code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def loglikeobs(self, params, pen_weight=None, **kwds): """ Log-likelihood of model observations at params """ if pen_weight is None: pen_weight = self.pen_weight llf = super().loglikeobs(params, **kwds) nobs_llf = float(llf.shape[0]) if pen_weight != 0: scale = self._handle_scale(params, **kwds) llf -= 1/scale * pen_weight / nobs_llf * self.penal.func(params) return llf
Log-likelihood of model observations at params
loglikeobs
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def score_numdiff(self, params, pen_weight=None, method='fd', **kwds): """score based on finite difference derivative """ if pen_weight is None: pen_weight = self.pen_weight def loglike(p): return self.loglike(p, pen_weight=pen_weight, **kwds) if method == 'cs': return approx_fprime_cs(params, loglike) elif method == 'fd': return approx_fprime(params, loglike, centered=True) else: raise ValueError('method not recognized, should be "fd" or "cs"')
score based on finite difference derivative
score_numdiff
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def score(self, params, pen_weight=None, **kwds): """ Gradient of model at params """ if pen_weight is None: pen_weight = self.pen_weight sc = super().score(params, **kwds) if pen_weight != 0: scale = self._handle_scale(params, **kwds) sc -= 1/scale * pen_weight * self.penal.deriv(params) return sc
Gradient of model at params
score
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def score_obs(self, params, pen_weight=None, **kwds): """ Gradient of model observations at params """ if pen_weight is None: pen_weight = self.pen_weight sc = super().score_obs(params, **kwds) nobs_sc = float(sc.shape[0]) if pen_weight != 0: scale = self._handle_scale(params, **kwds) sc -= 1/scale * pen_weight / nobs_sc * self.penal.deriv(params) return sc
Gradient of model observations at params
score_obs
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def hessian_numdiff(self, params, pen_weight=None, **kwds): """hessian based on finite difference derivative """ if pen_weight is None: pen_weight = self.pen_weight def loglike(p): return self.loglike(p, pen_weight=pen_weight, **kwds) from statsmodels.tools.numdiff import approx_hess return approx_hess(params, loglike)
hessian based on finite difference derivative
hessian_numdiff
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def hessian(self, params, pen_weight=None, **kwds): """ Hessian of model at params """ if pen_weight is None: pen_weight = self.pen_weight hess = super().hessian(params, **kwds) if pen_weight != 0: scale = self._handle_scale(params, **kwds) h = self.penal.deriv2(params) if h.ndim == 1: hess -= 1/scale * np.diag(pen_weight * h) else: hess -= 1/scale * pen_weight * h return hess
Hessian of model at params
hessian
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def fit(self, method=None, trim=None, **kwds): """minimize negative penalized log-likelihood Parameters ---------- method : None or str Method specifies the scipy optimizer as in nonlinear MLE models. trim : {bool, float} Default is False or None, which uses no trimming. If trim is True or a float, then small parameters are set to zero. If True, then a default threshold is used. If trim is a float, then it will be used as threshold. The default threshold is currently 1e-4, but it will change in future and become penalty function dependent. kwds : extra keyword arguments This keyword arguments are treated in the same way as in the fit method of the underlying model class. Specifically, additional optimizer keywords and cov_type related keywords can be added. """ # If method is None, then we choose a default method ourselves # TODO: temporary hack, need extra fit kwds # we need to rule out fit methods in a model that will not work with # penalization from statsmodels.gam.generalized_additive_model import GLMGam from statsmodels.genmod.generalized_linear_model import GLM # Only for fit methods supporting max_start_irls if isinstance(self, (GLM, GLMGam)): kwds.update({'max_start_irls': 0}) # currently we use `bfgs` by default if method is None: method = 'bfgs' if trim is None: trim = False res = super().fit(method=method, **kwds) if trim is False: # note boolean check for "is False", not "False_like" return res else: if trim is True: trim = 1e-4 # trim threshold # TODO: make it penal function dependent # temporary standin, only checked for Poisson and GLM, # and is computationally inefficient drop_index = np.nonzero(np.abs(res.params) < trim)[0] keep_index = np.nonzero(np.abs(res.params) > trim)[0] if drop_index.any(): # TODO: do we need to add results attributes? res_aux = self._fit_zeros(keep_index, **kwds) return res_aux else: return res
minimize negative penalized log-likelihood Parameters ---------- method : None or str Method specifies the scipy optimizer as in nonlinear MLE models. trim : {bool, float} Default is False or None, which uses no trimming. If trim is True or a float, then small parameters are set to zero. If True, then a default threshold is used. If trim is a float, then it will be used as threshold. The default threshold is currently 1e-4, but it will change in future and become penalty function dependent. kwds : extra keyword arguments This keyword arguments are treated in the same way as in the fit method of the underlying model class. Specifically, additional optimizer keywords and cov_type related keywords can be added.
fit
python
statsmodels/statsmodels
statsmodels/base/_penalized.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_penalized.py
BSD-3-Clause
def from_formula_parser(cls, lc): """class method to create instance from patsy instance Parameters ---------- lc : instance instance of patsy LinearConstraint, or other instances that have attributes ``lc.coefs, lc.constants, lc.variable_names`` Returns ------- instance of this class """ try: return cls(lc.constraint_matrix, lc.constraint_values, lc.variable_names) except AttributeError: return cls(lc.coefs, lc.constants, lc.variable_names)
class method to create instance from patsy instance Parameters ---------- lc : instance instance of patsy LinearConstraint, or other instances that have attributes ``lc.coefs, lc.constants, lc.variable_names`` Returns ------- instance of this class
from_formula_parser
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def expand(self, params_reduced): """transform from the reduced to the full parameter space Parameters ---------- params_reduced : array_like parameters in the transformed space Returns ------- params : array_like parameters in the original space Notes ----- If the restriction is not homogeneous, i.e. q is not equal to zero, then this is an affine transform. """ params_reduced = np.asarray(params_reduced) return self.transf_mat.dot(params_reduced.T).T + self.constant
transform from the reduced to the full parameter space Parameters ---------- params_reduced : array_like parameters in the transformed space Returns ------- params : array_like parameters in the original space Notes ----- If the restriction is not homogeneous, i.e. q is not equal to zero, then this is an affine transform.
expand
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def reduce(self, params): """transform from the full to the reduced parameter space Parameters ---------- params : array_like parameters or data in the original space Returns ------- params_reduced : array_like parameters in the transformed space This transform can be applied to the original parameters as well as to the data. If params is 2-d, then each row is transformed. """ params = np.asarray(params) return params.dot(self.transf_mat)
transform from the full to the reduced parameter space Parameters ---------- params : array_like parameters or data in the original space Returns ------- params_reduced : array_like parameters in the transformed space This transform can be applied to the original parameters as well as to the data. If params is 2-d, then each row is transformed.
reduce
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def transform_params_constraint(params, Sinv, R, q): """find the parameters that statisfy linear constraint from unconstrained The linear constraint R params = q is imposed. Parameters ---------- params : array_like unconstrained parameters Sinv : ndarray, 2d, symmetric covariance matrix of the parameter estimate R : ndarray, 2d constraint matrix q : ndarray, 1d values of the constraint Returns ------- params_constraint : ndarray parameters of the same length as params satisfying the constraint Notes ----- This is the exact formula for OLS and other linear models. It will be a local approximation for nonlinear models. TODO: Is Sinv always the covariance matrix? In the linear case it can be (X'X)^{-1} or sigmahat^2 (X'X)^{-1}. My guess is that this is the point in the subspace that satisfies the constraint that has minimum Mahalanobis distance. Proof ? """ rsr = R.dot(Sinv).dot(R.T) reduction = Sinv.dot(R.T).dot(np.linalg.solve(rsr, R.dot(params) - q)) return params - reduction
find the parameters that statisfy linear constraint from unconstrained The linear constraint R params = q is imposed. Parameters ---------- params : array_like unconstrained parameters Sinv : ndarray, 2d, symmetric covariance matrix of the parameter estimate R : ndarray, 2d constraint matrix q : ndarray, 1d values of the constraint Returns ------- params_constraint : ndarray parameters of the same length as params satisfying the constraint Notes ----- This is the exact formula for OLS and other linear models. It will be a local approximation for nonlinear models. TODO: Is Sinv always the covariance matrix? In the linear case it can be (X'X)^{-1} or sigmahat^2 (X'X)^{-1}. My guess is that this is the point in the subspace that satisfies the constraint that has minimum Mahalanobis distance. Proof ?
transform_params_constraint
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def fit_constrained(model, constraint_matrix, constraint_values, start_params=None, fit_kwds=None): # note: self is model instance """fit model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- model: model instance An instance of a model, see limitations in Notes section constraint_matrix : array_like, 2D This is R in the linear equality constraint `R params = q`. The number of columns needs to be the same as the number of columns in exog. constraint_values : This is `q` in the linear equality constraint `R params = q` If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- params : ndarray ? estimated parameters (in the original parameterization cov_params : ndarray covariance matrix of the parameter estimates. This is a reverse transformation of the covariance matrix of the transformed model given by `cov_params()` Note: `fit_kwds` can affect the choice of covariance, e.g. by specifying `cov_type`, which will be reflected in the returned covariance. res_constr : results instance This is the results instance for the created transformed model. Notes ----- Limitations: Models where the number of parameters is different from the number of columns of exog are not yet supported. Requires a model that implement an offset option. """ self = model # internal alias, used for methods if fit_kwds is None: fit_kwds = {} R, q = constraint_matrix, constraint_values endog, exog = self.endog, self.exog transf = TransformRestriction(R, q) exogp_st = transf.reduce(exog) offset = exog.dot(transf.constant.squeeze()) if hasattr(self, 'offset'): offset += self.offset if start_params is not None: start_params = transf.reduce(start_params) # need copy, because we do not want to change it, we do not need deepcopy import copy init_kwds = copy.copy(self._get_init_kwds()) # TODO: refactor to combine with above or offset_all if 'offset' in init_kwds: del init_kwds['offset'] # using offset as keywords is not supported in all modules mod_constr = self.__class__(endog, exogp_st, offset=offset, **init_kwds) res_constr = mod_constr.fit(start_params=start_params, **fit_kwds) params_orig = transf.expand(res_constr.params).squeeze() cov_params = transf.transf_mat.dot(res_constr.cov_params()).dot(transf.transf_mat.T) return params_orig, cov_params, res_constr
fit model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- model: model instance An instance of a model, see limitations in Notes section constraint_matrix : array_like, 2D This is R in the linear equality constraint `R params = q`. The number of columns needs to be the same as the number of columns in exog. constraint_values : This is `q` in the linear equality constraint `R params = q` If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- params : ndarray ? estimated parameters (in the original parameterization cov_params : ndarray covariance matrix of the parameter estimates. This is a reverse transformation of the covariance matrix of the transformed model given by `cov_params()` Note: `fit_kwds` can affect the choice of covariance, e.g. by specifying `cov_type`, which will be reflected in the returned covariance. res_constr : results instance This is the results instance for the created transformed model. Notes ----- Limitations: Models where the number of parameters is different from the number of columns of exog are not yet supported. Requires a model that implement an offset option.
fit_constrained
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def fit_constrained_wrap(model, constraints, start_params=None, **fit_kwds): """fit_constraint that returns a results instance This is a development version for fit_constrained methods or fit_constrained as standalone function. It will not work correctly for all models because creating a new results instance is not standardized for use outside the `fit` methods, and might need adjustements for this. This is the prototype for the fit_constrained method that has been added to Poisson and GLM. """ self = model # alias for use as method # constraints = (R, q) # TODO: temporary trailing underscore to not overwrite the monkey # patched version # TODO: decide whether to move the imports from statsmodels.formula._manager import FormulaManager # we need this import if we copy it to a different module # from statsmodels.base._constraints import fit_constrained # same pattern as in base.LikelihoodModel.t_test mgr = FormulaManager() lc = mgr.get_linear_constraints(constraints, self.exog_names) R, q = lc.constraint_matrix, lc.constraint_values # TODO: add start_params option, need access to tranformation # fit_constrained needs to do the transformation params, cov, res_constr = fit_constrained(self, R, q, start_params=start_params, fit_kwds=fit_kwds) # create dummy results Instance, TODO: wire up properly res = self.fit(start_params=params, maxiter=0, warn_convergence=False) # we get a wrapper back res._results.params = params res._results.cov_params_default = cov cov_type = fit_kwds.get('cov_type', 'nonrobust') if cov_type == 'nonrobust': res._results.normalized_cov_params = cov / res_constr.scale else: res._results.normalized_cov_params = None k_constr = len(q) res._results.df_resid += k_constr res._results.df_model -= k_constr res._results.constraints = LinearConstraints.from_formula_parser(lc) res._results.k_constr = k_constr res._results.results_constrained = res_constr return res
fit_constraint that returns a results instance This is a development version for fit_constrained methods or fit_constrained as standalone function. It will not work correctly for all models because creating a new results instance is not standardized for use outside the `fit` methods, and might need adjustements for this. This is the prototype for the fit_constrained method that has been added to Poisson and GLM.
fit_constrained_wrap
python
statsmodels/statsmodels
statsmodels/base/_constraints.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_constraints.py
BSD-3-Clause
def fit_l1_slsqp( f, score, start_params, args, kwargs, disp=False, maxiter=1000, callback=None, retall=False, full_output=False, hess=None): """ Solve the l1 regularized problem using scipy.optimize.fmin_slsqp(). Specifically: We convert the convex but non-smooth problem .. math:: \\min_\\beta f(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} f(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. Parameters ---------- All the usual parameters from LikelhoodModel.fit alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value size_trim_tol : float or 'auto' (default = 'auto') For use when trim_mode === 'size' auto_trim_tol : float For sue when trim_mode == 'auto'. Use qc_tol : float Print warning and do not allow auto trim when (ii) in "Theory" (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure acc : float (default 1e-6) Requested accuracy as used by slsqp """ start_params = np.array(start_params).ravel('F') ### Extract values # k_params is total number of covariates, # possibly including a leading constant. k_params = len(start_params) # The start point x0 = np.append(start_params, np.fabs(start_params)) # alpha is the regularization parameter alpha = np.array(kwargs['alpha_rescaled']).ravel('F') # Make sure it's a vector alpha = alpha * np.ones(k_params) assert alpha.min() >= 0 # Convert display parameters to scipy.optimize form disp_slsqp = _get_disp_slsqp(disp, retall) # Set/retrieve the desired accuracy acc = kwargs.setdefault('acc', 1e-10) ### Wrap up for use in fmin_slsqp def func(x_full): return _objective_func(f, x_full, k_params, alpha, *args) def f_ieqcons_wrap(x_full): return _f_ieqcons(x_full, k_params) def fprime_wrap(x_full): return _fprime(score, x_full, k_params, alpha) def fprime_ieqcons_wrap(x_full): return _fprime_ieqcons(x_full, k_params) ### Call the solver results = fmin_slsqp( func, x0, f_ieqcons=f_ieqcons_wrap, fprime=fprime_wrap, acc=acc, iter=maxiter, disp=disp_slsqp, full_output=full_output, fprime_ieqcons=fprime_ieqcons_wrap) params = np.asarray(results[0][:k_params]) ### Post-process # QC qc_tol = kwargs['qc_tol'] qc_verbose = kwargs['qc_verbose'] passed = l1_solvers_common.qc_results( params, alpha, score, qc_tol, qc_verbose) # Possibly trim trim_mode = kwargs['trim_mode'] size_trim_tol = kwargs['size_trim_tol'] auto_trim_tol = kwargs['auto_trim_tol'] params, trimmed = l1_solvers_common.do_trim_params( params, k_params, alpha, score, passed, trim_mode, size_trim_tol, auto_trim_tol) ### Pack up return values for statsmodels optimizers # TODO These retvals are returned as mle_retvals...but the fit was not ML. # This could be confusing someday. if full_output: x_full, fx, its, imode, smode = results fopt = func(np.asarray(x_full)) converged = (imode == 0) warnflag = str(imode) + ' ' + smode iterations = its gopt = float('nan') # Objective is non-differentiable hopt = float('nan') retvals = { 'fopt': fopt, 'converged': converged, 'iterations': iterations, 'gopt': gopt, 'hopt': hopt, 'trimmed': trimmed, 'warnflag': warnflag} ### Return if full_output: return params, retvals else: return params
Solve the l1 regularized problem using scipy.optimize.fmin_slsqp(). Specifically: We convert the convex but non-smooth problem .. math:: \\min_\\beta f(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} f(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. Parameters ---------- All the usual parameters from LikelhoodModel.fit alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value size_trim_tol : float or 'auto' (default = 'auto') For use when trim_mode === 'size' auto_trim_tol : float For sue when trim_mode == 'auto'. Use qc_tol : float Print warning and do not allow auto trim when (ii) in "Theory" (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure acc : float (default 1e-6) Requested accuracy as used by slsqp
fit_l1_slsqp
python
statsmodels/statsmodels
statsmodels/base/l1_slsqp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_slsqp.py
BSD-3-Clause
def _objective_func(f, x_full, k_params, alpha, *args): """ The regularized objective function """ x_params = x_full[:k_params] x_added = x_full[k_params:] ## Return return f(x_params, *args) + (alpha * x_added).sum()
The regularized objective function
_objective_func
python
statsmodels/statsmodels
statsmodels/base/l1_slsqp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_slsqp.py
BSD-3-Clause
def _fprime(score, x_full, k_params, alpha): """ The regularized derivative """ x_params = x_full[:k_params] # The derivative just appends a vector of constants return np.append(score(x_params), alpha)
The regularized derivative
_fprime
python
statsmodels/statsmodels
statsmodels/base/l1_slsqp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_slsqp.py
BSD-3-Clause
def _f_ieqcons(x_full, k_params): """ The inequality constraints. """ x_params = x_full[:k_params] x_added = x_full[k_params:] # All entries in this vector must be \geq 0 in a feasible solution return np.append(x_params + x_added, x_added - x_params)
The inequality constraints.
_f_ieqcons
python
statsmodels/statsmodels
statsmodels/base/l1_slsqp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_slsqp.py
BSD-3-Clause
def _fprime_ieqcons(x_full, k_params): """ Derivative of the inequality constraints """ I = np.eye(k_params) # noqa:E741 A = np.concatenate((I, I), axis=1) B = np.concatenate((-I, I), axis=1) C = np.concatenate((A, B), axis=0) ## Return return C
Derivative of the inequality constraints
_fprime_ieqcons
python
statsmodels/statsmodels
statsmodels/base/l1_slsqp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_slsqp.py
BSD-3-Clause
def save(self, fname, remove_data=False): """ Save a pickle of this instance. Parameters ---------- fname : {str, handle} Either a filename or a valid file handle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. """ from statsmodels.iolib.smpickle import save_pickle if remove_data: self.remove_data() save_pickle(self, fname)
Save a pickle of this instance. Parameters ---------- fname : {str, handle} Either a filename or a valid file handle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None.
save
python
statsmodels/statsmodels
statsmodels/base/wrapper.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/wrapper.py
BSD-3-Clause
def load(cls, fname): """ Load a pickled results instance .. warning:: Loading pickled models is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source. Parameters ---------- fname : {str, handle} A string filename or a file handle. Returns ------- Results The unpickled results instance. """ from statsmodels.iolib.smpickle import load_pickle return load_pickle(fname)
Load a pickled results instance .. warning:: Loading pickled models is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source. Parameters ---------- fname : {str, handle} A string filename or a file handle. Returns ------- Results The unpickled results instance.
load
python
statsmodels/statsmodels
statsmodels/base/wrapper.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/wrapper.py
BSD-3-Clause
def fit_l1_cvxopt_cp( f, score, start_params, args, kwargs, disp=False, maxiter=100, callback=None, retall=False, full_output=False, hess=None): """ Solve the l1 regularized problem using cvxopt.solvers.cp Specifically: We convert the convex but non-smooth problem .. math:: \\min_\\beta f(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} f(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. Parameters ---------- All the usual parameters from LikelhoodModel.fit alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value size_trim_tol : float or 'auto' (default = 'auto') For use when trim_mode === 'size' auto_trim_tol : float For sue when trim_mode == 'auto'. Use qc_tol : float Print warning and do not allow auto trim when (ii) in "Theory" (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1). """ from cvxopt import matrix, solvers start_params = np.array(start_params).ravel('F') ## Extract arguments # k_params is total number of covariates, possibly including a leading constant. k_params = len(start_params) # The start point x0 = np.append(start_params, np.fabs(start_params)) x0 = matrix(x0, (2 * k_params, 1)) # The regularization parameter alpha = np.array(kwargs['alpha_rescaled']).ravel('F') # Make sure it's a vector alpha = alpha * np.ones(k_params) assert alpha.min() >= 0 ## Wrap up functions for cvxopt def f_0(x): return _objective_func(f, x, k_params, alpha, *args) def Df(x): return _fprime(score, x, k_params, alpha) G = _get_G(k_params) # Inequality constraint matrix, Gx \leq h h = matrix(0.0, (2 * k_params, 1)) # RHS in inequality constraint def H(x, z): return _hessian_wrapper(hess, x, z, k_params) ## Define the optimization function def F(x=None, z=None): if x is None: return 0, x0 elif z is None: return f_0(x), Df(x) else: return f_0(x), Df(x), H(x, z) ## Convert optimization settings to cvxopt form solvers.options['show_progress'] = disp solvers.options['maxiters'] = maxiter if 'abstol' in kwargs: solvers.options['abstol'] = kwargs['abstol'] if 'reltol' in kwargs: solvers.options['reltol'] = kwargs['reltol'] if 'feastol' in kwargs: solvers.options['feastol'] = kwargs['feastol'] if 'refinement' in kwargs: solvers.options['refinement'] = kwargs['refinement'] ### Call the optimizer results = solvers.cp(F, G, h) x = np.asarray(results['x']).ravel() params = x[:k_params] ### Post-process # QC qc_tol = kwargs['qc_tol'] qc_verbose = kwargs['qc_verbose'] passed = l1_solvers_common.qc_results( params, alpha, score, qc_tol, qc_verbose) # Possibly trim trim_mode = kwargs['trim_mode'] size_trim_tol = kwargs['size_trim_tol'] auto_trim_tol = kwargs['auto_trim_tol'] params, trimmed = l1_solvers_common.do_trim_params( params, k_params, alpha, score, passed, trim_mode, size_trim_tol, auto_trim_tol) ### Pack up return values for statsmodels # TODO These retvals are returned as mle_retvals...but the fit was not ML if full_output: fopt = f_0(x) gopt = float('nan') # Objective is non-differentiable hopt = float('nan') iterations = float('nan') converged = (results['status'] == 'optimal') warnflag = results['status'] retvals = { 'fopt': fopt, 'converged': converged, 'iterations': iterations, 'gopt': gopt, 'hopt': hopt, 'trimmed': trimmed, 'warnflag': warnflag} else: x = np.array(results['x']).ravel() params = x[:k_params] ### Return results if full_output: return params, retvals else: return params
Solve the l1 regularized problem using cvxopt.solvers.cp Specifically: We convert the convex but non-smooth problem .. math:: \\min_\\beta f(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} f(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. Parameters ---------- All the usual parameters from LikelhoodModel.fit alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value size_trim_tol : float or 'auto' (default = 'auto') For use when trim_mode === 'size' auto_trim_tol : float For sue when trim_mode == 'auto'. Use qc_tol : float Print warning and do not allow auto trim when (ii) in "Theory" (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1).
fit_l1_cvxopt_cp
python
statsmodels/statsmodels
statsmodels/base/l1_cvxopt.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_cvxopt.py
BSD-3-Clause
def _objective_func(f, x, k_params, alpha, *args): """ The regularized objective function. """ from cvxopt import matrix x_arr = np.asarray(x) params = x_arr[:k_params].ravel() u = x_arr[k_params:] # Call the numpy version objective_func_arr = f(params, *args) + (alpha * u).sum() # Return return matrix(objective_func_arr)
The regularized objective function.
_objective_func
python
statsmodels/statsmodels
statsmodels/base/l1_cvxopt.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_cvxopt.py
BSD-3-Clause
def _fprime(score, x, k_params, alpha): """ The regularized derivative. """ from cvxopt import matrix x_arr = np.asarray(x) params = x_arr[:k_params].ravel() # Call the numpy version # The derivative just appends a vector of constants fprime_arr = np.append(score(params), alpha) # Return return matrix(fprime_arr, (1, 2 * k_params))
The regularized derivative.
_fprime
python
statsmodels/statsmodels
statsmodels/base/l1_cvxopt.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_cvxopt.py
BSD-3-Clause
def _get_G(k_params): """ The linear inequality constraint matrix. """ from cvxopt import matrix I = np.eye(k_params) # noqa:E741 A = np.concatenate((-I, -I), axis=1) B = np.concatenate((I, -I), axis=1) C = np.concatenate((A, B), axis=0) # Return return matrix(C)
The linear inequality constraint matrix.
_get_G
python
statsmodels/statsmodels
statsmodels/base/l1_cvxopt.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_cvxopt.py
BSD-3-Clause
def _hessian_wrapper(hess, x, z, k_params): """ Wraps the hessian up in the form for cvxopt. cvxopt wants the hessian of the objective function and the constraints. Since our constraints are linear, this part is all zeros. """ from cvxopt import matrix x_arr = np.asarray(x) params = x_arr[:k_params].ravel() zh_x = np.asarray(z[0]) * hess(params) zero_mat = np.zeros(zh_x.shape) A = np.concatenate((zh_x, zero_mat), axis=1) B = np.concatenate((zero_mat, zero_mat), axis=1) zh_x_ext = np.concatenate((A, B), axis=0) return matrix(zh_x_ext, (2 * k_params, 2 * k_params))
Wraps the hessian up in the form for cvxopt. cvxopt wants the hessian of the objective function and the constraints. Since our constraints are linear, this part is all zeros.
_hessian_wrapper
python
statsmodels/statsmodels
statsmodels/base/l1_cvxopt.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/l1_cvxopt.py
BSD-3-Clause
def _get_penal(self, weights=None): """create new Penalty instance """ return SCADSmoothed(0.1, c0=0.0001, weights=weights)
create new Penalty instance
_get_penal
python
statsmodels/statsmodels
statsmodels/base/_screening.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_screening.py
BSD-3-Clause
def ranking_measure(self, res_pen, exog, keep=None): """compute measure for ranking exog candidates for inclusion """ endog = self.endog if self.ranking_project: assert res_pen.model.exog.shape[1] == len(keep) ex_incl = res_pen.model.exog[:, keep] exog = exog - ex_incl.dot(np.linalg.pinv(ex_incl).dot(exog)) if self.ranking_attr == 'predicted_poisson': # I keep this for more experiments # TODO: does it really help to change/trim params # we are not reestimating with trimmed model p = res_pen.params.copy() if keep is not None: p[~keep] = 0 predicted = res_pen.model.predict(p) # this is currently hardcoded for Poisson resid_factor = (endog - predicted) / np.sqrt(predicted) elif self.ranking_attr[:6] == 'model.': # use model method, this is intended for score_factor attr = self.ranking_attr.split('.')[1] resid_factor = getattr(res_pen.model, attr)(res_pen.params) if resid_factor.ndim == 2: # for score_factor when extra params are in model resid_factor = resid_factor[:, 0] mom_cond = np.abs(resid_factor.dot(exog))**2 else: # use results attribute resid_factor = getattr(res_pen, self.ranking_attr) mom_cond = np.abs(resid_factor.dot(exog))**2 return mom_cond
compute measure for ranking exog candidates for inclusion
ranking_measure
python
statsmodels/statsmodels
statsmodels/base/_screening.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_screening.py
BSD-3-Clause
def screen_exog(self, exog, endog=None, maxiter=100, method='bfgs', disp=False, fit_kwds=None): """screen and select variables (columns) in exog Parameters ---------- exog : ndarray candidate explanatory variables that are screened for inclusion in the model endog : ndarray (optional) use a new endog in the screening model. This is not tested yet, and might not work correctly maxiter : int number of screening iterations method : str optimization method to use in fit, needs to be only of the gradient optimizers disp : bool display option for fit during optimization Returns ------- res_screen : instance of ScreeningResults The attribute `results_final` contains is the results instance with the final model selection. `idx_nonzero` contains the index of the selected exog in the full exog, combined exog that are always kept plust exog_candidates. see ScreeningResults for a full description """ model_class = self.model_class if endog is None: # allow a different endog than used in model endog = self.endog x0 = self.exog_keep k_keep = self.k_keep x1 = exog k_current = x0.shape[1] # TODO: remove the need for x, use x1 separately from x0 # needs change to idx to be based on x1 (candidate variables) x = np.column_stack((x0, x1)) nobs, k_vars = x.shape fkwds = fit_kwds if fit_kwds is not None else {} fit_kwds = {'maxiter': 200, 'disp': False} fit_kwds.update(fkwds) history = defaultdict(list) idx_nonzero = np.arange(k_keep, dtype=int) keep = np.ones(k_keep, np.bool_) idx_excl = np.arange(k_keep, k_vars) mod_pen = model_class(endog, x0, **self.init_kwds) # do not penalize initial estimate mod_pen.pen_weight = 0 res_pen = mod_pen.fit(**fit_kwds) start_params = res_pen.params converged = False idx_old = [] for it in range(maxiter): # candidates for inclusion in next iteration x1 = x[:, idx_excl] mom_cond = self.ranking_measure(res_pen, x1, keep=keep) assert len(mom_cond) == len(idx_excl) mcs = np.sort(mom_cond)[::-1] idx_thr = min((self.k_max_add, k_current + self.k_add, len(mcs))) threshold = mcs[idx_thr] # indices of exog in current expansion model idx = np.concatenate((idx_nonzero, idx_excl[mom_cond > threshold])) start_params2 = np.zeros(len(idx)) start_params2[:len(start_params)] = start_params if self.use_weights: weights = np.ones(len(idx)) weights[:k_keep] = 0 # modify Penalty instance attached to self # damgerous if res_pen is reused self.penal.weights = weights mod_pen = model_class(endog, x[:, idx], penal=self.penal, pen_weight=self.pen_weight, **self.init_kwds) res_pen = mod_pen.fit(method=method, start_params=start_params2, warn_convergence=False, skip_hessian=True, **fit_kwds) keep = np.abs(res_pen.params) > self.threshold_trim # use largest params to keep if keep.sum() > self.k_max_included: # TODO we can use now np.partition with partial sort thresh_params = np.sort(np.abs(res_pen.params))[ -self.k_max_included] keep2 = np.abs(res_pen.params) > thresh_params keep = np.logical_and(keep, keep2) # Note: idx and keep are for current expansion model # idx_nonzero has indices of selected variables in full exog keep[:k_keep] = True # always keep exog_keep idx_nonzero = idx[keep] if disp: print(keep) print(idx_nonzero) # x0 is exog of currently selected model, not used in iteration # x0 = x[:, idx_nonzero] k_current = len(idx_nonzero) start_params = res_pen.params[keep] # use mask to get excluded indices mask_excl = np.ones(k_vars, dtype=bool) mask_excl[idx_nonzero] = False idx_excl = np.nonzero(mask_excl)[0] history['idx_nonzero'].append(idx_nonzero) history['keep'].append(keep) history['params_keep'].append(start_params) history['idx_added'].append(idx) if (len(idx_nonzero) == len(idx_old) and (idx_nonzero == idx_old).all()): converged = True break idx_old = idx_nonzero # final esimate # check that we still have exog_keep assert np.all(idx_nonzero[:k_keep] == np.arange(k_keep)) if self.use_weights: weights = np.ones(len(idx_nonzero)) weights[:k_keep] = 0 # create new Penalty instance to avoide sharing attached penal penal = self._get_penal(weights=weights) else: penal = self.penal mod_final = model_class(endog, x[:, idx_nonzero], penal=penal, pen_weight=self.pen_weight, **self.init_kwds) res_final = mod_final.fit(method=method, start_params=start_params, warn_convergence=False, **fit_kwds) # set exog_names for final model xnames = ['var%4d' % ii for ii in idx_nonzero] res_final.model.exog_names[k_keep:] = xnames[k_keep:] res = ScreeningResults(self, results_pen = res_pen, results_final = res_final, idx_nonzero = idx_nonzero, idx_exog = idx_nonzero[k_keep:] - k_keep, idx_excl = idx_excl, history = history, converged = converged, iterations = it + 1 # it is 0-based ) return res
screen and select variables (columns) in exog Parameters ---------- exog : ndarray candidate explanatory variables that are screened for inclusion in the model endog : ndarray (optional) use a new endog in the screening model. This is not tested yet, and might not work correctly maxiter : int number of screening iterations method : str optimization method to use in fit, needs to be only of the gradient optimizers disp : bool display option for fit during optimization Returns ------- res_screen : instance of ScreeningResults The attribute `results_final` contains is the results instance with the final model selection. `idx_nonzero` contains the index of the selected exog in the full exog, combined exog that are always kept plust exog_candidates. see ScreeningResults for a full description
screen_exog
python
statsmodels/statsmodels
statsmodels/base/_screening.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_screening.py
BSD-3-Clause
def screen_exog_iterator(self, exog_iterator): """ batched version of screen exog This screens variables in a two step process: In the first step screen_exog is used on each element of the exog_iterator, and the batch winners are collected. In the second step all batch winners are combined into a new array of exog candidates and `screen_exog` is used to select a final model. Parameters ---------- exog_iterator : iterator over ndarrays Returns ------- res_screen_final : instance of ScreeningResults This is the instance returned by the second round call to `screen_exog`. Additional attributes are added to provide more information about the batched selection process. The index of final nonzero variables is `idx_nonzero_batches` which is a 2-dimensional array with batch index in the first column and variable index within batch in the second column. They can be used jointly as index for the data in the exog_iterator. see ScreeningResults for a full description """ k_keep = self.k_keep # res_batches = [] res_idx = [] exog_winner = [] exog_idx = [] for ex in exog_iterator: res_screen = self.screen_exog(ex, maxiter=20) # avoid storing res_screen, only for debugging # res_batches.append(res_screen) res_idx.append(res_screen.idx_nonzero) exog_winner.append(ex[:, res_screen.idx_nonzero[k_keep:] - k_keep]) exog_idx.append(res_screen.idx_nonzero[k_keep:] - k_keep) exog_winner = np.column_stack(exog_winner) res_screen_final = self.screen_exog(exog_winner, maxiter=20) exog_winner_names = ['var%d_%d' % (bidx, idx) for bidx, batch in enumerate(exog_idx) for idx in batch] idx_full = [(bidx, idx) for bidx, batch in enumerate(exog_idx) for idx in batch] ex_final_idx = res_screen_final.idx_nonzero[k_keep:] - k_keep final_names = np.array(exog_winner_names)[ex_final_idx] res_screen_final.idx_nonzero_batches = np.array(idx_full)[ex_final_idx] res_screen_final.exog_final_names = final_names history = {'idx_nonzero': res_idx, 'idx_exog': exog_idx} res_screen_final.history_batches = history return res_screen_final
batched version of screen exog This screens variables in a two step process: In the first step screen_exog is used on each element of the exog_iterator, and the batch winners are collected. In the second step all batch winners are combined into a new array of exog candidates and `screen_exog` is used to select a final model. Parameters ---------- exog_iterator : iterator over ndarrays Returns ------- res_screen_final : instance of ScreeningResults This is the instance returned by the second round call to `screen_exog`. Additional attributes are added to provide more information about the batched selection process. The index of final nonzero variables is `idx_nonzero_batches` which is a 2-dimensional array with batch index in the first column and variable index within batch in the second column. They can be used jointly as index for the data in the exog_iterator. see ScreeningResults for a full description
screen_exog_iterator
python
statsmodels/statsmodels
statsmodels/base/_screening.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_screening.py
BSD-3-Clause
def _asarray_2d_null_rows(x): """ Makes sure input is an array and is 2d. Makes sure output is 2d. True indicates a null in the rows of 2d x. """ # Have to have the asarrays because isnull does not account for array_like # input x = np.asarray(x) if x.ndim == 1: x = x[:, None] return np.any(isnull(x), axis=1)[:, None]
Makes sure input is an array and is 2d. Makes sure output is 2d. True indicates a null in the rows of 2d x.
_asarray_2d_null_rows
python
statsmodels/statsmodels
statsmodels/base/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/data.py
BSD-3-Clause
def _nan_rows(*arrs): """ Returns a boolean array which is True where any of the rows in any of the _2d_ arrays in arrs are NaNs. Inputs can be any mixture of Series, DataFrames or array_like. """ if len(arrs) == 1: arrs += ([[False]],) def _nan_row_maybe_two_inputs(x, y): # check for dtype bc dataframe has dtypes x_is_boolean_array = hasattr(x, "dtype") and x.dtype == bool and x return np.logical_or( _asarray_2d_null_rows(x), (x_is_boolean_array | _asarray_2d_null_rows(y)) ) return reduce(_nan_row_maybe_two_inputs, arrs).squeeze()
Returns a boolean array which is True where any of the rows in any of the _2d_ arrays in arrs are NaNs. Inputs can be any mixture of Series, DataFrames or array_like.
_nan_rows
python
statsmodels/statsmodels
statsmodels/base/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/data.py
BSD-3-Clause
def handle_missing(cls, endog, exog, missing, **kwargs): """ This returns a dictionary with keys endog, exog and the keys of kwargs. It preserves Nones. """ none_array_names = [] # patsy's already dropped NaNs in y/X missing_idx = kwargs.pop("missing_idx", None) if missing_idx is not None: # y, X already handled by patsy. add back in later. combined = () combined_names = [] if exog is None: none_array_names += ["exog"] elif exog is not None: combined = (endog, exog) combined_names = ["endog", "exog"] else: combined = (endog,) combined_names = ["endog"] none_array_names += ["exog"] # deal with other arrays combined_2d = () combined_2d_names = [] if len(kwargs): for key, value_array in kwargs.items(): if value_array is None or np.ndim(value_array) == 0: none_array_names += [key] continue # grab 1d arrays if value_array.ndim == 1: combined += (np.asarray(value_array),) combined_names += [key] elif value_array.squeeze().ndim == 1: combined += (np.asarray(value_array),) combined_names += [key] # grab 2d arrays that are _assumed_ to be symmetric elif value_array.ndim == 2: combined_2d += (np.asarray(value_array),) combined_2d_names += [key] else: raise ValueError( "Arrays with more than 2 dimensions " "are not yet handled" ) if missing_idx is not None: nan_mask = missing_idx updated_row_mask = None if combined: # there were extra arrays not handled by patsy combined_nans = _nan_rows(*combined) if combined_nans.shape[0] != nan_mask.shape[0]: raise ValueError( "Shape mismatch between endog/exog " "and extra arrays given to model." ) # for going back and updated endog/exog updated_row_mask = combined_nans[~nan_mask] nan_mask |= combined_nans # for updating extra arrays only if combined_2d: combined_2d_nans = _nan_rows(combined_2d) if combined_2d_nans.shape[0] != nan_mask.shape[0]: raise ValueError( "Shape mismatch between endog/exog " "and extra 2d arrays given to model." ) if updated_row_mask is not None: updated_row_mask |= combined_2d_nans[~nan_mask] else: updated_row_mask = combined_2d_nans[~nan_mask] nan_mask |= combined_2d_nans else: nan_mask = _nan_rows(*combined) if combined_2d: nan_mask = _nan_rows(*(nan_mask[:, None],) + combined_2d) if not np.any(nan_mask): # no missing do not do anything combined = dict(zip(combined_names, combined)) if combined_2d: combined.update(dict(zip(combined_2d_names, combined_2d))) if none_array_names: combined.update({k: kwargs.get(k, None) for k in none_array_names}) if missing_idx is not None: combined.update({"endog": endog}) if exog is not None: combined.update({"exog": exog}) return combined, [] elif missing == "raise": raise MissingDataError("NaNs were encountered in the data") elif missing == "drop": nan_mask = ~nan_mask def drop_nans(x): return cls._drop_nans(x, nan_mask) def drop_nans_2d(x): return cls._drop_nans_2d(x, nan_mask) combined = dict(zip(combined_names, lmap(drop_nans, combined))) if missing_idx is not None: if updated_row_mask is not None: updated_row_mask = ~updated_row_mask # update endog/exog with this new information endog = cls._drop_nans(endog, updated_row_mask) if exog is not None: exog = cls._drop_nans(exog, updated_row_mask) combined.update({"endog": endog}) if exog is not None: combined.update({"exog": exog}) if combined_2d: combined.update( dict(zip(combined_2d_names, lmap(drop_nans_2d, combined_2d))) ) if none_array_names: combined.update({k: kwargs.get(k, None) for k in none_array_names}) return combined, np.where(~nan_mask)[0].tolist() else: raise ValueError("missing option %s not understood" % missing)
This returns a dictionary with keys endog, exog and the keys of kwargs. It preserves Nones.
handle_missing
python
statsmodels/statsmodels
statsmodels/base/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/data.py
BSD-3-Clause
def cov_names(self): """ Labels for covariance matrices In multidimensional models, each dimension of a covariance matrix differs from the number of param_names. If not set, returns param_names """ # for handling names of covariance names in multidimensional models if self._cov_names is not None: return self._cov_names return self.param_names
Labels for covariance matrices In multidimensional models, each dimension of a covariance matrix differs from the number of param_names. If not set, returns param_names
cov_names
python
statsmodels/statsmodels
statsmodels/base/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/data.py
BSD-3-Clause
def handle_data_class_factory(endog, exog): """ Given inputs """ if data_util._is_using_ndarray_type(endog, exog): klass = ModelData elif data_util._is_using_pandas(endog, exog): klass = PandasData elif data_util._is_using_patsy(endog, exog): klass = PatsyData elif data_util._is_using_formulaic(endog, exog): klass = FormulaicData # keep this check last elif data_util._is_using_ndarray(endog, exog): klass = ModelData else: raise ValueError( "unrecognized data structures: %s / %s" % (type(endog), type(exog)) ) return klass
Given inputs
handle_data_class_factory
python
statsmodels/statsmodels
statsmodels/base/data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/data.py
BSD-3-Clause
def transform_boxcox(self, x, lmbda=None, method='guerrero', **kwargs): """ Performs a Box-Cox transformation on the data array x. If lmbda is None, the indicated method is used to estimate a suitable lambda parameter. Parameters ---------- x : array_like lmbda : float The lambda parameter for the Box-Cox transform. If None, a value will be estimated by means of the specified method. method : {'guerrero', 'loglik'} The method to estimate the lambda parameter. Will only be used if lmbda is None, and defaults to 'guerrero', detailed in Guerrero (1993). 'loglik' maximizes the profile likelihood. **kwargs Options for the specified method. * For 'guerrero', this entails window_length, the grouping parameter, scale, the dispersion measure, and options, to be passed to the optimizer. * For 'loglik': options, to be passed to the optimizer. Returns ------- y : array_like The transformed series. lmbda : float The lmbda parameter used to transform the series. References ---------- Guerrero, Victor M. 1993. "Time-series analysis supported by power transformations". `Journal of Forecasting`. 12 (1): 37-48. Guerrero, Victor M. and Perera, Rafael. 2004. "Variance Stabilizing Power Transformation for Time Series," `Journal of Modern Applied Statistical Methods`. 3 (2): 357-369. Box, G. E. P., and D. R. Cox. 1964. "An Analysis of Transformations". `Journal of the Royal Statistical Society`. 26 (2): 211-252. """ x = np.asarray(x) if np.any(x <= 0): raise ValueError("Non-positive x.") if lmbda is None: lmbda = self._est_lambda(x, method=method, **kwargs) # if less than 0.01, treat lambda as zero. if np.isclose(lmbda, 0.): y = np.log(x) else: y = (np.power(x, lmbda) - 1.) / lmbda return y, lmbda
Performs a Box-Cox transformation on the data array x. If lmbda is None, the indicated method is used to estimate a suitable lambda parameter. Parameters ---------- x : array_like lmbda : float The lambda parameter for the Box-Cox transform. If None, a value will be estimated by means of the specified method. method : {'guerrero', 'loglik'} The method to estimate the lambda parameter. Will only be used if lmbda is None, and defaults to 'guerrero', detailed in Guerrero (1993). 'loglik' maximizes the profile likelihood. **kwargs Options for the specified method. * For 'guerrero', this entails window_length, the grouping parameter, scale, the dispersion measure, and options, to be passed to the optimizer. * For 'loglik': options, to be passed to the optimizer. Returns ------- y : array_like The transformed series. lmbda : float The lmbda parameter used to transform the series. References ---------- Guerrero, Victor M. 1993. "Time-series analysis supported by power transformations". `Journal of Forecasting`. 12 (1): 37-48. Guerrero, Victor M. and Perera, Rafael. 2004. "Variance Stabilizing Power Transformation for Time Series," `Journal of Modern Applied Statistical Methods`. 3 (2): 357-369. Box, G. E. P., and D. R. Cox. 1964. "An Analysis of Transformations". `Journal of the Royal Statistical Society`. 26 (2): 211-252.
transform_boxcox
python
statsmodels/statsmodels
statsmodels/base/transform.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/transform.py
BSD-3-Clause
def untransform_boxcox(self, x, lmbda, method='naive'): """ Back-transforms the Box-Cox transformed data array, by means of the indicated method. The provided argument lmbda should be the lambda parameter that was used to initially transform the data. Parameters ---------- x : array_like The transformed series. lmbda : float The lambda parameter that was used to transform the series. method : {'naive'} Indicates the method to be used in the untransformation. Defaults to 'naive', which reverses the transformation. NOTE: 'naive' is implemented natively, while other methods may be available in subclasses! Returns ------- y : array_like The untransformed series. """ method = method.lower() x = np.asarray(x) if method == 'naive': if np.isclose(lmbda, 0.): y = np.exp(x) else: y = np.power(lmbda * x + 1, 1. / lmbda) else: raise ValueError(f"Method '{method}' not understood.") return y
Back-transforms the Box-Cox transformed data array, by means of the indicated method. The provided argument lmbda should be the lambda parameter that was used to initially transform the data. Parameters ---------- x : array_like The transformed series. lmbda : float The lambda parameter that was used to transform the series. method : {'naive'} Indicates the method to be used in the untransformation. Defaults to 'naive', which reverses the transformation. NOTE: 'naive' is implemented natively, while other methods may be available in subclasses! Returns ------- y : array_like The untransformed series.
untransform_boxcox
python
statsmodels/statsmodels
statsmodels/base/transform.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/transform.py
BSD-3-Clause
def _est_lambda(self, x, bounds=(-1, 2), method='guerrero', **kwargs): """ Computes an estimate for the lambda parameter in the Box-Cox transformation using method. Parameters ---------- x : array_like The untransformed data. bounds : tuple Numeric 2-tuple, that indicate the solution space for the lambda parameter. Default (-1, 2). method : {'guerrero', 'loglik'} The method by which to estimate lambda. Defaults to 'guerrero', but the profile likelihood ('loglik') is also available. **kwargs Options for the specified method. * For 'guerrero': window_length (int), the seasonality/grouping parameter. Scale ({'mad', 'sd'}), the dispersion measure. Options (dict), to be passed to the optimizer. * For 'loglik': Options (dict), to be passed to the optimizer. Returns ------- lmbda : float The lambda parameter. """ method = method.lower() if len(bounds) != 2: raise ValueError("Bounds of length {} not understood." .format(len(bounds))) elif bounds[0] >= bounds[1]: raise ValueError("Lower bound exceeds upper bound.") if method == 'guerrero': lmbda = self._guerrero_cv(x, bounds=bounds, **kwargs) elif method == 'loglik': lmbda = self._loglik_boxcox(x, bounds=bounds, **kwargs) else: raise ValueError(f"Method '{method}' not understood.") return lmbda
Computes an estimate for the lambda parameter in the Box-Cox transformation using method. Parameters ---------- x : array_like The untransformed data. bounds : tuple Numeric 2-tuple, that indicate the solution space for the lambda parameter. Default (-1, 2). method : {'guerrero', 'loglik'} The method by which to estimate lambda. Defaults to 'guerrero', but the profile likelihood ('loglik') is also available. **kwargs Options for the specified method. * For 'guerrero': window_length (int), the seasonality/grouping parameter. Scale ({'mad', 'sd'}), the dispersion measure. Options (dict), to be passed to the optimizer. * For 'loglik': Options (dict), to be passed to the optimizer. Returns ------- lmbda : float The lambda parameter.
_est_lambda
python
statsmodels/statsmodels
statsmodels/base/transform.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/transform.py
BSD-3-Clause
def _guerrero_cv(self, x, bounds, window_length=4, scale='sd', options={'maxiter': 25}): """ Computes lambda using guerrero's coefficient of variation. If no seasonality is present in the data, window_length is set to 4 (as per Guerrero and Perera, (2004)). NOTE: Seasonality-specific auxiliaries *should* provide their own seasonality parameter. Parameters ---------- x : array_like bounds : tuple Numeric 2-tuple, that indicate the solution space for the lambda parameter. window_length : int Seasonality/grouping parameter. Default 4, as per Guerrero and Perera (2004). NOTE: this indicates the length of the individual groups, not the total number of groups! scale : {'sd', 'mad'} The dispersion measure to be used. 'sd' indicates the sample standard deviation, but the more robust 'mad' is also available. options : dict The options (as a dict) to be passed to the optimizer. """ nobs = len(x) groups = int(nobs / window_length) # remove the first n < window_length observations from consideration. grouped_data = np.reshape(x[nobs - (groups * window_length): nobs], (groups, window_length)) mean = np.mean(grouped_data, 1) scale = scale.lower() if scale == 'sd': dispersion = np.std(grouped_data, 1, ddof=1) elif scale == 'mad': dispersion = mad(grouped_data, axis=1) else: raise ValueError(f"Scale '{scale}' not understood.") def optim(lmbda): rat = np.divide(dispersion, np.power(mean, 1 - lmbda)) # eq 6, p 40 return np.std(rat, ddof=1) / np.mean(rat) res = minimize_scalar(optim, bounds=bounds, method='bounded', options=options) return res.x
Computes lambda using guerrero's coefficient of variation. If no seasonality is present in the data, window_length is set to 4 (as per Guerrero and Perera, (2004)). NOTE: Seasonality-specific auxiliaries *should* provide their own seasonality parameter. Parameters ---------- x : array_like bounds : tuple Numeric 2-tuple, that indicate the solution space for the lambda parameter. window_length : int Seasonality/grouping parameter. Default 4, as per Guerrero and Perera (2004). NOTE: this indicates the length of the individual groups, not the total number of groups! scale : {'sd', 'mad'} The dispersion measure to be used. 'sd' indicates the sample standard deviation, but the more robust 'mad' is also available. options : dict The options (as a dict) to be passed to the optimizer.
_guerrero_cv
python
statsmodels/statsmodels
statsmodels/base/transform.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/transform.py
BSD-3-Clause
def _loglik_boxcox(self, x, bounds, options={'maxiter': 25}): """ Taken from the Stata manual on Box-Cox regressions, where this is the special case of 'lhs only'. As an estimator for the variance, the sample variance is used, by means of the well-known formula. Parameters ---------- x : array_like options : dict The options (as a dict) to be passed to the optimizer. """ sum_x = np.sum(np.log(x)) nobs = len(x) def optim(lmbda): y, lmbda = self.transform_boxcox(x, lmbda) return (1 - lmbda) * sum_x + (nobs / 2.) * np.log(np.var(y)) res = minimize_scalar(optim, bounds=bounds, method='bounded', options=options) return res.x
Taken from the Stata manual on Box-Cox regressions, where this is the special case of 'lhs only'. As an estimator for the variance, the sample variance is used, by means of the well-known formula. Parameters ---------- x : array_like options : dict The options (as a dict) to be passed to the optimizer.
_loglik_boxcox
python
statsmodels/statsmodels
statsmodels/base/transform.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/transform.py
BSD-3-Clause
def _fit(self, objective, gradient, start_params, fargs, kwargs, hessian=None, method='newton', maxiter=100, full_output=True, disp=True, callback=None, retall=False): """ Fit function for any model with an objective function. Parameters ---------- objective : function Objective function to be minimized. gradient : function The gradient of the objective function. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) hessian : str, optional Method for computing the Hessian matrix, if applicable. method : str {'newton','nm','bfgs','powell','cg','ncg','basinhopping', 'minimize'} Method can be 'newton' for Newton-Raphson, 'nm' for Nelder-Mead, 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno, 'powell' for modified Powell's method, 'cg' for conjugate gradient, 'ncg' for Newton- conjugate gradient, 'basinhopping' for global basin-hopping solver, if available or a generic 'minimize' which is a wrapper for scipy.optimize.minimize. `method` determines which solver from scipy.optimize is used. The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports.. maxiter : int The maximum number of iterations to perform. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. optim_settings : dict A dictionary that contains the parameters passed to the solver. Notes ----- The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output` explicit arguments. Optional arguments for the solvers (available in Results.mle_settings):: 'newton' tol : float Relative error in params acceptable for convergence. 'nm' -- Nelder Mead xtol : float Relative error in params acceptable for convergence ftol : float Relative error in loglike(params) acceptable for convergence maxfun : int Maximum number of function evaluations to make. 'bfgs' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.inf is max, -np.inf is min) epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. 'lbfgs' m : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) pgtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= pgtol`` where pg_i is the i-th component of the projected gradient. factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B. maxfun : int Maximum number of iterations. epsilon : float Step size used when approx_grad is True, for numerically calculating the gradient approx_grad : bool Whether to approximate the gradient numerically (in which case func returns only the function value). 'cg' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.inf is max, -np.inf is min) epsilon : float If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None. 'ncg' fhess_p : callable f'(x,*args) Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None. avextol : float Stop when the average relative error in the minimizer falls below this amount. epsilon : float or ndarray If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None. 'powell' xtol : float Line-search error tolerance ftol : float Relative error in loglike(params) for acceptable for convergence. maxfun : int Maximum number of function evaluations to make. start_direc : ndarray Initial direction set. 'basinhopping' niter : int The number of basin hopping iterations. niter_success : int Stop the run if the global minimum candidate remains the same for this number of iterations. T : float The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima. stepsize : float Initial step size for use in the random displacement. interval : int The interval for how often to update the `stepsize`. minimizer : dict Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()`, for example 'method' - the minimization method (e.g. 'L-BFGS-B'), or 'tol' - the tolerance for termination. Other arguments are mapped from explicit argument of `fit`: - `args` <- `fargs` - `jac` <- `score` - `hess` <- `hess` 'minimize' min_method : str, optional Name of minimization method to use. Any method specific arguments can be passed directly. For a list of methods and their arguments, see documentation of `scipy.optimize.minimize`. If no method is specified, then BFGS is used. """ # TODO: generalize the regularization stuff # Extract kwargs specific to fit_regularized calling fit extra_fit_funcs = kwargs.get('extra_fit_funcs', dict()) methods = ['newton', 'nm', 'bfgs', 'lbfgs', 'powell', 'cg', 'ncg', 'basinhopping', 'minimize'] methods += extra_fit_funcs.keys() method = method.lower() _check_method(method, methods) fit_funcs = { 'newton': _fit_newton, 'nm': _fit_nm, # Nelder-Mead 'bfgs': _fit_bfgs, 'lbfgs': _fit_lbfgs, 'cg': _fit_cg, 'ncg': _fit_ncg, 'powell': _fit_powell, 'basinhopping': _fit_basinhopping, 'minimize': _fit_minimize # wrapper for scipy.optimize.minimize } # NOTE: fit_regularized checks the methods for these but it should be # moved up probably if extra_fit_funcs: fit_funcs.update(extra_fit_funcs) func = fit_funcs[method] xopt, retvals = func(objective, gradient, start_params, fargs, kwargs, disp=disp, maxiter=maxiter, callback=callback, retall=retall, full_output=full_output, hess=hessian) optim_settings = {'optimizer': method, 'start_params': start_params, 'maxiter': maxiter, 'full_output': full_output, 'disp': disp, 'fargs': fargs, 'callback': callback, 'retall': retall, "extra_fit_funcs": extra_fit_funcs} optim_settings.update(kwargs) # set as attributes or return? return xopt, retvals, optim_settings
Fit function for any model with an objective function. Parameters ---------- objective : function Objective function to be minimized. gradient : function The gradient of the objective function. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) hessian : str, optional Method for computing the Hessian matrix, if applicable. method : str {'newton','nm','bfgs','powell','cg','ncg','basinhopping', 'minimize'} Method can be 'newton' for Newton-Raphson, 'nm' for Nelder-Mead, 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno, 'powell' for modified Powell's method, 'cg' for conjugate gradient, 'ncg' for Newton- conjugate gradient, 'basinhopping' for global basin-hopping solver, if available or a generic 'minimize' which is a wrapper for scipy.optimize.minimize. `method` determines which solver from scipy.optimize is used. The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports.. maxiter : int The maximum number of iterations to perform. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. optim_settings : dict A dictionary that contains the parameters passed to the solver. Notes ----- The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output` explicit arguments. Optional arguments for the solvers (available in Results.mle_settings):: 'newton' tol : float Relative error in params acceptable for convergence. 'nm' -- Nelder Mead xtol : float Relative error in params acceptable for convergence ftol : float Relative error in loglike(params) acceptable for convergence maxfun : int Maximum number of function evaluations to make. 'bfgs' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.inf is max, -np.inf is min) epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. 'lbfgs' m : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) pgtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= pgtol`` where pg_i is the i-th component of the projected gradient. factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B. maxfun : int Maximum number of iterations. epsilon : float Step size used when approx_grad is True, for numerically calculating the gradient approx_grad : bool Whether to approximate the gradient numerically (in which case func returns only the function value). 'cg' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.inf is max, -np.inf is min) epsilon : float If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None. 'ncg' fhess_p : callable f'(x,*args) Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None. avextol : float Stop when the average relative error in the minimizer falls below this amount. epsilon : float or ndarray If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None. 'powell' xtol : float Line-search error tolerance ftol : float Relative error in loglike(params) for acceptable for convergence. maxfun : int Maximum number of function evaluations to make. start_direc : ndarray Initial direction set. 'basinhopping' niter : int The number of basin hopping iterations. niter_success : int Stop the run if the global minimum candidate remains the same for this number of iterations. T : float The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima. stepsize : float Initial step size for use in the random displacement. interval : int The interval for how often to update the `stepsize`. minimizer : dict Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()`, for example 'method' - the minimization method (e.g. 'L-BFGS-B'), or 'tol' - the tolerance for termination. Other arguments are mapped from explicit argument of `fit`: - `args` <- `fargs` - `jac` <- `score` - `hess` <- `hess` 'minimize' min_method : str, optional Name of minimization method to use. Any method specific arguments can be passed directly. For a list of methods and their arguments, see documentation of `scipy.optimize.minimize`. If no method is specified, then BFGS is used.
_fit
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_constrained(self, params): """ TODO: how to add constraints? Something like sm.add_constraint(Model, func) or model_instance.add_constraint(func) model_instance.add_constraint("x1 + x2 = 2") result = model_instance.fit() """ raise NotImplementedError
TODO: how to add constraints? Something like sm.add_constraint(Model, func) or model_instance.add_constraint(func) model_instance.add_constraint("x1 + x2 = 2") result = model_instance.fit()
_fit_constrained
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_minimize(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using scipy minimize, where kwarg `min_method` defines the algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ kwargs.setdefault('min_method', 'BFGS') # prepare options dict for minimize filter_opts = ['extra_fit_funcs', 'niter', 'min_method', 'tol', 'bounds', 'constraints'] options = {k: v for k, v in kwargs.items() if k not in filter_opts} options['disp'] = disp options['maxiter'] = maxiter # Use Hessian/Jacobian only if they're required by the method no_hess = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'COBYLA', 'SLSQP'] no_jac = ['Nelder-Mead', 'Powell', 'COBYLA'] if kwargs['min_method'] in no_hess: hess = None if kwargs['min_method'] in no_jac: score = None # Use bounds/constraints only if they're allowed by the method has_bounds = ['L-BFGS-B', 'TNC', 'SLSQP', 'trust-constr'] # Added in SP 1.5 if not SP_LT_15: has_bounds += ['Powell'] # Added in SP 1.7 if not SP_LT_17: has_bounds += ['Nelder-Mead'] has_constraints = ['COBYLA', 'SLSQP', 'trust-constr'] if 'bounds' in kwargs.keys() and kwargs['min_method'] in has_bounds: bounds = kwargs['bounds'] else: bounds = None if 'constraints' in kwargs.keys() and kwargs['min_method'] in has_constraints: constraints = kwargs['constraints'] else: constraints = () res = optimize.minimize(f, start_params, args=fargs, method=kwargs['min_method'], jac=score, hess=hess, bounds=bounds, constraints=constraints, callback=callback, options=options) xopt = res.x retvals = None if full_output: nit = getattr(res, 'nit', np.nan) # scipy 0.14 compat retvals = {'fopt': res.fun, 'iterations': nit, 'fcalls': res.nfev, 'warnflag': res.status, 'converged': res.success} if retall: retvals.update({'allvecs': res.values()}) return xopt, retvals
Fit using scipy minimize, where kwarg `min_method` defines the algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_minimize
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_newton(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None, ridge_factor=1e-10): """ Fit using Newton-Raphson algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. ridge_factor : float Regularization factor for Hessian matrix. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("tol", "ridge_factor"), "newton") tol = kwargs.setdefault('tol', 1e-8) ridge_factor = kwargs.setdefault('ridge_factor', 1e-10) iterations = 0 oldparams = np.inf newparams = np.asarray(start_params) if retall: history = [oldparams, newparams] while (iterations < maxiter and np.any(np.abs(newparams - oldparams) > tol)): H = np.asarray(hess(newparams)) # regularize Hessian, not clear what ridge factor should be # keyword option with absolute default 1e-10, see #1847 if not np.all(ridge_factor == 0): H[np.diag_indices(H.shape[0])] += ridge_factor oldparams = newparams newparams = oldparams - np.linalg.solve(H, score(oldparams)) if retall: history.append(newparams) if callback is not None: callback(newparams) iterations += 1 fval = f(newparams, *fargs) # this is the negative likelihood if iterations == maxiter: warnflag = 1 if disp: print("Warning: Maximum number of iterations has been " "exceeded.") print(" Current function value: %f" % fval) print(" Iterations: %d" % iterations) else: warnflag = 0 if disp: print("Optimization terminated successfully.") print(" Current function value: %f" % fval) print(" Iterations %d" % iterations) if full_output: (xopt, fopt, niter, gopt, hopt) = (newparams, f(newparams, *fargs), iterations, score(newparams), hess(newparams)) converged = not warnflag retvals = {'fopt': fopt, 'iterations': niter, 'score': gopt, 'Hessian': hopt, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': history}) else: xopt = newparams retvals = None return xopt, retvals
Fit using Newton-Raphson algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. ridge_factor : float Regularization factor for Hessian matrix. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_newton
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_bfgs(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("gtol", "norm", "epsilon"), "bfgs") gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05) norm = kwargs.setdefault('norm', np.inf) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_bfgs(f, start_params, score, args=fargs, gtol=gtol, norm=norm, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag = retvals else: (xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag, allvecs) = retvals converged = not warnflag retvals = {'fopt': fopt, 'gopt': gopt, 'Hinv': Hinv, 'fcalls': fcalls, 'gcalls': gcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
Fit using Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_bfgs
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_lbfgs(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. Notes ----- Within the mle part of statsmodels, the log likelihood function and its gradient with respect to the parameters do not have notationally consistent sign. """ check_kwargs( kwargs, ("m", "pgtol", "factr", "maxfun", "epsilon", "approx_grad", "bounds", "loglike_and_score", "iprint"), "lbfgs" ) # Use unconstrained optimization by default. bounds = kwargs.setdefault('bounds', [(None, None)] * len(start_params)) kwargs.setdefault('iprint', 0) # Pass the following keyword argument names through to fmin_l_bfgs_b # if they are present in kwargs, otherwise use the fmin_l_bfgs_b # default values. names = ('m', 'pgtol', 'factr', 'maxfun', 'epsilon', 'approx_grad') extra_kwargs = {x: kwargs[x] for x in names if x in kwargs} # Extract values for the options related to the gradient. approx_grad = kwargs.get('approx_grad', False) loglike_and_score = kwargs.get('loglike_and_score', None) epsilon = kwargs.get('epsilon', None) # The approx_grad flag has superpowers nullifying the score function arg. if approx_grad: score = None # Choose among three options for dealing with the gradient (the gradient # of a log likelihood function with respect to its parameters # is more specifically called the score in statistics terminology). # The first option is to use the finite-differences # approximation that is built into the fmin_l_bfgs_b optimizer. # The second option is to use the provided score function. # The third option is to use the score component of a provided # function that simultaneously evaluates the log likelihood and score. if epsilon and not approx_grad: raise ValueError('a finite-differences epsilon was provided ' 'even though we are not using approx_grad') if approx_grad and loglike_and_score: raise ValueError('gradient approximation was requested ' 'even though an analytic loglike_and_score function ' 'was given') if loglike_and_score: def func(p, *a): return tuple(-x for x in loglike_and_score(p, *a)) elif score: func = f extra_kwargs['fprime'] = score elif approx_grad: func = f retvals = optimize.fmin_l_bfgs_b(func, start_params, maxiter=maxiter, callback=callback, args=fargs, bounds=bounds, disp=disp, **extra_kwargs) if full_output: xopt, fopt, d = retvals # The warnflag is # 0 if converged # 1 if too many function evaluations or too many iterations # 2 if stopped for another reason, given in d['task'] warnflag = d['warnflag'] converged = (warnflag == 0) gopt = d['grad'] fcalls = d['funcalls'] iterations = d['nit'] retvals = {'fopt': fopt, 'gopt': gopt, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged, 'iterations': iterations} else: xopt = retvals[0] retvals = None return xopt, retvals
Fit using Limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. Notes ----- Within the mle part of statsmodels, the log likelihood function and its gradient with respect to the parameters do not have notationally consistent sign.
_fit_lbfgs
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_nm(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Nelder-Mead algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("xtol", "ftol", "maxfun"), "nm") xtol = kwargs.setdefault('xtol', 0.0001) ftol = kwargs.setdefault('ftol', 0.0001) maxfun = kwargs.setdefault('maxfun', None) retvals = optimize.fmin(f, start_params, args=fargs, xtol=xtol, ftol=ftol, maxiter=maxiter, maxfun=maxfun, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, niter, fcalls, warnflag = retvals else: xopt, fopt, niter, fcalls, warnflag, allvecs = retvals converged = not warnflag retvals = {'fopt': fopt, 'iterations': niter, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
Fit using Nelder-Mead algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_nm
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_cg(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("gtol", "norm", "epsilon"), "cg") gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05) norm = kwargs.setdefault('norm', np.inf) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_cg(f, start_params, score, gtol=gtol, norm=norm, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, fcalls, gcalls, warnflag = retvals else: xopt, fopt, fcalls, gcalls, warnflag, allvecs = retvals converged = not warnflag retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
Fit using Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_cg
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_ncg(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Newton Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("fhess_p", "avextol", "epsilon"), "ncg") fhess_p = kwargs.setdefault('fhess_p', None) avextol = kwargs.setdefault('avextol', 1.0000000000000001e-05) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_ncg(f, start_params, score, fhess_p=fhess_p, fhess=hess, args=fargs, avextol=avextol, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, fcalls, gcalls, hcalls, warnflag = retvals else: xopt, fopt, fcalls, gcalls, hcalls, warnflag, allvecs = \ retvals converged = not warnflag retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls, 'hcalls': hcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
Fit using Newton Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_ncg
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_powell(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Powell's conjugate direction algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("xtol", "ftol", "maxfun", "start_direc"), "powell") xtol = kwargs.setdefault('xtol', 0.0001) ftol = kwargs.setdefault('ftol', 0.0001) maxfun = kwargs.setdefault('maxfun', None) start_direc = kwargs.setdefault('start_direc', None) retvals = optimize.fmin_powell(f, start_params, args=fargs, xtol=xtol, ftol=ftol, maxiter=maxiter, maxfun=maxfun, full_output=full_output, disp=disp, retall=retall, callback=callback, direc=start_direc) if full_output: if not retall: xopt, fopt, direc, niter, fcalls, warnflag = retvals else: xopt, fopt, direc, niter, fcalls, warnflag, allvecs = \ retvals converged = not warnflag retvals = {'fopt': fopt, 'direc': direc, 'iterations': niter, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
Fit using Powell's conjugate direction algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_powell
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def _fit_basinhopping(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Basin-hopping algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs( kwargs, ("niter", "niter_success", "T", "stepsize", "interval", "minimizer", "seed"), "basinhopping" ) kwargs = {k: v for k, v in kwargs.items()} niter = kwargs.setdefault('niter', 100) niter_success = kwargs.setdefault('niter_success', None) T = kwargs.setdefault('T', 1.0) stepsize = kwargs.setdefault('stepsize', 0.5) interval = kwargs.setdefault('interval', 50) seed = kwargs.get("seed") minimizer_kwargs = kwargs.get('minimizer', {}) minimizer_kwargs['args'] = fargs minimizer_kwargs['jac'] = score method = minimizer_kwargs.get('method', None) if method and method != 'L-BFGS-B': # l_bfgs_b does not take a hessian minimizer_kwargs['hess'] = hess retvals = optimize.basinhopping(f, start_params, minimizer_kwargs=minimizer_kwargs, niter=niter, niter_success=niter_success, T=T, stepsize=stepsize, disp=disp, callback=callback, interval=interval, seed=seed) xopt = retvals.x if full_output: retvals = { 'fopt': retvals.fun, 'iterations': retvals.nit, 'fcalls': retvals.nfev, 'converged': 'completed successfully' in retvals.message[0] } else: retvals = None return xopt, retvals
Fit using Basin-hopping algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.
_fit_basinhopping
python
statsmodels/statsmodels
statsmodels/base/optimizer.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/optimizer.py
BSD-3-Clause
def normalize_cov_type(cov_type): """ Normalize the cov_type string to a canonical version Parameters ---------- cov_type : str Returns ------- normalized_cov_type : str """ if cov_type == 'nw-panel': cov_type = 'hac-panel' if cov_type == 'nw-groupsum': cov_type = 'hac-groupsum' return cov_type
Normalize the cov_type string to a canonical version Parameters ---------- cov_type : str Returns ------- normalized_cov_type : str
normalize_cov_type
python
statsmodels/statsmodels
statsmodels/base/covtype.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/covtype.py
BSD-3-Clause
def get_robustcov_results(self, cov_type='HC1', use_t=None, **kwds): """create new results instance with robust covariance as default Parameters ---------- cov_type : str the type of robust sandwich estimator to use. see Notes below use_t : bool If true, then the t distribution is used for inference. If false, then the normal distribution is used. kwds : depends on cov_type Required or optional arguments for robust covariance calculation. see Notes below Returns ------- results : results instance This method creates a new results instance with the requested robust covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- Warning: Some of the options and defaults in cov_kwds may be changed in a future version. The covariance keywords provide an option 'scaling_factor' to adjust the scaling of the covariance matrix, that is the covariance is multiplied by this factor if it is given and is not `None`. This allows the user to adjust the scaling of the covariance matrix to match other statistical packages. For example, `scaling_factor=(nobs - 1.) / (nobs - k_params)` provides a correction so that the robust covariance matrices match those of Stata in some models like GLM and discrete Models. The following covariance types and required or optional arguments are currently available: - 'HC0', 'HC1', 'HC2', 'HC3': heteroscedasticity robust covariance - no keyword arguments - 'HAC': heteroskedasticity-autocorrelation robust covariance ``maxlags`` : integer, required number of lags to use ``kernel`` : {callable, str}, optional kernels currently available kernels are ['bartlett', 'uniform'], default is Bartlett ``use_correction``: bool, optional If true, use small sample correction - 'cluster': clustered covariance estimator ``groups`` : array_like[int], required : Integer-valued index of clusters or groups. ``use_correction``: bool, optional If True the sandwich covariance is calculated with a small sample correction. If False the sandwich covariance is calculated without small sample correction. ``df_correction``: bool, optional If True (default), then the degrees of freedom for the inferential statistics and hypothesis tests, such as pvalues, f_pvalue, conf_int, and t_test and f_test, are based on the number of groups minus one instead of the total number of observations minus the number of explanatory variables. `df_resid` of the results instance is also adjusted. When `use_t` is also True, then pvalues are computed using the Student's t distribution using the corrected values. These may differ substantially from p-values based on the normal is the number of groups is small. If False, then `df_resid` of the results instance is not adjusted. - 'hac-groupsum': Driscoll and Kraay, heteroscedasticity and autocorrelation robust covariance for panel data # TODO: more options needed here ``time`` : array_like, required index of time periods ``maxlags`` : integer, required number of lags to use ``kernel`` : {callable, str}, optional The available kernels are ['bartlett', 'uniform']. The default is Bartlett. ``use_correction`` : {False, 'hac', 'cluster'}, optional If False the the sandwich covariance is calculated without small sample correction. If `use_correction = 'cluster'` (default), then the same small sample correction as in the case of `covtype='cluster'` is used. ``df_correction`` : bool, optional The adjustment to df_resid, see cov_type 'cluster' above - 'hac-panel': heteroscedasticity and autocorrelation robust standard errors in panel data. The data needs to be sorted in this case, the time series for each panel unit or cluster need to be stacked. The membership to a time series of an individual or group can be either specified by group indicators or by increasing time periods. One of ``groups`` or ``time`` is required. # TODO: we need more options here ``groups`` : array_like[int] indicator for groups ``time`` : array_like[int] index of time periods ``maxlags`` : int, required number of lags to use ``kernel`` : {callable, str}, optional Available kernels are ['bartlett', 'uniform'], default is Bartlett ``use_correction`` : {False, 'hac', 'cluster'}, optional If False the sandwich covariance is calculated without small sample correction. ``df_correction`` : bool, optional Adjustment to df_resid, see cov_type 'cluster' above **Reminder**: ``use_correction`` in "hac-groupsum" and "hac-panel" is not bool, needs to be in {False, 'hac', 'cluster'}. .. todo:: Currently there is no check for extra or misspelled keywords, except in the case of cov_type `HCx` """ import statsmodels.stats.sandwich_covariance as sw cov_type = normalize_cov_type(cov_type) if 'kernel' in kwds: kwds['weights_func'] = kwds.pop('kernel') if 'weights_func' in kwds and not callable(kwds['weights_func']): kwds['weights_func'] = sw.kernel_dict[kwds['weights_func']] # pop because HCx raises if any kwds sc_factor = kwds.pop('scaling_factor', None) # TODO: make separate function that returns a robust cov plus info use_self = kwds.pop('use_self', False) if use_self: res = self else: # this does not work for most models, use raw instance instead from fit res = self.__class__(self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) res.cov_type = cov_type # use_t might already be defined by the class, and already set if use_t is None: use_t = self.use_t res.cov_kwds = {'use_t':use_t} # store for information res.use_t = use_t adjust_df = False if cov_type in ['cluster', 'hac-panel', 'hac-groupsum']: df_correction = kwds.get('df_correction', None) # TODO: check also use_correction, do I need all combinations? if df_correction is not False: # i.e. in [None, True]: # user did not explicitely set it to False adjust_df = True res.cov_kwds['adjust_df'] = adjust_df # verify and set kwds, and calculate cov # TODO: this should be outsourced in a function so we can reuse it in # other models # TODO: make it DRYer repeated code for checking kwds if cov_type.upper() in ('HC0', 'HC1', 'HC2', 'HC3'): if kwds: raise ValueError('heteroscedasticity robust covariance ' 'does not use keywords') res.cov_kwds['description'] = descriptions[cov_type.upper()] res.cov_params_default = getattr(self, 'cov_' + cov_type.upper(), None) if res.cov_params_default is None: # results classes that do not have cov_HCx attribute res.cov_params_default = sw.cov_white_simple(self, use_correction=False) elif cov_type.lower() == 'hac': maxlags = kwds['maxlags'] # required?, default in cov_hac_simple res.cov_kwds['maxlags'] = maxlags weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func use_correction = kwds.get('use_correction', False) res.cov_kwds['use_correction'] = use_correction res.cov_kwds['description'] = descriptions['HAC'].format( maxlags=maxlags, correction=['without', 'with'][use_correction]) res.cov_params_default = sw.cov_hac_simple(self, nlags=maxlags, weights_func=weights_func, use_correction=use_correction) elif cov_type.lower() == 'cluster': #cluster robust standard errors, one- or two-way groups = kwds['groups'] if not hasattr(groups, 'shape'): groups = np.asarray(groups).T if groups.ndim >= 2: groups = groups.squeeze() res.cov_kwds['groups'] = groups use_correction = kwds.get('use_correction', True) res.cov_kwds['use_correction'] = use_correction if groups.ndim == 1: if adjust_df: # need to find number of groups # duplicate work self.n_groups = n_groups = len(np.unique(groups)) res.cov_params_default = sw.cov_cluster(self, groups, use_correction=use_correction) elif groups.ndim == 2: if hasattr(groups, 'values'): groups = groups.values if adjust_df: # need to find number of groups # duplicate work n_groups0 = len(np.unique(groups[:,0])) n_groups1 = len(np.unique(groups[:, 1])) self.n_groups = (n_groups0, n_groups1) n_groups = min(n_groups0, n_groups1) # use for adjust_df # Note: sw.cov_cluster_2groups has 3 returns res.cov_params_default = sw.cov_cluster_2groups(self, groups, use_correction=use_correction)[0] else: raise ValueError('only two groups are supported') res.cov_kwds['description'] = descriptions['cluster'] elif cov_type.lower() == 'hac-panel': #cluster robust standard errors res.cov_kwds['time'] = time = kwds.get('time', None) res.cov_kwds['groups'] = groups = kwds.get('groups', None) #TODO: nlags is currently required #nlags = kwds.get('nlags', True) #res.cov_kwds['nlags'] = nlags #TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwds['maxlags'] use_correction = kwds.get('use_correction', 'hac') res.cov_kwds['use_correction'] = use_correction weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func # TODO: clumsy time index in cov_nw_panel if groups is not None: groups = np.asarray(groups) tt = (np.nonzero(groups[:-1] != groups[1:])[0] + 1).tolist() nobs_ = len(groups) elif time is not None: # TODO: clumsy time index in cov_nw_panel time = np.asarray(time) tt = (np.nonzero(time[1:] < time[:-1])[0] + 1).tolist() nobs_ = len(time) else: raise ValueError('either time or groups needs to be given') groupidx = lzip([0] + tt, tt + [nobs_]) self.n_groups = n_groups = len(groupidx) res.cov_params_default = sw.cov_nw_panel(self, maxlags, groupidx, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = descriptions['HAC-Panel'] elif cov_type.lower() == 'hac-groupsum': # Driscoll-Kraay standard errors res.cov_kwds['time'] = time = kwds['time'] #TODO: nlags is currently required #nlags = kwds.get('nlags', True) #res.cov_kwds['nlags'] = nlags #TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwds['maxlags'] use_correction = kwds.get('use_correction', 'cluster') res.cov_kwds['use_correction'] = use_correction weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func if adjust_df: # need to find number of groups tt = (np.nonzero(time[1:] < time[:-1])[0] + 1) self.n_groups = n_groups = len(tt) + 1 res.cov_params_default = sw.cov_nw_groupsum(self, maxlags, time, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = descriptions['HAC-Groupsum'] else: raise ValueError('cov_type not recognized. See docstring for ' + 'available options and spelling') # generic optional factor to scale covariance res.cov_kwds['scaling_factor'] = sc_factor if sc_factor is not None: res.cov_params_default *= sc_factor if adjust_df: # Note: df_resid is used for scale and others, add new attribute res.df_resid_inference = n_groups - 1 return res
create new results instance with robust covariance as default Parameters ---------- cov_type : str the type of robust sandwich estimator to use. see Notes below use_t : bool If true, then the t distribution is used for inference. If false, then the normal distribution is used. kwds : depends on cov_type Required or optional arguments for robust covariance calculation. see Notes below Returns ------- results : results instance This method creates a new results instance with the requested robust covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- Warning: Some of the options and defaults in cov_kwds may be changed in a future version. The covariance keywords provide an option 'scaling_factor' to adjust the scaling of the covariance matrix, that is the covariance is multiplied by this factor if it is given and is not `None`. This allows the user to adjust the scaling of the covariance matrix to match other statistical packages. For example, `scaling_factor=(nobs - 1.) / (nobs - k_params)` provides a correction so that the robust covariance matrices match those of Stata in some models like GLM and discrete Models. The following covariance types and required or optional arguments are currently available: - 'HC0', 'HC1', 'HC2', 'HC3': heteroscedasticity robust covariance - no keyword arguments - 'HAC': heteroskedasticity-autocorrelation robust covariance ``maxlags`` : integer, required number of lags to use ``kernel`` : {callable, str}, optional kernels currently available kernels are ['bartlett', 'uniform'], default is Bartlett ``use_correction``: bool, optional If true, use small sample correction - 'cluster': clustered covariance estimator ``groups`` : array_like[int], required : Integer-valued index of clusters or groups. ``use_correction``: bool, optional If True the sandwich covariance is calculated with a small sample correction. If False the sandwich covariance is calculated without small sample correction. ``df_correction``: bool, optional If True (default), then the degrees of freedom for the inferential statistics and hypothesis tests, such as pvalues, f_pvalue, conf_int, and t_test and f_test, are based on the number of groups minus one instead of the total number of observations minus the number of explanatory variables. `df_resid` of the results instance is also adjusted. When `use_t` is also True, then pvalues are computed using the Student's t distribution using the corrected values. These may differ substantially from p-values based on the normal is the number of groups is small. If False, then `df_resid` of the results instance is not adjusted. - 'hac-groupsum': Driscoll and Kraay, heteroscedasticity and autocorrelation robust covariance for panel data # TODO: more options needed here ``time`` : array_like, required index of time periods ``maxlags`` : integer, required number of lags to use ``kernel`` : {callable, str}, optional The available kernels are ['bartlett', 'uniform']. The default is Bartlett. ``use_correction`` : {False, 'hac', 'cluster'}, optional If False the the sandwich covariance is calculated without small sample correction. If `use_correction = 'cluster'` (default), then the same small sample correction as in the case of `covtype='cluster'` is used. ``df_correction`` : bool, optional The adjustment to df_resid, see cov_type 'cluster' above - 'hac-panel': heteroscedasticity and autocorrelation robust standard errors in panel data. The data needs to be sorted in this case, the time series for each panel unit or cluster need to be stacked. The membership to a time series of an individual or group can be either specified by group indicators or by increasing time periods. One of ``groups`` or ``time`` is required. # TODO: we need more options here ``groups`` : array_like[int] indicator for groups ``time`` : array_like[int] index of time periods ``maxlags`` : int, required number of lags to use ``kernel`` : {callable, str}, optional Available kernels are ['bartlett', 'uniform'], default is Bartlett ``use_correction`` : {False, 'hac', 'cluster'}, optional If False the sandwich covariance is calculated without small sample correction. ``df_correction`` : bool, optional Adjustment to df_resid, see cov_type 'cluster' above **Reminder**: ``use_correction`` in "hac-groupsum" and "hac-panel" is not bool, needs to be in {False, 'hac', 'cluster'}. .. todo:: Currently there is no check for extra or misspelled keywords, except in the case of cov_type `HCx`
get_robustcov_results
python
statsmodels/statsmodels
statsmodels/base/covtype.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/covtype.py
BSD-3-Clause
def _lm_robust(score, constraint_matrix, score_deriv_inv, cov_score, cov_params=None): '''general formula for score/LM test generalized score or lagrange multiplier test for implicit constraints `r(params) = 0`, with gradient `R = d r / d params` linear constraints are given by `R params - q = 0` It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model constraint_matrix R : ndarray Linear restriction matrix or Jacobian of nonlinear constraints score_deriv_inv, Ainv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be inverse of OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes ----- ''' # shorthand alias R, Ainv, B, V = constraint_matrix, score_deriv_inv, cov_score, cov_params k_constraints = np.linalg.matrix_rank(R) tmp = R.dot(Ainv) wscore = tmp.dot(score) # C Ainv score if B is None and V is None: # only Ainv is given, so we assume information matrix identity holds # computational short cut, should be same if Ainv == inv(B) lm_stat = score.dot(Ainv.dot(score)) else: # information matrix identity does not hold if V is None: inner = tmp.dot(B).dot(tmp.T) else: inner = R.dot(V).dot(R.T) #lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore)) # Let's assume inner is invertible, TODO: check if usecase for pinv exists lm_stat = wscore.dot(np.linalg.solve(inner, wscore)) pval = stats.chi2.sf(lm_stat, k_constraints) return lm_stat, pval, k_constraints
general formula for score/LM test generalized score or lagrange multiplier test for implicit constraints `r(params) = 0`, with gradient `R = d r / d params` linear constraints are given by `R params - q = 0` It is assumed that all arrays are evaluated at the constrained estimates. Parameters ---------- score : ndarray, 1-D derivative of objective function at estimated parameters of constrained model constraint_matrix R : ndarray Linear restriction matrix or Jacobian of nonlinear constraints score_deriv_inv, Ainv : ndarray, symmetric, square inverse of second derivative of objective function TODO: could be inverse of OPG or any other estimator if information matrix equality holds cov_score B : ndarray, symmetric, square covariance matrix of the score. This is the inner part of a sandwich estimator. cov_params V : ndarray, symmetric, square covariance of full parameter vector evaluated at constrained parameter estimate. This can be specified instead of cov_score B. Returns ------- lm_stat : float score/lagrange multiplier statistic p-value : float p-value of the LM test based on chisquare distribution Notes -----
_lm_robust
python
statsmodels/statsmodels
statsmodels/base/_parameter_inference.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_parameter_inference.py
BSD-3-Clause
def score_test(self, exog_extra=None, params_constrained=None, hypothesis='joint', cov_type=None, cov_kwds=None, k_constraints=None, r_matrix=None, scale=None, observed=True): """score test for restrictions or for omitted variables Null Hypothesis : constraints are satisfied Alternative Hypothesis : at least one of the constraints does not hold This allows to specify restricted and unrestricted model properties in three different ways - fit_constrained result: model contains score and hessian function for the full, unrestricted model, but the parameter estimate in the results instance is for the restricted model. This is the case if the model was estimated with fit_constrained. - restricted model with variable addition: If exog_extra is not None, then it is assumed that the current model is a model with zero restrictions and the unrestricted model is given by adding exog_extra as additional explanatory variables. - unrestricted model with restricted parameters explicitly provided. If params_constrained is not None, then the model is assumed to be for the unrestricted model, but the provided parameters are for the restricted model. TODO: This case will currently only work for `nonrobust` cov_type, otherwise we will also need the restriction matrix provided by the user. Parameters ---------- exog_extra : None or array_like Explanatory variables that are jointly tested for inclusion in the model, i.e. omitted variables. params_constrained : array_like estimated parameter of the restricted model. This can be the parameter estimate for the current when testing for omitted variables. hypothesis : str, 'joint' (default) or 'separate' If hypothesis is 'joint', then the chisquare test results for the joint hypothesis that all constraints hold is returned. If hypothesis is 'joint', then z-test results for each constraint is returned. This is currently only implemented for cov_type="nonrobust". cov_type : str Warning: only partially implemented so far, currently only "nonrobust" and "HC0" are supported. If cov_type is None, then the cov_type specified in fit for the Wald tests is used. If the cov_type argument is not None, then it will be used instead of the Wald cov_type given in fit. k_constraints : int or None Number of constraints that were used in the estimation of params restricted relative to the number of exog in the model. This must be provided if no exog_extra are given. If exog_extra is not None, then k_constraints is assumed to be zero if it is None. observed : bool If True, then the observed Hessian is used in calculating the covariance matrix of the score. If false then the expected information matrix is used. This currently only applies to GLM where EIM is available. Warning: This option might still change. Returns ------- chi2_stat : float chisquare statistic for the score test p-value : float P-value of the score test based on the chisquare distribution. df : int Degrees of freedom used in the p-value calculation. This is equal to the number of constraints. Notes ----- Status: experimental, several options are not implemented yet or are not verified yet. Currently available ptions might also still change. cov_type is 'nonrobust': The covariance matrix for the score is based on the Hessian, i.e. observed information matrix or optionally on the expected information matrix. cov_type is 'HC0' The covariance matrix of the score is the simple empirical covariance of score_obs without degrees of freedom correction. """ # TODO: we are computing unnecessary things for cov_type nonrobust if hasattr(self, "_results"): # use numpy if we have wrapper, not relevant if method self = self._results model = self.model nobs = model.endog.shape[0] # model.nobs # discrete Poisson does not have nobs if params_constrained is None: params_constrained = self.params cov_type = cov_type if cov_type is not None else self.cov_type if observed is False: hess_kwd = {'observed': False} else: hess_kwd = {} if exog_extra is None: if hasattr(self, 'constraints'): if isinstance(self.constraints, tuple): r_matrix = self.constraints[0] else: r_matrix = self.constraints.coefs k_constraints = r_matrix.shape[0] else: if k_constraints is None: raise ValueError('if exog_extra is None, then k_constraints' 'needs to be given') # we need to use results scale as additional parameter if scale is not None: # we need to use results scale as additional parameter, gh #7840 score_kwd = {'scale': scale} hess_kwd['scale'] = scale else: score_kwd = {} # duplicate computation of score, might not be needed score = model.score(params_constrained, **score_kwd) score_obs = model.score_obs(params_constrained, **score_kwd) hessian = model.hessian(params_constrained, **hess_kwd) else: if cov_type == 'V': raise ValueError('if exog_extra is not None, then cov_type cannot ' 'be V') if hasattr(self, 'constraints'): raise NotImplementedError('if exog_extra is not None, then self' 'should not be a constrained fit result') if isinstance(exog_extra, tuple): sh = _scorehess_extra(self, params_constrained, *exog_extra, hess_kwds=hess_kwd) score_obs, hessian, k_constraints, r_matrix = sh score = score_obs.sum(0) else: exog_extra = np.asarray(exog_extra) k_constraints = 0 ex = np.column_stack((model.exog, exog_extra)) # this uses shape not matrix rank to determine k_constraints # requires nonsingular (no added perfect collinearity) k_constraints += ex.shape[1] - model.exog.shape[1] # TODO use diag instead of full np.eye r_matrix = np.eye(len(self.params) + k_constraints )[-k_constraints:] score_factor = model.score_factor(params_constrained) if score_factor.ndim == 1: score_obs = (score_factor[:, None] * ex) else: sf = score_factor score_obs = np.column_stack((sf[:, :1] * ex, sf[:, 1:])) score = score_obs.sum(0) hessian_factor = model.hessian_factor(params_constrained, **hess_kwd) # see #4714 from statsmodels.genmod.generalized_linear_model import GLM if isinstance(model, GLM): hessian_factor *= -1 hessian = np.dot(ex.T * hessian_factor, ex) if cov_type == 'nonrobust': cov_score_test = -hessian elif cov_type.upper() == 'HC0': hinv = -np.linalg.inv(hessian) cov_score = nobs * np.cov(score_obs.T) # temporary to try out lm = _lm_robust(score, r_matrix, hinv, cov_score, cov_params=None) return lm # alternative is to use only the center, but it is singular # https://github.com/statsmodels/statsmodels/pull/2096#issuecomment-393646205 # cov_score_test_inv = cov_lm_robust(score, r_matrix, hinv, # cov_score, cov_params=None) elif cov_type.upper() == 'V': # TODO: this does not work, V in fit_constrained results is singular # we need cov_params without the zeros in it hinv = -np.linalg.inv(hessian) cov_score = nobs * np.cov(score_obs.T) V = self.cov_params_default # temporary to try out chi2stat = _lm_robust(score, r_matrix, hinv, cov_score, cov_params=V) pval = stats.chi2.sf(chi2stat, k_constraints) return chi2stat, pval else: msg = 'Only cov_type "nonrobust" and "HC0" are available.' raise NotImplementedError(msg) if hypothesis == 'joint': chi2stat = score.dot(np.linalg.solve(cov_score_test, score[:, None])) pval = stats.chi2.sf(chi2stat, k_constraints) # return a stats results instance instead? Contrast? return chi2stat, pval, k_constraints elif hypothesis == 'separate': diff = score bse = np.sqrt(np.diag(cov_score_test)) stat = diff / bse pval = stats.norm.sf(np.abs(stat))*2 return stat, pval else: raise NotImplementedError('only hypothesis "joint" is available')
score test for restrictions or for omitted variables Null Hypothesis : constraints are satisfied Alternative Hypothesis : at least one of the constraints does not hold This allows to specify restricted and unrestricted model properties in three different ways - fit_constrained result: model contains score and hessian function for the full, unrestricted model, but the parameter estimate in the results instance is for the restricted model. This is the case if the model was estimated with fit_constrained. - restricted model with variable addition: If exog_extra is not None, then it is assumed that the current model is a model with zero restrictions and the unrestricted model is given by adding exog_extra as additional explanatory variables. - unrestricted model with restricted parameters explicitly provided. If params_constrained is not None, then the model is assumed to be for the unrestricted model, but the provided parameters are for the restricted model. TODO: This case will currently only work for `nonrobust` cov_type, otherwise we will also need the restriction matrix provided by the user. Parameters ---------- exog_extra : None or array_like Explanatory variables that are jointly tested for inclusion in the model, i.e. omitted variables. params_constrained : array_like estimated parameter of the restricted model. This can be the parameter estimate for the current when testing for omitted variables. hypothesis : str, 'joint' (default) or 'separate' If hypothesis is 'joint', then the chisquare test results for the joint hypothesis that all constraints hold is returned. If hypothesis is 'joint', then z-test results for each constraint is returned. This is currently only implemented for cov_type="nonrobust". cov_type : str Warning: only partially implemented so far, currently only "nonrobust" and "HC0" are supported. If cov_type is None, then the cov_type specified in fit for the Wald tests is used. If the cov_type argument is not None, then it will be used instead of the Wald cov_type given in fit. k_constraints : int or None Number of constraints that were used in the estimation of params restricted relative to the number of exog in the model. This must be provided if no exog_extra are given. If exog_extra is not None, then k_constraints is assumed to be zero if it is None. observed : bool If True, then the observed Hessian is used in calculating the covariance matrix of the score. If false then the expected information matrix is used. This currently only applies to GLM where EIM is available. Warning: This option might still change. Returns ------- chi2_stat : float chisquare statistic for the score test p-value : float P-value of the score test based on the chisquare distribution. df : int Degrees of freedom used in the p-value calculation. This is equal to the number of constraints. Notes ----- Status: experimental, several options are not implemented yet or are not verified yet. Currently available ptions might also still change. cov_type is 'nonrobust': The covariance matrix for the score is based on the Hessian, i.e. observed information matrix or optionally on the expected information matrix. cov_type is 'HC0' The covariance matrix of the score is the simple empirical covariance of score_obs without degrees of freedom correction.
score_test
python
statsmodels/statsmodels
statsmodels/base/_parameter_inference.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_parameter_inference.py
BSD-3-Clause
def _scorehess_extra(self, params=None, exog_extra=None, exog2_extra=None, hess_kwds=None): """Experimental helper function for variable addition score test. This uses score and hessian factor at the params which should be the params of the restricted model. """ if hess_kwds is None: hess_kwds = {} # this corresponds to a model methods, so we need only the model model = self.model # as long as we have results instance, we can take params from it if params is None: params = self.params # get original exog from model, currently only if exactly 2 exog_o1, exog_o2 = model._get_exogs() if exog_o2 is None: # if extra params is scalar, as in NB, GPP exog_o2 = np.ones((exog_o1.shape[0], 1)) k_mean = exog_o1.shape[1] k_prec = exog_o2.shape[1] if exog_extra is not None: exog = np.column_stack((exog_o1, exog_extra)) else: exog = exog_o1 if exog2_extra is not None: exog2 = np.column_stack((exog_o2, exog2_extra)) else: exog2 = exog_o2 k_mean_new = exog.shape[1] k_prec_new = exog2.shape[1] k_cm = k_mean_new - k_mean k_cp = k_prec_new - k_prec k_constraints = k_cm + k_cp index_mean = np.arange(k_mean, k_mean_new) index_prec = np.arange(k_mean_new + k_prec, k_mean_new + k_prec_new) r_matrix = np.zeros((k_constraints, len(params) + k_constraints)) # print(exog.shape, exog2.shape) # print(r_matrix.shape, k_cm, k_cp, k_mean_new, k_prec_new) # print(index_mean, index_prec) r_matrix[:k_cm, index_mean] = np.eye(k_cm) r_matrix[k_cm: k_cm + k_cp, index_prec] = np.eye(k_cp) if hasattr(model, "score_hessian_factor"): sf, hf = model.score_hessian_factor(params, return_hessian=True, **hess_kwds) else: sf = model.score_factor(params) hf = model.hessian_factor(params, **hess_kwds) sf1, sf2 = sf hf11, hf12, hf22 = hf # elementwise product for each row (observation) d1 = sf1[:, None] * exog d2 = sf2[:, None] * exog2 score_obs = np.column_stack((d1, d2)) # elementwise product for each row (observation) d11 = (exog.T * hf11).dot(exog) d12 = (exog.T * hf12).dot(exog2) d22 = (exog2.T * hf22).dot(exog2) hessian = np.block([[d11, d12], [d12.T, d22]]) return score_obs, hessian, k_constraints, r_matrix
Experimental helper function for variable addition score test. This uses score and hessian factor at the params which should be the params of the restricted model.
_scorehess_extra
python
statsmodels/statsmodels
statsmodels/base/_parameter_inference.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_parameter_inference.py
BSD-3-Clause
def tic(results): """Takeuchi information criterion for misspecified models """ imr = getattr(results, "im_ratio", im_ratio(results)) tic = - 2 * results.llf + 2 * np.trace(imr) return tic
Takeuchi information criterion for misspecified models
tic
python
statsmodels/statsmodels
statsmodels/base/_parameter_inference.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_parameter_inference.py
BSD-3-Clause
def gbic(results, gbicp=False): """generalized BIC for misspecified models References ---------- Lv, Jinchi, and Jun S. Liu. 2014. "Model Selection Principles in Misspecified Models." Journal of the Royal Statistical Society. Series B (Statistical Methodology) 76 (1): 141–67. """ self = getattr(results, "_results", results) k_params = self.df_model + 1 nobs = k_params + self.df_resid imr = getattr(results, "im_ratio", im_ratio(results)) imr_logdet = np.linalg.slogdet(imr)[1] gbic = -2 * self.llf + k_params * np.log(nobs) - imr_logdet # LL equ. (20) gbicp = gbic + np.trace(imr) # LL equ. (23) return gbic, gbicp
generalized BIC for misspecified models References ---------- Lv, Jinchi, and Jun S. Liu. 2014. "Model Selection Principles in Misspecified Models." Journal of the Royal Statistical Society. Series B (Statistical Methodology) 76 (1): 141–67.
gbic
python
statsmodels/statsmodels
statsmodels/base/_parameter_inference.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/_parameter_inference.py
BSD-3-Clause
def _est_regularized_naive(mod, pnum, partitions, fit_kwds=None): """estimates the regularized fitted parameters. Parameters ---------- mod : statsmodels model class instance The model for the current partition. pnum : scalar Index of current partition partitions : scalar Total number of partitions fit_kwds : dict-like or None Keyword arguments to be given to fit_regularized Returns ------- An array of the parameters for the regularized fit """ if fit_kwds is None: raise ValueError("_est_regularized_naive currently " + "requires that fit_kwds not be None.") return mod.fit_regularized(**fit_kwds).params
estimates the regularized fitted parameters. Parameters ---------- mod : statsmodels model class instance The model for the current partition. pnum : scalar Index of current partition partitions : scalar Total number of partitions fit_kwds : dict-like or None Keyword arguments to be given to fit_regularized Returns ------- An array of the parameters for the regularized fit
_est_regularized_naive
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _est_unregularized_naive(mod, pnum, partitions, fit_kwds=None): """estimates the unregularized fitted parameters. Parameters ---------- mod : statsmodels model class instance The model for the current partition. pnum : scalar Index of current partition partitions : scalar Total number of partitions fit_kwds : dict-like or None Keyword arguments to be given to fit Returns ------- An array of the parameters for the fit """ if fit_kwds is None: raise ValueError("_est_unregularized_naive currently " + "requires that fit_kwds not be None.") return mod.fit(**fit_kwds).params
estimates the unregularized fitted parameters. Parameters ---------- mod : statsmodels model class instance The model for the current partition. pnum : scalar Index of current partition partitions : scalar Total number of partitions fit_kwds : dict-like or None Keyword arguments to be given to fit Returns ------- An array of the parameters for the fit
_est_unregularized_naive
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _join_naive(params_l, threshold=0): """joins the results from each run of _est_<type>_naive and returns the mean estimate of the coefficients Parameters ---------- params_l : list A list of arrays of coefficients. threshold : scalar The threshold at which the coefficients will be cut. """ p = len(params_l[0]) partitions = len(params_l) params_mn = np.zeros(p) for params in params_l: params_mn += params params_mn /= partitions params_mn[np.abs(params_mn) < threshold] = 0 return params_mn
joins the results from each run of _est_<type>_naive and returns the mean estimate of the coefficients Parameters ---------- params_l : list A list of arrays of coefficients. threshold : scalar The threshold at which the coefficients will be cut.
_join_naive
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _calc_grad(mod, params, alpha, L1_wt, score_kwds): """calculates the log-likelihood gradient for the debiasing Parameters ---------- mod : statsmodels model class instance The model for the current partition. params : array_like The estimated coefficients for the current partition. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt : scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. score_kwds : dict-like or None Keyword arguments for the score function. Returns ------- An array-like object of the same dimension as params Notes ----- In general: gradient l_k(params) where k corresponds to the index of the partition For OLS: X^T(y - X^T params) """ grad = -mod.score(np.asarray(params), **score_kwds) grad += alpha * (1 - L1_wt) return grad
calculates the log-likelihood gradient for the debiasing Parameters ---------- mod : statsmodels model class instance The model for the current partition. params : array_like The estimated coefficients for the current partition. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt : scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. score_kwds : dict-like or None Keyword arguments for the score function. Returns ------- An array-like object of the same dimension as params Notes ----- In general: gradient l_k(params) where k corresponds to the index of the partition For OLS: X^T(y - X^T params)
_calc_grad
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _calc_wdesign_mat(mod, params, hess_kwds): """calculates the weighted design matrix necessary to generate the approximate inverse covariance matrix Parameters ---------- mod : statsmodels model class instance The model for the current partition. params : array_like The estimated coefficients for the current partition. hess_kwds : dict-like or None Keyword arguments for the hessian function. Returns ------- An array-like object, updated design matrix, same dimension as mod.exog """ rhess = np.sqrt(mod.hessian_factor(np.asarray(params), **hess_kwds)) return rhess[:, None] * mod.exog
calculates the weighted design matrix necessary to generate the approximate inverse covariance matrix Parameters ---------- mod : statsmodels model class instance The model for the current partition. params : array_like The estimated coefficients for the current partition. hess_kwds : dict-like or None Keyword arguments for the hessian function. Returns ------- An array-like object, updated design matrix, same dimension as mod.exog
_calc_wdesign_mat
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _est_regularized_debiased(mod, mnum, partitions, fit_kwds=None, score_kwds=None, hess_kwds=None): """estimates the regularized fitted parameters, is the default estimation_method for class DistributedModel. Parameters ---------- mod : statsmodels model class instance The model for the current partition. mnum : scalar Index of current partition. partitions : scalar Total number of partitions. fit_kwds : dict-like or None Keyword arguments to be given to fit_regularized score_kwds : dict-like or None Keyword arguments for the score function. hess_kwds : dict-like or None Keyword arguments for the Hessian function. Returns ------- A tuple of parameters for regularized fit An array-like object of the fitted parameters, params An array-like object for the gradient A list of array like objects for nodewise_row A list of array like objects for nodewise_weight """ score_kwds = {} if score_kwds is None else score_kwds hess_kwds = {} if hess_kwds is None else hess_kwds if fit_kwds is None: raise ValueError("_est_regularized_debiased currently " + "requires that fit_kwds not be None.") else: alpha = fit_kwds["alpha"] if "L1_wt" in fit_kwds: L1_wt = fit_kwds["L1_wt"] else: L1_wt = 1 nobs, p = mod.exog.shape p_part = int(np.ceil((1. * p) / partitions)) params = mod.fit_regularized(**fit_kwds).params grad = _calc_grad(mod, params, alpha, L1_wt, score_kwds) / nobs wexog = _calc_wdesign_mat(mod, params, hess_kwds) nodewise_row_l = [] nodewise_weight_l = [] for idx in range(mnum * p_part, min((mnum + 1) * p_part, p)): nodewise_row = _calc_nodewise_row(wexog, idx, alpha) nodewise_row_l.append(nodewise_row) nodewise_weight = _calc_nodewise_weight(wexog, nodewise_row, idx, alpha) nodewise_weight_l.append(nodewise_weight) return params, grad, nodewise_row_l, nodewise_weight_l
estimates the regularized fitted parameters, is the default estimation_method for class DistributedModel. Parameters ---------- mod : statsmodels model class instance The model for the current partition. mnum : scalar Index of current partition. partitions : scalar Total number of partitions. fit_kwds : dict-like or None Keyword arguments to be given to fit_regularized score_kwds : dict-like or None Keyword arguments for the score function. hess_kwds : dict-like or None Keyword arguments for the Hessian function. Returns ------- A tuple of parameters for regularized fit An array-like object of the fitted parameters, params An array-like object for the gradient A list of array like objects for nodewise_row A list of array like objects for nodewise_weight
_est_regularized_debiased
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _join_debiased(results_l, threshold=0): """joins the results from each run of _est_regularized_debiased and returns the debiased estimate of the coefficients Parameters ---------- results_l : list A list of tuples each one containing the params, grad, nodewise_row and nodewise_weight values for each partition. threshold : scalar The threshold at which the coefficients will be cut. """ p = len(results_l[0][0]) partitions = len(results_l) params_mn = np.zeros(p) grad_mn = np.zeros(p) nodewise_row_l = [] nodewise_weight_l = [] for r in results_l: params_mn += r[0] grad_mn += r[1] nodewise_row_l.extend(r[2]) nodewise_weight_l.extend(r[3]) nodewise_row_l = np.array(nodewise_row_l) nodewise_weight_l = np.array(nodewise_weight_l) params_mn /= partitions grad_mn *= -1. / partitions approx_inv_cov = _calc_approx_inv_cov(nodewise_row_l, nodewise_weight_l) debiased_params = params_mn + approx_inv_cov.dot(grad_mn) debiased_params[np.abs(debiased_params) < threshold] = 0 return debiased_params
joins the results from each run of _est_regularized_debiased and returns the debiased estimate of the coefficients Parameters ---------- results_l : list A list of tuples each one containing the params, grad, nodewise_row and nodewise_weight values for each partition. threshold : scalar The threshold at which the coefficients will be cut.
_join_debiased
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _helper_fit_partition(self, pnum, endog, exog, fit_kwds, init_kwds_e={}): """handles the model fitting for each machine. NOTE: this is primarily handled outside of DistributedModel because joblib cannot handle class methods. Parameters ---------- self : DistributedModel class instance An instance of DistributedModel. pnum : scalar index of current partition. endog : array_like endogenous data for current partition. exog : array_like exogenous data for current partition. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_e : dict-like Additional init_kwds to add for each partition. Returns ------- estimation_method result. For the default, _est_regularized_debiased, a tuple. """ temp_init_kwds = self.init_kwds.copy() temp_init_kwds.update(init_kwds_e) model = self.model_class(endog, exog, **temp_init_kwds) results = self.estimation_method(model, pnum, self.partitions, fit_kwds=fit_kwds, **self.estimation_kwds) return results
handles the model fitting for each machine. NOTE: this is primarily handled outside of DistributedModel because joblib cannot handle class methods. Parameters ---------- self : DistributedModel class instance An instance of DistributedModel. pnum : scalar index of current partition. endog : array_like endogenous data for current partition. exog : array_like exogenous data for current partition. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_e : dict-like Additional init_kwds to add for each partition. Returns ------- estimation_method result. For the default, _est_regularized_debiased, a tuple.
_helper_fit_partition
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def fit(self, data_generator, fit_kwds=None, parallel_method="sequential", parallel_backend=None, init_kwds_generator=None): """Performs the distributed estimation using the corresponding DistributedModel Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like or None Keywords needed for the model fitting. parallel_method : str type of distributed estimation to be used, currently "sequential", "joblib" and "dask" are supported. parallel_backend : None or joblib parallel_backend object used to allow support for more complicated backends, ex: dask.distributed init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array. """ if fit_kwds is None: fit_kwds = {} if parallel_method == "sequential": results_l = self.fit_sequential(data_generator, fit_kwds, init_kwds_generator) elif parallel_method == "joblib": results_l = self.fit_joblib(data_generator, fit_kwds, parallel_backend, init_kwds_generator) else: raise ValueError("parallel_method: %s is currently not supported" % parallel_method) params = self.join_method(results_l, **self.join_kwds) # NOTE that currently, the dummy result model that is initialized # here does not use any init_kwds from the init_kwds_generator event # if it is provided. It is possible to imagine an edge case where # this might be a problem but given that the results model instance # does not correspond to any data partition this seems reasonable. res_mod = self.model_class([0], [0], **self.init_kwds) return self.results_class(res_mod, params, **self.results_kwds)
Performs the distributed estimation using the corresponding DistributedModel Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like or None Keywords needed for the model fitting. parallel_method : str type of distributed estimation to be used, currently "sequential", "joblib" and "dask" are supported. parallel_backend : None or joblib parallel_backend object used to allow support for more complicated backends, ex: dask.distributed init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array.
fit
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def fit_sequential(self, data_generator, fit_kwds, init_kwds_generator=None): """Sequentially performs the distributed estimation using the corresponding DistributedModel Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array. """ results_l = [] if init_kwds_generator is None: for pnum, (endog, exog) in enumerate(data_generator): results = _helper_fit_partition(self, pnum, endog, exog, fit_kwds) results_l.append(results) else: tup_gen = enumerate(zip(data_generator, init_kwds_generator)) for pnum, ((endog, exog), init_kwds_e) in tup_gen: results = _helper_fit_partition(self, pnum, endog, exog, fit_kwds, init_kwds_e) results_l.append(results) return results_l
Sequentially performs the distributed estimation using the corresponding DistributedModel Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array.
fit_sequential
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def fit_joblib(self, data_generator, fit_kwds, parallel_backend, init_kwds_generator=None): """Performs the distributed estimation in parallel using joblib Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like Keywords needed for the model fitting. parallel_backend : None or joblib parallel_backend object used to allow support for more complicated backends, ex: dask.distributed init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array. """ from statsmodels.tools.parallel import parallel_func par, f, n_jobs = parallel_func(_helper_fit_partition, self.partitions) if parallel_backend is None and init_kwds_generator is None: results_l = par(f(self, pnum, endog, exog, fit_kwds) for pnum, (endog, exog) in enumerate(data_generator)) elif parallel_backend is not None and init_kwds_generator is None: with parallel_backend: results_l = par(f(self, pnum, endog, exog, fit_kwds) for pnum, (endog, exog) in enumerate(data_generator)) elif parallel_backend is None and init_kwds_generator is not None: tup_gen = enumerate(zip(data_generator, init_kwds_generator)) results_l = par(f(self, pnum, endog, exog, fit_kwds, init_kwds) for pnum, ((endog, exog), init_kwds) in tup_gen) elif parallel_backend is not None and init_kwds_generator is not None: tup_gen = enumerate(zip(data_generator, init_kwds_generator)) with parallel_backend: results_l = par(f(self, pnum, endog, exog, fit_kwds, init_kwds) for pnum, ((endog, exog), init_kwds) in tup_gen) return results_l
Performs the distributed estimation in parallel using joblib Parameters ---------- data_generator : generator A generator that produces a sequence of tuples where the first element in the tuple corresponds to an endog array and the element corresponds to an exog array. fit_kwds : dict-like Keywords needed for the model fitting. parallel_backend : None or joblib parallel_backend object used to allow support for more complicated backends, ex: dask.distributed init_kwds_generator : generator or None Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS Returns ------- join_method result. For the default, _join_debiased, it returns a p length array.
fit_joblib
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def predict(self, exog, *args, **kwargs): """Calls self.model.predict for the provided exog. See Results.predict. Parameters ---------- exog : array_like NOT optional The values for which we want to predict, unlike standard predict this is NOT optional since the data in self.model is fake. *args : Some models can take additional arguments. See the predict method of the model for the details. **kwargs : Some models can take additional keywords arguments. See the predict method of the model for the details. Returns ------- prediction : ndarray, pandas.Series or pandas.DataFrame See self.model.predict """ return self.model.predict(self.params, exog, *args, **kwargs)
Calls self.model.predict for the provided exog. See Results.predict. Parameters ---------- exog : array_like NOT optional The values for which we want to predict, unlike standard predict this is NOT optional since the data in self.model is fake. *args : Some models can take additional arguments. See the predict method of the model for the details. **kwargs : Some models can take additional keywords arguments. See the predict method of the model for the details. Returns ------- prediction : ndarray, pandas.Series or pandas.DataFrame See self.model.predict
predict
python
statsmodels/statsmodels
statsmodels/base/distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/distributed_estimation.py
BSD-3-Clause
def _gen_npfuncs(k, L1_wt, alpha, loglike_kwds, score_kwds, hess_kwds): """ Negative penalized log-likelihood functions. Returns the negative penalized log-likelihood, its derivative, and its Hessian. The penalty only includes the smooth (L2) term. All three functions have argument signature (x, model), where ``x`` is a point in the parameter space and ``model`` is an arbitrary statsmodels regression model. """ def nploglike(params, model): nobs = model.nobs pen_llf = alpha[k] * (1 - L1_wt) * np.sum(params**2) / 2 llf = model.loglike(np.r_[params], **loglike_kwds) return - llf / nobs + pen_llf def npscore(params, model): nobs = model.nobs pen_grad = alpha[k] * (1 - L1_wt) * params gr = -model.score(np.r_[params], **score_kwds)[0] / nobs return gr + pen_grad def nphess(params, model): nobs = model.nobs pen_hess = alpha[k] * (1 - L1_wt) h = -model.hessian(np.r_[params], **hess_kwds)[0, 0] / nobs + pen_hess return h return nploglike, npscore, nphess
Negative penalized log-likelihood functions. Returns the negative penalized log-likelihood, its derivative, and its Hessian. The penalty only includes the smooth (L2) term. All three functions have argument signature (x, model), where ``x`` is a point in the parameter space and ``model`` is an arbitrary statsmodels regression model.
_gen_npfuncs
python
statsmodels/statsmodels
statsmodels/base/elastic_net.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/elastic_net.py
BSD-3-Clause
def fit_elasticnet(model, method="coord_descent", maxiter=100, alpha=0., L1_wt=1., start_params=None, cnvrg_tol=1e-7, zero_tol=1e-8, refit=False, check_step=True, loglike_kwds=None, score_kwds=None, hess_kwds=None): """ Return an elastic net regularized fit to a regression model. Parameters ---------- model : model object A statsmodels object implementing ``loglike``, ``score``, and ``hessian``. method : {'coord_descent'} Only the coordinate descent algorithm is implemented. maxiter : int The maximum number of iteration cycles (an iteration cycle involves running coordinate descent on all variables). alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt : scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. start_params : array_like Starting values for `params`. cnvrg_tol : scalar If `params` changes by less than this amount (in sup-norm) in one iteration cycle, the algorithm terminates with convergence. zero_tol : scalar Any estimated coefficient smaller than this value is replaced with zero. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. check_step : bool If True, confirm that the first step is an improvement and search further if it is not. loglike_kwds : dict-like or None Keyword arguments for the log-likelihood function. score_kwds : dict-like or None Keyword arguments for the score function. hess_kwds : dict-like or None Keyword arguments for the Hessian function. Returns ------- Results A results object. Notes ----- The ``elastic net`` penalty is a combination of L1 and L2 penalties. The function that is minimized is: -loglike/n + alpha*((1-L1_wt)*|params|_2^2/2 + L1_wt*|params|_1) where |*|_1 and |*|_2 are the L1 and L2 norms. The computational approach used here is to obtain a quadratic approximation to the smooth part of the target function: -loglike/n + alpha*(1-L1_wt)*|params|_2^2/2 then repeatedly optimize the L1 penalized version of this function along coordinate axes. """ k_exog = model.exog.shape[1] loglike_kwds = {} if loglike_kwds is None else loglike_kwds score_kwds = {} if score_kwds is None else score_kwds hess_kwds = {} if hess_kwds is None else hess_kwds if np.isscalar(alpha): alpha = alpha * np.ones(k_exog) # Define starting params if start_params is None: params = np.zeros(k_exog) else: params = start_params.copy() btol = 1e-4 params_zero = np.zeros(len(params), dtype=bool) init_args = model._get_init_kwds() # we do not need a copy of init_args b/c get_init_kwds provides new dict init_args['hasconst'] = False model_offset = init_args.pop('offset', None) if 'exposure' in init_args and init_args['exposure'] is not None: if model_offset is None: model_offset = np.log(init_args.pop('exposure')) else: model_offset += np.log(init_args.pop('exposure')) fgh_list = [ _gen_npfuncs(k, L1_wt, alpha, loglike_kwds, score_kwds, hess_kwds) for k in range(k_exog)] converged = False for itr in range(maxiter): # Sweep through the parameters params_save = params.copy() for k in range(k_exog): # Under the active set method, if a parameter becomes # zero we do not try to change it again. # TODO : give the user the option to switch this off if params_zero[k]: continue # Set the offset to account for the variables that are # being held fixed in the current coordinate # optimization. params0 = params.copy() params0[k] = 0 offset = np.dot(model.exog, params0) if model_offset is not None: offset += model_offset # Create a one-variable model for optimization. model_1var = model.__class__( model.endog, model.exog[:, k], offset=offset, **init_args) # Do the one-dimensional optimization. func, grad, hess = fgh_list[k] params[k] = _opt_1d( func, grad, hess, model_1var, params[k], alpha[k]*L1_wt, tol=btol, check_step=check_step) # Update the active set if itr > 0 and np.abs(params[k]) < zero_tol: params_zero[k] = True params[k] = 0. # Check for convergence pchange = np.max(np.abs(params - params_save)) if pchange < cnvrg_tol: converged = True break # Set approximate zero coefficients to be exactly zero params[np.abs(params) < zero_tol] = 0 if not refit: results = RegularizedResults(model, params) results.converged = converged return RegularizedResultsWrapper(results) # Fit the reduced model to get standard errors and other # post-estimation results. ii = np.flatnonzero(params) cov = np.zeros((k_exog, k_exog)) init_args = {k: getattr(model, k, None) for k in model._init_keys} if len(ii) > 0: model1 = model.__class__( model.endog, model.exog[:, ii], **init_args) rslt = model1.fit() params[ii] = rslt.params cov[np.ix_(ii, ii)] = rslt.normalized_cov_params else: # Hack: no variables were selected but we need to run fit in # order to get the correct results class. So just fit a model # with one variable. model1 = model.__class__(model.endog, model.exog[:, 0], **init_args) rslt = model1.fit(maxiter=0) # fit may return a results or a results wrapper if issubclass(rslt.__class__, wrap.ResultsWrapper): klass = rslt._results.__class__ else: klass = rslt.__class__ # Not all models have a scale if hasattr(rslt, 'scale'): scale = rslt.scale else: scale = 1. # The degrees of freedom should reflect the number of parameters # in the refit model, not including the zeros that are displayed # to indicate which variables were dropped. See issue #1723 for # discussion about setting df parameters in model and results # classes. p, q = model.df_model, model.df_resid model.df_model = len(ii) model.df_resid = model.nobs - model.df_model # Assuming a standard signature for creating results classes. refit = klass(model, params, cov, scale=scale) refit.regularized = True refit.converged = converged refit.method = method refit.fit_history = {'iteration': itr + 1} # Restore df in model class, see issue #1723 for discussion. model.df_model, model.df_resid = p, q return refit
Return an elastic net regularized fit to a regression model. Parameters ---------- model : model object A statsmodels object implementing ``loglike``, ``score``, and ``hessian``. method : {'coord_descent'} Only the coordinate descent algorithm is implemented. maxiter : int The maximum number of iteration cycles (an iteration cycle involves running coordinate descent on all variables). alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt : scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. start_params : array_like Starting values for `params`. cnvrg_tol : scalar If `params` changes by less than this amount (in sup-norm) in one iteration cycle, the algorithm terminates with convergence. zero_tol : scalar Any estimated coefficient smaller than this value is replaced with zero. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. check_step : bool If True, confirm that the first step is an improvement and search further if it is not. loglike_kwds : dict-like or None Keyword arguments for the log-likelihood function. score_kwds : dict-like or None Keyword arguments for the score function. hess_kwds : dict-like or None Keyword arguments for the Hessian function. Returns ------- Results A results object. Notes ----- The ``elastic net`` penalty is a combination of L1 and L2 penalties. The function that is minimized is: -loglike/n + alpha*((1-L1_wt)*|params|_2^2/2 + L1_wt*|params|_1) where |*|_1 and |*|_2 are the L1 and L2 norms. The computational approach used here is to obtain a quadratic approximation to the smooth part of the target function: -loglike/n + alpha*(1-L1_wt)*|params|_2^2/2 then repeatedly optimize the L1 penalized version of this function along coordinate axes.
fit_elasticnet
python
statsmodels/statsmodels
statsmodels/base/elastic_net.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/elastic_net.py
BSD-3-Clause
def _opt_1d(func, grad, hess, model, start, L1_wt, tol, check_step=True): """ One-dimensional helper for elastic net. Parameters ---------- func : function A smooth function of a single variable to be optimized with L1 penaty. grad : function The gradient of `func`. hess : function The Hessian of `func`. model : statsmodels model The model being fit. start : real A starting value for the function argument L1_wt : non-negative real The weight for the L1 penalty function. tol : non-negative real A convergence threshold. check_step : bool If True, check that the first step is an improvement and use bisection if it is not. If False, return after the first step regardless. Notes ----- ``func``, ``grad``, and ``hess`` have argument signature (x, model), where ``x`` is a point in the parameter space and ``model`` is the model being fit. If the log-likelihood for the model is exactly quadratic, the global minimum is returned in one step. Otherwise numerical bisection is used. Returns ------- The argmin of the objective function. """ # Overview: # We want to minimize L(x) + L1_wt*abs(x), where L() is a smooth # loss function that includes the log-likelihood and L2 penalty. # This is a 1-dimensional optimization. If L(x) is exactly # quadratic we can solve for the argmin exactly. Otherwise we # approximate L(x) with a quadratic function Q(x) and try to use # the minimizer of Q(x) + L1_wt*abs(x). But if this yields an # uphill step for the actual target function L(x) + L1_wt*abs(x), # then we fall back to a expensive line search. The line search # is never needed for OLS. x = start f = func(x, model) b = grad(x, model) c = hess(x, model) d = b - c*x # The optimum is achieved by hard thresholding to zero if L1_wt > np.abs(d): return 0. # x + h is the minimizer of the Q(x) + L1_wt*abs(x) if d >= 0: h = (L1_wt - b) / c elif d < 0: h = -(L1_wt + b) / c else: return np.nan # If the new point is not uphill for the target function, take it # and return. This check is a bit expensive and un-necessary for # OLS if not check_step: return x + h f1 = func(x + h, model) + L1_wt*np.abs(x + h) if f1 <= f + L1_wt*np.abs(x) + 1e-10: return x + h # Fallback for models where the loss is not quadratic from scipy.optimize import brent x_opt = brent(func, args=(model,), brack=(x-1, x+1), tol=tol) return x_opt
One-dimensional helper for elastic net. Parameters ---------- func : function A smooth function of a single variable to be optimized with L1 penaty. grad : function The gradient of `func`. hess : function The Hessian of `func`. model : statsmodels model The model being fit. start : real A starting value for the function argument L1_wt : non-negative real The weight for the L1 penalty function. tol : non-negative real A convergence threshold. check_step : bool If True, check that the first step is an improvement and use bisection if it is not. If False, return after the first step regardless. Notes ----- ``func``, ``grad``, and ``hess`` have argument signature (x, model), where ``x`` is a point in the parameter space and ``model`` is the model being fit. If the log-likelihood for the model is exactly quadratic, the global minimum is returned in one step. Otherwise numerical bisection is used. Returns ------- The argmin of the objective function.
_opt_1d
python
statsmodels/statsmodels
statsmodels/base/elastic_net.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/elastic_net.py
BSD-3-Clause
def fittedvalues(self): """ The predicted values from the model at the estimated parameters. """ return self.model.predict(self.params)
The predicted values from the model at the estimated parameters.
fittedvalues
python
statsmodels/statsmodels
statsmodels/base/elastic_net.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/elastic_net.py
BSD-3-Clause
def _data_gen(endog, exog, partitions): """partitions data""" n_exog = exog.shape[0] n_part = np.ceil(n_exog / partitions) n_part = np.floor(n_exog / partitions) rem = n_exog - n_part * partitions stp = 0 while stp < (partitions - 1): ii = int(n_part * stp) jj = int(n_part * (stp + 1)) yield endog[ii:jj], exog[ii:jj, :] stp += 1 ii = int(n_part * stp) jj = int(n_part * (stp + 1) + rem) yield endog[ii:jj], exog[ii:jj, :]
partitions data
_data_gen
python
statsmodels/statsmodels
statsmodels/base/tests/test_distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/tests/test_distributed_estimation.py
BSD-3-Clause
def _rep_data_gen(endog, exog, partitions): """partitions data""" n_exog = exog.shape[0] n_part = np.ceil(n_exog / partitions) ii = 0 while ii < n_exog: yield endog, exog ii += int(n_part)
partitions data
test_repeat_partition._rep_data_gen
python
statsmodels/statsmodels
statsmodels/base/tests/test_distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/tests/test_distributed_estimation.py
BSD-3-Clause
def test_repeat_partition(): # tests that if we use identical partitions the average is the same # as the estimate for the full data np.random.seed(435265) N = 200 p = 10 m = 1 beta = np.random.normal(size=p) beta = beta * np.random.randint(0, 2, p) X = np.random.normal(size=(N, p)) y = X.dot(beta) + np.random.normal(size=N) def _rep_data_gen(endog, exog, partitions): """partitions data""" n_exog = exog.shape[0] n_part = np.ceil(n_exog / partitions) ii = 0 while ii < n_exog: yield endog, exog ii += int(n_part) nv_mod = DistributedModel(m, estimation_method=_est_regularized_naive, join_method=_join_naive) fitOLSnv = nv_mod.fit(_rep_data_gen(y, X, m), fit_kwds={"alpha": 0.1}) ols_mod = OLS(y, X) fitOLS = ols_mod.fit_regularized(alpha=0.1) assert_allclose(fitOLSnv.params, fitOLS.params)
partitions data
test_repeat_partition
python
statsmodels/statsmodels
statsmodels/base/tests/test_distributed_estimation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/base/tests/test_distributed_estimation.py
BSD-3-Clause
def update(self): """ Cycle through all Gibbs updates. """ self.update_data() # Need to update data first self.update_mean() self.update_cov()
Cycle through all Gibbs updates.
update
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def update_data(self): """ Gibbs update of the missing data values. """ for ix in self.patterns: i = ix[0] ix_miss = np.flatnonzero(self.mask[i, :]) ix_obs = np.flatnonzero(~self.mask[i, :]) mm = self.mean[ix_miss] mo = self.mean[ix_obs] voo = self.cov[ix_obs, :][:, ix_obs] vmm = self.cov[ix_miss, :][:, ix_miss] vmo = self.cov[ix_miss, :][:, ix_obs] r = self._data[ix, :][:, ix_obs] - mo cm = mm + np.dot(vmo, np.linalg.solve(voo, r.T)).T cv = vmm - np.dot(vmo, np.linalg.solve(voo, vmo.T)) cs = np.linalg.cholesky(cv) u = np.random.normal(size=(len(ix), len(ix_miss))) self._data[np.ix_(ix, ix_miss)] = cm + np.dot(u, cs.T) # Set the user-visible data set. if self.exog_names is not None: self.data = pd.DataFrame( self._data, columns=self.exog_names, copy=False) else: self.data = self._data
Gibbs update of the missing data values.
update_data
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def update_mean(self): """ Gibbs update of the mean vector. Do not call until update_data has been called once. """ # https://stats.stackexchange.com/questions/28744/multivariate-normal-posterior # Posterior covariance matrix of the mean cm = np.linalg.solve(self.cov/self.nobs + self.mean_prior, self.mean_prior / self.nobs) cm = np.dot(self.cov, cm) # Posterior mean of the mean vm = np.linalg.solve(self.cov, self._data.sum(0)) vm = np.dot(cm, vm) # Sample r = np.linalg.cholesky(cm) self.mean = vm + np.dot(r, np.random.normal(0, 1, self.nvar))
Gibbs update of the mean vector. Do not call until update_data has been called once.
update_mean
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def update_cov(self): """ Gibbs update of the covariance matrix. Do not call until update_data has been called once. """ # https://stats.stackexchange.com/questions/50844/estimating-the-covariance-posterior-distribution-of-a-multivariate-gaussian r = self._data - self.mean gr = np.dot(r.T, r) a = gr + self.cov_prior df = int(np.ceil(self.nobs + self.cov_prior_df)) r = np.linalg.cholesky(np.linalg.inv(a)) x = np.dot(np.random.normal(size=(df, self.nvar)), r.T) ma = np.dot(x.T, x) self.cov = np.linalg.inv(ma)
Gibbs update of the covariance matrix. Do not call until update_data has been called once.
update_cov
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def fit(self, results_cb=None): """ Impute datasets, fit models, and pool results. Parameters ---------- results_cb : function, optional If provided, each results instance r is passed through `results_cb`, then appended to the `results` attribute of the MIResults object. To save complete results, use `results_cb=lambda x: x`. The default behavior is to save no results. Returns ------- A MIResults object. """ par, cov = [], [] all_results = [] for k in range(self.nrep): for k in range(self.skip+1): self.imp.update() da = self.imp.data if self.xfunc is not None: da = self.xfunc(da) if self.formula is None: model = self.model(*self.model_args_fn(da), **self.model_kwds_fn(da)) else: model = self.model.from_formula( self.formula, *self.model_args_fn(da), **self.model_kwds_fn(da)) result = model.fit(*self.fit_args(da), **self.fit_kwds(da)) if results_cb is not None: all_results.append(results_cb(result)) par.append(np.asarray(result.params.copy())) cov.append(np.asarray(result.cov_params().copy())) params, cov_params, fmi = self._combine(par, cov) r = MIResults(self, model, params, cov_params) r.fmi = fmi r.results = all_results return r
Impute datasets, fit models, and pool results. Parameters ---------- results_cb : function, optional If provided, each results instance r is passed through `results_cb`, then appended to the `results` attribute of the MIResults object. To save complete results, use `results_cb=lambda x: x`. The default behavior is to save no results. Returns ------- A MIResults object.
fit
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def summary(self, title=None, alpha=.05): """ Summarize the results of running multiple imputation. Parameters ---------- title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float Significance level for the confidence intervals Returns ------- smry : Summary instance This holds the summary tables and text, which can be printed or converted to various output formats. """ from statsmodels.iolib import summary2 smry = summary2.Summary() float_format = "%8.3f" info = {} info["Method:"] = "MI" info["Model:"] = self.mi.model.__name__ info["Dependent variable:"] = self._model.endog_names info["Sample size:"] = "%d" % self.mi.imp.data.shape[0] info["Num. imputations"] = "%d" % self.mi.nrep smry.add_dict(info, align='l', float_format=float_format) param = summary2.summary_params(self, alpha=alpha) param["FMI"] = self.fmi smry.add_df(param, float_format=float_format) smry.add_title(title=title, results=self) return smry
Summarize the results of running multiple imputation. Parameters ---------- title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float Significance level for the confidence intervals Returns ------- smry : Summary instance This holds the summary tables and text, which can be printed or converted to various output formats.
summary
python
statsmodels/statsmodels
statsmodels/imputation/bayes_mi.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/bayes_mi.py
BSD-3-Clause
def _ros_sort(df, observations, censorship, warn=False): """ This function prepares a dataframe for ROS. It sorts ascending with left-censored observations first. Censored observations larger than the maximum uncensored observations are removed from the dataframe. Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------ sorted_df : DataFrame The sorted dataframe with all columns dropped except the observation and censorship columns. """ # separate uncensored data from censored data censored = df[df[censorship]].sort_values(observations, axis=0) uncensored = df[~df[censorship]].sort_values(observations, axis=0) if censored[observations].max() > uncensored[observations].max(): censored = censored[censored[observations] <= uncensored[observations].max()] if warn: msg = ("Dropping censored observations greater than " "the max uncensored observation.") warnings.warn(msg) combined = pd.concat([censored, uncensored], axis=0) return combined[[observations, censorship]].reset_index(drop=True)
This function prepares a dataframe for ROS. It sorts ascending with left-censored observations first. Censored observations larger than the maximum uncensored observations are removed from the dataframe. Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------ sorted_df : DataFrame The sorted dataframe with all columns dropped except the observation and censorship columns.
_ros_sort
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def nuncen_above(row): """ A, the number of uncensored obs above the given threshold. """ # index of observations above the lower_dl DL above = df[observations] >= row['lower_dl'] # index of observations below the upper_dl DL below = df[observations] < row['upper_dl'] # index of non-detect observations detect = ~df[censorship] # return the number of observations where all conditions are True return df[above & below & detect].shape[0]
A, the number of uncensored obs above the given threshold.
cohn_numbers.nuncen_above
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def nobs_below(row): """ B, the number of observations (cen & uncen) below the given threshold """ # index of data less than the lower_dl DL less_than = df[observations] < row['lower_dl'] # index of data less than or equal to the lower_dl DL less_thanequal = df[observations] <= row['lower_dl'] # index of detects, non-detects uncensored = ~df[censorship] censored = df[censorship] # number observations less than or equal to lower_dl DL and non-detect LTE_censored = df[less_thanequal & censored].shape[0] # number of observations less than lower_dl DL and detected LT_uncensored = df[less_than & uncensored].shape[0] # return the sum return LTE_censored + LT_uncensored
B, the number of observations (cen & uncen) below the given threshold
cohn_numbers.nobs_below
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def ncen_equal(row): """ C, the number of censored observations at the given threshold. """ censored_index = df[censorship] censored_data = df[observations][censored_index] censored_below = censored_data == row['lower_dl'] return censored_below.sum()
C, the number of censored observations at the given threshold.
cohn_numbers.ncen_equal
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def set_upper_limit(cohn): """ Sets the upper_dl DL for each row of the Cohn dataframe. """ if cohn.shape[0] > 1: return cohn['lower_dl'].shift(-1).fillna(value=np.inf) else: return [np.inf]
Sets the upper_dl DL for each row of the Cohn dataframe.
cohn_numbers.set_upper_limit
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def compute_PE(A, B): """ Computes the probability of excedance for each row of the Cohn dataframe. """ N = len(A) PE = np.empty(N, dtype='float64') PE[-1] = 0.0 for j in range(N-2, -1, -1): PE[j] = PE[j+1] + (1 - PE[j+1]) * A[j] / (A[j] + B[j]) return PE
Computes the probability of excedance for each row of the Cohn dataframe.
cohn_numbers.compute_PE
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def cohn_numbers(df, observations, censorship): r""" Computes the Cohn numbers for the detection limits in the dataset. The Cohn Numbers are: - :math:`A_j =` the number of uncensored obs above the jth threshold. - :math:`B_j =` the number of observations (cen & uncen) below the jth threshold. - :math:`C_j =` the number of censored observations at the jth threshold. - :math:`\mathrm{PE}_j =` the probability of exceeding the jth threshold - :math:`\mathrm{DL}_j =` the unique, sorted detection limits - :math:`\mathrm{DL}_{j+1} = \mathrm{DL}_j` shifted down a single index (row) Parameters ---------- dataframe : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------- cohn : DataFrame """ def nuncen_above(row): """ A, the number of uncensored obs above the given threshold. """ # index of observations above the lower_dl DL above = df[observations] >= row['lower_dl'] # index of observations below the upper_dl DL below = df[observations] < row['upper_dl'] # index of non-detect observations detect = ~df[censorship] # return the number of observations where all conditions are True return df[above & below & detect].shape[0] def nobs_below(row): """ B, the number of observations (cen & uncen) below the given threshold """ # index of data less than the lower_dl DL less_than = df[observations] < row['lower_dl'] # index of data less than or equal to the lower_dl DL less_thanequal = df[observations] <= row['lower_dl'] # index of detects, non-detects uncensored = ~df[censorship] censored = df[censorship] # number observations less than or equal to lower_dl DL and non-detect LTE_censored = df[less_thanequal & censored].shape[0] # number of observations less than lower_dl DL and detected LT_uncensored = df[less_than & uncensored].shape[0] # return the sum return LTE_censored + LT_uncensored def ncen_equal(row): """ C, the number of censored observations at the given threshold. """ censored_index = df[censorship] censored_data = df[observations][censored_index] censored_below = censored_data == row['lower_dl'] return censored_below.sum() def set_upper_limit(cohn): """ Sets the upper_dl DL for each row of the Cohn dataframe. """ if cohn.shape[0] > 1: return cohn['lower_dl'].shift(-1).fillna(value=np.inf) else: return [np.inf] def compute_PE(A, B): """ Computes the probability of excedance for each row of the Cohn dataframe. """ N = len(A) PE = np.empty(N, dtype='float64') PE[-1] = 0.0 for j in range(N-2, -1, -1): PE[j] = PE[j+1] + (1 - PE[j+1]) * A[j] / (A[j] + B[j]) return PE # unique, sorted detection limts censored_data = df[censorship] DLs = pd.unique(df.loc[censored_data, observations]) DLs.sort() # if there is a observations smaller than the minimum detection limit, # add that value to the array if DLs.shape[0] > 0: if df[observations].min() < DLs.min(): DLs = np.hstack([df[observations].min(), DLs]) # create a dataframe # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) cohn = pd.DataFrame(DLs, columns=['lower_dl']) cohn.loc[:, 'upper_dl'] = set_upper_limit(cohn) cohn.loc[:, 'nuncen_above'] = cohn.apply(nuncen_above, axis=1) cohn.loc[:, 'nobs_below'] = cohn.apply(nobs_below, axis=1) cohn.loc[:, 'ncen_equal'] = cohn.apply(ncen_equal, axis=1) cohn = cohn.reindex(range(DLs.shape[0] + 1)) cohn.loc[:, 'prob_exceedance'] = compute_PE(cohn['nuncen_above'], cohn['nobs_below']) else: dl_cols = ['lower_dl', 'upper_dl', 'nuncen_above', 'nobs_below', 'ncen_equal', 'prob_exceedance'] cohn = pd.DataFrame(np.empty((0, len(dl_cols))), columns=dl_cols) return cohn
def nuncen_above(row): """ A, the number of uncensored obs above the given threshold.
cohn_numbers
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _detection_limit_index(obs, cohn): """ Locates the corresponding detection limit for each observation. Basically, creates an array of indices for the detection limits (Cohn numbers) corresponding to each data point. Parameters ---------- obs : float A single observation from the larger dataset. cohn : DataFrame DataFrame of Cohn numbers. Returns ------- det_limit_index : int The index of the corresponding detection limit in `cohn` See Also -------- cohn_numbers """ if cohn.shape[0] > 0: index, = np.where(cohn['lower_dl'] <= obs) det_limit_index = index[-1] else: det_limit_index = 0 return det_limit_index
Locates the corresponding detection limit for each observation. Basically, creates an array of indices for the detection limits (Cohn numbers) corresponding to each data point. Parameters ---------- obs : float A single observation from the larger dataset. cohn : DataFrame DataFrame of Cohn numbers. Returns ------- det_limit_index : int The index of the corresponding detection limit in `cohn` See Also -------- cohn_numbers
_detection_limit_index
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _ros_group_rank(df, dl_idx, censorship): """ Ranks each observation within the data groups. In this case, the groups are defined by the record's detection limit index and censorship status. Parameters ---------- df : DataFrame dl_idx : str Name of the column in the dataframe the index of the observations' corresponding detection limit in the `cohn` dataframe. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------- ranks : ndarray Array of ranks for the dataset. """ # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) ranks = df.copy() ranks.loc[:, 'rank'] = 1 ranks = ( ranks.groupby(by=[dl_idx, censorship])['rank'] .transform(lambda g: g.cumsum()) ) return ranks
Ranks each observation within the data groups. In this case, the groups are defined by the record's detection limit index and censorship status. Parameters ---------- df : DataFrame dl_idx : str Name of the column in the dataframe the index of the observations' corresponding detection limit in the `cohn` dataframe. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------- ranks : ndarray Array of ranks for the dataset.
_ros_group_rank
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _ros_plot_pos(row, censorship, cohn): """ ROS-specific plotting positions. Computes the plotting position for an observation based on its rank, censorship status, and detection limit index. Parameters ---------- row : {Series, dict} Full observation (row) from a censored dataset. Requires a 'rank', 'detection_limit', and `censorship` column. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) cohn : DataFrame DataFrame of Cohn numbers. Returns ------- plotting_position : float See Also -------- cohn_numbers """ DL_index = row['det_limit_index'] rank = row['rank'] censored = row[censorship] dl_1 = cohn.iloc[DL_index] dl_2 = cohn.iloc[DL_index + 1] if censored: return (1 - dl_1['prob_exceedance']) * rank / (dl_1['ncen_equal']+1) else: return (1 - dl_1['prob_exceedance']) + (dl_1['prob_exceedance'] - dl_2['prob_exceedance']) * \ rank / (dl_1['nuncen_above']+1)
ROS-specific plotting positions. Computes the plotting position for an observation based on its rank, censorship status, and detection limit index. Parameters ---------- row : {Series, dict} Full observation (row) from a censored dataset. Requires a 'rank', 'detection_limit', and `censorship` column. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) cohn : DataFrame DataFrame of Cohn numbers. Returns ------- plotting_position : float See Also -------- cohn_numbers
_ros_plot_pos
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _norm_plot_pos(observations): """ Computes standard normal (Gaussian) plotting positions using scipy. Parameters ---------- observations : array_like Sequence of observed quantities. Returns ------- plotting_position : array of floats """ ppos, sorted_res = stats.probplot(observations, fit=False) return stats.norm.cdf(ppos)
Computes standard normal (Gaussian) plotting positions using scipy. Parameters ---------- observations : array_like Sequence of observed quantities. Returns ------- plotting_position : array of floats
_norm_plot_pos
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def plotting_positions(df, censorship, cohn): """ Compute the plotting positions for the observations. The ROS-specific plotting postions are based on the observations' rank, censorship status, and corresponding detection limit. Parameters ---------- df : DataFrame censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) cohn : DataFrame DataFrame of Cohn numbers. Returns ------- plotting_position : array of float See Also -------- cohn_numbers """ plot_pos = df.apply(lambda r: _ros_plot_pos(r, censorship, cohn), axis=1) # correctly sort the plotting positions of the ND data: ND_plotpos = plot_pos[df[censorship]] ND_plotpos_arr = np.sort(np.array(ND_plotpos)) plot_pos.loc[df[censorship].index[df[censorship]]] = ND_plotpos_arr return plot_pos
Compute the plotting positions for the observations. The ROS-specific plotting postions are based on the observations' rank, censorship status, and corresponding detection limit. Parameters ---------- df : DataFrame censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) cohn : DataFrame DataFrame of Cohn numbers. Returns ------- plotting_position : array of float See Also -------- cohn_numbers
plotting_positions
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _impute(df, observations, censorship, transform_in, transform_out): """ Executes the basic regression on order stat (ROS) proceedure. Uses ROS to impute censored from the best-fit line of a probability plot of the uncensored values. Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) transform_in, transform_out : callable Transformations to be applied to the data prior to fitting the line and after estimated values from that line. Typically, `np.log` and `np.exp` are used, respectively. Returns ------- estimated : DataFrame A new dataframe with two new columns: "estimated" and "final". The "estimated" column contains of the values inferred from the best-fit line. The "final" column contains the estimated values only where the original observations were censored, and the original observations everwhere else. """ # detect/non-detect selectors uncensored_mask = ~df[censorship] censored_mask = df[censorship] # fit a line to the logs of the detected data fit_params = stats.linregress( df['Zprelim'][uncensored_mask], transform_in(df[observations][uncensored_mask]) ) # pull out the slope and intercept for use later slope, intercept = fit_params[:2] # model the data based on the best-fit curve # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) df.loc[:, 'estimated'] = transform_out(slope * df['Zprelim'][censored_mask] + intercept) df.loc[:, 'final'] = np.where(df[censorship], df['estimated'], df[observations]) return df
Executes the basic regression on order stat (ROS) proceedure. Uses ROS to impute censored from the best-fit line of a probability plot of the uncensored values. Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) transform_in, transform_out : callable Transformations to be applied to the data prior to fitting the line and after estimated values from that line. Typically, `np.log` and `np.exp` are used, respectively. Returns ------- estimated : DataFrame A new dataframe with two new columns: "estimated" and "final". The "estimated" column contains of the values inferred from the best-fit line. The "final" column contains the estimated values only where the original observations were censored, and the original observations everwhere else.
_impute
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def _do_ros(df, observations, censorship, transform_in, transform_out): """ DataFrame-centric function to impute censored valies with ROS. Prepares a dataframe for, and then esimates the values of a censored dataset using Regression on Order Statistics Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) transform_in, transform_out : callable Transformations to be applied to the data prior to fitting the line and after estimated values from that line. Typically, `np.log` and `np.exp` are used, respectively. Returns ------- estimated : DataFrame A new dataframe with two new columns: "estimated" and "final". The "estimated" column contains of the values inferred from the best-fit line. The "final" column contains the estimated values only where the original observations were censored, and the original observations everwhere else. """ # compute the Cohn numbers cohn = cohn_numbers(df, observations=observations, censorship=censorship) # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) modeled = _ros_sort(df, observations=observations, censorship=censorship) modeled.loc[:, 'det_limit_index'] = modeled[observations].apply(_detection_limit_index, args=(cohn,)) modeled.loc[:, 'rank'] = _ros_group_rank(modeled, 'det_limit_index', censorship) modeled.loc[:, 'plot_pos'] = plotting_positions(modeled, censorship, cohn) modeled.loc[:, 'Zprelim'] = stats.norm.ppf(modeled['plot_pos']) return _impute(modeled, observations, censorship, transform_in, transform_out)
DataFrame-centric function to impute censored valies with ROS. Prepares a dataframe for, and then esimates the values of a censored dataset using Regression on Order Statistics Parameters ---------- df : DataFrame observations : str Name of the column in the dataframe that contains observed values. Censored values should be set to the detection (upper) limit. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) transform_in, transform_out : callable Transformations to be applied to the data prior to fitting the line and after estimated values from that line. Typically, `np.log` and `np.exp` are used, respectively. Returns ------- estimated : DataFrame A new dataframe with two new columns: "estimated" and "final". The "estimated" column contains of the values inferred from the best-fit line. The "final" column contains the estimated values only where the original observations were censored, and the original observations everwhere else.
_do_ros
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def impute_ros(observations, censorship, df=None, min_uncensored=2, max_fraction_censored=0.8, substitution_fraction=0.5, transform_in=np.log, transform_out=np.exp, as_array=True): """ Impute censored dataset using Regression on Order Statistics (ROS). Method described in *Nondetects and Data Analysis* by Dennis R. Helsel (John Wiley, 2005) to estimate the left-censored (non-detect) values of a dataset. When there is insufficient non-censorded data, simple substitution is used. Parameters ---------- observations : str or array-like Label of the column or the float array of censored observations censorship : str Label of the column or the bool array of the censorship status of the observations. * True if censored, * False if uncensored df : DataFrame, optional If `observations` and `censorship` are labels, this is the DataFrame that contains those columns. min_uncensored : int (default is 2) The minimum number of uncensored values required before ROS can be used to impute the censored observations. When this criterion is not met, simple substituion is used instead. max_fraction_censored : float (default is 0.8) The maximum fraction of censored data below which ROS can be used to impute the censored observations. When this fraction is exceeded, simple substituion is used instead. substitution_fraction : float (default is 0.5) The fraction of the detection limit to be used during simple substitution of the censored values. transform_in : callable (default is np.log) Transformation to be applied to the values prior to fitting a line to the plotting positions vs. uncensored values. transform_out : callable (default is np.exp) Transformation to be applied to the imputed censored values estimated from the previously computed best-fit line. as_array : bool (default is True) When True, a numpy array of the imputed observations is returned. Otherwise, a modified copy of the original dataframe with all of the intermediate calculations is returned. Returns ------- imputed : {ndarray, DataFrame} The final observations where the censored values have either been imputed through ROS or substituted as a fraction of the detection limit. Notes ----- This function requires pandas 0.14 or more recent. """ # process arrays into a dataframe, if necessary if df is None: df = pd.DataFrame({'obs': observations, 'cen': censorship}) observations = 'obs' censorship = 'cen' # basic counts/metrics of the dataset N_observations = df.shape[0] N_censored = df[censorship].astype(int).sum() N_uncensored = N_observations - N_censored fraction_censored = N_censored / N_observations # add plotting positions if there are no censored values # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) if N_censored == 0: output = df[[observations, censorship]].copy() output.loc[:, 'final'] = df[observations] # substitute w/ fraction of the DLs if there's insufficient # uncensored data # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) elif (N_uncensored < min_uncensored) or (fraction_censored > max_fraction_censored): output = df[[observations, censorship]].copy() output.loc[:, 'final'] = df[observations] output.loc[df[censorship], 'final'] *= substitution_fraction # normal ROS stuff else: output = _do_ros(df, observations, censorship, transform_in, transform_out) # convert to an array if necessary if as_array: output = output['final'].values return output
Impute censored dataset using Regression on Order Statistics (ROS). Method described in *Nondetects and Data Analysis* by Dennis R. Helsel (John Wiley, 2005) to estimate the left-censored (non-detect) values of a dataset. When there is insufficient non-censorded data, simple substitution is used. Parameters ---------- observations : str or array-like Label of the column or the float array of censored observations censorship : str Label of the column or the bool array of the censorship status of the observations. * True if censored, * False if uncensored df : DataFrame, optional If `observations` and `censorship` are labels, this is the DataFrame that contains those columns. min_uncensored : int (default is 2) The minimum number of uncensored values required before ROS can be used to impute the censored observations. When this criterion is not met, simple substituion is used instead. max_fraction_censored : float (default is 0.8) The maximum fraction of censored data below which ROS can be used to impute the censored observations. When this fraction is exceeded, simple substituion is used instead. substitution_fraction : float (default is 0.5) The fraction of the detection limit to be used during simple substitution of the censored values. transform_in : callable (default is np.log) Transformation to be applied to the values prior to fitting a line to the plotting positions vs. uncensored values. transform_out : callable (default is np.exp) Transformation to be applied to the imputed censored values estimated from the previously computed best-fit line. as_array : bool (default is True) When True, a numpy array of the imputed observations is returned. Otherwise, a modified copy of the original dataframe with all of the intermediate calculations is returned. Returns ------- imputed : {ndarray, DataFrame} The final observations where the censored values have either been imputed through ROS or substituted as a fraction of the detection limit. Notes ----- This function requires pandas 0.14 or more recent.
impute_ros
python
statsmodels/statsmodels
statsmodels/imputation/ros.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/ros.py
BSD-3-Clause
def next_sample(self): """ Returns the next imputed dataset in the imputation process. Returns ------- data : array_like An imputed dataset from the MICE chain. Notes ----- `MICEData` does not have a `skip` parameter. Consecutive values returned by `next_sample` are immediately consecutive in the imputation chain. The returned value is a reference to the data attribute of the class and should be copied before making any changes. """ self.update_all(1) return self.data
Returns the next imputed dataset in the imputation process. Returns ------- data : array_like An imputed dataset from the MICE chain. Notes ----- `MICEData` does not have a `skip` parameter. Consecutive values returned by `next_sample` are immediately consecutive in the imputation chain. The returned value is a reference to the data attribute of the class and should be copied before making any changes.
next_sample
python
statsmodels/statsmodels
statsmodels/imputation/mice.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py
BSD-3-Clause
def _initial_imputation(self): """ Use a PMM-like procedure for initial imputed values. For each variable, missing values are imputed as the observed value that is closest to the mean over all observed values. """ # Changed for pandas 2.0 copy-on-write behavior to use a single # in-place fill imp_values = {} for col in self.data.columns: di = self.data[col] - self.data[col].mean() di = np.abs(di) ix = di.idxmin() imp_values[col] = self.data[col].loc[ix] self.data.fillna(imp_values, inplace=True)
Use a PMM-like procedure for initial imputed values. For each variable, missing values are imputed as the observed value that is closest to the mean over all observed values.
_initial_imputation
python
statsmodels/statsmodels
statsmodels/imputation/mice.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py
BSD-3-Clause
def set_imputer(self, endog_name, formula=None, model_class=None, init_kwds=None, fit_kwds=None, predict_kwds=None, k_pmm=20, perturbation_method=None, regularized=False): """ Specify the imputation process for a single variable. Parameters ---------- endog_name : str Name of the variable to be imputed. formula : str Conditional formula for imputation. Defaults to a formula with main effects for all other variables in dataset. The formula should only include an expression for the mean structure, e.g. use 'x1 + x2' not 'x4 ~ x1 + x2'. model_class : statsmodels model Conditional model for imputation. Defaults to OLS. See below for more information. init_kwds : dit-like Keyword arguments passed to the model init method. fit_kwds : dict-like Keyword arguments passed to the model fit method. predict_kwds : dict-like Keyword arguments passed to the model predict method. k_pmm : int Determines number of neighboring observations from which to randomly sample when using predictive mean matching. perturbation_method : str Either 'gaussian' or 'bootstrap'. Determines the method for perturbing parameters in the imputation model. If None, uses the default specified at class initialization. regularized : dict If regularized[name]=True, `fit_regularized` rather than `fit` is called when fitting imputation models for this variable. When regularized[name]=True for any variable, perturbation_method must be set to boot. Notes ----- The model class must meet the following conditions: * A model must have a 'fit' method that returns an object. * The object returned from `fit` must have a `params` attribute that is an array-like object. * The object returned from `fit` must have a cov_params method that returns a square array-like object. * The model must have a `predict` method. """ if formula is None: main_effects = [x for x in self.data.columns if x != endog_name] fml = endog_name + " ~ " + " + ".join(main_effects) self.conditional_formula[endog_name] = fml else: fml = endog_name + " ~ " + formula self.conditional_formula[endog_name] = fml if model_class is None: self.model_class[endog_name] = OLS else: self.model_class[endog_name] = model_class if init_kwds is not None: self.init_kwds[endog_name] = init_kwds if fit_kwds is not None: self.fit_kwds[endog_name] = fit_kwds if predict_kwds is not None: self.predict_kwds[endog_name] = predict_kwds if perturbation_method is not None: self.perturbation_method[endog_name] = perturbation_method self.k_pmm = k_pmm self.regularized[endog_name] = regularized
Specify the imputation process for a single variable. Parameters ---------- endog_name : str Name of the variable to be imputed. formula : str Conditional formula for imputation. Defaults to a formula with main effects for all other variables in dataset. The formula should only include an expression for the mean structure, e.g. use 'x1 + x2' not 'x4 ~ x1 + x2'. model_class : statsmodels model Conditional model for imputation. Defaults to OLS. See below for more information. init_kwds : dit-like Keyword arguments passed to the model init method. fit_kwds : dict-like Keyword arguments passed to the model fit method. predict_kwds : dict-like Keyword arguments passed to the model predict method. k_pmm : int Determines number of neighboring observations from which to randomly sample when using predictive mean matching. perturbation_method : str Either 'gaussian' or 'bootstrap'. Determines the method for perturbing parameters in the imputation model. If None, uses the default specified at class initialization. regularized : dict If regularized[name]=True, `fit_regularized` rather than `fit` is called when fitting imputation models for this variable. When regularized[name]=True for any variable, perturbation_method must be set to boot. Notes ----- The model class must meet the following conditions: * A model must have a 'fit' method that returns an object. * The object returned from `fit` must have a `params` attribute that is an array-like object. * The object returned from `fit` must have a cov_params method that returns a square array-like object. * The model must have a `predict` method.
set_imputer
python
statsmodels/statsmodels
statsmodels/imputation/mice.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py
BSD-3-Clause