library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/test_sparse_csr.py
ref
def ref(row, col, val, mat): out = torch.zeros([m, k], dtype=dtype) weight = mat.index_select(0, col) src = weight.mul(val.view(-1, 1)) index = row.view(-1, 1).expand_as(weight) index = index.to(dtype=torch.int64) # scatter_reduce expect index to be int64 out.scatter_reduce_(0, index, src, reduce=reduce_type, include_self=False) return out if train: csr.requires_grad_() mat.requires_grad_() ref_values.requires_grad_() ref_mat.requires_grad_() ref_out = ref(row, col, ref_values, ref_mat) out = torch.sparse.mm(csr, mat, reduce_type) self.assertEqual(out, ref_out) if train and dtype is not torch.bfloat16: ref_out.sum().backward() out.sum().backward() grad_values = csr.grad.values() grad_weight = mat.grad ref_grad_values = ref_values.grad ref_grad_weight = ref_mat.grad self.assertEqual(grad_values, ref_grad_values) self.assertEqual(grad_weight, ref_grad_weight)
def ref(row, col, val, mat): out = torch.zeros([m, k], dtype=dtype) weight = mat.index_select(0, col) src = weight.mul(val.view(-1, 1)) index = row.view(-1, 1).expand_as(weight) index = index.to(dtype=torch.int64) # scatter_reduce expect index to be int64 out.scatter_reduce_(0, index, src, reduce=reduce_type, include_self=False) return out if train: csr.requires_grad_() mat.requires_grad_() ref_values.requires_grad_() ref_mat.requires_grad_() ref_out = ref(row, col, ref_values, ref_mat) out = torch.sparse.mm(csr, mat, reduce_type) self.assertEqual(out, ref_out) if train and dtype not in (torch.bfloat16, torch.float16): ref_out.sum().backward() out.sum().backward() grad_values = csr.grad.values() grad_weight = mat.grad ref_grad_values = ref_values.grad ref_grad_weight = ref_mat.grad self.assertEqual(grad_values, ref_grad_values) self.assertEqual(grad_weight, ref_grad_weight)
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
_generate_subject
def _generate_subject(sparse_shape, batch_shape, hybrid_shape): shape = batch_shape + sparse_shape + hybrid_shape n_batch_dim = len(batch_shape) n_hybrid_dim = len(hybrid_shape) # generate a dense tensor dense = make_tensor(shape, dtype=torch.float, device=device) # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is # applied to each batch mask = make_tensor(sparse_shape, dtype=torch.bool, device=device) # manually expand to match hybrid shape if hybrid: mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim))) mask = mask.expand(sparse_shape + hybrid_shape) # mask will broadcast over the batch dims if present return dense * mask # note: order is important here, the hybrid-ness decides the inner content check which is used to build the # batched checker (if needed) check_content = _check_against_scipy_matrix if hybrid: check_content = _check_hybrid_matrix if batched: check_content = functools.partial(_check_batched, check_batch=check_content) sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)] blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()] batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()] hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()] # general cases, always run for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product( sparse_sizes, blocksizes, batch_sizes, hybrid_sizes): dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape) sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # special cases for batched tensors if batched: # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the # same sparsity pattern in each batch sparse_shape = sparse_sizes[0] hybrid_shape = hybrid_sizes[0] batch_shape = batch_sizes[0] shape = batch_shape + sparse_shape + hybrid_shape dense = make_tensor(shape, dtype=torch.float, device=device) blocksize = blocksizes[0] # number of elements/blocks in each batch (total not nnz) batch_mask_shape = sparse_shape if layout in blocked_layouts: # if we are blocked the mask is genereated for the block valued elemetns batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1] # random bool vector w/ length equal to max possible nnz for the sparse_shape mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten() n_batch = functools.reduce(lambda x, y: x * y, batch_shape, 1) # stack random permutations of the source for each batch mask = torch.stack([mask_source[torch.randperm(mask_source.numel())] for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape) if layout in blocked_layouts: # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space mask_shape = mask.shape mask = mask.view(mask_shape + (1, 1)) mask = mask.expand(mask_shape + blocksize) mask = mask.transpose(-3, -2) mask = mask.flatten(-4, -3).flatten(-2, -1) mask_shape = mask.shape mask = mask.view(mask_shape + (1,) * len(hybrid_shape)) mask = mask.expand(mask_shape + hybrid_shape) dense = dense * mask sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # if batches have different nnz we expect the conversion to throw mask_0 = mask[0] mask_1 = mask[0].clone().fill_(True) mask_2 = mask[0].clone().fill_(False) mask_true = mask_source.clone().fill_(True) mask_false = mask_source.clone().fill_(False) mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape) dense = make_tensor(shape, dtype=torch.float, device=device) dense = dense * mask msg = "Expect the same number of specified elements per batch." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) # Should throw if there is a zero in the batch size dense = make_tensor((0,) + shape, dtype=torch.float, device=device) layout_code = str(layout).split("_")[-1] msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None)
def _generate_subject(sparse_shape, batch_shape, hybrid_shape): shape = batch_shape + sparse_shape + hybrid_shape n_batch_dim = len(batch_shape) n_hybrid_dim = len(hybrid_shape) # generate a dense tensor dense = make_tensor(shape, dtype=torch.float, device=device) # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is # applied to each batch mask = make_tensor(sparse_shape, dtype=torch.bool, device=device) # manually expand to match hybrid shape if hybrid: mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim))) mask = mask.expand(sparse_shape + hybrid_shape) # mask will broadcast over the batch dims if present return dense * mask # note: order is important here, the hybrid-ness decides the inner content check which is used to build the # batched checker (if needed) check_content = _check_against_scipy_matrix if hybrid: check_content = _check_hybrid_matrix if batched: check_content = functools.partial(_check_batched, check_batch=check_content) sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)] blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()] batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()] hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()] # general cases, always run for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product( sparse_sizes, blocksizes, batch_sizes, hybrid_sizes): dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape) sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # special cases for batched tensors if batched: # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the # same sparsity pattern in each batch sparse_shape = sparse_sizes[0] hybrid_shape = hybrid_sizes[0] batch_shape = batch_sizes[0] shape = batch_shape + sparse_shape + hybrid_shape dense = make_tensor(shape, dtype=torch.float, device=device) blocksize = blocksizes[0] # number of elements/blocks in each batch (total not nnz) batch_mask_shape = sparse_shape if layout in blocked_layouts: # if we are blocked the mask is genereated for the block valued elemetns batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1] # random bool vector w/ length equal to max possible nnz for the sparse_shape mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten() n_batch = functools.reduce(operator.mul, batch_shape, 1) # stack random permutations of the source for each batch mask = torch.stack([mask_source[torch.randperm(mask_source.numel())] for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape) if layout in blocked_layouts: # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space mask_shape = mask.shape mask = mask.view(mask_shape + (1, 1)) mask = mask.expand(mask_shape + blocksize) mask = mask.transpose(-3, -2) mask = mask.flatten(-4, -3).flatten(-2, -1) mask_shape = mask.shape mask = mask.view(mask_shape + (1,) * len(hybrid_shape)) mask = mask.expand(mask_shape + hybrid_shape) dense = dense * mask sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape)) check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape) dense_back = sparse.to_dense() self.assertEqual(dense, dense_back) # if batches have different nnz we expect the conversion to throw mask_0 = mask[0] mask_1 = mask[0].clone().fill_(True) mask_2 = mask[0].clone().fill_(False) mask_true = mask_source.clone().fill_(True) mask_false = mask_source.clone().fill_(False) mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape) dense = make_tensor(shape, dtype=torch.float, device=device) dense = dense * mask msg = "Expect the same number of specified elements per batch." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None) # Should throw if there is a zero in the batch size dense = make_tensor((0,) + shape, dtype=torch.float, device=device) layout_code = str(layout).split("_")[-1] msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero." with self.assertRaisesRegex(RuntimeError, msg): dense.to_sparse(layout=layout, blocksize=blocksize or None)
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sparse_csr.py
test_linalg_solve_sparse_csr_cusolver
def test_linalg_solve_sparse_csr_cusolver(self, device, dtype): # https://github.com/krshrimali/pytorch/blob/f5ee21dd87a7c5e67ba03bfd77ea22246cabdf0b/test/test_sparse_csr.py try: spd = torch.rand(4, 3) A = spd.T @ spd b = torch.rand(3).cuda() A = A.to_sparse_csr().cuda() x = torch.sparse.spsolve(A, b) except RuntimeError as e: if "Calling linear solver with sparse tensors requires compiling " in str(e): self.skipTest("PyTorch was not built with cuDSS support") samples = sample_inputs_linalg_solve(None, device, dtype) for sample in samples: if sample.input.ndim != 2: continue out = torch.zeros(sample.args[0].size(), dtype=dtype, device=device) if sample.args[0].ndim != 1 and sample.args[0].size(-1) != 1: with self.assertRaisesRegex(RuntimeError, "b must be a 1D tensor"): out = torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs) break if not sample.args[0].numel(): with self.assertRaisesRegex(RuntimeError, "Expected non-empty other tensor, but found empty tensor"): torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs, out=out) break expect = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs) sample.input = sample.input.to_sparse_csr() if sample.args[0].ndim != 1 and sample.args[0].size(-1) == 1: expect = expect.squeeze(-1) sample.args = (sample.args[0].squeeze(-1), ) out = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs) self.assertEqual(expect, out)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle class TestSparseCSR(TestCase): import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
skipIfNoTriton
def skipIfNoTriton(cls): from torch.utils._triton import has_triton # no-op if triton is present if has_triton(): return cls else: @functools.wraps(cls, updated=()) class skipped_cls(cls): def setUp(self): self.skipTest("Triton is not available.") return skipped_cls @skipIfNoTriton class TestSparseCompressedTritonKernels(TestCase): def _to_block_triangular_inplace(self, d, row_block, col_block): """ This function modifies `d` to become (upper/lower) block-triangular in-place. It is assumed that `d.shape[-2]` is divisible by `row_block` and `d.shape[-1]` is divisible by `col_block`. """ from torch.sparse._triton_ops import tile_to_blocksize m, n = d.shape[-2:] d_tiled = tile_to_blocksize(d, (row_block, col_block)) d_tiled = d_tiled.moveaxis(-4, -1).moveaxis(-4, -1) if m // row_block > n // col_block: d_tiled.tril_() else: d_tiled.triu_() return d @onlyCUDA @skipIfRocm(msg="test is too slow on ROCm stack") @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_bsr_softmax(self, device, dtype): from functools import partial from torch.sparse._triton_ops import bsr_softmax tensor = partial(make_tensor, device=device, dtype=dtype, low=1.0, high=3.0) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [6, 12, 0] block_size = [2, 3] # General correctness for row_block, col_block, b, m, n in itertools.product(block_size, block_size, batches, size, size): input = tensor(b + (m, n)) input.diagonal(dim1=-2, dim2=-1).fill_(m * n) input = self._to_block_triangular_inplace(input, row_block, col_block) bsr = input.to_sparse_bsr((row_block, col_block)) coo = input.to_sparse().to(torch.float) res_tri = bsr_softmax(bsr) res_coo = torch.sparse.softmax(coo, -1) self.assertEqual(res_tri, res_coo.to(input.dtype)) # Test long rows which exceed Triton's max numel limit set to 2 ** 17 input = tensor(b + (1, 150000)) bsr = input.to_sparse_bsr(1) self.assertEqual(input.softmax(-1), bsr_softmax(bsr)) @parametrize("block_size", [16, 32, 64]) @parametrize("index_dtype", [torch.int32, torch.int64]) @onlyCUDA @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf((not TEST_WITH_TORCHINDUCTOR) or (IS_FBCODE and IS_REMOTE_GPU) or torch._running_with_deploy(), "Skipped for deploy and internal with remote GPUs") def test_triton_bsr_dense_bmm(self, device, dtype, index_dtype, block_size): from functools import partial from torch.sparse._triton_ops import bsr_dense_mm def kernel_impl(*args, **kwargs): return bsr_dense_mm(*args, skip_checks=True, **kwargs) kernel = torch._TritonLibrary.registerOp( "_triton_bsr_dense_mm_out", "_triton_bsr_dense_mm_out(Tensor bsr, Tensor dense, *, Tensor(a!) out) -> Tensor(a!)", kernel_impl, "SparseCsrCUDA" ) # kernel != kernel_impl means dispatch was already registered. # This is exactly what we need! self.assertTrue(kernel is not kernel_impl) # Note that each value in a non-zero block is in range block_size * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [128, 256, 0] # Whether to make inputs orthogonal so that the product is zero make_orthogonal = [True, False] for bd, bs, m, n, k, is_ortho in itertools.product(batches, batches, size, size, size, make_orthogonal): bsr = tensor(bs + (m, k)) # NOTE: do not get confused, it will be transposed dense = tensor(bd + (n, k)) if is_ortho: bsr = torch.cat((bsr, torch.zeros_like(bsr)), dim=-1) dense = torch.cat((torch.zeros_like(dense), dense), dim=-1) bsr = bsr.to_sparse_bsr(block_size) if bsr.dim() == 2 and dtype != torch.float: # Test against linear to check dispatch # which takes place for torch.half and torch.bfloat16. res_dense = torch.nn.functional.linear(dense, bsr.to_dense()) res_tri_out = torch.empty_like(res_dense) res_tri = torch.nn.functional.linear(dense, bsr, out=res_tri_out) # Check dispatch worked with non-trivial outputs if m > 0 and n > 0 and k > 0: self.assertTrue(kernel.kernel_invoked) kernel.kernel_invoked = False else: # Otherwise check correctness against bmm # since nn.linear does not support bsr.dim() > 2. res_dense = bsr.to_dense() @ dense.transpose(-2, -1) res_tri_out = torch.empty_like(res_dense) res_tri = kernel(bsr, dense.transpose(-2, -1), out=res_tri_out) self.assertTrue(res_tri is res_tri_out) self.assertEqual(res_tri, res_dense) res_dense = bsr.to_dense() @ dense.transpose(-2, -1) # check whether bsr_dense_mm handles different grid sizes # None means max possible grid size which is CUDA-dependent. grid_size = (None, 2, 4) grid_gen = itertools.product(grid_size, repeat=3) for grid in grid_gen: res_tri = torch.sparse._triton_ops.bsr_dense_mm( bsr, dense.transpose(-2, -1), max_grid=grid, ) self.assertEqual(res_tri, res_dense) @onlyCUDA @dtypes(torch.half) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU or torch._running_with_deploy(), "Skipped for deploy and internal with remote GPUs") def test_triton_bsr_dense_bmm_error_messages(self, device, dtype): from torch.sparse._triton_ops import bsr_dense_mm rhs = torch.rand(32, 32, dtype=dtype, device=device) lhs = rhs.to_sparse_bsr(16) with self.assertRaisesRegex(ValueError, "only BSR sparse format is supported"): bsr_dense_mm(lhs.to_sparse_bsc(16), rhs) with self.assertRaisesRegex(ValueError, "on the same GPU device"): bsr_dense_mm(lhs, rhs.cpu()) if torch.cuda.device_count() > 1: with self.assertRaisesRegex(ValueError, "on the same GPU device"): bsr_dense_mm(lhs.to("cuda:0"), rhs.to("cuda:1")) with self.assertRaisesRegex(ValueError, "all inputs are expected to be of the same dtype"): bsr_dense_mm(lhs, rhs.to(torch.float)) with self.assertRaisesRegex(ValueError, r"and one of \(half, bfloat16, float32\)"): bsr_dense_mm(lhs.to(torch.double), rhs.to(torch.double)) with self.assertRaisesRegex(ValueError, "all inputs involved in the matrix product are expected to be at least 2D"): bsr_dense_mm(lhs, torch.rand(1, dtype=dtype, device=device)) with self.assertRaisesRegex(ValueError, "sizes involved in the matrix product are not compatible for matrix multiplication"): bsr_dense_mm(lhs, torch.rand(1, 1, dtype=dtype, device=device)) with self.assertRaisesRegex(ValueError, r"dense.size\(-1\) == 15 should be divisible by 16"): bsr_dense_mm(lhs, torch.rand(32, 15, dtype=dtype, device=device)) # Blocksizes check for blocksize in (15, 30): n = blocksize * 2 rhs = torch.rand(n, n, dtype=dtype, device=device) lhs = rhs.to_sparse_bsr(blocksize) with self.assertRaisesRegex(ValueError, "should be at least 16 and a power of 2"): bsr_dense_mm(lhs, rhs) # out check rhs = torch.rand(2, 32, 32, dtype=dtype, device=device) lhs = rhs.to_sparse_bsr(16) with self.assertRaisesRegex(ValueError, r"`out` argument has wrong shape"): out = torch.rand(2, 30, 30, dtype=dtype, device=device) bsr_dense_mm(lhs, rhs, out=out) with self.assertRaisesRegex(ValueError, r"only row-major/col-major `out`"): out = torch.rand(32, 32, 2, dtype=dtype, device=device).transpose(0, -1) bsr_dense_mm(lhs, rhs, out=out) @parametrize("block_size", [16, 32, 64]) @onlyCUDA @skipIfRocm @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") @precisionOverride({torch.float16: 1e-3}) def test_triton_scaled_dot_product_attention(self, device, dtype, block_size): from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention # Note that each value in a non-zero block is in range block_size * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.3, high=1.2) def broadcast_input(*ts): batch_dims = torch.broadcast_shapes(*(t.shape[:-2] for t in ts)) yield from (torch.broadcast_to(t, batch_dims + t.shape[-2:]) for t in ts) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [128, 256, 0] for bam, bq, bk, bv, m, n, k in itertools.product(batches, batches, batches, batches, size, size, size): query = tensor(bq + (m, k)) key = tensor(bk + (n, k)) value = tensor(bv + (n, k)) # We make attn_mask block lower/upper triangular so that BSR and Strided # function variants are directly comparable. attn_mask = torch.ones(bam + (m, n), device=device, dtype=torch.bool) attn_mask = self._to_block_triangular_inplace(attn_mask, block_size, block_size) attn_mask_bsr = attn_mask.to_sparse_bsr(block_size) # NOTE: only boolean mask is directly compatible with the Strided version # without any pre-/post-processing. Hence we test against a boolean mask. for scale in (None, 1. / 16): if scale is None and query.size(-1) == 0: scale = 1 expected = torch.nn.functional.scaled_dot_product_attention( *broadcast_input(query, key, value, attn_mask), scale=scale ) for mask_dtype in (torch.bool, dtype): res = _scaled_dot_product_attention(query, key, value, attn_mask_bsr.to(mask_dtype), scale=scale) self.assertEqual(res, expected) @parametrize("block_size", [16, 32, 64]) @onlyCUDA @skipIfRocm @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_sampled_addmm(self, device, dtype, block_size): from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr # Note that each value in a non-zero block is in range block_size * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.3, high=1.2) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [128, 256, 0] delta_k = (-3,) for bi, bm1, bm2, m, n, k, dk in itertools.product(batches, batches, batches, size, size, size, delta_k): # Test not powers of 2 ks as well. k = max(0, k + dk) # Non-trivial sparsity pattern. # Plus with tril inputs the result is also tril, # so we can compare BSR and CSR implementations. input = tensor(bi + (m, n)).tril_() bsr = input.to_sparse_bsr(block_size) mat1 = tensor(bm1 + (m, k)).tril_() mat2 = tensor(bm2 + (k, n)).tril_() batch_dim = torch.broadcast_shapes(input.shape[:-2], mat1.shape[:-2], mat2.shape[:-2]) csr = input.broadcast_to(batch_dim + input.shape[-2:]).to_sparse_csr().to(torch.float) mat1csr = mat1.broadcast_to(batch_dim + mat1.shape[-2:]).to(torch.float) mat2csr = mat2.broadcast_to(batch_dim + mat2.shape[-2:]).to(torch.float) input_broadcasted_clone = broadcast_batch_dims_bsr( "test_triton_sampled_addmm", bsr, mat1, mat2 ).clone() input_broadcasted_clone = torch.sparse_compressed_tensor( input_broadcasted_clone.crow_indices(), input_broadcasted_clone.col_indices(), # For testing `out=` let's make values to have "weird" strides # so that if the kernel modifies values to it's needs, the result # is being compied into out.values. input_broadcasted_clone.values().transpose(-3, -2).contiguous().transpose(-3, -2), layout=input_broadcasted_clone.layout, size=input_broadcasted_clone.shape ) scalars = (0.0, 2.0) for alpha, beta, out in itertools.product(scalars, scalars, (None, input_broadcasted_clone)): res_tri = sampled_addmm(bsr, mat1, mat2, alpha=alpha, beta=beta, out=out) if out is not None: self.assertTrue(res_tri is out) batch_broadcasted_shape = torch.broadcast_shapes(*(t.shape[:-2] for t in (input, mat1, mat2))) self.assertTrue(res_tri.shape == batch_broadcasted_shape + (m, n)) res_csr = torch.sparse.sampled_addmm(csr, mat1csr, mat2csr, alpha=alpha, beta=beta).to(input.dtype) self.assertEqual(res_tri.to_dense(), res_csr.to_dense()) # Check different grid sizes to make sure that input slicing works # if this input is larger than the grid. grid_size = (3, None) grid_gen = itertools.product(grid_size, repeat=2) for grid in grid_gen: res_tri_grid = sampled_addmm(bsr, mat1, mat2, alpha=alpha, beta=beta, max_grid=grid) self.assertEqual(res_tri, res_tri_grid) @onlyCUDA @skipIfRocm @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_scatter_mm(self, device, dtype): from torch.sparse._triton_ops import scatter_mm from functools import partial tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5) sizes = [8, 16] for m, k, n in itertools.product(sizes, sizes, sizes): blocks = torch.stack([tensor(m, k), tensor(m, k)]) others = torch.stack([tensor(k, n), tensor(k, n)]) expected = torch.stack([blocks[0] @ others[0] + blocks[1] @ others[0], blocks[0] @ others[1], blocks[1] @ others[1]]) indices_data = ( 'scatter_mm', torch.tensor([0, 2, 3, 4], dtype=torch.int32, device=device), torch.tensor([[0, 0], [1, 0], [0, 1], [1, 1]], dtype=torch.int32, device=device)) result = scatter_mm(blocks, others, indices_data=indices_data) self.assertEqual(result, expected) indices_data = ( 'bsr_strided_mm', torch.tensor([0, 2, 4, 5, 6], dtype=torch.int32, device=device), torch.tensor([0, n, 2 * n * m, 2 * n * m + n], dtype=torch.int32, device=device), torch.tensor([1, 0, 1, 0, 1, 1], dtype=torch.int32, device=device), torch.tensor([0, 2 * k * n, n, 2 * k * n + n, 2 * k * n, 2 * k * n + n], dtype=torch.int32, device=device), dict(SPLIT_N=2, is_compressed=False, TILE_M=m, TILE_N=n, GROUP_SIZE=1) ) for bsize in [(), (2,), (3, 4)]: other = tensor(*bsize, 2 * k, 2 * n) expected = torch.cat([ torch.cat([blocks[1], blocks[0]], dim=1), torch.cat([torch.zeros_like(blocks[0]), blocks[1]], dim=1)], dim=0) @ other result = scatter_mm(blocks, other, indices_data=indices_data) self.assertEqual(result, expected) @parametrize("blocksize", [2, '2x3', 16, '16x32', 32, 64]) @onlyCUDA @dtypes(torch.half, torch.bfloat16, torch.float) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_bsr_scatter_mm(self, device, dtype, blocksize): import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial if isinstance(blocksize, str): blocksize = tuple(map(int, blocksize.split('x'))) else: blocksize = (blocksize,) * 2 # Note that each value in a non-zero block is in range blocksize * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] sizes = [blocksize[0], 2 * blocksize[0], 4 * blocksize[0]] sizes_K = [blocksize[1], 2 * blocksize[1]] for bd, bs, M, K, N, has_zero_row_block in itertools.product(batches, batches[:1], sizes, sizes_K, sizes, (False, True)): bsr_dense = tensor(bs + (M, K)) if has_zero_row_block: if M > blocksize[0]: bsr_dense[:blocksize[0]].zero_() else: continue bsr = bsr_dense.to_sparse_bsr(blocksize) dense = tensor(bd + (K, N)) expected = bsr.to_dense() @ dense for indices_format in ('bsr_strided_mm', 'bsr_strided_mm_compressed', 'scatter_mm'): if indices_format in {'bsr_strided_mm', 'bsr_strided_mm_compressed'}: SPLIT_N_list = [N] while SPLIT_N_list[-1] > 1: SPLIT_N_list.append(max(1, SPLIT_N_list[-1] // 2)) else: SPLIT_N_list = [1] for SPLIT_N in SPLIT_N_list: indices_data = bsr_scatter_mm_indices_data( bsr, dense, indices_format=indices_format, SPLIT_N=SPLIT_N) try: result = bsr_scatter_mm(bsr, dense, indices_data=indices_data) except triton.compiler.OutOfResources: # ensure that there was at least one succesful test: assert SPLIT_N < SPLIT_N_list[0] break self.assertEqual(result, expected) torch.sparse._triton_ops._bsr_scatter_mm_indices_data.cache_clear() def test_TensorAsKey(self, device): from torch.sparse._triton_ops import TensorAsKey assertEqualOptions = dict(exact_dtype=True, exact_device=True, exact_layout=True) t = torch.tensor([1, 2, 3, 4], dtype=torch.int64, device=device) key = TensorAsKey(t) self.assertTrue(key == TensorAsKey(t)) self.assertTrue(key.obj is t) t2 = t[:] key2 = TensorAsKey(t2) self.assertTrue(key == key2) self.assertEqual(key2.obj, t, **assertEqualOptions) # deleting object leads to dead key del t2 self.assertTrue(key2.obj is None) self.assertTrue(key.obj is t) # key with different storage offset and shape: self.assertFalse(key == TensorAsKey(t[1:])) # key with different strides: self.assertFalse(key == TensorAsKey(t[::2])) # when object dies, make sure that key represents a dead # object as well: del t self.assertTrue(key.obj is None) # Storing a tensor as a dict key: d = {} t3 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device) key3 = TensorAsKey(t3) d[key3] = 123 self.assertTrue(d.get(key3) == 123) t3_ = t3[:] self.assertTrue(d.get(TensorAsKey(t3_)) == 123) self.assertTrue(d.get(TensorAsKey(t3.clone())) is None) d[TensorAsKey(t3_)] = 567 self.assertTrue(d.get(key3) == 567) # t3 and t3_ reference the same data, so, the key becomes dead # (that is, its .obj property returns None) until all # references are deleted: del t3 self.assertTrue(key3.obj is not None) self.assertTrue(d.get(key3) == 567) del t3_ self.assertTrue(key3.obj is None) self.assertTrue(d.get(key3) == 567) # Storing a tensor as a dict key and value: d = {} t4 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device) key4 = TensorAsKey(t4) d[key4] = (t4, 123) self.assertEqual(d.get(key4), (t4, 123), **assertEqualOptions) # when object is deleted, the key represents an alive object # because the object is referenced by the dict item value: del t4 self.assertTrue(key4.obj is not None) # This also means that the life time of the tensor is same as # the life time of the corresponding dict item: del d[key4] self.assertTrue(key4.obj is None) # Storing a tensor as a dict key and value wrapped with TensorAsKey: d = {} t5 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device) key5 = TensorAsKey(t5) d[key5] = (key5, 567) self.assertEqual(d.get(key5), (key5, 567), **assertEqualOptions) self.assertTrue(key5.obj is not None) # when object is deleted, it will be dead as the wrapped value # hold the tensor instance as a weakref: del t5 self.assertTrue(key5.obj is None) # but key is still valid: self.assertEqual(d.get(key5), (key5, 567), **assertEqualOptions) @suppress_warnings @parametrize("op", ['bsr_dense_addmm', 'bsr_dense_mm', 'bsr_dense_linear', '_int_bsr_dense_addmm']) @parametrize("blocksize", [16, '16x32', 32]) @onlyCUDA @skipIfRocm @dtypes(torch.half, torch.bfloat16, torch.float, torch.int8) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float, torch.int8) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_kernel(self, op, device, dtype, blocksize): from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) def bsr_dense_linear(input, weights, bias=None): return torch.nn.functional.linear(input, weights, bias=bias).transpose(-1, -2) operation = dict(bsr_dense_addmm=bsr_dense_addmm, bsr_dense_mm=bsr_dense_mm, bsr_dense_linear=bsr_dense_linear, _int_bsr_dense_addmm=_int_bsr_dense_addmm)[op] def reference(input, mat1, mat2, beta=1, alpha=1, op=op): assert mat1.layout is torch.strided assert mat2.layout is torch.strided if dtype is torch.int8: if op == '_int_bsr_dense_addmm': return beta * input + alpha * torch._int_mm(mat1, mat2) # workaround RuntimeError: "addmm_cuda" not implemented for 'Char' return beta * input + alpha * torch._int_mm(mat1, mat2).to(torch.int8) return beta * input + alpha * (mat1 @ mat2) if op == '_int_bsr_dense_addmm': # _int_bsr_dense_addmm is same as bsr_dense_addmm except # with int8 inputs, _int_bsr_dense_addmm returns int32 # result. This is covered by operation and reference # definitions above and all other definitions below are # identical between _int_bsr_dense_addmm and # bsr_dense_addmm. op = 'bsr_dense_addmm' def nc_copy(t, axes=(-1,)): """Return a copy of input. The returned copy will be a non-contiguous tensor. """ if t.layout is torch.strided: shape = list(t.shape) for a in axes: shape[a] *= 2 r = torch.empty(shape, dtype=t.dtype, device=t.device) s = r[tuple(slice(None, None, 2 if t.shape[i] != r.shape[i] else None) for i in range(t.ndim))] s.copy_(t) return s elif t.layout is torch.sparse_bsr: compressed_indices = t.crow_indices() plain_indices = t.col_indices() return torch.sparse_compressed_tensor(compressed_indices, plain_indices, nc_copy(t.values()), t.shape, layout=t.layout) else: raise NotImplementedError(t.layout) if isinstance(blocksize, str): BM, BK = tuple(map(int, blocksize.split('x'))) else: BM, BK = (blocksize,) * 2 if op in {"bsr_dense_linear"} and BM != BK: # todo: eliminate this skip self.skipTest(f"{op} does not support non-square blocks") if op in {"bsr_dense_linear"} and dtype is torch.int8: # todo: eliminate this skip self.skipTest(f"{op} does not support int8") if dtype is torch.int8 and min(BM, BK) < 32: self.skipTest("triton kernel does not support support int8 blocks smaller than 32") beta_lst = dict(bsr_dense_addmm=[0, 1, 2], bsr_dense_mm=[0], bsr_dense_linear=[1])[op] alpha_lst = dict(bsr_dense_addmm=[0, 1, 2], bsr_dense_mm=[1], bsr_dense_linear=[1])[op] sparsity_lst = [0, 0.5, 1] blocks_per_row_lst = [1, 2] blocks_per_col_lst = [1, 2] result_cols_lst = [16, 32, 64] for beta, alpha, sparsity, blocks_per_row, blocks_per_col, N in itertools.product( beta_lst, alpha_lst, sparsity_lst, blocks_per_row_lst, blocks_per_col_lst, result_cols_lst): M = BM * blocks_per_row K = BK * blocks_per_col mat1 = create_blocked_tensor(0, M, K, (BM, BK), sparsity, dtype, device=device) bsr = mat1.to_sparse_bsr((BM, BK)) mat2 = make_tensor(K, N, dtype=dtype, device=device, low=0.5, high=1.5) input = make_tensor(M, N, dtype=dtype, device=device, low=0.5, high=1.5) if 0 and op == "bsr_dense_addmm": # Find optimal kernel parameters, the speed-up is # about 10x for running this test. # # Enable this if-block when the test method is # updated, run the test, and finally, disable the # if-block. key = (M, K, N, BM, BK, beta == 0, beta == 1, alpha == 1) meta = get_meta(op, key, version=(0, dtype, 0.5)) if meta is None: optimize_bsr_dense_addmm(M, K, N, BM, BK, beta=beta, alpha=alpha, dtype=dtype, sparsity=0.5) meta = get_meta(op, key, version=(0, dtype, 0.5)) assert meta is not None dump() # this will update torch/sparse/_triton_ops_meta.py expected = reference(input, mat1, mat2, beta=beta, alpha=alpha) kwargs = dict(bsr_dense_addmm=dict(beta=beta, alpha=alpha), bsr_dense_mm={}, bsr_dense_linear=dict(bias=input.transpose(-1, -2)))[op] args = dict(bsr_dense_addmm=(input, bsr, mat2), bsr_dense_mm=(bsr, mat2), bsr_dense_linear=(mat2.transpose(-1, -2), bsr))[op] result = operation(*args, **kwargs) self.assertEqual(result, expected) # Test non-contiguous input tensors: nc_mat2 = nc_copy(mat2) nc_input = nc_copy(input) nc_bsr = nc_copy(bsr) args = dict(bsr_dense_addmm=(input, bsr, nc_mat2), bsr_dense_mm=(bsr, nc_mat2), bsr_dense_linear=(nc_mat2.transpose(-1, -2), bsr))[op] result = operation(*args, **kwargs) self.assertEqual(result, expected) # todo: add bsr_dense_linear to the set below (currently, # nn.linear has unnecessarily restrictive arguments # checks). if op in {'bsr_dense_addmm', 'bsr_dense_mm'}: args = dict(bsr_dense_addmm=(input, nc_bsr, mat2), bsr_dense_mm=(nc_bsr, mat2), bsr_dense_linear=(mat2.transpose(-1, -2), nc_bsr))[op] result = operation(*args, **kwargs) self.assertEqual(result, expected) if op in {'bsr_dense_addmm', 'bsr_dense_linear'}: args = dict(bsr_dense_addmm=(nc_input, bsr, nc_mat2), bsr_dense_linear=(nc_mat2.transpose(-1, -2), bsr))[op] kwargs = dict(bsr_dense_addmm=dict(beta=beta, alpha=alpha), bsr_dense_linear=dict(bias=nc_input.transpose(-1, -2)))[op] result = operation(*args, **kwargs) self.assertEqual(result, expected) @parametrize("op", ['bsr_dense_addmm', '_int_bsr_dense_addmm']) @onlyCUDA @skipIfRocm @dtypes(torch.half, torch.bfloat16, torch.float, torch.int8) @dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float, torch.int8) @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_tune(self, op, device, dtype): from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) operation = dict(bsr_dense_addmm=bsr_dense_addmm, _int_bsr_dense_addmm=_int_bsr_dense_addmm)[op] tuner = dict(bsr_dense_addmm=tune_bsr_dense_addmm, _int_bsr_dense_addmm=tune__int_bsr_dense_addmm)[op] if op == '_int_bsr_dense_addmm': M, K, N = 32, 32, 32 blocksize = (32, 32) else: M, K, N = 16, 16, 32 blocksize = (16, 16) sparsity = 1.0 bsr = create_blocked_tensor(0, M, K, blocksize, sparsity, dtype, device).to_sparse_bsr(blocksize) sparsity = 1 - bsr._nnz() * blocksize[0] * blocksize[1] / (M * K) input = make_tensor(K, N, dtype=dtype, device=device) dense = make_tensor(K, N, dtype=dtype, device=device) if op in {'bsr_dense_addmm', '_int_bsr_dense_addmm'}: args = (input, bsr, dense) def get_current_meta(): version = (0, dtype, sparsity) meta_key = (M, K, N, *blocksize, False, True, True) return get_meta(op, meta_key, version=version, exact=True) else: raise NotImplementedError(op) self.assertEqual(get_current_meta(), None) meta = tuner(*args, **dict(store=True, verbose=False)) self.assertEqual(get_current_meta(), meta) expected = operation(*args) result = operation(*args, **dict(meta=meta)) self.assertEqual(result, expected) @onlyCUDA @skipIfRocm @unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton") def test_triton_bsr_dense_addmm_meta(self, device): from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta dtype = torch.float32 Ms = Ks = 16 beta = 0.0 alpha = 1.0 def get_meta(M, K, N, sparsity=None): return bsr_dense_addmm_meta(M, K, N, Ms, Ks, beta, alpha, dtype=dtype, sparsity=sparsity, _version="test_triton_bsr_dense_addmm_meta") def update_meta(M, K, N, value, sparsity=0.5): key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1) update_bsr_dense_addmm_meta("bsr_dense_addmm", torch.cuda.get_device_name(), ("test_triton_bsr_dense_addmm_meta", dtype, sparsity), key, value) def get_meta_with_checks(M, K, N, warn_count=0, sparsity=None): f = io.StringIO() with redirect_stderr(f): result = get_meta(M, K, N, sparsity=sparsity) msg = f.getvalue() FileCheck().check_count( str=f"UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M={M} K={K} N={N}", count=warn_count, exactly=True ).run(msg) return result # Test warn_once when requesting non-existing tuned parameters multiple times f = io.StringIO() with redirect_stderr(f): for i in range(5): get_meta(16, 16, 16) for i in range(5): get_meta(16, 16, 32) msg = f.getvalue() FileCheck().check_count( str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=16", count=1, exactly=True ).run(msg) FileCheck().check_count( str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=32", count=1, exactly=True ).run(msg) # Test warn_once when tuned parameters are missing default_meta = dict(GROUP_SIZE_ROW=4, SPLIT_N=2, num_stages=1, num_warps=4) self.assertEqual(get_meta_with_checks(32, 32, 32, warn_count=1), default_meta) # Test (no)warn_once when tuned parameters are available update_meta(32, 32, 48, (2, 8, 5, 6)) expected_meta = dict(GROUP_SIZE_ROW=2, SPLIT_N=8, num_stages=5, num_warps=6) self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0), expected_meta) # Test non-existing tuned parameters with non-default sparsity # while for default sparsity 0.5 the parameters are available self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0, sparsity=0.6), expected_meta) # Test non-existing tuned parameters while there exists # parameters with consistent N // SPLIT_N ratio: self.assertEqual(get_meta_with_checks(32, 32, 72, warn_count=0), dict(GROUP_SIZE_ROW=2, SPLIT_N=12, num_stages=5, num_warps=6)) # ... or not: self.assertEqual(get_meta_with_checks(32, 32, 64, warn_count=1), dict(GROUP_SIZE_ROW=4, SPLIT_N=4, num_stages=1, num_warps=4)) # e.g., TestSparseCSRCPU and TestSparseCSRCUDA instantiate_device_type_tests(TestSparseCSR, globals()) instantiate_device_type_tests(TestSparseCompressed, globals()) instantiate_device_type_tests(TestSparseCompressedTritonKernels, globals()) if __name__ == '__main__': run_tests()
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
setUp
def setUp(self): self.skipTest("Triton is not available.")
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton @functools.wraps(cls, updated=()) class skipped_cls(cls): from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
kernel_impl
def kernel_impl(*args, **kwargs): return bsr_dense_mm(*args, skip_checks=True, **kwargs) kernel = torch._TritonLibrary.registerOp( "_triton_bsr_dense_mm_out", "_triton_bsr_dense_mm_out(Tensor bsr, Tensor dense, *, Tensor(a!) out) -> Tensor(a!)", kernel_impl, "SparseCsrCUDA" ) # kernel != kernel_impl means dispatch was already registered. # This is exactly what we need! self.assertTrue(kernel is not kernel_impl) # Note that each value in a non-zero block is in range block_size * [low^2, high^2). tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5) # NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`. batches = [(), (2,), (2, 2)] size = [128, 256, 0] # Whether to make inputs orthogonal so that the product is zero make_orthogonal = [True, False] for bd, bs, m, n, k, is_ortho in itertools.product(batches, batches, size, size, size, make_orthogonal): bsr = tensor(bs + (m, k)) # NOTE: do not get confused, it will be transposed dense = tensor(bd + (n, k)) if is_ortho: bsr = torch.cat((bsr, torch.zeros_like(bsr)), dim=-1) dense = torch.cat((torch.zeros_like(dense), dense), dim=-1) bsr = bsr.to_sparse_bsr(block_size) if bsr.dim() == 2 and dtype != torch.float: # Test against linear to check dispatch # which takes place for torch.half and torch.bfloat16. res_dense = torch.nn.functional.linear(dense, bsr.to_dense()) res_tri_out = torch.empty_like(res_dense) res_tri = torch.nn.functional.linear(dense, bsr, out=res_tri_out) # Check dispatch worked with non-trivial outputs if m > 0 and n > 0 and k > 0: self.assertTrue(kernel.kernel_invoked) kernel.kernel_invoked = False else: # Otherwise check correctness against bmm # since nn.linear does not support bsr.dim() > 2. res_dense = bsr.to_dense() @ dense.transpose(-2, -1) res_tri_out = torch.empty_like(res_dense) res_tri = kernel(bsr, dense.transpose(-2, -1), out=res_tri_out) self.assertTrue(res_tri is res_tri_out) self.assertEqual(res_tri, res_dense) res_dense = bsr.to_dense() @ dense.transpose(-2, -1) # check whether bsr_dense_mm handles different grid sizes # None means max possible grid size which is CUDA-dependent. grid_size = (None, 2, 4) grid_gen = itertools.product(grid_size, repeat=3) for grid in grid_gen: res_tri = torch.sparse._triton_ops.bsr_dense_mm( bsr, dense.transpose(-2, -1), max_grid=grid, ) self.assertEqual(res_tri, res_dense)
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
from_matrix
def from_matrix(matrix, blocksize): blocksize = tuple(reversed(blocksize)) matrix = matrix.transpose() return FakeBscMatrix(sp.bsr_matrix(matrix, blocksize=blocksize))
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv class FakeBscMatrix: from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sparse_csr.py
_to_from_layout
def _to_from_layout(layout_a, layout_b, a): expect_error = True if {layout_a, layout_b} in allowed_pairwise_layouts_sets: expect_error = False # BSR -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr): expect_error = True # BSR -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csc): expect_error = True # BSC -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csr): expect_error = True # BSC -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csc): expect_error = True # CSR -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSR -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsc): if a.dim() > 2: expect_error = True # CSC -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSC -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsc): if a.dim() > 2: expect_error = True blocksize_a = (1, 1) if layout_a in {torch.sparse_bsr, torch.sparse_bsc} else None blocksize_b = (1, 1) if layout_b in {torch.sparse_bsr, torch.sparse_bsc} else None b = a.to_sparse(layout=layout_a, blocksize=blocksize_a) if expect_error: with self.assertRaises(RuntimeError): b.to_sparse(layout=layout_b, blocksize=blocksize_b) else: c = b.to_sparse(layout=layout_b, blocksize=blocksize_b) self.assertEqual(a.to_dense(), c.to_dense()) # change of blocksize upon conversion is not yet supported. if b.layout in block_layouts: for block_layout in block_layouts: with self.assertRaisesRegex(RuntimeError, "conversion from.*to.*is not implemented"): b.to_sparse(layout=block_layout, blocksize=(3, 3)) batch_dims = [(), (2,), (2, 2), (2, 2, 2)] sparse_dims = (6, 12) for batch_dim in batch_dims: a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device) _to_from_layout(from_layout, to_layout, a)
def _to_from_layout(layout_a, layout_b, a): expect_error = True if {layout_a, layout_b} in allowed_pairwise_layouts_sets: expect_error = False # BSR -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr): expect_error = True # BSR -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csc): expect_error = True # BSC -> CSR is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csr): expect_error = True # BSC -> CSC is not yet supported if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csc): expect_error = True # CSR -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSR -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsc): if a.dim() > 2: expect_error = True # CSC -> BSR only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsr): if a.dim() > 2: expect_error = True # CSC -> BSC only works for non-batched inputs if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsc): if a.dim() > 2: expect_error = True blocksize_a = (1, 1) if layout_a in {torch.sparse_bsr, torch.sparse_bsc} else None blocksize_b = (1, 1) if layout_b in {torch.sparse_bsr, torch.sparse_bsc} else None b = a.to_sparse(layout=layout_a, blocksize=blocksize_a) if expect_error: with self.assertRaises(RuntimeError): b.to_sparse(layout=layout_b, blocksize=blocksize_b) else: c = b.to_sparse(layout=layout_b, blocksize=blocksize_b) self.assertEqual(a.to_dense(), c.to_dense()) # change of blocksize upon conversion is not yet supported. if b.layout in block_layouts: for block_layout in block_layouts: with self.assertRaisesRegex(RuntimeError, "conversion from.*to.*with blocksize changed from.*to.*is not supported"): b.to_sparse(layout=block_layout, blocksize=(3, 3)) batch_dims = [(), (2,), (2, 2), (2, 2, 2)] sparse_dims = (6, 12) for batch_dim in batch_dims: a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device) _to_from_layout(from_layout, to_layout, a)
import torch import random import itertools import unittest import functools from torch.testing import make_tensor from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and ) from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
import torch import random import io import itertools import unittest import functools from contextlib import redirect_stderr from torch.testing import make_tensor, FileCheck from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC from torch.testing._internal.common_utils import \ (TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU, suppress_warnings) from torch.testing._internal.common_device_type import \ (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric, precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan, largeTensorTest) from torch.testing._internal.common_methods_invocations import \ (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo) from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA from torch.testing._internal.common_dtype import ( floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and, all_types_and_complex, floating_and_complex_types_and) from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED import operator import scipy.sparse as sp import numpy as np load_tests = load_tests no_mkl_sparse = IS_WINDOWS or not TEST_MKL _sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db)) _sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db)) binary_functions_with_dense_output = ['mm', 'mv', ] binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db)) UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [ 'abs', 'conj_physical', 'deg2rad', 'neg', 'positive', 'frac', 'nn.functional.relu', 'log1p', 'rad2deg' ] sparse_compressed_indices_methods = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), } from functools import partial import pickle import re import re from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm from torch.testing._internal.common_methods_invocations import sample_inputs_addmm import warnings from torch.testing._internal.common_methods_invocations import sample_inputs_addmv from torch.utils._triton import has_triton from torch.sparse._triton_ops import tile_to_blocksize from functools import partial from torch.sparse._triton_ops import bsr_softmax from functools import partial from torch.sparse._triton_ops import bsr_dense_mm from torch.sparse._triton_ops import bsr_dense_mm from functools import partial from torch.sparse._triton_ops import _scaled_dot_product_attention from functools import partial from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr from torch.sparse._triton_ops import scatter_mm from functools import partial import triton from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data from functools import partial from torch.sparse._triton_ops import TensorAsKey from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta, optimize_bsr_dense_addmm, dump) from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta) from torch.sparse._triton_ops import bsr_dense_addmm_meta from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sympy_utils.py
test_int_infinity
def test_int_infinity(self): self.assertIsInstance(int_oo, IntInfinity) self.assertIsInstance(-int_oo, NegativeIntInfinity) self.assertTrue(int_oo.is_integer) # is tests here are for singleton-ness, don't use it for comparisons # against numbers self.assertIs(int_oo + int_oo, int_oo) self.assertIs(int_oo + 1, int_oo) self.assertIs(int_oo - 1, int_oo) self.assertIs(-int_oo - 1, -int_oo) self.assertIs(-int_oo + 1, -int_oo) self.assertIs(-int_oo + (-int_oo), -int_oo) self.assertIs(-int_oo - int_oo, -int_oo) self.assertIs(1 + int_oo, int_oo) self.assertIs(1 - int_oo, -int_oo) self.assertIs(int_oo * int_oo, int_oo) self.assertIs(2 * int_oo, int_oo) self.assertIs(int_oo * 2, int_oo) self.assertIs(-1 * int_oo, -int_oo) self.assertIs(-int_oo * int_oo, -int_oo) self.assertIs(2 * -int_oo, -int_oo) self.assertIs(-int_oo * 2, -int_oo) self.assertIs(-1 * -int_oo, int_oo) self.assertIs(int_oo / 2, sympy.oo) self.assertIs(-(-int_oo), int_oo) # noqa: B002 self.assertIs(abs(int_oo), int_oo) self.assertIs(abs(-int_oo), int_oo) self.assertIs(int_oo ** 2, int_oo) self.assertIs((-int_oo) ** 2, int_oo) self.assertIs((-int_oo) ** 3, -int_oo) self.assertEqual(int_oo ** -1, 0) self.assertEqual((-int_oo) ** -1, 0) self.assertIs(int_oo ** int_oo, int_oo) self.assertTrue(int_oo == int_oo) self.assertFalse(int_oo != int_oo) self.assertTrue(-int_oo == -int_oo) self.assertFalse(int_oo == 2) self.assertTrue(int_oo != 2) self.assertFalse(int_oo == sys.maxsize) self.assertTrue(int_oo >= sys.maxsize) self.assertTrue(int_oo >= 2) self.assertTrue(int_oo >= -int_oo)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestNumbers(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_relation
def test_relation(self): self.assertIs(sympy.Add(2, int_oo), int_oo) self.assertFalse(-int_oo > 2)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestNumbers(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_lt_self
def test_lt_self(self): self.assertFalse(int_oo < int_oo) self.assertIs(min(-int_oo, -4), -int_oo) self.assertIs(min(-int_oo, -int_oo), -int_oo)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestNumbers(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_float_cast
def test_float_cast(self): self.assertEqual(float(int_oo), math.inf) self.assertEqual(float(-int_oo), -math.inf)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestNumbers(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_mixed_oo_int_oo
def test_mixed_oo_int_oo(self): # Arbitrary choice self.assertTrue(int_oo < sympy.oo) self.assertFalse(int_oo > sympy.oo) self.assertTrue(sympy.oo > int_oo) self.assertFalse(sympy.oo < int_oo) self.assertIs(max(int_oo, sympy.oo), sympy.oo) self.assertTrue(-int_oo > -sympy.oo) self.assertIs(min(-int_oo, -sympy.oo), -sympy.oo)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestNumbers(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_unary_ref
def test_unary_ref(self, fn, dtype): dtype = {"int": sympy.Integer, "float": sympy.Float}[dtype] for v in CONSTANTS: if not valid_unary(fn, v): continue with self.subTest(v=v): v = dtype(v) ref_r = getattr(ReferenceAnalysis, fn)(v) r = getattr(ValueRangeAnalysis, fn)(v) self.assertEqual(r.lower.is_integer, r.upper.is_integer) self.assertEqual(r.lower, r.upper) self.assertEqual(ref_r.is_integer, r.upper.is_integer) self.assertEqual(ref_r, r.lower)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestValueRanges(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_binary_ref
def test_binary_ref(self, fn, dtype): to_dtype = {"int": sympy.Integer, "float": sympy.Float} # Don't test float on int only methods if dtype == "float" and fn in ["pow_by_natural", "mod"]: return dtype = to_dtype[dtype] for a, b in itertools.product(CONSTANTS, repeat=2): if not valid_binary(fn, a, b): continue a = dtype(a) b = dtype(b) with self.subTest(a=a, b=b): r = getattr(ValueRangeAnalysis, fn)(a, b) if r == ValueRanges.unknown(): continue ref_r = getattr(ReferenceAnalysis, fn)(a, b) self.assertEqual(r.lower.is_integer, r.upper.is_integer) self.assertEqual(ref_r.is_integer, r.upper.is_integer) self.assertEqual(r.lower, r.upper) self.assertEqual(ref_r, r.lower)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestValueRanges(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sympy_utils.py
test_binary_ref_range
def test_binary_ref_range(self, fn): # TODO: bring back sympy.oo testing for float unary fns vals = LESS_CONSTANTS for a, b in itertools.product(generate_range(vals), repeat=2): # don't attempt pow on exponents that are too large (but oo is OK) if fn == "pow" and b.upper > 4 and b.upper != sympy.oo: continue with self.subTest(a=a, b=b): for a0, b0 in itertools.product(LESS_CONSTANTS, repeat=2): if a0 not in a or b0 not in b: continue if not valid_binary(fn, a0, b0): continue with self.subTest(a0=a0, b0=b0): ref_r = getattr(ValueRangeAnalysis, fn)(a, b) r = getattr(ReferenceAnalysis, fn)( sympy.Integer(a0), sympy.Integer(b0) ) if r.is_finite: self.assertIn(r, ref_r)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestValueRanges(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_python_interp_fx
def test_python_interp_fx(self, fn): # These never show up from symbolic_shapes if fn in ("log", "exp"): return # Sympy does not support truncation on symbolic shapes if fn in ("truncdiv", "mod"): return vals = CONSTANTS if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}: vals = [True, False] arity = 1 if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}: arity = 2 is_integer = None if fn == "pow_by_natural": is_integer = True x = sympy.Dummy('x', integer=is_integer) y = sympy.Dummy('y', integer=is_integer) symbols = [x] if arity == 2: symbols = [x, y] for args in itertools.product(vals, repeat=arity): if arity == 1 and not valid_unary(fn, *args): continue elif arity == 2 and not valid_binary(fn, *args): continue if fn == "truncdiv" and args[1] == 0: continue elif fn in ("pow", "pow_by_natural") and (args[0] == 0 and args[1] <= 0): continue elif fn == "floordiv" and args[1] == 0: continue with self.subTest(args=args): # Workaround mpf from symbol error if fn == "minimum": sympy_expr = sympy.Min(x, y) elif fn == "maximum": sympy_expr = sympy.Max(x, y) else: sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols) if arity == 1: def trace_f(px): return sympy_interp(PythonReferenceAnalysis, {x: px}, sympy_expr) else: def trace_f(px, py): return sympy_interp(PythonReferenceAnalysis, {x: px, y: py}, sympy_expr) gm = fx.symbolic_trace(trace_f) self.assertEqual( sympy_interp(PythonReferenceAnalysis, dict(zip(symbols, args)), sympy_expr), gm(*args) )
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympyInterp(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
trace_f
def trace_f(px): return sympy_interp(PythonReferenceAnalysis, {x: px}, sympy_expr)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
trace_f
def trace_f(px): return sympy_interp(PythonReferenceAnalysis, {x: px}, sympy_expr)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
wrapper
def wrapper(f: Callable): return parametrize("op", types or RELATIONAL_TYPES, name_fn=type_name_fn)(f) return wrapper
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_subclass.py
forward
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for _, v in self.p_dict.items(): out = v + out return out
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for v in self.p_dict.values(): out = v + out return out
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
forward
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for _, v in self.p_dict.items(): out = v + out return out
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for v in self.p_dict.values(): out = v + out return out
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
test_lazy_module
def test_lazy_module(self, tensor_cls): if tensor_cls is torch.Tensor: self.fail('dummy fail for base tensor until the test passes for subclasses') class MyLazyModule(LazyModuleMixin, nn.Module): def __init__(self): super().__init__() self.param = nn.UninitializedParameter() def initialize_parameters(self, input) -> None: # type: ignore[override] if self.has_uninitialized_params(): with torch.no_grad(): self.param.materialize(input.shape) nn.init.uniform_(self.param) def forward(self, x): return self.param + x m = MyLazyModule() self.assertTrue(m.has_uninitialized_params()) output = m(self._create_tensor(tensor_cls)) self.assertFalse(m.has_uninitialized_params()) self.assertIsInstance(m.param, tensor_cls)
def test_lazy_module(self, tensor_cls): if tensor_cls is torch.Tensor: self.fail('dummy fail for base tensor until the test passes for subclasses') class MyLazyModule(LazyModuleMixin, nn.Module): def __init__(self) -> None: super().__init__() self.param = nn.UninitializedParameter() def initialize_parameters(self, input) -> None: # type: ignore[override] if self.has_uninitialized_params(): with torch.no_grad(): self.param.materialize(input.shape) nn.init.uniform_(self.param) def forward(self, x): return self.param + x m = MyLazyModule() self.assertTrue(m.has_uninitialized_params()) output = m(self._create_tensor(tensor_cls)) self.assertFalse(m.has_uninitialized_params()) self.assertIsInstance(m.param, tensor_cls)
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class TestSubclass(TestCase):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class TestSubclass(TestCase): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
__init__
def __init__(self): super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for _, p in self.p_dict.items(): nn.init.uniform_(p)
def __init__(self) -> None: super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for p in self.p_dict.values(): nn.init.uniform_(p)
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
forward
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for _, v in self.p_dict.items(): out = v + out return out
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for v in self.p_dict.values(): out = v + out return out
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
test_non_rewrapping_torch_dispatch_subclass_as_parameter_throws_for_detach
def test_non_rewrapping_torch_dispatch_subclass_as_parameter_throws_for_detach(self): # Define a subclass that does not rewrap for any function in its __torch_dispatch__ impl. class NonRewrappingTensor(torch.Tensor): @staticmethod def __new__( cls, t: torch.Tensor ): r = super(NonRewrappingTensor, cls)._make_wrapper_subclass( cls, t.shape, dtype=t.dtype, requires_grad=t.requires_grad, device=t.device) return r def __init__(self, t) -> None: self.tensor: torch.Tensor = t __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e) -> torch.Tensor: if isinstance(e, NonRewrappingTensor): t = e.tensor return t else: return e r = func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) # Return an unwrapped tensor no longer of original subclass type. return r with self.assertRaisesRegex(RuntimeError, r"requires that detach\(\) returns an instance of the same type"): param = nn.Parameter(NonRewrappingTensor(torch.randn(3)))
def test_non_rewrapping_torch_dispatch_subclass_as_parameter_throws_for_detach(self): # Define a subclass that does not rewrap for any function in its __torch_dispatch__ impl. class NonRewrappingTensor(torch.Tensor): @staticmethod def __new__( cls, t: torch.Tensor ): r = super()._make_wrapper_subclass( cls, t.shape, dtype=t.dtype, requires_grad=t.requires_grad, device=t.device) return r def __init__(self, t) -> None: self.tensor: torch.Tensor = t @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e) -> torch.Tensor: if isinstance(e, NonRewrappingTensor): t = e.tensor return t else: return e r = func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) # Return an unwrapped tensor no longer of original subclass type. return r with self.assertRaisesRegex(RuntimeError, r"requires that detach\(\) returns an instance of the same type"): param = nn.Parameter(NonRewrappingTensor(torch.randn(3)))
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class TestSubclass(TestCase):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class TestSubclass(TestCase): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
test_tensor_subclass_storage_data_accesses_throw
instantiate_parametrized_tests(TestSubclass) if __name__ == '__main__': run_tests()
def test_tensor_subclass_storage_data_accesses_throw(self): from torch.testing._internal.logging_tensor import LoggingTensor x = torch.ones(2) x_log = LoggingTensor(x) # Accessing storage on a tensor subclass is valid storage = x_log.untyped_storage() # This includes accessing metadata on the storage sz = storage.size() # But storage methods that access data will throw with self.assertRaisesRegex(RuntimeError, "on an invalid python storage"): storage.data_ptr() with self.assertRaisesRegex(RuntimeError, "on an invalid python storage"): storage.resize_(0) with self.assertRaisesRegex(RuntimeError, "on an invalid python storage"): storage.copy_(storage) with self.assertRaisesRegex(RuntimeError, "on an invalid python storage"): storage.fill_(0) with self.assertRaisesRegex(RuntimeError, "on an invalid python storage"): storage._write_file("file")
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class TestSubclass(TestCase): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
valid_unary
def valid_unary(fn, v): if fn == "log" and v <= 0: return False elif fn == "reciprocal" and v == 0: return False elif fn == "sqrt" and v < 0: return False return True
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
valid_binary
def valid_binary(fn, a, b): if fn == "pow" and ( # sympy will expand to x*x*... for integral b; don't do it if it's big b > 4 # no imaginary numbers or a <= 0 # 0**0 is undefined or (a == b == 0) ): return False elif fn == "pow_by_natural" and ( # sympy will expand to x*x*... for integral b; don't do it if it's big b > 4 or b < 0 or (a == b == 0) ): return False elif fn == "mod" and (a < 0 or b <= 0): return False elif (fn in ["div", "truediv", "floordiv"]) and b == 0: return False return True
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
generate_range
def generate_range(vals): for a1, a2 in itertools.product(vals, repeat=2): if a1 in [sympy.true, sympy.false]: if a1 == sympy.true and a2 == sympy.false: continue else: if a1 > a2: continue # ranges that only admit infinite values are not interesting if a1 == sympy.oo or a2 == -sympy.oo: continue yield ValueRanges(a1, a2) class TestNumbers(TestCase): def test_int_infinity(self): self.assertIsInstance(int_oo, IntInfinity) self.assertIsInstance(-int_oo, NegativeIntInfinity) self.assertTrue(int_oo.is_integer) # is tests here are for singleton-ness, don't use it for comparisons # against numbers self.assertIs(int_oo + int_oo, int_oo) self.assertIs(int_oo + 1, int_oo) self.assertIs(int_oo - 1, int_oo) self.assertIs(-int_oo - 1, -int_oo) self.assertIs(-int_oo + 1, -int_oo) self.assertIs(-int_oo + (-int_oo), -int_oo) self.assertIs(-int_oo - int_oo, -int_oo) self.assertIs(1 + int_oo, int_oo) self.assertIs(1 - int_oo, -int_oo) self.assertIs(int_oo * int_oo, int_oo) self.assertIs(2 * int_oo, int_oo) self.assertIs(int_oo * 2, int_oo) self.assertIs(-1 * int_oo, -int_oo) self.assertIs(-int_oo * int_oo, -int_oo) self.assertIs(2 * -int_oo, -int_oo) self.assertIs(-int_oo * 2, -int_oo) self.assertIs(-1 * -int_oo, int_oo) self.assertIs(int_oo / 2, sympy.oo) self.assertIs(-(-int_oo), int_oo) # noqa: B002 self.assertIs(abs(int_oo), int_oo) self.assertIs(abs(-int_oo), int_oo) self.assertIs(int_oo ** 2, int_oo) self.assertIs((-int_oo) ** 2, int_oo) self.assertIs((-int_oo) ** 3, -int_oo) self.assertEqual(int_oo ** -1, 0) self.assertEqual((-int_oo) ** -1, 0) self.assertIs(int_oo ** int_oo, int_oo) self.assertTrue(int_oo == int_oo) self.assertFalse(int_oo != int_oo) self.assertTrue(-int_oo == -int_oo) self.assertFalse(int_oo == 2) self.assertTrue(int_oo != 2) self.assertFalse(int_oo == sys.maxsize) self.assertTrue(int_oo >= sys.maxsize) self.assertTrue(int_oo >= 2) self.assertTrue(int_oo >= -int_oo) def test_relation(self): self.assertIs(sympy.Add(2, int_oo), int_oo) self.assertFalse(-int_oo > 2) def test_lt_self(self): self.assertFalse(int_oo < int_oo) self.assertIs(min(-int_oo, -4), -int_oo) self.assertIs(min(-int_oo, -int_oo), -int_oo) def test_float_cast(self): self.assertEqual(float(int_oo), math.inf) self.assertEqual(float(-int_oo), -math.inf) def test_mixed_oo_int_oo(self): # Arbitrary choice self.assertTrue(int_oo < sympy.oo) self.assertFalse(int_oo > sympy.oo) self.assertTrue(sympy.oo > int_oo) self.assertFalse(sympy.oo < int_oo) self.assertIs(max(int_oo, sympy.oo), sympy.oo) self.assertTrue(-int_oo > -sympy.oo) self.assertIs(min(-int_oo, -sympy.oo), -sympy.oo) class TestValueRanges(TestCase): @parametrize("fn", UNARY_OPS) @parametrize("dtype", ("int", "float")) def test_unary_ref(self, fn, dtype): dtype = {"int": sympy.Integer, "float": sympy.Float}[dtype] for v in CONSTANTS: if not valid_unary(fn, v): continue with self.subTest(v=v): v = dtype(v) ref_r = getattr(ReferenceAnalysis, fn)(v) r = getattr(ValueRangeAnalysis, fn)(v) self.assertEqual(r.lower.is_integer, r.upper.is_integer) self.assertEqual(r.lower, r.upper) self.assertEqual(ref_r.is_integer, r.upper.is_integer) self.assertEqual(ref_r, r.lower) def test_pow_half(self): ValueRangeAnalysis.pow(ValueRanges.unknown(), ValueRanges.wrap(0.5)) @parametrize("fn", BINARY_OPS) @parametrize("dtype", ("int", "float")) def test_binary_ref(self, fn, dtype): to_dtype = {"int": sympy.Integer, "float": sympy.Float} # Don't test float on int only methods if dtype == "float" and fn in ["pow_by_natural", "mod"]: return dtype = to_dtype[dtype] for a, b in itertools.product(CONSTANTS, repeat=2): if not valid_binary(fn, a, b): continue a = dtype(a) b = dtype(b) with self.subTest(a=a, b=b): r = getattr(ValueRangeAnalysis, fn)(a, b) if r == ValueRanges.unknown(): continue ref_r = getattr(ReferenceAnalysis, fn)(a, b) self.assertEqual(r.lower.is_integer, r.upper.is_integer) self.assertEqual(ref_r.is_integer, r.upper.is_integer) self.assertEqual(r.lower, r.upper) self.assertEqual(ref_r, r.lower) def test_mul_zero_unknown(self): self.assertEqual( ValueRangeAnalysis.mul(ValueRanges.wrap(0), ValueRanges.unknown()), ValueRanges.wrap(0), ) self.assertEqual( ValueRangeAnalysis.mul(ValueRanges.wrap(0.0), ValueRanges.unknown()), ValueRanges.wrap(0.0), ) @parametrize("fn", UNARY_BOOL_OPS) def test_unary_bool_ref_range(self, fn): vals = [sympy.false, sympy.true] for a in generate_range(vals): with self.subTest(a=a): ref_r = getattr(ValueRangeAnalysis, fn)(a) unique = set() for a0 in vals: if a0 not in a: continue with self.subTest(a0=a0): r = getattr(ReferenceAnalysis, fn)(a0) self.assertIn(r, ref_r) unique.add(r) if ref_r.lower == ref_r.upper: self.assertEqual(len(unique), 1) else: self.assertEqual(len(unique), 2) @parametrize("fn", BINARY_BOOL_OPS) def test_binary_bool_ref_range(self, fn): vals = [sympy.false, sympy.true] for a, b in itertools.product(generate_range(vals), repeat=2): with self.subTest(a=a, b=b): ref_r = getattr(ValueRangeAnalysis, fn)(a, b) unique = set() for a0, b0 in itertools.product(vals, repeat=2): if a0 not in a or b0 not in b: continue with self.subTest(a0=a0, b0=b0): r = getattr(ReferenceAnalysis, fn)(a0, b0) self.assertIn(r, ref_r) unique.add(r) if ref_r.lower == ref_r.upper: self.assertEqual(len(unique), 1) else: self.assertEqual(len(unique), 2) @parametrize("fn", UNARY_OPS) def test_unary_ref_range(self, fn): # TODO: bring back sympy.oo testing for float unary fns vals = CONSTANTS for a in generate_range(vals): with self.subTest(a=a): ref_r = getattr(ValueRangeAnalysis, fn)(a) for a0 in CONSTANTS: if a0 not in a: continue if not valid_unary(fn, a0): continue with self.subTest(a0=a0): r = getattr(ReferenceAnalysis, fn)(sympy.Integer(a0)) self.assertIn(r, ref_r) # This takes about 4s for all the variants @parametrize("fn", BINARY_OPS + COMPARE_OPS) def test_binary_ref_range(self, fn): # TODO: bring back sympy.oo testing for float unary fns vals = LESS_CONSTANTS for a, b in itertools.product(generate_range(vals), repeat=2): # don't attempt pow on exponents that are too large (but oo is OK) if fn == "pow" and b.upper > 4 and b.upper != sympy.oo: continue with self.subTest(a=a, b=b): for a0, b0 in itertools.product(LESS_CONSTANTS, repeat=2): if a0 not in a or b0 not in b: continue if not valid_binary(fn, a0, b0): continue with self.subTest(a0=a0, b0=b0): ref_r = getattr(ValueRangeAnalysis, fn)(a, b) r = getattr(ReferenceAnalysis, fn)( sympy.Integer(a0), sympy.Integer(b0) ) if r.is_finite: self.assertIn(r, ref_r) class TestSympyInterp(TestCase): @parametrize("fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS) def test_interp(self, fn): # SymPy does not implement truncation for Expressions if fn in ("div", "truncdiv", "minimum", "maximum", "mod"): return is_integer = None if fn == "pow_by_natural": is_integer = True x = sympy.Dummy('x', integer=is_integer) y = sympy.Dummy('y', integer=is_integer) vals = CONSTANTS if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}: vals = [True, False] arity = 1 if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}: arity = 2 symbols = [x] if arity == 2: symbols = [x, y] for args in itertools.product(vals, repeat=arity): if arity == 1 and not valid_unary(fn, *args): continue elif arity == 2 and not valid_binary(fn, *args): continue with self.subTest(args=args): sargs = [sympy.sympify(a) for a in args] sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols) ref_r = getattr(ReferenceAnalysis, fn)(*sargs) # Yes, I know this is a longwinded way of saying xreplace; the # point is to test sympy_interp r = sympy_interp(ReferenceAnalysis, dict(zip(symbols, sargs)), sympy_expr) self.assertEqual(ref_r, r) @parametrize("fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS) def test_python_interp_fx(self, fn): # These never show up from symbolic_shapes if fn in ("log", "exp"): return # Sympy does not support truncation on symbolic shapes if fn in ("truncdiv", "mod"): return vals = CONSTANTS if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}: vals = [True, False] arity = 1 if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}: arity = 2 is_integer = None if fn == "pow_by_natural": is_integer = True x = sympy.Dummy('x', integer=is_integer) y = sympy.Dummy('y', integer=is_integer) symbols = [x] if arity == 2: symbols = [x, y] for args in itertools.product(vals, repeat=arity): if arity == 1 and not valid_unary(fn, *args): continue elif arity == 2 and not valid_binary(fn, *args): continue if fn == "truncdiv" and args[1] == 0: continue elif fn in ("pow", "pow_by_natural") and (args[0] == 0 and args[1] <= 0): continue elif fn == "floordiv" and args[1] == 0: continue with self.subTest(args=args): # Workaround mpf from symbol error if fn == "minimum": sympy_expr = sympy.Min(x, y) elif fn == "maximum": sympy_expr = sympy.Max(x, y) else: sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols) if arity == 1: def trace_f(px): return sympy_interp(PythonReferenceAnalysis, {x: px}, sympy_expr) else: def trace_f(px, py): return sympy_interp(PythonReferenceAnalysis, {x: px, y: py}, sympy_expr) gm = fx.symbolic_trace(trace_f) self.assertEqual( sympy_interp(PythonReferenceAnalysis, dict(zip(symbols, args)), sympy_expr), gm(*args) )
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_spectral_ops.py
__init__
def __init__(self): self.parser = doctest.DocTestParser()
def __init__(self) -> None: self.parser = doctest.DocTestParser()
import torch import unittest import math from contextlib import contextmanager from itertools import product import itertools import doctest import inspect from torch.testing._internal.common_utils import \ (TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL, first_sample, TEST_WITH_ROCM, make_tensor) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, onlyNativeDeviceTypes, skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf, toleranceOverride, tol) from torch.testing._internal.common_methods_invocations import ( spectral_funcs, SpectralFuncType) from torch.testing._internal.common_cuda import SM53OrLater from torch._prims_common import corresponding_complex_dtype from setuptools import distutils from typing import Optional, List import numpy as np import librosa has_scipy_fft = False import scipy.fft LooseVersion = distutils.version.LooseVersion REFERENCE_NORM_MODES = ( (None, "forward", "backward", "ortho") if LooseVersion(np.__version__) >= '1.20.0' and ( not has_scipy_fft or LooseVersion(scipy.__version__) >= '1.6.0') else (None, "ortho")) class FFTDocTestFinder:
import torch import unittest import math from contextlib import contextmanager from itertools import product import itertools import doctest import inspect from torch.testing._internal.common_utils import \ (TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL, first_sample, TEST_WITH_ROCM, make_tensor, skipIfTorchDynamo) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, onlyNativeDeviceTypes, skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf, toleranceOverride, tol) from torch.testing._internal.common_methods_invocations import ( spectral_funcs, SpectralFuncType) from torch.testing._internal.common_cuda import SM53OrLater from torch._prims_common import corresponding_complex_dtype from typing import Optional, List from packaging import version import numpy as np import librosa has_scipy_fft = False import scipy.fft REFERENCE_NORM_MODES = ( (None, "forward", "backward", "ortho") if version.parse(np.__version__) >= version.parse('1.20.0') and ( not has_scipy_fft or version.parse(scipy.__version__) >= version.parse('1.6.0')) else (None, "ortho")) class FFTDocTestFinder:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
test_functional_call_member_reference
def test_functional_call_member_reference(self, functional_call): class Module(torch.nn.Module): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) def forward(self, x): parameters = tuple(self.parameters()) buffers = tuple(self.buffers()) return self.l1(x) + self.buffer, parameters, buffers module = Module() weight = torch.tensor([[2.0]]) bias = torch.tensor([5.0]) buffer = torch.tensor([3.0]) extra = torch.tensor([1.0]) extra_p = torch.nn.Parameter(extra) # All weights parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # Some weights parameters = {'l1.weight': weight} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias)) self.assertEqual(buffers, (module.buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # All weights with extra keys parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer, 'l1.extra': extra} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # All weights with extra keys with parameters parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer, 'l1.extra': extra_p} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias, extra_p)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias, extra_p)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # Some weights with extra keys parameters = {'l1.weight': weight, 'l1.extra': extra} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # Some weights with extra keys with parameters parameters = {'l1.weight': weight, 'l1.extra': extra_p} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias, extra_p)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias, extra_p)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # Set None parameters = {'l1.weight': weight, 'l1.bias': None} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.buffer) self.assertEqual(parameters, (weight,)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight,)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
def test_functional_call_member_reference(self, functional_call): class Module(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) def forward(self, x): parameters = tuple(self.parameters()) buffers = tuple(self.buffers()) return self.l1(x) + self.buffer, parameters, buffers module = Module() weight = torch.tensor([[2.0]]) bias = torch.tensor([5.0]) buffer = torch.tensor([3.0]) extra = torch.tensor([1.0]) extra_p = torch.nn.Parameter(extra) # All weights parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # Some weights parameters = {'l1.weight': weight} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias)) self.assertEqual(buffers, (module.buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # All weights with extra keys parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer, 'l1.extra': extra} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # All weights with extra keys with parameters parameters = {'l1.weight': weight, 'l1.bias': bias, 'buffer': buffer, 'l1.extra': extra_p} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + bias + buffer) self.assertEqual(parameters, (weight, bias, extra_p)) self.assertEqual(buffers, (buffer,)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias, extra_p)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,)))) # Some weights with extra keys parameters = {'l1.weight': weight, 'l1.extra': extra} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # Some weights with extra keys with parameters parameters = {'l1.weight': weight, 'l1.extra': extra_p} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.l1.bias + module.buffer) self.assertEqual(parameters, (weight, module.l1.bias, extra_p)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias, extra_p)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,)))) # Set None parameters = {'l1.weight': weight, 'l1.bias': None} x = torch.randn(1, 1) out, parameters, buffers = functional_call(module, parameters, x) self.assertEqual(out, x * weight + module.buffer) self.assertEqual(parameters, (weight,)) self.assertEqual(buffers, (module.buffer)) self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight,)))) self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class TestStatelessFunctionalAPI(TestCase):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class TestStatelessFunctionalAPI(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
test_stateless_functional_call_warns
def test_stateless_functional_call_warns(self): m = torch.nn.Linear(1, 1) params = dict(m.named_parameters()) x = torch.randn(3, 1) with self.assertWarnsRegex(UserWarning, "Please use torch.func.functional_call"): stateless.functional_call(m, params, x)
def test_stateless_functional_call_warns(self): m = torch.nn.Linear(1, 1) params = dict(m.named_parameters()) x = torch.randn(3, 1) with self.assertWarnsRegex(FutureWarning, "Please use `torch.func.functional_call`"): stateless.functional_call(m, params, x)
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class TestStatelessDeprecation(TestCase):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class TestStatelessDeprecation(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_static_runtime.py
__init__
def __init__(self, scripted): # this is an nn.Module if hasattr(scripted, "_c"): self.static_module = torch._C._jit_to_static_module(scripted._c) else: self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) # self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim class MultiHeadAttentionLayer(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_static_runtime.py
__call__
def __call__(self, *args, **kwargs): return self.static_module(*args, **kwargs)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_static_runtime.py
benchmark
def benchmark(self, args, kwargs, warmup_runs, main_runs): self.static_module.benchmark(args, kwargs, warmup_runs, main_runs)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_static_runtime.py
runAsync
def runAsync(self, args, kwargs): return self.static_module.runAsync(args, kwargs)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_static_runtime.py
__init__
def __init__(self, scripted): # this is an nn.Module if hasattr(scripted, "_c"): self.static_module = torch._C._jit_to_static_module(scripted._c) else: self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) # self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim class MultiHeadAttentionLayer(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_stateless.py
__init__
def __init__(self): super().__init__() self.l1 = torch.nn.Linear(1, 1) self.register_buffer('buffer', torch.ones(1)) self.foo = 0.0
def __init__(self) -> None: super().__init__() self.l1 = torch.nn.Linear(1, 1) self.buffer = torch.nn.Buffer(torch.ones(1)) self.foo = 0.0
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
import contextlib import os import re import subprocess import sys import unittest import torch import torch.nn.utils.stateless as stateless from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \ subtest class MockModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_sympy_utils.py
test_noop_rhs
def test_noop_rhs(self, op): a, b, _ = self._create_integer_symbols() lhs, rhs = 42 * b, a mirror = mirror_rel_op(op) self.assertNotEqual(mirror, None) expr = op(lhs, rhs) r = try_solve(expr, a) self.assertNotEqual(r, None) r_expr, r_rhs = r self.assertEqual(r_expr, mirror(rhs, lhs)) self.assertEqual(r_rhs, lhs)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympySolve(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
_test_cases
def _test_cases(self, cases: List[Tuple[sympy.Basic, sympy.Basic]], thing: sympy.Basic, op: Type[sympy.Rel], **kwargs): for source, expected in cases: r = try_solve(source, thing, **kwargs) self.assertTrue( (r is None and expected is None) or (r is not None and expected is not None) ) if r is not None: r_expr, r_rhs = r self.assertEqual(r_rhs, expected) self.assertEqual(r_expr, op(thing, expected))
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympySolve(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_floordiv
def test_floordiv(self, op): from sympy import Eq, Ne, Gt, Ge, Lt, Le a, b, c = sympy.symbols("a b c") pos = sympy.Symbol("pos", positive=True) integer = sympy.Symbol("integer", integer=True) # (Eq(FloorDiv(a, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))), # (Eq(FloorDiv(a + 5, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))), # (Ne(FloorDiv(a, pos), integer), Or(Lt(a, integer * pos), Ge(a, (integer + 1) * pos))), special_case = { # 'FloorDiv' turns into 'And', which can't be simplified any further. Eq: (Eq(FloorDiv(a, pos), integer), None), # 'FloorDiv' turns into 'Or', which can't be simplified any further. Ne: (Ne(FloorDiv(a, pos), integer), None), Gt: (Gt(FloorDiv(a, pos), integer), (integer + 1) * pos), Ge: (Ge(FloorDiv(a, pos), integer), integer * pos), Lt: (Lt(FloorDiv(a, pos), integer), integer * pos), Le: (Le(FloorDiv(a, pos), integer), (integer + 1) * pos), }[op] cases: List[Tuple[sympy.Basic, sympy.Basic]] = [ # 'b' is not strictly positive (op(FloorDiv(a, b), integer), None), # 'c' is not strictly positive (op(FloorDiv(a, pos), c), None), ] # The result might change after 'FloorDiv' transformation. # Specifically: # - [Ge, Gt] => Ge # - [Le, Lt] => Lt if op in (sympy.Gt, sympy.Ge): r_op = sympy.Ge elif op in (sympy.Lt, sympy.Le): r_op = sympy.Lt else: r_op = op self._test_cases([special_case, *cases], a, r_op) self._test_cases([(special_case[0], None), *cases], a, r_op, floordiv_inequality=False)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympySolve(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
check
def check(expr, expected): r = try_solve(expr, a) self.assertNotEqual(r, None) r_expr, _ = r self.assertEqual(r_expr, expected) # (a + 10) // 3 == 3 # ===================================== # 3 * 3 <= a + 10 (always true) # a + 10 < 4 * 3 (not sure) check(Eq(FloorDiv(a + 10, 3), 3), Lt(a, (3 + 1) * 3 - 10)) # (a + 10) // 2 == 4 # ===================================== # 4 * 2 <= 10 - a (not sure) # 10 - a < 5 * 2 (always true) check(Eq(FloorDiv(10 - a, 2), 4), Le(a, -(4 * 2 - 10)))
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_z3_proof_floordiv_eq_simplify
def test_z3_proof_floordiv_eq_simplify(self): import z3 from sympy import Eq, Lt a = sympy.Symbol("a", positive=True, integer=True) a_ = z3.Int("a") # (a + 10) // 3 == 3 # ===================================== # 3 * 3 <= a + 10 (always true) # a + 10 < 4 * 3 (not sure) solver = z3.SolverFor("QF_NRA") # Add assertions for 'a_'. solver.add(a_ > 0) expr = Eq(FloorDiv(a + 10, 3), 3) r_expr, _ = try_solve(expr, a) # Check 'try_solve' really returns the 'expected' below. expected = Lt(a, (3 + 1) * 3 - 10) self.assertEqual(r_expr, expected) # Check whether there is an integer 'a_' such that the # equation below is satisfied. solver.add( # expr (z3.ToInt((a_ + 10) / 3.0) == 3) != # expected (a_ < (3 + 1) * 3 - 10) ) # Assert that there's no such an integer. # i.e. the transformation is sound. r = solver.check() self.assertEqual(r, z3.unsat)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympySolve(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_simple_floordiv_gcd
def test_simple_floordiv_gcd(self): x, y, z = sympy.symbols("x y z") # positive tests self.assertEqual(simple_floordiv_gcd(x, x), x) self.assertEqual(simple_floordiv_gcd(128 * x, 2304), 128) self.assertEqual(simple_floordiv_gcd(128 * x + 128 * y, 2304), 128) self.assertEqual(simple_floordiv_gcd(128 * x + 128 * y + 8192 * z, 9216), 128) self.assertEqual(simple_floordiv_gcd(49152 * x, 96 * x), 96 * x) self.assertEqual(simple_floordiv_gcd(96 * x, 96 * x), 96 * x) self.assertEqual(simple_floordiv_gcd(x * y, x), x) self.assertEqual(simple_floordiv_gcd(384 * x * y, x * y), x * y) self.assertEqual(simple_floordiv_gcd(256 * x * y, 8 * x), 8 * x) # negative tests self.assertEqual(simple_floordiv_gcd(x * y + x + y + 1, x + 1), 1)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] class TestSympySolve(TestCase): from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_static_runtime.py
output_graph
def output_graph(a, b, c, iters: int): s = torch.tensor([[3, 3], [3, 3]]) k = a + b * c + s d: Dict[int, torch.Tensor] = {} for i in range(iters): d[i] = k + i return d class SubModule(nn.Module): def __init__(self): super().__init__() self.a = 11 self.b = 2 def forward(self, x): return self.a + self.b + x class SubModule2(nn.Module): def __init__(self): super().__init__() self.a = 12 self.b = 2 def forward(self, x): self.b = 30 return self.a + self.b + x class TestModule(nn.Module): def __init__(self): super().__init__() self.sub1 = SubModule() self.sub2 = SubModule2() self.a = 3 self.b = 4 def forward(self, x): self.b = 20 return self.sub1(x) + self.a + self.b + self.sub2(x) class TestStaticModule(TestCase): """ Test Case: To test simple fork/wait operation in a graph fork is called on simple addition operation on input tensors """ def test_fork_wait_1(self): inp1 = torch.ones(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph1) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(inp1, inp2) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test simple fork/wait operation with StaticRuntime runAsync API returning future """ def test_fork_wait_1_async(self): inp1 = torch.ones(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph1) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((inp1, inp2), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on a loop subgraph performing mix of operations """ def test_fork_wait_2(self): inp1 = torch.randn(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph2) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(inp1, inp2) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation on a loop subgraph with StaticRuntime runAsync API returning future """ def test_fork_wait_2_async(self): inp1 = torch.randn(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph2) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((inp1, inp2), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on having multiple fork/wait operations """ def test_fork_wait_3(self): input = torch.ones(3, 3) num_forks = 10 torch_graph = torch.jit.script(fork_wait_graph3) output_ref = torch_graph(input, num_forks) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(input, num_forks) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation in a graph with multiple fork/wait operations on runAsync API returning future """ def test_fork_wait_3_async(self): input = torch.ones(3, 3) num_forks = 10 torch_graph = torch.jit.script(fork_wait_graph3) output_ref = torch_graph(input, num_forks) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((input, num_forks), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on multiple nested fork/wait operations """ def test_fork_wait_4(self): input = torch.ones(3, 3) num_forks = 10 num_child_forks = 10 torch_graph = torch.jit.script(fork_wait_graph4) static_runtime_module = StaticModule(torch_graph) output_ref = torch_graph(input, num_forks, num_child_forks) output_test = static_runtime_module(input, num_forks, num_child_forks) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation in a graph with multiple nested fork/wait operations on runAsync API returning future """ def test_fork_wait_4_async(self): input = torch.ones(3, 3) num_forks = 10 num_child_forks = 10 torch_graph = torch.jit.script(fork_wait_graph4) static_runtime_module = StaticModule(torch_graph) output_ref = torch_graph(input, num_forks, num_child_forks) output_test = static_runtime_module.runAsync( (input, num_forks, num_child_forks), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test exception handling in fork/wait operation. Add.Tensor op is called for tensors with non-matching dims on the forked subgraph and the exception raised by subgraph is set on future returned by prim::fork to parent graph. Returned exception is checked for substring expected_error_msg as declared below """ def test_fork_wait_exception(self): # incompatible tensors for add due to shape mismatch input1 = torch.randn(4, 7) input2 = torch.randn(4, 5) torch_graph = torch.jit.script(fork_wait_graph_exception) try: static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(input1, input2) except Exception as error: expected_error_msg = ( "The size of tensor a (7) must match the size " "of tensor b (5) at non-singleton dimension 1" ) # test fails if error does not contain expected substr if str(error).find(expected_error_msg) == -1: raise RuntimeError( "Tried execution of add.Tensors with incompatible shape. " "Exception raised by forked runtime execution does " f"not contain expected substring: \"{expected_error_msg}\"" ) from error """ Test Case: To test exception handling in fork/wait operation with runAsync API. Add.Tensor op is called for tensors with non-matching dims on the forked subgraph and the exception raised by subgraph is set on future returned by prim::fork to parent graph. Returned exception is checked for substring expected_error_msg as declared below """ def test_fork_wait_exception_async(self): # incompatible tensors for add due to shape mismatch input1 = torch.randn(4, 7) input2 = torch.randn(4, 5) torch_graph = torch.jit.script(fork_wait_graph_exception) try: static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync( (input1, input2), {}) except Exception as error: expected_error_msg = ( "The size of tensor a (7) must match the size " "of tensor b (5) at non-singleton dimension 1" ) # test fails if error does not contain expected substr if str(error).find(expected_error_msg) == -1: raise RuntimeError( "Tried execution of add.Tensors with incompatible shape. " "Exception raised by forked runtime execution does " f"not contain expected substring: \"{expected_error_msg}\"" ) from error def test_multihead_attention_layer(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention.eval() o_ref = attention(src, src, src, src_mask) attention_a = StaticModule(attention) o_test = attention_a(src, src, src, src_mask) o_test_kw = attention_a(src, src, value=src, mask=src_mask) for a, b in zip(o_ref, o_test): torch.testing.assert_close(a, b) for a, b in zip(o_ref, o_test_kw): torch.testing.assert_close(a, b) def test_multihead_attention_layer_benchmark(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention_a = StaticModule(attention) attention_a.benchmark([src, src, src, src_mask], {}, 2, 2) metrics = attention_a.benchmark_individual_ops( [src, src, src, src_mask], {}, 2, 2 ) def test_mlp(self): # Arguments taken from benchmark script, ./bench/dlrm_s_benchmark.sh ln_bot = [512, 512, 64] sigmoid_bot = -1 ln_top = [100, 1024, 1024, 1024, 1] sigmoid_top = 3 bot_l = create_mlp(ln_bot, sigmoid_bot) bot_l_acc = StaticModule(bot_l) top_l = create_mlp(ln_top, sigmoid_top) top_l_acc = StaticModule(top_l) with torch.no_grad(): bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512]) top_inp = torch.randn(2048, 100) # torch.Size([2048, 100]) ref_bot = bot_l(bot_inp) acc_bot = bot_l_acc(bot_inp) torch.testing.assert_close(acc_bot, ref_bot) ref_top = top_l(top_inp) acc_top = top_l_acc(top_inp) torch.testing.assert_close(acc_top, ref_top) for _ in range(5): with torch.no_grad(): bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512]) top_inp = torch.randn(2048, 100) # torch.Size([2048, 100]) ref_bot = bot_l(bot_inp) acc_bot = bot_l_acc(bot_inp) torch.testing.assert_close(acc_bot, ref_bot) ref_top = top_l(top_inp) acc_top = top_l_acc(top_inp) torch.testing.assert_close(acc_top, ref_top) def test_trivial_graph(self): s = torch.full((2, 2), 2) tg = torch.jit.script(trivial_graph) o_ref = tg(s, s, s) tg_a = StaticModule(tg) o_test = tg_a(s, s, s) torch.testing.assert_close(o_ref, o_test) def test_leaky_relu(self): s = torch.randn(5, 5) tg = torch.jit.script(nn.LeakyReLU(0.1)) o_ref = tg(s) tg_a = StaticModule(tg) o_test = tg_a(s) torch.testing.assert_close(o_ref, o_test) def test_attr(self): """ TorchScript IR of TestModule() after freezing: graph(%self : __torch__.test_static_runtime.___torch_mangle_0.TestModule, %x.1 : Tensor): %18 : int = prim::Constant[value=30]() %30 : int = prim::Constant[value=13]() %3 : int = prim::Constant[value=20]() %2 : int = prim::Constant[value=1]() %self.sub2.a : int = prim::Constant[value=12]() %self.a : int = prim::Constant[value=3]() = prim::SetAttr[name="b"](%self, %3) %17 : Tensor = aten::add(%x.1, %30, %2) %7 : Tensor = aten::add(%17, %self.a, %2) %b.1 : int = prim::GetAttr[name="b"](%self) %9 : Tensor = aten::add(%7, %b.1, %2) %sub2 : __torch__.test_static_runtime.___torch_mangle_2.SubModule2 = prim::GetAttr[name="sub2"](%self) = prim::SetAttr[name="b"](%sub2, %18) %b : int = prim::GetAttr[name="b"](%sub2) %22 : int = aten::add(%self.sub2.a, %b) %23 : Tensor = aten::add(%x.1, %22, %2) %12 : Tensor = aten::add(%9, %23, %2) return (%12) """ # test prim::SetAttr and prim::GetAttr impl in Static Runtime m = TestModule() m.eval() input = torch.randn(2, 2) output_s = m.forward(input) ms = torch.jit.script(m) sm = StaticModule(ms) output_sm = sm(input) torch.testing.assert_close(output_s, output_sm) sm.benchmark([input], {}, 2, 2) sm.benchmark_individual_ops([input], {}, 2, 2) sm.benchmark([], {"x": input}, 2, 2) sm.benchmark_individual_ops([], {"x": input}, 2, 2) @unittest.skip("Temporarily disabled") def test_fusion_trivial_graph(self): s = torch.full((2, 2), 2) tg = torch.jit.script(trivial_graph) o_ref = tg(s, s, s) torch._C._fuse_to_static_module(tg.graph) assert "StaticSubgraph" in str(tg.graph) o_test = tg(s, s, s) torch.testing.assert_close(o_ref, o_test) @unittest.skip("Temporarily disabled") def test_fusion_multihead_attention_layer(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention.eval() o_ref = attention(src, src, src, src_mask) torch._C._fuse_to_static_module(attention._c) o_test = attention(src, src, src, src_mask) for a, b in zip(o_ref, o_test): torch.testing.assert_close(a, b) @unittest.skip("Temporarily disabled") def test_fusion_loop(self): a = torch.randn(5, 5) b = torch.randn(5, 5) c = 4 lg = torch.jit.script(loop_graph) o_ref = lg(a, b, c) torch._C._fuse_to_static_module(lg.graph) assert "StaticSubgraph" in str(lg.graph) o_test = lg(a, b, c) torch.testing.assert_close(o_ref, o_test) @unittest.skip("Temporarily disabled") def test_fusion_outputs(self): a = torch.randn(2, 2) b = torch.randn(2, 2) c = 4 og = torch.jit.script(output_graph) o_ref = og(a, b, b, c) torch._C._fuse_to_static_module(og.graph) assert "StaticSubgraph" in str(og.graph) o_test = og(a, b, b, c) for i in o_ref.keys(): torch.testing.assert_close(o_ref[i], o_test[i]) def test_create_object(self): class Foo: # noqa: B903 def __init__(self, x: torch.Tensor) -> None: self.x = x class Mod(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, y: torch.Tensor) -> torch.Tensor: foo = Foo(y) return y * foo.x mod = torch.jit.script(Mod()).eval() y = torch.randn((1, )) expected = mod(y) static_mod = StaticModule(torch.jit.freeze(mod)) actual = static_mod(y) self.assertEqual(expected, actual) if __name__ == "__main__": run_tests()
def output_graph(a, b, c, iters: int): s = torch.tensor([[3, 3], [3, 3]]) k = a + b * c + s d: Dict[int, torch.Tensor] = {} for i in range(iters): d[i] = k + i return d class SubModule(nn.Module): def __init__(self) -> None: super().__init__() self.a = 11 self.b = 2 def forward(self, x): return self.a + self.b + x class SubModule2(nn.Module): def __init__(self) -> None: super().__init__() self.a = 12 self.b = 2 def forward(self, x): self.b = 30 return self.a + self.b + x class TestModule(nn.Module): def __init__(self) -> None: super().__init__() self.sub1 = SubModule() self.sub2 = SubModule2() self.a = 3 self.b = 4 def forward(self, x): self.b = 20 return self.sub1(x) + self.a + self.b + self.sub2(x) class TestStaticModule(TestCase): """ Test Case: To test simple fork/wait operation in a graph fork is called on simple addition operation on input tensors """ def test_fork_wait_1(self): inp1 = torch.ones(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph1) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(inp1, inp2) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test simple fork/wait operation with StaticRuntime runAsync API returning future """ def test_fork_wait_1_async(self): inp1 = torch.ones(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph1) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((inp1, inp2), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on a loop subgraph performing mix of operations """ def test_fork_wait_2(self): inp1 = torch.randn(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph2) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(inp1, inp2) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation on a loop subgraph with StaticRuntime runAsync API returning future """ def test_fork_wait_2_async(self): inp1 = torch.randn(5, 5) inp2 = torch.randn(5, 5) torch_graph = torch.jit.script(fork_wait_graph2) output_ref = torch_graph(inp1, inp2) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((inp1, inp2), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on having multiple fork/wait operations """ def test_fork_wait_3(self): input = torch.ones(3, 3) num_forks = 10 torch_graph = torch.jit.script(fork_wait_graph3) output_ref = torch_graph(input, num_forks) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(input, num_forks) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation in a graph with multiple fork/wait operations on runAsync API returning future """ def test_fork_wait_3_async(self): input = torch.ones(3, 3) num_forks = 10 torch_graph = torch.jit.script(fork_wait_graph3) output_ref = torch_graph(input, num_forks) static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync((input, num_forks), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test fork/wait operation in a graph on multiple nested fork/wait operations """ @unittest.skip("Broken test: https://github.com/pytorch/pytorch/issues/109782") def test_fork_wait_4(self): input = torch.ones(3, 3) num_forks = 10 num_child_forks = 10 torch_graph = torch.jit.script(fork_wait_graph4) static_runtime_module = StaticModule(torch_graph) output_ref = torch_graph(input, num_forks, num_child_forks) output_test = static_runtime_module(input, num_forks, num_child_forks) torch.testing.assert_close(output_test, output_ref) """ Test Case: To test fork/wait operation in a graph with multiple nested fork/wait operations on runAsync API returning future """ @unittest.skip("Broken test: https://github.com/pytorch/pytorch/issues/109782") def test_fork_wait_4_async(self): input = torch.ones(3, 3) num_forks = 10 num_child_forks = 10 torch_graph = torch.jit.script(fork_wait_graph4) static_runtime_module = StaticModule(torch_graph) output_ref = torch_graph(input, num_forks, num_child_forks) output_test = static_runtime_module.runAsync( (input, num_forks, num_child_forks), {}) output_test.wait() torch.testing.assert_close(output_test.value(), output_ref) """ Test Case: To test exception handling in fork/wait operation. Add.Tensor op is called for tensors with non-matching dims on the forked subgraph and the exception raised by subgraph is set on future returned by prim::fork to parent graph. Returned exception is checked for substring expected_error_msg as declared below """ def test_fork_wait_exception(self): # incompatible tensors for add due to shape mismatch input1 = torch.randn(4, 7) input2 = torch.randn(4, 5) torch_graph = torch.jit.script(fork_wait_graph_exception) try: static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module(input1, input2) except Exception as error: expected_error_msg = ( "The size of tensor a (7) must match the size " "of tensor b (5) at non-singleton dimension 1" ) # test fails if error does not contain expected substr if str(error).find(expected_error_msg) == -1: raise RuntimeError( "Tried execution of add.Tensors with incompatible shape. " "Exception raised by forked runtime execution does " f'not contain expected substring: "{expected_error_msg}"' ) from error """ Test Case: To test exception handling in fork/wait operation with runAsync API. Add.Tensor op is called for tensors with non-matching dims on the forked subgraph and the exception raised by subgraph is set on future returned by prim::fork to parent graph. Returned exception is checked for substring expected_error_msg as declared below """ def test_fork_wait_exception_async(self): # incompatible tensors for add due to shape mismatch input1 = torch.randn(4, 7) input2 = torch.randn(4, 5) torch_graph = torch.jit.script(fork_wait_graph_exception) try: static_runtime_module = StaticModule(torch_graph) output_test = static_runtime_module.runAsync( (input1, input2), {}) except Exception as error: expected_error_msg = ( "The size of tensor a (7) must match the size " "of tensor b (5) at non-singleton dimension 1" ) # test fails if error does not contain expected substr if str(error).find(expected_error_msg) == -1: raise RuntimeError( "Tried execution of add.Tensors with incompatible shape. " "Exception raised by forked runtime execution does " f'not contain expected substring: "{expected_error_msg}"' ) from error def test_multihead_attention_layer(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention.eval() o_ref = attention(src, src, src, src_mask) attention_a = StaticModule(attention) o_test = attention_a(src, src, src, src_mask) o_test_kw = attention_a(src, src, value=src, mask=src_mask) for a, b in zip(o_ref, o_test): torch.testing.assert_close(a, b) for a, b in zip(o_ref, o_test_kw): torch.testing.assert_close(a, b) def test_multihead_attention_layer_benchmark(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention_a = StaticModule(attention) attention_a.benchmark([src, src, src, src_mask], {}, 2, 2) metrics = attention_a.benchmark_individual_ops( [src, src, src, src_mask], {}, 2, 2 ) def test_mlp(self): # Arguments taken from benchmark script, ./bench/dlrm_s_benchmark.sh ln_bot = [512, 512, 64] sigmoid_bot = -1 ln_top = [100, 1024, 1024, 1024, 1] sigmoid_top = 3 bot_l = create_mlp(ln_bot, sigmoid_bot) bot_l_acc = StaticModule(bot_l) top_l = create_mlp(ln_top, sigmoid_top) top_l_acc = StaticModule(top_l) with torch.no_grad(): bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512]) top_inp = torch.randn(2048, 100) # torch.Size([2048, 100]) ref_bot = bot_l(bot_inp) acc_bot = bot_l_acc(bot_inp) torch.testing.assert_close(acc_bot, ref_bot) ref_top = top_l(top_inp) acc_top = top_l_acc(top_inp) torch.testing.assert_close(acc_top, ref_top) for _ in range(5): with torch.no_grad(): bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512]) top_inp = torch.randn(2048, 100) # torch.Size([2048, 100]) ref_bot = bot_l(bot_inp) acc_bot = bot_l_acc(bot_inp) torch.testing.assert_close(acc_bot, ref_bot) ref_top = top_l(top_inp) acc_top = top_l_acc(top_inp) torch.testing.assert_close(acc_top, ref_top) def test_trivial_graph(self): s = torch.full((2, 2), 2) tg = torch.jit.script(trivial_graph) o_ref = tg(s, s, s) tg_a = StaticModule(tg) o_test = tg_a(s, s, s) torch.testing.assert_close(o_ref, o_test) def test_leaky_relu(self): s = torch.randn(5, 5) tg = torch.jit.script(nn.LeakyReLU(0.1)) o_ref = tg(s) tg_a = StaticModule(tg) o_test = tg_a(s) torch.testing.assert_close(o_ref, o_test) def test_attr(self): """ TorchScript IR of TestModule() after freezing: graph(%self : __torch__.test_static_runtime.___torch_mangle_0.TestModule, %x.1 : Tensor): %18 : int = prim::Constant[value=30]() %30 : int = prim::Constant[value=13]() %3 : int = prim::Constant[value=20]() %2 : int = prim::Constant[value=1]() %self.sub2.a : int = prim::Constant[value=12]() %self.a : int = prim::Constant[value=3]() = prim::SetAttr[name="b"](%self, %3) %17 : Tensor = aten::add(%x.1, %30, %2) %7 : Tensor = aten::add(%17, %self.a, %2) %b.1 : int = prim::GetAttr[name="b"](%self) %9 : Tensor = aten::add(%7, %b.1, %2) %sub2 : __torch__.test_static_runtime.___torch_mangle_2.SubModule2 = prim::GetAttr[name="sub2"](%self) = prim::SetAttr[name="b"](%sub2, %18) %b : int = prim::GetAttr[name="b"](%sub2) %22 : int = aten::add(%self.sub2.a, %b) %23 : Tensor = aten::add(%x.1, %22, %2) %12 : Tensor = aten::add(%9, %23, %2) return (%12) """ # test prim::SetAttr and prim::GetAttr impl in Static Runtime m = TestModule() m.eval() input = torch.randn(2, 2) output_s = m.forward(input) ms = torch.jit.script(m) sm = StaticModule(ms) output_sm = sm(input) torch.testing.assert_close(output_s, output_sm) sm.benchmark([input], {}, 2, 2) sm.benchmark_individual_ops([input], {}, 2, 2) sm.benchmark([], {"x": input}, 2, 2) sm.benchmark_individual_ops([], {"x": input}, 2, 2) @unittest.skip("Temporarily disabled") def test_fusion_trivial_graph(self): s = torch.full((2, 2), 2) tg = torch.jit.script(trivial_graph) o_ref = tg(s, s, s) torch._C._fuse_to_static_module(tg.graph) assert "StaticSubgraph" in str(tg.graph) o_test = tg(s, s, s) torch.testing.assert_close(o_ref, o_test) @unittest.skip("Temporarily disabled") def test_fusion_multihead_attention_layer(self): HID_DIM = 256 QUERY_LEN = 8 BATCH_SIZE = 128 LAYERS = 3 HEADS = 8 DROPOUT = 0.1 device = torch.device("cpu") attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device) with torch.no_grad(): src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device) src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device) attention.eval() attention = torch.jit.script(attention) attention.eval() o_ref = attention(src, src, src, src_mask) torch._C._fuse_to_static_module(attention._c) o_test = attention(src, src, src, src_mask) for a, b in zip(o_ref, o_test): torch.testing.assert_close(a, b) @unittest.skip("Temporarily disabled") def test_fusion_loop(self): a = torch.randn(5, 5) b = torch.randn(5, 5) c = 4 lg = torch.jit.script(loop_graph) o_ref = lg(a, b, c) torch._C._fuse_to_static_module(lg.graph) assert "StaticSubgraph" in str(lg.graph) o_test = lg(a, b, c) torch.testing.assert_close(o_ref, o_test) @unittest.skip("Temporarily disabled") def test_fusion_outputs(self): a = torch.randn(2, 2) b = torch.randn(2, 2) c = 4 og = torch.jit.script(output_graph) o_ref = og(a, b, b, c) torch._C._fuse_to_static_module(og.graph) assert "StaticSubgraph" in str(og.graph) o_test = og(a, b, b, c) for i in o_ref.keys(): torch.testing.assert_close(o_ref[i], o_test[i]) def test_create_object(self): class Foo: # noqa: B903 def __init__(self, x: torch.Tensor) -> None: self.x = x class Mod(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, y: torch.Tensor) -> torch.Tensor: foo = Foo(y) return y * foo.x mod = torch.jit.script(Mod()).eval() y = torch.randn((1, )) expected = mod(y) static_mod = StaticModule(torch.jit.freeze(mod)) actual = static_mod(y) self.assertEqual(expected, actual) if __name__ == "__main__": run_tests()
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List torch.nn.functional.linear = linear_shim
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_static_runtime.py
__init__
def __init__(self, scripted): # this is an nn.Module if hasattr(scripted, "_c"): self.static_module = torch._C._jit_to_static_module(scripted._c) else: self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) # self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim class MultiHeadAttentionLayer(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_static_runtime.py
__init__
def __init__(self, scripted): # this is an nn.Module if hasattr(scripted, "_c"): self.static_module = torch._C._jit_to_static_module(scripted._c) else: self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) # self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim class MultiHeadAttentionLayer(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_static_runtime.py
__init__
def __init__(self, scripted): # this is an nn.Module if hasattr(scripted, "_c"): self.static_module = torch._C._jit_to_static_module(scripted._c) else: self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) # self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from typing import List class StaticModule:
import unittest from typing import Dict, Optional import numpy as np import torch from torch import nn from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.static_module import StaticModule from typing import List torch.nn.functional.linear = linear_shim class MultiHeadAttentionLayer(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
__init__
def __init__(self): super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for _, p in self.p_dict.items(): nn.init.uniform_(p)
def __init__(self) -> None: super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for p in self.p_dict.values(): nn.init.uniform_(p)
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
forward
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for _, v in self.p_dict.items(): out = v + out return out
def forward(self, x): out = self.p1 + x for p in self.p_list: out = p + out for v in self.p_dict.values(): out = v + out return out
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_subclass.py
__init__
def __init__(self): super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for _, p in self.p_dict.items(): nn.init.uniform_(p)
def __init__(self) -> None: super().__init__() self.p1 = nn.Parameter(create_fn()) self.p_list = nn.ParameterList([create_fn() for _ in range(3)]) self.p_list.append(create_fn()) self.p_dict = nn.ParameterDict({ 'foo': create_fn(), 'bar': create_fn(), }) self.p_dict['baz'] = create_fn() with torch.no_grad(): nn.init.normal_(self.p1) for p in self.p_list: nn.init.uniform_(p) for p in self.p_dict.values(): nn.init.uniform_(p)
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module):
import tempfile from copy import deepcopy from functools import partial from unittest import expectedFailure import torch from torch import nn from torch.nn.modules.lazy import LazyModuleMixin from torch.nn.utils.parametrize import ( register_parametrization, remove_parametrizations, ) from torch.testing._internal.common_subclass import ( DiagTensorBelow, subclass_db, ) from torch.testing._internal.common_utils import ( TestCase, instantiate_parametrized_tests, parametrize, run_tests, skipIfTorchDynamo, subtest, ) from torch.testing._internal.logging_tensor import LoggingTensor from torch.utils._pytree import tree_map parametrize_tensor_cls = parametrize("tensor_cls", [ subtest(tensor_cls, name=info.name) for tensor_cls, info in subclass_db.items()]) class MyModule(nn.Module): from torch.testing._internal.logging_tensor import LoggingTensor
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_torch_complex_out_dtype_error
def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = "Expected object of scalar type {} but got scalar type " \ "{} for argument 'out'".format( complex_dtype_name(expected_dtype), dtype_name(dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out)
def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = f"Expected object of scalar type {complex_dtype_name(expected_dtype)} but got scalar type " \ f"{dtype_name(dtype)} for argument 'out'" with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
dtype_name
def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = "Expected object of scalar type {} but got scalar type " \ "{} for second argument".format(dtype_name(dtype), dtype_name(other_dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b)
def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = f"Expected object of scalar type {dtype_name(dtype)} but got scalar type " \ f"{dtype_name(other_dtype)} for second argument" with self.assertRaisesRegex(RuntimeError, error): op(a, b)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
complex_dtype_name
def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = "Expected object of scalar type {} but got scalar type " \ "{} for argument 'out'".format( complex_dtype_name(expected_dtype), dtype_name(dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out)
def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = f"Expected object of scalar type {complex_dtype_name(expected_dtype)} but got scalar type " \ f"{dtype_name(dtype)} for argument 'out'" with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_cat_out_fast_path_dim0_dim1
def test_cat_out_fast_path_dim0_dim1(self, device, dtype): int_types = integral_types_and(torch.uint16, torch.uint32, torch.uint64) x = torch.zeros((0), device=device, dtype=dtype) if dtype in int_types: y = torch.randint(low=0, high=100, size=(4, 6), device=device, dtype=dtype) else: y = torch.randn((4, 6), device=device, dtype=dtype) # Test concat on dimension 0 w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) # Note that there is no guarantee that slicing here will result in # contiguous tensors self.assertEqual(a, b) self.assertEqual(a, w[6:10]) self.assertEqual(w[:6], y.view(-1)[:6]) # If inputs are contiguous tensors, then fast concat paths will be invoked a_fastcat = torch.cat([w[:2].contiguous(), w[4:6].contiguous()]) self.assertEqual(a_fastcat, a) # Test concat on dimension 1 w = y.clone() w_slices = torch.tensor_split(w, (2, 4), dim=1) # Note that the tensor in w_slices[] here may not be a contiguous # tensor and we need to make sure this is not broken by fast concat b = torch.cat([w_slices[0], w_slices[1]], dim=1) expected_b = torch.index_select(w, 1, torch.tensor([0, 1, 2, 3], device=device)) self.assertEqual(b, expected_b) # If inputs are contiguous tensors, then fast concat paths will be invoked b_fastcat = torch.cat([w_slices[0].contiguous(), w_slices[1].contiguous()], dim=1) self.assertEqual(b_fastcat, expected_b) # Finally, we need to make sure backward is not broken # Integral types will not have grad if dtype not in int_types: a = torch.randn((4, 3), device=device, dtype=dtype, requires_grad=True) b = torch.randn((2, 3), device=device, dtype=dtype, requires_grad=True) c = torch.randn((5, 3), device=device, dtype=dtype, requires_grad=True) d = torch.randn((5, 2), device=device, dtype=dtype, requires_grad=True) expected_a_grad = torch.ones((4, 3), device=device, dtype=dtype) expected_b_grad = torch.ones((2, 3), device=device, dtype=dtype) expected_c_grad = torch.ones((5, 3), device=device, dtype=dtype) expected_d_grad = torch.ones((5, 2), device=device, dtype=dtype) # All the new tensors should be contiguous here. Let us make sure # to explicitly set them contiguous to enforce fast cat dim0_cat = torch.cat([a.contiguous(), b.contiguous()], dim=0) if dtype in complex_types(): dim0_cat.sum().abs().backward() self.assertEqual(a.grad.abs(), expected_a_grad.abs()) self.assertEqual(b.grad.abs(), expected_b_grad.abs()) else: dim0_cat.sum().backward() self.assertEqual(a.grad, expected_a_grad) self.assertEqual(b.grad, expected_b_grad) dim1_cat = torch.cat([c.contiguous(), d.contiguous()], dim=1) if dtype in complex_types(): dim1_cat.sum().abs().backward() self.assertEqual(c.grad.abs(), expected_c_grad.abs()) self.assertEqual(d.grad.abs(), expected_d_grad.abs()) else: dim1_cat.sum().backward() self.assertEqual(c.grad, expected_c_grad) self.assertEqual(d.grad, expected_d_grad)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_basic
def test_basic(self): j1 = SingletonInt(1, coeff=1) j1_copy = SingletonInt(1, coeff=1) j2 = SingletonInt(2, coeff=1) j1x2 = SingletonInt(1, coeff=2) def test_eq(a, b, expected): self.assertEqual(sympy.Eq(a, b), expected) self.assertEqual(sympy.Ne(b, a), not expected) # eq, ne test_eq(j1, j1, True) test_eq(j1, j1_copy, True) test_eq(j1, j2, False) test_eq(j1, j1x2, False) test_eq(j1, sympy.Integer(1), False) test_eq(j1, sympy.Integer(3), False) def test_ineq(a, b, expected, *, strict=True): greater = (sympy.Gt, is_gt) if strict else (sympy.Ge, is_ge) less = (sympy.Lt, is_lt) if strict else (sympy.Le, is_le) if isinstance(expected, bool): # expected is always True for fn in greater: self.assertEqual(fn(a, b), expected) self.assertEqual(fn(b, a), not expected) for fn in less: self.assertEqual(fn(b, a), expected) self.assertEqual(fn(a, b), not expected) else: for fn in greater: with self.assertRaisesRegex(ValueError, expected): fn(a, b) for fn in less: with self.assertRaisesRegex(ValueError, expected): fn(b, a) # ge, le, gt, lt for strict in (True, False): _test_ineq = functools.partial(test_ineq, strict=strict) _test_ineq(j1, sympy.Integer(0), True) _test_ineq(j1, sympy.Integer(3), "indeterminate") _test_ineq(j1, j2, "indeterminate") _test_ineq(j1x2, j1, True) # Special cases for ge, le, gt, lt: for ge in (sympy.Ge, is_ge): self.assertTrue(ge(j1, j1)) self.assertTrue(ge(j1, sympy.Integer(2))) with self.assertRaisesRegex(ValueError, "indeterminate"): ge(sympy.Integer(2), j1) for le in (sympy.Le, is_le): self.assertTrue(le(j1, j1)) self.assertTrue(le(sympy.Integer(2), j1)) with self.assertRaisesRegex(ValueError, "indeterminate"): le(j1, sympy.Integer(2)) for gt in (sympy.Gt, is_gt): self.assertFalse(gt(j1, j1)) self.assertFalse(gt(sympy.Integer(2), j1)) # it is only known to be that j1 >= 2, j1 > 2 is indeterminate with self.assertRaisesRegex(ValueError, "indeterminate"): gt(j1, sympy.Integer(2)) for lt in (sympy.Lt, is_lt): self.assertFalse(lt(j1, j1)) self.assertFalse(lt(j1, sympy.Integer(2))) with self.assertRaisesRegex(ValueError, "indeterminate"): lt(sympy.Integer(2), j1) # mul self.assertEqual(j1 * 2, j1x2) # Unfortunately, this doesn't not automatically simplify to 2*j1 # since sympy.Mul doesn't trigger __mul__ unlike the above. self.assertIsInstance(sympy.Mul(j1, 2), sympy.core.mul.Mul) with self.assertRaisesRegex(ValueError, "cannot be multiplied"): j1 * j2 self.assertEqual(j1.free_symbols, set())
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt class TestSingletonInt(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_eq
def test_eq(a, b, expected): self.assertEqual(sympy.Eq(a, b), expected) self.assertEqual(sympy.Ne(b, a), not expected) # eq, ne test_eq(j1, j1, True) test_eq(j1, j1_copy, True) test_eq(j1, j2, False) test_eq(j1, j1x2, False) test_eq(j1, sympy.Integer(1), False) test_eq(j1, sympy.Integer(3), False)
