to_sparse()) @dtypes(torch.double, torch.cdouble) def test_shared(self, device, dtype): i = self.index_tensor([[2]], device=device) v = torch.tensor([5], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3])) v[0] = 6 self.assertEqual(torch.tensor([0, 0, 6], dtype=dtype, device=device), self.safeToDense(x)) i[0][0] = 0 self.assertEqual(torch.tensor([6, 0, 0], dtype=dtype, device=device), self.safeToDense(x)) i = self.index_tensor([[2]], device=device) v = torch.empty((1, 0), dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 0])) i[0][0] = 0 self.assertEqual(torch.empty((3, 0), dtype=dtype, device=device), self.safeToDense(x)) @dtypes(torch.double, torch.cdouble) @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") def test_to_dense_hybrid(self, device, dtype): def test_tensor(x, res): x.to_dense() # Tests double to_dense for memory corruption x.to_dense() x.to_dense() self.assertEqual(res, x.to_dense()) self.assertEqual(res, self.safeToDense(x)) def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], ], device=device) v = torch.tensor([[2, 3], [1, 2], [3, 4], [4, 5]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 2])) res = torch.tensor([ [[2, 3], [0, 0], [0, 0], [0, 0]], [[1, 2], [0, 0], [0, 0], [0, 0]], [[3, 4], [0, 0], [0, 0], [4, 5]], ], dtype=dtype, device=device) test_tensor(x, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], ], device=device) v = torch.empty((4, 2, 0), dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0])) res = torch.empty((3, 4, 2, 0), dtype=dtype, device=device) test_tensor(x, res) @dtypes(torch.double, torch.cdouble) def test_contig(self, device, dtype): def test_tensor(x, exp_i, exp_v): x = x.coalesce() self.assertEqual(exp_i, x._indices()) self.assertEqual(exp_v, x._values()) i = self.index_tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], device=device) v = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([100, 100])) exp_i = self.index_tensor([ [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], ], device=device) exp_v = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) # Duplicate indices i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.tensor([6, 4], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.empty([2, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) @dtypes(torch.double, torch.cdouble) def test_contig_hybrid(self, device, dtype): def test_tensor(x, exp_i, exp_v): x = x.coalesce() self.assertEqual(exp_i, x._indices()) self.assertEqual(exp_v, x._values()) i = self.index_tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], device=device) v = torch.tensor([ [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], ], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([100, 100, 2])) exp_i = self.index_tensor([ [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], ], device=device) exp_v = torch.tensor([ [2, 3], [1, 2], [6, 7], [4, 5], [10, 11], [3, 4], [5, 6], [9, 10], [8, 9], [7, 8], ], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.empty([4, 3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.empty([4, 3, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) # Duplicate indices i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.tensor([[6, 4, 5], [4, 3, 4]], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.empty([4, 3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.empty([2, 3, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_clone(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] if not coalesced: self.assertFalse(x.is_coalesced()) y = x.clone() self.assertFalse(y.is_coalesced()) x = x.coalesce() self.assertTrue(x.is_coalesced()) y = x.clone() self.assertTrue(y.is_coalesced()) test_shape(4, 20, 5) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) @coalescedonoff @dtypes(torch.double, torch.cdouble, torch.bfloat16) @precisionOverride({torch.bfloat16: 2e-2}) def test_Sparse_to_Sparse_copy_(self, device, dtype, coalesced): # This is for testing torch.copy_(SparseTensor, SparseTensor) sparse_dims = 3 nnz = 10 sizes = [2, 3, 4, 5] # hybrid sparse x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) # test copy x2_dense = x2.to_dense() x1.copy_(x2) self.assertEqual(x2_dense, x1.to_dense()) # test type conversion (when x1.copy_(x2), x1.dtype should stay the same) x1 = x1.to(torch.float32) x2 = x2.to(torch.float16) x1_dtype = x1.dtype x1.copy_(x2) self.assertEqual(x1_dtype, x1.dtype) x2 = x2.to(torch.float64) x1_dtype = x1.dtype x1.copy_(x2) self.assertEqual(x1_dtype, x1.dtype) # test no broadcast self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1))) # test raise error on copy_() between dense and sparse Tensors self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5))) # test autograd x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) x2.requires_grad_(True) x1.copy_(x2) y = x1 * 2 x2_clone = x2.clone() y.backward(x2_clone) expected_grad = x2_clone * 2 self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense()) self.assertEqual(None, x1.grad) @coalescedonoff @unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU") @dtypes(torch.double, torch.cdouble) def test_Sparse_to_Sparse_copy_multi_gpu(self, device, dtype, coalesced): # This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices sparse_dims = 3 nnz = 10 sizes = [2, 3, 4, 5] # hybrid sparse x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) x1 = x1.to('cuda:0') def test_cross_device(x1, x2): x1_device = x1.device x1.copy_(x2) self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense()) self.assertEqual(x1_device, x1.device) test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu # test autograd x2 = x2.to('cuda:1') x2.requires_grad_(True) x1.copy_(x2) y = x1 * 2 x2_clone = x2.clone().to('cuda:0') y.backward(x2_clone) expected_grad = x2_clone * 2 self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense()) self.assertEqual(None, x1.grad) @onlyCUDA def test_cuda_empty(self, device): def test_tensor(x): y = x.to(device) self.assertEqual(x.sparse_dim(), y.sparse_dim()) self.assertEqual(x.dense_dim(), y.dense_dim()) x = y.cpu() self.assertEqual(y.sparse_dim(), x.sparse_dim()) self.assertEqual(y.dense_dim(), x.dense_dim()) x = torch.sparse.FloatTensor(2, 3, 4) test_tensor(x) x = torch.sparse.HalfTensor(2, 3, 4) test_tensor(x) x = torch.cuda.sparse.HalfTensor(2, 3, 4) test_tensor(x) x = torch.sparse.FloatTensor(2, 3, 4, 0) test_tensor(x) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_transpose(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] y = self.safeToDense(x) for i, j in itertools.combinations(range(4), 2): x = x.transpose_(i, j) y = y.transpose(i, j) self.assertEqual(self.safeToDense(x), y) x = x.transpose(i, j) y = y.transpose(i, j) self.assertEqual(self.safeToDense(x), y) test_shape(4, 6, 3) test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0]) test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0]) @coalescedonoff @dtypes(torch.double, torch.cdouble) @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") def test_permute(self, device, dtype, coalesced): # trivial checks s = torch.rand(3, 3, 3, device=device, dtype=dtype).to_sparse() with self.assertRaisesRegex(RuntimeError, "does not match the length"): s.permute(dims=(1, 0)) with self.assertRaisesRegex(RuntimeError, "duplicate dims"): s.permute(dims=(1, 1, 1)) def test_shape(sparse_dims, nnz, with_size): ndim = len(with_size) valid_sparse_dims = torch.arange(-ndim, -ndim + sparse_dims) valid_dense_dims = torch.arange(-ndim + sparse_dims, 0) for dims in itertools.permutations(range(-ndim, 0)): s = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] d = self.safeToDense(s) dims_sparse, _ = torch.tensor(dims[:sparse_dims]).sort() dims_dense, _ = torch.tensor(dims[sparse_dims:]).sort() if (valid_sparse_dims == dims_sparse).all() and (valid_dense_dims == dims_dense).all(): # if valid permutation, test for correctness s_permuted = s.permute(dims) self.assertEqual(s_permuted, d.permute(dims)) # if s is coalesced, and perm does not touch 0-dim, # the result has to be coalesced as well if dims[0] == 0: self.assertEqual(s_permuted.is_coalesced(), s.is_coalesced()) else: self.assertFalse(s_permuted.is_coalesced()) gradcheck(lambda t: t.permute(dims).to_dense(), s.requires_grad_(True), check_sparse_nnz=True) else: # otherwise check if exception is thrown fail_message = "transpositions between sparse and dense dimensions are not allowed" with self.assertRaisesRegex(RuntimeError, fail_message): s.permute(dims) test_shape(2, 3, [2, 3, 4, 5]) test_shape(2, 3, [2, 2, 0]) # if nnz=0, it is not true that t == t.to_dense().to_sparse() # unless t.sparse_dim == t.dim (i.e. t is not hybrid) test_shape(3, 0, [0, 0, 2]) @coalescedonoff @onlyCPU @dtypes(torch.double) def test_coalesce_transpose_mm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [dj, di], dtype, device, coalesced) y = torch.randn(dj, dk, dtype=dtype, device=device) x_coalesced = x.coalesce() self.assertTrue(x_coalesced.is_coalesced()) x_coalesced_t = x_coalesced.t() # Transpose is `colasced`-preserving if the indices tensor is empty. self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0) res = torch.mm(x_coalesced_t, y) expected = torch.mm(self.safeToDense(x_coalesced_t), y) self.assertEqual(res, expected) test_shape(10, 20, 30, 20) test_shape(0, 20, 30, 0) test_shape(10, 0, 30, 0) test_shape(10, 20, 0, 0) test_shape(10, 20, 0, 20) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166") @dtypes(torch.double, torch.cdouble) def test_t_empty(self, device, dtype): def test_in_place(x): shape_original = x.shape x.t_() self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size()) self.assertEqual(0, x._indices().numel()) self.assertEqual(0, x._values().numel()) self.assertEqual(x.sparse_dim(), 2) self.assertEqual(x.dense_dim(), 0) def test_not_in_place(x): shape_original = x.shape y = x.t() self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size()) self.assertEqual(0, y._indices().numel()) self.assertEqual(0, y._values().numel()) self.assertEqual(x.sparse_dim(), 2) self.assertEqual(x.dense_dim(), 0) x = self.sparse_empty(2, 3, dtype=dtype, device=device) test_in_place(x) test_not_in_place(x) x = self.sparse_empty(2, 0, dtype=dtype, device=device) test_in_place(x) test_not_in_place(x) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_add_zeros(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device) r1 = zeros + x r2 = x + zeros self.assertEqual(r1, x) self.assertEqual(r2, x) test_shape(1, 20, [1]) test_shape(4, 20, [3, 17, 19, 5]) test_shape(2, 20, [3, 17, 19, 5]) test_shape(2, 20, [3, 17, 19, 0]) @dtypes(torch.double, torch.cdouble) def test_add_sub_nnz(self, device, dtype): # nnz should not grow unbounded (gh-34964) x = torch.randn(10, dtype=dtype, device=device).to_sparse() x.add_(x) x.add_(x) self.assertLessEqual(x._nnz(), 10) x.sub_(2 * x) x.sub_(2 * x) self.assertLessEqual(x._nnz(), 10) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_cat(self, device, dtype, coalesced): # shapes: list of tuples (sparse_dims, nnz, sizes) def test_shapes(shapes, dim, fail_message=None): inputs = [self._gen_sparse(shape[0], shape[1], shape[2], dtype, device, coalesced)[0] for shape in shapes] if fail_message: with self.assertRaisesRegex(RuntimeError, fail_message): torch.cat(inputs, dim) else: result = torch.cat(inputs, dim) dense_result = torch.cat([t.to_dense() for t in inputs], dim) self.assertEqual(dense_result, result.to_dense()) test_shapes( [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1) # mismatched sizes test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0, "All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]") # hybrid sparse/dense test_shapes( [(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1) # cat along dense dim test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2) test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1) test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2) # mismatched dimensions test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0, "All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.") # wrapped dimension test_shapes( [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2) # sparse with dense sp = self._gen_sparse(3, 10, [2, 3, 4], dtype, device, coalesced)[0] dn = sp.to_dense() with self.assertRaisesRegex(RuntimeError, "Concatenating sparse tensors, but a dense tensor was found at position 1."): torch.cat((sp, dn)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_unsqueeze(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.unsqueeze(x, unsqueeze_dim) else: result = torch.unsqueeze(x, unsqueeze_dim) dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim) self.assertEqual(dense_result, result.to_dense()) # basic case test_shape(3, 10, [5, 7, 11], 0) # hybrid sparse/dense, unsqueeze along sparse dim test_shape(3, 10, [5, 7, 11, 13, 17], 0) test_shape(3, 10, [5, 7, 11, 13, 17], 3) # unsqueeze along dense dimensions test_shape(3, 10, [5, 7, 11, 13, 17], 4) test_shape(3, 10, [5, 7, 11, 13, 17], 5) # wrapped dimensions test_shape(3, 10, [5, 7, 11, 13, 17], -1) test_shape(3, 10, [5, 7, 11, 13, 17], -6) # bounds test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range") test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range") @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_select(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.select(x, select_dim, select_index) else: result = torch.select(x, select_dim, select_index) if result.is_sparse: result = result.to_dense() dense_result = torch.select(x.to_dense(), select_dim, select_index) self.assertEqual(dense_result, result) sizes = [5, 7, 11, 13, 17] # hybrid sparse/dense, select sparse dim, result is dense for i in range(sizes[0]): test_shape(1, 10, sizes, 0, i) test_shape(1, 10, sizes, 0, sizes[0] + 1, r'select[(][)][:] index \d out of range.*') # hybrid sparse/dense, select sparse dim, result is sparse for d in range(3): for i in range(sizes[d]): test_shape(3, 10, sizes, d, i) # hybrid sparse/dense, select dense dim, result is sparse for d in range(1, 3): for i in range(sizes[d]): test_shape(1, 10, sizes, d, i) @dtypes(*integral_types()) def test_select_no_type_promotion(self, device, dtype): # see https://github.com/pytorch/pytorch/issues/82150 idx = torch.tensor([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]]) val = torch.ones(6, dtype=dtype) s = torch.sparse_coo_tensor(idx, val, size=(3, 3)) for t in (s, s * torch.tensor(0, dtype=dtype)): # empty checks self.assertEqual(t.dtype, t[2].dtype) self.assertEqual(t.dtype, t[0, 1].dtype) # sum should not promote self.assertEqual(t.dtype, t[0, 0].dtype) self.assertEqual(t.dtype, t[1, 1].dtype) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): if isinstance(select_index, int): select_index = [select_index] if isinstance(select_index, list): select_index = torch.tensor(select_index, device=device, dtype=torch.long) x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.index_select(x, select_dim, select_index) else: result = torch.index_select(x, select_dim, select_index) if result.is_sparse: result = result.to_dense() dense_result = torch.index_select(x.to_dense(), select_dim, select_index) self.assertEqual(dense_result, result) sizes = [5, 7, 11, 13, 17] for d in range(len(sizes)): for index in [0, sizes[d] - 1, [0, sizes[d] // 2, sizes[d] - 1]]: test_shape(1, 10, sizes, d, index) test_shape(len(sizes) // 2, 10, sizes, d, index) test_shape(len(sizes), 10, sizes, d, index) def _test_index_select_exhaustive_index(self, sizes, dims, device, dtype, coalesced): t = make_tensor(sizes, dtype=dtype, device=device) t_sparse = t.to_sparse().coalesce() if coalesced else t.to_sparse() t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced) t_small = t_small_sparse.to_dense() for d in dims: # NOTE: indices are negative idx_dim_d_range = list(range(-sizes[d], 0)) for idx_len in range(sizes[d], sizes[d] + 1): # creates all possible valid indices into dim d of lenght idx_len for idx in itertools.product(*itertools.repeat(idx_dim_d_range, idx_len)): t_idx = torch.tensor(idx, dtype=torch.long, device=device) # NOTE: index_select for dense does not support negative indices, # hence + sizes[d]. See https://github.com/pytorch/pytorch/issues/76347 # tests the nnz > sizes[d] branch dense_result = t.index_select(d, t_idx + sizes[d]) sparse_result = t_sparse.index_select(d, t_idx) self.assertEqual(dense_result, sparse_result) # tests the nnz <= sizes[d] branch small_dense_result = t_small.index_select(d, t_idx + sizes[d]) small_sparse_result = t_small_sparse.index_select(d, t_idx) self.assertEqual(small_dense_result, small_sparse_result) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select_exhaustive_index_small(self, device, dtype, coalesced): # will trigger brute-force algo self._test_index_select_exhaustive_index((3, 3, 4), range(3), device, dtype, coalesced) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select_exhaustive_index_large(self, device, dtype, coalesced): # will trigger more sophisticated algos self._test_index_select_exhaustive_index((100, 50, 3, 3), (2, 3), device, dtype, coalesced) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select_empty_and_non_contiguous_index(self, device, dtype, coalesced): # empty index idx_empty = torch.tensor([], dtype=torch.long, device=device) t = make_tensor((5, 5), dtype=dtype, device=device) res_dense = t.index_select(0, idx_empty) res_sparse = t.to_sparse().index_select(0, idx_empty) self.assertEqual(res_dense, res_sparse) # non-contigous index idx = torch.randint(low=0, high=5, size=(10, 2), device=device)[:, 0] def run_test(sizes): # case nnz > size[d] t = make_tensor(sizes, dtype=dtype, device=device) res_dense = t.index_select(0, idx) res_sparse = t.to_sparse().index_select(0, idx) self.assertEqual(res_dense, res_sparse) # case nnz <= size[d] t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced) res_sparse = t_small_sparse.index_select(0, idx) res_dense = t_small_sparse.to_dense().index_select(0, idx) self.assertEqual(res_dense, res_sparse) # brute-force run_test((10, 10)) # more sophisticated algos run_test((10, 100, 100)) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select_parallelization(self, device, dtype, coalesced): """ Test with sizes that will trigger parallelization (i.e. with sizes that are >= at::internal::GRAIN_SIZE) """ def run_test(nnz, size): t_sparse, _, _ = self._gen_sparse(1, nnz, (size,), dtype, device, coalesced) t_dense = t_sparse.to_dense() # idx_small to (sort) and (binary) search into t_sparse idx_small = torch.randint(size, (nnz // 2,), device=device) # idx_large to (sort) and (binary) search into idx_large # NOTE: when coalesced=True, the (binary) search will be # done over t_sparse anyway, as it is already sorted. idx_large = torch.randint(size, (nnz * 2,), device=device) for idx in (idx_small, idx_large): res_dense = t_dense.index_select(0, idx) res_sparse = t_sparse.index_select(0, idx) self.assertEqual(res_dense, res_sparse) # NOTE: GRAIN_SIZE = 32768 # case nnz <= size[d] tlen = 70000 # > 2 * GRAIN_SIZE run_test(tlen, tlen) # case nnz > size[d] run_test(tlen, tlen // 2) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_mm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) t = torch.randn(di, dk, dtype=dtype, device=device) y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = torch.addmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(t, self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(res, expected) res = torch.addmm(t, x, y) expected = torch.addmm(t, self.safeToDense(x), y) self.assertEqual(res, expected) res = torch.mm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res, expected) test_shape(10, 100, 100, 20) test_shape(100, 1000, 200, 20) test_shape(64, 10000, 300, 20) test_shape(0, 100, 100, 0) test_shape(10, 0, 100, 0) test_shape(10, 100, 0, 0) test_shape(10, 100, 0, 20) @unittest.skipIf( IS_WINDOWS and TEST_CUDA, "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" ) @unittest.skipIf( TEST_CUDA and _get_torch_cuda_version() < (10, 1) and not TEST_WITH_ROCM, "bmm sparse-dense requires CUDA 10.1 or greater" ) @coalescedonoff @dtypes(torch.double) def test_bmm(self, device, dtype, coalesced): def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): a_list = [] b_list = [] for mat_idx in range(num_mats): a_mat = self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0] b_mat = torch.randn([dim_j, dim_k], dtype=dtype, device=device) a_list.append(a_mat) b_list.append(b_mat) a = torch.stack(a_list) b = torch.stack(b_list) ab = a.bmm(b) # Compare each matrix against result from mm() for mat_idx in range(num_mats): a_mat = a_list[mat_idx] b_mat = b_list[mat_idx] ab_mat_bmm = ab[mat_idx] ab_mat_mm = a_mat.mm(b_mat) self.assertEqual(ab_mat_bmm, ab_mat_mm) test_shape(10, 10, 100, 99, 20) test_shape(10, 100, 1000, 200, 20) test_shape(10, 64, 10000, 300, 20) test_shape(10, 0, 100, 99, 0) test_shape(10, 10, 0, 100, 0) test_shape(10, 10, 100, 0, 0) test_shape(10, 10, 100, 0, 20) test_shape(10, 10, 100, 0, 20) a = torch.rand([10, 23, 32], dtype=dtype, device=device) a[3] = torch.zeros(23, 32, dtype=dtype, device=device) a[6] = torch.zeros(23, 32, dtype=dtype, device=device) a = a.to_sparse() b = torch.rand([10, 32, 10], dtype=dtype, device=device) b[4] = torch.zeros(32, 10, dtype=dtype, device=device) b[6] = torch.zeros(32, 10, dtype=dtype, device=device) ab = a.bmm(b) for mat_idx in range(ab.size(0)): ab_mat = ab[mat_idx] ab_mat_check = a[mat_idx].mm(b[mat_idx]) self.assertEqual(ab_mat, ab_mat_check) ab_traspose_check = b.transpose(1, 2).to_sparse().bmm( a.transpose(1, 2).to_dense() ).transpose(1, 2) self.assertEqual(ab, ab_traspose_check) @onlyCUDA @coalescedonoff @dtypes(torch.double) @unittest.skipIf( IS_WINDOWS, "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" ) @unittest.skipIf( _get_torch_cuda_version() < (10, 1) and not TEST_WITH_ROCM, "bmm sparse-dense requires CUDA 10.1 or greater" ) def test_bmm_deterministic(self, device, dtype, coalesced): def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): a_list = [] b_list = [] for mat_idx in range(num_mats): a_list.append(self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0]) b_list.append(torch.randn([dim_j, dim_k], dtype=dtype, device=device)) a = torch.stack(a_list).cuda() b = torch.stack(b_list).cuda() with DeterministicGuard(torch.are_deterministic_algorithms_enabled()): torch.use_deterministic_algorithms(False) ab_nondeterministic = torch.bmm(a, b) torch.use_deterministic_algorithms(True) ab_deterministic = torch.bmm(a, b) diff_abs = (ab_deterministic - ab_nondeterministic).abs() diff_rel = diff_abs / ab_deterministic.abs() diff_rel[torch.isnan(diff_rel)] = 0 # deterministic and non-deterministic results should either be # equal or within a small relative difference equal_abs_or_rel = diff_abs.eq(0).logical_or(diff_rel.lt(0.001)) self.assertTrue(equal_abs_or_rel.all()) test_shape(10, 10, 100, 99, 20) test_shape(10, 100, 1000, 200, 20) test_shape(10, 64, 10000, 300, 20) test_shape(10, 0, 100, 99, 0) test_shape(10, 10, 0, 100, 0) test_shape(10, 10, 100, 0, 0) test_shape(10, 10, 100, 0, 20) test_shape(10, 10, 100, 0, 20) @onlyCUDA @unittest.skipIf( not IS_WINDOWS or _get_torch_cuda_version() >= (11, 0), "this test ensures bmm sparse-dense CUDA gives an error when run on Windows with CUDA < 11.0" ) @dtypes(torch.double) def test_bmm_windows_error(self, device, dtype): a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda() b = torch.rand(2, 2, 2, dtype=dtype).cuda() with self.assertRaisesRegex( RuntimeError, "bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"): ab = a.bmm(b) @onlyCUDA @skipIfRocm @unittest.skipIf( _get_torch_cuda_version() >= (10, 1), "this test ensures bmm gives error if CUDA version is less than 10.1" ) @dtypes(torch.double) def test_bmm_cuda_version_error(self, device, dtype): a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda() b = torch.rand(2, 2, 2, dtype=dtype).cuda() with self.assertRaisesRegex( RuntimeError, "bmm sparse-dense requires CUDA 10.1 or greater"): ab = a.bmm(b) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_saddmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = torch.saddmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(self.safeToDense(res), expected) res = torch.saddmm(t, x, y) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) res = torch.smm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) @onlyCPU @coalescedonoff # adding a graph break before self.assertFalse(weight._indices().is_contiguous()) # makes the test pass so some existent sparse related bug @skipIfTorchDynamo("skip") @dtypes(torch.double, torch.cdouble) def test_sspaddmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = t.sspaddmm(x, y, beta=beta, alpha=alpha) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(self.safeToDense(res), expected) res = t.sspaddmm(x, y) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) # Test code from issue https://github.com/pytorch/pytorch/issues/45113 batch_size, input_size, hidden_size = 5, 3, 7 # Create coalesced sparse tensor with non-contiguous indices weight = torch.randn(hidden_size, input_size, dtype=dtype, device=device).to_sparse() self.assertTrue(weight.is_coalesced()) non_contig_indices = weight.indices().mT.contiguous().mT weight = torch.sparse_coo_tensor( indices=non_contig_indices, values=weight.values(), size=weight.shape) weight._coalesced_(True) self.assertFalse(weight._indices().is_contiguous()) # Create un/coalesced sparse tensor bias = torch.randn((hidden_size, 1), dtype=dtype, device=device).to_sparse() bias = torch.cat([bias] * batch_size, dim=1) if coalesced: bias = bias.coalesce() x = torch.randn(input_size, batch_size, dtype=dtype, device=device) res = bias.sspaddmm(weight, x) true_result = (bias.to_dense() + torch.matmul(weight.to_dense(), x)).to_sparse() self.assertEqual(self.safeToDense(res), self.safeToDense(true_result)) @coalescedonoff @unittest.skip("See https://github.com/pytorch/pytorch/issues/73145") @dtypes(torch.double, torch.cdouble, torch.bfloat16) def test_sparse_addmm(self, device, dtype, coalesced): def test_shape(m, n, p, nnz, broadcast, alpha_beta=None): if alpha_beta is None: alpha = random.random() beta = random.random() else: alpha, beta = alpha_beta if broadcast: D1 = make_tensor((), dtype=dtype, device=device, requires_grad=True) else: D1 = make_tensor([n, p], dtype=dtype, device=device, requires_grad=True) D2 = make_tensor([m, p], dtype=dtype, device=device, requires_grad=True) S = self._gen_sparse(2, nnz, [n, m], dtype, device, coalesced)[0] S_dense = S.to_dense().requires_grad_(True) S.requires_grad_(True) Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) self.assertEqual(Y, Y_dense) def fn(S, D1, D2, beta=beta, alpha=alpha): return torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) gradcheck(fn, (S, D1, D2), check_sparse_nnz=True) test_shape(7, 8, 9, 20, False, None) test_shape(7, 8, 9, 20, True, None) test_shape(7, 8, 9, 20, False, (1, 0)) test_shape(7, 8, 9, 20, True, (1, 0)) test_shape(7, 8, 9, 20, False, (1, 1)) test_shape(7, 8, 9, 20, True, (1, 1)) @coalescedonoff @dtypes(torch.double) @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") def test_sparse_mm(self, device, dtype, coalesced): def test_shape(d1, d2, d3, nnz, transposed): if transposed: D = torch.randn(d3, d2, dtype=dtype, device=device).t_().requires_grad_(True) else: D = torch.randn(d2, d3, dtype=dtype, device=device).requires_grad_(True) S = self._gen_sparse(2, nnz, [d1, d2], dtype, device, coalesced)[0] S_dense = S.to_dense().requires_grad_(True) S.requires_grad_(True) self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) def fn(S, D): return torch.sparse.mm(S, D) gradcheck(fn, (S, D), check_sparse_nnz=True) test_shape(7, 8, 9, 20, False) test_shape(7, 8, 9, 20, True) @coalescedonoff @dtypes(torch.double) @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") def test_sparse_mul(self, device, dtype, coalesced): # https://github.com/pytorch/pytorch/issues/79914 a = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True) b = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True) gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(), [a, b], check_sparse_nnz=True) def test_shape(sparse_dims, nnz, with_shape): a = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True) b = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True) self.assertEqual((a * b).to_dense(), a.to_dense() * b.to_dense()) gradcheck(lambda x, y: (x * y).to_dense(), [a, b], check_sparse_nnz=True) # Issues with 0-dim indices/values gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(), [a, b], check_sparse_nnz=True) # TODO: Re-enable these # test_shape(2, 3, [2, 3, 4, 5]) # test_shape(2, 3, [2, 2, 0]) @coalescedonoff @dtypes(torch.double) def test_dsmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] y = self.randn(dj, dk, dtype=dtype, device=device) res = torch.dsmm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res, expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) test_shape(1000, 100, 0, 20) @coalescedonoff @dtypes(torch.double) def test_hsmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] y = self.randn(dj, dk, dtype=dtype, device=device) res = torch.hsmm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res.to_dense(), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) test_shape(1000, 100, 0, 20) @coalescedonoff @dtypes(torch.double) def test_spadd(self, device, dtype, coalesced): def _test_spadd_shape(nnz, shape_i, shape_v=None): shape = shape_i + (shape_v or []) x, _, _ = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) y = self.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * self.safeToDense(x) self.assertEqual(res, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = self.randn(*s, dtype=dtype, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * self.safeToDense(x) self.assertEqual(res, expected) x, i, v = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) nnz = i.size(1) # Non contiguous sparse indices tensor x_ = self.sparse_tensor(i[:, ::2], v[:(nnz + 1) // 2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) # Non contiguous sparse values tensor x_ = self.sparse_tensor(i[:, :(nnz + 1) // 2], v[::2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) # Non contiguous sparse indices and values tensors x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) def _test_spadd(): _test_spadd_shape(10, [5, 6]) _test_spadd_shape(10, [10, 10, 10]) _test_spadd_shape(10, [50, 30, 20]) _test_spadd_shape(10, [5, 5, 5, 5, 5, 5]) _test_spadd_shape(0, [0, 30, 20]) _test_spadd_shape(0, [50, 0, 20]) _test_spadd_shape(0, [50, 30, 0]) def _test_spadd_hybrid(): _test_spadd_shape(10, [5, 6], [2, 3]) _test_spadd_shape(10, [10, 10, 10], [3]) _test_spadd_shape(10, [50, 30, 20], [2]) _test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2]) _test_spadd_shape(0, [0, 30, 20], [2, 0]) _test_spadd_shape(0, [50, 0, 20], [2, 0]) _test_spadd_shape(0, [50, 30, 0], [2, 0]) _test_spadd_shape(10, [50, 30, 20], [2, 0]) _test_spadd() _test_spadd_hybrid() @onlyCUDA @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_add_out_bfloat16(self, device, dtype, coalesced): # fp32 x, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) y, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) x = x.float().cuda() y = y.float().cuda() res_fp32 = torch.add(x, y) # bfloat16 x = x.bfloat16() y = y.bfloat16() res_bf16 = torch.add(x, y) res_bf16 = res_bf16.float() # to compare with reference self.assertEqual(res_fp32, res_bf16, atol=1e-2, rtol=0) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_norm(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) y = x.coalesce() self.assertEqual(x.norm(), y._values().norm()) test_shape(3, 10, 100) test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0]) # Unsupported arguments should error kwarg_error_pairs = [ ({'keepdim': True}, RuntimeError, r'norm_sparse currently does not support keepdim=True'), ({'dim': 0}, RuntimeError, r'norm_sparse currently only supports full reductions'), ({'dtype': torch.double, 'p': 'fro'}, ValueError, r'dtype argument is not supported in frobenius norm'), ({'dtype': torch.double, 'p': 0}, RuntimeError, r"norm_sparse currently does not support 'dtype' argument") ] x = self._gen_sparse(3, 10, 100, dtype, device, coalesced)[0] for kwargs, err, msg in kwarg_error_pairs: with self.assertRaisesRegex(err, msg): x.norm(**kwargs) @coalescedonoff @dtypes(torch.double) @unittest.skipIf(TEST_WITH_CROSSREF, "fallback triggers cuda device error") def test_sparse_sum(self, device, dtype, coalesced): def run_tests(S, td=None): D = S.coalesce().to_dense().detach().requires_grad_(True) if td is None: S_sum = torch.sparse.sum(S) D_sum = D.sum() self.assertEqual(S_sum.item(), D_sum.item()) def fn(S): res = torch.sparse.sum(S) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) else: S_sum = torch.sparse.sum(S, td) D_sum = D.sum(td) self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum) def fn(S): res = torch.sparse.sum(S, td) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) nnz = 10 sparse_dims = 2 with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze test_dims = [] for i in range(1, 5): test_dims += itertools.combinations(range(len(with_size)), i) # https://github.com/pytorch/pytorch/issues/16501 x = torch.tensor([[1., 0., 0., 1.], [0., 1., 0., 0.], [0., 1., 1., 0.], [0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse() self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2)) self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense()) S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] # dim out of range self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5)) # dim 0 appears multiple times in the list of dims self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0])) # sum an empty tensor empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device) self.assertEqual(torch.sparse.sum(empty_S, [0]).to_dense(), torch.sum(empty_S.to_dense(), [0])) self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device)) empty_S.requires_grad_(True) empty_S_sum = torch.sparse.sum(empty_S) empty_S_sum.backward() self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense()) # test values().sum() S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True)) for test_dim in test_dims: S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True), test_dim) def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): shape = shape_i + (shape_v) x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) y1 = x1 + x2 y2 = x1.clone() y2.add_(x2) expected = self.safeToDense(x1) + self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 - x2 y2 = x1.clone() y2.sub_(x2) expected = self.safeToDense(x1) - self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 * x2 y2 = x1.clone() y2.mul_(x2) expected = self.safeToDense(x1) * self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 * 37.5 y2 = x1.clone() y2.mul_(37.5) expected = self.safeToDense(x1) * 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 / 37.5 y2 = x1.clone() y2.div_(37.5) expected = self.safeToDense(x1) / 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 // 37.5 y2 = x1.clone() y2.floor_divide_(37.5) expected = self.safeToDense(x1) // 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) # TODO: add back inplace support y1 = x1 ** 2 y2 = x1.clone() y2 = y2.pow(2) expected = self.safeToDense(x1) ** 2 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y = x1.clone() y.zero_() expected = torch.zeros(x1.size(), dtype=dtype, device=device) self.assertEqual(self.safeToDense(y), expected) self.assertEqual(x1.is_coalesced(), coalesced) y = x1.coalesce() z = x1.coalesce() self.assertEqual(x1.is_coalesced(), coalesced) self.assertTrue(y.is_coalesced()) y._values().add_(1) if not x1.is_coalesced(): # check that coalesce is out of place if the original tensor is not # coalesced. self.assertEqual(z._values() + 1, y._values()) else: # check that coalesce is in-place if the original tensor is # coalesced. self.assertEqual(z._values(), y._values()) @coalescedonoff @dtypes(torch.double) def test_basic_ops(self, device, dtype, coalesced): def _test_basic_ops(): self._test_basic_ops_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [], [], dtype, device, coalesced) def _test_basic_ops_hybrid(): self._test_basic_ops_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) _test_basic_ops() _test_basic_ops_hybrid() @dtypes(torch.double, torch.cdouble) def test_add_dense_sparse_mismatch(self, device, dtype): def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size): x = torch.zeros(dense_size, dtype=dtype, device=device) sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=device), torch.randn(dense_dims_shape, dtype=dtype, device=device), torch.Size(sparse_size)) with self.assertRaisesRegex( RuntimeError, "add: expected 'self' and 'other' to have same size"): x + sparse_y test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4]) test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0]) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.double, torch.cdouble) def test_add_noncontiguous(self, device, dtype): indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([1.], dtype=dtype, device=device).expand(2, 3, 4, 5) x = self.sparse_tensor(indices, values, dtype=dtype, device=device) assert not x._values().is_contiguous() y = x + x expected = self.safeToDense(x) + self.safeToDense(x) self.assertEqual(self.safeToDense(y), expected) def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): shape = shape_i + (shape_v or []) x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) y1 = x1 + x2 y2 = x1.clone() y2.add_(x2) expected = self.safeToDense(x1) + self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_mask(self, device, dtype, coalesced): def _test_sparse_mask_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce() dense = torch.tensor([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], ], dtype=dtype, device=device) exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse() res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce() dense = torch.empty([5, 4, 0], dtype=dtype, device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse(2) res_sparse_lhs = sparse.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag. self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) _test_sparse_mask_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) # check repetitions and matchings in the intersection lhs = torch.randint(0, 5, (100,), device=device) rhs = torch.randint(0, 5, (100,), device=device).to_sparse() self.assertEqual(lhs.to_sparse().sparse_mask(rhs), lhs.sparse_mask(rhs)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_mask_hybrid(self, device, dtype, coalesced): def _test_sparse_mask_hybrid_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ]) v = torch.tensor([[1, 2], [2, 3], [3, 4], [4, 5]]) # TODO: This is also testing that, if coalesce is a no-op, # the indices don't get permuted. I don't know if we actually # want to give this invariant. x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce() dense = torch.tensor([ [[1, 3], [2, 2], [3, 3], [4, 2]], [[5, 7], [6, 7], [7, 9], [8, 9]], [[9, 2], [10, 4], [11, 1], [12, 3]], [[13, 5], [14, 1], [15, 1], [16, 6]], [[17, 7], [18, 2], [19, 7], [20, 1]], ]) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse(2) res_sparse_lhs = sparse.sparse_mask(x) exp_v = torch.tensor([[7, 9], [14, 1], [3, 3], [20, 1]]) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2])) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ]) v = torch.empty(4, 2, 0) x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce() dense = torch.empty(5, 4, 2, 0) res_dense_lhs = dense.sparse_mask(x) sparse = dense.to_sparse(2) res_sparse_lhs = sparse.sparse_mask(x) exp_v = torch.empty(4, 2, 0) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0])) self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) # check no side effects for the coalesce flag self.assertTrue(sparse.is_coalesced()) self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) _test_sparse_mask_hybrid_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_zeros(self, device, dtype, coalesced): def _test_zeros(nnzs, shape, out_shape_i, out_shape_v=None): out_shape = out_shape_i + (out_shape_v or []) for nnz in nnzs: out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape, dtype, device, coalesced) torch.zeros(*shape, out=out, dtype=dtype, device=device) self.assertEqual(tuple(out.size()), tuple(shape)) self.assertTrue(out._indices().numel() == out._values().numel() == 0) self.assertEqual(out._nnz(), 0) self.assertEqual(out.sparse_dim(), len(shape)) self.assertEqual(out.dense_dim(), 0) def test_shape(i_shapes, v_shapes, shape, nnzs): for i_dim in range(1, len(i_shapes) + 1): for v_dim in range(len(v_shapes) + 1): _test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim]) test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12]) test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12]) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_zeros_like(self, device, dtype, coalesced): def _test_zeros_like(nnzs, template_shape_i, template_shape_v=None): template_shape_v = template_shape_v or [] template_shape = template_shape_i + template_shape_v for nnz in nnzs: t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape, dtype, device, coalesced) res = torch.zeros_like(t) self.assertEqual(tuple(res.size()), tuple(template_shape)) self.assertTrue(res._indices().numel() == res._values().numel() == 0) self.assertEqual(res._nnz(), 0) self.assertEqual(res.sparse_dim(), len(template_shape_i)) self.assertEqual(res.dense_dim(), len(template_shape_v)) def test_shape(i_shapes, v_shapes, nnzs): for i_dim in range(1, len(i_shapes) + 1): for v_dim in range(len(v_shapes) + 1): _test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim]) test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] for x, mem_format in zip(data, mem_formats): with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): result = torch.zeros_like(x, memory_format=mem_format) result = torch.zeros_like(x, layout=torch.strided, memory_format=mem_format) self.assertTrue(result.layout == torch.strided) dense_tensor = sparse_tensor.to_dense() result = torch.zeros_like(dense_tensor, layout=torch.sparse_coo) self.assertEqual(dense_tensor.shape, result.shape) self.assertEqual(result.layout, torch.sparse_coo) sparse_zeros = torch.zeros(dense_tensor.shape, layout=torch.sparse_coo) self.assertEqual(result._indices().shape, sparse_zeros._indices().shape) self.assertEqual(result._values().shape, sparse_zeros._values().shape) def _assert_sparse_invars(self, t): # SparseTensor has the following invariants: # - sparse_dim + dense_dim = len(SparseTensor.shape) # - SparseTensor._indices().shape = (sparse_dim, nnz) # - SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) self.assertEqual(t.sparse_dim() + t.dense_dim(), len(t.shape)) self.assertEqual(tuple(t._indices().shape), (t.sparse_dim(), t._nnz())) self.assertEqual(tuple(t._values().shape), (t._nnz(), ) + t.shape[t.sparse_dim():]) def _test_empty_like(self, sparse_tensor, dtype, device, coalesced): result = torch.empty_like(sparse_tensor) self.assertTrue(result.is_sparse) self._assert_sparse_invars(result) self.assertEqual(result.shape, sparse_tensor.shape) self.assertEqual(result.dtype, sparse_tensor.dtype) self.assertEqual(result.device, sparse_tensor.device) self.assertEqual(result.sparse_dim(), sparse_tensor.sparse_dim()) self.assertEqual(result.dense_dim(), sparse_tensor.dense_dim()) sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] for x, mem_format in zip(data, mem_formats): with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): result = torch.empty_like(x, memory_format=mem_format) result = torch.empty_like(x, layout=torch.strided, memory_format=mem_format) self.assertTrue(result.layout == torch.strided) with self.assertRaisesRegex( RuntimeError, r"Could not run 'aten::empty_strided' with arguments from the 'Sparse(CPU|CUDA)' backend" ): dense_tensor = sparse_tensor.to_dense() result = torch.empty_like(dense_tensor, layout=torch.sparse_coo) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_empty_like(self, device, dtype, coalesced): # tests https://github.com/pytorch/pytorch/issues/43699 if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2]]), values=torch.tensor([3.0, -4.0, 5.0]), size=[3, ], dtype=dtype, device=device ).coalesce() self._test_empty_like(input_coalesced, dtype, device, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_empty_like(input_coalesced, dtype, device, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), size=[3, ], dtype=dtype, device=device ) self._test_empty_like(input_uncoalesced, dtype, device, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) self._test_empty_like(input_uncoalesced, dtype, device, coalesced) def _test_narrow(self, input, narrow_args): expected = input.to_dense().narrow(*narrow_args) self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense()) def _all_narrow_combs(self, shape): for dim, dim_sz in enumerate(shape): for start in range(dim_sz): for length in range(dim_sz - start): yield [dim, start, length] @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_narrow(self, device, dtype, coalesced): shape = [3, 3, 4, 2] input, _, _ = self._gen_sparse(4, 19, shape, dtype, device, coalesced) for narrow_args in self._all_narrow_combs(shape): self._test_narrow(input, narrow_args) self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0 self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim() self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim with_dense, _, _ = self._gen_sparse(2, 7, shape, dtype, device, coalesced) for narrow_args in self._all_narrow_combs(shape): self._test_narrow(with_dense, narrow_args) self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim def _test_log1p_tensor(self, sparse_tensor, coalesced): def is_integral(dtype): return dtype in integral_types() dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.log1p() is_integral_dtype = is_integral(sparse_tensor.dtype) self.assertEqual(expected_output, sparse_tensor.log1p().to_dense()) if is_integral_dtype: with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): sparse_tensor.coalesce().log1p_() else: self.assertEqual(expected_output, sparse_tensor.coalesce().log1p_().to_dense()) if not coalesced: # test in-place op on uncoalesced input with self.assertRaisesRegex(RuntimeError, "log1p_ requires coalesced input"): sparse_tensor.log1p_() if is_integral_dtype: with self.assertRaisesRegex(RuntimeError, "only Tensors of floating point dtype can require gradients"): sparse_tensor.requires_grad_() @coalescedonoff @dtypes(*all_types()) def test_log1p(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2]]).transpose(1, 0), values=torch.tensor([3.0, 4.0, 5.0]), size=[3, ], device=device, dtype=dtype ).coalesce() self._test_log1p_tensor(input_coalesced, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[1.0, 3.0], [5.0, 7.0]]), size=[4, 5, 2], device=device, dtype=dtype ).coalesce() self._test_log1p_tensor(input_coalesced, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, 3.0, 4.0, 1.0, 1.0, 1.0]), size=[3, ], device=device, dtype=dtype ) self._test_log1p_tensor(input_uncoalesced, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], device=device, dtype=dtype ) # empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state input_uncoalesced._coalesced_(False) self._test_log1p_tensor(input_uncoalesced, coalesced) def _test_neg_negative(self, sparse_tensor): dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.neg() ops = ( torch.neg, torch.Tensor.neg, torch.Tensor.neg_, torch.negative, torch.Tensor.negative, torch.Tensor.negative_, operator.neg ) for op in ops: sparse_tensor_copy = sparse_tensor.clone() self.assertEqual(expected_output, op(sparse_tensor_copy).to_dense()) if op in (torch.neg, torch.negative): sparse_tensor_out = torch.zeros_like(sparse_tensor) op(sparse_tensor, out=sparse_tensor_out) self.assertEqual(expected_output, sparse_tensor_out.to_dense()) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_neg_negative(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2]]), values=torch.tensor([3.0, -4.0, 5.0]), size=[3, ], dtype=dtype, device=device ).coalesce() self._test_neg_negative(input_coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_neg_negative(input_coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), size=[3, ], dtype=dtype, device=device ) self._test_neg_negative(input_uncoalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) self._test_neg_negative(input_uncoalesced) def _test_asin_arcsin(self, sparse_tensor, coalesced): def is_integral(dtype): return dtype in integral_types() is_integral_dtype = is_integral(sparse_tensor.dtype) dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.asin() ops = ( torch.asin, torch.Tensor.asin, torch.arcsin, torch.Tensor.arcsin, ) for op in ops: self.assertEqual(expected_output, op(sparse_tensor).to_dense()) if op in (torch.asin, torch.arcsin): sparse_tensor_out = torch.zeros_like(sparse_tensor) if not is_integral_dtype: op(sparse_tensor, out=sparse_tensor_out) self.assertEqual(expected_output, sparse_tensor_out.to_dense()) else: with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op(sparse_tensor, out=sparse_tensor_out) for op in (torch.Tensor.asin_, torch.Tensor.arcsin_): if is_integral_dtype: # test coalesce on integral dtype tensor with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op(sparse_tensor.clone().coalesce()).to_dense() else: self.assertEqual(expected_output, op(sparse_tensor.clone().coalesce()).to_dense()) if not coalesced: # test in-place op on uncoalesced input with self.assertRaisesRegex(RuntimeError, "asin_ requires coalesced input"): op(sparse_tensor) @coalescedonoff @dtypes(*all_types()) def test_asin_arcsin(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2, 3]]), values=torch.tensor([0.5, -0.5, 0.7, -0.7]), size=[4, ], dtype=dtype, device=device ).coalesce() self._test_asin_arcsin(input_coalesced, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-0.1, 0.24], [-0.44, 0.1]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_asin_arcsin(input_coalesced, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([0.3, -0.3, -0.4, 0.3, -0.5, 0.15]), size=[3, ], dtype=dtype, device=device ) self._test_asin_arcsin(input_uncoalesced, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) # empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state input_uncoalesced._coalesced_(False) self._test_asin_arcsin(input_uncoalesced, coalesced) @coalescedonoff @dtypes(torch.double) def test_mv(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) t = torch.randn(dk, dtype=dtype, device=device) res = x.matmul(t) expected = self.safeToDense(x).matmul(t) self.assertEqual(res, expected) test_shape(10, 100, 100, 20) test_shape(100, 1000, 1000, 20) test_shape(64, 10000, 10000, 20) test_shape(0, 100, 100, 0) test_shape(10, 0, 0, 0) test_shape(10, 100, 100, 0) test_shape(10, 100, 100, 20) with self.assertRaisesRegex(RuntimeError, r"mv: expected self\.size\(-1\) == vec\.size\(-1\)"): test_shape(10, 100, 10, 20) with self.assertRaisesRegex(RuntimeError, "mv: two tensor dim should be 2 and 1"): x, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) y, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) res = x.mv(y) @dtypes(*floating_and_complex_types()) def test_sparse_add_coalesce(self, device, dtype): i = self.index_tensor([[1, 2, 1]], device=device) v = torch.tensor([3, 4, 5], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3])) y = self.sparse_tensor(i, v, torch.Size([3])) z = x + y self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) i = self.index_tensor([[1, 2, 1]], device=device) v = torch.empty([3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 0])) y = self.sparse_tensor(i, v, torch.Size([3, 0])) z = x + y self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) @onlyCUDA def test_storage_not_null(self): x = torch.cuda.sparse.FloatTensor(2) self.assertNotEqual(x.get_device(), -1) x = torch.cuda.sparse.FloatTensor(2, 0) self.assertNotEqual(x.get_device(), -1) @onlyCUDA @deviceCountAtLeast(2) def test_same_gpu(self, devices): def check_device(x, device_id): self.assertEqual(x.get_device(), device_id) self.assertEqual(x._values().get_device(), device_id) self.assertEqual(x._indices().get_device(), device_id) dev1, dev2 = devices[0], devices[1] i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev2) x = self.sparse_tensor(i, v, torch.Size([3]), device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev2) x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1) check_device(x, 1) x = self.sparse_empty(3, device=1) check_device(x, 1) x = self.sparse_empty(3, 0, device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3]))) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3, 0]))) def _test_new_device(self, size, device=torch.cuda): with torch.cuda.device(device): x = torch.cuda.sparse.DoubleTensor(*size) self.assertEqual(x.get_device(), device) x1 = x.new() x2 = x.new(2, 3) self.assertEqual(x1.get_device(), device) self.assertEqual(x2.get_device(), device) @onlyCUDA def test_new_device_single_gpu(self): self._test_new_device((), 0) self._test_new_device((30, 20), 0) self._test_new_device((30, 20, 10), 0) self._test_new_device((30, 20, 10, 0), 0) @onlyCUDA @unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected") def test_new_device_multi_gpu(self): self._test_new_device((), 1) self._test_new_device((30, 20), 1) self._test_new_device((30, 20, 10), 1) self._test_new_device((30, 20, 10, 0), 1) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_new(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) if not x.is_cuda: # CUDA sparse tensors currently requires the size to be # specified if nDimV > 0 out = x.new(indices, values).coalesce() x_c = x.coalesce() self.assertEqual((out.indices(), out.values()), (x_c.indices(), x_c.values())) self.assertEqual(x.new(indices, values, x.size()), x) test_shape(3, 10, 100) test_shape(3, 0, [100, 100, 0]) @onlyCPU # not really, but we only really want to run this once @dtypes(torch.float64, torch.float32, torch.float16, torch.cfloat, torch.cdouble) def test_factory(self, device, dtype): for test_empty_tensor in [True, False]: if test_empty_tensor: default_size = torch.Size([1, 3, 0]) size = torch.Size([3, 3, 0]) else: default_size = torch.Size([1, 3]) size = torch.Size([3, 3]) for include_size in [True, False]: for use_tensor_idx in [True, False]: for use_tensor_val in [True, False]: for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]): # have to include size with cuda sparse tensors include_size = include_size or use_cuda long_dtype = torch.int64 device = torch.device('cpu') if not use_cuda else \ torch.device(torch.cuda.device_count() - 1) indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2]) if test_empty_tensor: values = torch.empty(1, 0).to(dtype) else: if use_tensor_val: values = torch.tensor([1.], dtype=dtype) else: values = 1. if include_size: sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype, device=device, requires_grad=True) else: sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype, device=device, requires_grad=True) self.assertEqual(indices, sparse_tensor._indices()) self.assertEqual(values, sparse_tensor._values()) self.assertEqual(size if include_size else default_size, sparse_tensor.size()) self.assertEqual(dtype, sparse_tensor.dtype) if use_cuda: self.assertEqual(device, sparse_tensor._values().device) self.assertEqual(True, sparse_tensor.requires_grad) @dtypes(torch.double, torch.cdouble) def test_factory_size_check(self, device, dtype): indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([.5, .5], dtype=dtype, device=device) sizes = torch.Size([2, 3]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices.fill_(-1) with self.assertRaisesRegex(RuntimeError, "found negative index"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 1, 0], dtype=dtype, device=device) sizes = torch.Size([2, 3, 1, 0]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 2, 2], dtype=dtype, device=device) sizes = torch.Size([0, 0, 2, 2]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=dtype, device=device) sizes = torch.Size([3, 3, 2]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 1, 0], dtype=dtype, device=device) sizes = torch.Size([3, 3, 2, 0]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) def test_factory_default(self, device): tensor = self.legacy_sparse_tensor() expected_indices = self.index_tensor([[]], device=device) expected_size = torch.Size([0]) self.assertEqual(tensor._indices(), expected_indices) self.assertEqual(tensor.shape, expected_size) def test_factory_empty_indices(self, device): tensor = self.legacy_sparse_tensor() expected_indices = torch.empty((1, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device) expected_indices = torch.empty((2, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device) expected_indices = torch.empty((3, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device) expected_indices = torch.empty((4, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) @dtypes(torch.double, torch.cdouble) def test_factory_nnz(self, device, dtype): indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) values = torch.tensor([[1, 1], [1, 1]], dtype=dtype, device=device) # (nnz, ...): (2, 2) sizes = torch.Size([2, 2]) with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) values = torch.empty([2, 0], dtype=dtype, device=device) # (nnz, ...): (2, 0) sizes = torch.Size([2, 0]) with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) @dtypes(torch.double, torch.cdouble) def test_factory_nnz_zero(self, device, dtype): def test_shape(i_shape, v_shape, size, expected_size): if size: t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size), dtype=dtype, device=device) else: t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), dtype=dtype, device=device) expected_indices = torch.empty(i_shape, device=device, dtype=torch.int64) expected_values = torch.empty(v_shape, device=device, dtype=dtype) expected_size = torch.Size(expected_size) self.assertEqual(t._indices(), expected_indices) self.assertEqual(t._values(), expected_values) self.assertEqual(t.size(), expected_size) test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0]) test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0]) @dtypes(torch.double, torch.cdouble) def test_factory_dense_dim(self, device, dtype): indices = self.index_tensor([[0]], device=device) values = torch.tensor([[[1, 1, 1], [1, 1, 1]]], dtype=dtype, device=device) sizes = torch.Size([1, 3, 4]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes) indices = self.index_tensor([[0]], device=device) values = torch.empty([1, 2, 3, 0], dtype=dtype, device=device) sizes = torch.Size([1, 3, 4, 0]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes) @onlyCPU @dtypes(torch.float16, torch.float32, torch.float64, torch.cfloat, torch.cdouble, torch.int64) def test_factory_type_inference(self, device, dtype): t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=dtype)) self.assertEqual(dtype, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1])) self.assertEqual(torch.int64, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0)) self.assertEqual(torch.float16, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0)) self.assertEqual(torch.float32, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0)) self.assertEqual(torch.float64, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0)) self.assertEqual(torch.int64, t.dtype) @onlyCUDA def test_factory_device_type_inference(self, device): # both indices/values are CUDA cpu_cuda = ('cpu', 'cuda') cpu_cuda_none = cpu_cuda + (None,) for indices_device, values_device, device in itertools.product(cpu_cuda, cpu_cuda, cpu_cuda_none): indices = torch.tensor(([0], [2]), device=indices_device) values = torch.tensor([1.], device=values_device) empty_values = torch.empty(1, 0).to(values_device) shape = (1, 3) empty_shape = (1, 3, 0) if device is None and indices_device != values_device: with self.assertRaises(RuntimeError): torch.sparse_coo_tensor(indices, values, shape, device=device) with self.assertRaises(RuntimeError): torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) else: t = torch.sparse_coo_tensor(indices, values, shape, device=device) t_empty = torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda')) self.assertEqual(should_be_cuda, t.is_cuda) self.assertEqual(t.is_cuda, t_empty.is_cuda) @onlyCPU def test_factory_copy(self, device): def test_tensor(indices, values, indices_equal, values_equal): sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64, device=device) if indices_equal: self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) else: self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) if values_equal: self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) else: self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) # both correct indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float64) test_tensor(indices, values, True, True) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.DoubleTensor(1, 0) test_tensor(indices, values, True, True) # only indices correct indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float32) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float16) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.FloatTensor(1, 0) test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0 # only values correct indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.tensor([1.], dtype=torch.float64) test_tensor(indices, values, False, True) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.DoubleTensor(1, 0) test_tensor(indices, values, False, True) # neither correct indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.tensor([1.], dtype=torch.float32) test_tensor(indices, values, False, False) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.FloatTensor(1, 0) test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0 # complex support indices = torch.tensor(([0], [2]), dtype=torch.int64) values = make_tensor([1, ], dtype=torch.cdouble, device=device) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = make_tensor([1, 1], dtype=torch.cdouble, device=device) test_tensor(indices, values, False, False) @onlyCPU # just run once, we test both cpu and cuda def test_constructor_device_legacy(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) x = torch.sparse_coo_tensor(i, v, size, device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) x = torch.sparse_coo_tensor(i, v, size, device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) def test_legacy_constructor(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v.storage())) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v)) self.assertEqual(torch.sparse_coo, torch.sparse.FloatTensor(torch.Size([2, 3])).layout) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor([6])) def test_legacy_new(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) s = torch.sparse_coo_tensor(i, v, size) self.assertEqual(torch.sparse_coo, s.new(device='cpu').layout) self.assertRaises(TypeError, lambda: s.new(v.storage())) self.assertRaises(TypeError, lambda: s.new(v)) self.assertEqual(torch.sparse_coo, s.new(torch.Size([2, 3])).layout) self.assertRaises(TypeError, lambda: s.new([6])) @onlyCPU # not really, but we only really want to run this once def test_dtypes(self, device): all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16) do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.is_available(): do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0')) @onlyCPU # not really, but we only really want to run this once def test_empty_full(self, device): all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.device_count() > 0: do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0')) def test_is_sparse(self, device): x = torch.randn(3, 3) self.assertFalse(x.is_sparse) x = torch.randn(3, 3, 0) self.assertFalse(x.is_sparse) x = self.legacy_sparse_tensor() self.assertTrue(x.is_sparse) x = self.sparse_empty(1, 0, device=device) self.assertTrue(x.is_sparse) def test_resize_as(self, device): def do_test(t): y = t.new().resize_as_(t).zero_() self.assertEqual(y.shape, t.shape) # Check that y can be added to t. Currently, this requires that # sparse_dim and dense_dim match. self.assertEqual(t, t + y) do_test(self.legacy_sparse_tensor()) do_test(self.sparse_empty([3, 0], device=device)) do_test(self.sparse_empty([3, 3], device=device)) def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size, dtype, device): x_v_numel = torch.zeros(x_v).numel() y_v_numel = torch.zeros(y_v).numel() x = torch.sparse_coo_tensor(torch.zeros(x_i), torch.arange(x_v_numel).resize_(x_v).to(torch.float), torch.Size(x_size), dtype=dtype, device=device) x_dense = x.to_dense() y = torch.sparse_coo_tensor(torch.zeros(y_i), torch.ones(y_v).to(torch.float), torch.Size(y_size), dtype=dtype, device=device) y_dense = y.to_dense() x.resize_as_(y) x_dense.resize_as_(y_dense) self.assertEqual(x.shape, y.shape) self.assertEqual(x.sparse_dim(), y.sparse_dim()) self.assertEqual(x.dense_dim(), y.dense_dim()) self.assertEqual(x.shape, x_dense.shape) self.assertEqual(y.shape, y_dense.shape) # Here we make sure that the original data are preserved after resizing self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v), x_dense.view(-1)[0:x_v_numel].view(x_v)) @dtypes(torch.double, torch.cdouble) def test_resize(self, device, dtype): # 1. Expand the size of some dense dimensions [Supported] self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 4], [2, 2, 4], dtype=dtype, device=device) self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0], [1, 1], [1, 2, 4], [2, 2, 4], dtype=dtype, device=device) # 2. Expand the size of some sparse dimensions [Supported] self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3], [4, 2, 3], dtype=dtype, device=device) # 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported] self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], [2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5], dtype=dtype, device=device) self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], [2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0], dtype=dtype, device=device) # 4. Add dims to dense dimensions [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3, 4], [2, 2, 3, 4], dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3, 0], [2, 2, 3, 0], dtype=dtype, device=device) # 5. Remove dims from dense dimensions [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2], [2, 2], dtype=dtype, device=device) # 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [2, 1], [1, 2, 3], [1, 2, 2, 3], dtype=dtype, device=device) # 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3], [1, 2, 3], dtype=dtype, device=device) # 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 2], [2, 2, 2], dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 0], [2, 2, 0], dtype=dtype, device=device) def test_is_nonzero(self, device): self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,), device=device).is_nonzero()) # scalar sparse tensor self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, [], device=device).is_nonzero()) with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"): torch.sparse_coo_tensor(([0, 1],), torch.empty(2, 0), (4, 0), device=device).is_nonzero() self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cfloat, device=device) .is_nonzero()) self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cdouble, device=device) .is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cfloat, device=device) .is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cdouble, device=device) .is_nonzero()) @dtypes(torch.double, torch.cdouble) def test_change_tensor_metadata(self, device, dtype): i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]), dtype=dtype, device=device) i.resize_(2, 3) v.resize_(4, 5) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.resize_as_(self.index_tensor([0, 1], device=device)) v.resize_as_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.as_strided_((2, 1), (1, 1)) v.as_strided_((1, 3), (1, 1)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.set_(self.index_tensor([0, 1], device=device)) v.set_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.transpose_(0, 1) v.transpose_(0, 1) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) @coalescedonoff @dtypes(torch.double) def test_pickle(self, device, dtype, coalesced): import pickle shape_sparse_dim_nnz = [ ((), 0, 2), ((0,), 0, 10), ((2,), 0, 3), ((100, 3), 1, 3), ((100, 20, 3), 2, 0), ((10, 0, 3), 0, 3), ((10, 0, 3), 0, 0), ] for shape, sparse_dim, nnz in shape_sparse_dim_nnz: indices_shape = torch.Size((sparse_dim, nnz)) values_shape = torch.Size((nnz,) + shape[sparse_dim:]) indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, device=device).view(indices_shape) for d in range(sparse_dim): indices[d].clamp_(max=(shape[d] - 1)) # make it valid index if not coalesced and indices.numel() > 0: indices[:, -1] = indices[:, 0] # make it uncoalesced values_numel = values_shape.numel() values = torch.arange(values_numel, dtype=dtype, device=device).view(values_shape).div_(values_numel / 2.) sp_tensor = self.sparse_tensor(indices, values, shape) serialized = pickle.dumps(sp_tensor) sp_tensor_loaded = pickle.loads(serialized) self.assertEqual(sp_tensor, sp_tensor_loaded) def test_any(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]), device=device) t_any = torch.tensor(False) self.assertEqual(torch.any(t), t_any) t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([True, False]), device=device) t_any = torch.tensor(True) self.assertEqual(torch.any(t), t_any) def test_isnan(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, 4]), device=device) t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, False]), device=device) self.assertEqual(torch.isnan(t).int(), t_nan.int()) t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, float("nan")]), device=device) t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, True]), device=device) self.assertEqual(torch.isnan(t).int(), t_nan.int()) @coalescedonoff @dtypes(torch.float32, torch.float64) def test_div_rounding_mode(self, device, dtype, coalesced): sparse, _, _ = self._gen_sparse(2, 10, (10, 10), dtype, device, coalesced) dense = self.safeToDense(sparse) for mode in (None, 'floor', 'trunc'): actual = sparse.div(-2, rounding_mode=mode) expect = dense.div(-2, rounding_mode=mode) self.assertEqual(self.safeToDense(actual), expect) # Test inplace actual = sparse.clone().div_(-2, rounding_mode=mode) self.assertEqual(self.safeToDense(actual), expect) # Test out argument actual.zero_() torch.div(sparse, -2, rounding_mode=mode, out=actual) self.assertEqual(self.safeToDense(actual), expect) def test_div_by_sparse_error(self, device): self.assertRaisesRegex(RuntimeError, 'Sparse division requires', lambda: torch.tensor(1., device=device).to_sparse() / torch.tensor(1., device=device).to_sparse()) def test_floor_divide_by_sparse_error(self, device): self.assertRaisesRegex(RuntimeError, 'Sparse floor division requires', lambda: torch.tensor(1., device=device).to_sparse() // torch.tensor(1., device=device).to_sparse()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") @onlyCPU def test_sparse_to_numpy(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4])) self.assertRaises(TypeError, lambda: t.numpy()) @coalescedonoff @dtypes(torch.double) def test_softmax(self, device, dtype, coalesced): import torch.nn.functional as F def to_dense(sparse, fill_value=None): """ Return dense tensor from a sparse tensor using given fill value. """ if fill_value is None or fill_value == 0: return sparse.to_dense() sparse = sparse.coalesce() dense = torch.full(sparse.shape, fill_value, dtype=sparse.dtype, device=sparse.device) for idx, value in zip(sparse._indices().t(), sparse._values()): dense[tuple(idx)] = value return dense def softmax_to_dense(sparse, dim): """Dense softmax of a sparse tensor. Useful only for testing softmax correctness. When computing softmax of a sparse tensor, the value of unspecified items is negative infinity rather than zero so that softmax(sparse.to_dense(fill_value=-inf), dim) == softmax(sparse, dim).to_dense() holds for non-empty lines. One empty lines, the softmax values are defined as 0 in order to preserve the sparsity of result. Note that in PyTorch, ``to_dense`` method does not implement the ``fill_value`` keyword argument. """ dtype = sparse.dtype device = sparse.device dense = to_dense(sparse, fill_value=-float('inf')) r = F.softmax(dense, dim) # softmax on empty lines results nan, replace with zeros to match the definition r[r != r] = 0 return r def sparse_softmax(sparse, dim): """Pure Python softmax of a sparse tensor. Assuming -inf for unspecified sparse tensor data. This is a prototype of sparse softmax algorithm in Python. """ dtype = sparse.dtype device = sparse.device # softmax is non-linear operation, so sparse tensors must # be coalesced. sparse = sparse.coalesce() inf = float('inf') indices = sparse._indices() values = sparse._values() if dim < sparse.sparse_dim(): nnz = sparse._nnz() # compute pool indices size = sparse.size() strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device) for i in reversed(range(sparse.sparse_dim() - 1)): strides[i, 0] = strides[i + 1, 0] * size[i + 1] strides[dim, 0] = 0 pool = (indices * strides).sum(dim=0) i2p = {} for i in range(nnz): c = int(pool[i]) if c not in i2p: i2p[c] = len(i2p) pool[i] = i2p[c] # compute max dense_size = tuple(size[sparse.sparse_dim():]) mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device) mx[:] = -inf for n in range(nnz): p = pool[n] mx[p] = torch.max(mx[p], values[n]) # apply exp to (v - mx) and sum the results exp_values = torch.empty_like(values) exp_sums = torch.zeros_like(mx) for n in range(nnz): p = pool[n] v = exp_values[n] = (values[n] - mx[p]).exp() exp_sums[p] = exp_sums[p] + v # normalize with the sum of exponents for n in range(nnz): p = pool[n] exp_values[n] = exp_values[n] / exp_sums[p] return torch.sparse_coo_tensor(indices, exp_values, sparse.size(), dtype=dtype, device=device) elif dim < sparse.sparse_dim() + sparse.dense_dim(): return torch.sparse_coo_tensor(indices, F.softmax(values, dim - sparse.sparse_dim() + 1), sparse.size(), dtype=dtype, device=device) else: raise ValueError( '`dim(=%s)` must be smaller than `sparse_dim(=%s) + dense_dim(=%s)`' % (dim, sparse.sparse_dim(), sparse.dense_dim())) def softmax_jacobian_analytic(x, dim): """Return Jacobian of softmax using analytic formula D_jS_i = S_i * (1[i==j] - S_j). where S = softmax(x, dim), x is dense tensor, i,j in range(x.shape[dim]). """ y = F.softmax(x, dim) y[y != y] = 0 # replace nan-s with zeros J = torch.zeros((x.shape[dim],) + tuple(x.shape), dtype=x.dtype, device=x.device) si = [slice(None)] * len(y.shape) sj = [slice(None)] * len(y.shape) s = [slice(None)] * len(J.shape) for i in range(y.shape[dim]): si[dim] = i s[dim + 1] = i yi = y[tuple(si)] for j in range(y.shape[dim]): sj[dim] = j s[0] = j if i == j: J[tuple(s)] = yi * (1 - yi) else: yj = y[tuple(sj)] J[tuple(s)] = - yi * yj sj[dim] = slice(None) si[dim] = slice(None) s[dim + 1] = slice(None) return J def softmax_jacobian_autograd(x, dim, log=False): """Return Jacobian of softmax using PyTorch autograd feature. x can be dense or sparse tensor. """ import itertools if x.is_sparse: x = x.coalesce() dtype = x.dtype device = x.device shape = tuple(x.shape) J = torch.zeros((shape[dim],) + shape, dtype=dtype, device=device) for i in range(shape[dim]): if x.is_sparse: sparse_dim = x.sparse_dim() dense_dim = x.dense_dim() if dim < sparse_dim: ranges = [] for j, sz in enumerate(shape[:sparse_dim]): if dim == j: ranges.append([i]) else: ranges.append(list(range(sz))) indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() values = torch.ones((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) else: ranges = [] for j, sz in enumerate(shape[:sparse_dim]): ranges.append(list(range(sz))) indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() values = torch.zeros((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) sv = [slice(None)] * (dense_dim + 1) sv[dim - sparse_dim + 1] = i values[tuple(sv)] = 1 v = torch.sparse_coo_tensor(indices, values, shape, dtype=dtype, device=device) else: v = torch.zeros_like(x) sv = [slice(None)] * len(v.shape) sv[dim] = i v[tuple(sv)] = 1 x_ = x.clone() x_.requires_grad_(True) if log: if x_.is_sparse: y = torch.sparse.log_softmax(x_, dim) else: y = F.log_softmax(x_, dim) else: if x_.is_sparse: y = torch.sparse.softmax(x_, dim) else: y = F.softmax(x_, dim) # replace nan-s with zeros y.data[y != y] = 0 y.backward(v) g = x_.grad if not g.is_sparse: # replace nan-s with zeros g.data[g != g] = 0 J[i] = g.to_dense() if g.is_sparse else g return J @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166") def test_op(sparse_dims, nnz, with_size, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) for dim in range(x.sparse_dim() + x.dense_dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax y1 = torch.sparse.softmax(x, dim) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, dim) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype)) test_op(1, 10, [3], coalesced) test_op(1, 10, [2, 3], coalesced) test_op(1, 10, [3, 2], coalesced) test_op(2, 10, [2, 3, 4], coalesced) test_op(2, 10, [3, 4], coalesced) test_op(2, 5, [5, 4], coalesced) test_op(2, 10, [3, 4, 2], coalesced) test_op(3, 10, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2, 3], coalesced) test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced) test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced) @dtypes(torch.double) def test_softmax_zero_nnz(self, device, dtype): t = torch.sparse_coo_tensor([[]], [], (3,), device=device, dtype=dtype) out = torch.sparse.softmax(t, 0) self.assertEqual(out.to_dense(), torch.zeros_like(t)) # TODO: Check after why ROCm's cusparseXcsrgemm2Nnz function doesn't return the same nnz value as CUDA @skipIfRocm @coalescedonoff @dtypes(*floating_and_complex_types()) @dtypesIfCUDA(*floating_types_and(*[torch.half] if SM53OrLater else [], *[torch.bfloat16] if SM80OrLater else [], torch.complex64, *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) @unittest.skipIf(TEST_WITH_CROSSREF, "not working with fake tensor") @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2, torch.complex64: 1e-2, torch.float32: 1e-2}) def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) # We convert grad to dense since dense and sparse mm # implementations handle materialized zeroes differently. self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) # Check result is truly coalesced self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), check_sparse_nnz=True, nondet_tol=1e-5) else: gradcheck(fn, (a, b), check_sparse_nnz=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b) def test_error_cases(): def fn(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) r2 = torch.sparse.mm(a, b) # This is not a matrix self.assertRaises(RuntimeError, lambda: fn(3, 4, [2, 2, 2], [2, 2, 2])) # Shapes does not self.assertRaisesRegex(RuntimeError, r"mat1 and mat2 shapes cannot be multiplied \(2x3 and 4x2\)", lambda: fn(2, 10, [2, 3], [4, 2])) def different_dtypes(): a, i_a, v_a = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) r2 = torch.sparse.mm(a.to(torch.float64), a.to(torch.float32)) self.assertRaisesRegex(RuntimeError, 'mat1 dtype Double does not match mat2 dtype Float', different_dtypes) for n in range(2, 5): for m in range(2, 8): for p in range(2, 8): test_sparse_matmul(2, 10, [n, m], [m, p]) test_sparse_matmul(2, 0, [0, 0], [0, 0]) test_sparse_matmul(2, 0, [0, 10], [10, 0]) test_error_cases() @coalescedonoff @dtypes(torch.double) def test_assign(self, device, dtype, coalesced): def assign_to(): a, i_a, v_a = self._gen_sparse(2, 5, [2, 3], dtype, device, coalesced) a[0] = 100 self.assertRaises(TypeError, assign_to) @dtypes(torch.double, torch.cdouble) def test_full_broadcast_to(self, device, dtype): def can_broadcast(s0, s1): s0 = tuple(reversed(s0)) s1 = tuple(reversed(s1)) for i in range(len(s0)): if s0[i] != 1 and s0[i] != s1[i]: return False return True sizes = ( (), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2) ) for s0, s1 in itertools.combinations(sizes, r=2): t = make_tensor(s0, dtype=dtype, device=device, low=-9, high=9) for sparse_dims in range(1, len(s0) + 1): s = t.to_sparse(sparse_dims) if can_broadcast(s0, s1): t_res = torch.broadcast_to(t, s1) s_res = torch._sparse_broadcast_to(s, s1) torch._validate_sparse_coo_tensor_args(s_res._indices(), s_res._values(), s_res.shape) if s_res.is_coalesced(): # ensure that is_coalesced is estimated correctly self.assertEqual(s_res, torch.sparse_coo_tensor(s_res._indices(), s_res._values(), s_res.shape).coalesce()) self.assertEqual(s_res.to_dense(), t_res) else: with self.assertRaisesRegex(RuntimeError, r"The expanded size of the tensor \(\d\) " r"must match the existing size \(\d\)"): torch._sparse_broadcast_to(s, s1) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_broadcast_to(self, device, dtype, coalesced): def test(sparse_dims, nnz, with_size, new_size): x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] y = self.safeToDense(x) x1 = torch._sparse_broadcast_to(x, new_size) y1 = y.broadcast_to(new_size) self.assertEqual(self.safeToDense(x1), y1) test(4, 6, [7, 3, 1, 3, 0], [7, 3, 4, 3, 0]) test(4, 6, [7, 3, 1, 3, 0], [2, 7, 3, 1, 3, 0]) test(4, 6, [7, 3, 1, 3, 1, 3], [7, 3, 1, 3, 2, 3]) test(4, 6, [7, 3, 1, 3, 2, 1], [7, 3, 1, 3, 2, 3]) def _test_mul_skips(self, device, dtype, coalesced): skipTestIfUncoalesced = False # This case always coalesce inputs and that could lead to loss of precision, # hence it is inhibited for float16/bfloat16 by providing already coalesced tensors. if not coalesced and dtype in {torch.float16, torch.bfloat16}: skipTestIfUncoalesced = True # to_dense is problematic for boolean non-coalesced CUDA tensors # see https://github.com/pytorch/pytorch/issues/81648 if not coalesced and dtype == torch.bool and torch.device(device).type == "cuda": skipTestIfUncoalesced = True if skipTestIfUncoalesced: self.skipTest(f"Test with dtype={dtype}, device={device} runs only with coalesced inputs") @coalescedonoff # NOTE: addcmul_out is not implemented for bool and half. @dtypes(*all_types_and_complex_and(torch.bfloat16)) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_sparse_mul(self, device, dtype, coalesced): self._test_mul_skips(device, dtype, coalesced) shape = (2, 3, 4, 10) nnz = 10 def check(self, x, y): res_sparse = x * y res_dense = x.to_dense() * y.to_dense() self.assertEqual(res_sparse.to_dense(), res_dense) def check_empty(sparse_shape, nnz, dense_shape, coalesce): from itertools import product for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))): empty_sparse_shape = sparse_shape + shape_suffix empty_dense_shape = dense_shape + shape_suffix x = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0] check(self, x, x) # TODO: uncomment once backward is implemented for sparse tensors that broadcast in dense dims. # def check_autograd(x, y): # if dtype in {torch.double, torch.cdouble}: # xa = x.detach().clone().requires_grad_(True) # ya = y.detach().clone().requires_grad_(True) # gradcheck(lambda a, b: (a * b).to_dense(), (xa, ya), check_sparse_nnz=True) # gradcheck(lambda a, b: (a * b).to_dense(), (ya, xa), check_sparse_nnz=True) for dim in range(len(shape) + 1): sub_shape = shape[dim:] sparse_dim = len(sub_shape) // 2 check_empty(sub_shape, nnz, shape, coalesced) x = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] y = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] check(self, x, y) # TODO: uncomment once supported # check_autograd(x, y) # check broadcasting in dense dims for d in range(sparse_dim, len(sub_shape)): new_shape = sub_shape[:d] + (1,) + sub_shape[d + 1:] y = self._gen_sparse(sparse_dim, nnz, new_shape, dtype, device, coalesced)[0] check(self, x, y) # TODO: uncomment once supported # check_autograd(x, y) @coalescedonoff @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) def test_sparse_dense_mul(self, device, dtype, coalesced): self._test_mul_skips(device, dtype, coalesced) shape = (2, 3, 4, 10) nnz = 10 def check(self, s, d): res = d * s # check commutativity self.assertEqual(res, s * d) # check correctness self.assertEqual(res.to_dense(), s.to_dense() * d) # check in-placeness for dense if d.dim() >= s.dim(): dc = d.clone() self.assertEqual(d.mul_(s), dc.mul_(s.to_dense())) # check in-placeness for sparse if s.dim() >= d.dim(): # for sparse sc = s.clone() self.assertEqual(s.mul_(d).to_dense(), sc.to_dense().mul_(d)) for dim in range(len(shape) + 1): sub_shape = shape[dim:] sparse_dim = len(sub_shape) // 2 def check_empty(sparse_shape, nnz, dense_shape, coalesce): from itertools import product for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))): empty_sparse_shape = sparse_shape + shape_suffix empty_dense_shape = dense_shape + shape_suffix s = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0] d = make_tensor(empty_dense_shape, dtype=dtype, device=device) check(self, s, d) # check scalar multiplication s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] for scalar in (True, 1, 1.0): res_sparse_right = s * scalar res_sparse_left = scalar * s res_dense = s.to_dense() * scalar # check correctness and dtype self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right) self.assertEqual(res_sparse_right, res_sparse_left) self.assertEqual(res_sparse_right.dtype, res_dense.dtype) self.assertEqual(res_sparse_left.dtype, res_dense.dtype) # check scalar as 0-dim sparse tensor tscalar = torch.tensor(scalar, device=device) sscalar = tscalar.to_sparse() res_sparse_right = s * sscalar res_sparse_left = sscalar * s self.assertEqual(res_sparse_right, res_sparse_left) self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right) # check non-coalesced 0-dim scalar # we skip torch.bool because for such tensors # coalesce.to_dense != to_dense if dtype == torch.bool: return for scalar_dtype in (int, float): scalar = scalar_dtype(1) idx = torch.tensor([], device=device).reshape(0, 2) val = torch.tensor([scalar, scalar], device=device) sscalar = torch.sparse_coo_tensor(idx, val, ()) res_dense = s.to_dense() * sscalar.to_dense() self.assertEqual((s * sscalar).to_dense(), res_dense) self.assertEqual((sscalar * s).to_dense(), res_dense) # Case 1: sparse broadcasts over dense s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] d = make_tensor(shape, dtype=dtype, device=device) check(self, s, d) check_empty(sub_shape, nnz, shape, coalesced) # Case 2: dense broadcasts over sparse s = self._gen_sparse(3, nnz, shape, dtype, device, coalesced)[0] d = make_tensor(sub_shape, dtype=dtype, device=device) check(self, s, d) check_empty(shape, nnz, sub_shape, coalesced) @unittest.skipIf(not TEST_NUMPY, "NumPy is not available") @onlyCPU @dtypes(*all_types_and_complex_and(torch.bool)) def test_sparse_spdiags(self, device, dtype): make_diags = functools.partial(make_tensor, dtype=dtype, device=device) make_offsets = functools.partial(torch.tensor, dtype=torch.long, device=device) if TEST_SCIPY: def reference(diags, offsets, shape): return scipy.sparse.spdiags(diags, offsets, *shape).toarray() else: def reference(diags, offsets, shape): result = torch.zeros(shape, dtype=dtype, device=device) for i, off in enumerate(offsets): res_view = result.diagonal(off) data = diags[i] if off > 0: data = data[off:] m = min(res_view.shape[0], data.shape[0]) res_view[:m] = data[:m] return result def check_valid(diags, offsets, shape, layout=None): ref_out = reference(diags, offsets, shape) out = torch.sparse.spdiags(diags, offsets, shape, layout=layout) if layout is None: ex_layout = torch.sparse_coo else: ex_layout = layout out_dense = out.to_dense() self.assertTrue(out.layout == ex_layout, f"Output layout {out.layout} expected {ex_layout}") self.assertEqual(out_dense, ref_out, f"Result:\n{out_dense} does not match reference:\n{ref_out}") def check_invalid(args, error): with self.assertRaisesRegex(RuntimeError, error): torch.sparse.spdiags(*args) def valid_cases(): # some normal cases yield (make_diags((1, 5)), make_offsets([0]), (5, 5)) yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4)) # noncontigous diags yield (make_diags((5, 4), noncontiguous=True), make_offsets([-1, 1, 0, 2, -2]), (5, 5)) # noncontigous offsets yield (make_diags((3, 4)), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5)) # noncontigous diags + offsets yield (make_diags((3, 4), noncontiguous=True), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5)) # correct dimensionality, 2d, 2d , and shapes match, but the number of diagonals is zero yield (make_diags((0, 3)), make_offsets([]), (3, 3)) # forward rotation of upper diagonals yield (make_diags((3, 8)), make_offsets([1, 2, 3]), (4, 4)) # rotation exausts input space to read from yield (make_diags((2, 3)), make_offsets([2, 1]), (3, 3)) # Simple cases repeated with special output format yield (make_diags((1, 5)), make_offsets([0]), (5, 5), torch.sparse_csc) yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4), torch.sparse_csr) # vector diags yield (make_diags((3, )), make_offsets([1]), (4, 4)) # Scalar offset yield (make_diags((1, 3)), make_offsets(2), (4, 4)) # offsets out of range yield (make_diags((1, 3)), make_offsets([3]), (3, 3)) yield (make_diags((1, 3)), make_offsets([-3]), (3, 3)) for case in valid_cases(): check_valid(*case) def invalid_cases(): yield (make_diags((1, 3)), make_offsets([0]), (3, 2, 3)), "Output shape must be 2d" yield (make_diags((2, 3)), make_offsets([[1, 2], [0, 3]]), (3, 3)), "Offsets must be scalar or vector" yield (make_diags((3, 2, 3)), make_offsets([0, 1, 2]), (4, 4)), "Diagonals must be vector or matrix" yield (make_diags((3, 3)), make_offsets([-1, 0]), (3, 3)),\ r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)" yield (make_diags((5,)), make_offsets([0, 1, 2, 3, 4]), (3, 3)),\ r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)" yield (make_diags((2, 2)), make_offsets([-1, 0]), (2, 3), torch.strided),\ r"Only output layouts \(\w+, \w+, \w+\) are supported, got \w+" yield (make_diags((2, 5)), make_offsets([0, 0]), (5, 5)), "Offset tensor contains duplicate values" yield (make_diags((1, 5)), make_offsets([0]).to(torch.int32), (5, 5)), r"Offset Tensor must have dtype Long but got \w+" for case, error_regex in invalid_cases(): check_invalid(case, error_regex) def test_small_nnz_coalesced(self): # creating a coo tensor with nnz == 0 is always coalesced self.assertTrue(torch.sparse_coo_tensor([[], []], [], (2, 2)).is_coalesced()) # same for a coo tensor with only 1 nnz self.assertTrue(torch.sparse_coo_tensor([[0], [0]], [1], (2, 2)).is_coalesced()) # two or more nnz coalesced is false as it can't be verified without an expensive check self.assertFalse(torch.sparse_coo_tensor([[0, 0], [0, 0]], [1, 2], (2, 2)).is_coalesced()) # even if there are no duplicates self.assertFalse(torch.sparse_coo_tensor([[0, 1], [0, 1]], [1, 2], (2, 2)).is_coalesced()) @coalescedonoff @dtypes(*all_types_and_complex_and(torch.bool)) def test_sum(self, device, dtype, coalesced): def run_test(shape, nnz): a = self._gen_sparse(2, nnz, shape, dtype, device, coalesced)[0] self.assertEqual(a.sum(), a._values().sum()) if dtype.is_floating_point or dtype.is_complex: a.requires_grad_(True) a.sum().backward() self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device)) for shape in [(10, 5), (10, 10)]: run_test(shape, 0) run_test(shape, max(shape)) run_test(shape, shape[0] * shape[1]) class TestSparseOneOff(TestCase): @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_cuda_from_cpu(self): with self.assertRaisesRegex( RuntimeError, "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4), [3, 4, 4]) with self.assertRaisesRegex( RuntimeError, "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0), [3, 4, 4, 0]) with self.assertRaisesRegex( RuntimeError, "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): torch.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(), torch.randn(0, 4, 4, 0), [0, 4, 4, 0]) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_cuda_sparse_cpu_dense_add(self): x = torch.zeros(3, 4, 4) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4).cuda(), [3, 4, 4]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(3, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0).cuda(), [3, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(0, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(), torch.randn(0, 4, 4, 0).cuda(), [0, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y
def all_sparse_layouts(test_name='layout', include_strided=False): return parametrize(test_name, [ subtest(torch.strided, name='Strided'), subtest(torch.sparse_coo, name='SparseCOO'), subtest(torch.sparse_csr, name='SparseCSR'), subtest(torch.sparse_csc, name='SparseCSC'), subtest(torch.sparse_bsr, name='SparseBSR'), subtest(torch.sparse_bsc, name='SparseBSC'), ][(0 if include_strided else 1):])
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_legacy_warnings
def test_legacy_warnings(self): def f1(): "torch.sparse.SparseTensor() is deprecated."\ " Please use torch.sparse_coo_tensor((0,), dtype=)" x_ref = torch.sparse_coo_tensor((0,), dtype=torch.float64) x = torch.sparse.DoubleTensor() self.assertEqual(x, x_ref) def f2(): "torch.sparse.SparseTensor(cdata=x._cdata) is deprecated."\ " Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)" x_ref = torch.tensor([[1, 2], [3, 4]], dtype=torch.float64).to_sparse() x = torch.sparse.DoubleTensor(cdata=x_ref._cdata) y = torch.sparse_coo_tensor(x._indices(), x._values(), x.shape) self.assertEqual(x, x_ref) self.assertEqual(y, x_ref) def f3(): "torch.sparse.SparseTensor(indices, values, *, device=) is deprecated."\ " Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)" x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], dtype=torch.float64) x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), torch.tensor([1, 2, 3, 4], dtype=torch.float64)) self.assertEqual(x, x_ref) def f4(): "torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated."\ " Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)" x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], (2, 3), dtype=torch.float64) x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), torch.tensor([1, 2, 3, 4], dtype=torch.float64), (2, 3)) self.assertEqual(x, x_ref) def f5(): "torch.sparse.SparseTensor(shape, *, device=) is deprecated."\ " Please use torch.sparse_coo_tensor(shape, dtype=, device=)" x_ref = torch.sparse_coo_tensor((2, 3), dtype=torch.float64) x = torch.sparse.DoubleTensor(2, 3) self.assertEqual(x, x_ref) for test_f in [f1, f2, f3, f4, f5]: with self.assertWarns(UserWarning, msg=test_f.__doc__) as cm: test_f() test_f() # Check warn-once: self.assertEqual(len(cm.warnings), 1)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparseLegacyAndDeprecation(TestCase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
f1
def f1(): "torch.sparse.SparseTensor() is deprecated."\ " Please use torch.sparse_coo_tensor((0,), dtype=)" x_ref = torch.sparse_coo_tensor((0,), dtype=torch.float64) x = torch.sparse.DoubleTensor() self.assertEqual(x, x_ref)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
f2
def f2(): "torch.sparse.SparseTensor(cdata=x._cdata) is deprecated."\ " Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)" x_ref = torch.tensor([[1, 2], [3, 4]], dtype=torch.float64).to_sparse() x = torch.sparse.DoubleTensor(cdata=x_ref._cdata) y = torch.sparse_coo_tensor(x._indices(), x._values(), x.shape) self.assertEqual(x, x_ref) self.assertEqual(y, x_ref)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
f3
def f3(): "torch.sparse.SparseTensor(indices, values, *, device=) is deprecated."\ " Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)" x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], dtype=torch.float64) x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), torch.tensor([1, 2, 3, 4], dtype=torch.float64)) self.assertEqual(x, x_ref)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
f4
def f4(): "torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated."\ " Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)" x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], (2, 3), dtype=torch.float64) x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), torch.tensor([1, 2, 3, 4], dtype=torch.float64), (2, 3)) self.assertEqual(x, x_ref)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse.py
setUp
def setUp(self): TestCase.setUp(self) self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64) def sparse_empty_factory(*args, **kwargs): kwargs['layout'] = kwargs.get('layout', torch.sparse_coo) return torch.empty(*args, **kwargs) self.sparse_empty = sparse_empty_factory def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory self.legacy_sparse_tensor = torch.sparse.DoubleTensor
def setUp(self): TestCase.setUp(self) self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64) def sparse_empty_factory(*args, **kwargs): kwargs['layout'] = kwargs.get('layout', torch.sparse_coo) return torch.empty(*args, **kwargs) self.sparse_empty = sparse_empty_factory def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
sparse_tensor_factory
def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory self.legacy_sparse_tensor = torch.sparse.DoubleTensor
def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
assert_uncoalesced
def assert_uncoalesced(self, x): """ Test if a CPU tensor is uncoalesced. This is used to ensure correctness of the uncoalesced tensor generation algorithm. """ assert not x.is_coalesced() existing_indices = set() for i in range(x._nnz()): index = str(x._indices()[:, i]) if index in existing_indices: return True else: existing_indices.add(index)
def assert_uncoalesced(self, x): """ Test if a CPU tensor is uncoalesced. This is used to ensure correctness of the uncoalesced tensor generation algorithm. """ assert not x.is_coalesced() existing_indices = set() indices = x._indices() for i in range(x._nnz()): index = str(indices[:, i]) if index in existing_indices: return True else: existing_indices.add(index)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) class TestSparse(TestSparseBase): import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") class TestSparse(TestSparseBase): from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_tensor
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x) self.assertEqual(res, safe_dense_x) # Only run autograd test for float64 if x.dtype != torch.float64: return def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,)) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) test_tensor(res, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
fn
def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True)
def fn(x): return x.to_dense(masked_grad=gradcheck.masked) x.requires_grad_(True) gradcheck(fn, (x,))
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse.py
test_shape
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0)
def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9)
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) reduction_ops_with_sparse_support = [op for op in reduction_ops if 'masked.' not in op.name and (op.supports_sparse or op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc)] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and not TEST_WITH_ROCM) import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product
import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ skipIfCrossRef from torch.testing._internal.common_cuda import TEST_CUDA from numbers import Number from typing import Dict, Any from packaging import version from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, TEST_MULTIGPU) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) from torch.testing._internal.common_methods_invocations import \ (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) from torch.testing._internal.common_dtype import ( all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, floating_and_complex_types_and, integral_types, floating_types_and, ) from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from torch.testing._internal.opinfo.refs import ( ElementwiseBinaryPythonRefInfo, ReductionPythonRefInfo ) reduction_ops_with_sparse_support = [ op for op in reduction_ops if 'masked.' not in op.name and _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] binary_ufuncs_with_sparse_support = [ op for op in binary_ufuncs if _op_supports_any_sparse(op) and not isinstance(op, ElementwiseBinaryPythonRefInfo)] like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] import scipy.sparse load_tests = load_tests gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") ) or (not IS_WINDOWS and not TEST_WITH_ROCM) HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") from itertools import product, repeat import pickle import torch.nn.functional as F import itertools from itertools import product from itertools import product from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch.utils._mode_utils import no_dispatch
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified