code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def _process_quantiles(self, x, dim):
"""
Adjust quantiles array so that last axis labels the components of
each data point.
"""
x = np.asarray(x, dtype=float)
if x.ndim == 0:
x = x[np.newaxis]
elif x.ndim == 1:
if dim == 1:
x = x[:, np.newaxis]
else:
x = x[np.newaxis, :]
return x | Adjust quantiles array so that last axis labels the components of
each data point. | _process_quantiles | python | statsmodels/statsmodels | statsmodels/compat/_scipy_multivariate_t.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/_scipy_multivariate_t.py | BSD-3-Clause |
def _process_parameters(self, loc, shape, df):
"""
Infer dimensionality from location array and shape matrix, handle
defaults, and ensure compatible dimensions.
"""
if loc is None and shape is None:
loc = np.asarray(0, dtype=float)
shape = np.asarray(1, dtype=float)
dim = 1
elif loc is None:
shape = np.asarray(shape, dtype=float)
if shape.ndim < 2:
dim = 1
else:
dim = shape.shape[0]
loc = np.zeros(dim)
elif shape is None:
loc = np.asarray(loc, dtype=float)
dim = loc.size
shape = np.eye(dim)
else:
shape = np.asarray(shape, dtype=float)
loc = np.asarray(loc, dtype=float)
dim = loc.size
if dim == 1:
loc.shape = (1,)
shape.shape = (1, 1)
if loc.ndim != 1 or loc.shape[0] != dim:
raise ValueError("Array 'loc' must be a vector of length %d." %
dim)
if shape.ndim == 0:
shape = shape * np.eye(dim)
elif shape.ndim == 1:
shape = np.diag(shape)
elif shape.ndim == 2 and shape.shape != (dim, dim):
rows, cols = shape.shape
if rows != cols:
msg = ("Array 'cov' must be square if it is two dimensional,"
" but cov.shape = %s." % str(shape.shape))
else:
msg = ("Dimension mismatch: array 'cov' is of shape %s,"
" but 'loc' is a vector of length %d.")
msg = msg % (str(shape.shape), len(loc))
raise ValueError(msg)
elif shape.ndim > 2:
raise ValueError("Array 'cov' must be at most two-dimensional,"
" but cov.ndim = %d" % shape.ndim)
# Process degrees of freedom.
if df is None:
df = 1
elif df <= 0:
raise ValueError("'df' must be greater than zero.")
elif np.isnan(df):
raise ValueError("'df' is 'nan' but must be greater than zero or 'np.inf'.")
return dim, loc, shape, df | Infer dimensionality from location array and shape matrix, handle
defaults, and ensure compatible dimensions. | _process_parameters | python | statsmodels/statsmodels | statsmodels/compat/_scipy_multivariate_t.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/_scipy_multivariate_t.py | BSD-3-Clause |
def __init__(self, loc=None, shape=1, df=1, allow_singular=False,
seed=None):
"""
Create a frozen multivariate t distribution.
Parameters
----------
%(_mvt_doc_default_callparams)s
Examples
--------
>>> loc = np.zeros(3)
>>> shape = np.eye(3)
>>> df = 10
>>> dist = multivariate_t(loc, shape, df)
>>> dist.rvs()
array([[ 0.81412036, -1.53612361, 0.42199647]])
>>> dist.pdf([1, 1, 1])
array([0.01237803])
"""
self._dist = multivariate_t_gen(seed)
dim, loc, shape, df = self._dist._process_parameters(loc, shape, df)
self.dim, self.loc, self.shape, self.df = dim, loc, shape, df
self.shape_info = _PSD(shape, allow_singular=allow_singular) | Create a frozen multivariate t distribution.
Parameters
----------
%(_mvt_doc_default_callparams)s
Examples
--------
>>> loc = np.zeros(3)
>>> shape = np.eye(3)
>>> df = 10
>>> dist = multivariate_t(loc, shape, df)
>>> dist.rvs()
array([[ 0.81412036, -1.53612361, 0.42199647]])
>>> dist.pdf([1, 1, 1])
array([0.01237803]) | __init__ | python | statsmodels/statsmodels | statsmodels/compat/_scipy_multivariate_t.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/_scipy_multivariate_t.py | BSD-3-Clause |
def lstsq(a, b, rcond=None):
"""
Shim that allows modern rcond setting with backward compat for NumPY
earlier than 1.14
"""
if NP_LT_114 and rcond is None:
rcond = -1
return np.linalg.lstsq(a, b, rcond=rcond) | Shim that allows modern rcond setting with backward compat for NumPY
earlier than 1.14 | lstsq | python | statsmodels/statsmodels | statsmodels/compat/numpy.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/numpy.py | BSD-3-Clause |
def is_int_index(index: pd.Index) -> bool:
"""
Check if an index is integral
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if is an index with a standard integral type
"""
return (
isinstance(index, pd.Index)
and isinstance(index.dtype, np.dtype)
and np.issubdtype(index.dtype, np.integer)
) | Check if an index is integral
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if is an index with a standard integral type | is_int_index | python | statsmodels/statsmodels | statsmodels/compat/pandas.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/pandas.py | BSD-3-Clause |
def is_float_index(index: pd.Index) -> bool:
"""
Check if an index is floating
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if an index with a standard numpy floating dtype
"""
return (
isinstance(index, pd.Index)
and isinstance(index.dtype, np.dtype)
and np.issubdtype(index.dtype, np.floating)
) | Check if an index is floating
Parameters
----------
index : pd.Index
Any numeric index
Returns
-------
bool
True if an index with a standard numpy floating dtype | is_float_index | python | statsmodels/statsmodels | statsmodels/compat/pandas.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/pandas.py | BSD-3-Clause |
def rands_array(nchars, size, dtype="O"):
"""
Generate an array of byte strings.
"""
rands_chars = np.array(
list(string.ascii_letters + string.digits), dtype=(np.str_, 1)
)
retval = (
np.random.choice(rands_chars, size=nchars * np.prod(size))
.view((np.str_, nchars))
.reshape(size)
)
if dtype is None:
return retval
else:
return retval.astype(dtype) | Generate an array of byte strings. | rands_array | python | statsmodels/statsmodels | statsmodels/compat/pandas.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/pandas.py | BSD-3-Clause |
def make_dataframe():
"""
Simple verion of pandas._testing.makeDataFrame
"""
n = 30
k = 4
index = pd.Index(rands_array(nchars=10, size=n), name=None)
data = {
c: pd.Series(np.random.randn(n), index=index)
for c in string.ascii_uppercase[:k]
}
return pd.DataFrame(data) | Simple verion of pandas._testing.makeDataFrame | make_dataframe | python | statsmodels/statsmodels | statsmodels/compat/pandas.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/pandas.py | BSD-3-Clause |
def to_numpy(po: pd.DataFrame) -> np.ndarray:
"""
Workaround legacy pandas lacking to_numpy
Parameters
----------
po : Pandas obkect
Returns
-------
ndarray
A numpy array
"""
try:
return po.to_numpy()
except AttributeError:
return po.values | Workaround legacy pandas lacking to_numpy
Parameters
----------
po : Pandas obkect
Returns
-------
ndarray
A numpy array | to_numpy | python | statsmodels/statsmodels | statsmodels/compat/pandas.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/pandas.py | BSD-3-Clause |
def with_metaclass(meta, *bases):
"""Create a base class with a metaclass."""
# This requires a bit of explanation: the basic idea is to make a dummy
# metaclass for one level of class instantiation that replaces itself with
# the actual metaclass.
class metaclass(meta):
def __new__(cls, name, this_bases, d):
return meta(name, bases, d)
return type.__new__(metaclass, "temporary_class", (), {}) | Create a base class with a metaclass. | with_metaclass | python | statsmodels/statsmodels | statsmodels/compat/python.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/python.py | BSD-3-Clause |
def get_all_sorted_knots(
x, n_inner_knots=None, inner_knots=None, lower_bound=None, upper_bound=None
):
"""Gets all knots locations with lower and upper exterior knots included.
If needed, inner knots are computed as equally spaced quantiles of the
input data falling between given lower and upper bounds.
:param x: The 1-d array data values.
:param n_inner_knots: Number of inner knots to compute.
:param inner_knots: Provided inner knots if any.
:param lower_bound: The lower exterior knot location. If unspecified, the
minimum of ``x`` values is used.
:param upper_bound: The upper exterior knot location. If unspecified, the
maximum of ``x`` values is used.
:return: The array of ``n_inner_knots + 2`` distinct knots.
:raise ValueError: for various invalid parameters sets or if unable to
compute ``n_inner_knots + 2`` distinct knots.
"""
if lower_bound is None and x.size == 0:
raise ValueError(
"Cannot set lower exterior knot location: empty "
"input data and lower_bound not specified."
)
elif lower_bound is None and x.size != 0:
lower_bound = np.min(x)
if upper_bound is None and x.size == 0:
raise ValueError(
"Cannot set upper exterior knot location: empty "
"input data and upper_bound not specified."
)
elif upper_bound is None and x.size != 0:
upper_bound = np.max(x)
if upper_bound < lower_bound:
raise ValueError(
"lower_bound > upper_bound (%r > %r)" % (lower_bound, upper_bound)
)
if inner_knots is None and n_inner_knots is not None:
if n_inner_knots < 0:
raise ValueError(
"Invalid requested number of inner knots: %r" % (n_inner_knots,)
)
x = x[(lower_bound <= x) & (x <= upper_bound)]
x = np.unique(x)
if x.size != 0:
inner_knots_q = np.linspace(0, 100, n_inner_knots + 2)[1:-1]
# .tolist() is necessary to work around a bug in numpy 1.8
inner_knots = np.asarray(np.percentile(x, inner_knots_q.tolist()))
elif n_inner_knots == 0:
inner_knots = np.array([])
else:
raise ValueError(
"No data values between lower_bound(=%r) and "
"upper_bound(=%r): cannot compute requested "
"%r inner knot(s)." % (lower_bound, upper_bound, n_inner_knots)
)
elif inner_knots is not None:
inner_knots = np.unique(inner_knots)
if n_inner_knots is not None and n_inner_knots != inner_knots.size:
raise ValueError(
"Needed number of inner knots=%r does not match "
"provided number of inner knots=%r." % (n_inner_knots, inner_knots.size)
)
n_inner_knots = inner_knots.size
if np.any(inner_knots < lower_bound):
raise ValueError(
"Some knot values (%s) fall below lower bound "
"(%r)." % (inner_knots[inner_knots < lower_bound], lower_bound)
)
if np.any(inner_knots > upper_bound):
raise ValueError(
"Some knot values (%s) fall above upper bound "
"(%r)." % (inner_knots[inner_knots > upper_bound], upper_bound)
)
else:
raise ValueError("Must specify either 'n_inner_knots' or 'inner_knots'.")
all_knots = np.concatenate(([lower_bound, upper_bound], inner_knots))
all_knots = np.unique(all_knots)
if all_knots.size != n_inner_knots + 2:
raise ValueError(
"Unable to compute n_inner_knots(=%r) + 2 distinct "
"knots: %r data value(s) found between "
"lower_bound(=%r) and upper_bound(=%r)."
% (n_inner_knots, x.size, lower_bound, upper_bound)
)
return all_knots | Gets all knots locations with lower and upper exterior knots included.
If needed, inner knots are computed as equally spaced quantiles of the
input data falling between given lower and upper bounds.
:param x: The 1-d array data values.
:param n_inner_knots: Number of inner knots to compute.
:param inner_knots: Provided inner knots if any.
:param lower_bound: The lower exterior knot location. If unspecified, the
minimum of ``x`` values is used.
:param upper_bound: The upper exterior knot location. If unspecified, the
maximum of ``x`` values is used.
:return: The array of ``n_inner_knots + 2`` distinct knots.
:raise ValueError: for various invalid parameters sets or if unable to
compute ``n_inner_knots + 2`` distinct knots. | get_all_sorted_knots | python | statsmodels/statsmodels | statsmodels/compat/patsy.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/compat/patsy.py | BSD-3-Clause |
def _get_init_kwds(self):
"""return dictionary with extra keys used in model.__init__
"""
kwds = {key: getattr(self, key, None)
for key in self._init_keys}
return kwds | return dictionary with extra keys used in model.__init__ | _get_init_kwds | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def from_formula(cls, formula, data, subset=None, drop_cols=None,
*args, **kwargs):
"""
Create a Model from a formula and dataframe.
Parameters
----------
formula : str or generic Formula object
The formula specifying the model.
data : array_like
The data for the model. See Notes.
subset : array_like
An array-like object of booleans, integers, or index values that
indicate the subset of df to use in the model. Assumes df is a
`pandas.DataFrame`.
drop_cols : array_like
Columns to drop from the design matrix. Cannot be used to
drop terms involving categoricals.
*args
Additional positional argument that are passed to the model.
**kwargs
These are passed to the model with one exception. The
``eval_env`` keyword is passed to patsy. It can be either a
:class:`patsy:patsy.EvalEnvironment` object or an integer
indicating the depth of the namespace to use. For example, the
default ``eval_env=0`` uses the calling namespace. If you wish
to use a "clean" environment set ``eval_env=-1``.
Returns
-------
model
The model instance.
Notes
-----
data must define __getitem__ with the keys in the formula terms
args and kwargs are passed on to the model instantiation. E.g.,
a numpy structured or rec array, a dictionary, or a pandas DataFrame.
"""
# TODO: provide a docs template for args/kwargs from child models
# TODO: subset could use syntax. issue #469.
mgr = FormulaManager()
if subset is not None:
data = data.loc[subset]
eval_env = kwargs.pop('eval_env', None)
if eval_env is None:
eval_env = 2
elif eval_env == -1:
eval_env = mgr.get_empty_eval_env()
elif isinstance(eval_env, int):
eval_env += 1 # we're going down the stack again
missing = kwargs.get('missing', 'drop')
if missing == 'none': # with patsy it's drop or raise. let's raise.
missing = 'raise'
tmp = handle_formula_data(data, None, formula, depth=eval_env,
missing=missing)
((endog, exog), missing_idx, model_spec) = tmp
max_endog = cls._formula_max_endog
if (max_endog is not None and
endog.ndim > 1 and endog.shape[1] > max_endog):
raise ValueError('endog has evaluated to an array with multiple '
'columns that has shape {}. This occurs when '
'the variable converted to endog is non-numeric'
' (e.g., bool or str).'.format(endog.shape))
if drop_cols is not None and len(drop_cols) > 0:
cols = [x for x in exog.columns if x not in drop_cols]
if len(cols) < len(exog.columns):
exog = exog[cols]
spec_cols = list(mgr.get_term_names(model_spec))
for col in drop_cols:
try:
if mgr.engine == "formulaic" and col == "Intercept":
col = "1"
spec_cols.remove(col)
except ValueError:
pass # OK if not present
# TODO: Patsy migration, need to add method to handle
model_spec = model_spec.subset(spec_cols)
kwargs.update({'missing_idx': missing_idx,
'missing': missing,
'formula': formula, # attach formula for unpckling
'model_spec': model_spec})
mod = cls(endog, exog, *args, **kwargs)
mod.formula = formula
# since we got a dataframe, attach the original
mod.data.frame = data
return mod | Create a Model from a formula and dataframe.
Parameters
----------
formula : str or generic Formula object
The formula specifying the model.
data : array_like
The data for the model. See Notes.
subset : array_like
An array-like object of booleans, integers, or index values that
indicate the subset of df to use in the model. Assumes df is a
`pandas.DataFrame`.
drop_cols : array_like
Columns to drop from the design matrix. Cannot be used to
drop terms involving categoricals.
*args
Additional positional argument that are passed to the model.
**kwargs
These are passed to the model with one exception. The
``eval_env`` keyword is passed to patsy. It can be either a
:class:`patsy:patsy.EvalEnvironment` object or an integer
indicating the depth of the namespace to use. For example, the
default ``eval_env=0`` uses the calling namespace. If you wish
to use a "clean" environment set ``eval_env=-1``.
Returns
-------
model
The model instance.
Notes
-----
data must define __getitem__ with the keys in the formula terms
args and kwargs are passed on to the model instantiation. E.g.,
a numpy structured or rec array, a dictionary, or a pandas DataFrame. | from_formula | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def endog_names(self):
"""
Names of endogenous variables.
"""
return self.data.ynames | Names of endogenous variables. | endog_names | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def exog_names(self) -> list[str] | None:
"""
Names of exogenous variables.
"""
return self.data.xnames | Names of exogenous variables. | exog_names | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def fit(self):
"""
Fit a model to data.
"""
raise NotImplementedError | Fit a model to data. | fit | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def predict(self, params, exog=None, *args, **kwargs):
"""
After a model has been fit predict returns the fitted values.
This is a placeholder intended to be overwritten by individual models.
"""
raise NotImplementedError | After a model has been fit predict returns the fitted values.
This is a placeholder intended to be overwritten by individual models. | predict | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def initialize(self):
"""
Initialize (possibly re-initialize) a Model instance.
For example, if the the design matrix of a linear model changes then
initialized can be used to recompute values using the modified design
matrix.
"""
pass | Initialize (possibly re-initialize) a Model instance.
For example, if the the design matrix of a linear model changes then
initialized can be used to recompute values using the modified design
matrix. | initialize | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def loglike(self, params):
"""
Log-likelihood of model.
Parameters
----------
params : ndarray
The model parameters used to compute the log-likelihood.
Notes
-----
Must be overridden by subclasses.
"""
raise NotImplementedError | Log-likelihood of model.
Parameters
----------
params : ndarray
The model parameters used to compute the log-likelihood.
Notes
-----
Must be overridden by subclasses. | loglike | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def score(self, params):
"""
Score vector of model.
The gradient of logL with respect to each parameter.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The score vector evaluated at the parameters.
"""
raise NotImplementedError | Score vector of model.
The gradient of logL with respect to each parameter.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The score vector evaluated at the parameters. | score | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def information(self, params):
"""
Fisher information matrix of model.
Returns -1 * Hessian of the log-likelihood evaluated at params.
Parameters
----------
params : ndarray
The model parameters.
"""
raise NotImplementedError | Fisher information matrix of model.
Returns -1 * Hessian of the log-likelihood evaluated at params.
Parameters
----------
params : ndarray
The model parameters. | information | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def hessian(self, params):
"""
The Hessian matrix of the model.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The hessian evaluated at the parameters.
"""
raise NotImplementedError | The Hessian matrix of the model.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The hessian evaluated at the parameters. | hessian | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def _fit_zeros(self, keep_index=None, start_params=None,
return_auxiliary=False, k_params=None, **fit_kwds):
"""experimental, fit the model subject to zero constraints
Intended for internal use cases until we know what we need.
API will need to change to handle models with two exog.
This is not yet supported by all model subclasses.
This is essentially a simplified version of `fit_constrained`, and
does not need to use `offset`.
The estimation creates a new model with transformed design matrix,
exog, and converts the results back to the original parameterization.
Some subclasses could use a more efficient calculation than using a
new model.
Parameters
----------
keep_index : array_like (int or bool) or slice
variables that should be dropped.
start_params : None or array_like
starting values for the optimization. `start_params` needs to be
given in the original parameter space and are internally
transformed.
k_params : int or None
If None, then we try to infer from start_params or model.
**fit_kwds : keyword arguments
fit_kwds are used in the optimization of the transformed model.
Returns
-------
results : Results instance
"""
# we need to append index of extra params to keep_index as in
# NegativeBinomial
if hasattr(self, 'k_extra') and self.k_extra > 0:
# we cannot change the original, TODO: should we add keep_index_params?
keep_index = np.array(keep_index, copy=True)
k = self.exog.shape[1]
extra_index = np.arange(k, k + self.k_extra)
keep_index_p = np.concatenate((keep_index, extra_index))
else:
keep_index_p = keep_index
# not all models support start_params, drop if None, hide them in fit_kwds
if start_params is not None:
fit_kwds['start_params'] = start_params[keep_index_p]
k_params = len(start_params)
# ignore k_params in this case, or verify consisteny?
# build auxiliary model and fit
init_kwds = self._get_init_kwds()
mod_constr = self.__class__(self.endog, self.exog[:, keep_index],
**init_kwds)
res_constr = mod_constr.fit(**fit_kwds)
# switch name, only need keep_index for params below
keep_index = keep_index_p
if k_params is None:
k_params = self.exog.shape[1]
k_params += getattr(self, 'k_extra', 0)
params_full = np.zeros(k_params)
params_full[keep_index] = res_constr.params
# create dummy results Instance, TODO: wire up properly
# TODO: this could be moved into separate private method if needed
# discrete L1 fit_regularized doens't reestimate AFAICS
# RLM does not have method, disp nor warn_convergence keywords
# OLS, WLS swallows extra kwds with **kwargs, but does not have method='nm'
try:
# Note: addding full_output=False causes exceptions
res = self.fit(maxiter=0, disp=0, method='nm', skip_hessian=True,
warn_convergence=False, start_params=params_full)
# we get a wrapper back
except (TypeError, ValueError):
res = self.fit()
# Warning: make sure we are not just changing the wrapper instead of
# results #2400
# TODO: do we need to change res._results.scale in some models?
if hasattr(res_constr.model, 'scale'):
# Note: res.model is self
# GLM problem, see #2399,
# TODO: remove from model if not needed anymore
res.model.scale = res._results.scale = res_constr.model.scale
if hasattr(res_constr, 'mle_retvals'):
res._results.mle_retvals = res_constr.mle_retvals
# not available for not scipy optimization, e.g. glm irls
# TODO: what retvals should be required?
# res.mle_retvals['fcall'] = res_constr.mle_retvals.get('fcall', np.nan)
# res.mle_retvals['iterations'] = res_constr.mle_retvals.get(
# 'iterations', np.nan)
# res.mle_retvals['converged'] = res_constr.mle_retvals['converged']
# overwrite all mle_settings
if hasattr(res_constr, 'mle_settings'):
res._results.mle_settings = res_constr.mle_settings
res._results.params = params_full
if (not hasattr(res._results, 'normalized_cov_params') or
res._results.normalized_cov_params is None):
res._results.normalized_cov_params = np.zeros((k_params, k_params))
else:
res._results.normalized_cov_params[...] = 0
# fancy indexing requires integer array
keep_index = np.array(keep_index)
res._results.normalized_cov_params[keep_index[:, None], keep_index] = \
res_constr.normalized_cov_params
k_constr = res_constr.df_resid - res._results.df_resid
if hasattr(res_constr, 'cov_params_default'):
res._results.cov_params_default = np.zeros((k_params, k_params))
res._results.cov_params_default[keep_index[:, None], keep_index] = \
res_constr.cov_params_default
if hasattr(res_constr, 'cov_type'):
res._results.cov_type = res_constr.cov_type
res._results.cov_kwds = res_constr.cov_kwds
res._results.keep_index = keep_index
res._results.df_resid = res_constr.df_resid
res._results.df_model = res_constr.df_model
res._results.k_constr = k_constr
res._results.results_constrained = res_constr
# special temporary workaround for RLM
# need to be able to override robust covariances
if hasattr(res.model, 'M'):
del res._results._cache['resid']
del res._results._cache['fittedvalues']
del res._results._cache['sresid']
cov = res._results._cache['bcov_scaled']
# inplace adjustment
cov[...] = 0
cov[keep_index[:, None], keep_index] = res_constr.bcov_scaled
res._results.cov_params_default = cov
return res | experimental, fit the model subject to zero constraints
Intended for internal use cases until we know what we need.
API will need to change to handle models with two exog.
This is not yet supported by all model subclasses.
This is essentially a simplified version of `fit_constrained`, and
does not need to use `offset`.
The estimation creates a new model with transformed design matrix,
exog, and converts the results back to the original parameterization.
Some subclasses could use a more efficient calculation than using a
new model.
Parameters
----------
keep_index : array_like (int or bool) or slice
variables that should be dropped.
start_params : None or array_like
starting values for the optimization. `start_params` needs to be
given in the original parameter space and are internally
transformed.
k_params : int or None
If None, then we try to infer from start_params or model.
**fit_kwds : keyword arguments
fit_kwds are used in the optimization of the transformed model.
Returns
-------
results : Results instance | _fit_zeros | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def _fit_collinear(self, atol=1e-14, rtol=1e-13, **kwds):
"""experimental, fit of the model without collinear variables
This currently uses QR to drop variables based on the given
sequence.
Options will be added in future, when the supporting functions
to identify collinear variables become available.
"""
# ------ copied from PR #2380 remove when merged
x = self.exog
tol = atol + rtol * x.var(0)
r = np.linalg.qr(x, mode='r')
mask = np.abs(r.diagonal()) < np.sqrt(tol)
# TODO add to results instance
# idx_collinear = np.where(mask)[0]
idx_keep = np.where(~mask)[0]
return self._fit_zeros(keep_index=idx_keep, **kwds) | experimental, fit of the model without collinear variables
This currently uses QR to drop variables based on the given
sequence.
Options will be added in future, when the supporting functions
to identify collinear variables become available. | _fit_collinear | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def initialize(self):
"""
Initialize (possibly re-initialize) a Model instance. For
instance, the design matrix of a linear model may change
and some things must be recomputed.
"""
if not self.score: # right now score is not optional
self.score = lambda x: approx_fprime(x, self.loglike)
if not self.hessian:
pass
else: # can use approx_hess_p if we have a gradient
if not self.hessian:
pass
# Initialize is called by
# statsmodels.model.LikelihoodModel.__init__
# and should contain any preprocessing that needs to be done for a model
if self.exog is not None:
# assume constant
er = np.linalg.matrix_rank(self.exog)
self.df_model = float(er - 1)
self.df_resid = float(self.exog.shape[0] - er)
else:
self.df_model = np.nan
self.df_resid = np.nan
super().initialize() | Initialize (possibly re-initialize) a Model instance. For
instance, the design matrix of a linear model may change
and some things must be recomputed. | initialize | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def expandparams(self, params):
"""
expand to full parameter array when some parameters are fixed
Parameters
----------
params : ndarray
reduced parameter array
Returns
-------
paramsfull : ndarray
expanded parameter array where fixed parameters are included
Notes
-----
Calling this requires that self.fixed_params and self.fixed_paramsmask
are defined.
*developer notes:*
This can be used in the log-likelihood to ...
this could also be replaced by a more general parameter
transformation.
"""
paramsfull = self.fixed_params.copy()
paramsfull[self.fixed_paramsmask] = params
return paramsfull | expand to full parameter array when some parameters are fixed
Parameters
----------
params : ndarray
reduced parameter array
Returns
-------
paramsfull : ndarray
expanded parameter array where fixed parameters are included
Notes
-----
Calling this requires that self.fixed_params and self.fixed_paramsmask
are defined.
*developer notes:*
This can be used in the log-likelihood to ...
this could also be replaced by a more general parameter
transformation. | expandparams | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def reduceparams(self, params):
"""Reduce parameters"""
return params[self.fixed_paramsmask] | Reduce parameters | reduceparams | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def loglike(self, params):
"""Log-likelihood of model at params"""
return self.loglikeobs(params).sum(0) | Log-likelihood of model at params | loglike | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def nloglike(self, params):
"""Negative log-likelihood of model at params"""
return -self.loglikeobs(params).sum(0) | Negative log-likelihood of model at params | nloglike | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def loglikeobs(self, params):
"""
Log-likelihood of the model for all observations at params.
Parameters
----------
params : array_like
The parameters of the model.
Returns
-------
loglike : array_like
The log likelihood of the model evaluated at `params`.
"""
return -self.nloglikeobs(params) | Log-likelihood of the model for all observations at params.
Parameters
----------
params : array_like
The parameters of the model.
Returns
-------
loglike : array_like
The log likelihood of the model evaluated at `params`. | loglikeobs | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def score(self, params):
"""
Gradient of log-likelihood evaluated at params
"""
kwds = {}
kwds.setdefault('centered', True)
return approx_fprime(params, self.loglike, **kwds).ravel() | Gradient of log-likelihood evaluated at params | score | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def score_obs(self, params, **kwds):
"""
Jacobian/Gradient of log-likelihood evaluated at params for each
observation.
"""
# kwds.setdefault('epsilon', 1e-4)
kwds.setdefault('centered', True)
return approx_fprime(params, self.loglikeobs, **kwds) | Jacobian/Gradient of log-likelihood evaluated at params for each
observation. | score_obs | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def hessian(self, params):
"""
Hessian of log-likelihood evaluated at params
"""
from statsmodels.tools.numdiff import approx_hess
# need options for hess (epsilon)
return approx_hess(params, self.loglike) | Hessian of log-likelihood evaluated at params | hessian | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def hessian_factor(self, params, scale=None, observed=True):
"""Weights for calculating Hessian
Parameters
----------
params : ndarray
parameter at which Hessian is evaluated
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
hessian_factor : ndarray, 1d
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`
"""
raise NotImplementedError | Weights for calculating Hessian
Parameters
----------
params : ndarray
parameter at which Hessian is evaluated
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
hessian_factor : ndarray, 1d
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)` | hessian_factor | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def initialize(self, model, params, **kwargs):
"""
Initialize (possibly re-initialize) a Results instance.
Parameters
----------
model : Model
The model instance.
params : ndarray
The model parameters.
**kwargs
Any additional keyword arguments required to initialize the model.
"""
self.params = params
self.model = model
if hasattr(model, 'k_constant'):
self.k_constant = model.k_constant | Initialize (possibly re-initialize) a Results instance.
Parameters
----------
model : Model
The model instance.
params : ndarray
The model parameters.
**kwargs
Any additional keyword arguments required to initialize the model. | initialize | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def predict(self, exog=None, transform=True, *args, **kwargs):
"""
Call self.model.predict with self.params as the first argument.
Parameters
----------
exog : array_like, optional
The values for which you want to predict. see Notes below.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
*args
Additional arguments to pass to the model, see the
predict method of the model for the details.
**kwargs
Additional keywords arguments to pass to the model, see the
predict method of the model for the details.
Returns
-------
array_like
See self.model.predict.
Notes
-----
The types of exog that are supported depends on whether a formula
was used in the specification of the model.
If a formula was used, then exog is processed in the same way as
the original data. This transformation needs to have key access to the
same variable names, and can be a pandas DataFrame or a dict like
object that contains numpy arrays.
If no formula was used, then the provided exog needs to have the
same number of columns as the original exog in the model. No
transformation of the data is performed except converting it to
a numpy array.
Row indices as in pandas data frames are supported, and added to the
returned prediction.
"""
exog, exog_index = self._transform_predict_exog(exog,
transform=transform)
predict_results = self.model.predict(self.params, exog, *args,
**kwargs)
if exog_index is not None and not hasattr(predict_results,
'predicted_values'):
if predict_results.ndim == 1:
return pd.Series(predict_results, index=exog_index)
else:
return pd.DataFrame(predict_results, index=exog_index)
else:
return predict_results | Call self.model.predict with self.params as the first argument.
Parameters
----------
exog : array_like, optional
The values for which you want to predict. see Notes below.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
*args
Additional arguments to pass to the model, see the
predict method of the model for the details.
**kwargs
Additional keywords arguments to pass to the model, see the
predict method of the model for the details.
Returns
-------
array_like
See self.model.predict.
Notes
-----
The types of exog that are supported depends on whether a formula
was used in the specification of the model.
If a formula was used, then exog is processed in the same way as
the original data. This transformation needs to have key access to the
same variable names, and can be a pandas DataFrame or a dict like
object that contains numpy arrays.
If no formula was used, then the provided exog needs to have the
same number of columns as the original exog in the model. No
transformation of the data is performed except converting it to
a numpy array.
Row indices as in pandas data frames are supported, and added to the
returned prediction. | predict | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def summary(self):
"""
Summary
Not implemented
"""
raise NotImplementedError | Summary
Not implemented | summary | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def normalized_cov_params(self):
"""See specific model class docstring"""
raise NotImplementedError | See specific model class docstring | normalized_cov_params | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def use_t(self):
"""Flag indicating to use the Student's distribution in inference."""
return self._use_t | Flag indicating to use the Student's distribution in inference. | use_t | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def llf(self):
"""Log-likelihood of model"""
return self.model.loglike(self.params) | Log-likelihood of model | llf | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def bse(self):
"""The standard errors of the parameter estimates."""
# Issue 3299
if ((not hasattr(self, 'cov_params_default')) and
(self.normalized_cov_params is None)):
bse_ = np.empty(len(self.params))
bse_[:] = np.nan
else:
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
bse_ = np.sqrt(np.diag(self.cov_params()))
return bse_ | The standard errors of the parameter estimates. | bse | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def tvalues(self):
"""
Return the t-statistic for a given parameter estimate.
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
return self.params / self.bse | Return the t-statistic for a given parameter estimate. | tvalues | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def pvalues(self):
"""The two-tailed p values for the t-stats of the params."""
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
if self.use_t:
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
return stats.t.sf(np.abs(self.tvalues), df_resid) * 2
else:
return stats.norm.sf(np.abs(self.tvalues)) * 2 | The two-tailed p values for the t-stats of the params. | pvalues | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None,
other=None):
"""
Compute the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast of the
estimated parameters or all params multiplied by scale which will
usually be an estimate of sigma^2. Scale is assumed to be a scalar.
Parameters
----------
r_matrix : array_like
Can be 1d, or 2d. Can be used alone or with other.
column : array_like, optional
Must be used on its own. Can be 0d or 1d see below.
scale : float, optional
Can be specified or not. Default is None, which means that
the scale argument is taken from the model.
cov_p : ndarray, optional
The covariance of the parameters. If not provided, this value is
read from `self.normalized_cov_params` or
`self.cov_params_default`.
other : array_like, optional
Can be used when r_matrix is specified.
Returns
-------
ndarray
The covariance matrix of the parameter estimates or of linear
combination of parameter estimates. See Notes.
Notes
-----
(The below are assumed to be in matrix notation.)
If no argument is specified returns the covariance matrix of a model
``(scale)*(X.T X)^(-1)``
If contrast is specified it pre and post-multiplies as follows
``(scale) * r_matrix (X.T X)^(-1) r_matrix.T``
If contrast and other are specified returns
``(scale) * r_matrix (X.T X)^(-1) other.T``
If column is specified returns
``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d
OR
``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d
"""
if (hasattr(self, 'mle_settings') and
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
dot_fun = nan_dot
else:
dot_fun = np.dot
if (cov_p is None and self.normalized_cov_params is None and
not hasattr(self, 'cov_params_default')):
raise ValueError('need covariance of parameters for computing '
'(unnormalized) covariances')
if column is not None and (r_matrix is not None or other is not None):
raise ValueError('Column should be specified without other '
'arguments.')
if other is not None and r_matrix is None:
raise ValueError('other can only be specified with r_matrix')
if cov_p is None:
if hasattr(self, 'cov_params_default'):
cov_p = self.cov_params_default
else:
if scale is None:
scale = self.scale
cov_p = self.normalized_cov_params * scale
if column is not None:
column = np.asarray(column)
if column.shape == ():
return cov_p[column, column]
else:
return cov_p[column[:, None], column]
elif r_matrix is not None:
r_matrix = np.asarray(r_matrix)
if r_matrix.shape == ():
raise ValueError("r_matrix should be 1d or 2d")
if other is None:
other = r_matrix
else:
other = np.asarray(other)
tmp = dot_fun(r_matrix, dot_fun(cov_p, np.transpose(other)))
return tmp
else: # if r_matrix is None and column is None:
return cov_p | Compute the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast of the
estimated parameters or all params multiplied by scale which will
usually be an estimate of sigma^2. Scale is assumed to be a scalar.
Parameters
----------
r_matrix : array_like
Can be 1d, or 2d. Can be used alone or with other.
column : array_like, optional
Must be used on its own. Can be 0d or 1d see below.
scale : float, optional
Can be specified or not. Default is None, which means that
the scale argument is taken from the model.
cov_p : ndarray, optional
The covariance of the parameters. If not provided, this value is
read from `self.normalized_cov_params` or
`self.cov_params_default`.
other : array_like, optional
Can be used when r_matrix is specified.
Returns
-------
ndarray
The covariance matrix of the parameter estimates or of linear
combination of parameter estimates. See Notes.
Notes
-----
(The below are assumed to be in matrix notation.)
If no argument is specified returns the covariance matrix of a model
``(scale)*(X.T X)^(-1)``
If contrast is specified it pre and post-multiplies as follows
``(scale) * r_matrix (X.T X)^(-1) r_matrix.T``
If contrast and other are specified returns
``(scale) * r_matrix (X.T X)^(-1) other.T``
If column is specified returns
``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d
OR
``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d | cov_params | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def t_test(self, r_matrix, cov_p=None, use_t=None):
"""
Compute a t-test for a each linear hypothesis of the form Rb = q.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : If an array is given, a p x k 2d array or length k 1d
array specifying the linear restrictions. It is assumed
that the linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q). If q is given,
can be either a scalar or a length p row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
use_t : bool, optional
If use_t is None, then the default of the model is used. If use_t
is True, then the p-values are based on the t distribution. If
use_t is False, then the p-values are based on the normal
distribution.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
The available results have the same elements as the parameter table
in `summary()`.
See Also
--------
tvalues : Individual t statistics for the estimated parameters.
f_test : Perform an F tests on model parameters.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> r = np.zeros_like(results.params)
>>> r[5:] = [1,-1]
>>> print(r)
[ 0. 0. 0. 0. 0. 1. -1.]
r tests that the coefficients on the 5th and 6th independent
variable are the same.
>>> T_test = results.t_test(r)
>>> print(T_test)
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 -1829.2026 455.391 -4.017 0.003 -2859.368 -799.037
==============================================================================
>>> T_test.effect
-1829.2025687192481
>>> T_test.sd
455.39079425193762
>>> T_test.tvalue
-4.0167754636411717
>>> T_test.pvalue
0.0015163772380899498
Alternatively, you can specify the hypothesis tests using a string
>>> from statsmodels.formula.api import ols
>>> dta = sm.datasets.longley.load_pandas().data
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
>>> results = ols(formula, dta).fit()
>>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1'
>>> t_test = results.t_test(hypotheses)
>>> print(t_test)
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 15.0977 84.937 0.178 0.863 -177.042 207.238
c1 -2.0202 0.488 -8.231 0.000 -3.125 -0.915
c2 1.0001 0.249 0.000 1.000 0.437 1.563
==============================================================================
"""
use_t = bool_like(use_t, "use_t", strict=True, optional=True)
if self.params.ndim == 2:
names = [f'y{i[0]}_{i[1]}'
for i in self.model.data.cov_names]
else:
names = self.model.data.cov_names
mgr = FormulaManager()
lc = mgr.get_linear_constraints(r_matrix, names)
r_matrix, q_matrix = lc.constraint_matrix, lc.constraint_values
num_ttests = r_matrix.shape[0]
num_params = r_matrix.shape[1]
if (cov_p is None and self.normalized_cov_params is None and
not hasattr(self, 'cov_params_default')):
raise ValueError('Need covariance of parameters for computing '
'T statistics')
params = self.params.ravel(order="F")
if num_params != params.shape[0]:
raise ValueError('r_matrix and params are not aligned')
if q_matrix is None:
q_matrix = np.zeros(num_ttests)
else:
q_matrix = np.asarray(q_matrix)
q_matrix = q_matrix.squeeze()
if q_matrix.size > 1:
if q_matrix.shape[0] != num_ttests:
raise ValueError("r_matrix and q_matrix must have the same "
"number of rows")
if use_t is None:
# switch to use_t false if undefined
use_t = (hasattr(self, 'use_t') and self.use_t)
_effect = np.dot(r_matrix, params)
# Perform the test
if num_ttests > 1:
_sd = np.sqrt(np.diag(self.cov_params(
r_matrix=r_matrix, cov_p=cov_p)))
else:
_sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p))
_t = (_effect - q_matrix) * recipr(_sd)
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
if use_t:
return ContrastResults(effect=_effect, t=_t, sd=_sd,
df_denom=df_resid)
else:
return ContrastResults(effect=_effect, statistic=_t, sd=_sd,
df_denom=df_resid,
distribution='norm') | Compute a t-test for a each linear hypothesis of the form Rb = q.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : If an array is given, a p x k 2d array or length k 1d
array specifying the linear restrictions. It is assumed
that the linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q). If q is given,
can be either a scalar or a length p row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
use_t : bool, optional
If use_t is None, then the default of the model is used. If use_t
is True, then the p-values are based on the t distribution. If
use_t is False, then the p-values are based on the normal
distribution.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
The available results have the same elements as the parameter table
in `summary()`.
See Also
--------
tvalues : Individual t statistics for the estimated parameters.
f_test : Perform an F tests on model parameters.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> r = np.zeros_like(results.params)
>>> r[5:] = [1,-1]
>>> print(r)
[ 0. 0. 0. 0. 0. 1. -1.]
r tests that the coefficients on the 5th and 6th independent
variable are the same.
>>> T_test = results.t_test(r)
>>> print(T_test)
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 -1829.2026 455.391 -4.017 0.003 -2859.368 -799.037
==============================================================================
>>> T_test.effect
-1829.2025687192481
>>> T_test.sd
455.39079425193762
>>> T_test.tvalue
-4.0167754636411717
>>> T_test.pvalue
0.0015163772380899498
Alternatively, you can specify the hypothesis tests using a string
>>> from statsmodels.formula.api import ols
>>> dta = sm.datasets.longley.load_pandas().data
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
>>> results = ols(formula, dta).fit()
>>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1'
>>> t_test = results.t_test(hypotheses)
>>> print(t_test)
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 15.0977 84.937 0.178 0.863 -177.042 207.238
c1 -2.0202 0.488 -8.231 0.000 -3.125 -0.915
c2 1.0001 0.249 0.000 1.000 0.437 1.563
============================================================================== | t_test | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def f_test(self, r_matrix, cov_p=None, invcov=None):
"""
Compute the F-test for a joint linear hypothesis.
This is a special case of `wald_test` that always uses the F
distribution.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : An r x k array where r is the number of restrictions to
test and k is the number of regressors. It is assumed
that the linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
either a scalar or a length k row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
invcov : array_like, optional
A q x q array to specify an inverse covariance matrix based on a
restrictions matrix.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
See Also
--------
t_test : Perform a single hypothesis test.
wald_test : Perform a Wald-test using a quadratic form.
statsmodels.stats.contrast.ContrastResults : Test results.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Notes
-----
The matrix `r_matrix` is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the
design matrix of the model. There can be problems in non-OLS models
where the rank of the covariance of the noise is not full.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> A = np.identity(len(results.params))
>>> A = A[1:,:]
This tests that each coefficient is jointly statistically
significantly different from zero.
>>> print(results.f_test(A))
<F test: F=array([[ 330.28533923]]), p=4.984030528700946e-10, df_denom=9, df_num=6>
Compare this to
>>> results.fvalue
330.2853392346658
>>> results.f_pvalue
4.98403096572e-10
>>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1]))
This tests that the coefficient on the 2nd and 3rd regressors are
equal and jointly that the coefficient on the 5th and 6th regressors
are equal.
>>> print(results.f_test(B))
<F test: F=array([[ 9.74046187]]), p=0.005605288531708235, df_denom=9, df_num=2>
Alternatively, you can specify the hypothesis tests using a string
>>> from statsmodels.datasets import longley
>>> from statsmodels.formula.api import ols
>>> dta = longley.load_pandas().data
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
>>> results = ols(formula, dta).fit()
>>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
>>> f_test = results.f_test(hypotheses)
>>> print(f_test)
<F test: F=array([[ 144.17976065]]), p=6.322026217355609e-08, df_denom=9, df_num=3>
"""
res = self.wald_test(r_matrix, cov_p=cov_p, invcov=invcov, use_f=True, scalar=True)
return res | Compute the F-test for a joint linear hypothesis.
This is a special case of `wald_test` that always uses the F
distribution.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : An r x k array where r is the number of restrictions to
test and k is the number of regressors. It is assumed
that the linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
either a scalar or a length k row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
invcov : array_like, optional
A q x q array to specify an inverse covariance matrix based on a
restrictions matrix.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
See Also
--------
t_test : Perform a single hypothesis test.
wald_test : Perform a Wald-test using a quadratic form.
statsmodels.stats.contrast.ContrastResults : Test results.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Notes
-----
The matrix `r_matrix` is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the
design matrix of the model. There can be problems in non-OLS models
where the rank of the covariance of the noise is not full.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> A = np.identity(len(results.params))
>>> A = A[1:,:]
This tests that each coefficient is jointly statistically
significantly different from zero.
>>> print(results.f_test(A))
<F test: F=array([[ 330.28533923]]), p=4.984030528700946e-10, df_denom=9, df_num=6>
Compare this to
>>> results.fvalue
330.2853392346658
>>> results.f_pvalue
4.98403096572e-10
>>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1]))
This tests that the coefficient on the 2nd and 3rd regressors are
equal and jointly that the coefficient on the 5th and 6th regressors
are equal.
>>> print(results.f_test(B))
<F test: F=array([[ 9.74046187]]), p=0.005605288531708235, df_denom=9, df_num=2>
Alternatively, you can specify the hypothesis tests using a string
>>> from statsmodels.datasets import longley
>>> from statsmodels.formula.api import ols
>>> dta = longley.load_pandas().data
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
>>> results = ols(formula, dta).fit()
>>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
>>> f_test = results.f_test(hypotheses)
>>> print(f_test)
<F test: F=array([[ 144.17976065]]), p=6.322026217355609e-08, df_denom=9, df_num=3> | f_test | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def wald_test(self, r_matrix, cov_p=None, invcov=None,
use_f=None, df_constraints=None, scalar=None):
"""
Compute a Wald-test for a joint linear hypothesis.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : An r x k array where r is the number of restrictions to
test and k is the number of regressors. It is assumed that the
linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
either a scalar or a length p row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
invcov : array_like, optional
A q x q array to specify an inverse covariance matrix based on a
restrictions matrix.
use_f : bool
If True, then the F-distribution is used. If False, then the
asymptotic distribution, chisquare is used. If use_f is None, then
the F distribution is used if the model specifies that use_t is True.
The test statistic is proportionally adjusted for the distribution
by the number of constraints in the hypothesis.
df_constraints : int, optional
The number of constraints. If not provided the number of
constraints is determined from r_matrix.
scalar : bool, optional
Flag indicating whether the Wald test statistic should be returned
as a sclar float. The current behavior is to return an array.
This will switch to a scalar float after 0.14 is released. To
get the future behavior now, set scalar to True. To silence
the warning and retain the legacy behavior, set scalar to
False.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
See Also
--------
f_test : Perform an F tests on model parameters.
t_test : Perform a single hypothesis test.
statsmodels.stats.contrast.ContrastResults : Test results.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Notes
-----
The matrix `r_matrix` is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the
design matrix of the model. There can be problems in non-OLS models
where the rank of the covariance of the noise is not full.
"""
use_f = bool_like(use_f, "use_f", strict=True, optional=True)
scalar = bool_like(scalar, "scalar", strict=True, optional=True)
if use_f is None:
# switch to use_t false if undefined
use_f = (hasattr(self, 'use_t') and self.use_t)
if self.params.ndim == 2:
names = [f'y{i[0]}_{i[1]}'
for i in self.model.data.cov_names]
else:
names = self.model.data.cov_names
params = self.params.ravel(order="F")
mgr = FormulaManager()
lc = mgr.get_linear_constraints(r_matrix, names)
r_matrix, q_matrix = lc.constraint_matrix, lc.constraint_values
if (self.normalized_cov_params is None and cov_p is None and
invcov is None and not hasattr(self, 'cov_params_default')):
raise ValueError('need covariance of parameters for computing '
'F statistics')
cparams = np.dot(r_matrix, params[:, None])
J = float(r_matrix.shape[0]) # number of restrictions
if q_matrix is None:
q_matrix = np.zeros(J)
else:
q_matrix = np.asarray(q_matrix)
if q_matrix.ndim == 1:
q_matrix = q_matrix[:, None]
if q_matrix.shape[0] != J:
raise ValueError("r_matrix and q_matrix must have the same "
"number of rows")
Rbq = cparams - q_matrix
if invcov is None:
cov_p = self.cov_params(r_matrix=r_matrix, cov_p=cov_p)
if np.isnan(cov_p).max():
raise ValueError("r_matrix performs f_test for using "
"dimensions that are asymptotically "
"non-normal")
invcov = np.linalg.pinv(cov_p)
J_ = np.linalg.matrix_rank(cov_p)
if J_ < J:
warnings.warn('covariance of constraints does not have full '
'rank. The number of constraints is %d, but '
'rank is %d' % (J, J_), ValueWarning)
J = J_
# TODO streamline computation, we do not need to compute J if given
if df_constraints is not None:
# let caller override J by df_constraint
J = df_constraints
if (hasattr(self, 'mle_settings') and
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
F = nan_dot(nan_dot(Rbq.T, invcov), Rbq)
else:
F = np.dot(np.dot(Rbq.T, invcov), Rbq)
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
if scalar is None:
warnings.warn(
"The behavior of wald_test will change after 0.14 to returning "
"scalar test statistic values. To get the future behavior now, "
"set scalar to True. To silence this message while retaining "
"the legacy behavior, set scalar to False.",
FutureWarning
)
scalar = False
if scalar and F.size == 1:
F = float(np.squeeze(F))
if use_f:
F /= J
return ContrastResults(F=F, df_denom=df_resid,
df_num=J) #invcov.shape[0])
else:
return ContrastResults(chi2=F, df_denom=J, statistic=F,
distribution='chi2', distargs=(J,)) | Compute a Wald-test for a joint linear hypothesis.
Parameters
----------
r_matrix : {array_like, str, tuple}
One of:
- array : An r x k array where r is the number of restrictions to
test and k is the number of regressors. It is assumed that the
linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string.
See the examples.
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
either a scalar or a length p row vector.
cov_p : array_like, optional
An alternative estimate for the parameter covariance matrix.
If None is given, self.normalized_cov_params is used.
invcov : array_like, optional
A q x q array to specify an inverse covariance matrix based on a
restrictions matrix.
use_f : bool
If True, then the F-distribution is used. If False, then the
asymptotic distribution, chisquare is used. If use_f is None, then
the F distribution is used if the model specifies that use_t is True.
The test statistic is proportionally adjusted for the distribution
by the number of constraints in the hypothesis.
df_constraints : int, optional
The number of constraints. If not provided the number of
constraints is determined from r_matrix.
scalar : bool, optional
Flag indicating whether the Wald test statistic should be returned
as a sclar float. The current behavior is to return an array.
This will switch to a scalar float after 0.14 is released. To
get the future behavior now, set scalar to True. To silence
the warning and retain the legacy behavior, set scalar to
False.
Returns
-------
ContrastResults
The results for the test are attributes of this results instance.
See Also
--------
f_test : Perform an F tests on model parameters.
t_test : Perform a single hypothesis test.
statsmodels.stats.contrast.ContrastResults : Test results.
patsy.DesignInfo.linear_constraint : Specify a linear constraint.
Notes
-----
The matrix `r_matrix` is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the
design matrix of the model. There can be problems in non-OLS models
where the rank of the covariance of the noise is not full. | wald_test | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def wald_test_terms(self, skip_single=False, extra_constraints=None,
combine_terms=None, scalar=None):
"""
Compute a sequence of Wald tests for terms over multiple columns.
This computes joined Wald tests for the hypothesis that all
coefficients corresponding to a `term` are zero.
`Terms` are defined by the underlying formula or by string matching.
Parameters
----------
skip_single : bool
If true, then terms that consist only of a single column and,
therefore, refers only to a single parameter is skipped.
If false, then all terms are included.
extra_constraints : ndarray
Additional constraints to test. Note that this input has not been
tested.
combine_terms : {list[str], None}
Each string in this list is matched to the name of the terms or
the name of the exogenous variables. All columns whose name
includes that string are combined in one joint test.
scalar : bool, optional
Flag indicating whether the Wald test statistic should be returned
as a sclar float. The current behavior is to return an array.
This will switch to a scalar float after 0.14 is released. To
get the future behavior now, set scalar to True. To silence
the warning and retain the legacy behavior, set scalar to
False.
Returns
-------
WaldTestResults
The result instance contains `table` which is a pandas DataFrame
with the test results: test statistic, degrees of freedom and
pvalues.
Examples
--------
>>> res_ols = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)", data).fit()
>>> res_ols.wald_test_terms()
<class 'statsmodels.stats.contrast.WaldTestResults'>
F P>F df constraint df denom
Intercept 279.754525 2.37985521351e-22 1 51
C(Duration, Sum) 5.367071 0.0245738436636 1 51
C(Weight, Sum) 12.432445 3.99943118767e-05 2 51
C(Duration, Sum):C(Weight, Sum) 0.176002 0.83912310946 2 51
>>> res_poi = Poisson.from_formula("Days ~ C(Weight) * C(Duration)", \
data).fit(cov_type='HC0')
>>> wt = res_poi.wald_test_terms(skip_single=False, \
combine_terms=['Duration', 'Weight'])
>>> print(wt)
chi2 P>chi2 df constraint
Intercept 15.695625 7.43960374424e-05 1
C(Weight) 16.132616 0.000313940174705 2
C(Duration) 1.009147 0.315107378931 1
C(Weight):C(Duration) 0.216694 0.897315972824 2
Duration 11.187849 0.010752286833 3
Weight 30.263368 4.32586407145e-06 4
"""
# lazy import
mgr = FormulaManager()
result = self
if extra_constraints is None:
extra_constraints = []
if combine_terms is None:
combine_terms = []
model_spec = getattr(result.model.data, 'model_spec', None)
if model_spec is None and extra_constraints is None:
raise ValueError('no constraints, nothing to do')
identity = np.eye(len(result.params))
constraints = []
combined = defaultdict(list)
if model_spec is not None:
for term in model_spec.terms:
cols = mgr.get_slice(model_spec, term)
name = mgr.get_term_name(term)
constraint_matrix = identity[cols]
# check if in combined
for cname in combine_terms:
if cname in name:
combined[cname].append(constraint_matrix)
k_constraint = constraint_matrix.shape[0]
if skip_single:
if k_constraint == 1:
continue
constraints.append((name, constraint_matrix))
combined_constraints = []
for cname in combine_terms:
combined_constraints.append((cname, np.vstack(combined[cname])))
else:
# check by exog/params names if there is no formula info
for col, name in enumerate(result.model.exog_names):
constraint_matrix = np.atleast_2d(identity[col])
# check if in combined
for cname in combine_terms:
if cname in name:
combined[cname].append(constraint_matrix)
if skip_single:
continue
constraints.append((name, constraint_matrix))
combined_constraints = []
for cname in combine_terms:
combined_constraints.append((cname, np.vstack(combined[cname])))
use_t = result.use_t
distribution = ['chi2', 'F'][use_t]
res_wald = []
index = []
for name, constraint in constraints + combined_constraints + extra_constraints:
wt = result.wald_test(constraint, scalar=scalar)
row = [wt.statistic, wt.pvalue, constraint.shape[0]]
if use_t:
row.append(wt.df_denom)
res_wald.append(row)
index.append(name)
# distribution nerutral names
col_names = ['statistic', 'pvalue', 'df_constraint']
if use_t:
col_names.append('df_denom')
# TODO: maybe move DataFrame creation to results class
from pandas import DataFrame
table = DataFrame(res_wald, index=index, columns=col_names)
res = WaldTestResults(None, distribution, None, table=table)
# TODO: remove temp again, added for testing
res.temp = constraints + combined_constraints + extra_constraints
return res | Compute a sequence of Wald tests for terms over multiple columns.
This computes joined Wald tests for the hypothesis that all
coefficients corresponding to a `term` are zero.
`Terms` are defined by the underlying formula or by string matching.
Parameters
----------
skip_single : bool
If true, then terms that consist only of a single column and,
therefore, refers only to a single parameter is skipped.
If false, then all terms are included.
extra_constraints : ndarray
Additional constraints to test. Note that this input has not been
tested.
combine_terms : {list[str], None}
Each string in this list is matched to the name of the terms or
the name of the exogenous variables. All columns whose name
includes that string are combined in one joint test.
scalar : bool, optional
Flag indicating whether the Wald test statistic should be returned
as a sclar float. The current behavior is to return an array.
This will switch to a scalar float after 0.14 is released. To
get the future behavior now, set scalar to True. To silence
the warning and retain the legacy behavior, set scalar to
False.
Returns
-------
WaldTestResults
The result instance contains `table` which is a pandas DataFrame
with the test results: test statistic, degrees of freedom and
pvalues.
Examples
--------
>>> res_ols = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)", data).fit()
>>> res_ols.wald_test_terms()
<class 'statsmodels.stats.contrast.WaldTestResults'>
F P>F df constraint df denom
Intercept 279.754525 2.37985521351e-22 1 51
C(Duration, Sum) 5.367071 0.0245738436636 1 51
C(Weight, Sum) 12.432445 3.99943118767e-05 2 51
C(Duration, Sum):C(Weight, Sum) 0.176002 0.83912310946 2 51
>>> res_poi = Poisson.from_formula("Days ~ C(Weight) * C(Duration)", \
data).fit(cov_type='HC0')
>>> wt = res_poi.wald_test_terms(skip_single=False, \
combine_terms=['Duration', 'Weight'])
>>> print(wt)
chi2 P>chi2 df constraint
Intercept 15.695625 7.43960374424e-05 1
C(Weight) 16.132616 0.000313940174705 2
C(Duration) 1.009147 0.315107378931 1
C(Weight):C(Duration) 0.216694 0.897315972824 2
Duration 11.187849 0.010752286833 3
Weight 30.263368 4.32586407145e-06 4 | wald_test_terms | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def t_test_pairwise(self, term_name, method='hs', alpha=0.05,
factor_labels=None):
"""
Perform pairwise t_test with multiple testing corrected p-values.
This uses the formula's model_spec encoding contrast matrix and should
work for all encodings of a main effect.
Parameters
----------
term_name : str
The name of the term for which pairwise comparisons are computed.
Term names for categorical effects are created by patsy and
correspond to the main part of the exog names.
method : {str, list[str]}
The multiple testing p-value correction to apply. The default is
'hs'. See stats.multipletesting.
alpha : float
The significance level for multiple testing reject decision.
factor_labels : {list[str], None}
Labels for the factor levels used for pairwise labels. If not
provided, then the labels from the formula's model_spec are used.
Returns
-------
MultiCompResult
The results are stored as attributes, the main attributes are the
following two. Other attributes are added for debugging purposes
or as background information.
- result_frame : pandas DataFrame with t_test results and multiple
testing corrected p-values.
- contrasts : matrix of constraints of the null hypothesis in the
t_test.
Notes
-----
Status: experimental. Currently only checked for treatment coding with
and without specified reference level.
Currently there are no multiple testing corrected confidence intervals
available.
Examples
--------
>>> res = ols("np.log(Days+1) ~ C(Weight) + C(Duration)", data).fit()
>>> pw = res.t_test_pairwise("C(Weight)")
>>> pw.result_frame
coef std err t P>|t| Conf. Int. Low
2-1 0.632315 0.230003 2.749157 8.028083e-03 0.171563
3-1 1.302555 0.230003 5.663201 5.331513e-07 0.841803
3-2 0.670240 0.230003 2.914044 5.119126e-03 0.209488
Conf. Int. Upp. pvalue-hs reject-hs
2-1 1.093067 0.010212 True
3-1 1.763307 0.000002 True
3-2 1.130992 0.010212 True
"""
res = t_test_pairwise(self, term_name, method=method, alpha=alpha,
factor_labels=factor_labels)
return res | Perform pairwise t_test with multiple testing corrected p-values.
This uses the formula's model_spec encoding contrast matrix and should
work for all encodings of a main effect.
Parameters
----------
term_name : str
The name of the term for which pairwise comparisons are computed.
Term names for categorical effects are created by patsy and
correspond to the main part of the exog names.
method : {str, list[str]}
The multiple testing p-value correction to apply. The default is
'hs'. See stats.multipletesting.
alpha : float
The significance level for multiple testing reject decision.
factor_labels : {list[str], None}
Labels for the factor levels used for pairwise labels. If not
provided, then the labels from the formula's model_spec are used.
Returns
-------
MultiCompResult
The results are stored as attributes, the main attributes are the
following two. Other attributes are added for debugging purposes
or as background information.
- result_frame : pandas DataFrame with t_test results and multiple
testing corrected p-values.
- contrasts : matrix of constraints of the null hypothesis in the
t_test.
Notes
-----
Status: experimental. Currently only checked for treatment coding with
and without specified reference level.
Currently there are no multiple testing corrected confidence intervals
available.
Examples
--------
>>> res = ols("np.log(Days+1) ~ C(Weight) + C(Duration)", data).fit()
>>> pw = res.t_test_pairwise("C(Weight)")
>>> pw.result_frame
coef std err t P>|t| Conf. Int. Low
2-1 0.632315 0.230003 2.749157 8.028083e-03 0.171563
3-1 1.302555 0.230003 5.663201 5.331513e-07 0.841803
3-2 0.670240 0.230003 2.914044 5.119126e-03 0.209488
Conf. Int. Upp. pvalue-hs reject-hs
2-1 1.093067 0.010212 True
3-1 1.763307 0.000002 True
3-2 1.130992 0.010212 True | t_test_pairwise | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def _get_wald_nonlinear(self, func, deriv=None):
"""Experimental method for nonlinear prediction and tests
Parameters
----------
func : callable, f(params)
nonlinear function of the estimation parameters. The return of
the function can be vector valued, i.e. a 1-D array
deriv : function or None
first derivative or Jacobian of func. If deriv is None, then a
numerical derivative will be used. If func returns a 1-D array,
then the `deriv` should have rows corresponding to the elements
of the return of func.
Returns
-------
nl : instance of `NonlinearDeltaCov` with attributes and methods to
calculate the results for the prediction or tests
"""
from statsmodels.stats._delta_method import NonlinearDeltaCov
func_args = None # TODO: not yet implemented, maybe skip - use partial
nl = NonlinearDeltaCov(func, self.params, self.cov_params(),
deriv=deriv, func_args=func_args)
return nl | Experimental method for nonlinear prediction and tests
Parameters
----------
func : callable, f(params)
nonlinear function of the estimation parameters. The return of
the function can be vector valued, i.e. a 1-D array
deriv : function or None
first derivative or Jacobian of func. If deriv is None, then a
numerical derivative will be used. If func returns a 1-D array,
then the `deriv` should have rows corresponding to the elements
of the return of func.
Returns
-------
nl : instance of `NonlinearDeltaCov` with attributes and methods to
calculate the results for the prediction or tests | _get_wald_nonlinear | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def conf_int(self, alpha=.05, cols=None):
"""
Construct confidence interval for the fitted parameters.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval. The default
`alpha` = .05 returns a 95% confidence interval.
cols : array_like, optional
Specifies which confidence intervals to return.
.. deprecated: 0.13
cols is deprecated and will be removed after 0.14 is released.
cols only works when inputs are NumPy arrays and will fail
when using pandas Series or DataFrames as input. You can
subset the confidence intervals using slices.
Returns
-------
array_like
Each row contains [lower, upper] limits of the confidence interval
for the corresponding parameter. The first column contains all
lower, the second column contains all upper limits.
Notes
-----
The confidence interval is based on the standard normal distribution
if self.use_t is False. If self.use_t is True, then uses a Student's t
with self.df_resid_inference (or self.df_resid if df_resid_inference is
not defined) degrees of freedom.
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> results.conf_int()
array([[-5496529.48322745, -1467987.78596704],
[ -177.02903529, 207.15277984],
[ -0.1115811 , 0.03994274],
[ -3.12506664, -0.91539297],
[ -1.5179487 , -0.54850503],
[ -0.56251721, 0.460309 ],
[ 798.7875153 , 2859.51541392]])
>>> results.conf_int(cols=(2,3))
array([[-0.1115811 , 0.03994274],
[-3.12506664, -0.91539297]])
"""
bse = self.bse
if self.use_t:
dist = stats.t
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
q = dist.ppf(1 - alpha / 2, df_resid)
else:
dist = stats.norm
q = dist.ppf(1 - alpha / 2)
params = self.params
lower = params - q * bse
upper = params + q * bse
if cols is not None:
warnings.warn(
"cols is deprecated and will be removed after 0.14 is "
"released. cols only works when inputs are NumPy arrays and "
"will fail when using pandas Series or DataFrames as input. "
"Subsets of confidence intervals can be selected using slices "
"of the full confidence interval array.",
FutureWarning
)
cols = np.asarray(cols)
lower = lower[cols]
upper = upper[cols]
return np.asarray(lzip(lower, upper)) | Construct confidence interval for the fitted parameters.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval. The default
`alpha` = .05 returns a 95% confidence interval.
cols : array_like, optional
Specifies which confidence intervals to return.
.. deprecated: 0.13
cols is deprecated and will be removed after 0.14 is released.
cols only works when inputs are NumPy arrays and will fail
when using pandas Series or DataFrames as input. You can
subset the confidence intervals using slices.
Returns
-------
array_like
Each row contains [lower, upper] limits of the confidence interval
for the corresponding parameter. The first column contains all
lower, the second column contains all upper limits.
Notes
-----
The confidence interval is based on the standard normal distribution
if self.use_t is False. If self.use_t is True, then uses a Student's t
with self.df_resid_inference (or self.df_resid if df_resid_inference is
not defined) degrees of freedom.
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> results.conf_int()
array([[-5496529.48322745, -1467987.78596704],
[ -177.02903529, 207.15277984],
[ -0.1115811 , 0.03994274],
[ -3.12506664, -0.91539297],
[ -1.5179487 , -0.54850503],
[ -0.56251721, 0.460309 ],
[ 798.7875153 , 2859.51541392]])
>>> results.conf_int(cols=(2,3))
array([[-0.1115811 , 0.03994274],
[-3.12506664, -0.91539297]]) | conf_int | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def save(self, fname, remove_data=False):
"""
Save a pickle of this instance.
Parameters
----------
fname : {str, handle}
A string filename or a file handle.
remove_data : bool
If False (default), then the instance is pickled without changes.
If True, then all arrays with length nobs are set to None before
pickling. See the remove_data method.
In some cases not all arrays will be set to None.
Notes
-----
If remove_data is true and the model result does not implement a
remove_data method then this will raise an exception.
"""
from statsmodels.iolib.smpickle import save_pickle
if remove_data:
self.remove_data()
save_pickle(self, fname) | Save a pickle of this instance.
Parameters
----------
fname : {str, handle}
A string filename or a file handle.
remove_data : bool
If False (default), then the instance is pickled without changes.
If True, then all arrays with length nobs are set to None before
pickling. See the remove_data method.
In some cases not all arrays will be set to None.
Notes
-----
If remove_data is true and the model result does not implement a
remove_data method then this will raise an exception. | save | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def load(cls, fname):
"""
Load a pickled results instance
.. warning::
Loading pickled models is not secure against erroneous or
maliciously constructed data. Never unpickle data received from
an untrusted or unauthenticated source.
Parameters
----------
fname : {str, handle, pathlib.Path}
A string filename or a file handle.
Returns
-------
Results
The unpickled results instance.
"""
from statsmodels.iolib.smpickle import load_pickle
return load_pickle(fname) | Load a pickled results instance
.. warning::
Loading pickled models is not secure against erroneous or
maliciously constructed data. Never unpickle data received from
an untrusted or unauthenticated source.
Parameters
----------
fname : {str, handle, pathlib.Path}
A string filename or a file handle.
Returns
-------
Results
The unpickled results instance. | load | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def remove_data(self):
"""
Remove data arrays, all nobs arrays from result and model.
This reduces the size of the instance, so it can be pickled with less
memory. Currently tested for use with predict from an unpickled
results and model instance.
.. warning::
Since data and some intermediate results have been removed
calculating new statistics that require them will raise exceptions.
The exception will occur the first time an attribute is accessed
that has been set to None.
Not fully tested for time series models, tsa, and might delete too much
for prediction or not all that would be possible.
The lists of arrays to delete are maintained as attributes of
the result and model instance, except for cached values. These
lists could be changed before calling remove_data.
The attributes to remove are named in:
model._data_attr : arrays attached to both the model instance
and the results instance with the same attribute name.
result._data_in_cache : arrays that may exist as values in
result._cache
result._data_attr_model : arrays attached to the model
instance but not to the results instance
"""
cls = self.__class__
# Note: we cannot just use `getattr(cls, x)` or `getattr(self, x)`
# because of redirection involved with property-like accessors
cls_attrs = {}
for name in dir(cls):
try:
attr = object.__getattribute__(cls, name)
except AttributeError:
pass
else:
cls_attrs[name] = attr
data_attrs = [x for x in cls_attrs
if isinstance(cls_attrs[x], cached_data)]
for name in data_attrs:
self._cache[name] = None
def wipe(obj, att):
# get to last element in attribute path
p = att.split('.')
att_ = p.pop(-1)
try:
obj_ = reduce(getattr, [obj] + p)
if hasattr(obj_, att_):
setattr(obj_, att_, None)
except AttributeError:
pass
model_only = ['model.' + i for i in getattr(self, "_data_attr_model", [])]
model_attr = ['model.' + i for i in self.model._data_attr]
for att in self._data_attr + model_attr + model_only:
if att in data_attrs:
# these have been handled above, and trying to call wipe
# would raise an Exception anyway, so skip these
continue
wipe(self, att)
for key in self._data_in_cache:
try:
self._cache[key] = None
except (AttributeError, KeyError):
pass | Remove data arrays, all nobs arrays from result and model.
This reduces the size of the instance, so it can be pickled with less
memory. Currently tested for use with predict from an unpickled
results and model instance.
.. warning::
Since data and some intermediate results have been removed
calculating new statistics that require them will raise exceptions.
The exception will occur the first time an attribute is accessed
that has been set to None.
Not fully tested for time series models, tsa, and might delete too much
for prediction or not all that would be possible.
The lists of arrays to delete are maintained as attributes of
the result and model instance, except for cached values. These
lists could be changed before calling remove_data.
The attributes to remove are named in:
model._data_attr : arrays attached to both the model instance
and the results instance with the same attribute name.
result._data_in_cache : arrays that may exist as values in
result._cache
result._data_attr_model : arrays attached to the model
instance but not to the results instance | remove_data | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def df_modelwc(self):
"""Model WC"""
# collect different ways of defining the number of parameters, used for
# aic, bic
k_extra = getattr(self.model, "k_extra", 0)
if hasattr(self, 'df_model'):
if hasattr(self, 'k_constant'):
hasconst = self.k_constant
elif hasattr(self, 'hasconst'):
hasconst = self.hasconst
else:
# default assumption
hasconst = 1
return self.df_model + hasconst + k_extra
else:
return self.params.size | Model WC | df_modelwc | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def aic(self):
"""Akaike information criterion"""
return -2 * self.llf + 2 * (self.df_modelwc) | Akaike information criterion | aic | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def bic(self):
"""Bayesian information criterion"""
return -2 * self.llf + np.log(self.nobs) * (self.df_modelwc) | Bayesian information criterion | bic | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def score_obsv(self):
"""cached Jacobian of log-likelihood
"""
return self.model.score_obs(self.params) | cached Jacobian of log-likelihood | score_obsv | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def hessv(self):
"""cached Hessian of log-likelihood
"""
return self.model.hessian(self.params) | cached Hessian of log-likelihood | hessv | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def covjac(self):
"""
covariance of parameters based on outer product of jacobian of
log-likelihood
"""
# if not hasattr(self, '_results'):
# raise ValueError('need to call fit first')
# #self.fit()
# self.jacv = jacv = self.jac(self._results.params)
jacv = self.score_obsv
return np.linalg.inv(np.dot(jacv.T, jacv)) | covariance of parameters based on outer product of jacobian of
log-likelihood | covjac | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def covjhj(self):
"""covariance of parameters based on HJJH
dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood
name should be covhjh
"""
jacv = self.score_obsv
hessv = self.hessv
hessinv = np.linalg.inv(hessv)
# self.hessinv = hessin = self.cov_params()
return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv)) | covariance of parameters based on HJJH
dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood
name should be covhjh | covjhj | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def bsejhj(self):
"""standard deviation of parameter estimates based on covHJH
"""
return np.sqrt(np.diag(self.covjhj)) | standard deviation of parameter estimates based on covHJH | bsejhj | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def bsejac(self):
"""standard deviation of parameter estimates based on covjac
"""
return np.sqrt(np.diag(self.covjac)) | standard deviation of parameter estimates based on covjac | bsejac | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def bootstrap(self, nrep=100, method='nm', disp=0, store=1):
"""simple bootstrap to get mean and variance of estimator
see notes
Parameters
----------
nrep : int
number of bootstrap replications
method : str
optimization method to use
disp : bool
If true, then optimization prints results
store : bool
If true, then parameter estimates for all bootstrap iterations
are attached in self.bootstrap_results
Returns
-------
mean : ndarray
mean of parameter estimates over bootstrap replications
std : ndarray
standard deviation of parameter estimates over bootstrap
replications
Notes
-----
This was mainly written to compare estimators of the standard errors of
the parameter estimates. It uses independent random sampling from the
original endog and exog, and therefore is only correct if observations
are independently distributed.
This will be moved to apply only to models with independently
distributed observations.
"""
results = []
hascloneattr = True if hasattr(self.model, 'cloneattr') else False
for i in range(nrep):
rvsind = np.random.randint(self.nobs, size=self.nobs)
# this needs to set startparam and get other defining attributes
# need a clone method on model
if self.exog is not None:
exog_resamp = self.exog[rvsind, :]
else:
exog_resamp = None
# build auxiliary model and fit
init_kwds = self.model._get_init_kwds()
fitmod = self.model.__class__(self.endog[rvsind],
exog=exog_resamp, **init_kwds)
if hascloneattr:
for attr in self.model.cloneattr:
setattr(fitmod, attr, getattr(self.model, attr))
fitres = fitmod.fit(method=method, disp=disp)
results.append(fitres.params)
results = np.array(results)
if store:
self.bootstrap_results = results
return results.mean(0), results.std(0), results | simple bootstrap to get mean and variance of estimator
see notes
Parameters
----------
nrep : int
number of bootstrap replications
method : str
optimization method to use
disp : bool
If true, then optimization prints results
store : bool
If true, then parameter estimates for all bootstrap iterations
are attached in self.bootstrap_results
Returns
-------
mean : ndarray
mean of parameter estimates over bootstrap replications
std : ndarray
standard deviation of parameter estimates over bootstrap
replications
Notes
-----
This was mainly written to compare estimators of the standard errors of
the parameter estimates. It uses independent random sampling from the
original endog and exog, and therefore is only correct if observations
are independently distributed.
This will be moved to apply only to models with independently
distributed observations. | bootstrap | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def get_nlfun(self, fun):
"""
get_nlfun
This is not Implemented
"""
# I think this is supposed to get the delta method that is currently
# in miscmodels count (as part of Poisson example)
raise NotImplementedError | get_nlfun
This is not Implemented | get_nlfun | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def pseudo_rsquared(self, kind="mcf"):
"""
McFadden's pseudo-R-squared. `1 - (llf / llnull)`
"""
kind = kind.lower()
if kind.startswith("mcf"):
prsq = 1 - self.llf / self.llnull
elif kind.startswith("cox") or kind in ["cs", "lr"]:
prsq = 1 - np.exp((self.llnull - self.llf) * (2 / self.nobs))
else:
raise ValueError("only McFadden and Cox-Snell are available")
return prsq | McFadden's pseudo-R-squared. `1 - (llf / llnull)` | pseudo_rsquared | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def llr(self):
"""
Likelihood ratio chi-squared statistic; `-2*(llnull - llf)`
"""
return -2*(self.llnull - self.llf) | Likelihood ratio chi-squared statistic; `-2*(llnull - llf)` | llr | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def llr_pvalue(self):
"""
The chi-squared probability of getting a log-likelihood ratio
statistic greater than llr. llr has a chi-squared distribution
with degrees of freedom `df_model`.
"""
# see also RegressionModel compare_lr_test
llr = self.llr
df_full = self.df_resid
df_restr = self.df_resid_null
lrdf = (df_restr - df_full)
self.df_lr_null = lrdf
return stats.distributions.chi2.sf(llr, lrdf) | The chi-squared probability of getting a log-likelihood ratio
statistic greater than llr. llr has a chi-squared distribution
with degrees of freedom `df_model`. | llr_pvalue | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def set_null_options(self, llnull=None, attach_results=True, **kwargs):
"""
Set the fit options for the Null (constant-only) model.
This resets the cache for related attributes which is potentially
fragile. This only sets the option, the null model is estimated
when llnull is accessed, if llnull is not yet in cache.
Parameters
----------
llnull : {None, float}
If llnull is not None, then the value will be directly assigned to
the cached attribute "llnull".
attach_results : bool
Sets an internal flag whether the results instance of the null
model should be attached. By default without calling this method,
thenull model results are not attached and only the loglikelihood
value llnull is stored.
**kwargs
Additional keyword arguments used as fit keyword arguments for the
null model. The override and model default values.
Notes
-----
Modifies attributes of this instance, and so has no return.
"""
# reset cache, note we need to add here anything that depends on
# llnullor the null model. If something is missing, then the attribute
# might be incorrect.
self._cache.pop('llnull', None)
self._cache.pop('llr', None)
self._cache.pop('llr_pvalue', None)
self._cache.pop('prsquared', None)
if hasattr(self, 'res_null'):
del self.res_null
if llnull is not None:
self._cache['llnull'] = llnull
self._attach_nullmodel = attach_results
self._optim_kwds_null = kwargs | Set the fit options for the Null (constant-only) model.
This resets the cache for related attributes which is potentially
fragile. This only sets the option, the null model is estimated
when llnull is accessed, if llnull is not yet in cache.
Parameters
----------
llnull : {None, float}
If llnull is not None, then the value will be directly assigned to
the cached attribute "llnull".
attach_results : bool
Sets an internal flag whether the results instance of the null
model should be attached. By default without calling this method,
thenull model results are not attached and only the loglikelihood
value llnull is stored.
**kwargs
Additional keyword arguments used as fit keyword arguments for the
null model. The override and model default values.
Notes
-----
Modifies attributes of this instance, and so has no return. | set_null_options | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def llnull(self):
"""
Value of the constant-only loglikelihood
"""
model = self.model
kwds = model._get_init_kwds().copy()
for key in getattr(model, '_null_drop_keys', []):
del kwds[key]
# TODO: what parameters to pass to fit?
mod_null = model.__class__(model.endog, np.ones(self.nobs), **kwds)
# TODO: consider catching and warning on convergence failure?
# in the meantime, try hard to converge. see
# TestPoissonConstrained1a.test_smoke
optim_kwds = getattr(self, '_optim_kwds_null', {}).copy()
if 'start_params' in optim_kwds:
# user provided
sp_null = optim_kwds.pop('start_params')
elif hasattr(model, '_get_start_params_null'):
# get moment estimates if available
sp_null = model._get_start_params_null()
else:
sp_null = None
opt_kwds = dict(method='bfgs', warn_convergence=False, maxiter=10000,
disp=0)
opt_kwds.update(optim_kwds)
if optim_kwds:
res_null = mod_null.fit(start_params=sp_null, **opt_kwds)
else:
# this should be a reasonably method case across versions
res_null = mod_null.fit(start_params=sp_null, method='nm',
warn_convergence=False,
maxiter=10000, disp=0)
res_null = mod_null.fit(start_params=res_null.params, method='bfgs',
warn_convergence=False,
maxiter=10000, disp=0)
if getattr(self, '_attach_nullmodel', False) is not False:
self.res_null = res_null
self.k_null = len(res_null.params)
self.df_resid_null = res_null.df_resid
return res_null.llf | Value of the constant-only loglikelihood | llnull | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def get_prediction(
self,
exog=None,
which="mean",
transform=True,
row_labels=None,
average=False,
agg_weights=None,
**kwargs
):
"""
Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
which : str
Which statistic is to be predicted. Default is "mean".
The available statistics and options depend on the model.
see the model.predict docstring
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then the average
over observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
**kwargs :
Some models can take additional keyword arguments, such as offset,
exposure or additional exog in multi-part models like zero inflated
models.
See the predict method of the model for the details.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and
summary dataframe for the prediction.
Notes
-----
Status: new in 0.14, experimental
"""
from statsmodels.base._prediction_inference import get_prediction
pred_kwds = kwargs
res = get_prediction(
self,
exog=exog,
which=which,
transform=transform,
row_labels=row_labels,
average=average,
agg_weights=agg_weights,
pred_kwds=pred_kwds
)
return res | Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
which : str
Which statistic is to be predicted. Default is "mean".
The available statistics and options depend on the model.
see the model.predict docstring
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then the average
over observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
**kwargs :
Some models can take additional keyword arguments, such as offset,
exposure or additional exog in multi-part models like zero inflated
models.
See the predict method of the model for the details.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and
summary dataframe for the prediction.
Notes
-----
Status: new in 0.14, experimental | get_prediction | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def summary(self, yname=None, xname=None, title=None, alpha=.05):
"""Summarize the Regression Results
Parameters
----------
yname : str, optional
Default is `y`
xname : list[str], optional
Names for the exogenous variables, default is "var_xx".
Must match the number of parameters in the model
title : str, optional
Title for the top table. If not None, then this replaces the
default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary : class to hold summary results
"""
top_left = [('Dep. Variable:', None),
('Model:', None),
('Method:', ['Maximum Likelihood']),
('Date:', None),
('Time:', None),
('No. Observations:', None),
('Df Residuals:', None),
('Df Model:', None),
]
top_right = [('Log-Likelihood:', None),
('AIC:', ["%#8.4g" % self.aic]),
('BIC:', ["%#8.4g" % self.bic])
]
if title is None:
title = self.model.__class__.__name__ + ' ' + "Results"
# create summary table instance
from statsmodels.iolib.summary import Summary
smry = Summary()
smry.add_table_2cols(self, gleft=top_left, gright=top_right,
yname=yname, xname=xname, title=title)
smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha,
use_t=self.use_t)
return smry | Summarize the Regression Results
Parameters
----------
yname : str, optional
Default is `y`
xname : list[str], optional
Names for the exogenous variables, default is "var_xx".
Must match the number of parameters in the model
title : str, optional
Title for the top table. If not None, then this replaces the
default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary : class to hold summary results | summary | python | statsmodels/statsmodels | statsmodels/base/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/model.py | BSD-3-Clause |
def func(self, params):
"""
A penalty function on a vector of parameters.
Parameters
----------
params : array_like
A vector of parameters.
Returns
-------
A scalar penaty value; greater values imply greater
penalization.
"""
raise NotImplementedError | A penalty function on a vector of parameters.
Parameters
----------
params : array_like
A vector of parameters.
Returns
-------
A scalar penaty value; greater values imply greater
penalization. | func | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def deriv(self, params):
"""
The gradient of a penalty function.
Parameters
----------
params : array_like
A vector of parameters
Returns
-------
The gradient of the penalty with respect to each element in
`params`.
"""
raise NotImplementedError | The gradient of a penalty function.
Parameters
----------
params : array_like
A vector of parameters
Returns
-------
The gradient of the penalty with respect to each element in
`params`. | deriv | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def _null_weights(self, params):
"""work around for Null model
This will not be needed anymore when we can use `self._null_drop_keys`
as in DiscreteModels.
TODO: check other models
"""
if np.size(self.weights) > 1:
if len(params) == 1:
raise # raise to identify models where this would be needed
return 0.
return self.weights | work around for Null model
This will not be needed anymore when we can use `self._null_drop_keys`
as in DiscreteModels.
TODO: check other models | _null_weights | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def deriv2(self, params):
"""Second derivative of function
This returns scalar or vector in same shape as params, not a square
Hessian. If the return is 1 dimensional, then it is the diagonal of
the Hessian.
"""
# 3 segments in absolute value
tau = self.tau
p = np.atleast_1d(params)
p_abs = np.abs(p)
res = np.zeros(p_abs.shape)
mask1 = p_abs < tau
mask3 = p_abs >= self.c * tau
mask2 = ~mask1 & ~mask3
res[mask2] = -1 / (self.c - 1)
return self.weights * res | Second derivative of function
This returns scalar or vector in same shape as params, not a square
Hessian. If the return is 1 dimensional, then it is the diagonal of
the Hessian. | deriv2 | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def func(self, params):
"""evaluate penalty function at params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray
value(s) of penalty function
"""
# TODO: `and np.size(params) > 1` is hack for llnull, need better solution
# Is this still needed? it seems to work without
if self.restriction is not None:
params = self.restriction.dot(params)
value = self.penalty.func(params)
return (self.weights * value.T).T.sum(0) | evaluate penalty function at params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray
value(s) of penalty function | func | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def deriv(self, params):
"""first derivative of penalty function w.r.t. params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray
array of first partial derivatives
"""
if self.restriction is not None:
params = self.restriction.dot(params)
value = self.penalty.deriv(params)
if self.restriction is not None:
return self.weights * value.T.dot(self.restriction)
else:
return (self.weights * value.T) | first derivative of penalty function w.r.t. params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray
array of first partial derivatives | deriv | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def deriv2(self, params):
"""second derivative of penalty function w.r.t. params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray, 2-D
second derivative matrix
"""
if self.restriction is not None:
params = self.restriction.dot(params)
value = self.penalty.deriv2(params)
if self.restriction is not None:
# note: univariate penalty returns 1d array for diag,
# i.e. hessian_diag
v = (self.restriction.T * value * self.weights)
value = v.dot(self.restriction)
else:
value = np.diag(self.weights * value)
return value | second derivative of penalty function w.r.t. params
Parameter
---------
params : ndarray
array of parameters at which derivative is evaluated
Returns
-------
deriv2 : ndarray, 2-D
second derivative matrix | deriv2 | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def func(self, mat, mat_inv):
"""
Parameters
----------
mat : square matrix
The matrix to be penalized.
mat_inv : square matrix
The inverse of `mat`.
Returns
-------
A scalar penalty value
"""
raise NotImplementedError | Parameters
----------
mat : square matrix
The matrix to be penalized.
mat_inv : square matrix
The inverse of `mat`.
Returns
-------
A scalar penalty value | func | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def deriv(self, mat, mat_inv):
"""
Parameters
----------
mat : square matrix
The matrix to be penalized.
mat_inv : square matrix
The inverse of `mat`.
Returns
-------
A vector containing the gradient of the penalty
with respect to each element in the lower triangle
of `mat`.
"""
raise NotImplementedError | Parameters
----------
mat : square matrix
The matrix to be penalized.
mat_inv : square matrix
The inverse of `mat`.
Returns
-------
A vector containing the gradient of the penalty
with respect to each element in the lower triangle
of `mat`. | deriv | python | statsmodels/statsmodels | statsmodels/base/_penalties.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalties.py | BSD-3-Clause |
def qc_results(params, alpha, score, qc_tol, qc_verbose=False):
"""
Theory dictates that one of two conditions holds:
i) abs(score[i]) == alpha[i] and params[i] != 0
ii) abs(score[i]) <= alpha[i] and params[i] == 0
qc_results checks to see that (ii) holds, within qc_tol
qc_results also checks for nan or results of the wrong shape.
Parameters
----------
params : ndarray
model parameters. Not including the added variables x_added.
alpha : ndarray
regularization coefficients
score : function
Gradient of unregularized objective function
qc_tol : float
Tolerance to hold conditions (i) and (ii) to for QC check.
qc_verbose : bool
If true, print out a full QC report upon failure
Returns
-------
passed : bool
True if QC check passed
qc_dict : Dictionary
Keys are fprime, alpha, params, passed_array
Prints
------
Warning message if QC check fails.
"""
## Check for fatal errors
assert not np.isnan(params).max()
assert (params == params.ravel('F')).min(), \
"params should have already been 1-d"
## Start the theory compliance check
fprime = score(params)
k_params = len(params)
passed_array = np.array([True] * k_params)
for i in range(k_params):
if alpha[i] > 0:
# If |fprime| is too big, then something went wrong
if (abs(fprime[i]) - alpha[i]) / alpha[i] > qc_tol:
passed_array[i] = False
qc_dict = dict(
fprime=fprime, alpha=alpha, params=params, passed_array=passed_array)
passed = passed_array.min()
if not passed:
num_failed = (~passed_array).sum()
message = 'QC check did not pass for %d out of %d parameters' % (
num_failed, k_params)
message += '\nTry increasing solver accuracy or number of iterations'\
', decreasing alpha, or switch solvers'
if qc_verbose:
message += _get_verbose_addon(qc_dict)
import warnings
warnings.warn(message, ConvergenceWarning)
return passed | Theory dictates that one of two conditions holds:
i) abs(score[i]) == alpha[i] and params[i] != 0
ii) abs(score[i]) <= alpha[i] and params[i] == 0
qc_results checks to see that (ii) holds, within qc_tol
qc_results also checks for nan or results of the wrong shape.
Parameters
----------
params : ndarray
model parameters. Not including the added variables x_added.
alpha : ndarray
regularization coefficients
score : function
Gradient of unregularized objective function
qc_tol : float
Tolerance to hold conditions (i) and (ii) to for QC check.
qc_verbose : bool
If true, print out a full QC report upon failure
Returns
-------
passed : bool
True if QC check passed
qc_dict : Dictionary
Keys are fprime, alpha, params, passed_array
Prints
------
Warning message if QC check fails. | qc_results | python | statsmodels/statsmodels | statsmodels/base/l1_solvers_common.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_solvers_common.py | BSD-3-Clause |
def do_trim_params(params, k_params, alpha, score, passed, trim_mode,
size_trim_tol, auto_trim_tol):
"""
Trims (set to zero) params that are zero at the theoretical minimum.
Uses heuristics to account for the solver not actually finding the minimum.
In all cases, if alpha[i] == 0, then do not trim the ith param.
In all cases, do nothing with the added variables.
Parameters
----------
params : ndarray
model parameters. Not including added variables.
k_params : Int
Number of parameters
alpha : ndarray
regularization coefficients
score : Function.
score(params) should return a 1-d vector of derivatives of the
unpenalized objective function.
passed : bool
True if the QC check passed
trim_mode : 'auto, 'size', or 'off'
If not 'off', trim (set to zero) parameters that would have been zero
if the solver reached the theoretical minimum.
If 'auto', trim params using the Theory above.
If 'size', trim params if they have very small absolute value
size_trim_tol : float or 'auto' (default = 'auto')
For use when trim_mode === 'size'
auto_trim_tol : float
For sue when trim_mode == 'auto'. Use
qc_tol : float
Print warning and do not allow auto trim when (ii) in "Theory" (above)
is violated by this much.
Returns
-------
params : ndarray
Trimmed model parameters
trimmed : ndarray of booleans
trimmed[i] == True if the ith parameter was trimmed.
"""
## Trim the small params
trimmed = [False] * k_params
if trim_mode == 'off':
trimmed = np.array([False] * k_params)
elif trim_mode == 'auto' and not passed:
import warnings
msg = "Could not trim params automatically due to failed QC check. " \
"Trimming using trim_mode == 'size' will still work."
warnings.warn(msg, ConvergenceWarning)
trimmed = np.array([False] * k_params)
elif trim_mode == 'auto' and passed:
fprime = score(params)
for i in range(k_params):
if alpha[i] != 0:
if (alpha[i] - abs(fprime[i])) / alpha[i] > auto_trim_tol:
params[i] = 0.0
trimmed[i] = True
elif trim_mode == 'size':
for i in range(k_params):
if alpha[i] != 0:
if abs(params[i]) < size_trim_tol:
params[i] = 0.0
trimmed[i] = True
else:
raise ValueError(
"trim_mode == %s, which is not recognized" % (trim_mode))
return params, np.asarray(trimmed) | Trims (set to zero) params that are zero at the theoretical minimum.
Uses heuristics to account for the solver not actually finding the minimum.
In all cases, if alpha[i] == 0, then do not trim the ith param.
In all cases, do nothing with the added variables.
Parameters
----------
params : ndarray
model parameters. Not including added variables.
k_params : Int
Number of parameters
alpha : ndarray
regularization coefficients
score : Function.
score(params) should return a 1-d vector of derivatives of the
unpenalized objective function.
passed : bool
True if the QC check passed
trim_mode : 'auto, 'size', or 'off'
If not 'off', trim (set to zero) parameters that would have been zero
if the solver reached the theoretical minimum.
If 'auto', trim params using the Theory above.
If 'size', trim params if they have very small absolute value
size_trim_tol : float or 'auto' (default = 'auto')
For use when trim_mode === 'size'
auto_trim_tol : float
For sue when trim_mode == 'auto'. Use
qc_tol : float
Print warning and do not allow auto trim when (ii) in "Theory" (above)
is violated by this much.
Returns
-------
params : ndarray
Trimmed model parameters
trimmed : ndarray of booleans
trimmed[i] == True if the ith parameter was trimmed. | do_trim_params | python | statsmodels/statsmodels | statsmodels/base/l1_solvers_common.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_solvers_common.py | BSD-3-Clause |
def t_test(self, value=0, alternative='two-sided'):
'''z- or t-test for hypothesis that mean is equal to value
Parameters
----------
value : array_like
value under the null hypothesis
alternative : str
'two-sided', 'larger', 'smaller'
Returns
-------
stat : ndarray
test statistic
pvalue : ndarray
p-value of the hypothesis test, the distribution is given by
the attribute of the instance, specified in `__init__`. Default
if not specified is the normal distribution.
'''
# assumes symmetric distribution
stat = (self.predicted - value) / self.se
if alternative in ['two-sided', '2-sided', '2s']:
pvalue = self.dist.sf(np.abs(stat), *self.dist_args)*2
elif alternative in ['larger', 'l']:
pvalue = self.dist.sf(stat, *self.dist_args)
elif alternative in ['smaller', 's']:
pvalue = self.dist.cdf(stat, *self.dist_args)
else:
raise ValueError('invalid alternative')
return stat, pvalue | z- or t-test for hypothesis that mean is equal to value
Parameters
----------
value : array_like
value under the null hypothesis
alternative : str
'two-sided', 'larger', 'smaller'
Returns
-------
stat : ndarray
test statistic
pvalue : ndarray
p-value of the hypothesis test, the distribution is given by
the attribute of the instance, specified in `__init__`. Default
if not specified is the normal distribution. | t_test | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def _conf_int_generic(self, center, se, alpha, dist_args=None):
"""internal function to avoid code duplication
"""
if dist_args is None:
dist_args = ()
q = self.dist.ppf(1 - alpha / 2., *dist_args)
lower = center - q * se
upper = center + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci | internal function to avoid code duplication | _conf_int_generic | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def conf_int(self, *, alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
Ignored in base class, only for compatibility, consistent signature
with subclasses
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
ci = self._conf_int_generic(self.predicted, self.se, alpha,
dist_args=self.dist_args)
return ci | Confidence interval for the predicted value.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
Ignored in base class, only for compatibility, consistent signature
with subclasses
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns. | conf_int | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def summary_frame(self, alpha=0.05):
"""Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns 'predicted', 'se', 'ci_lower', 'ci_upper'
"""
ci = self.conf_int(alpha=alpha)
to_include = {}
to_include['predicted'] = self.predicted
to_include['se'] = self.se
to_include['ci_lower'] = ci[:, 0]
to_include['ci_upper'] = ci[:, 1]
self.table = to_include
# pandas dict does not handle 2d_array
# data = np.column_stack(list(to_include.values()))
# names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res | Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns 'predicted', 'se', 'ci_lower', 'ci_upper' | summary_frame | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def _conf_int_generic(self, center, se, alpha, dist_args=None):
"""internal function to avoid code duplication
"""
if dist_args is None:
dist_args = ()
q = self.dist.ppf(1 - alpha / 2., *dist_args)
lower = center - q * se
upper = center + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci | internal function to avoid code duplication | _conf_int_generic | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
tmp = np.linspace(0, 1, 6)
# TODO: drop check?
is_linear = (self.func(tmp) == tmp).all()
if method == 'endpoint' and not is_linear:
ci_linear = self._conf_int_generic(self.linpred, self.linpred_se,
alpha,
dist_args=self.dist_args)
ci = self.func(ci_linear)
elif method == 'delta' or is_linear:
ci = self._conf_int_generic(self.predicted, self.se, alpha,
dist_args=self.dist_args)
return ci | Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns. | conf_int | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
tmp = np.linspace(0, 1, 6)
is_linear = (self.link.inverse(tmp) == tmp).all()
if method == 'endpoint' and not is_linear:
ci_linear = self.linpred.conf_int(alpha=alpha, obs=False)
ci = self.link.inverse(ci_linear)
elif method == 'delta' or is_linear:
se = self.se_mean
q = self.dist.ppf(1 - alpha / 2., *self.dist_args)
lower = self.predicted_mean - q * se
upper = self.predicted_mean + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci | Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns. | conf_int | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def summary_frame(self, alpha=0.05):
"""Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns
'mean', 'mean_se', 'mean_ci_lower', 'mean_ci_upper'.
"""
# TODO: finish and cleanup
ci_mean = self.conf_int(alpha=alpha)
to_include = {}
to_include['mean'] = self.predicted_mean
to_include['mean_se'] = self.se_mean
to_include['mean_ci_lower'] = ci_mean[:, 0]
to_include['mean_ci_upper'] = ci_mean[:, 1]
self.table = to_include
# pandas dict does not handle 2d_array
# data = np.column_stack(list(to_include.values()))
# names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res | Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns
'mean', 'mean_se', 'mean_ci_lower', 'mean_ci_upper'. | summary_frame | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def _get_exog_predict(self, exog=None, transform=True, row_labels=None):
"""Prepare or transform exog for prediction
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
Returns
-------
exog : ndarray
Prediction exog
row_labels : list of str
Labels or pandas index for rows of prediction
"""
# prepare exog and row_labels, based on base Results.predict
if transform and hasattr(self.model, 'formula') and exog is not None:
from statsmodels.formula._manager import FormulaManager
mgr = FormulaManager()
if isinstance(exog, pd.Series):
exog = pd.DataFrame(exog)
exog = mgr.get_matrices(self.model.data.model_spec, exog)
if exog is not None:
if row_labels is None:
row_labels = getattr(exog, 'index', None)
if callable(row_labels):
row_labels = None
exog = np.asarray(exog)
if exog.ndim == 1 and (self.model.exog.ndim == 1 or
self.model.exog.shape[1] == 1):
exog = exog[:, None]
exog = np.atleast_2d(exog) # needed in count model shape[1]
else:
exog = self.model.exog
if row_labels is None:
row_labels = getattr(self.model.data, 'row_labels', None)
return exog, row_labels | Prepare or transform exog for prediction
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
Returns
-------
exog : ndarray
Prediction exog
row_labels : list of str
Labels or pandas index for rows of prediction | _get_exog_predict | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def get_prediction_glm(self, exog=None, transform=True,
row_labels=None, linpred=None, link=None,
pred_kwds=None):
"""
Compute prediction results for GLM compatible models.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
linpred : linear prediction instance
Instance of linear prediction results used for confidence intervals
based on endpoint transformation.
link : instance of link function
If no link function is provided, then the `model.family.link` is used.
pred_kwds : dict
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models. See the predict method of the
model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
predicted_mean = self.model.predict(self.params, exog, **pred_kwds)
covb = self.cov_params()
link_deriv = self.model.family.link.inverse_deriv(linpred.predicted_mean)
var_pred_mean = link_deriv**2 * (exog * np.dot(covb, exog.T).T).sum(1)
var_resid = self.scale # self.mse_resid / weights
# TODO: check that we have correct scale, Refactor scale #???
# special case for now:
if self.cov_type == 'fixed scale':
var_resid = self.cov_kwds['scale']
dist = ['norm', 't'][self.use_t]
return PredictionResultsMean(
predicted_mean, var_pred_mean, var_resid,
df=self.df_resid, dist=dist,
row_labels=row_labels, linpred=linpred, link=link) | Compute prediction results for GLM compatible models.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
linpred : linear prediction instance
Instance of linear prediction results used for confidence intervals
based on endpoint transformation.
link : instance of link function
If no link function is provided, then the `model.family.link` is used.
pred_kwds : dict
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models. See the predict method of the
model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations. | get_prediction_glm | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def get_prediction_linear(self, exog=None, transform=True,
row_labels=None, pred_kwds=None, index=None):
"""
Compute prediction results for linear prediction.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
k1 = exog.shape[1]
if len(self.params > k1):
# TODO: we allow endpoint transformation only for the first link
index = np.arange(k1)
else:
index = None
# get linear prediction and standard errors
covb = self.cov_params(column=index)
var_pred = (exog * np.dot(covb, exog.T).T).sum(1)
pred_kwds_linear = pred_kwds.copy()
pred_kwds_linear["which"] = "linear"
predicted = self.model.predict(self.params, exog, **pred_kwds_linear)
dist = ['norm', 't'][self.use_t]
res = PredictionResultsBase(predicted, var_pred,
df=self.df_resid, dist=dist,
row_labels=row_labels
)
return res | Compute prediction results for linear prediction.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction. | get_prediction_linear | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def get_prediction_monotonic(self, exog=None, transform=True,
row_labels=None, link=None,
pred_kwds=None, index=None):
"""
Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
link : instance of link function
If no link function is provided, then the ``mmodel.family.link` is
used.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
if link is None:
link = self.model.family.link
func_deriv = link.inverse_deriv
# get linear prediction and standard errors
covb = self.cov_params(column=index)
linpred_var = (exog * np.dot(covb, exog.T).T).sum(1)
pred_kwds_linear = pred_kwds.copy()
pred_kwds_linear["which"] = "linear"
linpred = self.model.predict(self.params, exog, **pred_kwds_linear)
predicted = self.model.predict(self.params, exog, **pred_kwds)
link_deriv = func_deriv(linpred)
var_pred = link_deriv**2 * linpred_var
dist = ['norm', 't'][self.use_t]
res = PredictionResultsMonotonic(predicted, var_pred,
df=self.df_resid, dist=dist,
row_labels=row_labels, linpred=linpred,
linpred_se=np.sqrt(linpred_var),
func=link.inverse, deriv=func_deriv)
return res | Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
link : instance of link function
If no link function is provided, then the ``mmodel.family.link` is
used.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction. | get_prediction_monotonic | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def f_pred(p):
"""Prediction function as function of params
"""
pred = self.model.predict(p, exog, which=which, **pred_kwds)
if average:
# using `.T` which should work if aggweights is 1-dim
pred = (pred.T * agg_weights.T).mean(-1).T
return pred | Prediction function as function of params | get_prediction_delta.f_pred | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def get_prediction_delta(
self,
exog=None,
which="mean",
average=False,
agg_weights=None,
transform=True,
row_labels=None,
pred_kwds=None
):
"""
compute prediction results
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
which : str
The statistic that is prediction. Which statistics are available
depends on the model.predict method.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then them mean over
observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if agg_weights is None:
agg_weights = np.array(1.)
def f_pred(p):
"""Prediction function as function of params
"""
pred = self.model.predict(p, exog, which=which, **pred_kwds)
if average:
# using `.T` which should work if aggweights is 1-dim
pred = (pred.T * agg_weights.T).mean(-1).T
return pred
nlpm = self._get_wald_nonlinear(f_pred)
# TODO: currently returns NonlinearDeltaCov
res = PredictionResultsDelta(nlpm)
return res | compute prediction results
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
which : str
The statistic that is prediction. Which statistics are available
depends on the model.predict method.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then them mean over
observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations. | get_prediction_delta | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def get_prediction(self, exog=None, transform=True, which="mean",
row_labels=None, average=False, agg_weights=None,
pred_kwds=None):
"""
Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
which : str
Which statistic is to be predicted. Default is "mean".
The available statistics and options depend on the model.
see the model.predict docstring
linear : bool
Linear has been replaced by the `which` keyword and will be
deprecated.
If linear is True, then `which` is ignored and the linear
prediction is returned.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then the average
over observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
**kwargs :
Some models can take additional keyword arguments, such as offset,
exposure or additional exog in multi-part models like zero inflated
models.
See the predict method of the model for the details.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and
summary dataframe for the prediction.
Notes
-----
Status: new in 0.14, experimental
"""
use_endpoint = getattr(self.model, "_use_endpoint", True)
if which == "linear":
res = get_prediction_linear(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
pred_kwds=pred_kwds,
)
elif (which == "mean") and (use_endpoint is True) and (average is False):
# endpoint transformation
k1 = self.model.exog.shape[1]
if len(self.params > k1):
# TODO: we allow endpoint transformation only for the first link
index = np.arange(k1)
else:
index = None
pred_kwds["which"] = which
# TODO: add link or ilink to all link based models (except zi
link = getattr(self.model, "link", None)
if link is None:
# GLM
if hasattr(self.model, "family"):
link = getattr(self.model.family, "link", None)
if link is None:
# defaulting to log link for count models
import warnings
warnings.warn("using default log-link in get_prediction")
from statsmodels.genmod.families import links
link = links.Log()
res = get_prediction_monotonic(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
link=link,
pred_kwds=pred_kwds,
index=index,
)
else:
# which is not mean or linear, or we need averaging
res = get_prediction_delta(
self,
exog=exog,
which=which,
average=average,
agg_weights=agg_weights,
pred_kwds=pred_kwds,
)
return res | Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
which : str
Which statistic is to be predicted. Default is "mean".
The available statistics and options depend on the model.
see the model.predict docstring
linear : bool
Linear has been replaced by the `which` keyword and will be
deprecated.
If linear is True, then `which` is ignored and the linear
prediction is returned.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then the average
over observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
**kwargs :
Some models can take additional keyword arguments, such as offset,
exposure or additional exog in multi-part models like zero inflated
models.
See the predict method of the model for the details.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and
summary dataframe for the prediction.
Notes
-----
Status: new in 0.14, experimental | get_prediction | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def params_transform_univariate(params, cov_params, link=None, transform=None,
row_labels=None):
"""
results for univariate, nonlinear, monotonicaly transformed parameters
This provides transformed values, standard errors and confidence interval
for transformations of parameters, for example in calculating rates with
`exp(params)` in the case of Poisson or other models with exponential
mean function.
"""
from statsmodels.genmod.families import links
if link is None and transform is None:
link = links.Log()
if row_labels is None and hasattr(params, 'index'):
row_labels = params.index
params = np.asarray(params)
predicted_mean = link.inverse(params)
link_deriv = link.inverse_deriv(params)
var_pred_mean = link_deriv**2 * np.diag(cov_params)
# TODO: do we want covariance also, or just var/se
dist = stats.norm
# TODO: need ci for linear prediction, method of `lin_pred
linpred = PredictionResultsMean(
params, np.diag(cov_params), dist=dist,
row_labels=row_labels, link=links.Identity())
res = PredictionResultsMean(
predicted_mean, var_pred_mean, dist=dist,
row_labels=row_labels, linpred=linpred, link=link)
return res | results for univariate, nonlinear, monotonicaly transformed parameters
This provides transformed values, standard errors and confidence interval
for transformations of parameters, for example in calculating rates with
`exp(params)` in the case of Poisson or other models with exponential
mean function. | params_transform_univariate | python | statsmodels/statsmodels | statsmodels/base/_prediction_inference.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_prediction_inference.py | BSD-3-Clause |
def loglike(self, params, pen_weight=None, **kwds):
"""
Log-likelihood of model at params
"""
if pen_weight is None:
pen_weight = self.pen_weight
llf = super().loglike(params, **kwds)
if pen_weight != 0:
scale = self._handle_scale(params, **kwds)
llf -= 1/scale * pen_weight * self.penal.func(params)
return llf | Log-likelihood of model at params | loglike | python | statsmodels/statsmodels | statsmodels/base/_penalized.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.