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_sympy_utils.py
test_ineq
def test_ineq(a, b, expected, *, strict=True): greater = (sympy.Gt, is_gt) if strict else (sympy.Ge, is_ge) less = (sympy.Lt, is_lt) if strict else (sympy.Le, is_le) if isinstance(expected, bool): # expected is always True for fn in greater: self.assertEqual(fn(a, b), expected) self.assertEqual(fn(b, a), not expected) for fn in less: self.assertEqual(fn(b, a), expected) self.assertEqual(fn(a, b), not expected) else: for fn in greater: with self.assertRaisesRegex(ValueError, expected): fn(a, b) for fn in less: with self.assertRaisesRegex(ValueError, expected): fn(b, a) # ge, le, gt, lt for strict in (True, False): _test_ineq = functools.partial(test_ineq, strict=strict) _test_ineq(j1, sympy.Integer(0), True) _test_ineq(j1, sympy.Integer(3), "indeterminate") _test_ineq(j1, j2, "indeterminate") _test_ineq(j1x2, j1, True) # Special cases for ge, le, gt, lt: for ge in (sympy.Ge, is_ge): self.assertTrue(ge(j1, j1)) self.assertTrue(ge(j1, sympy.Integer(2))) with self.assertRaisesRegex(ValueError, "indeterminate"): ge(sympy.Integer(2), j1) for le in (sympy.Le, is_le): self.assertTrue(le(j1, j1)) self.assertTrue(le(sympy.Integer(2), j1)) with self.assertRaisesRegex(ValueError, "indeterminate"): le(j1, sympy.Integer(2)) for gt in (sympy.Gt, is_gt): self.assertFalse(gt(j1, j1)) self.assertFalse(gt(sympy.Integer(2), j1)) # it is only known to be that j1 >= 2, j1 > 2 is indeterminate with self.assertRaisesRegex(ValueError, "indeterminate"): gt(j1, sympy.Integer(2)) for lt in (sympy.Lt, is_lt): self.assertFalse(lt(j1, j1)) self.assertFalse(lt(j1, sympy.Integer(2))) with self.assertRaisesRegex(ValueError, "indeterminate"): lt(sympy.Integer(2), j1) # mul self.assertEqual(j1 * 2, j1x2) # Unfortunately, this doesn't not automatically simplify to 2*j1 # since sympy.Mul doesn't trigger __mul__ unlike the above. self.assertIsInstance(sympy.Mul(j1, 2), sympy.core.mul.Mul) with self.assertRaisesRegex(ValueError, "cannot be multiplied"): j1 * j2 self.assertEqual(j1.free_symbols, set())
import itertools import math import sys import sympy from typing import Callable, List, Tuple, Type from torch.testing._internal.common_device_type import skipIf from torch.testing._internal.common_utils import ( TEST_Z3, instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) from torch.utils._sympy.functions import FloorDiv, simple_floordiv_gcd from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis from torch.utils._sympy.interp import sympy_interp from torch.utils._sympy.singleton_int import SingletonInt from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity from sympy.core.relational import is_ge, is_le, is_gt, is_lt import functools import torch.fx as fx UNARY_OPS = [ "reciprocal", "square", "abs", "neg", "exp", "log", "sqrt", "floor", "ceil", ] BINARY_OPS = [ "truediv", "floordiv", # "truncdiv", # TODO # NB: pow is float_pow "add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod" ] UNARY_BOOL_OPS = ["not_"] BINARY_BOOL_OPS = ["or_", "and_"] COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"] CONSTANTS = [ -1, 0, 1, 2, 3, 4, 5, 8, 16, 32, 64, 100, 101, 2**24, 2**32, 2**37 - 1, sys.maxsize - 1, sys.maxsize, ] LESS_CONSTANTS = [-1, 0, 1, 2, 100] RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le] from sympy import Eq, Ne from sympy import Eq from sympy import Eq, Ne, Gt, Ge, Lt, Le from sympy import Eq, Lt, Le import z3 from sympy import Eq, Lt
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensor_creation_ops.py
_rand_shape
def _rand_shape(dim, min_size, max_size): shape = [] for i in range(dim): shape.append(random.randint(min_size, max_size)) return tuple(shape) # Test suite for tensor creation ops # # Includes creation functions like torch.eye, random creation functions like # torch.rand, and *like functions like torch.ones_like. # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) # # See https://pytorch.org/docs/master/torch.html#creation-ops class TestTensorCreation(TestCase): exact_dtype = True @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) def test_cat_mem_overlap(self, device): x = torch.rand((1, 3), device=device).expand((6, 3)) y = torch.rand((3, 3), device=device) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.cat([y, y], out=x) @onlyNativeDeviceTypes def test_vander(self, device): x = torch.tensor([1, 2, 3, 5], device=device) self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape) with self.assertRaisesRegex(RuntimeError, "N must be non-negative."): torch.vander(x, N=-1) with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."): torch.vander(torch.stack((x, x))) @onlyNativeDeviceTypes @dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_vander_types(self, device, dtype): if dtype is torch.uint8: # Note: no negative uint8 values X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]] elif dtype is torch.bool: # Note: see https://github.com/pytorch/pytorch/issues/37398 # for why this is necessary. X = [[True, True, True, True], [False, True, True, True, True]] elif dtype in [torch.cfloat, torch.cdouble]: X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j], [2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]] else: X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]] N = [None, 0, 1, 3] increasing = [False, True] for x, n, inc in product(X, N, increasing): numpy_dtype = torch_to_numpy_dtype_dict[dtype] pt_x = torch.tensor(x, device=device, dtype=dtype) np_x = np.array(x, dtype=numpy_dtype) pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc) np_res = np.vander(np_x, n, inc) self.assertEqual( pt_res, torch.from_numpy(np_res), atol=1e-3, rtol=0, exact_dtype=False) def test_cat_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_fill_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg="{} did not equal expected result".format(single_roll)) roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg="{} did not equal expected result".format(roll_backwards)) data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg="{} did not equal expected result: {}".format(rolled, expected)) data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg="{} did not equal the original: {}".format(loop_rolled, data)) # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg="non contiguous tensor rolled to {} instead of {} ".format(rolled, expected)) # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg="should be able to roll over two dimensions, got {}".format(double_rolled)) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0)) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Complex number support result = torch.diagflat(torch.ones(4, dtype=torch.complex128)) expected = torch.eye(4, dtype=torch.complex128) self.assertEqual(result, expected) def test_block_diag(self, device): def block_diag_workaround(*arrs): arrs_expanded = [] for a in arrs: if a.dim() == 2: arrs_expanded.append(a) elif a.dim() == 1: arrs_expanded.append(a.expand(1, a.size(0))) elif a.dim() == 0: arrs_expanded.append(a.expand(1, 1)) shapes = torch.tensor([a.shape for a in arrs_expanded], device=device) out = torch.zeros( torch.sum(shapes, dim=0).tolist(), dtype=arrs_expanded[0].dtype, device=device ) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs_expanded[i] r += rr c += cc return out tensors = [ torch.rand((2, 2), device=device), torch.rand((2, 3), device=device), torch.rand(10, device=device), torch.rand((8, 1), device=device), torch.rand(1, device=device)[0] ] result = torch.block_diag(*tensors) result_check = block_diag_workaround(*tensors) self.assertEqual(result, result_check) tensor = torch.rand(1, device=device)[0] result = torch.block_diag(tensor) result_check = tensor.expand(1, 1) self.assertEqual(result, result_check) tensor = torch.rand(10, device=device) result = torch.block_diag(tensor) result_check = tensor.expand(1, tensor.size(0)) self.assertEqual(result, result_check) result = torch.block_diag() result_check = torch.empty(1, 0, device=device) self.assertEqual(result, result_check) self.assertEqual(result.device.type, 'cpu') test_dtypes = [ torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, torch.complex64, torch.complex128 ] # Test pairs of different dtypes for dtype1 in test_dtypes: for dtype2 in test_dtypes: a = torch.tensor(1, device=device, dtype=dtype1) b = torch.tensor(2, device=device, dtype=dtype2) result = torch.block_diag(a, b) result_dtype = torch.result_type(a, b) result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype) self.assertEqual(result, result_check) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions" ): torch.block_diag(torch.tensor(5), torch.tensor([[[6]]])) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions" ): torch.block_diag(torch.tensor([[[[6]]]])) if device != 'cpu': with self.assertRaisesRegex( RuntimeError, ( "torch.block_diag: input tensors must all be on the same device." " Input 0 is on device cpu and input 1 is on device " ) ): torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device)) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_block_diag_scipy(self, device): import scipy.linalg scipy_tensors_list = [ [ 1, [2], [], [3, 4, 5], [[], []], [[6], [7.3]] ], [ [[1, 2], [3, 4]], [1] ], [ [[4, 9], [7, 10]], [4.6, 9.12], [1j + 3] ], [] ] expected_torch_types = [ torch.float32, torch.int64, torch.complex64, torch.float32 ] expected_scipy_types = [ torch.float64, # windows scipy block_diag returns int32 types torch.int32 if IS_WINDOWS else torch.int64, torch.complex128, torch.float64 ] for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types): torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors] torch_result = torch.block_diag(*torch_tensors) self.assertEqual(torch_result.dtype, torch_type) scipy_result = torch.tensor( scipy.linalg.block_diag(*scipy_tensors), device=device ) self.assertEqual(scipy_result.dtype, scipy_type) scipy_result = scipy_result.to(torch_type) self.assertEqual(torch_result, scipy_result) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float32, torch.float64) def test_torch_complex(self, device, dtype): real = torch.tensor([1, 2], device=device, dtype=dtype) imag = torch.tensor([3, 4], device=device, dtype=dtype) z = torch.complex(real, imag) complex_dtype = float_to_corresponding_complex_type_map[dtype] self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_polar(self, device, dtype): abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype) angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi], device=device, dtype=dtype) z = torch.polar(abs, angle) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3, -3.89711431703 - 2.25j, -1, -1], dtype=complex_dtype), z, atol=1e-5, rtol=1e-5) @onlyNativeDeviceTypes @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.complex64, torch.complex128, torch.bool) def test_torch_complex_floating_dtype_error(self, device, dtype): for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) error = r"Expected both inputs to be Half, Float or Double tensors but " \ r"got [A-Za-z]+ and [A-Za-z]+" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_same_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = "Expected object of scalar type {} but got scalar type " \ "{} for second argument".format(dtype_name(dtype), dtype_name(other_dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = "Expected object of scalar type {} but got scalar type " \ "{} for argument 'out'".format( complex_dtype_name(expected_dtype), dtype_name(dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out) def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(w[:6], y.view(-1)[:6]) # Case: # Reference: https://github.com/pytorch/pytorch/issues/49878 for dim in [0, 1]: x = torch.zeros((10, 5, 2), device=device) random_length = random.randint(1, 4) y = x.narrow(dim, 0, x.shape[dim] - random_length) val = torch.full_like(y[0], 3., device=device) if dim == 0: self.assertTrue(y.is_contiguous()) else: self.assertFalse(y.is_contiguous()) torch.cat((val[None],) * y.shape[0], dim=0, out=y) expected_y = torch.cat((val[None],) * y.shape[0], dim=0) expected_x = torch.zeros((10, 5, 2), device=device) if dim == 0: expected_x[:x.shape[dim] - random_length, :, :] = expected_y elif dim == 1: expected_x[:, :x.shape[dim] - random_length, :] = expected_y self.assertEqual(y, expected_y) self.assertEqual(x, expected_x) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_in_channels_last(self, device): for dim in range(4): x = torch.randn((4, 15, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) # Size larger than grain size. x = torch.randn((4, 15, 256, 256), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) # discontiguous channels-last inputs x = torch.arange(24, dtype=torch.float, device=device).reshape(2, 2, 3, 2).to(memory_format=torch.channels_last) x1 = x[:, :, :2] x2 = x[:, :, 1:] res1 = torch.cat((x1, x2), dim=-1) res2 = torch.cat((x1.contiguous(), x2.contiguous()), dim=-1) self.assertEqual(res1, res2) self.assertTrue(res1.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_out_memory_format(self, device): inp_size = (4, 4, 4, 4) expected_size = (8, 4, 4, 4) a_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) a_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.channels_last) b_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.contiguous_format) b_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.contiguous_format) c_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) # Case 1: if out= is the correct shape then the memory format of out= is respected out_cuda = torch.empty(expected_size, device=device).contiguous(memory_format=torch.contiguous_format) res1_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty(expected_size, device='cpu').contiguous(memory_format=torch.contiguous_format) res1_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res1_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res1_cpu.is_contiguous(memory_format=torch.contiguous_format)) # Case 2: if out= is not the correct shape then the output it is resized internally # - For both CPU and CUDA variants, it only propagates memory format if all the tensors have # the same memory format, otherwise it just uses contiguous_format as a default out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and b_cuda have different memory_format res2_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty((0), device='cpu').contiguous(memory_format=torch.contiguous_format) res2_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res2_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res2_cpu.is_contiguous(memory_format=torch.contiguous_format)) out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and c_cuda have same memory_format res3_cuda = torch.cat((a_cuda, c_cuda), out=out_cuda) self.assertTrue(res3_cuda.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_stack_cross_devices(self, device): cuda = torch.randn((3, 3), device=device) cpu = torch.randn((3, 3), device='cpu') # Stack with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cuda, cpu)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cpu, cuda)) # TODO: reconcile with other cat tests # TODO: Compare with a NumPy reference instead of CPU @onlyCUDA def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # TODO: update this test to compare against NumPy instead of CPU @onlyCUDA @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) # Note: This test failed on XLA since its test cases are created by empty_strided which # doesn't support overlapping sizes/strides in XLA impl @skipIfTorchDynamo("TorchDynamo fails on this test for unknown reasons") @onlyNativeDeviceTypes def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device): # Test like functions against tensoriterator based unary operator (exp) to # make sure the returned tensor from like function follows the same stride propergation # rule as what tensoriterator does for unary operator. The like function's output strides # is computed on CPU side always, no need to test GPU here. def compare_helper_(like_fn, t): te = torch.exp(t) tl = like_fn(t) self.assertEqual(te.stride(), tl.stride()) self.assertEqual(te.size(), tl.size()) like_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] # dense non-overlapping tensor, # non-dense non-overlapping sliced tensor # non-dense non-overlapping gapped tensor # non-dense non-overlapping 0 strided tensor # non-dense overlapping general tensor # non-dense overlapping sliced tensor # non-dense overlapping gapped tensor # non-dense overlapping 0 strided tensor # non-dense overlapping equal strides tset = ( torch.randn(4, 3, 2, device=device), torch.randn(4, 3, 2, device=device)[:, :, ::2], torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0), torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0), torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0)) for like_fn in like_fns: for t in tset: for p in permutations(range(t.dim())): tp = t.permute(p) compare_helper_(like_fn, tp) def _hvd_split_helper(self, torch_fn, np_fn, op_name, inputs, device, dtype, dim): dimension_error_message = op_name + " requires a tensor with at least " divisibiliy_error_message = op_name + " attempted to split along dimension " for shape, arg in inputs: direction = dim - (len(shape) == 1 and dim == 1) bound = dim + 2 * (dim == 0) + (dim == 2) error_expected = len(shape) < bound or (not isinstance(arg, list) and shape[direction] % arg != 0) t = make_tensor(shape, dtype=dtype, device=device) t_np = t.cpu().numpy() if not error_expected: self.assertEqual(torch_fn(t, arg), np_fn(t_np, arg)) else: self.assertRaises(RuntimeError, lambda: torch_fn(t, arg)) self.assertRaises(ValueError, lambda: np_fn(t, arg)) expected_error_message = dimension_error_message if len(shape) < bound else divisibiliy_error_message self.assertRaisesRegex(RuntimeError, expected_error_message, lambda: torch_fn(t, arg)) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_hsplit(self, device, dtype): inputs = ( ((), 3), ((), [2, 4, 6]), ((6,), 2), ((6,), 4), ((6,), [2, 5]), ((6,), [7, 9]), ((3, 8), 4), ((3, 8), 5), ((3, 8), [1, 5]), ((3, 8), [3, 8]), ((5, 5, 5), 2), ((5, 5, 5), [1, 4]), ((5, 0, 5), 3), ((5, 5, 0), [2, 6]), ) self._hvd_split_helper(torch.hsplit, np.hsplit, "torch.hsplit", inputs, device, dtype, 1) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_vsplit(self, device, dtype): inputs = ( ((6,), 2), ((6,), 4), ((6, 5), 2), ((6, 5), 4), ((6, 5), [1, 2, 3]), ((6, 5), [1, 5, 9]), ((6, 5, 5), 2), ((6, 0, 5), 2), ((5, 0, 5), [1, 5]), ) self._hvd_split_helper(torch.vsplit, np.vsplit, "torch.vsplit", inputs, device, dtype, 0) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_dsplit(self, device, dtype): inputs = ( ((6,), 4), ((6, 6), 3), ((5, 5, 6), 2), ((5, 5, 6), 4), ((5, 5, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ((5, 5, 0), 2), ((5, 0, 6), 4), ((5, 0, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ) self._hvd_split_helper(torch.dsplit, np.dsplit, "torch.dsplit", inputs, device, dtype, 2) def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype): # Test error for non-tuple argument t = torch.randn(10) with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test error for a single array with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn((t)) # Test 0-D num_tensors = random.randint(1, 5) input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)] actual = torch_fn(input_t) expected = np_fn([input.cpu().numpy() for input in input_t]) self.assertEqual(actual, expected) for ndims in range(1, 5): base_shape = list(_rand_shape(ndims, min_size=1, max_size=5)) for i in range(ndims): shape = list(base_shape) num_tensors = random.randint(1, 5) torch_input = [] # Create tensors with shape being different along one axis only for param in range(num_tensors): shape[i] = random.randint(1, 5) torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False)) # Determine if input tensors have valid dimensions. valid_dim = True for k in range(len(torch_input) - 1): for tdim in range(ndims): # Test whether all tensors have the same shape except in concatenating dimension # Unless the number of dimensions is less than the corresponding at_least function dimension # Since the original concatenating dimension would shift after applying at_least and would no # longer be the concatenating dimension if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]: valid_dim = False # Special case for hstack is needed since hstack works differently when ndims is 1 if valid_dim or (torch_fn is torch.hstack and ndims == 1): # Valid dimensions, test against numpy np_input = [input.cpu().numpy() for input in torch_input] actual = torch_fn(torch_input) expected = np_fn(np_input) self.assertEqual(actual, expected) else: # Invalid dimensions, test for error with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"): torch_fn(torch_input) with self.assertRaises(ValueError): np_input = [input.cpu().numpy() for input in torch_input] np_fn(np_input) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_hstack_column_stack(self, device, dtype): ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack)) for torch_op, np_op in ops: self._test_special_stacks(1, 1, torch_op, np_op, device, dtype) # Test torch.column_stack with combinations of 1D and 2D tensors input one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device) two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10) inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor torch_result = torch.column_stack(inputs) np_inputs = [input.cpu().numpy() for input in inputs] np_result = np.column_stack(np_inputs) self.assertEqual(np_result, torch_result) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_vstack_row_stack(self, device, dtype): ops = ((torch.vstack, np.vstack), (torch.row_stack, np.row_stack)) for torch_op, np_op in ops: self._test_special_stacks(0, 2, torch_op, np_op, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch_op(torch_input) expected = np_op(np_input) self.assertEqual(actual, expected) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_dstack(self, device, dtype): self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b, input_c] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) # Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1) m = random.randint(1, 10) n = random.randint(1, 10) input_a = _generate_input((m, n), dtype, device, with_extremal=False) input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.int32, torch.int64) def test_large_linspace(self, device, dtype): start = torch.iinfo(dtype).min end = torch.iinfo(dtype).max & ~0xfff steps = 15 x = torch.linspace(start, end, steps, dtype=dtype, device=device) self.assertGreater(x[1] - x[0], (end - start) / steps) @dtypes(torch.float32, torch.float64) def test_unpack_double(self, device, dtype): # Reference: https://github.com/pytorch/pytorch/issues/33111 vals = (2 ** 24 + 1, 2 ** 53 + 1, np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1, -1e500, 1e500) for val in vals: t = torch.tensor(val, dtype=dtype, device=device) a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype]) self.assertEqual(t, torch.from_numpy(a)) def _float_to_int_conversion_helper(self, vals, device, dtype): a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype]) t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype) self.assertEqual(torch.from_numpy(a), t.cpu()) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy has the same behavior. @onlyNativeDeviceTypes @unittest.skipIf(IS_MACOS, "Test is broken on MacOS, see https://github.com/pytorch/pytorch/issues/38752") @unittest.skipIf(IS_PPC, "Test is borken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671") @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_finite(self, device, dtype): min = torch.finfo(torch.float).min max = torch.finfo(torch.float).max # Note: CUDA max float -> integer conversion is divergent on some dtypes vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max) if self.device_type == 'cuda': if torch.version.hip: # HIP min float -> int64 conversion is divergent vals = (-2, -1.5, -.5, 0, .5, 1.5, 2) else: vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) self._float_to_int_conversion_helper(vals, device, dtype) # Note: CUDA will fail this test on most dtypes, often dramatically. @onlyCPU @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_nonfinite(self, device, dtype): vals = (float('-inf'), float('inf'), float('nan')) self._float_to_int_conversion_helper(vals, device, dtype) # TODO: re-enable this test @unittest.skipIf(True, "real and imag not implemented for complex") @onlyNativeDeviceTypes def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False) self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat2(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # FIXME: Create an OpInfo-based tensor creation method test that verifies this for all tensor # creation methods and verify all dtypes and layouts @dtypes(torch.bool, torch.uint8, torch.int16, torch.int64, torch.float16, torch.float32, torch.complex64) def test_zeros_dtype_layout_device_match(self, device, dtype): layout = torch.strided t = torch.zeros((2, 3), device=device, dtype=dtype, layout=layout) self.assertIs(dtype, t.dtype) self.assertIs(layout, t.layout) self.assertEqual(torch.device(device), t.device) # TODO: update to work on CUDA, too @onlyCPU def test_stack(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0) # TODO: update to work on CUDA, too @onlyCPU def test_stack_out(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0) def test_repeat_interleave(self, device): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) # TODO: udpate to work on CUDA, too @onlyCPU def test_new_methods_requires_grad(self, device): size = (10,) test_cases = [ # method name, args ('new_full', [size, 1]), ('new_empty', [size]), ('new_zeros', [size]), ('new_ones', [size]), ] for method_name, args in test_cases: x = torch.randn(size) for requires_grad in [True, False]: x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad) self.assertEqual(x_new.requires_grad, requires_grad) x = torch.randint(10, size) with self.assertRaisesRegex( RuntimeError, r'Only Tensors of floating point and complex dtype can require gradients'): x_new = x.__getattribute__(method_name)(*args, requires_grad=True) # TODO: update to work on CUDA, too? @onlyCPU def test_tensor_from_sequence(self, device): class MockSequence: def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.tensor(bad_mock_seq) self.assertEqual(torch.tensor([1.0, 2.0, 3.0]), torch.tensor(good_mock_seq)) # TODO: update to work on CUDA, too? @onlyCPU @skipIfTorchDynamo("Not a TorchDynamo suitable test") def test_simple_scalar_cast(self, device): ok = [torch.tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) self.assertEqual(complex(tensor), complex(value)) self.assertEqual(complex(torch.tensor(1.5j)), 1.5j) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) self.assertRaises(ValueError, lambda: complex(tensor)) self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j))) self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j))) # TODO: update to work on CUDA, too? @onlyCPU def test_offset_scalar_cast(self, device): x = torch.tensor([1., 2., 3.]) y = x[2:] self.assertEqual(int(y), 3) def test_meshgrid_empty(self): with self.assertRaisesRegex(RuntimeError, 'expects a non-empty TensorList'): torch.meshgrid() def test_meshgrid_unsupported_indexing(self): with self.assertRaisesRegex(RuntimeError, 'indexing must be one of "xy" or "ij"'): torch.meshgrid(torch.tensor([1, 2]), indexing='') def test_meshgrid_non_1d_tensor(self): with self.assertRaisesRegex(RuntimeError, 'Expected 0D or 1D tensor'): torch.meshgrid(torch.tensor([[1, 2], [3, 4]])) def test_meshgrid_inconsistent_dtype(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same dtype'): torch.meshgrid(torch.tensor([1], dtype=torch.int), torch.tensor([2], dtype=torch.float)) def test_meshgrid_inconsistent_device(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same device'): torch.meshgrid(torch.tensor([1], device='cpu'), torch.tensor([2], device='meta')) def test_meshgrid_warns_if_no_indexing(self): with self.assertWarnsOnceRegex( UserWarning, '.*will be required to pass the indexing arg.*'): torch.meshgrid(torch.tensor([1, 2])) def test_meshgrid_default_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_xy_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='xy') self.assertEqual(grid_a.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c.shape, torch.Size([3, 1, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='xy') self.assertEqual(grid_a2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c2.shape, torch.Size([3, 1, 2])) expected_grid_a = torch.ones(3, 1, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1]], [[2, 2]], [[3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2]], [[1, 2]], [[1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='ij') self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='ij') self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing_is_default(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid(a, b, c, indexing='ij') grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertTrue(grid_a.equal(grid_a2)) self.assertTrue(grid_b.equal(grid_b2)) self.assertTrue(grid_c.equal(grid_c2)) @skipMeta def test_meshgrid_vs_numpy(self, device): # Shapes to the random tensors. Each line is a test case, and # each list within that line is the shape of a single # tensor. The shapes are restricted to 0D (represented by []) # and 1D tensors. cases = [ [[]], [[1], [1], [1]], [[], [], []], [[3], [5], [7]], [[3], [], [7]], [[11], [13]], [[15]], ] # We also need to test the different indexing modes. We can't # just enumerate them because we don't presently support the # same modes as numpy.meshgrid, nor does our default # correspond to their default. # # TODO Eliminate this and replace it with a list of all # supported indexing modes when we have full compatibility. indexing_correspondence = [ # No indexing in PyTorch corresponds to "ij" indexing in # NumPy. ({}, {'indexing': 'ij'}), # No indexing in NumPy corresponds to "xy" indexing in # PyTorch. ({'indexing': 'xy'}, {}), # "ij" and "xy" are implemented identically in both. ({'indexing': 'ij'}, {'indexing': 'ij'}), ({'indexing': 'xy'}, {'indexing': 'xy'}), ] for shapes, (torch_kwargs, numpy_kwargs) in product(cases, indexing_correspondence): with self.subTest(shapes=shapes, torch_kwargs=torch_kwargs, numpy_kwargs=numpy_kwargs): tensors = [make_tensor(shape, device=device, dtype=torch.int) for shape in shapes] torch_grids = torch.meshgrid(*tensors, **torch_kwargs) numpy_grids = np.meshgrid(*(tensor.cpu().numpy() for tensor in tensors), **numpy_kwargs) self.assertEqual(torch_grids, numpy_grids) def test_cartesian_prod(self, device): a = torch.tensor([1], device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c)), device=device) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype, device=device) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype, device=device) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self, device): a = torch.tensor([1, 2, 3], device=device) c = torch.combinations(a, r=0) expected = torch.empty(0, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype, device=device) self.assertEqual(c, expected) # test empty imput a = torch.empty(0, device=device) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype, device=device) self.assertEqual(c1, expected) self.assertEqual(c2, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @skipMeta def test_linlogspace_mem_overlap(self, device): x = torch.rand(1, device=device).expand(10) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.linspace(1, 10, 10, out=x) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.logspace(1, 10, 10, out=x) def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']] for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_full_range(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]: from_ = int(max(-fp_limit, int64_min_val)) to_inc_ = int(min(fp_limit, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_from_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: if dtype.is_floating_point and ( not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)): if not (-fp_limit <= from_ <= fp_limit): self.assertWarnsRegex(UserWarning, "from is out of bounds", lambda: t.random_(from_, to_)) if not (-fp_limit <= (to_ - 1) <= fp_limit): self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds", lambda: t.random_(from_, to_)) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_default(self, device, dtype): size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) # TODO: this test should be updated @onlyNativeDeviceTypes def test_empty_full(self, device): torch_device = torch.device(device) device_type = torch_device.type dtypes = get_all_dtypes(include_half=False, include_bfloat16=False, include_complex32=True) if device_type == 'cpu': do_test_empty_full(self, dtypes, torch.strided, torch_device) if device_type == 'cuda': do_test_empty_full(self, dtypes, torch.strided, None) do_test_empty_full(self, dtypes, torch.strided, torch_device) # TODO: this test should be updated @suppress_warnings @onlyNativeDeviceTypes @deviceCountAtLeast(1) def test_tensor_device(self, devices): device_type = torch.device(devices[0]).type if device_type == 'cpu': self.assertEqual('cpu', torch.tensor(5).device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) if device_type == 'cuda': self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device=0).device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) for device in devices: with torch.cuda.device(device): device_string = 'cuda:' + str(torch.cuda.current_device()) self.assertEqual(device_string, str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu') with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu:0') if len(devices) > 1: self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device=1).device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) # TODO: this test should be updated @onlyNativeDeviceTypes def test_as_strided_neg(self, device): error = r'as_strided: Negative strides are not supported at the ' \ r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) # TODO: this test should be updated def test_zeros(self, device): res1 = torch.zeros(100, 100, device=device) res2 = torch.tensor((), device=device) torch.zeros(100, 100, device=device, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], device=device, dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) expected = torch.tensor([[0.]], device=device, dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) self.assertEqual(complexTensor, expected) complexHalfTensor = torch.zeros(2, 2, device=device, dtype=torch.complex32) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex32) self.assertEqual(complexHalfTensor, expected) # TODO: this test should be updated def test_zeros_out(self, device): shape = (3, 4) out = torch.zeros(shape, device=device) torch.zeros(shape, device=device, out=out) # change the dtype, layout, device with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, dtype=torch.int64, out=out) with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) # leave them the same self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, out=out)) # TODO: this test should be updated def test_ones(self, device): res1 = torch.ones(100, 100, device=device) res2 = torch.tensor((), device=device) torch.ones(100, 100, device=device, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, device=device, dtype=torch.bool) expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) self.assertEqual(res1, expected) # test chalf self.assertEqual(torch.ones(100, 100, device=device, dtype=torch.chalf), torch.ones(100, 100, device=device, dtype=torch.cfloat), exact_dtype=False) # TODO: this test should be updated @onlyCPU def test_constructor_dtypes(self, device): default_type = torch.tensor([]).type() self.assertIs(torch.tensor([]).dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) torch.set_default_tensor_type('torch.FloatTensor') self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) # only floating-point types are supported as the default type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) torch.set_default_tensor_type(torch.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) # don't allow passing dtype to set_default_dtype for t in all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.qint8): # only floating-point types are supported as the default type if t in ( torch.half, torch.float, torch.double, torch.bfloat16): torch.set_default_dtype(t) else: self.assertRaises(TypeError, lambda: torch.set_default_dtype(t)) torch.set_default_tensor_type(default_type) # TODO: this test should be updated @onlyCPU def test_constructor_device_legacy(self, device): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cpu') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cuda') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) default_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) torch.set_default_tensor_type(torch.cuda.FloatTensor) torch.set_default_tensor_type(default_type) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory(self, device): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) self.assertEqual(a, c) d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) e = torch.tensor((True, False, True, True, True), dtype=torch.bool) self.assertEqual(e, d) f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) self.assertEqual(e, f) int64_max = torch.iinfo(torch.int64).max int64_min = torch.iinfo(torch.int64).min float64_max = torch.finfo(torch.float64).max float64_min = torch.finfo(torch.float64).min g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) self.assertEqual(e, g_1) g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) self.assertEqual(e, g_2) g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) self.assertEqual(e, g_3) h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) self.assertEqual(h, i) j = torch.tensor((True, True, True, True), dtype=torch.bool) k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) self.assertEqual(j, k) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory_copy_var(self, device): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph # TODO: this test should be updated @onlyCPU def test_tensor_factory_type_inference(self, device): def test_inference(default_dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(default_dtype) default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) torch.set_default_dtype(saved_dtype) test_inference(torch.float64) test_inference(torch.float32) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_new_tensor(self, device): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) # TODO: this test should be updated @onlyCPU def test_as_tensor(self, device): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @suppress_warnings def test_range(self, device): res1 = torch.range(0, 1, device=device) res2 = torch.tensor((), device=device) torch.range(0, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.range(0, 3, device=device, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1, 0), device=device, dtype=torch.float32) res2 = torch.tensor((), device=device) torch.range(1, 0, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor((), device=device) torch.range(1, 1, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.range(1, 1, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_range_warning(self, device): with warnings.catch_warnings(record=True) as w: torch.range(0, 10, device=device) self.assertEqual(len(w), 1) # TODO: this test should be updated def test_arange(self, device): res = torch.tensor(range(10000), device=device) res1 = torch.arange(0, 10000, device=device) # Use a larger number so vectorized code can be triggered res2 = torch.tensor([], dtype=torch.int64, device=device) torch.arange(0, 10000, out=res2) self.assertEqual(res, res1, atol=0, rtol=0) self.assertEqual(res, res2, atol=0, rtol=0) # Vectorization on non-contiguous tensors res = torch.rand(3, 3, 300000, device=device).to(torch.int64) res = res.permute(2, 0, 1) torch.arange(0, 300000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3, device=device)) # Check arange with only one argument res1 = torch.arange(10, device=device) res2 = torch.arange(0, 10, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0., 0., 1.), (0., 2., 3.)), device=device) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1., 0.), device=device) res2 = torch.tensor([], device=device) torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor([], device=device) torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # FloatTensor out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True, device=device) self.assertEqual(r[0], 0) r2 = torch.arange(False, device=device) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 6, 3, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 3) self.assertEqual(r.numel(), 2) r = torch.arange(0, 5, 2, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r = torch.arange(0, -5, -2, device=device) self.assertEqual(r.min(), -4) self.assertEqual(r.max(), 0) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32, device=device) r3 = torch.arange(0, 5 - 1e-6, device=device) self.assertEqual(r1[:-1], r2, atol=0, rtol=0) self.assertEqual(r2, r3, atol=0, rtol=0) r1 = torch.arange(10, -1 + 1e-6, -1, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32, device=device) r3 = torch.arange(10, -1 - 1e-6, -1, device=device) self.assertEqual(r1, r2, atol=0, rtol=0) self.assertEqual(r2, r3[:-1], atol=0, rtol=0) w = 1449629115440469 r = torch.arange(0, 100 * w, w, device=device) self.assertEqual(r.numel(), 100) # Test Rounding Errors line = torch.zeros(size=(1, 49), device=device) self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) # TODO: this test should be updated @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") @onlyCPU def test_arange_inference(self, device): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float32) # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) torch.set_default_dtype(saved_dtype) # cannot call storage() on meta tensor @skipMeta def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_new_empty_strided(self, device): def _test(sizes, strides, dtype): x = torch.zeros(5, 5, dtype=dtype, device=device) result = x.new_empty_strided(sizes, strides) expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device) self.assertEqual(result.shape, expected.shape) self.assertEqual(result.stride(), expected.stride()) self.assertEqual(result.dtype, expected.dtype) self.assertEqual(result.device, expected.device) _test([2, 3], [3, 1], torch.float) _test([5, 3], [0, 1], torch.int) _test([], [], torch.float) # Some really weird cases for shape in [(2, 3, 4), (0, 2, 0)]: for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: _test(shape, strides, torch.float) # Make sure sizes and strides have the same length # https://github.com/pytorch/pytorch/issues/82416 with self.assertRaisesRegex( RuntimeError, r"dimensionality of sizes \(1\) must match dimensionality of strides \(0\)"): dtype = torch.float64 x = torch.tensor(-4.8270, dtype=dtype, device=device) size = (2,) stride = () x.new_empty_strided(size, stride, dtype=dtype, device=device) def test_strided_mismatched_stride_shape(self, device): for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided(shape, strides) with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided_(shape, strides) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) @onlyNativeDeviceTypes def test_empty_overflow(self, device): with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64) def test_eye(self, device): for dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype == torch.bfloat16: continue # Test the RuntimeError is raised when either m or n is a negative number for n, m in ((-1, 1), (1, -1), (-1, -1)): with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'): torch.eye(n, m, device=device, dtype=dtype) # Test when the `m` parameter is not provided for n in (3, 5, 7): res1 = torch.eye(n, device=device, dtype=dtype) naive_eye = torch.zeros(n, n, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, out=res2) self.assertEqual(res1, res2) for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) @dtypes(*floating_and_complex_types()) def test_linspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) @dtypes(*integral_types()) def test_linspace_vs_numpy_integral(self, device, dtype): start = 1 end = 127 for steps in [25, 50]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype): start = torch.randn(1, dtype=dtype).item() end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item() def test_fn(torch_fn, numpy_fn, steps): t = torch_fn(start, end, steps, device=device) a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: test_fn(torch.linspace, np.linspace, steps) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_linspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace, device, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_logspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace, device, dtype) @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) @dtypes(*floating_types()) def test_logspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 end = .0315315723419189453125 for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.logspace(start, end, steps, device=device, dtype=dtype) a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertEqual(t[0], a[0]) self.assertEqual(t[steps - 1], a[steps - 1]) @onlyCUDA @largeTensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t @expectedFailureMeta # RuntimeError: The tensor has a non-zero number of elements @onlyNativeDeviceTypes def test_tensor_ctor_device_inference(self, device): torch_device = torch.device(device) values = torch.tensor((1, 2, 3), device=device) # Tests tensor and as_tensor # Note: warnings are suppressed (suppresses warnings) for op in (torch.tensor, torch.as_tensor): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual(op(values).device, torch_device) self.assertEqual(op(values, dtype=torch.float64).device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): self.assertEqual(op(values.cpu()).device, torch.device('cpu')) # Tests sparse ctor indices = torch.tensor([[0, 1, 1], [2, 0, 1], [2, 1, 0]], device=device) sparse_size = (3, 3, 3) sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) self.assertEqual(sparse_default.device, torch_device) sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) def _test_signal_window_functions(self, name, dtype, device, **kwargs): import scipy.signal as signal torch_method = getattr(torch, name + '_window') if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, periodic=periodic, **kwargs, device=device, dtype=dtype) # NB: scipy always returns a float64 result ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.float, torch.double, torch.long) @parametrize("window", ['hann', 'hamming', 'bartlett', 'blackman']) def test_signal_window_functions(self, device, dtype, window): self._test_signal_window_functions(window, dtype, device) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @dtypes(torch.float, torch.double, torch.long) def test_kaiser_window(self, device, dtype): for num_test in range(50): self._test_signal_window_functions('kaiser', dtype, device, beta=random.random() * 30) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) elif dt.is_complex: self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex32, torch.complex64, torch.complex128}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float or dt.is_complex: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((0,), torch.kaiser_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): saved_type = torch.tensor([]).type() torch.set_default_tensor_type(torch.cuda.DoubleTensor) torch.set_default_dtype(torch.float32) self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_tensor_type(saved_type) @onlyCUDA def test_tensor_factory_gpu_type(self, device): saved_type = torch.tensor([]).type() torch.set_default_tensor_type(torch.cuda.FloatTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(torch.cuda.DoubleTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(saved_type) @skipCPUIf(True, 'compares device with cpu') @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange_device_vs_cpu(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) def test_arange_bfloat16(self, device): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) @dtypes(*all_types_and_complex_and(torch.bfloat16)) @dtypesIfCUDA(*all_types_and_complex_and(torch.bfloat16)) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # small tensor self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) # large tensor if dtype not in (torch.int8, torch.uint8): self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) # Vectorization on non-contiguous tensors if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test res = torch.rand(3, 3, 1000, device=device).to(dtype) res = res.permute(2, 0, 1) torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) # steps = 1 self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) # steps = 0 self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) # steps not provided self.assertRaises(TypeError, lambda: torch.linspace(0, 1, device=device, dtype=dtype)) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1j, 5, device=device, dtype=dtype) # Check linspace for generating the correct output for each dtype. start = 0 if dtype == torch.uint8 else -100 expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), atol=0, rtol=0) # Check for race condition (correctness when applied on a large tensor). if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), 1000000, device=device, dtype=dtype) if dtype.is_complex: cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) else: cond = y[:-1] < y[1:] correct = all(cond) self.assertTrue(correct) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) def _test_linspace_logspace_deduction_helper(self, fn, device): for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]: dtype = torch.float32 if isinstance(start, complex) or isinstance(end, complex): dtype = torch.cfloat self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_linspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.linspace, device) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_logspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.logspace, device) # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Compares linspace device vs. cpu def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_device_vs_cpu(self, device, dtype): self._test_linspace(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) # Compares logspace device vs cpu def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) # Compares logspace device vs cpu def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_device_vs_cpu(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) @dtypes(*all_types_and(torch.bfloat16)) @dtypesIfCUDA(*integral_types_and(torch.half, torch.bfloat16, torch.float32, torch.float64) if TEST_WITH_ROCM else all_types_and(torch.half, torch.bfloat16)) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) # steps not provided self.assertRaises(TypeError, lambda: torch.logspace(0, 1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1j, 5, device=device, dtype=dtype) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation atol = None rtol = None if self.device_type == 'cpu': atol = 0 rtol = 0 self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), atol=atol, rtol=rtol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) prev_default = torch.get_default_dtype() torch.set_default_dtype(dtype) # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) torch.set_default_dtype(prev_default) def test_full_out(self, device): size = (5,) o = torch.empty(size, device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) # check that warning for numpy being not writable is suppressed # when a copy of it is being created. # see issue #47160 def test_tensor_from_non_writable_numpy(self, device): with warnings.catch_warnings(record=True) as w: a = np.arange(5.) a.flags.writeable = False t = torch.tensor(a) self.assertEqual(len(w), 0) # Class for testing random tensor creation ops, like torch.randint class TestRandomTensorCreation(TestCase): exact_dtype = True # TODO: add torch.complex64, torch.complex128 @dtypes(torch.float, torch.double) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) # test empty mean/std out = torch.normal(mean=torch.empty((0, 2)), std=torch.empty((0, 1))) self.assertEqual(out.size(), torch.Size([0, 2])) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) # float std 0 with float mean r.fill_(42) torch.normal(2, 0, (10, 10), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # float std 0 with tensor mean r.fill_(42) mean_rand = torch.randn(10, 10, dtype=dtype, device=device) torch.normal(mean_rand, 0, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) # tensor std 0 with float mean r.fill_(42) std_zeros = torch.zeros(10, 10, dtype=dtype, device=device) torch.normal(2, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # tensor std 0 with tensor mean r.fill_(42) torch.normal(mean_rand, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) # Ensure that normal raises appropriate error when `std` < 0 def test_normal_std_error(self, device): a = torch.tensor(0, dtype=torch.float32, device=device) std = torch.tensor(-1, dtype=torch.float32, device=device) for input in [0, a]: with self.assertRaisesRegex(RuntimeError, r'normal expects std >= 0.0, but found std'): torch.normal(input, -1, (10,)) with self.assertRaisesRegex(RuntimeError, r'normal expects all elements of std >= 0.0'): torch.normal(input, std) @dtypes(torch.float, torch.double, torch.half) @dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16) def test_uniform_from_to(self, device, dtype): size = 2000 alpha = 0.1 float_min = torch.finfo(torch.float).min float_max = torch.finfo(torch.float).max double_min = torch.finfo(torch.double).min double_max = torch.finfo(torch.double).max if dtype == torch.bfloat16: min_val = -3.389531389251535e+38 max_val = 3.389531389251535e+38 else: min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max values = [double_min, float_min, -42, 0, 42, float_max, double_max] for from_ in values: for to_ in values: t = torch.empty(size, dtype=dtype, device=device) if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val): pass elif to_ < from_: self.assertRaisesRegex( RuntimeError, "uniform_ expects to return", lambda: t.uniform_(from_, to_) ) elif to_ - from_ > max_val: self.assertRaisesRegex( RuntimeError, "uniform_ expects to-from", lambda: t.uniform_(from_, to_) ) else: t.uniform_(from_, to_) range_ = to_ - from_ if not (dtype == torch.bfloat16) and not ( dtype == torch.half and device == 'cpu') and not torch.isnan(t).all(): delta = alpha * range_ double_t = t.to(torch.double) if range_ == 0: self.assertTrue(double_t.min() == from_) self.assertTrue(double_t.max() == to_) elif dtype == torch.half: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() <= to_) else: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() < to_) def test_random_neg_values(self, device): SIZE = 10 signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short] for dtype in signed_dtypes: res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) # TODO: this test should be updated @onlyCPU def test_randint_inference(self, device): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) # TODO: this test should be updated @onlyCPU def test_randint(self, device): SIZE = 100 def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) @dtypes(torch.half, torch.float, torch.bfloat16, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_randn(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.randn(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(size, size, out=res2) self.assertEqual(res1, res2) @dtypes(torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_rand(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.rand(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.rand(size, size, out=res2) self.assertEqual(res1, res2) def test_randperm(self, device): if device == 'cpu' or device == 'meta': rng_device = None else: # TODO: This won't actually work for non-CUDA device # see https://github.com/pytorch/pytorch/issues/54282 rng_device = [device] # Test core functionality. On CUDA, different value of n has different # code path for n in (5, 100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float, torch.bfloat16): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue if dtype == torch.bfloat16 and device != 'cpu': continue if n > 256 and dtype == torch.bfloat16: continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(res1.sort().values.long(), torch.arange(n, device=device)) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.uint8, 2**8, 2**8 + 1), (torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) self.assertEqual(res.sort().values.long(), torch.arange(n, device=device)) # Test exceptions when device and generator types are incompatible @onlyCUDA def test_randperm_device_compatibility(self, device): cuda_gen = torch.Generator(device='cuda') cpu_gen = torch.Generator(device='cpu') # n=0 is a special case that we don't need to use generator, thus no error even if # device and generator don't match torch.randperm(0, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randperm(0, device='cuda:1', generator=torch.Generator(device='cuda:0')) torch.randperm(0, device='cuda', generator=torch.Generator(device='cpu')) torch.randperm(0, device='cpu', generator=torch.Generator(device='cuda')) for n in (1, 3, 100, 30000): torch.randperm(n, device='cuda', generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda')) # For cuda:0 to match cuda:1, we are making consistent device type matching # behavior just like torch.randint. Longer term, generator should ignore # device ordinal, since it's not used anyway. torch.randint(low=0, high=n + 1, size=(1,), device="cuda:0", generator=torch.Generator(device='cuda:1')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randint(low=0, high=n + 1, size=(1,), device="cuda:1", generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:1', generator=torch.Generator(device='cuda:0')) regex = 'Expected a .* device type for generator but found .*' cuda_t = torch.tensor(n, device='cuda') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t)) cpu_t = torch.tensor(n, device='cpu') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU # Class for testing *like ops, like torch.ones_like class TestLikeTensorCreation(TestCase): exact_dtype = True # TODO: this test should be updated def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], device=device, dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_empty_like(self, device): x = torch.autograd.Variable(torch.tensor([])) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqualTypeString(torch.empty_like(a), a) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyNativeDeviceTypes def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) # Tests for the `frombuffer` function (only work on CPU): # Constructs tensors from Python objects that implement the buffer protocol, # without copying data. SIZE = 5 SHAPE = (SIZE,)
def _rand_shape(dim, min_size, max_size): shape = [] for i in range(dim): shape.append(random.randint(min_size, max_size)) return tuple(shape) # Test suite for tensor creation ops # # Includes creation functions like torch.eye, random creation functions like # torch.rand, and *like functions like torch.ones_like. # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) # # See https://pytorch.org/docs/main/torch.html#creation-ops class TestTensorCreation(TestCase): exact_dtype = True @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) def test_cat_mem_overlap(self, device): x = torch.rand((1, 3), device=device).expand((6, 3)) y = torch.rand((3, 3), device=device) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.cat([y, y], out=x) @onlyNativeDeviceTypes def test_vander(self, device): x = torch.tensor([1, 2, 3, 5], device=device) self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape) with self.assertRaisesRegex(RuntimeError, "N must be non-negative."): torch.vander(x, N=-1) with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."): torch.vander(torch.stack((x, x))) @onlyNativeDeviceTypes @dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_vander_types(self, device, dtype): if dtype is torch.uint8: # Note: no negative uint8 values X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]] elif dtype is torch.bool: # Note: see https://github.com/pytorch/pytorch/issues/37398 # for why this is necessary. X = [[True, True, True, True], [False, True, True, True, True]] elif dtype in [torch.cfloat, torch.cdouble]: X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j], [2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]] else: X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]] N = [None, 0, 1, 3] increasing = [False, True] for x, n, inc in product(X, N, increasing): numpy_dtype = torch_to_numpy_dtype_dict[dtype] pt_x = torch.tensor(x, device=device, dtype=dtype) np_x = np.array(x, dtype=numpy_dtype) pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc) np_res = np.vander(np_x, n, inc) self.assertEqual( pt_res, torch.from_numpy(np_res), atol=1e-3, rtol=0, exact_dtype=False) def test_cat_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_fill_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg=f"{single_roll} did not equal expected result") roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg=f"{roll_backwards} did not equal expected result") data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg=f"{rolled} did not equal expected result: {expected}") data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg=f"{loop_rolled} did not equal the original: {data}") # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg=f"non contiguous tensor rolled to {rolled} instead of {expected} ") # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg=f"should be able to roll over two dimensions, got {double_rolled}") self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0)) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Complex number support result = torch.diagflat(torch.ones(4, dtype=torch.complex128)) expected = torch.eye(4, dtype=torch.complex128) self.assertEqual(result, expected) def test_block_diag(self, device): def block_diag_workaround(*arrs): arrs_expanded = [] for a in arrs: if a.dim() == 2: arrs_expanded.append(a) elif a.dim() == 1: arrs_expanded.append(a.expand(1, a.size(0))) elif a.dim() == 0: arrs_expanded.append(a.expand(1, 1)) shapes = torch.tensor([a.shape for a in arrs_expanded], device=device) out = torch.zeros( torch.sum(shapes, dim=0).tolist(), dtype=arrs_expanded[0].dtype, device=device ) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs_expanded[i] r += rr c += cc return out tensors = [ torch.rand((2, 2), device=device), torch.rand((2, 3), device=device), torch.rand(10, device=device), torch.rand((8, 1), device=device), torch.rand(1, device=device)[0] ] result = torch.block_diag(*tensors) result_check = block_diag_workaround(*tensors) self.assertEqual(result, result_check) tensor = torch.rand(1, device=device)[0] result = torch.block_diag(tensor) result_check = tensor.expand(1, 1) self.assertEqual(result, result_check) tensor = torch.rand(10, device=device) result = torch.block_diag(tensor) result_check = tensor.expand(1, tensor.size(0)) self.assertEqual(result, result_check) result = torch.block_diag() result_check = torch.empty(1, 0, device=device) self.assertEqual(result, result_check) self.assertEqual(result.device.type, 'cpu') test_dtypes = [ torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, torch.complex64, torch.complex128 ] # Test pairs of different dtypes for dtype1 in test_dtypes: for dtype2 in test_dtypes: a = torch.tensor(1, device=device, dtype=dtype1) b = torch.tensor(2, device=device, dtype=dtype2) result = torch.block_diag(a, b) result_dtype = torch.result_type(a, b) result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype) self.assertEqual(result, result_check) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions" ): torch.block_diag(torch.tensor(5), torch.tensor([[[6]]])) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions" ): torch.block_diag(torch.tensor([[[[6]]]])) if device != 'cpu': with self.assertRaisesRegex( RuntimeError, ( "torch.block_diag: input tensors must all be on the same device." " Input 0 is on device cpu and input 1 is on device " ) ): torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device)) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_block_diag_scipy(self, device): import scipy.linalg scipy_tensors_list = [ [ 1, [2], [], [3, 4, 5], [[], []], [[6], [7.3]] ], [ [[1, 2], [3, 4]], [1] ], [ [[4, 9], [7, 10]], [4.6, 9.12], [1j + 3] ], [] ] expected_torch_types = [ torch.float32, torch.int64, torch.complex64, torch.float32 ] expected_scipy_types = [ torch.float64, # windows scipy block_diag returns int32 types torch.int32 if IS_WINDOWS else torch.int64, torch.complex128, torch.float64 ] for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types): torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors] torch_result = torch.block_diag(*torch_tensors) self.assertEqual(torch_result.dtype, torch_type) scipy_result = torch.tensor( scipy.linalg.block_diag(*scipy_tensors), device=device ) self.assertEqual(scipy_result.dtype, scipy_type) scipy_result = scipy_result.to(torch_type) self.assertEqual(torch_result, scipy_result) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float32, torch.float64) def test_torch_complex(self, device, dtype): real = torch.tensor([1, 2], device=device, dtype=dtype) imag = torch.tensor([3, 4], device=device, dtype=dtype) z = torch.complex(real, imag) complex_dtype = float_to_corresponding_complex_type_map[dtype] self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_polar(self, device, dtype): abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype) angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi], device=device, dtype=dtype) z = torch.polar(abs, angle) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3, -3.89711431703 - 2.25j, -1, -1], dtype=complex_dtype), z, atol=1e-5, rtol=1e-5) @onlyNativeDeviceTypes @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.complex64, torch.complex128, torch.bool) def test_torch_complex_floating_dtype_error(self, device, dtype): for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) error = r"Expected both inputs to be Half, Float or Double tensors but " \ r"got [A-Za-z]+ and [A-Za-z]+" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_same_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = f"Expected object of scalar type {dtype_name(dtype)} but got scalar type " \ f"{dtype_name(other_dtype)} for second argument" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = f"Expected object of scalar type {complex_dtype_name(expected_dtype)} but got scalar type " \ f"{dtype_name(dtype)} for argument 'out'" with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out) def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(a, w[6:10]) self.assertEqual(w[:6], y.view(-1)[:6]) # Case: # Reference: https://github.com/pytorch/pytorch/issues/49878 for dim in [0, 1]: x = torch.zeros((10, 5, 2), device=device) random_length = random.randint(1, 4) y = x.narrow(dim, 0, x.shape[dim] - random_length) val = torch.full_like(y[0], 3., device=device) if dim == 0: self.assertTrue(y.is_contiguous()) else: self.assertFalse(y.is_contiguous()) torch.cat((val[None],) * y.shape[0], dim=0, out=y) expected_y = torch.cat((val[None],) * y.shape[0], dim=0) expected_x = torch.zeros((10, 5, 2), device=device) if dim == 0: expected_x[:x.shape[dim] - random_length, :, :] = expected_y elif dim == 1: expected_x[:, :x.shape[dim] - random_length, :] = expected_y self.assertEqual(y, expected_y) self.assertEqual(x, expected_x) @dtypes(*all_types_and_complex(), torch.uint16, torch.uint32, torch.uint64) def test_cat_out_fast_path_dim0_dim1(self, device, dtype): int_types = integral_types_and(torch.uint16, torch.uint32, torch.uint64) x = torch.zeros((0), device=device, dtype=dtype) if dtype in int_types: y = torch.randint(low=0, high=100, size=(4, 6), device=device, dtype=dtype) else: y = torch.randn((4, 6), device=device, dtype=dtype) # Test concat on dimension 0 w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) # Note that there is no guarantee that slicing here will result in # contiguous tensors self.assertEqual(a, b) self.assertEqual(a, w[6:10]) self.assertEqual(w[:6], y.view(-1)[:6]) # If inputs are contiguous tensors, then fast concat paths will be invoked a_fastcat = torch.cat([w[:2].contiguous(), w[4:6].contiguous()]) self.assertEqual(a_fastcat, a) # Test concat on dimension 1 w = y.clone() w_slices = torch.tensor_split(w, (2, 4), dim=1) # Note that the tensor in w_slices[] here may not be a contiguous # tensor and we need to make sure this is not broken by fast concat b = torch.cat([w_slices[0], w_slices[1]], dim=1) expected_b = torch.index_select(w, 1, torch.tensor([0, 1, 2, 3], device=device)) self.assertEqual(b, expected_b) # If inputs are contiguous tensors, then fast concat paths will be invoked b_fastcat = torch.cat([w_slices[0].contiguous(), w_slices[1].contiguous()], dim=1) self.assertEqual(b_fastcat, expected_b) # Finally, we need to make sure backward is not broken # Integral types will not have grad if dtype not in int_types: a = torch.randn((4, 3), device=device, dtype=dtype, requires_grad=True) b = torch.randn((2, 3), device=device, dtype=dtype, requires_grad=True) c = torch.randn((5, 3), device=device, dtype=dtype, requires_grad=True) d = torch.randn((5, 2), device=device, dtype=dtype, requires_grad=True) expected_a_grad = torch.ones((4, 3), device=device, dtype=dtype) expected_b_grad = torch.ones((2, 3), device=device, dtype=dtype) expected_c_grad = torch.ones((5, 3), device=device, dtype=dtype) expected_d_grad = torch.ones((5, 2), device=device, dtype=dtype) # All the new tensors should be contiguous here. Let us make sure # to explicitly set them contiguous to enforce fast cat dim0_cat = torch.cat([a.contiguous(), b.contiguous()], dim=0) if dtype in complex_types(): dim0_cat.sum().abs().backward() self.assertEqual(a.grad.abs(), expected_a_grad.abs()) self.assertEqual(b.grad.abs(), expected_b_grad.abs()) else: dim0_cat.sum().backward() self.assertEqual(a.grad, expected_a_grad) self.assertEqual(b.grad, expected_b_grad) dim1_cat = torch.cat([c.contiguous(), d.contiguous()], dim=1) if dtype in complex_types(): dim1_cat.sum().abs().backward() self.assertEqual(c.grad.abs(), expected_c_grad.abs()) self.assertEqual(d.grad.abs(), expected_d_grad.abs()) else: dim1_cat.sum().backward() self.assertEqual(c.grad, expected_c_grad) self.assertEqual(d.grad, expected_d_grad) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_in_channels_last(self, device): for dim in range(4): x = torch.randn((4, 15, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) # Size larger than grain size. x = torch.randn((4, 15, 256, 256), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) # discontiguous channels-last inputs x = torch.arange(24, dtype=torch.float, device=device).reshape(2, 2, 3, 2).to(memory_format=torch.channels_last) x1 = x[:, :, :2] x2 = x[:, :, 1:] res1 = torch.cat((x1, x2), dim=-1) res2 = torch.cat((x1.contiguous(), x2.contiguous()), dim=-1) self.assertEqual(res1, res2) self.assertTrue(res1.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_out_memory_format(self, device): inp_size = (4, 4, 4, 4) expected_size = (8, 4, 4, 4) a_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) a_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.channels_last) b_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.contiguous_format) b_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.contiguous_format) c_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) # Case 1: if out= is the correct shape then the memory format of out= is respected out_cuda = torch.empty(expected_size, device=device).contiguous(memory_format=torch.contiguous_format) res1_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty(expected_size, device='cpu').contiguous(memory_format=torch.contiguous_format) res1_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res1_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res1_cpu.is_contiguous(memory_format=torch.contiguous_format)) # Case 2: if out= is not the correct shape then the output it is resized internally # - For both CPU and CUDA variants, it only propagates memory format if all the tensors have # the same memory format, otherwise it just uses contiguous_format as a default out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and b_cuda have different memory_format res2_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty((0), device='cpu').contiguous(memory_format=torch.contiguous_format) res2_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res2_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res2_cpu.is_contiguous(memory_format=torch.contiguous_format)) out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and c_cuda have same memory_format res3_cuda = torch.cat((a_cuda, c_cuda), out=out_cuda) self.assertTrue(res3_cuda.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_stack_cross_devices(self, device): cuda = torch.randn((3, 3), device=device) cpu = torch.randn((3, 3), device='cpu') # Stack with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cuda, cpu)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cpu, cuda)) # TODO: reconcile with other cat tests # TODO: Compare with a NumPy reference instead of CPU @onlyCUDA def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # TODO: update this test to compare against NumPy instead of CPU @onlyCUDA @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) # Note: This test failed on XLA since its test cases are created by empty_strided which # doesn't support overlapping sizes/strides in XLA impl @skipIfTorchDynamo("TorchDynamo fails on this test for unknown reasons") @onlyNativeDeviceTypes def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device): # Test like functions against tensoriterator based unary operator (exp) to # make sure the returned tensor from like function follows the same stride propergation # rule as what tensoriterator does for unary operator. The like function's output strides # is computed on CPU side always, no need to test GPU here. def compare_helper_(like_fn, t): te = torch.exp(t) tl = like_fn(t) self.assertEqual(te.stride(), tl.stride()) self.assertEqual(te.size(), tl.size()) like_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] # dense non-overlapping tensor, # non-dense non-overlapping sliced tensor # non-dense non-overlapping gapped tensor # non-dense non-overlapping 0 strided tensor # non-dense overlapping general tensor # non-dense overlapping sliced tensor # non-dense overlapping gapped tensor # non-dense overlapping 0 strided tensor # non-dense overlapping equal strides tset = ( torch.randn(4, 3, 2, device=device), torch.randn(4, 3, 2, device=device)[:, :, ::2], torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0), torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0), torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0)) for like_fn in like_fns: for t in tset: for p in permutations(range(t.dim())): tp = t.permute(p) compare_helper_(like_fn, tp) def _hvd_split_helper(self, torch_fn, np_fn, op_name, inputs, device, dtype, dim): dimension_error_message = op_name + " requires a tensor with at least " divisibiliy_error_message = op_name + " attempted to split along dimension " for shape, arg in inputs: direction = dim - (len(shape) == 1 and dim == 1) bound = dim + 2 * (dim == 0) + (dim == 2) error_expected = len(shape) < bound or (not isinstance(arg, list) and shape[direction] % arg != 0) t = make_tensor(shape, dtype=dtype, device=device) t_np = t.cpu().numpy() if not error_expected: self.assertEqual(torch_fn(t, arg), np_fn(t_np, arg)) else: self.assertRaises(RuntimeError, lambda: torch_fn(t, arg)) self.assertRaises(ValueError, lambda: np_fn(t, arg)) expected_error_message = dimension_error_message if len(shape) < bound else divisibiliy_error_message self.assertRaisesRegex(RuntimeError, expected_error_message, lambda: torch_fn(t, arg)) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_hsplit(self, device, dtype): inputs = ( ((), 3), ((), [2, 4, 6]), ((6,), 2), ((6,), 4), ((6,), [2, 5]), ((6,), [7, 9]), ((3, 8), 4), ((3, 8), 5), ((3, 8), [1, 5]), ((3, 8), [3, 8]), ((5, 5, 5), 2), ((5, 5, 5), [1, 4]), ((5, 0, 5), 3), ((5, 5, 0), [2, 6]), ) self._hvd_split_helper(torch.hsplit, np.hsplit, "torch.hsplit", inputs, device, dtype, 1) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_vsplit(self, device, dtype): inputs = ( ((6,), 2), ((6,), 4), ((6, 5), 2), ((6, 5), 4), ((6, 5), [1, 2, 3]), ((6, 5), [1, 5, 9]), ((6, 5, 5), 2), ((6, 0, 5), 2), ((5, 0, 5), [1, 5]), ) self._hvd_split_helper(torch.vsplit, np.vsplit, "torch.vsplit", inputs, device, dtype, 0) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_dsplit(self, device, dtype): inputs = ( ((6,), 4), ((6, 6), 3), ((5, 5, 6), 2), ((5, 5, 6), 4), ((5, 5, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ((5, 5, 0), 2), ((5, 0, 6), 4), ((5, 0, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ) self._hvd_split_helper(torch.dsplit, np.dsplit, "torch.dsplit", inputs, device, dtype, 2) def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype): # Test error for non-tuple argument t = torch.randn(10) with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test error for a single array with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test 0-D num_tensors = random.randint(1, 5) input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)] actual = torch_fn(input_t) expected = np_fn([input.cpu().numpy() for input in input_t]) self.assertEqual(actual, expected) for ndims in range(1, 5): base_shape = list(_rand_shape(ndims, min_size=1, max_size=5)) for i in range(ndims): shape = list(base_shape) num_tensors = random.randint(1, 5) torch_input = [] # Create tensors with shape being different along one axis only for param in range(num_tensors): shape[i] = random.randint(1, 5) torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False)) # Determine if input tensors have valid dimensions. valid_dim = True for k in range(len(torch_input) - 1): for tdim in range(ndims): # Test whether all tensors have the same shape except in concatenating dimension # Unless the number of dimensions is less than the corresponding at_least function dimension # Since the original concatenating dimension would shift after applying at_least and would no # longer be the concatenating dimension if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]: valid_dim = False # Special case for hstack is needed since hstack works differently when ndims is 1 if valid_dim or (torch_fn is torch.hstack and ndims == 1): # Valid dimensions, test against numpy np_input = [input.cpu().numpy() for input in torch_input] actual = torch_fn(torch_input) expected = np_fn(np_input) self.assertEqual(actual, expected) else: # Invalid dimensions, test for error with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"): torch_fn(torch_input) with self.assertRaises(ValueError): np_input = [input.cpu().numpy() for input in torch_input] np_fn(np_input) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_hstack_column_stack(self, device, dtype): ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack)) for torch_op, np_op in ops: self._test_special_stacks(1, 1, torch_op, np_op, device, dtype) # Test torch.column_stack with combinations of 1D and 2D tensors input one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device) two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10) inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor torch_result = torch.column_stack(inputs) np_inputs = [input.cpu().numpy() for input in inputs] np_result = np.column_stack(np_inputs) self.assertEqual(np_result, torch_result) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_vstack_row_stack(self, device, dtype): ops = ((torch.vstack, np.vstack), (torch.row_stack, np.vstack)) for torch_op, np_op in ops: self._test_special_stacks(0, 2, torch_op, np_op, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch_op(torch_input) expected = np_op(np_input) self.assertEqual(actual, expected) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_dstack(self, device, dtype): self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b, input_c] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) # Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1) m = random.randint(1, 10) n = random.randint(1, 10) input_a = _generate_input((m, n), dtype, device, with_extremal=False) input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.int32, torch.int64) def test_large_linspace(self, device, dtype): start = torch.iinfo(dtype).min end = torch.iinfo(dtype).max & ~0xfff steps = 15 x = torch.linspace(start, end, steps, dtype=dtype, device=device) self.assertGreater(x[1] - x[0], (end - start) / steps) @dtypes(torch.float32, torch.float64) def test_unpack_double(self, device, dtype): # Reference: https://github.com/pytorch/pytorch/issues/33111 vals = (2 ** 24 + 1, 2 ** 53 + 1, np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1, -1e500, 1e500) for val in vals: t = torch.tensor(val, dtype=dtype, device=device) a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype]) self.assertEqual(t, torch.from_numpy(a)) def _float_to_int_conversion_helper(self, vals, device, dtype, refs=None): if refs is None: a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype]) refs = torch.from_numpy(a) t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype) self.assertEqual(refs, t.cpu()) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy may have the same behavior. @onlyNativeDeviceTypes @unittest.skipIf(IS_MACOS or IS_JETSON, "Test is broken on MacOS and Jetson, \ see https://github.com/pytorch/pytorch/issues/38752") @unittest.skipIf(IS_PPC, "Test is broken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671") @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_finite(self, device, dtype): min = torch.finfo(torch.float).min max = torch.finfo(torch.float).max # Note: CUDA max float -> integer conversion is divergent on some dtypes vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max) refs = None if self.device_type == 'cuda': if torch.version.hip: # HIP min float -> int64 conversion is divergent vals = (-2, -1.5, -.5, 0, .5, 1.5, 2) else: vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) elif dtype == torch.uint8: # Note: CPU max float -> uint8 conversion is divergent vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) # Note: numpy -2.0 or -1.5 -> uint8 conversion is undefined # see https://github.com/pytorch/pytorch/issues/97794 refs = (0, 254, 255, 0, 0, 0, 1, 2) self._float_to_int_conversion_helper(vals, device, dtype, refs) # Note: CUDA will fail this test on most dtypes, often dramatically. # NB: torch.uint16, torch.uint32, torch.uint64 excluded as this # nondeterministically fails, warning "invalid value encountered in cast" @onlyCPU @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_nonfinite(self, device, dtype): vals = (float('-inf'), float('inf'), float('nan')) self._float_to_int_conversion_helper(vals, device, dtype) @onlyNativeDeviceTypes def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False) self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat2(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # FIXME: Create an OpInfo-based tensor creation method test that verifies this for all tensor # creation methods and verify all dtypes and layouts @dtypes(torch.bool, torch.uint8, torch.int16, torch.int64, torch.float16, torch.float32, torch.complex64) def test_zeros_dtype_layout_device_match(self, device, dtype): layout = torch.strided t = torch.zeros((2, 3), device=device, dtype=dtype, layout=layout) self.assertIs(dtype, t.dtype) self.assertIs(layout, t.layout) self.assertEqual(torch.device(device), t.device) # TODO: update to work on CUDA, too @onlyCPU def test_stack(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0) # TODO: update to work on CUDA, too @onlyCPU def test_stack_out(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0) def test_repeat_interleave(self, device): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) # TODO: udpate to work on CUDA, too @onlyCPU def test_new_methods_requires_grad(self, device): size = (10,) test_cases = [ # method name, args ('new_full', [size, 1]), ('new_empty', [size]), ('new_zeros', [size]), ('new_ones', [size]), ] for method_name, args in test_cases: x = torch.randn(size) for requires_grad in [True, False]: x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad) self.assertEqual(x_new.requires_grad, requires_grad) x = torch.randint(10, size) with self.assertRaisesRegex( RuntimeError, r'Only Tensors of floating point and complex dtype can require gradients'): x_new = x.__getattribute__(method_name)(*args, requires_grad=True) # TODO: update to work on CUDA, too? @onlyCPU def test_tensor_from_sequence(self, device): class MockSequence: def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.tensor(bad_mock_seq) self.assertEqual(torch.tensor([1.0, 2.0, 3.0]), torch.tensor(good_mock_seq)) # TODO: update to work on CUDA, too? @onlyCPU @skipIfTorchDynamo("Not a TorchDynamo suitable test") def test_simple_scalar_cast(self, device): ok = [torch.tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) self.assertEqual(complex(tensor), complex(value)) self.assertEqual(complex(torch.tensor(1.5j)), 1.5j) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) self.assertRaises(ValueError, lambda: complex(tensor)) self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j))) self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j))) # TODO: update to work on CUDA, too? @onlyCPU def test_offset_scalar_cast(self, device): x = torch.tensor([1., 2., 3.]) y = x[2:] self.assertEqual(int(y), 3) def test_meshgrid_empty(self): with self.assertRaisesRegex(RuntimeError, 'expects a non-empty TensorList'): torch.meshgrid() def test_meshgrid_unsupported_indexing(self): with self.assertRaisesRegex(RuntimeError, 'indexing must be one of "xy" or "ij"'): torch.meshgrid(torch.tensor([1, 2]), indexing='') def test_meshgrid_non_1d_tensor(self): with self.assertRaisesRegex(RuntimeError, 'Expected 0D or 1D tensor'): torch.meshgrid(torch.tensor([[1, 2], [3, 4]])) def test_meshgrid_inconsistent_dtype(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same dtype'): torch.meshgrid(torch.tensor([1], dtype=torch.int), torch.tensor([2], dtype=torch.float)) def test_meshgrid_inconsistent_device(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same device'): torch.meshgrid(torch.tensor([1], device='cpu'), torch.tensor([2], device='meta')) def test_meshgrid_warns_if_no_indexing(self): with self.assertWarnsOnceRegex( UserWarning, '.*will be required to pass the indexing arg.*'): torch.meshgrid(torch.tensor([1, 2])) def test_meshgrid_default_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_xy_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='xy') self.assertEqual(grid_a.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c.shape, torch.Size([3, 1, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='xy') self.assertEqual(grid_a2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c2.shape, torch.Size([3, 1, 2])) expected_grid_a = torch.ones(3, 1, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1]], [[2, 2]], [[3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2]], [[1, 2]], [[1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='ij') self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='ij') self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing_is_default(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid(a, b, c, indexing='ij') grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertTrue(grid_a.equal(grid_a2)) self.assertTrue(grid_b.equal(grid_b2)) self.assertTrue(grid_c.equal(grid_c2)) @skipMeta def test_meshgrid_vs_numpy(self, device): # Shapes to the random tensors. Each line is a test case, and # each list within that line is the shape of a single # tensor. The shapes are restricted to 0D (represented by []) # and 1D tensors. cases = [ [[]], [[1], [1], [1]], [[], [], []], [[3], [5], [7]], [[3], [], [7]], [[11], [13]], [[15]], ] # We also need to test the different indexing modes. We can't # just enumerate them because we don't presently support the # same modes as numpy.meshgrid, nor does our default # correspond to their default. # # TODO Eliminate this and replace it with a list of all # supported indexing modes when we have full compatibility. indexing_correspondence = [ # No indexing in PyTorch corresponds to "ij" indexing in # NumPy. ({}, {'indexing': 'ij'}), # No indexing in NumPy corresponds to "xy" indexing in # PyTorch. ({'indexing': 'xy'}, {}), # "ij" and "xy" are implemented identically in both. ({'indexing': 'ij'}, {'indexing': 'ij'}), ({'indexing': 'xy'}, {'indexing': 'xy'}), ] for shapes, (torch_kwargs, numpy_kwargs) in product(cases, indexing_correspondence): with self.subTest(shapes=shapes, torch_kwargs=torch_kwargs, numpy_kwargs=numpy_kwargs): tensors = [make_tensor(shape, device=device, dtype=torch.int) for shape in shapes] torch_grids = torch.meshgrid(*tensors, **torch_kwargs) numpy_grids = np.meshgrid(*(tensor.cpu().numpy() for tensor in tensors), **numpy_kwargs) self.assertEqual(torch_grids, numpy_grids) def test_cartesian_prod(self, device): a = torch.tensor([1], device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c)), device=device) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype, device=device) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype, device=device) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self, device): a = torch.tensor([1, 2, 3], device=device) c = torch.combinations(a, r=0) expected = torch.empty(0, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype, device=device) self.assertEqual(c, expected) # test empty imput a = torch.empty(0, device=device) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype, device=device) self.assertEqual(c1, expected) self.assertEqual(c2, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @skipMeta def test_linlogspace_mem_overlap(self, device): x = torch.rand(1, device=device).expand(10) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.linspace(1, 10, 10, out=x) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.logspace(1, 10, 10, out=x) def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']] for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) # NB: uint64 is broken because its max value is not representable in # int64_t, but this is what random expects @dtypes(*all_types_and(torch.bfloat16, torch.half, torch.uint16, torch.uint32)) def test_random_full_range(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]: from_ = int(max(-fp_limit, int64_min_val)) to_inc_ = int(min(fp_limit, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) # NB: uint64 is broken because its max value is not representable in # int64_t, but this is what random expects # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(*all_types_and(torch.bfloat16, torch.half, torch .uint16, torch.uint32)) def test_random_from_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: if dtype.is_floating_point and ( not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)): if not (-fp_limit <= from_ <= fp_limit): self.assertWarnsRegex(UserWarning, "from is out of bounds", lambda: t.random_(from_, to_)) if not (-fp_limit <= (to_ - 1) <= fp_limit): self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds", lambda: t.random_(from_, to_)) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(*all_types_and(torch.bfloat16, torch.half, torch.uint16, torch.uint32)) def test_random_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_default(self, device, dtype): size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) # TODO: this test should be updated @onlyNativeDeviceTypes def test_empty_full(self, device): torch_device = torch.device(device) device_type = torch_device.type dtypes = get_all_dtypes(include_half=False, include_bfloat16=False, include_complex32=True) if device_type == 'cpu': do_test_empty_full(self, dtypes, torch.strided, torch_device) if device_type == 'cuda': do_test_empty_full(self, dtypes, torch.strided, None) do_test_empty_full(self, dtypes, torch.strided, torch_device) # TODO: this test should be updated @suppress_warnings @onlyNativeDeviceTypes @deviceCountAtLeast(1) def test_tensor_device(self, devices): device_type = torch.device(devices[0]).type if device_type == 'cpu': self.assertEqual('cpu', torch.tensor(5).device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) if device_type == 'cuda': self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device=0).device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) for device in devices: with torch.cuda.device(device): device_string = 'cuda:' + str(torch.cuda.current_device()) self.assertEqual(device_string, str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu') with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu:0') if len(devices) > 1: self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device=1).device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) # TODO: this test should be updated @onlyNativeDeviceTypes def test_as_strided_neg(self, device): error = r'as_strided: Negative strides are not supported at the ' \ r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) # TODO: this test should be updated def test_zeros(self, device): res1 = torch.zeros(100, 100, device=device) res2 = torch.tensor((), device=device) torch.zeros(100, 100, device=device, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], device=device, dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) expected = torch.tensor([[0.]], device=device, dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) self.assertEqual(complexTensor, expected) complexHalfTensor = torch.zeros(2, 2, device=device, dtype=torch.complex32) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex32) self.assertEqual(complexHalfTensor, expected) # TODO: this test should be updated def test_zeros_out(self, device): shape = (3, 4) out = torch.zeros(shape, device=device) torch.zeros(shape, device=device, out=out) # change the dtype, layout, device with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, dtype=torch.int64, out=out) with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) # leave them the same self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, out=out)) # TODO: this test should be updated def test_ones(self, device): res1 = torch.ones(100, 100, device=device) res2 = torch.tensor((), device=device) torch.ones(100, 100, device=device, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, device=device, dtype=torch.bool) expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) self.assertEqual(res1, expected) # test chalf self.assertEqual(torch.ones(100, 100, device=device, dtype=torch.chalf), torch.ones(100, 100, device=device, dtype=torch.cfloat), exact_dtype=False) # TODO: this test should be updated @onlyCPU def test_constructor_dtypes(self, device): self.assertIs(torch.tensor([]).dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) with set_default_tensor_type('torch.FloatTensor'): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) # only floating-point types are supported as the default type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) with set_default_tensor_type(torch.FloatTensor): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): with set_default_tensor_type(torch.cuda.FloatTensor): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) # don't allow passing dtype to set_default_dtype for t in all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.qint8): # only floating-point types are supported as the default type if t in ( torch.half, torch.float, torch.double, torch.bfloat16): with set_default_dtype(t): pass else: self.assertRaises(TypeError, lambda: torch.set_default_dtype(t)) # TODO: this test should be updated @onlyCPU def test_constructor_device_legacy(self, device): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cpu') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cuda') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) with set_default_tensor_type(torch.cuda.FloatTensor): self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory(self, device): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) self.assertEqual(a, c) d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) e = torch.tensor((True, False, True, True, True), dtype=torch.bool) self.assertEqual(e, d) f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) self.assertEqual(e, f) int64_max = torch.iinfo(torch.int64).max int64_min = torch.iinfo(torch.int64).min float64_max = torch.finfo(torch.float64).max float64_min = torch.finfo(torch.float64).min g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) self.assertEqual(e, g_1) g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) self.assertEqual(e, g_2) g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) self.assertEqual(e, g_3) h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) self.assertEqual(h, i) j = torch.tensor((True, True, True, True), dtype=torch.bool) k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) self.assertEqual(j, k) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory_copy_var(self, device): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph # TODO: this test should be updated @onlyCPU def test_tensor_factory_type_inference(self, device): def test_inference(default_dtype): default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) for dtype in [torch.float64, torch.float32]: with set_default_dtype(dtype): test_inference(dtype) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_new_tensor(self, device): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) # TODO: this test should be updated @onlyCPU def test_as_tensor(self, device): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @suppress_warnings @dtypesIfCPU(torch.float, torch.bfloat16, torch.float16) @dtypes(torch.float) def test_range(self, device, dtype): res1 = torch.range(0, 1, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(0, 1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) torch.range(0, 3, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1, 0), device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(1, 0, -1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(1, 1, -1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.range(1, 1, 1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_range_warning(self, device): with warnings.catch_warnings(record=True) as w: torch.range(0, 10, device=device) self.assertEqual(len(w), 1) # TODO: this test should be updated def test_arange(self, device): res = torch.tensor(range(10000), device=device) res1 = torch.arange(0, 10000, device=device) # Use a larger number so vectorized code can be triggered res2 = torch.tensor([], dtype=torch.int64, device=device) torch.arange(0, 10000, out=res2) self.assertEqual(res, res1, atol=0, rtol=0) self.assertEqual(res, res2, atol=0, rtol=0) # Vectorization on non-contiguous tensors res = torch.rand(3, 3, 300000, device=device).to(torch.int64) res = res.permute(2, 0, 1) torch.arange(0, 300000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3, device=device)) # Check arange with only one argument res1 = torch.arange(10, device=device) res2 = torch.arange(0, 10, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0., 0., 1.), (0., 2., 3.)), device=device) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1., 0.), device=device) res2 = torch.tensor([], device=device) torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor([], device=device) torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # FloatTensor out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True, device=device) self.assertEqual(r[0], 0) r2 = torch.arange(False, device=device) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 6, 3, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 3) self.assertEqual(r.numel(), 2) r = torch.arange(0, 5, 2, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r = torch.arange(0, -5, -2, device=device) self.assertEqual(r.min(), -4) self.assertEqual(r.max(), 0) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32, device=device) r3 = torch.arange(0, 5 - 1e-6, device=device) self.assertEqual(r1[:-1], r2, atol=0, rtol=0) self.assertEqual(r2, r3, atol=0, rtol=0) r1 = torch.arange(10, -1 + 1e-6, -1, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32, device=device) r3 = torch.arange(10, -1 - 1e-6, -1, device=device) self.assertEqual(r1, r2, atol=0, rtol=0) self.assertEqual(r2, r3[:-1], atol=0, rtol=0) w = 1449629115440469 r = torch.arange(0, 100 * w, w, device=device) self.assertEqual(r.numel(), 100) # Test Rounding Errors line = torch.zeros(size=(1, 49), device=device) self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) # TODO: this test should be updated @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") @onlyCPU def test_arange_inference(self, device): # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) # cannot call storage() on meta tensor @skipMeta def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_new_empty_strided(self, device): def _test(sizes, strides, dtype): x = torch.zeros(5, 5, dtype=dtype, device=device) result = x.new_empty_strided(sizes, strides) expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device) self.assertEqual(result.shape, expected.shape) self.assertEqual(result.stride(), expected.stride()) self.assertEqual(result.dtype, expected.dtype) self.assertEqual(result.device, expected.device) _test([2, 3], [3, 1], torch.float) _test([5, 3], [0, 1], torch.int) _test([], [], torch.float) # Some really weird cases for shape in [(2, 3, 4), (0, 2, 0)]: for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: _test(shape, strides, torch.float) # Make sure sizes and strides have the same length # https://github.com/pytorch/pytorch/issues/82416 with self.assertRaisesRegex( RuntimeError, r"dimensionality of sizes \(1\) must match dimensionality of strides \(0\)"): dtype = torch.float64 x = torch.tensor(-4.8270, dtype=dtype, device=device) size = (2,) stride = () x.new_empty_strided(size, stride, dtype=dtype, device=device) def test_strided_mismatched_stride_shape(self, device): for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided(shape, strides) with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided_(shape, strides) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) @onlyNativeDeviceTypes def test_empty_overflow(self, device): with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Stride calculation overflowed'): torch.empty([0, 4, 2305843009213693952], dtype=torch.float32) def test_eye(self, device): for dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype == torch.bfloat16: continue # Test the RuntimeError is raised when either m or n is a negative number for n, m in ((-1, 1), (1, -1), (-1, -1)): with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'): torch.eye(n, m, device=device, dtype=dtype) # Test when the `m` parameter is not provided for n in (3, 5, 7): res1 = torch.eye(n, device=device, dtype=dtype) naive_eye = torch.zeros(n, n, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, out=res2) self.assertEqual(res1, res2) for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) @dtypes(*floating_and_complex_types()) def test_linspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) @dtypes(*integral_types()) def test_linspace_vs_numpy_integral(self, device, dtype): start = 1 end = 127 for steps in [25, 50]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype): start = torch.randn(1, dtype=dtype).item() end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item() def test_fn(torch_fn, numpy_fn, steps): t = torch_fn(start, end, steps, device=device) a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: test_fn(torch.linspace, np.linspace, steps) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_linspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace, device, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_logspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace, device, dtype) @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) @dtypes(*floating_types()) def test_logspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 end = .0315315723419189453125 for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.logspace(start, end, steps, device=device, dtype=dtype) a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertEqual(t[0], a[0]) self.assertEqual(t[steps - 1], a[steps - 1]) @onlyCUDA @largeTensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t @expectedFailureMeta # RuntimeError: The tensor has a non-zero number of elements @onlyNativeDeviceTypes def test_tensor_ctor_device_inference(self, device): torch_device = torch.device(device) values = torch.tensor((1, 2, 3), device=device) # Tests tensor and as_tensor # Note: warnings are suppressed (suppresses warnings) for op in (torch.tensor, torch.as_tensor): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual(op(values).device, torch_device) self.assertEqual(op(values, dtype=torch.float64).device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): self.assertEqual(op(values.cpu()).device, torch.device('cpu')) # Tests sparse ctor indices = torch.tensor([[0, 1, 1], [2, 0, 1], [2, 1, 0]], device=device) sparse_size = (3, 3, 3) sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) self.assertEqual(sparse_default.device, torch_device) sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) def _test_signal_window_functions(self, name, dtype, device, **kwargs): import scipy.signal as signal torch_method = getattr(torch, name + '_window') if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method( size, periodic=periodic, layout=torch.strided, requires_grad=False, **kwargs, device=device, dtype=dtype, ) # NB: scipy always returns a float64 result ref = torch.from_numpy( signal.get_window( (name, *(kwargs.values())), size, fftbins=periodic ) ) self.assertEqual(res, ref.to(dtype)) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.float, torch.double, torch.long) @parametrize("window", ['hann', 'hamming', 'bartlett', 'blackman']) def test_signal_window_functions(self, device, dtype, window): self._test_signal_window_functions(window, dtype, device) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @dtypes(torch.float, torch.double, torch.long, torch.bfloat16, torch.float16) def test_kaiser_window(self, device, dtype): for num_test in range(50): self._test_signal_window_functions('kaiser', dtype, device, beta=random.random() * 30) def _test_signal_windows_functions(self, name, dtype, device, **kwargs): import scipy.signal as signal torch_method = getattr(torch.signal.windows, name) if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, sym=not periodic, **kwargs, device=device, dtype=dtype) # NB: scipy always returns a float64 result ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) # torch.signal.windows functions (except any with extra parameters) @onlyNativeDeviceTypes @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.float, torch.double) @parametrize("window", ['bartlett', 'blackman', 'cosine', 'hamming', 'hann', 'nuttall']) def test_signal_windows_functions(self, device, dtype, window): self._test_signal_windows_functions(window, dtype, device) # torch.signal.windows.kaiser @onlyNativeDeviceTypes @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.float, torch.double) def test_kaiser(self, device, dtype): for num_test in range(50): self._test_signal_windows_functions('kaiser', dtype, device, beta=random.random() * 30) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) elif dt.is_complex: self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex32, torch.complex64, torch.complex128}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float or dt.is_complex: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((0,), torch.kaiser_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): with set_default_tensor_type(torch.cuda.DoubleTensor): with set_default_dtype(torch.float32): self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) @onlyCUDA def test_tensor_factory_gpu_type(self, device): with set_default_tensor_type(torch.cuda.FloatTensor): x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) with set_default_tensor_type(torch.cuda.DoubleTensor): x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) @skipCPUIf(True, 'compares device with cpu') @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange_device_vs_cpu(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) @dtypes(torch.bfloat16, torch.float16) def test_arange_lowp(self, device, dtype): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=dtype, device=device) f16_tensor = torch.arange(0, 4, dtype=dtype, device=device) self.assertEqual(ref_tensor, f16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=dtype, device=device) f16_tensor = torch.arange(0, 6, step=2, dtype=dtype, device=device) self.assertEqual(ref_tensor, f16_tensor) @dtypes(*all_types_and_complex_and(torch.bfloat16)) @dtypesIfCUDA(*all_types_and_complex_and(torch.bfloat16)) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # small tensor self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) # large tensor if dtype not in (torch.int8, torch.uint8): self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) # Vectorization on non-contiguous tensors if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test res = torch.rand(3, 3, 1000, device=device).to(dtype) res = res.permute(2, 0, 1) torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) # steps = 1 self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) # steps = 0 self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) # steps not provided self.assertRaises(TypeError, lambda: torch.linspace(0, 1, device=device, dtype=dtype)) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1j, 5, device=device, dtype=dtype) # Check linspace for generating the correct output for each dtype. start = 0 if dtype == torch.uint8 else -100 expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), atol=0, rtol=0) # Check for race condition (correctness when applied on a large tensor). if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), 1000000, device=device, dtype=dtype) if dtype.is_complex: cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) else: cond = y[:-1] < y[1:] correct = all(cond) self.assertTrue(correct) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) def _test_linspace_logspace_deduction_helper(self, fn, device): for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]: dtype = torch.float32 if isinstance(start, complex) or isinstance(end, complex): dtype = torch.cfloat self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_linspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.linspace, device) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_logspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.logspace, device) # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Compares linspace device vs. cpu def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_device_vs_cpu(self, device, dtype): self._test_linspace(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) # Compares logspace device vs cpu def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) # Compares logspace device vs cpu def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_device_vs_cpu(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) @dtypes(*all_types_and(torch.bfloat16)) @dtypesIfCUDA(*integral_types_and(torch.half, torch.bfloat16, torch.float32, torch.float64) if TEST_WITH_ROCM else all_types_and(torch.half, torch.bfloat16)) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) # steps not provided self.assertRaises(TypeError, lambda: torch.logspace(0, 1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1j, 5, device=device, dtype=dtype) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation atol = None rtol = None if self.device_type == 'cpu': atol = 0 rtol = 0 self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), atol=atol, rtol=rtol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) with set_default_dtype(dtype): # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) def test_full_out(self, device): size = (5,) o = torch.empty(size, device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) # check that warning for numpy being not writable is suppressed # when a copy of it is being created. # see issue #47160 def test_tensor_from_non_writable_numpy(self, device): with warnings.catch_warnings(record=True) as w: a = np.arange(5.) a.flags.writeable = False t = torch.tensor(a) self.assertEqual(len(w), 0) @onlyCPU @parametrize('shared', [True, False]) @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") def test_from_file(self, device, shared): dtype = torch.float64 t = torch.randn(2, 5, dtype=dtype, device=device) with tempfile.NamedTemporaryFile() as f: expected_filename = f.name if shared else None t.numpy().tofile(f) t_mapped = torch.from_file(f.name, shared=shared, size=t.numel(), dtype=dtype) self.assertTrue(t_mapped.untyped_storage().filename == expected_filename) self.assertEqual(torch.flatten(t), t_mapped) s = torch.UntypedStorage.from_file(f.name, shared, t.numel() * dtype.itemsize) self.assertTrue(s.filename == expected_filename) @onlyCPU def test_storage_filename(self, device): t = torch.randn(2, 5, device=device) self.assertIsNone(t.untyped_storage().filename) # Class for testing random tensor creation ops, like torch.randint class TestRandomTensorCreation(TestCase): exact_dtype = True # TODO: add torch.complex64, torch.complex128 @dtypes(torch.float, torch.double) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) # test empty mean/std out = torch.normal(mean=torch.empty((0, 2)), std=torch.empty((0, 1))) self.assertEqual(out.size(), torch.Size([0, 2])) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) # float std 0 with float mean r.fill_(42) torch.normal(2, 0, (10, 10), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # float std 0 with tensor mean r.fill_(42) mean_rand = torch.randn(10, 10, dtype=dtype, device=device) torch.normal(mean_rand, 0, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) # tensor std 0 with float mean r.fill_(42) std_zeros = torch.zeros(10, 10, dtype=dtype, device=device) torch.normal(2, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # tensor std 0 with tensor mean r.fill_(42) torch.normal(mean_rand, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) # Ensure that normal raises appropriate error when `std` < 0 def test_normal_std_error(self, device): a = torch.tensor(0, dtype=torch.float32, device=device) std = torch.tensor(-1, dtype=torch.float32, device=device) for input in [0, a]: with self.assertRaisesRegex(RuntimeError, r'normal expects std >= 0.0, but found std'): torch.normal(input, -1, (10,)) with self.assertRaisesRegex(RuntimeError, r'normal expects all elements of std >= 0.0'): torch.normal(input, std) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(torch.float, torch.double, torch.half) @dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16) def test_uniform_from_to(self, device, dtype): size = 2000 alpha = 0.1 float_min = torch.finfo(torch.float).min float_max = torch.finfo(torch.float).max double_min = torch.finfo(torch.double).min double_max = torch.finfo(torch.double).max if dtype == torch.bfloat16: min_val = -3.389531389251535e+38 max_val = 3.389531389251535e+38 else: min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max values = [double_min, float_min, -42, 0, 42, float_max, double_max] for from_ in values: for to_ in values: t = torch.empty(size, dtype=dtype, device=device) if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val): pass elif to_ < from_: self.assertRaisesRegex( RuntimeError, "uniform_ expects to return", lambda: t.uniform_(from_, to_) ) elif to_ - from_ > max_val: self.assertRaisesRegex( RuntimeError, "uniform_ expects to-from", lambda: t.uniform_(from_, to_) ) else: t.uniform_(from_, to_) range_ = to_ - from_ if not (dtype == torch.bfloat16) and not ( dtype == torch.half and device == 'cpu') and not torch.isnan(t).all(): delta = alpha * range_ double_t = t.to(torch.double) if range_ == 0: self.assertTrue(double_t.min() == from_) self.assertTrue(double_t.max() == to_) elif dtype == torch.half: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() <= to_) else: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() < to_) def test_random_neg_values(self, device): SIZE = 10 signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short] for dtype in signed_dtypes: res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) # TODO: this test should be updated @onlyCPU def test_randint_inference(self, device): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) # TODO: this test should be updated @onlyCPU def test_randint(self, device): SIZE = 100 def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) @dtypes(torch.half, torch.float, torch.bfloat16, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_randn(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.randn(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(size, size, out=res2) self.assertEqual(res1, res2) @dtypes(torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_rand(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.rand(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.rand(size, size, out=res2) self.assertEqual(res1, res2) def test_randperm(self, device): if device == 'cpu' or device == 'meta': rng_device = None else: # TODO: This won't actually work for non-CUDA device # see https://github.com/pytorch/pytorch/issues/54282 rng_device = [device] # Test core functionality. On CUDA, different value of n has different # code path for n in (5, 100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float, torch.bfloat16): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue if dtype == torch.bfloat16 and device != 'cpu': continue if n > 256 and dtype == torch.bfloat16: continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(res1.sort().values.long(), torch.arange(n, device=device)) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.uint8, 2**8, 2**8 + 1), (torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) self.assertEqual(res.sort().values.long(), torch.arange(n, device=device)) # Test exceptions when device and generator types are incompatible @onlyCUDA def test_randperm_device_compatibility(self, device): cuda_gen = torch.Generator(device='cuda') cpu_gen = torch.Generator(device='cpu') # n=0 is a special case that we don't need to use generator, thus no error even if # device and generator don't match torch.randperm(0, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randperm(0, device='cuda:1', generator=torch.Generator(device='cuda:0')) torch.randperm(0, device='cuda', generator=torch.Generator(device='cpu')) torch.randperm(0, device='cpu', generator=torch.Generator(device='cuda')) for n in (1, 3, 100, 30000): torch.randperm(n, device='cuda', generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda')) # For cuda:0 to match cuda:1, we are making consistent device type matching # behavior just like torch.randint. Longer term, generator should ignore # device ordinal, since it's not used anyway. torch.randint(low=0, high=n + 1, size=(1,), device="cuda:0", generator=torch.Generator(device='cuda:1')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randint(low=0, high=n + 1, size=(1,), device="cuda:1", generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:1', generator=torch.Generator(device='cuda:0')) regex = 'Expected a .* device type for generator but found .*' cuda_t = torch.tensor(n, device='cuda') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t)) cpu_t = torch.tensor(n, device='cpu') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU # Class for testing *like ops, like torch.ones_like class TestLikeTensorCreation(TestCase): exact_dtype = True # TODO: this test should be updated def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], device=device, dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_empty_like(self, device): x = torch.autograd.Variable(torch.tensor([])) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqualTypeString(torch.empty_like(a), a) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyNativeDeviceTypes def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) # Tests for the `frombuffer` function (only work on CPU): # Constructs tensors from Python objects that implement the buffer protocol, # without copying data. SIZE = 5 SHAPE = (SIZE,)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_roll
def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg="{} did not equal expected result".format(single_roll)) roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg="{} did not equal expected result".format(roll_backwards)) data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg="{} did not equal expected result: {}".format(rolled, expected)) data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg="{} did not equal the original: {}".format(loop_rolled, data)) # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg="non contiguous tensor rolled to {} instead of {} ".format(rolled, expected)) # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg="should be able to roll over two dimensions, got {}".format(double_rolled)) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0))
def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg=f"{single_roll} did not equal expected result") roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg=f"{roll_backwards} did not equal expected result") data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg=f"{rolled} did not equal expected result: {expected}") data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg=f"{loop_rolled} did not equal the original: {data}") # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg=f"non contiguous tensor rolled to {rolled} instead of {expected} ") # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg=f"should be able to roll over two dimensions, got {double_rolled}") self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0))
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
dtype_name
def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = "Expected object of scalar type {} but got scalar type " \ "{} for second argument".format(dtype_name(dtype), dtype_name(other_dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b)
def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = f"Expected object of scalar type {dtype_name(dtype)} but got scalar type " \ f"{dtype_name(other_dtype)} for second argument" with self.assertRaisesRegex(RuntimeError, error): op(a, b)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_pathlib
def test_pathlib(self): import pathlib with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d: p = pathlib.Path(d) with SummaryWriter(p) as writer: writer.add_scalar('test', 1)
def test_pathlib(self): with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d: p = Path(d) with SummaryWriter(p) as writer: writer.add_scalar('test', 1)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] class TestTensorBoardSummaryWriter(BaseTestCase): import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] class TestTensorBoardSummaryWriter(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_hparams_smoke
def test_hparams_smoke(self): hp = {'lr': 0.1, 'bsize': 4} mt = {'accuracy': 0.1, 'loss': 10} summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently. hp = {'use_magic': True, 'init_string': "42"} mt = {'accuracy': 0.1, 'loss': 10} summary.hparams(hp, mt) mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)} summary.hparams(hp, mt)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib class TestTensorBoardSummary(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensorboard.py
test_hparams_wrong_parameter
def test_hparams_wrong_parameter(self): with self.assertRaises(TypeError): summary.hparams([], {}) with self.assertRaises(TypeError): summary.hparams({}, []) with self.assertRaises(ValueError): res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0}) # metric data is used in writer.py so the code path is different, which leads to different exception type. with self.assertRaises(NotImplementedError): with self.createSummaryWriter() as writer: writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib class TestTensorBoardSummary(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensorboard.py
test_hparams_number
def test_hparams_number(self): hp = {'lr': 0.1} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib class TestTensorBoardSummary(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensorboard.py
test_hparams_bool
def test_hparams_bool(self): hp = {'bool_var': True} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib class TestTensorBoardSummary(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensorboard.py
test_hparams_string
def test_hparams_string(self): hp = {'string_var': "hi"} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib class TestTensorBoardSummary(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensor_creation_ops.py
test_device_without_index
instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) instantiate_device_type_tests(TestBufferProtocol, globals(), only_for="cpu") instantiate_device_type_tests(TestAsArray, globals()) if __name__ == '__main__': run_tests()
def test_device_without_index(self, device): original = torch.arange(5, device="cuda") tensor = torch.asarray(original, device="cuda") # The storage pointers should be equal self.assertEqual(original.data_ptr(), tensor.data_ptr()) tensor = torch.asarray(original, copy=True, device="cuda") # The storage pointers should not be equal self.assertNotEqual(original.data_ptr(), tensor.data_ptr())
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestAsArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorboard.py
tensor_N
def tensor_N(shape, dtype=float): numel = np.prod(shape) x = (np.arange(numel, dtype=dtype)).reshape(shape) return x class BaseTestCase(TestCase): """ Base class used for all TensorBoard tests """ def setUp(self): super().setUp() if not TEST_TENSORBOARD: return self.skipTest("Skip the test since TensorBoard is not installed") if TEST_WITH_CROSSREF: return self.skipTest("Don't run TensorBoard tests with crossref") self.temp_dirs = [] def createSummaryWriter(self): # Just to get the name of the directory in a writable place. tearDown() # is responsible for clean-ups. temp_dir = tempfile.TemporaryDirectory(prefix="test_tensorboard").name self.temp_dirs.append(temp_dir) return SummaryWriter(temp_dir) def tearDown(self): super().tearDown() # Remove directories created by SummaryWriter for temp_dir in self.temp_dirs: if os.path.exists(temp_dir): shutil.rmtree(temp_dir) if TEST_TENSORBOARD: from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image if TEST_TENSORBOARD and TEST_CAFFE2: from torch.utils.tensorboard import _caffe2_graph as c2_graph class TestTensorBoardPyTorchNumpy(BaseTestCase): def test_pytorch_np(self): tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)] for tensor in tensors: # regular tensor self.assertIsInstance(make_np(tensor), np.ndarray) # CUDA tensor if torch.cuda.device_count() > 0: self.assertIsInstance(make_np(tensor.cuda()), np.ndarray) # regular variable self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray) # CUDA variable if torch.cuda.device_count() > 0: self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray) # python primitive type self.assertIsInstance(make_np(0), np.ndarray) self.assertIsInstance(make_np(0.1), np.ndarray) def test_pytorch_autograd_np(self): x = torch.autograd.Variable(torch.empty(1)) self.assertIsInstance(make_np(x), np.ndarray) def test_pytorch_write(self): with self.createSummaryWriter() as w: w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0) def test_pytorch_histogram(self): with self.createSummaryWriter() as w: w.add_histogram('float histogram', torch.rand((50,))) w.add_histogram('int histogram', torch.randint(0, 100, (50,))) def test_pytorch_histogram_raw(self): with self.createSummaryWriter() as w: num = 50 floats = make_np(torch.rand((num,))) bins = [0.0, 0.25, 0.5, 0.75, 1.0] counts, limits = np.histogram(floats, bins) sum_sq = floats.dot(floats).item() w.add_histogram_raw('float histogram raw', min=floats.min().item(), max=floats.max().item(), num=num, sum=floats.sum().item(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist()) ints = make_np(torch.randint(0, 100, (num,))) bins = [0, 25, 50, 75, 100] counts, limits = np.histogram(ints, bins) sum_sq = ints.dot(ints).item() w.add_histogram_raw('int histogram raw', min=ints.min().item(), max=ints.max().item(), num=num, sum=ints.sum().item(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist()) ints = torch.tensor(range(0, 100)).float() nbins = 100 counts = torch.histc(ints, bins=nbins, min=0, max=99) limits = torch.tensor(range(nbins)) sum_sq = ints.dot(ints).item() w.add_histogram_raw('int histogram raw', min=ints.min().item(), max=ints.max().item(), num=num, sum=ints.sum().item(), sum_squares=sum_sq, bucket_limits=limits.tolist(), bucket_counts=counts.tolist()) class TestTensorBoardUtils(BaseTestCase): def test_to_HWC(self): test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'chw') self.assertEqual(converted.shape, (32, 32, 3)) test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'nchw') self.assertEqual(converted.shape, (64, 256, 3)) test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'hw') self.assertEqual(converted.shape, (32, 32, 3)) def test_convert_to_HWC_dtype_remains_same(self): # test to ensure convert_to_HWC restores the dtype of input np array and # thus the scale_factor calculated for the image is 1 test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8) tensor = make_np(test_image) tensor = convert_to_HWC(tensor, 'NCHW') scale_factor = summary._calc_scale_factor(tensor) self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1') def test_prepare_video(self): # At each timeframe, the sum over all other # dimensions of the video should be the same. shapes = [ (16, 30, 3, 28, 28), (36, 30, 3, 28, 28), (19, 29, 3, 23, 19), (3, 3, 3, 3, 3) ] for s in shapes: V_input = np.random.random(s) V_after = _prepare_video(np.copy(V_input)) total_frame = s[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y)) def test_numpy_vid_uint8(self): V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8) V_after = _prepare_video(np.copy(V_input)) * 255 total_frame = V_input.shape[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y)) freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] class TestTensorBoardWriter(BaseTestCase): def test_writer(self): with self.createSummaryWriter() as writer: sample_rate = 44100 n_iter = 0 writer.add_hparams( {'lr': 0.1, 'bsize': 1}, {'hparam/accuracy': 10, 'hparam/loss': 10} ) writer.add_scalar('data/scalar_systemtime', 0.1, n_iter) writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter) writer.add_scalar('data/new_style', 0.2, n_iter, new_style=True) writer.add_scalars('data/scalar_group', { "xsinx": n_iter * np.sin(n_iter), "xcosx": n_iter * np.cos(n_iter), "arctanx": np.arctan(n_iter) }, n_iter) x = np.zeros((32, 3, 64, 64)) # output from network writer.add_images('Image', x, n_iter) # Tensor writer.add_image_with_boxes('imagebox', np.zeros((3, 64, 64)), np.array([[10, 10, 40, 40], [40, 40, 60, 60]]), n_iter) x = np.zeros(sample_rate * 2) writer.add_audio('myAudio', x, n_iter) writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter) writer.add_histogram('hist', np.random.rand(100, 100), n_iter) writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand( 100), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, n_iter) v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float) c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int) f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int) writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f) class TestTensorBoardSummaryWriter(BaseTestCase): def test_summary_writer_ctx(self): # after using a SummaryWriter as a ctx it should be closed with self.createSummaryWriter() as writer: writer.add_scalar('test', 1) self.assertIs(writer.file_writer, None) def test_summary_writer_close(self): # Opening and closing SummaryWriter a lot should not run into # OSError: [Errno 24] Too many open files passed = True try: writer = self.createSummaryWriter() writer.close() except OSError: passed = False self.assertTrue(passed) def test_pathlib(self): import pathlib with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d: p = pathlib.Path(d) with SummaryWriter(p) as writer: writer.add_scalar('test', 1) class TestTensorBoardEmbedding(BaseTestCase): def test_embedding(self): w = self.createSummaryWriter() all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]]) all_labels = torch.tensor([33., 44., 55.]) all_images = torch.zeros(3, 3, 5, 5) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, global_step=2) dataset_label = ['test'] * 2 + ['train'] * 2 all_labels = list(zip(all_labels, dataset_label)) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, metadata_header=['digit', 'dataset'], global_step=2) # assert... def test_embedding_64(self): w = self.createSummaryWriter() all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]]) all_labels = torch.tensor([33., 44., 55.]) all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, global_step=2) dataset_label = ['test'] * 2 + ['train'] * 2 all_labels = list(zip(all_labels, dataset_label)) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, metadata_header=['digit', 'dataset'], global_step=2) class TestTensorBoardSummary(BaseTestCase): def test_uint8_image(self): ''' Tests that uint8 image (pixel values in [0, 255]) is not changed ''' test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8) scale_factor = summary._calc_scale_factor(test_image) self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1') def test_float32_image(self): ''' Tests that float32 image (pixel values in [0, 1]) are scaled correctly to [0, 255] ''' test_image = np.random.rand(3, 32, 32).astype(np.float32) scale_factor = summary._calc_scale_factor(test_image) self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255') def test_list_input(self): with self.assertRaises(Exception) as e_info: summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow') def test_empty_input(self): with self.assertRaises(Exception) as e_info: summary.histogram('dummy', np.ndarray(0), 'tensorflow') def test_image_with_boxes(self): self.assertTrue(compare_image_proto(summary.image_boxes('dummy', tensor_N(shape=(3, 32, 32)), np.array([[10, 10, 40, 40]])), self)) def test_image_with_one_channel(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(1, 8, 8)), dataformats='CHW'), self)) # noqa: E131 def test_image_with_one_channel_batched(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(2, 1, 8, 8)), dataformats='NCHW'), self)) # noqa: E131 def test_image_with_3_channel_batched(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(2, 3, 8, 8)), dataformats='NCHW'), self)) # noqa: E131 def test_image_without_channel(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(8, 8)), dataformats='HW'), self)) # noqa: E131 def test_video(self): try: import moviepy # noqa: F401 except ImportError: return self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self)) summary.video('dummy', np.random.rand(16, 48, 1, 28, 28)) summary.video('dummy', np.random.rand(20, 7, 1, 8, 8)) def test_audio(self): self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self)) def test_text(self): self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self)) def test_histogram_auto(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self)) def test_histogram_fd(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self)) def test_histogram_doane(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self)) def test_custom_scalars(self): layout = { 'Taiwan': { 'twse': ['Multiline', ['twse/0050', 'twse/2330']] }, 'USA': { 'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], 'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']] } } summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently. def test_hparams_smoke(self): hp = {'lr': 0.1, 'bsize': 4} mt = {'accuracy': 0.1, 'loss': 10} summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently. hp = {'use_magic': True, 'init_string': "42"} mt = {'accuracy': 0.1, 'loss': 10} summary.hparams(hp, mt) mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)} summary.hparams(hp, mt) def test_hparams_wrong_parameter(self): with self.assertRaises(TypeError): summary.hparams([], {}) with self.assertRaises(TypeError): summary.hparams({}, []) with self.assertRaises(ValueError): res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0}) # metric data is used in writer.py so the code path is different, which leads to different exception type. with self.assertRaises(NotImplementedError): with self.createSummaryWriter() as writer: writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]}) def test_hparams_number(self): hp = {'lr': 0.1} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self)) def test_hparams_bool(self): hp = {'bool_var': True} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self)) def test_hparams_string(self): hp = {'string_var': "hi"} mt = {'accuracy': 0.1} self.assertTrue(compare_proto(summary.hparams(hp, mt), self)) def test_hparams_domain_discrete(self): hp = {"lr": 0.1, "bool_var": True, "string_var": "hi"} mt = {"accuracy": 0.1} hp_domain = {"lr": [0.1], "bool_var": [True], "string_var": ["hi"]} # hparam_domain_discrete keys needs to be subset of hparam_dict keys with self.assertRaises(TypeError): summary.hparams(hp, mt, hparam_domain_discrete={"wrong_key": []}) # hparam_domain_discrete values needs to be same type as hparam_dict values with self.assertRaises(TypeError): summary.hparams(hp, mt, hparam_domain_discrete={"lr": [True]}) # only smoke test. Because protobuf map serialization is nondeterministic. summary.hparams(hp, mt, hparam_domain_discrete=hp_domain) def test_mesh(self): v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float) c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int) f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int) mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None) self.assertTrue(compare_proto(mesh, self)) def test_scalar_new_style(self): scalar = summary.scalar('test_scalar', 1.0, new_style=True) self.assertTrue(compare_proto(scalar, self)) with self.assertRaises(AssertionError): summary.scalar('test_scalar2', torch.Tensor([1, 2, 3]), new_style=True)
def tensor_N(shape, dtype=float): numel = np.prod(shape) x = (np.arange(numel, dtype=dtype)).reshape(shape) return x class BaseTestCase(TestCase): """ Base class used for all TensorBoard tests """ def setUp(self): super().setUp() if not TEST_TENSORBOARD: return self.skipTest("Skip the test since TensorBoard is not installed") if TEST_WITH_CROSSREF: return self.skipTest("Don't run TensorBoard tests with crossref") self.temp_dirs = [] def createSummaryWriter(self): # Just to get the name of the directory in a writable place. tearDown() # is responsible for clean-ups. temp_dir = tempfile.TemporaryDirectory(prefix="test_tensorboard").name self.temp_dirs.append(temp_dir) return SummaryWriter(temp_dir) def tearDown(self): super().tearDown() # Remove directories created by SummaryWriter for temp_dir in self.temp_dirs: if os.path.exists(temp_dir): shutil.rmtree(temp_dir) if TEST_TENSORBOARD: from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto class TestTensorBoardPyTorchNumpy(BaseTestCase): def test_pytorch_np(self): tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)] for tensor in tensors: # regular tensor self.assertIsInstance(make_np(tensor), np.ndarray) # CUDA tensor if torch.cuda.is_available(): self.assertIsInstance(make_np(tensor.cuda()), np.ndarray) # regular variable self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray) # CUDA variable if torch.cuda.is_available(): self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray) # python primitive type self.assertIsInstance(make_np(0), np.ndarray) self.assertIsInstance(make_np(0.1), np.ndarray) def test_pytorch_autograd_np(self): x = torch.autograd.Variable(torch.empty(1)) self.assertIsInstance(make_np(x), np.ndarray) def test_pytorch_write(self): with self.createSummaryWriter() as w: w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0) def test_pytorch_histogram(self): with self.createSummaryWriter() as w: w.add_histogram('float histogram', torch.rand((50,))) w.add_histogram('int histogram', torch.randint(0, 100, (50,))) w.add_histogram('bfloat16 histogram', torch.rand(50, dtype=torch.bfloat16)) def test_pytorch_histogram_raw(self): with self.createSummaryWriter() as w: num = 50 floats = make_np(torch.rand((num,))) bins = [0.0, 0.25, 0.5, 0.75, 1.0] counts, limits = np.histogram(floats, bins) sum_sq = floats.dot(floats).item() w.add_histogram_raw('float histogram raw', min=floats.min().item(), max=floats.max().item(), num=num, sum=floats.sum().item(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist()) ints = make_np(torch.randint(0, 100, (num,))) bins = [0, 25, 50, 75, 100] counts, limits = np.histogram(ints, bins) sum_sq = ints.dot(ints).item() w.add_histogram_raw('int histogram raw', min=ints.min().item(), max=ints.max().item(), num=num, sum=ints.sum().item(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist()) ints = torch.tensor(range(0, 100)).float() nbins = 100 counts = torch.histc(ints, bins=nbins, min=0, max=99) limits = torch.tensor(range(nbins)) sum_sq = ints.dot(ints).item() w.add_histogram_raw('int histogram raw', min=ints.min().item(), max=ints.max().item(), num=num, sum=ints.sum().item(), sum_squares=sum_sq, bucket_limits=limits.tolist(), bucket_counts=counts.tolist()) class TestTensorBoardUtils(BaseTestCase): def test_to_HWC(self): test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'chw') self.assertEqual(converted.shape, (32, 32, 3)) test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'nchw') self.assertEqual(converted.shape, (64, 256, 3)) test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8) converted = convert_to_HWC(test_image, 'hw') self.assertEqual(converted.shape, (32, 32, 3)) def test_convert_to_HWC_dtype_remains_same(self): # test to ensure convert_to_HWC restores the dtype of input np array and # thus the scale_factor calculated for the image is 1 test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8) tensor = make_np(test_image) tensor = convert_to_HWC(tensor, 'NCHW') scale_factor = summary._calc_scale_factor(tensor) self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1') def test_prepare_video(self): # At each timeframe, the sum over all other # dimensions of the video should be the same. shapes = [ (16, 30, 3, 28, 28), (36, 30, 3, 28, 28), (19, 29, 3, 23, 19), (3, 3, 3, 3, 3) ] for s in shapes: V_input = np.random.random(s) V_after = _prepare_video(np.copy(V_input)) total_frame = s[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y)) def test_numpy_vid_uint8(self): V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8) V_after = _prepare_video(np.copy(V_input)) * 255 total_frame = V_input.shape[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y)) freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] class TestTensorBoardWriter(BaseTestCase): def test_writer(self): with self.createSummaryWriter() as writer: sample_rate = 44100 n_iter = 0 writer.add_hparams( {'lr': 0.1, 'bsize': 1}, {'hparam/accuracy': 10, 'hparam/loss': 10} ) writer.add_scalar('data/scalar_systemtime', 0.1, n_iter) writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter) writer.add_scalar('data/new_style', 0.2, n_iter, new_style=True) writer.add_scalars('data/scalar_group', { "xsinx": n_iter * np.sin(n_iter), "xcosx": n_iter * np.cos(n_iter), "arctanx": np.arctan(n_iter) }, n_iter) x = np.zeros((32, 3, 64, 64)) # output from network writer.add_images('Image', x, n_iter) # Tensor writer.add_image_with_boxes('imagebox', np.zeros((3, 64, 64)), np.array([[10, 10, 40, 40], [40, 40, 60, 60]]), n_iter) x = np.zeros(sample_rate * 2) writer.add_audio('myAudio', x, n_iter) writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter) writer.add_histogram('hist', np.random.rand(100, 100), n_iter) writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand( 100), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, n_iter) v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float) c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int) f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int) writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f) class TestTensorBoardSummaryWriter(BaseTestCase): def test_summary_writer_ctx(self): # after using a SummaryWriter as a ctx it should be closed with self.createSummaryWriter() as writer: writer.add_scalar('test', 1) self.assertIs(writer.file_writer, None) def test_summary_writer_close(self): # Opening and closing SummaryWriter a lot should not run into # OSError: [Errno 24] Too many open files passed = True try: writer = self.createSummaryWriter() writer.close() except OSError: passed = False self.assertTrue(passed) def test_pathlib(self): with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d: p = Path(d) with SummaryWriter(p) as writer: writer.add_scalar('test', 1) class TestTensorBoardEmbedding(BaseTestCase): def test_embedding(self): w = self.createSummaryWriter() all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]]) all_labels = torch.tensor([33., 44., 55.]) all_images = torch.zeros(3, 3, 5, 5) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, global_step=2) dataset_label = ['test'] * 2 + ['train'] * 2 all_labels = list(zip(all_labels, dataset_label)) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, metadata_header=['digit', 'dataset'], global_step=2) # assert... def test_embedding_64(self): w = self.createSummaryWriter() all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]]) all_labels = torch.tensor([33., 44., 55.]) all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, global_step=2) dataset_label = ['test'] * 2 + ['train'] * 2 all_labels = list(zip(all_labels, dataset_label)) w.add_embedding(all_features, metadata=all_labels, label_img=all_images, metadata_header=['digit', 'dataset'], global_step=2) class TestTensorBoardSummary(BaseTestCase): def test_uint8_image(self): ''' Tests that uint8 image (pixel values in [0, 255]) is not changed ''' test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8) scale_factor = summary._calc_scale_factor(test_image) self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1') def test_float32_image(self): ''' Tests that float32 image (pixel values in [0, 1]) are scaled correctly to [0, 255] ''' test_image = np.random.rand(3, 32, 32).astype(np.float32) scale_factor = summary._calc_scale_factor(test_image) self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255') def test_list_input(self): with self.assertRaises(Exception) as e_info: summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow') def test_empty_input(self): with self.assertRaises(Exception) as e_info: summary.histogram('dummy', np.ndarray(0), 'tensorflow') def test_image_with_boxes(self): self.assertTrue(compare_image_proto(summary.image_boxes('dummy', tensor_N(shape=(3, 32, 32)), np.array([[10, 10, 40, 40]])), self)) def test_image_with_one_channel(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(1, 8, 8)), dataformats='CHW'), self)) # noqa: E131 def test_image_with_one_channel_batched(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(2, 1, 8, 8)), dataformats='NCHW'), self)) # noqa: E131 def test_image_with_3_channel_batched(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(2, 3, 8, 8)), dataformats='NCHW'), self)) # noqa: E131 def test_image_without_channel(self): self.assertTrue(compare_image_proto( summary.image('dummy', tensor_N(shape=(8, 8)), dataformats='HW'), self)) # noqa: E131 def test_video(self): try: import moviepy # noqa: F401 except ImportError: return self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self)) summary.video('dummy', np.random.rand(16, 48, 1, 28, 28)) summary.video('dummy', np.random.rand(20, 7, 1, 8, 8)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_audio(self): self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_text(self): self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_histogram_auto(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_histogram_fd(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_histogram_doane(self): self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self)) def test_custom_scalars(self): layout = { 'Taiwan': { 'twse': ['Multiline', ['twse/0050', 'twse/2330']] }, 'USA': { 'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], 'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']] } } summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently. @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_mesh(self): v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float) c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int) f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int) mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None) self.assertTrue(compare_proto(mesh, self)) @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_scalar_new_style(self): scalar = summary.scalar('test_scalar', 1.0, new_style=True) self.assertTrue(compare_proto(scalar, self)) with self.assertRaises(AssertionError): summary.scalar('test_scalar2', torch.Tensor([1, 2, 3]), new_style=True)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_pytorch_np
def test_pytorch_np(self): tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)] for tensor in tensors: # regular tensor self.assertIsInstance(make_np(tensor), np.ndarray) # CUDA tensor if torch.cuda.device_count() > 0: self.assertIsInstance(make_np(tensor.cuda()), np.ndarray) # regular variable self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray) # CUDA variable if torch.cuda.device_count() > 0: self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray) # python primitive type self.assertIsInstance(make_np(0), np.ndarray) self.assertIsInstance(make_np(0.1), np.ndarray)
def test_pytorch_np(self): tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)] for tensor in tensors: # regular tensor self.assertIsInstance(make_np(tensor), np.ndarray) # CUDA tensor if torch.cuda.is_available(): self.assertIsInstance(make_np(tensor.cuda()), np.ndarray) # regular variable self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray) # CUDA variable if torch.cuda.is_available(): self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray) # python primitive type self.assertIsInstance(make_np(0), np.ndarray) self.assertIsInstance(make_np(0.1), np.ndarray)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph class TestTensorBoardPyTorchNumpy(BaseTestCase): import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto class TestTensorBoardPyTorchNumpy(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_pytorch_histogram
def test_pytorch_histogram(self): with self.createSummaryWriter() as w: w.add_histogram('float histogram', torch.rand((50,))) w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
def test_pytorch_histogram(self): with self.createSummaryWriter() as w: w.add_histogram('float histogram', torch.rand((50,))) w.add_histogram('int histogram', torch.randint(0, 100, (50,))) w.add_histogram('bfloat16 histogram', torch.rand(50, dtype=torch.bfloat16))
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph class TestTensorBoardPyTorchNumpy(BaseTestCase): import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto class TestTensorBoardPyTorchNumpy(BaseTestCase): import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_kaiser
def test_kaiser(self, device, dtype): for num_test in range(50): self._test_signal_windows_functions('kaiser', dtype, device, beta=random.random() * 30)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensor_creation_ops.py
test_empty_overflow
def test_empty_overflow(self, device): with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64)
def test_empty_overflow(self, device): with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Stride calculation overflowed'): torch.empty([0, 4, 2305843009213693952], dtype=torch.float32)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_byte_to_int
def test_byte_to_int(self): byte_array = np.array([-1, 0, 0, 0, -1, 0, 0, 0], dtype=np.byte) tensor = torch.frombuffer(byte_array, dtype=torch.int32) self.assertEqual(tensor.numel(), 2) # Assuming little endian machine self.assertSequenceEqual(tensor, [255, 255]) # Tests for the `asarray` function: # Constructs tensors from a Python object that has one of the following # characteristics: # 1. is a Tensor # 2. is a DLPack capsule # 3. implements the Python Buffer protocol # 4. is an arbitrary list # The implementation itself is based on the Python Array API: # https://data-apis.org/array-api/latest/API_specification/creation_functions.html
def test_byte_to_int(self): byte_array = np.array([-1, 0, 0, 0, -1, 0, 0, 0], dtype=np.byte) if sys.byteorder == 'little' \ else np.array([0, 0, 0, -1, 0, 0, 0, -1], dtype=np.byte) tensor = torch.frombuffer(byte_array, dtype=torch.int32) self.assertEqual(tensor.numel(), 2) self.assertSequenceEqual(tensor, [255, 255]) # Tests for the `asarray` function: # Constructs tensors from a Python object that has one of the following # characteristics: # 1. is a Tensor # 2. is a DLPack capsule # 3. implements the Python Buffer protocol # 4. is an arbitrary list # The implementation itself is based on the Python Array API: # https://data-apis.org/array-api/latest/API_specification/creation_functions.html
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestBufferProtocol(TestCase):
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestBufferProtocol(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
to_memview
def to_memview(tensor): return memoryview(to_numpy(tensor)) class TestAsArray(TestCase): def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs): """Check the output of 'asarray', given its input and assertion informations. Besides calling 'asarray' itself, this function does 4 different checks: 1. Whether the result is aliased or not, depending on 'is_alias' 2. Whether the result has the expected dtype and elements 3. Whether the result lives in the expected device 4. Whether the result has its 'requires_grad' set or not """ result = torch.asarray(cvt(original), **kwargs) self.assertTrue(isinstance(result, torch.Tensor)) # 1. The storage pointers should be equal only if 'is_alias' is set if is_alias: self.assertEqual(result.data_ptr(), original.data_ptr()) else: self.assertNotEqual(result.data_ptr(), original.data_ptr()) # 2. Comparison of the elements only takes place if the original # sequence and the resulting tensor have the same data type if same_dtype: self.assertEqual(original, result) else: dtype = kwargs.get("dtype", torch.get_default_dtype()) self.assertEqual(original.shape, result.shape) self.assertEqual(dtype, result.dtype) # 3. Given the specified target device, we first check whether # its type is the same, and then if its index is the same (if it # is not None) if same_device: device = original.device else: device = torch.device(kwargs.get("device", "cpu")) # Compare the target device type, and its index self.assertEqual(device.type, result.device.type) if device.index is not None: self.assertEqual(device.index, result.device.index) # 4. By default, 'requires_grad' is unset self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False)) def _test_alias_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, **kwargs) if not only_with_dtype: check(copy=False) check(device=device) check(device=device, copy=False) check(dtype=dtype) check(dtype=dtype, copy=False) check(requires_grad=False, dtype=dtype) check(requires_grad=may_require_grad(dtype), dtype=dtype) check(device=device, dtype=dtype) check(device=device, dtype=dtype, copy=False) # Skipping 'meta' devices, since there's no point in comparing their # data pointer (which is basically the point here), since they all # return 0. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_alias_from_tensor(self, device, dtype): self._test_alias_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_numpy(self, device, dtype): self._test_alias_with_cvt(to_numpy, device, dtype) # Skipping 'meta', since 'to_dlpack' does not work for them. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_alias_from_dlpack(self, device, dtype): self._test_alias_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_buffer(self, device, dtype): self._test_alias_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, is_alias=False, **kwargs) if not only_with_dtype: check(copy=True) check(device=device, copy=True) check(requires_grad=False, dtype=dtype, copy=True) check(requires_grad=may_require_grad(dtype), dtype=dtype, copy=True) check(dtype=dtype, copy=True) check(device=device, dtype=dtype, copy=True) # Copy is forced because of different device if torch.cuda.is_available(): other = get_another_device(device) check(same_device=False, device=other, dtype=dtype) check(same_device=False, device=other, dtype=dtype, copy=True) # Copy is forced because of different dtype if not only_with_dtype: for other in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype != other: check(same_dtype=False, dtype=other) check(same_dtype=False, dtype=other, copy=True) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_tensor(self, device, dtype): self._test_copy_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_numpy(self, device, dtype): self._test_copy_with_cvt(to_numpy, device, dtype) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack(self, device, dtype): self._test_copy_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_buffer(self, device, dtype): self._test_copy_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_mult_devices(self, devices, dtype, cvt): cuda1 = devices[0] cuda2 = devices[1] original = make_tensor((5, 5), dtype=dtype, device=cuda1) def check(**kwargs): self._check(original, cvt, is_alias=False, same_device=False, device=cuda2, **kwargs) check() check(copy=True) check(dtype=dtype, copy=True) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_tensor_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, identity) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, to_dlpack) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_list(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=torch.device("cpu")) def check(**kwargs): self._check(original, torch.Tensor.tolist, is_alias=False, **kwargs) same_device = torch.device("cpu") == device check(same_device=same_device, device=device, dtype=dtype) check(same_device=same_device, device=device, dtype=dtype, requires_grad=False) check(same_device=same_device, device=device, dtype=dtype, requires_grad=may_require_grad(dtype)) check(same_device=same_device, device=device, dtype=dtype, copy=True) @dtypes(torch.float32) def test_unsupported_alias(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device) if torch.cuda.is_available(): other_device = get_another_device(device) with self.assertRaisesRegex(ValueError, f"from device '{device}' to '{other_device}'"): torch.asarray(original, device=other_device, copy=False) with self.assertRaisesRegex(ValueError, "with dtype '.*' into dtype '.*'"): torch.asarray(original, dtype=torch.float64, copy=False) with self.assertRaisesRegex(ValueError, "can't alias arbitrary sequence"): torch.asarray(original.tolist(), copy=False) @onlyCUDA @deviceCountAtLeast(2) @dtypes(torch.float32) def test_unsupported_alias_mult_devices(self, devices, dtype): dev1, dev2 = devices[:2] original = make_tensor((5, 5), dtype=dtype, device=dev1) with self.assertRaisesRegex(ValueError, f"from device '{dev1}' to '{dev2}'"): torch.asarray(original, device=dev2, copy=False) @dtypes(torch.float32, torch.complex64) def test_retain_autograd_history(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device, requires_grad=True) # 'cloned' has 'grad_fn=<CloneBackwards>' cloned = original.clone() def check(**kwargs): a = torch.asarray(cloned, **kwargs) requires_grad = kwargs.get("requires_grad", False) self.assertEqual(a.requires_grad, requires_grad) # Autograd history shouldn't be retained when requires_grad is False self.assertEqual(a.grad_fn is None, not requires_grad) check() check(requires_grad=True) check(copy=True) check(requires_grad=True, copy=True) check(requires_grad=False) check(requires_grad=False, copy=True) @onlyCPU def test_astensor_consistency(self, device): # See issue: https://github.com/pytorch/pytorch/pull/71757 examples = [ # Scalars True, 42, 1.0, # Homogeneous Lists [True, True, False], [1, 2, 3, 42], [0.0, 1.0, 2.0, 3.0], # Mixed Lists [True, False, 0], [0.0, True, False], [0, 1.0, 42], [0.0, True, False, 42], # With Complex [0.0, True, False, 42, 5j], # With Range range(5), ] for e in examples: original = torch.as_tensor(e) t = torch.asarray(e) self.assertEqual(t, original) @onlyCPU def test_numpy_scalars(self, device): scalar = np.float64(0.5) with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."): torch.asarray(scalar, copy=False) tensor = torch.asarray(scalar) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), scalar.item()) self.assertEqual(tensor.dtype, torch.float64) instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) instantiate_device_type_tests(TestBufferProtocol, globals(), only_for="cpu") instantiate_device_type_tests(TestAsArray, globals()) if __name__ == '__main__': run_tests()
def to_memview(tensor): return memoryview(to_numpy(tensor)) class TestAsArray(TestCase): def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs): """Check the output of 'asarray', given its input and assertion information. Besides calling 'asarray' itself, this function does 4 different checks: 1. Whether the result is aliased or not, depending on 'is_alias' 2. Whether the result has the expected dtype and elements 3. Whether the result lives in the expected device 4. Whether the result has its 'requires_grad' set or not """ result = torch.asarray(cvt(original), **kwargs) self.assertTrue(isinstance(result, torch.Tensor)) # 1. The storage pointers should be equal only if 'is_alias' is set if is_alias: self.assertEqual(result.data_ptr(), original.data_ptr()) else: self.assertNotEqual(result.data_ptr(), original.data_ptr()) # 2. Comparison of the elements only takes place if the original # sequence and the resulting tensor have the same data type if same_dtype: self.assertEqual(original, result) else: dtype = kwargs.get("dtype", torch.get_default_dtype()) self.assertEqual(original.shape, result.shape) self.assertEqual(dtype, result.dtype) # 3. Given the specified target device, we first check whether # its type is the same, and then if its index is the same (if it # is not None) if same_device: device = original.device else: device = torch.device(kwargs.get("device", "cpu")) # Compare the target device type, and its index self.assertEqual(device.type, result.device.type) if device.index is not None: self.assertEqual(device.index, result.device.index) # 4. By default, 'requires_grad' is unset self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False)) def _test_alias_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, **kwargs) if not only_with_dtype: check(copy=False) check(device=device) check(device=device, copy=False) check(dtype=dtype) check(dtype=dtype, copy=False) check(requires_grad=False, dtype=dtype) check(requires_grad=may_require_grad(dtype), dtype=dtype) check(device=device, dtype=dtype) check(device=device, dtype=dtype, copy=False) # Skipping 'meta' devices, since there's no point in comparing their # data pointer (which is basically the point here), since they all # return 0. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_alias_from_tensor(self, device, dtype): self._test_alias_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_numpy(self, device, dtype): self._test_alias_with_cvt(to_numpy, device, dtype) # Skipping 'meta', since 'to_dlpack' does not work for them. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_alias_from_dlpack(self, device, dtype): self._test_alias_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_buffer(self, device, dtype): self._test_alias_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, is_alias=False, **kwargs) if not only_with_dtype: check(copy=True) check(device=device, copy=True) check(requires_grad=False, dtype=dtype, copy=True) check(requires_grad=may_require_grad(dtype), dtype=dtype, copy=True) check(dtype=dtype, copy=True) check(device=device, dtype=dtype, copy=True) # Copy is forced because of different device if torch.cuda.is_available(): other = get_another_device(device) check(same_device=False, device=other, dtype=dtype) check(same_device=False, device=other, dtype=dtype, copy=True) # Copy is forced because of different dtype if not only_with_dtype: for other in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype != other: check(same_dtype=False, dtype=other) check(same_dtype=False, dtype=other, copy=True) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_tensor(self, device, dtype): self._test_copy_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_numpy(self, device, dtype): self._test_copy_with_cvt(to_numpy, device, dtype) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack(self, device, dtype): self._test_copy_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_buffer(self, device, dtype): self._test_copy_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_mult_devices(self, devices, dtype, cvt): cuda1 = devices[0] cuda2 = devices[1] original = make_tensor((5, 5), dtype=dtype, device=cuda1) def check(**kwargs): self._check(original, cvt, is_alias=False, same_device=False, device=cuda2, **kwargs) check() check(copy=True) check(dtype=dtype, copy=True) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_tensor_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, identity) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, to_dlpack) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_list(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=torch.device("cpu")) def check(**kwargs): self._check(original, torch.Tensor.tolist, is_alias=False, **kwargs) same_device = torch.device("cpu") == device check(same_device=same_device, device=device, dtype=dtype) check(same_device=same_device, device=device, dtype=dtype, requires_grad=False) check(same_device=same_device, device=device, dtype=dtype, requires_grad=may_require_grad(dtype)) check(same_device=same_device, device=device, dtype=dtype, copy=True) @dtypes(torch.float32) def test_unsupported_alias(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device) if torch.cuda.is_available(): other_device = get_another_device(device) with self.assertRaisesRegex(ValueError, f"from device '{device}' to '{other_device}'"): torch.asarray(original, device=other_device, copy=False) with self.assertRaisesRegex(ValueError, "with dtype '.*' into dtype '.*'"): torch.asarray(original, dtype=torch.float64, copy=False) with self.assertRaisesRegex(ValueError, "can't alias arbitrary sequence"): torch.asarray(original.tolist(), copy=False) @onlyCUDA @deviceCountAtLeast(2) @dtypes(torch.float32) def test_unsupported_alias_mult_devices(self, devices, dtype): dev1, dev2 = devices[:2] original = make_tensor((5, 5), dtype=dtype, device=dev1) with self.assertRaisesRegex(ValueError, f"from device '{dev1}' to '{dev2}'"): torch.asarray(original, device=dev2, copy=False) @dtypes(torch.float32, torch.complex64) def test_retain_autograd_history(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device, requires_grad=True) # 'cloned' has 'grad_fn=<CloneBackwards>' cloned = original.clone() def check(**kwargs): a = torch.asarray(cloned, **kwargs) requires_grad = kwargs.get("requires_grad", False) self.assertEqual(a.requires_grad, requires_grad) # Autograd history shouldn't be retained when requires_grad is False self.assertEqual(a.grad_fn is None, not requires_grad) check() check(requires_grad=True) check(copy=True) check(requires_grad=True, copy=True) check(requires_grad=False) check(requires_grad=False, copy=True) @onlyCPU def test_astensor_consistency(self, device): # See issue: https://github.com/pytorch/pytorch/pull/71757 examples = [ # Scalars True, 42, 1.0, # Homogeneous Lists [True, True, False], [1, 2, 3, 42], [0.0, 1.0, 2.0, 3.0], # Mixed Lists [True, False, 0], [0.0, True, False], [0, 1.0, 42], [0.0, True, False, 42], # With Complex [0.0, True, False, 42, 5j], # With Range range(5), ] for e in examples: original = torch.as_tensor(e) t = torch.asarray(e) self.assertEqual(t, original) @skipIfTorchDynamo() @onlyCPU def test_numpy_scalars(self, device): scalar = np.float64(0.5) with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."): torch.asarray(scalar, copy=False) tensor = torch.asarray(scalar) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), scalar.item()) self.assertEqual(tensor.dtype, torch.float64) # Regression test for https://github.com/pytorch/pytorch/issues/97021 zerodim_arr = np.array(1.) tensor = torch.asarray(zerodim_arr, dtype=torch.int32) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), zerodim_arr.item()) self.assertEqual(tensor.dtype, torch.int32) def test_default_device(self, device): original = torch.arange(5) examples: List[Tuple[Any, Dict]] = [ (3, {}), (original, {}), (to_numpy(original), {}), (to_memview(original), {"dtype": original.dtype}), ] for data, kwargs in examples: with torch.device(device): tensor = torch.asarray(data, **kwargs) self.assertEqual(tensor.device, torch.device(device)) # Check the contents of the tensor. if isinstance(data, int): self.assertEqual(data, tensor.item()) else: self.assertEqual(data, tensor) @onlyCUDA def test_device_without_index(self, device): original = torch.arange(5, device="cuda") tensor = torch.asarray(original, device="cuda") # The storage pointers should be equal self.assertEqual(original.data_ptr(), tensor.data_ptr()) tensor = torch.asarray(original, copy=True, device="cuda") # The storage pointers should not be equal self.assertNotEqual(original.data_ptr(), tensor.data_ptr()) instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) instantiate_device_type_tests(TestBufferProtocol, globals(), only_for="cpu") instantiate_device_type_tests(TestAsArray, globals()) if __name__ == '__main__': TestCase._default_dtype_check_enabled = True run_tests()
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,)
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
_check
def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs): """Check the output of 'asarray', given its input and assertion informations. Besides calling 'asarray' itself, this function does 4 different checks: 1. Whether the result is aliased or not, depending on 'is_alias' 2. Whether the result has the expected dtype and elements 3. Whether the result lives in the expected device 4. Whether the result has its 'requires_grad' set or not """ result = torch.asarray(cvt(original), **kwargs) self.assertTrue(isinstance(result, torch.Tensor)) # 1. The storage pointers should be equal only if 'is_alias' is set if is_alias: self.assertEqual(result.data_ptr(), original.data_ptr()) else: self.assertNotEqual(result.data_ptr(), original.data_ptr()) # 2. Comparison of the elements only takes place if the original # sequence and the resulting tensor have the same data type if same_dtype: self.assertEqual(original, result) else: dtype = kwargs.get("dtype", torch.get_default_dtype()) self.assertEqual(original.shape, result.shape) self.assertEqual(dtype, result.dtype) # 3. Given the specified target device, we first check whether # its type is the same, and then if its index is the same (if it # is not None) if same_device: device = original.device else: device = torch.device(kwargs.get("device", "cpu")) # Compare the target device type, and its index self.assertEqual(device.type, result.device.type) if device.index is not None: self.assertEqual(device.index, result.device.index) # 4. By default, 'requires_grad' is unset self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False))
def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs): """Check the output of 'asarray', given its input and assertion information. Besides calling 'asarray' itself, this function does 4 different checks: 1. Whether the result is aliased or not, depending on 'is_alias' 2. Whether the result has the expected dtype and elements 3. Whether the result lives in the expected device 4. Whether the result has its 'requires_grad' set or not """ result = torch.asarray(cvt(original), **kwargs) self.assertTrue(isinstance(result, torch.Tensor)) # 1. The storage pointers should be equal only if 'is_alias' is set if is_alias: self.assertEqual(result.data_ptr(), original.data_ptr()) else: self.assertNotEqual(result.data_ptr(), original.data_ptr()) # 2. Comparison of the elements only takes place if the original # sequence and the resulting tensor have the same data type if same_dtype: self.assertEqual(original, result) else: dtype = kwargs.get("dtype", torch.get_default_dtype()) self.assertEqual(original.shape, result.shape) self.assertEqual(dtype, result.dtype) # 3. Given the specified target device, we first check whether # its type is the same, and then if its index is the same (if it # is not None) if same_device: device = original.device else: device = torch.device(kwargs.get("device", "cpu")) # Compare the target device type, and its index self.assertEqual(device.type, result.device.type) if device.index is not None: self.assertEqual(device.index, result.device.index) # 4. By default, 'requires_grad' is unset self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False))
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestAsArray(TestCase):
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestAsArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_full_inference
def test_full_inference(self, device, dtype): size = (2, 2) prev_default = torch.get_default_dtype() torch.set_default_dtype(dtype) # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) torch.set_default_dtype(prev_default)
def test_full_inference(self, device, dtype): size = (2, 2) with set_default_dtype(dtype): # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack class TestTensorCreation(TestCase): import scipy.linalg import scipy.signal as signal import scipy.signal as signal
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensor_creation_ops.py
test_numpy_scalars
def test_numpy_scalars(self, device): scalar = np.float64(0.5) with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."): torch.asarray(scalar, copy=False) tensor = torch.asarray(scalar) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), scalar.item()) self.assertEqual(tensor.dtype, torch.float64)
def test_numpy_scalars(self, device): scalar = np.float64(0.5) with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."): torch.asarray(scalar, copy=False) tensor = torch.asarray(scalar) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), scalar.item()) self.assertEqual(tensor.dtype, torch.float64) # Regression test for https://github.com/pytorch/pytorch/issues/97021 zerodim_arr = np.array(1.) tensor = torch.asarray(zerodim_arr, dtype=torch.int32) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), zerodim_arr.item()) self.assertEqual(tensor.dtype, torch.int32)
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS, parametrize, skipIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex_and, all_types_and, floating_and_complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes ) from torch.testing._creation import float_to_corresponding_complex_type_map from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestAsArray(TestCase):
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack import scipy.linalg import scipy.signal as signal import scipy.signal as signal SIZE = 5 SHAPE = (SIZE,) class TestAsArray(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
read_expected_content
def read_expected_content(function_ptr): expected_file = get_expected_file(function_ptr) assert os.path.exists(expected_file), expected_file with open(expected_file, "r") as f: return f.read()
def read_expected_content(function_ptr): expected_file = get_expected_file(function_ptr) assert os.path.exists(expected_file), expected_file with open(expected_file) as f: return f.read()
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
write_proto
def write_proto(str_to_compare, function_ptr): expected_file = get_expected_file(function_ptr) with open(expected_file, 'w') as f: f.write(str(str_to_compare)) class TestTensorBoardPytorchGraph(BaseTestCase): def test_pytorch_graph(self): dummy_input = (torch.zeros(1, 3),) class myLinear(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) with self.createSummaryWriter() as w: w.add_graph(myLinear(), dummy_input) actual_proto, _ = graph(myLinear(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())) def test_nested_nn_squential(self): dummy_input = torch.randn(2, 3) class InnerNNSquential(torch.nn.Module): def __init__(self, dim1, dim2): super().__init__() self.inner_nn_squential = torch.nn.Sequential( torch.nn.Linear(dim1, dim2), torch.nn.Linear(dim2, dim1), ) def forward(self, x): x = self.inner_nn_squential(x) return x class OuterNNSquential(torch.nn.Module): def __init__(self, dim1=3, dim2=4, depth=2): super().__init__() layers = [] for _ in range(depth): layers.append(InnerNNSquential(dim1, dim2)) self.outer_nn_squential = torch.nn.Sequential(*layers) def forward(self, x): x = self.outer_nn_squential(x) return x with self.createSummaryWriter() as w: w.add_graph(OuterNNSquential(), dummy_input) actual_proto, _ = graph(OuterNNSquential(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())) def test_pytorch_graph_dict_input(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) class ModelDict(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return {"out": self.l(x)} dummy_input = torch.zeros(1, 3) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input, use_strict_trace=True) # expect error: Encountering a dict at the output of the tracer... with self.assertRaises(RuntimeError): with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=True) with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=False) def test_mlp_graph(self): dummy_input = (torch.zeros(2, 1, 28, 28),) # This MLP class with the above input is expected # to fail JIT optimizations as seen at # https://github.com/pytorch/pytorch/issues/18903 # # However, it should not raise an error during # the add_graph call and still continue. class myMLP(torch.nn.Module): def __init__(self): super().__init__() self.input_len = 1 * 28 * 28 self.fc1 = torch.nn.Linear(self.input_len, 1200) self.fc2 = torch.nn.Linear(1200, 1200) self.fc3 = torch.nn.Linear(1200, 10) def forward(self, x, update_batch_stats=True): h = torch.nn.functional.relu( self.fc1(x.view(-1, self.input_len))) h = self.fc2(h) h = torch.nn.functional.relu(h) h = self.fc3(h) return h with self.createSummaryWriter() as w: w.add_graph(myMLP(), dummy_input) def test_wrong_input_size(self): with self.assertRaises(RuntimeError) as e_info: dummy_input = torch.rand(1, 9) model = torch.nn.Linear(3, 5) with self.createSummaryWriter() as w: w.add_graph(model, dummy_input) # error @skipIfNoTorchVision def test_torchvision_smoke(self): model_input_shapes = { 'alexnet': (2, 3, 224, 224), 'resnet34': (2, 3, 224, 224), 'resnet152': (2, 3, 224, 224), 'densenet121': (2, 3, 224, 224), 'vgg16': (2, 3, 224, 224), 'vgg19': (2, 3, 224, 224), 'vgg16_bn': (2, 3, 224, 224), 'vgg19_bn': (2, 3, 224, 224), 'mobilenet_v2': (2, 3, 224, 224), } for model_name, input_shape in model_input_shapes.items(): with self.createSummaryWriter() as w: model = getattr(torchvision.models, model_name)() w.add_graph(model, torch.zeros(input_shape)) class TestTensorBoardFigure(BaseTestCase): @skipIfNoMatplotlib def test_figure(self): writer = self.createSummaryWriter() figure, axes = plt.figure(), plt.gca() circle1 = plt.Circle((0.2, 0.5), 0.2, color='r') circle2 = plt.Circle((0.8, 0.5), 0.2, color='g') axes.add_patch(circle1) axes.add_patch(circle2) plt.axis('scaled') plt.tight_layout() writer.add_figure("add_figure/figure", figure, 0, close=False) self.assertTrue(plt.fignum_exists(figure.number)) writer.add_figure("add_figure/figure", figure, 1) if matplotlib.__version__ != '3.3.0': self.assertFalse(plt.fignum_exists(figure.number)) else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close() @skipIfNoMatplotlib def test_figure_list(self): writer = self.createSummaryWriter() figures = [] for i in range(5): figure = plt.figure() plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i)) plt.xlabel("X") plt.xlabel("Y") plt.legend() plt.tight_layout() figures.append(figure) writer.add_figure("add_figure/figure_list", figures, 0, close=False) self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa: F812 writer.add_figure("add_figure/figure_list", figures, 1) if matplotlib.__version__ != '3.3.0': self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa: F812 else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close() class TestTensorBoardNumpy(BaseTestCase): def test_scalar(self): res = make_np(1.1) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(1 << 64 - 1) # uint64_max self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.float16(1.00000087)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.float128(1.00008 + 9)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.int64(100000000000)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) @skipIfNoCaffe2 def test_caffe2_np(self): workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64))) self.assertIsInstance(make_np('testBlob'), np.ndarray) @skipIfNoCaffe2 def test_caffe2_np_expect_fail(self): with self.assertRaises(RuntimeError): res = make_np('This_blob_does_not_exist') def test_pytorch_np_expect_fail(self): with self.assertRaises(NotImplementedError): res = make_np({'pytorch': 1.0}) @skipIfNoCaffe2 @unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN") def test_caffe2_simple_model(self): model = ModelHelper(name="mnist") # how come those inputs don't break the forward pass =.=a workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32)) workspace.FeedBlob("label", np.random.randn(1, 1000).astype(int)) with core.NameScope("conv1"): conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5) # Image size: 24 x 24 -> 12 x 12 pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2) # Image size: 12 x 12 -> 8 x 8 conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5) # Image size: 8 x 8 -> 4 x 4 pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2) with core.NameScope("classifier"): # 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500) relu = brew.relu(model, fc3, fc3) pred = brew.fc(model, relu, 'pred', 500, 10) softmax = brew.softmax(model, pred, 'softmax') xent = model.LabelCrossEntropy([softmax, "label"], 'xent') # compute the expected loss loss = model.AveragedLoss(xent, "loss") model.net.RunAllOnMKL() model.param_init_net.RunAllOnMKL() model.AddGradientOperators([loss], skip=1) blob_name_tracker = {} graph = c2_graph.model_to_graph_def( model, blob_name_tracker=blob_name_tracker, shapes={}, show_simplified=False, ) compare_proto(graph, self) @skipIfNoCaffe2 def test_caffe2_simple_cnnmodel(self): model = cnn.CNNModelHelper("NCHW", name="overfeat") workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32)) workspace.FeedBlob("label", np.random.randn(1, 1000).astype(int)) with core.NameScope("conv1"): conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4) relu1 = model.Relu(conv1, conv1) pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2) with core.NameScope("classifier"): fc = model.FC(pool1, "fc", 4096, 1000) pred = model.Softmax(fc, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") loss = model.AveragedLoss(xent, "loss") blob_name_tracker = {} graph = c2_graph.model_to_graph_def( model, blob_name_tracker=blob_name_tracker, shapes={}, show_simplified=False, ) compare_proto(graph, self) if __name__ == '__main__': run_tests()
def write_proto(str_to_compare, function_ptr): expected_file = get_expected_file(function_ptr) with open(expected_file, 'w') as f: f.write(str(str_to_compare)) class TestTensorBoardPytorchGraph(BaseTestCase): def test_pytorch_graph(self): dummy_input = (torch.zeros(1, 3),) class myLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) with self.createSummaryWriter() as w: w.add_graph(myLinear(), dummy_input) actual_proto, _ = graph(myLinear(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())) def test_nested_nn_squential(self): dummy_input = torch.randn(2, 3) class InnerNNSquential(torch.nn.Module): def __init__(self, dim1, dim2): super().__init__() self.inner_nn_squential = torch.nn.Sequential( torch.nn.Linear(dim1, dim2), torch.nn.Linear(dim2, dim1), ) def forward(self, x): x = self.inner_nn_squential(x) return x class OuterNNSquential(torch.nn.Module): def __init__(self, dim1=3, dim2=4, depth=2): super().__init__() layers = [] for _ in range(depth): layers.append(InnerNNSquential(dim1, dim2)) self.outer_nn_squential = torch.nn.Sequential(*layers) def forward(self, x): x = self.outer_nn_squential(x) return x with self.createSummaryWriter() as w: w.add_graph(OuterNNSquential(), dummy_input) actual_proto, _ = graph(OuterNNSquential(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())) def test_pytorch_graph_dict_input(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) class ModelDict(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return {"out": self.l(x)} dummy_input = torch.zeros(1, 3) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input, use_strict_trace=True) # expect error: Encountering a dict at the output of the tracer... with self.assertRaises(RuntimeError): with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=True) with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=False) def test_mlp_graph(self): dummy_input = (torch.zeros(2, 1, 28, 28),) # This MLP class with the above input is expected # to fail JIT optimizations as seen at # https://github.com/pytorch/pytorch/issues/18903 # # However, it should not raise an error during # the add_graph call and still continue. class myMLP(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input_len = 1 * 28 * 28 self.fc1 = torch.nn.Linear(self.input_len, 1200) self.fc2 = torch.nn.Linear(1200, 1200) self.fc3 = torch.nn.Linear(1200, 10) def forward(self, x, update_batch_stats=True): h = torch.nn.functional.relu( self.fc1(x.view(-1, self.input_len))) h = self.fc2(h) h = torch.nn.functional.relu(h) h = self.fc3(h) return h with self.createSummaryWriter() as w: w.add_graph(myMLP(), dummy_input) def test_wrong_input_size(self): with self.assertRaises(RuntimeError) as e_info: dummy_input = torch.rand(1, 9) model = torch.nn.Linear(3, 5) with self.createSummaryWriter() as w: w.add_graph(model, dummy_input) # error @skipIfNoTorchVision def test_torchvision_smoke(self): model_input_shapes = { 'alexnet': (2, 3, 224, 224), 'resnet34': (2, 3, 224, 224), 'resnet152': (2, 3, 224, 224), 'densenet121': (2, 3, 224, 224), 'vgg16': (2, 3, 224, 224), 'vgg19': (2, 3, 224, 224), 'vgg16_bn': (2, 3, 224, 224), 'vgg19_bn': (2, 3, 224, 224), 'mobilenet_v2': (2, 3, 224, 224), } for model_name, input_shape in model_input_shapes.items(): with self.createSummaryWriter() as w: model = getattr(torchvision.models, model_name)() w.add_graph(model, torch.zeros(input_shape)) class TestTensorBoardFigure(BaseTestCase): @skipIfNoMatplotlib def test_figure(self): writer = self.createSummaryWriter() figure, axes = plt.figure(), plt.gca() circle1 = plt.Circle((0.2, 0.5), 0.2, color='r') circle2 = plt.Circle((0.8, 0.5), 0.2, color='g') axes.add_patch(circle1) axes.add_patch(circle2) plt.axis('scaled') plt.tight_layout() writer.add_figure("add_figure/figure", figure, 0, close=False) self.assertTrue(plt.fignum_exists(figure.number)) writer.add_figure("add_figure/figure", figure, 1) if matplotlib.__version__ != '3.3.0': self.assertFalse(plt.fignum_exists(figure.number)) else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close() @skipIfNoMatplotlib def test_figure_list(self): writer = self.createSummaryWriter() figures = [] for i in range(5): figure = plt.figure() plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i)) plt.xlabel("X") plt.xlabel("Y") plt.legend() plt.tight_layout() figures.append(figure) writer.add_figure("add_figure/figure_list", figures, 0, close=False) self.assertTrue(all(plt.fignum_exists(figure.number) is True for figure in figures)) # noqa: F812 writer.add_figure("add_figure/figure_list", figures, 1) if matplotlib.__version__ != '3.3.0': self.assertTrue(all(plt.fignum_exists(figure.number) is False for figure in figures)) # noqa: F812 else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close() class TestTensorBoardNumpy(BaseTestCase): @unittest.skipIf(IS_WINDOWS, "Skipping on windows, see https://github.com/pytorch/pytorch/pull/109349 ") @unittest.skipIf(IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 ") def test_scalar(self): res = make_np(1.1) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(1 << 64 - 1) # uint64_max self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.float16(1.00000087)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.float128(1.00008 + 9)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) res = make_np(np.int64(100000000000)) self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,)) def test_pytorch_np_expect_fail(self): with self.assertRaises(NotImplementedError): res = make_np({'pytorch': 1.0}) class TestTensorProtoSummary(BaseTestCase): @parametrize( "tensor_type,proto_type", [ (torch.float16, DataType.DT_HALF), (torch.bfloat16, DataType.DT_BFLOAT16), ], ) @skipIfTorchDynamo("Unsuitable test for Dynamo, behavior changes with version") def test_half_tensor_proto(self, tensor_type, proto_type): float_values = [1.0, 2.0, 3.0] actual_proto = tensor_proto( "dummy", torch.tensor(float_values, dtype=tensor_type), ).value[0].tensor self.assertSequenceEqual( [int_to_half(x) for x in actual_proto.half_val], float_values, ) self.assertTrue(actual_proto.dtype == proto_type) def test_float_tensor_proto(self): float_values = [1.0, 2.0, 3.0] actual_proto = ( tensor_proto("dummy", torch.tensor(float_values)).value[0].tensor ) self.assertEqual(actual_proto.float_val, float_values) self.assertTrue(actual_proto.dtype == DataType.DT_FLOAT) def test_int_tensor_proto(self): int_values = [1, 2, 3] actual_proto = ( tensor_proto("dummy", torch.tensor(int_values, dtype=torch.int32)) .value[0] .tensor ) self.assertEqual(actual_proto.int_val, int_values) self.assertTrue(actual_proto.dtype == DataType.DT_INT32) def test_scalar_tensor_proto(self): scalar_value = 0.1 actual_proto = ( tensor_proto("dummy", torch.tensor(scalar_value)).value[0].tensor ) self.assertAlmostEqual(actual_proto.float_val[0], scalar_value) def test_complex_tensor_proto(self): real = torch.tensor([1.0, 2.0]) imag = torch.tensor([3.0, 4.0]) actual_proto = ( tensor_proto("dummy", torch.complex(real, imag)).value[0].tensor ) self.assertEqual(actual_proto.scomplex_val, [1.0, 3.0, 2.0, 4.0]) def test_empty_tensor_proto(self): actual_proto = tensor_proto("dummy", torch.empty(0)).value[0].tensor self.assertEqual(actual_proto.float_val, []) instantiate_parametrized_tests(TestTensorProtoSummary) if __name__ == '__main__': run_tests()
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_pytorch_graph
def test_pytorch_graph(self): dummy_input = (torch.zeros(1, 3),) class myLinear(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) with self.createSummaryWriter() as w: w.add_graph(myLinear(), dummy_input) actual_proto, _ = graph(myLinear(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
def test_pytorch_graph(self): dummy_input = (torch.zeros(1, 3),) class myLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) with self.createSummaryWriter() as w: w.add_graph(myLinear(), dummy_input) actual_proto, _ = graph(myLinear(), dummy_input) expected_str = read_expected_content(self) expected_proto = GraphDef() text_format.Parse(expected_str, expected_proto) self.assertEqual(len(expected_proto.node), len(actual_proto.node)) for i in range(len(expected_proto.node)): expected_node = expected_proto.node[i] actual_node = actual_proto.node[i] self.assertEqual(expected_node.name, actual_node.name) self.assertEqual(expected_node.op, actual_node.op) self.assertEqual(expected_node.input, actual_node.input) self.assertEqual(expected_node.device, actual_node.device) self.assertEqual( sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_figure_list
def test_figure_list(self): writer = self.createSummaryWriter() figures = [] for i in range(5): figure = plt.figure() plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i)) plt.xlabel("X") plt.xlabel("Y") plt.legend() plt.tight_layout() figures.append(figure) writer.add_figure("add_figure/figure_list", figures, 0, close=False) self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa: F812 writer.add_figure("add_figure/figure_list", figures, 1) if matplotlib.__version__ != '3.3.0': self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa: F812 else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close()
def test_figure_list(self): writer = self.createSummaryWriter() figures = [] for i in range(5): figure = plt.figure() plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i)) plt.xlabel("X") plt.xlabel("Y") plt.legend() plt.tight_layout() figures.append(figure) writer.add_figure("add_figure/figure_list", figures, 0, close=False) self.assertTrue(all(plt.fignum_exists(figure.number) is True for figure in figures)) # noqa: F812 writer.add_figure("add_figure/figure_list", figures, 1) if matplotlib.__version__ != '3.3.0': self.assertTrue(all(plt.fignum_exists(figure.number) is False for figure in figures)) # noqa: F812 else: print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163") writer.close()
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardFigure(BaseTestCase):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorBoardFigure(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_caffe2_np_expect_fail
def test_caffe2_np_expect_fail(self): with self.assertRaises(RuntimeError): res = make_np('This_blob_does_not_exist')
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardNumpy(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_pytorch_graph_dict_input
def test_pytorch_graph_dict_input(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) class ModelDict(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return {"out": self.l(x)} dummy_input = torch.zeros(1, 3) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input, use_strict_trace=True) # expect error: Encountering a dict at the output of the tracer... with self.assertRaises(RuntimeError): with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=True) with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=False)
def test_pytorch_graph_dict_input(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return self.l(x) class ModelDict(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5) def forward(self, x): return {"out": self.l(x)} dummy_input = torch.zeros(1, 3) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input) with self.createSummaryWriter() as w: w.add_graph(Model(), dummy_input, use_strict_trace=True) # expect error: Encountering a dict at the output of the tracer... with self.assertRaises(RuntimeError): with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=True) with self.createSummaryWriter() as w: w.add_graph(ModelDict(), dummy_input, use_strict_trace=False)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_mlp_graph
def test_mlp_graph(self): dummy_input = (torch.zeros(2, 1, 28, 28),) # This MLP class with the above input is expected # to fail JIT optimizations as seen at # https://github.com/pytorch/pytorch/issues/18903 # # However, it should not raise an error during # the add_graph call and still continue. class myMLP(torch.nn.Module): def __init__(self): super().__init__() self.input_len = 1 * 28 * 28 self.fc1 = torch.nn.Linear(self.input_len, 1200) self.fc2 = torch.nn.Linear(1200, 1200) self.fc3 = torch.nn.Linear(1200, 10) def forward(self, x, update_batch_stats=True): h = torch.nn.functional.relu( self.fc1(x.view(-1, self.input_len))) h = self.fc2(h) h = torch.nn.functional.relu(h) h = self.fc3(h) return h with self.createSummaryWriter() as w: w.add_graph(myMLP(), dummy_input)
def test_mlp_graph(self): dummy_input = (torch.zeros(2, 1, 28, 28),) # This MLP class with the above input is expected # to fail JIT optimizations as seen at # https://github.com/pytorch/pytorch/issues/18903 # # However, it should not raise an error during # the add_graph call and still continue. class myMLP(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input_len = 1 * 28 * 28 self.fc1 = torch.nn.Linear(self.input_len, 1200) self.fc2 = torch.nn.Linear(1200, 1200) self.fc3 = torch.nn.Linear(1200, 10) def forward(self, x, update_batch_stats=True): h = torch.nn.functional.relu( self.fc1(x.view(-1, self.input_len))) h = self.fc2(h) h = torch.nn.functional.relu(h) h = self.fc3(h) return h with self.createSummaryWriter() as w: w.add_graph(myMLP(), dummy_input)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorBoardPytorchGraph(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
__init__
def __init__(self): super().__init__() self.l = torch.nn.Linear(3, 5)
def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(3, 5)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class myLinear(torch.nn.Module):
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class myLinear(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/test_tensorboard.py
test_half_tensor_proto
def test_half_tensor_proto(self, tensor_type, proto_type): float_values = [1.0, 2.0, 3.0] actual_proto = tensor_proto( "dummy", torch.tensor(float_values, dtype=tensor_type), ).value[0].tensor self.assertSequenceEqual( [int_to_half(x) for x in actual_proto.half_val], float_values, ) self.assertTrue(actual_proto.dtype == proto_type)
import io import os import shutil import sys import tempfile import unittest from pathlib import Path import expecttest import numpy as np TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_MACOS, IS_WINDOWS, parametrize, run_tests, TEST_WITH_CROSSREF, TestCase, skipIfTorchDynamo, ) from google.protobuf import text_format from PIL import Image from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.types_pb2 import DataType from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard.summary import int_to_half, tensor_proto freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import moviepy # noqa: F401 class TestTensorProtoSummary(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/test_tensorboard.py
test_caffe2_simple_cnnmodel
def test_caffe2_simple_cnnmodel(self): model = cnn.CNNModelHelper("NCHW", name="overfeat") workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32)) workspace.FeedBlob("label", np.random.randn(1, 1000).astype(int)) with core.NameScope("conv1"): conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4) relu1 = model.Relu(conv1, conv1) pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2) with core.NameScope("classifier"): fc = model.FC(pool1, "fc", 4096, 1000) pred = model.Softmax(fc, "pred") xent = model.LabelCrossEntropy([pred, "label"], "xent") loss = model.AveragedLoss(xent, "loss") blob_name_tracker = {} graph = c2_graph.model_to_graph_def( model, blob_name_tracker=blob_name_tracker, shapes={}, show_simplified=False, ) compare_proto(graph, self)
self.assertEqual(actual_proto.float_val, float_values) self.assertTrue(actual_proto.dtype == DataType.DT_FLOAT)
import io import numpy as np import os import shutil import sys import tempfile import unittest import expecttest TEST_TENSORBOARD = True import tensorboard.summary.writer.event_file_writer # noqa: F401 from tensorboard.compat.proto.summary_pb2 import Summary HAS_TORCHVISION = True import torchvision skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") TEST_CAFFE2 = True import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401 from caffe2.python import brew, cnn, core, workspace from caffe2.python.model_helper import ModelHelper skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2") TEST_MATPLOTLIB = True import matplotlib import matplotlib.pyplot as plt skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib") import torch from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF from tensorboard.compat.proto.graph_pb2 import GraphDef from torch.utils.tensorboard import summary, SummaryWriter from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC from torch.utils.tensorboard._convert_np import make_np from torch.utils.tensorboard._pytorch_graph import graph from google.protobuf import text_format from PIL import Image from torch.utils.tensorboard import _caffe2_graph as c2_graph freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] true_positive_counts = [75, 64, 21, 5, 0] false_positive_counts = [150, 105, 18, 0, 0] true_negative_counts = [0, 45, 132, 150, 150] false_negative_counts = [0, 11, 54, 70, 75] precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] import pathlib import moviepy # noqa: F401 class TestTensorBoardNumpy(BaseTestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted