code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def _store_changes(self, col, vals):
"""
Fill in dataset with imputed values.
Parameters
----------
col : str
Name of variable to be filled in.
vals : ndarray
Array of imputed values to use for filling-in missing values.
"""
ix = self.ix_miss[col]
if len(ix) > 0:
self.data.iloc[ix, self.data.columns.get_loc(col)] = np.atleast_1d(vals) | Fill in dataset with imputed values.
Parameters
----------
col : str
Name of variable to be filled in.
vals : ndarray
Array of imputed values to use for filling-in missing values. | _store_changes | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def update_all(self, n_iter=1):
"""
Perform a specified number of MICE iterations.
Parameters
----------
n_iter : int
The number of updates to perform. Only the result of the
final update will be available.
Notes
-----
The imputed values are stored in the class attribute `self.data`.
"""
for k in range(n_iter):
for vname in self._cycle_order:
self.update(vname)
if self.history_callback is not None:
hv = self.history_callback(self)
self.history.append(hv) | Perform a specified number of MICE iterations.
Parameters
----------
n_iter : int
The number of updates to perform. Only the result of the
final update will be available.
Notes
-----
The imputed values are stored in the class attribute `self.data`. | update_all | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def get_split_data(self, vname):
"""
Return endog and exog for imputation of a given variable.
Parameters
----------
vname : str
The variable for which the split data is returned.
Returns
-------
endog_obs : DataFrame
Observed values of the variable to be imputed.
exog_obs : DataFrame
Current values of the predictors where the variable to be
imputed is observed.
exog_miss : DataFrame
Current values of the predictors where the variable to be
Imputed is missing.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required.
"""
formula = self.conditional_formula[vname]
mgr = FormulaManager()
endog, exog = mgr.get_matrices(formula, self.data, pandas=True)
# Rows with observed endog
ixo = self.ix_obs[vname]
endog_obs = np.require(endog.iloc[ixo], requirements="W")
exog_obs = np.require(exog.iloc[ixo, :], requirements="W")
# Rows with missing endog
ixm = self.ix_miss[vname]
exog_miss = np.require(exog.iloc[ixm, :], requirements="W")
predict_obs_kwds = {}
if vname in self.predict_kwds:
kwds = self.predict_kwds[vname]
predict_obs_kwds = self._process_kwds(kwds, ixo)
predict_miss_kwds = {}
if vname in self.predict_kwds:
kwds = self.predict_kwds[vname]
predict_miss_kwds = self._process_kwds(kwds, ixo)
return (endog_obs, exog_obs, exog_miss, predict_obs_kwds,
predict_miss_kwds) | Return endog and exog for imputation of a given variable.
Parameters
----------
vname : str
The variable for which the split data is returned.
Returns
-------
endog_obs : DataFrame
Observed values of the variable to be imputed.
exog_obs : DataFrame
Current values of the predictors where the variable to be
imputed is observed.
exog_miss : DataFrame
Current values of the predictors where the variable to be
Imputed is missing.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required. | get_split_data | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def get_fitting_data(self, vname):
"""
Return the data needed to fit a model for imputation.
The data is used to impute variable `vname`, and therefore
only includes cases for which `vname` is observed.
Values of type `PatsyFormula` in `init_kwds` or `fit_kwds` are
processed through Patsy and subset to align with the model's
endog and exog.
Parameters
----------
vname : str
The variable for which the fitting data is returned.
Returns
-------
endog : DataFrame
Observed values of `vname`.
exog : DataFrame
Regression design matrix for imputing `vname`.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required.
"""
# Rows with observed endog
ix = self.ix_obs[vname]
formula = self.conditional_formula[vname]
mgr = FormulaManager()
endog, exog = mgr.get_matrices(formula, self.data, pandas=True)
endog = np.require(endog.iloc[ix, 0], requirements="W")
exog = np.require(exog.iloc[ix, :], requirements="W")
init_kwds = self._process_kwds(self.init_kwds[vname], ix)
fit_kwds = self._process_kwds(self.fit_kwds[vname], ix)
return endog, exog, init_kwds, fit_kwds | Return the data needed to fit a model for imputation.
The data is used to impute variable `vname`, and therefore
only includes cases for which `vname` is observed.
Values of type `PatsyFormula` in `init_kwds` or `fit_kwds` are
processed through Patsy and subset to align with the model's
endog and exog.
Parameters
----------
vname : str
The variable for which the fitting data is returned.
Returns
-------
endog : DataFrame
Observed values of `vname`.
exog : DataFrame
Regression design matrix for imputing `vname`.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required. | get_fitting_data | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def plot_missing_pattern(self, ax=None, row_order="pattern",
column_order="pattern",
hide_complete_rows=False,
hide_complete_columns=False,
color_row_patterns=True):
"""
Generate an image showing the missing data pattern.
Parameters
----------
ax : AxesSubplot
Axes on which to draw the plot.
row_order : str
The method for ordering the rows. Must be one of 'pattern',
'proportion', or 'raw'.
column_order : str
The method for ordering the columns. Must be one of 'pattern',
'proportion', or 'raw'.
hide_complete_rows : bool
If True, rows with no missing values are not drawn.
hide_complete_columns : bool
If True, columns with no missing values are not drawn.
color_row_patterns : bool
If True, color the unique row patterns, otherwise use grey
and white as colors.
Returns
-------
A figure containing a plot of the missing data pattern.
"""
# Create an indicator matrix for missing values.
miss = np.zeros(self.data.shape)
cols = self.data.columns
for j, col in enumerate(cols):
ix = self.ix_miss[col]
miss[ix, j] = 1
# Order the columns as requested
if column_order == "proportion":
ix = np.argsort(miss.mean(0))
elif column_order == "pattern":
cv = np.cov(miss.T)
u, s, vt = np.linalg.svd(cv, 0)
ix = np.argsort(cv[:, 0])
elif column_order == "raw":
ix = np.arange(len(cols))
else:
raise ValueError(
column_order + " is not an allowed value for `column_order`.")
miss = miss[:, ix]
cols = [cols[i] for i in ix]
# Order the rows as requested
if row_order == "proportion":
ix = np.argsort(miss.mean(1))
elif row_order == "pattern":
x = 2**np.arange(miss.shape[1])
rky = np.dot(miss, x)
ix = np.argsort(rky)
elif row_order == "raw":
ix = np.arange(miss.shape[0])
else:
raise ValueError(
row_order + " is not an allowed value for `row_order`.")
miss = miss[ix, :]
if hide_complete_rows:
ix = np.flatnonzero((miss == 1).any(1))
miss = miss[ix, :]
if hide_complete_columns:
ix = np.flatnonzero((miss == 1).any(0))
miss = miss[:, ix]
cols = [cols[i] for i in ix]
from matplotlib.colors import LinearSegmentedColormap
from statsmodels.graphics import utils as gutils
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
if color_row_patterns:
x = 2**np.arange(miss.shape[1])
rky = np.dot(miss, x)
_, rcol = np.unique(rky, return_inverse=True)
miss *= 1 + rcol[:, None]
ax.imshow(miss, aspect="auto", interpolation="nearest",
cmap='gist_ncar_r')
else:
cmap = LinearSegmentedColormap.from_list("_",
["white", "darkgrey"])
ax.imshow(miss, aspect="auto", interpolation="nearest",
cmap=cmap)
ax.set_ylabel("Cases")
ax.set_xticks(range(len(cols)))
ax.set_xticklabels(cols, rotation=90)
return fig | Generate an image showing the missing data pattern.
Parameters
----------
ax : AxesSubplot
Axes on which to draw the plot.
row_order : str
The method for ordering the rows. Must be one of 'pattern',
'proportion', or 'raw'.
column_order : str
The method for ordering the columns. Must be one of 'pattern',
'proportion', or 'raw'.
hide_complete_rows : bool
If True, rows with no missing values are not drawn.
hide_complete_columns : bool
If True, columns with no missing values are not drawn.
color_row_patterns : bool
If True, color the unique row patterns, otherwise use grey
and white as colors.
Returns
-------
A figure containing a plot of the missing data pattern. | plot_missing_pattern | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def plot_bivariate(self, col1_name, col2_name,
lowess_args=None, lowess_min_n=40,
jitter=None, plot_points=True, ax=None):
"""
Plot observed and imputed values for two variables.
Displays a scatterplot of one variable against another. The
points are colored according to whether the values are
observed or imputed.
Parameters
----------
col1_name : str
The variable to be plotted on the horizontal axis.
col2_name : str
The variable to be plotted on the vertical axis.
lowess_args : dictionary
A dictionary of dictionaries, keys are 'ii', 'io', 'oi'
and 'oo', where 'o' denotes 'observed' and 'i' denotes
imputed. See Notes for details.
lowess_min_n : int
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : AxesSubplot
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot id drawn.
"""
from statsmodels.graphics import utils as gutils
from statsmodels.nonparametric.smoothers_lowess import lowess
if lowess_args is None:
lowess_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ix1i = self.ix_miss[col1_name]
ix1o = self.ix_obs[col1_name]
ix2i = self.ix_miss[col2_name]
ix2o = self.ix_obs[col2_name]
ix_ii = np.intersect1d(ix1i, ix2i)
ix_io = np.intersect1d(ix1i, ix2o)
ix_oi = np.intersect1d(ix1o, ix2i)
ix_oo = np.intersect1d(ix1o, ix2o)
vec1 = np.require(self.data[col1_name], requirements="W")
vec2 = np.require(self.data[col2_name], requirements="W")
if jitter is not None:
if np.isscalar(jitter):
jitter = (jitter, jitter)
vec1 += jitter[0] * np.random.normal(size=len(vec1))
vec2 += jitter[1] * np.random.normal(size=len(vec2))
# Plot the points
keys = ['oo', 'io', 'oi', 'ii']
lak = {'i': 'imp', 'o': 'obs'}
ixs = {'ii': ix_ii, 'io': ix_io, 'oi': ix_oi, 'oo': ix_oo}
color = {'oo': 'grey', 'ii': 'red', 'io': 'orange',
'oi': 'lime'}
if plot_points:
for ky in keys:
ix = ixs[ky]
lab = lak[ky[0]] + "/" + lak[ky[1]]
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
label=lab, alpha=0.6)
# Plot the lowess fits
for ky in keys:
ix = ixs[ky]
if len(ix) < lowess_min_n:
continue
if ky in lowess_args:
la = lowess_args[ky]
else:
la = {}
ix = ixs[ky]
lfit = lowess(vec2[ix], vec1[ix], **la)
if plot_points:
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4)
else:
lab = lak[ky[0]] + "/" + lak[ky[1]]
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4, label=lab)
ha, la = ax.get_legend_handles_labels()
pad = 0.0001 if plot_points else 0.5
leg = fig.legend(ha, la, loc='center right', numpoints=1,
handletextpad=pad)
leg.draw_frame(False)
ax.set_xlabel(col1_name)
ax.set_ylabel(col2_name)
return fig | Plot observed and imputed values for two variables.
Displays a scatterplot of one variable against another. The
points are colored according to whether the values are
observed or imputed.
Parameters
----------
col1_name : str
The variable to be plotted on the horizontal axis.
col2_name : str
The variable to be plotted on the vertical axis.
lowess_args : dictionary
A dictionary of dictionaries, keys are 'ii', 'io', 'oi'
and 'oo', where 'o' denotes 'observed' and 'i' denotes
imputed. See Notes for details.
lowess_min_n : int
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : AxesSubplot
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot id drawn. | plot_bivariate | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def plot_fit_obs(self, col_name, lowess_args=None,
lowess_min_n=40, jitter=None,
plot_points=True, ax=None):
"""
Plot fitted versus imputed or observed values as a scatterplot.
Parameters
----------
col_name : str
The variable to be plotted on the horizontal axis.
lowess_args : dict-like
Keyword arguments passed to lowess fit. A dictionary of
dictionaries, keys are 'o' and 'i' denoting 'observed' and
'imputed', respectively.
lowess_min_n : int
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : AxesSubplot
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot is drawn.
"""
from statsmodels.graphics import utils as gutils
from statsmodels.nonparametric.smoothers_lowess import lowess
if lowess_args is None:
lowess_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ixi = self.ix_miss[col_name]
ixo = self.ix_obs[col_name]
vec1 = np.require(self.data[col_name], requirements="W")
# Fitted values
formula = self.conditional_formula[col_name]
mgr = FormulaManager()
endog, exog = mgr.get_matrices(formula, self.data, pandas=True)
results = self.results[col_name]
vec2 = results.predict(exog=exog)
vec2 = self._get_predicted(vec2)
if jitter is not None:
if np.isscalar(jitter):
jitter = (jitter, jitter)
vec1 += jitter[0] * np.random.normal(size=len(vec1))
vec2 += jitter[1] * np.random.normal(size=len(vec2))
# Plot the points
keys = ['o', 'i']
ixs = {'o': ixo, 'i': ixi}
lak = {'o': 'obs', 'i': 'imp'}
color = {'o': 'orange', 'i': 'lime'}
if plot_points:
for ky in keys:
ix = ixs[ky]
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
label=lak[ky], alpha=0.6)
# Plot the lowess fits
for ky in keys:
ix = ixs[ky]
if len(ix) < lowess_min_n:
continue
if ky in lowess_args:
la = lowess_args[ky]
else:
la = {}
ix = ixs[ky]
lfit = lowess(vec2[ix], vec1[ix], **la)
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4, label=lak[ky])
ha, la = ax.get_legend_handles_labels()
leg = fig.legend(ha, la, loc='center right', numpoints=1)
leg.draw_frame(False)
ax.set_xlabel(col_name + " observed or imputed")
ax.set_ylabel(col_name + " fitted")
return fig | Plot fitted versus imputed or observed values as a scatterplot.
Parameters
----------
col_name : str
The variable to be plotted on the horizontal axis.
lowess_args : dict-like
Keyword arguments passed to lowess fit. A dictionary of
dictionaries, keys are 'o' and 'i' denoting 'observed' and
'imputed', respectively.
lowess_min_n : int
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : AxesSubplot
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot is drawn. | plot_fit_obs | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def plot_imputed_hist(self, col_name, ax=None, imp_hist_args=None,
obs_hist_args=None, all_hist_args=None):
"""
Display imputed values for one variable as a histogram.
Parameters
----------
col_name : str
The name of the variable to be plotted.
ax : AxesSubplot
An axes on which to draw the histograms. If not provided,
one is created.
imp_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for imputed values.
obs_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for observed values.
all_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for all values.
Returns
-------
The matplotlib figure on which the histograms were drawn
"""
from statsmodels.graphics import utils as gutils
if imp_hist_args is None:
imp_hist_args = {}
if obs_hist_args is None:
obs_hist_args = {}
if all_hist_args is None:
all_hist_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ixm = self.ix_miss[col_name]
ixo = self.ix_obs[col_name]
imp = self.data[col_name].iloc[ixm]
obs = self.data[col_name].iloc[ixo]
for di in imp_hist_args, obs_hist_args, all_hist_args:
if 'histtype' not in di:
di['histtype'] = 'step'
ha, la = [], []
if len(imp) > 0:
h = ax.hist(np.asarray(imp), **imp_hist_args)
ha.append(h[-1][0])
la.append("Imp")
h1 = ax.hist(np.asarray(obs), **obs_hist_args)
h2 = ax.hist(np.asarray(self.data[col_name]), **all_hist_args)
ha.extend([h1[-1][0], h2[-1][0]])
la.extend(["Obs", "All"])
leg = fig.legend(ha, la, loc='center right', numpoints=1)
leg.draw_frame(False)
ax.set_xlabel(col_name)
ax.set_ylabel("Frequency")
return fig | Display imputed values for one variable as a histogram.
Parameters
----------
col_name : str
The name of the variable to be plotted.
ax : AxesSubplot
An axes on which to draw the histograms. If not provided,
one is created.
imp_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for imputed values.
obs_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for observed values.
all_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for all values.
Returns
-------
The matplotlib figure on which the histograms were drawn | plot_imputed_hist | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def _perturb_bootstrap(self, vname):
"""
Perturbs the model's parameters using a bootstrap.
"""
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
m = len(endog)
rix = np.random.randint(0, m, m)
endog = endog[rix]
exog = exog[rix, :]
init_kwds = self._boot_kwds(init_kwds, rix)
fit_kwds = self._boot_kwds(fit_kwds, rix)
klass = self.model_class[vname]
self.models[vname] = klass(endog, exog, **init_kwds)
if vname in self.regularized and self.regularized[vname]:
self.results[vname] = (
self.models[vname].fit_regularized(**fit_kwds))
else:
self.results[vname] = self.models[vname].fit(**fit_kwds)
self.params[vname] = self.results[vname].params | Perturbs the model's parameters using a bootstrap. | _perturb_bootstrap | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def _perturb_gaussian(self, vname):
"""
Gaussian perturbation of model parameters.
The normal approximation to the sampling distribution of the
parameter estimates is used to define the mean and covariance
structure of the perturbation distribution.
"""
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
klass = self.model_class[vname]
self.models[vname] = klass(endog, exog, **init_kwds)
self.results[vname] = self.models[vname].fit(**fit_kwds)
cov = self.results[vname].cov_params()
mu = self.results[vname].params
self.params[vname] = np.random.multivariate_normal(mean=mu, cov=cov) | Gaussian perturbation of model parameters.
The normal approximation to the sampling distribution of the
parameter estimates is used to define the mean and covariance
structure of the perturbation distribution. | _perturb_gaussian | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def update(self, vname):
"""
Impute missing values for a single variable.
This is a two-step process in which first the parameters are
perturbed, then the missing values are re-imputed.
Parameters
----------
vname : str
The name of the variable to be updated.
"""
self.perturb_params(vname)
self.impute(vname) | Impute missing values for a single variable.
This is a two-step process in which first the parameters are
perturbed, then the missing values are re-imputed.
Parameters
----------
vname : str
The name of the variable to be updated. | update | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def impute_pmm(self, vname):
"""
Use predictive mean matching to impute missing values.
Notes
-----
The `perturb_params` method must be called first to define the
model.
"""
k_pmm = self.k_pmm
endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds = (
self.get_split_data(vname))
# Predict imputed variable for both missing and non-missing
# observations
model = self.models[vname]
pendog_obs = model.predict(self.params[vname], exog_obs,
**predict_obs_kwds)
pendog_miss = model.predict(self.params[vname], exog_miss,
**predict_miss_kwds)
pendog_obs = self._get_predicted(pendog_obs)
pendog_miss = self._get_predicted(pendog_miss)
# Jointly sort the observed and predicted endog values for the
# cases with observed values.
ii = np.argsort(pendog_obs)
endog_obs = endog_obs[ii]
pendog_obs = pendog_obs[ii]
# Find the closest match to the predicted endog values for
# cases with missing endog values.
ix = np.searchsorted(pendog_obs, pendog_miss)
# Get the indices for the closest k_pmm values on
# either side of the closest index.
ixm = ix[:, None] + np.arange(-k_pmm, k_pmm)[None, :]
# Account for boundary effects
msk = np.nonzero((ixm < 0) | (ixm > len(endog_obs) - 1))
ixm = np.clip(ixm, 0, len(endog_obs) - 1)
# Get the distances
dx = pendog_miss[:, None] - pendog_obs[ixm]
dx = np.abs(dx)
dx[msk] = np.inf
# Closest positions in ix, row-wise.
dxi = np.argsort(dx, 1)[:, 0:k_pmm]
# Choose a column for each row.
ir = np.random.randint(0, k_pmm, len(pendog_miss))
# Unwind the indices
jj = np.arange(dxi.shape[0])
ix = dxi[(jj, ir)]
iz = ixm[(jj, ix)]
imputed_miss = np.array(endog_obs[iz]).squeeze()
self._store_changes(vname, imputed_miss) | Use predictive mean matching to impute missing values.
Notes
-----
The `perturb_params` method must be called first to define the
model. | impute_pmm | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def next_sample(self):
"""
Perform one complete MICE iteration.
A single MICE iteration updates all missing values using their
respective imputation models, then fits the analysis model to
the imputed data.
Returns
-------
params : array_like
The model parameters for the analysis model.
Notes
-----
This function fits the analysis model and returns its
parameter estimate. The parameter vector is not stored by the
class and is not used in any subsequent calls to `combine`.
Use `fit` to run all MICE steps together and obtain summary
results.
The complete cycle of missing value imputation followed by
fitting the analysis model is repeated `n_skip + 1` times and
the analysis model parameters from the final fit are returned.
"""
# Impute missing values
self.data.update_all(self.n_skip + 1)
start_params = None
if len(self.results_list) > 0:
start_params = self.results_list[-1].params
# Fit the analysis model.
model = self.model_class.from_formula(self.model_formula,
self.data.data,
**self.init_kwds)
self.fit_kwds.update({"start_params": start_params})
result = model.fit(**self.fit_kwds)
return result | Perform one complete MICE iteration.
A single MICE iteration updates all missing values using their
respective imputation models, then fits the analysis model to
the imputed data.
Returns
-------
params : array_like
The model parameters for the analysis model.
Notes
-----
This function fits the analysis model and returns its
parameter estimate. The parameter vector is not stored by the
class and is not used in any subsequent calls to `combine`.
Use `fit` to run all MICE steps together and obtain summary
results.
The complete cycle of missing value imputation followed by
fitting the analysis model is repeated `n_skip + 1` times and
the analysis model parameters from the final fit are returned. | next_sample | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def fit(self, n_burnin=10, n_imputations=10):
"""
Fit a model using MICE.
Parameters
----------
n_burnin : int
The number of burn-in cycles to skip.
n_imputations : int
The number of data sets to impute
"""
# Run without fitting the analysis model
self.data.update_all(n_burnin)
for j in range(n_imputations):
result = self.next_sample()
self.results_list.append(result)
self.endog_names = result.model.endog_names
self.exog_names = result.model.exog_names
return self.combine() | Fit a model using MICE.
Parameters
----------
n_burnin : int
The number of burn-in cycles to skip.
n_imputations : int
The number of data sets to impute | fit | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def combine(self):
"""
Pools MICE imputation results.
This method can only be used after the `run` method has been
called. Returns estimates and standard errors of the analysis
model parameters.
Returns a MICEResults instance.
"""
# Extract a few things from the models that were fit to
# imputed data sets.
params_list = []
cov_within = 0.
scale_list = []
for results in self.results_list:
results_uw = results._results
params_list.append(results_uw.params)
cov_within += results_uw.cov_params()
scale_list.append(results.scale)
params_list = np.asarray(params_list)
scale_list = np.asarray(scale_list)
# The estimated parameters for the MICE analysis
params = params_list.mean(0)
# The average of the within-imputation covariances
cov_within /= len(self.results_list)
# The between-imputation covariance
cov_between = np.cov(params_list.T)
# The estimated covariance matrix for the MICE analysis
f = 1 + 1 / float(len(self.results_list))
cov_params = cov_within + f * cov_between
# Fraction of missing information
fmi = f * np.diag(cov_between) / np.diag(cov_params)
# Set up a results instance
scale = np.mean(scale_list)
results = MICEResults(self, params, cov_params / scale)
results.scale = scale
results.frac_miss_info = fmi
results.exog_names = self.exog_names
results.endog_names = self.endog_names
results.model_class = self.model_class
return results | Pools MICE imputation results.
This method can only be used after the `run` method has been
called. Returns estimates and standard errors of the analysis
model parameters.
Returns a MICEResults instance. | combine | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def summary(self, title=None, alpha=.05):
"""
Summarize the results of running MICE.
Parameters
----------
title : str, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
Significance level for the confidence intervals
Returns
-------
smry : Summary instance
This holds the summary tables and text, which can be
printed or converted to various output formats.
"""
from statsmodels.iolib import summary2
smry = summary2.Summary()
float_format = "%8.3f"
info = {}
info["Method:"] = "MICE"
info["Model:"] = self.model_class.__name__
info["Dependent variable:"] = self.endog_names
info["Sample size:"] = "%d" % self.model.data.data.shape[0]
info["Scale"] = "%.2f" % self.scale
info["Num. imputations"] = "%d" % len(self.model.results_list)
smry.add_dict(info, align='l', float_format=float_format)
param = summary2.summary_params(self, alpha=alpha)
param["FMI"] = self.frac_miss_info
smry.add_df(param, float_format=float_format)
smry.add_title(title=title, results=self)
return smry | Summarize the results of running MICE.
Parameters
----------
title : str, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
Significance level for the confidence intervals
Returns
-------
smry : Summary instance
This holds the summary tables and text, which can be
printed or converted to various output formats. | summary | python | statsmodels/statsmodels | statsmodels/imputation/mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/mice.py | BSD-3-Clause |
def gendat():
"""
Create a data set with missing values.
"""
gen = np.random.RandomState(34243)
n = 200
p = 5
exog = gen.normal(size=(n, p))
exog[:, 0] = exog[:, 1] - exog[:, 2] + 2*exog[:, 4]
exog[:, 0] += gen.normal(size=n)
exog[:, 2] = 1*(exog[:, 2] > 0)
endog = exog.sum(1) + gen.normal(size=n)
df = pd.DataFrame(exog)
df.columns = ["x%d" % k for k in range(1, p+1)]
df["y"] = endog
# loc is inclusive of right end, so needed to lower index by 1
df.loc[0:59, "x1"] = np.nan
df.loc[0:39, "x2"] = np.nan
df.loc[10:29:2, "x3"] = np.nan
df.loc[20:49:3, "x4"] = np.nan
df.loc[40:44, "x5"] = np.nan
df.loc[30:99:2, "y"] = np.nan
return df | Create a data set with missing values. | gendat | python | statsmodels/statsmodels | statsmodels/imputation/tests/test_mice.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/imputation/tests/test_mice.py | BSD-3-Clause |
def csv2st(csvfile, headers=False, stubs=False, title=None):
"""Return SimpleTable instance,
created from the data in `csvfile`,
which is in comma separated values format.
The first row may contain headers: set headers=True.
The first column may contain stubs: set stubs=True.
Can also supply headers and stubs as tuples of strings.
"""
rows = list()
with open(csvfile, encoding="utf-8") as fh:
reader = csv.reader(fh)
if headers is True:
headers = next(reader)
elif headers is False:
headers = ()
if stubs is True:
stubs = list()
for row in reader:
if row:
stubs.append(row[0])
rows.append(row[1:])
else: # no stubs, or stubs provided
for row in reader:
if row:
rows.append(row)
if stubs is False:
stubs = ()
ncols = len(rows[0])
if any(len(row) != ncols for row in rows):
raise OSError('All rows of CSV file must have same length.')
return SimpleTable(data=rows, headers=headers, stubs=stubs) | Return SimpleTable instance,
created from the data in `csvfile`,
which is in comma separated values format.
The first row may contain headers: set headers=True.
The first column may contain stubs: set stubs=True.
Can also supply headers and stubs as tuples of strings. | csv2st | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def __init__(self, data, headers=None, stubs=None, title='',
datatypes=None, csv_fmt=None, txt_fmt=None, ltx_fmt=None,
html_fmt=None, celltype=None, rowtype=None, **fmt_dict):
"""
Parameters
----------
data : list of lists or 2d array (not matrix!)
R rows by K columns of table elements
headers : list (or tuple) of str
sequence of K strings, one per header
stubs : list (or tuple) of str
sequence of R strings, one per stub
title : str
title of the table
datatypes : list of int
indexes to `data_fmts`
txt_fmt : dict
text formatting options
ltx_fmt : dict
latex formatting options
csv_fmt : dict
csv formatting options
hmtl_fmt : dict
hmtl formatting options
celltype : class
the cell class for the table (default: Cell)
rowtype : class
the row class for the table (default: Row)
fmt_dict : dict
general formatting options
"""
self.title = title
self._datatypes = datatypes
if self._datatypes is None:
self._datatypes = [] if len(data) == 0 else lrange(len(data[0]))
# start with default formatting
self._txt_fmt = default_txt_fmt.copy()
self._latex_fmt = default_latex_fmt.copy()
self._csv_fmt = default_csv_fmt.copy()
self._html_fmt = default_html_fmt.copy()
# substitute any general user specified formatting
# :note: these will be overridden by output specific arguments
self._csv_fmt.update(fmt_dict)
self._txt_fmt.update(fmt_dict)
self._latex_fmt.update(fmt_dict)
self._html_fmt.update(fmt_dict)
# substitute any output-type specific formatting
self._csv_fmt.update(csv_fmt or dict())
self._txt_fmt.update(txt_fmt or dict())
self._latex_fmt.update(ltx_fmt or dict())
self._html_fmt.update(html_fmt or dict())
self.output_formats = dict(
txt=self._txt_fmt,
csv=self._csv_fmt,
html=self._html_fmt,
latex=self._latex_fmt
)
self._Cell = celltype or Cell
self._Row = rowtype or Row
rows = self._data2rows(data) # a list of Row instances
list.__init__(self, rows)
self._add_headers_stubs(headers, stubs)
self._colwidths = dict() | Parameters
----------
data : list of lists or 2d array (not matrix!)
R rows by K columns of table elements
headers : list (or tuple) of str
sequence of K strings, one per header
stubs : list (or tuple) of str
sequence of R strings, one per stub
title : str
title of the table
datatypes : list of int
indexes to `data_fmts`
txt_fmt : dict
text formatting options
ltx_fmt : dict
latex formatting options
csv_fmt : dict
csv formatting options
hmtl_fmt : dict
hmtl formatting options
celltype : class
the cell class for the table (default: Cell)
rowtype : class
the row class for the table (default: Row)
fmt_dict : dict
general formatting options | __init__ | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _add_headers_stubs(self, headers, stubs):
"""Return None. Adds headers and stubs to table,
if these were provided at initialization.
Parameters
----------
headers : list[str]
K strings, where K is number of columns
stubs : list[str]
R strings, where R is number of non-header rows
:note: a header row does not receive a stub!
"""
if headers:
self.insert_header_row(0, headers, dec_below='header_dec_below')
if stubs:
self.insert_stubs(0, stubs) | Return None. Adds headers and stubs to table,
if these were provided at initialization.
Parameters
----------
headers : list[str]
K strings, where K is number of columns
stubs : list[str]
R strings, where R is number of non-header rows
:note: a header row does not receive a stub! | _add_headers_stubs | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def insert(self, idx, row, datatype=None):
"""Return None. Insert a row into a table.
"""
if datatype is None:
try:
datatype = row.datatype
except AttributeError:
pass
row = self._Row(row, datatype=datatype, table=self)
list.insert(self, idx, row) | Return None. Insert a row into a table. | insert | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def insert_header_row(self, rownum, headers, dec_below='header_dec_below'):
"""Return None. Insert a row of headers,
where ``headers`` is a sequence of strings.
(The strings may contain newlines, to indicated multiline headers.)
"""
header_rows = [header.split('\n') for header in headers]
# rows in reverse order
rows = list(zip_longest(*header_rows, **dict(fillvalue='')))
rows.reverse()
for i, row in enumerate(rows):
self.insert(rownum, row, datatype='header')
if i == 0:
self[rownum].dec_below = dec_below
else:
self[rownum].dec_below = None | Return None. Insert a row of headers,
where ``headers`` is a sequence of strings.
(The strings may contain newlines, to indicated multiline headers.) | insert_header_row | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def insert_stubs(self, loc, stubs):
"""Return None. Insert column of stubs at column `loc`.
If there is a header row, it gets an empty cell.
So ``len(stubs)`` should equal the number of non-header rows.
"""
_Cell = self._Cell
stubs = iter(stubs)
for row in self:
if row.datatype == 'header':
empty_cell = _Cell('', datatype='empty')
row.insert(loc, empty_cell)
else:
try:
row.insert_stub(loc, next(stubs))
except StopIteration:
raise ValueError('length of stubs must match table length') | Return None. Insert column of stubs at column `loc`.
If there is a header row, it gets an empty cell.
So ``len(stubs)`` should equal the number of non-header rows. | insert_stubs | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _data2rows(self, raw_data):
"""Return list of Row,
the raw data as rows of cells.
"""
_Cell = self._Cell
_Row = self._Row
rows = []
for datarow in raw_data:
dtypes = cycle(self._datatypes)
newrow = _Row(datarow, datatype='data', table=self, celltype=_Cell)
for cell in newrow:
cell.datatype = next(dtypes)
cell.row = newrow # a cell knows its row
rows.append(newrow)
return rows | Return list of Row,
the raw data as rows of cells. | _data2rows | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def pad(self, s, width, align):
"""DEPRECATED: just use the pad function"""
return pad(s, width, align) | DEPRECATED: just use the pad function | pad | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _get_colwidths(self, output_format, **fmt_dict):
"""Return list, the calculated widths of each column."""
output_format = get_output_format(output_format)
fmt = self.output_formats[output_format].copy()
fmt.update(fmt_dict)
ncols = max(len(row) for row in self)
request = fmt.get('colwidths')
if request == 0: # assume no extra space desired (e.g, CSV)
return [0] * ncols
elif request is None: # assume no extra space desired (e.g, CSV)
request = [0] * ncols
elif isinstance(request, int):
request = [request] * ncols
elif len(request) < ncols:
request = [request[i % len(request)] for i in range(ncols)]
min_widths = []
for col in zip(*self):
maxwidth = max(len(c.format(0, output_format, **fmt)) for c in col)
min_widths.append(maxwidth)
result = lmap(max, min_widths, request)
return result | Return list, the calculated widths of each column. | _get_colwidths | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def get_colwidths(self, output_format, **fmt_dict):
"""Return list, the widths of each column."""
call_args = [output_format]
for k, v in sorted(fmt_dict.items()):
if isinstance(v, list):
call_args.append((k, tuple(v)))
elif isinstance(v, dict):
call_args.append((k, tuple(sorted(v.items()))))
else:
call_args.append((k, v))
key = tuple(call_args)
try:
return self._colwidths[key]
except KeyError:
self._colwidths[key] = self._get_colwidths(output_format,
**fmt_dict)
return self._colwidths[key] | Return list, the widths of each column. | get_colwidths | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _get_fmt(self, output_format, **fmt_dict):
"""Return dict, the formatting options.
"""
output_format = get_output_format(output_format)
# first get the default formatting
try:
fmt = self.output_formats[output_format].copy()
except KeyError:
raise ValueError('Unknown format: %s' % output_format)
# then, add formatting specific to this call
fmt.update(fmt_dict)
return fmt | Return dict, the formatting options. | _get_fmt | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def as_csv(self, **fmt_dict):
"""Return string, the table in CSV format.
Currently only supports comma separator."""
# fetch the format, which may just be default_csv_format
fmt = self._get_fmt('csv', **fmt_dict)
return self.as_text(**fmt) | Return string, the table in CSV format.
Currently only supports comma separator. | as_csv | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def as_text(self, **fmt_dict):
"""Return string, the table as text."""
# fetch the text format, override with fmt_dict
fmt = self._get_fmt('txt', **fmt_dict)
# get rows formatted as strings
formatted_rows = [row.as_string('text', **fmt) for row in self]
rowlen = len(formatted_rows[-1]) # do not use header row
# place decoration above the table body, if desired
table_dec_above = fmt.get('table_dec_above', '=')
if table_dec_above:
formatted_rows.insert(0, table_dec_above * rowlen)
# next place a title at the very top, if desired
# :note: user can include a newlines at end of title if desired
title = self.title
if title:
title = pad(self.title, rowlen, fmt.get('title_align', 'c'))
formatted_rows.insert(0, title)
# add decoration below the table, if desired
table_dec_below = fmt.get('table_dec_below', '-')
if table_dec_below:
formatted_rows.append(table_dec_below * rowlen)
return '\n'.join(formatted_rows) | Return string, the table as text. | as_text | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def as_html(self, **fmt_dict):
"""Return string.
This is the default formatter for HTML tables.
An HTML table formatter must accept as arguments
a table and a format dictionary.
"""
# fetch the text format, override with fmt_dict
fmt = self._get_fmt('html', **fmt_dict)
formatted_rows = ['<table class="simpletable">']
if self.title:
title = '<caption>%s</caption>' % self.title
formatted_rows.append(title)
formatted_rows.extend(row.as_string('html', **fmt) for row in self)
formatted_rows.append('</table>')
return '\n'.join(formatted_rows) | Return string.
This is the default formatter for HTML tables.
An HTML table formatter must accept as arguments
a table and a format dictionary. | as_html | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def as_latex_tabular(self, center=True, **fmt_dict):
'''Return string, the table as a LaTeX tabular environment.
Note: will require the booktabs package.'''
# fetch the text format, override with fmt_dict
fmt = self._get_fmt('latex', **fmt_dict)
formatted_rows = []
if center:
formatted_rows.append(r'\begin{center}')
table_dec_above = fmt['table_dec_above'] or ''
table_dec_below = fmt['table_dec_below'] or ''
prev_aligns = None
last = None
for row in self + [last]:
if row == last:
aligns = None
else:
aligns = row.get_aligns('latex', **fmt)
if aligns != prev_aligns:
# When the number/type of columns changes...
if prev_aligns:
# ... if there is a tabular to close, close it...
formatted_rows.append(table_dec_below)
formatted_rows.append(r'\end{tabular}')
if aligns:
# ... and if there are more lines, open a new one:
formatted_rows.append(r'\begin{tabular}{%s}' % aligns)
if not prev_aligns:
# (with a nice line if it's the top of the whole table)
formatted_rows.append(table_dec_above)
if row != last:
formatted_rows.append(
row.as_string(output_format='latex', **fmt))
prev_aligns = aligns
# tabular does not support caption, but make it available for
# figure environment
if self.title:
title = r'%%\caption{%s}' % self.title
formatted_rows.append(title)
if center:
formatted_rows.append(r'\end{center}')
# Replace $$ due to bug in GH 5444
return '\n'.join(formatted_rows).replace('$$', ' ') | Return string, the table as a LaTeX tabular environment.
Note: will require the booktabs package. | as_latex_tabular | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def extend_right(self, table):
"""Return None.
Extend each row of `self` with corresponding row of `table`.
Does **not** import formatting from ``table``.
This generally makes sense only if the two tables have
the same number of rows, but that is not enforced.
:note: To extend append a table below, just use `extend`,
which is the ordinary list method. This generally makes sense
only if the two tables have the same number of columns,
but that is not enforced.
"""
for row1, row2 in zip(self, table):
row1.extend(row2) | Return None.
Extend each row of `self` with corresponding row of `table`.
Does **not** import formatting from ``table``.
This generally makes sense only if the two tables have
the same number of rows, but that is not enforced.
:note: To extend append a table below, just use `extend`,
which is the ordinary list method. This generally makes sense
only if the two tables have the same number of columns,
but that is not enforced. | extend_right | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def label_cells(self, func):
"""Return None. Labels cells based on `func`.
If ``func(cell) is None`` then its datatype is
not changed; otherwise it is set to ``func(cell)``.
"""
for row in self:
for cell in row:
label = func(cell)
if label is not None:
cell.datatype = label | Return None. Labels cells based on `func`.
If ``func(cell) is None`` then its datatype is
not changed; otherwise it is set to ``func(cell)``. | label_cells | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def pad(s, width, align):
"""Return string padded with spaces,
based on alignment parameter."""
if align == 'l':
s = s.ljust(width)
elif align == 'r':
s = s.rjust(width)
else:
s = s.center(width)
return s | Return string padded with spaces,
based on alignment parameter. | pad | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def __init__(self, seq, datatype='data', table=None, celltype=None,
dec_below='row_dec_below', **fmt_dict):
"""
Parameters
----------
seq : sequence of data or cells
table : SimpleTable
datatype : str ('data' or 'header')
dec_below : str
(e.g., 'header_dec_below' or 'row_dec_below')
decoration tag, identifies the decoration to go below the row.
(Decoration is repeated as needed for text formats.)
"""
self.datatype = datatype
self.table = table
if celltype is None:
if table is None:
celltype = Cell
else:
celltype = table._Cell
self._Cell = celltype
self._fmt = fmt_dict
self.special_fmts = dict() # special formatting for any output format
self.dec_below = dec_below
list.__init__(self, (celltype(cell, row=self) for cell in seq)) | Parameters
----------
seq : sequence of data or cells
table : SimpleTable
datatype : str ('data' or 'header')
dec_below : str
(e.g., 'header_dec_below' or 'row_dec_below')
decoration tag, identifies the decoration to go below the row.
(Decoration is repeated as needed for text formats.) | __init__ | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def add_format(self, output_format, **fmt_dict):
"""
Return None. Adds row-instance specific formatting
for the specified output format.
Example: myrow.add_format('txt', row_dec_below='+-')
"""
output_format = get_output_format(output_format)
if output_format not in self.special_fmts:
self.special_fmts[output_format] = dict()
self.special_fmts[output_format].update(fmt_dict) | Return None. Adds row-instance specific formatting
for the specified output format.
Example: myrow.add_format('txt', row_dec_below='+-') | add_format | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def insert_stub(self, loc, stub):
"""Return None. Inserts a stub cell
in the row at `loc`.
"""
_Cell = self._Cell
if not isinstance(stub, _Cell):
stub = stub
stub = _Cell(stub, datatype='stub', row=self)
self.insert(loc, stub) | Return None. Inserts a stub cell
in the row at `loc`. | insert_stub | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _get_fmt(self, output_format, **fmt_dict):
"""Return dict, the formatting options.
"""
output_format = get_output_format(output_format)
# first get the default formatting
try:
fmt = default_fmts[output_format].copy()
except KeyError:
raise ValueError('Unknown format: %s' % output_format)
# second get table specific formatting (if possible)
try:
fmt.update(self.table.output_formats[output_format])
except AttributeError:
pass
# finally, add formatting for this row and this call
fmt.update(self._fmt)
fmt.update(fmt_dict)
special_fmt = self.special_fmts.get(output_format, None)
if special_fmt is not None:
fmt.update(special_fmt)
return fmt | Return dict, the formatting options. | _get_fmt | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def get_aligns(self, output_format, **fmt_dict):
"""Return string, sequence of column alignments.
Ensure comformable data_aligns in `fmt_dict`."""
fmt = self._get_fmt(output_format, **fmt_dict)
return ''.join(cell.alignment(output_format, **fmt) for cell in self) | Return string, sequence of column alignments.
Ensure comformable data_aligns in `fmt_dict`. | get_aligns | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def as_string(self, output_format='txt', **fmt_dict):
"""Return string: the formatted row.
This is the default formatter for rows.
Override this to get different formatting.
A row formatter must accept as arguments
a row (self) and an output format,
one of ('html', 'txt', 'csv', 'latex').
"""
fmt = self._get_fmt(output_format, **fmt_dict)
# get column widths
try:
colwidths = self.table.get_colwidths(output_format, **fmt)
except AttributeError:
colwidths = fmt.get('colwidths')
if colwidths is None:
colwidths = (0,) * len(self)
colsep = fmt['colsep']
row_pre = fmt.get('row_pre', '')
row_post = fmt.get('row_post', '')
formatted_cells = []
for cell, width in zip(self, colwidths):
content = cell.format(width, output_format=output_format, **fmt)
formatted_cells.append(content)
formatted_row = row_pre + colsep.join(formatted_cells) + row_post
formatted_row = self._decorate_below(formatted_row, output_format,
**fmt)
return formatted_row | Return string: the formatted row.
This is the default formatter for rows.
Override this to get different formatting.
A row formatter must accept as arguments
a row (self) and an output format,
one of ('html', 'txt', 'csv', 'latex'). | as_string | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _decorate_below(self, row_as_string, output_format, **fmt_dict):
"""This really only makes sense for the text and latex output formats.
"""
dec_below = fmt_dict.get(self.dec_below, None)
if dec_below is None:
result = row_as_string
else:
output_format = get_output_format(output_format)
if output_format == 'txt':
row0len = len(row_as_string)
dec_len = len(dec_below)
repeat, addon = divmod(row0len, dec_len)
result = row_as_string + "\n" + (dec_below * repeat +
dec_below[:addon])
elif output_format == 'latex':
result = row_as_string + "\n" + dec_below
else:
raise ValueError("I cannot decorate a %s header." %
output_format)
return result | This really only makes sense for the text and latex output formats. | _decorate_below | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def _get_fmt(self, output_format, **fmt_dict):
"""Return dict, the formatting options.
"""
output_format = get_output_format(output_format)
# first get the default formatting
try:
fmt = default_fmts[output_format].copy()
except KeyError:
raise ValueError('Unknown format: %s' % output_format)
# then get any table specific formtting
try:
fmt.update(self.row.table.output_formats[output_format])
except AttributeError:
pass
# then get any row specific formtting
try:
fmt.update(self.row._fmt)
except AttributeError:
pass
# finally add formatting for this instance and call
fmt.update(self._fmt)
fmt.update(fmt_dict)
return fmt | Return dict, the formatting options. | _get_fmt | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def format(self, width, output_format='txt', **fmt_dict):
"""Return string.
This is the default formatter for cells.
Override this to get different formating.
A cell formatter must accept as arguments
a cell (self) and an output format,
one of ('html', 'txt', 'csv', 'latex').
It will generally respond to the datatype,
one of (int, 'header', 'stub').
"""
fmt = self._get_fmt(output_format, **fmt_dict)
data = self.data
datatype = self.datatype
data_fmts = fmt.get('data_fmts')
if data_fmts is None:
# chk allow for deprecated use of data_fmt
data_fmt = fmt.get('data_fmt')
if data_fmt is None:
data_fmt = '%s'
data_fmts = [data_fmt]
if isinstance(datatype, int):
datatype = datatype % len(data_fmts) # constrain to indexes
data_fmt = data_fmts[datatype]
if isinstance(data_fmt, str):
content = data_fmt % (data,)
elif callable(data_fmt):
content = data_fmt(data)
else:
raise TypeError("Must be a string or a callable")
if datatype == 0:
content = self._latex_escape(content, fmt, output_format)
elif datatype in fmt:
data = self._latex_escape(data, fmt, output_format)
dfmt = fmt.get(datatype)
try:
content = dfmt % (data,)
except TypeError: # dfmt is not a substitution string
content = dfmt
else:
raise ValueError('Unknown cell datatype: %s' % datatype)
align = self.alignment(output_format, **fmt)
return pad(content, width, align) | Return string.
This is the default formatter for cells.
Override this to get different formating.
A cell formatter must accept as arguments
a cell (self) and an output format,
one of ('html', 'txt', 'csv', 'latex').
It will generally respond to the datatype,
one of (int, 'header', 'stub'). | format | python | statsmodels/statsmodels | statsmodels/iolib/table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/table.py | BSD-3-Clause |
def savetxt(fname, X, names=None, fmt='%.18e', delimiter=' '):
"""
Save an array to a text file.
This is just a copy of numpy.savetxt patched to support structured arrays
or a header of names. Does not include py3 support now in savetxt.
Parameters
----------
fname : filename or file handle
If the filename ends in ``.gz``, the file is automatically saved in
compressed gzip format. `loadtxt` understands gzipped files
transparently.
X : array_like
Data to be saved to a text file.
names : list, optional
If given names will be the column header in the text file.
fmt : str or sequence of strs
A single format (%10.5f), a sequence of formats, or a
multi-format string, e.g. 'Iteration %d -- %10.5f', in which
case `delimiter` is ignored.
delimiter : str
Character separating columns.
See Also
--------
save : Save an array to a binary file in NumPy ``.npy`` format
savez : Save several arrays into a ``.npz`` compressed archive
Notes
-----
Further explanation of the `fmt` parameter
(``%[flag]width[.precision]specifier``):
flags:
``-`` : left justify
``+`` : Forces to preceed result with + or -.
``0`` : Left pad the number with zeros instead of space (see width).
width:
Minimum number of characters to be printed. The value is not truncated
if it has more characters.
precision:
- For integer specifiers (eg. ``d,i,o,x``), the minimum number of
digits.
- For ``e, E`` and ``f`` specifiers, the number of digits to print
after the decimal point.
- For ``g`` and ``G``, the maximum number of significant digits.
- For ``s``, the maximum number of characters.
specifiers:
``c`` : character
``d`` or ``i`` : signed decimal integer
``e`` or ``E`` : scientific notation with ``e`` or ``E``.
``f`` : decimal floating point
``g,G`` : use the shorter of ``e,E`` or ``f``
``o`` : signed octal
``s`` : str of characters
``u`` : unsigned decimal integer
``x,X`` : unsigned hexadecimal integer
This explanation of ``fmt`` is not complete, for an exhaustive
specification see [1]_.
References
----------
.. [1] `Format Specification Mini-Language
<http://docs.python.org/library/string.html#
format-specification-mini-language>`_, Python Documentation.
Examples
--------
>>> savetxt('test.out', x, delimiter=',') # x is an array
>>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation
"""
with get_file_obj(fname, 'w') as fh:
X = np.asarray(X)
# Handle 1-dimensional arrays
if X.ndim == 1:
# Common case -- 1d array of numbers
if X.dtype.names is None:
X = np.atleast_2d(X).T
ncol = 1
# Complex dtype -- each field indicates a separate column
else:
ncol = len(X.dtype.descr)
else:
ncol = X.shape[1]
# `fmt` can be a string with multiple insertion points or a list of formats.
# E.g. '%10.5f\t%10d' or ('%10.5f', '$10d')
if isinstance(fmt, (list, tuple)):
if len(fmt) != ncol:
raise AttributeError('fmt has wrong shape. %s' % str(fmt))
format = delimiter.join(fmt)
elif isinstance(fmt, str):
if fmt.count('%') == 1:
fmt = [fmt, ]*ncol
format = delimiter.join(fmt)
elif fmt.count('%') != ncol:
raise AttributeError('fmt has wrong number of %% formats. %s'
% fmt)
else:
format = fmt
# handle names
if names is None and X.dtype.names:
names = X.dtype.names
if names is not None:
fh.write(delimiter.join(names) + '\n')
for row in X:
fh.write(format % tuple(row) + '\n') | Save an array to a text file.
This is just a copy of numpy.savetxt patched to support structured arrays
or a header of names. Does not include py3 support now in savetxt.
Parameters
----------
fname : filename or file handle
If the filename ends in ``.gz``, the file is automatically saved in
compressed gzip format. `loadtxt` understands gzipped files
transparently.
X : array_like
Data to be saved to a text file.
names : list, optional
If given names will be the column header in the text file.
fmt : str or sequence of strs
A single format (%10.5f), a sequence of formats, or a
multi-format string, e.g. 'Iteration %d -- %10.5f', in which
case `delimiter` is ignored.
delimiter : str
Character separating columns.
See Also
--------
save : Save an array to a binary file in NumPy ``.npy`` format
savez : Save several arrays into a ``.npz`` compressed archive
Notes
-----
Further explanation of the `fmt` parameter
(``%[flag]width[.precision]specifier``):
flags:
``-`` : left justify
``+`` : Forces to preceed result with + or -.
``0`` : Left pad the number with zeros instead of space (see width).
width:
Minimum number of characters to be printed. The value is not truncated
if it has more characters.
precision:
- For integer specifiers (eg. ``d,i,o,x``), the minimum number of
digits.
- For ``e, E`` and ``f`` specifiers, the number of digits to print
after the decimal point.
- For ``g`` and ``G``, the maximum number of significant digits.
- For ``s``, the maximum number of characters.
specifiers:
``c`` : character
``d`` or ``i`` : signed decimal integer
``e`` or ``E`` : scientific notation with ``e`` or ``E``.
``f`` : decimal floating point
``g,G`` : use the shorter of ``e,E`` or ``f``
``o`` : signed octal
``s`` : str of characters
``u`` : unsigned decimal integer
``x,X`` : unsigned hexadecimal integer
This explanation of ``fmt`` is not complete, for an exhaustive
specification see [1]_.
References
----------
.. [1] `Format Specification Mini-Language
<http://docs.python.org/library/string.html#
format-specification-mini-language>`_, Python Documentation.
Examples
--------
>>> savetxt('test.out', x, delimiter=',') # x is an array
>>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation | savetxt | python | statsmodels/statsmodels | statsmodels/iolib/foreign.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/foreign.py | BSD-3-Clause |
def _repr_html_(self):
"""Display as HTML in IPython notebook."""
return self.as_html() | Display as HTML in IPython notebook. | _repr_html_ | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def _repr_latex_(self):
'''Display as LaTeX when converting IPython notebook to PDF.'''
return self.as_latex() | Display as LaTeX when converting IPython notebook to PDF. | _repr_latex_ | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_df(self, df, index=True, header=True, float_format='%.4f',
align='r'):
"""
Add the contents of a DataFrame to summary table
Parameters
----------
df : DataFrame
header : bool
Reproduce the DataFrame column labels in summary table
index : bool
Reproduce the DataFrame row labels in summary table
float_format : str
Formatting to float data columns
align : str
Data alignment (l/c/r)
"""
settings = {'index': index, 'header': header,
'float_format': float_format, 'align': align}
self.tables.append(df)
self.settings.append(settings) | Add the contents of a DataFrame to summary table
Parameters
----------
df : DataFrame
header : bool
Reproduce the DataFrame column labels in summary table
index : bool
Reproduce the DataFrame row labels in summary table
float_format : str
Formatting to float data columns
align : str
Data alignment (l/c/r) | add_df | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_array(self, array, align='r', float_format="%.4f"):
"""Add the contents of a Numpy array to summary table
Parameters
----------
array : numpy array (2D)
float_format : str
Formatting to array if type is float
align : str
Data alignment (l/c/r)
"""
table = pd.DataFrame(array)
self.add_df(table, index=False, header=False,
float_format=float_format, align=align) | Add the contents of a Numpy array to summary table
Parameters
----------
array : numpy array (2D)
float_format : str
Formatting to array if type is float
align : str
Data alignment (l/c/r) | add_array | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_dict(self, d, ncols=2, align='l', float_format="%.4f"):
"""Add the contents of a Dict to summary table
Parameters
----------
d : dict
Keys and values are automatically coerced to strings with str().
Users are encouraged to format them before using add_dict.
ncols : int
Number of columns of the output table
align : str
Data alignment (l/c/r)
float_format : str
Formatting to float data columns
"""
keys = [_formatter(x, float_format) for x in d.keys()]
vals = [_formatter(x, float_format) for x in d.values()]
data = np.array(lzip(keys, vals))
if data.shape[0] % ncols != 0:
pad = ncols - (data.shape[0] % ncols)
data = np.vstack([data, np.array(pad * [['', '']])])
data = np.split(data, ncols)
data = reduce(lambda x, y: np.hstack([x, y]), data)
self.add_array(data, align=align) | Add the contents of a Dict to summary table
Parameters
----------
d : dict
Keys and values are automatically coerced to strings with str().
Users are encouraged to format them before using add_dict.
ncols : int
Number of columns of the output table
align : str
Data alignment (l/c/r)
float_format : str
Formatting to float data columns | add_dict | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_text(self, string):
"""Append a note to the bottom of the summary table. In ASCII tables,
the note will be wrapped to table width. Notes are not indented.
"""
self.extra_txt.append(string) | Append a note to the bottom of the summary table. In ASCII tables,
the note will be wrapped to table width. Notes are not indented. | add_text | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_title(self, title=None, results=None):
"""Insert a title on top of the summary table. If a string is provided
in the title argument, that string is printed. If no title string is
provided but a results instance is provided, statsmodels attempts
to construct a useful title automatically.
"""
if isinstance(title, str):
self.title = title
else:
if results is not None:
model = results.model.__class__.__name__
if model in _model_types:
model = _model_types[model]
self.title = 'Results: ' + model
else:
self.title = '' | Insert a title on top of the summary table. If a string is provided
in the title argument, that string is printed. If no title string is
provided but a results instance is provided, statsmodels attempts
to construct a useful title automatically. | add_title | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def add_base(self, results, alpha=0.05, float_format="%.4f", title=None,
xname=None, yname=None):
"""Try to construct a basic summary instance.
Parameters
----------
results : Model results instance
alpha : float
significance level for the confidence intervals (optional)
float_format: str
Float formatting for summary of parameters (optional)
title : str
Title of the summary table (optional)
xname : list[str] of length equal to the number of parameters
Names of the independent variables (optional)
yname : str
Name of the dependent variable (optional)
"""
param = summary_params(results, alpha=alpha, use_t=results.use_t)
info = summary_model(results)
if xname is not None:
param.index = xname
if yname is not None:
info['Dependent Variable:'] = yname
self.add_dict(info, align='l')
self.add_df(param, float_format=float_format)
self.add_title(title=title, results=results) | Try to construct a basic summary instance.
Parameters
----------
results : Model results instance
alpha : float
significance level for the confidence intervals (optional)
float_format: str
Float formatting for summary of parameters (optional)
title : str
Title of the summary table (optional)
xname : list[str] of length equal to the number of parameters
Names of the independent variables (optional)
yname : str
Name of the dependent variable (optional) | add_base | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def as_text(self):
"""Generate ASCII Summary Table
"""
tables = self.tables
settings = self.settings
title = self.title
extra_txt = self.extra_txt
pad_col, pad_index, widest = _measure_tables(tables, settings)
rule_equal = widest * '='
simple_tables = _simple_tables(tables, settings, pad_col, pad_index)
tab = [x.as_text() for x in simple_tables]
tab = '\n'.join(tab)
tab = tab.split('\n')
tab[0] = rule_equal
tab.append(rule_equal)
tab = '\n'.join(tab)
if title is not None:
title = title
if len(title) < widest:
title = ' ' * int(widest / 2 - len(title) / 2) + title
else:
title = ''
txt = [textwrap.wrap(x, widest) for x in extra_txt]
txt = ['\n'.join(x) for x in txt]
txt = '\n'.join(txt)
out = '\n'.join([title, tab, txt])
return out | Generate ASCII Summary Table | as_text | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def as_html(self):
"""Generate HTML Summary Table
"""
tables = self.tables
settings = self.settings
simple_tables = _simple_tables(tables, settings)
tab = [x.as_html() for x in simple_tables]
tab = '\n'.join(tab)
temp_txt = [st.replace('\n', '<br/>\n')for st in self.extra_txt]
txt = '<br/>\n'.join(temp_txt)
out = '<br/>\n'.join([tab, txt])
return out | Generate HTML Summary Table | as_html | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def as_latex(self, label=''):
"""Generate LaTeX Summary Table
Parameters
----------
label : str
Label of the summary table that can be referenced
in a latex document (optional)
"""
tables = self.tables
settings = self.settings
title = self.title
if title is not None:
title = '\\caption{' + title + '}'
else:
title = '\\caption{}'
label = '\\label{' + label + '}'
simple_tables = _simple_tables(tables, settings)
tab = [x.as_latex_tabular() for x in simple_tables]
tab = '\n\n'.join(tab)
to_replace = ('\\\\hline\\n\\\\hline\\n\\\\'
'end{tabular}\\n\\\\begin{tabular}{.*}\\n')
if self._merge_latex:
# create single tabular object for summary_col
tab = re.sub(to_replace, r'\\midrule\n', tab)
non_captioned = '\\begin{table}', title, label, tab, '\\end{table}'
non_captioned = '\n'.join(non_captioned)
txt = ' \\newline \n'.join(self.extra_txt)
out = non_captioned + '\n\\bigskip\n' + txt
return out | Generate LaTeX Summary Table
Parameters
----------
label : str
Label of the summary table that can be referenced
in a latex document (optional) | as_latex | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def _measure_tables(tables, settings):
"""Compare width of ascii tables in a list and calculate padding values.
We add space to each col_sep to get us as close as possible to the
width of the largest table. Then, we add a few spaces to the first
column to pad the rest.
"""
simple_tables = _simple_tables(tables, settings)
tab = [x.as_text() for x in simple_tables]
length = [len(x.splitlines()[0]) for x in tab]
len_max = max(length)
pad_sep = []
pad_index = []
for i in range(len(tab)):
nsep = max(tables[i].shape[1] - 1, 1)
pad = int((len_max - length[i]) / nsep)
pad_sep.append(pad)
len_new = length[i] + nsep * pad
pad_index.append(len_max - len_new)
return pad_sep, pad_index, max(length) | Compare width of ascii tables in a list and calculate padding values.
We add space to each col_sep to get us as close as possible to the
width of the largest table. Then, we add a few spaces to the first
column to pad the rest. | _measure_tables | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def summary_model(results):
"""
Create a dict with information about the model
"""
def time_now(*args, **kwds):
now = datetime.datetime.now()
return now.strftime('%Y-%m-%d %H:%M')
info = {}
info['Model:'] = lambda x: x.model.__class__.__name__
info['Model Family:'] = lambda x: x.family.__class.__name__
info['Link Function:'] = lambda x: x.family.link.__class__.__name__
info['Dependent Variable:'] = lambda x: x.model.endog_names
info['Date:'] = time_now
info['No. Observations:'] = lambda x: "%#6d" % x.nobs
info['Df Model:'] = lambda x: "%#6d" % x.df_model
info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid
info['Converged:'] = lambda x: x.mle_retvals['converged']
info['No. Iterations:'] = lambda x: x.mle_retvals['iterations']
info['Method:'] = lambda x: x.method
info['Norm:'] = lambda x: x.fit_options['norm']
info['Scale Est.:'] = lambda x: x.fit_options['scale_est']
info['Cov. Type:'] = lambda x: x.fit_options['cov']
rsquared_type = '' if results.k_constant else ' (uncentered)'
info['R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared
info['Adj. R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared_adj # noqa:E501
info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared
info['AIC:'] = lambda x: "%8.4f" % x.aic
info['BIC:'] = lambda x: "%8.4f" % x.bic
info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf
info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull
info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue
info['Deviance:'] = lambda x: "%#8.5g" % x.deviance
info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2
info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue
info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue
info['Scale:'] = lambda x: "%#8.5g" % x.scale
out = {}
for key, func in info.items():
try:
out[key] = func(results)
except (AttributeError, KeyError, NotImplementedError):
# NOTE: some models do not have loglike defined (RLM),
# so raise NotImplementedError
pass
return out | Create a dict with information about the model | summary_model | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True,
skip_header=False, float_format="%.4f"):
"""create a summary table of parameters from results instance
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_header : bool
If false (default), then the header row is added. If true, then no
header row is added.
float_format : str
float formatting options (e.g. ".3g")
Returns
-------
params_table : SimpleTable instance
"""
if isinstance(results, tuple):
results, params, bse, tvalues, pvalues, conf_int = results
else:
params = results.params
bse = results.bse
tvalues = results.tvalues
pvalues = results.pvalues
conf_int = results.conf_int(alpha)
data = np.array([params, bse, tvalues, pvalues]).T
data = np.hstack([data, conf_int])
data = pd.DataFrame(data)
if use_t:
data.columns = ['Coef.', 'Std.Err.', 't', 'P>|t|',
'[' + str(alpha / 2), str(1 - alpha / 2) + ']']
else:
data.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|',
'[' + str(alpha / 2), str(1 - alpha / 2) + ']']
if not xname:
try:
data.index = results.model.data.param_names
except AttributeError:
data.index = results.model.exog_names
else:
data.index = xname
return data | create a summary table of parameters from results instance
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_header : bool
If false (default), then the header row is added. If true, then no
header row is added.
float_format : str
float formatting options (e.g. ".3g")
Returns
-------
params_table : SimpleTable instance | summary_params | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def _col_params(result, float_format='%.4f', stars=True, include_r2=False):
"""Stack coefficients and standard errors in single column
"""
# Extract parameters
res = summary_params(result)
# Format float
for col in res.columns[:2]:
res[col] = res[col].apply(lambda x: float_format % x)
# Std.Errors in parentheses
res.iloc[:, 1] = '(' + res.iloc[:, 1] + ')'
# Significance stars
if stars:
idx = res.iloc[:, 3] < .1
res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*'
idx = res.iloc[:, 3] < .05
res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*'
idx = res.iloc[:, 3] < .01
res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*'
# Stack Coefs and Std.Errors
res = res.iloc[:, :2]
res = res.stack(**FUTURE_STACK)
# Add R-squared
if include_r2:
rsquared = getattr(result, 'rsquared', np.nan)
rsquared_adj = getattr(result, 'rsquared_adj', np.nan)
r2 = pd.Series({('R-squared', ""): rsquared,
('R-squared Adj.', ""): rsquared_adj})
if r2.notnull().any():
r2 = r2.apply(lambda x: float_format % x)
res = pd.concat([res, r2], axis=0)
res = pd.DataFrame(res)
res.columns = [str(result.model.endog_names)]
return res | Stack coefficients and standard errors in single column | _col_params | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def _col_info(result, info_dict=None):
"""Stack model info in a column
"""
if info_dict is None:
info_dict = {}
out = []
index = []
for i in info_dict:
if isinstance(info_dict[i], dict):
# this is a specific model info_dict, but not for this result...
continue
try:
out.append(info_dict[i](result))
except AttributeError:
out.append('')
index.append(i)
out = pd.DataFrame({str(result.model.endog_names): out}, index=index)
return out | Stack model info in a column | _col_info | python | statsmodels/statsmodels | statsmodels/iolib/summary2.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary2.py | BSD-3-Clause |
def __enter__(self):
"""When entering, return the embedded object"""
return self._obj | When entering, return the embedded object | __enter__ | python | statsmodels/statsmodels | statsmodels/iolib/openfile.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/openfile.py | BSD-3-Clause |
def __exit__(self, *args):
"""Do not hide anything"""
return False | Do not hide anything | __exit__ | python | statsmodels/statsmodels | statsmodels/iolib/openfile.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/openfile.py | BSD-3-Clause |
def get_file_obj(fname, mode="r", encoding=None):
"""
Light wrapper to handle strings, path objects and let files (anything else)
pass through.
It also handle '.gz' files.
Parameters
----------
fname : str, path object or file-like object
File to open / forward
mode : str
Argument passed to the 'open' or 'gzip.open' function
encoding : str
For Python 3 only, specify the encoding of the file
Returns
-------
A file-like object that is always a context-manager. If the `fname` was
already a file-like object, the returned context manager *will not
close the file*.
"""
if _is_string_like(fname):
fname = Path(fname)
if isinstance(fname, Path):
return fname.open(mode=mode, encoding=encoding)
elif hasattr(fname, "open"):
return fname.open(mode=mode, encoding=encoding)
try:
return open(fname, mode, encoding=encoding)
except TypeError:
try:
# Make sure the object has the write methods
if "r" in mode:
fname.read
if "w" in mode or "a" in mode:
fname.write
except AttributeError:
raise ValueError("fname must be a string or a file-like object")
return EmptyContextManager(fname) | Light wrapper to handle strings, path objects and let files (anything else)
pass through.
It also handle '.gz' files.
Parameters
----------
fname : str, path object or file-like object
File to open / forward
mode : str
Argument passed to the 'open' or 'gzip.open' function
encoding : str
For Python 3 only, specify the encoding of the file
Returns
-------
A file-like object that is always a context-manager. If the `fname` was
already a file-like object, the returned context manager *will not
close the file*. | get_file_obj | python | statsmodels/statsmodels | statsmodels/iolib/openfile.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/openfile.py | BSD-3-Clause |
def d_or_f(x, width=6):
"""convert number to string with either integer of float formatting
This is used internally for nobs and degrees of freedom which are usually
integers but can be float in some cases.
Parameters
----------
x : int or float
width : int
only used if x is nan
Returns
-------
str : str
number as formatted string
"""
if np.isnan(x):
return (width - 3) * ' ' + 'NaN'
if x // 1 == x:
return "%#6d" % x
else:
return "%#8.2f" % x | convert number to string with either integer of float formatting
This is used internally for nobs and degrees of freedom which are usually
integers but can be float in some cases.
Parameters
----------
x : int or float
width : int
only used if x is nan
Returns
-------
str : str
number as formatted string | d_or_f | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def ols_printer():
"""
print summary table for ols models
"""
table = str(general_table)+'\n'+str(parameter_table)
return table | print summary table for ols models | summary.ols_printer | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary(self, yname=None, xname=None, title=0, alpha=.05,
returns='text', model_info=None):
"""
Parameters
----------
yname : str
optional, Default is `Y`
xname : list[str]
optional, Default is `X.#` for # in p the number of regressors
Confidance interval : (0,1) not implimented
title : str
optional, Defualt is 'Generalized linear model'
returns : str
'text', 'table', 'csv', 'latex', 'html'
Returns
-------
Default :
returns='print'
Prints the summarirized results
Option :
returns='text'
Prints the summarirized results
Option :
returns='table'
SimpleTable instance : summarizing the fit of a linear model.
Option :
returns='csv'
returns a string of csv of the results, to import into a spreadsheet
Option :
returns='latex'
Not implimented yet
Option :
returns='HTML'
Not implimented yet
Examples (needs updating)
--------
>>> import statsmodels as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> ols_results = sm.OLS(data.endog, data.exog).results
>>> print ols_results.summary()
...
Notes
-----
conf_int calculated from normal dist.
"""
if title == 0:
title = _model_types[self.model.__class__.__name__]
if xname is not None and len(xname) != len(self.params):
# GH 2298
raise ValueError('User supplied xnames must have the same number of '
'entries as the number of model parameters '
'({})'.format(len(self.params)))
yname, xname = _getnames(self, yname, xname)
time_now = time.localtime()
time_of_day = [time.strftime("%H:%M:%S", time_now)]
date = time.strftime("%a, %d %b %Y", time_now)
modeltype = self.model.__class__.__name__
nobs = self.nobs
df_model = self.df_model
df_resid = self.df_resid
#General part of the summary table, Applicable to all? models
#------------------------------------------------------------
# TODO: define this generically, overwrite in model classes
#replace definition of stubs data by single list
#e.g.
gen_left = [('Model type:', [modeltype]),
('Date:', [date]),
('Dependent Variable:', yname), # TODO: What happens with multiple names?
('df model', [df_model])
]
gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col
gen_title = title
gen_header = None
gen_table_left = SimpleTable(gen_data_left,
gen_header,
gen_stubs_left,
title=gen_title,
txt_fmt=gen_fmt
)
gen_stubs_right = ('Method:',
'Time:',
'Number of Obs:',
'df resid')
gen_data_right = ([modeltype], #was dist family need to look at more
time_of_day,
[nobs],
[df_resid]
)
gen_table_right = SimpleTable(gen_data_right,
gen_header,
gen_stubs_right,
title=gen_title,
txt_fmt=gen_fmt
)
gen_table_left.extend_right(gen_table_right)
general_table = gen_table_left
# Parameters part of the summary table
# ------------------------------------
# Note: this is not necessary since we standardized names,
# only t versus normal
tstats = {'OLS': self.t(),
'GLS': self.t(),
'GLSAR': self.t(),
'WLS': self.t(),
'RLM': self.t(),
'GLM': self.t()}
prob_stats = {'OLS': self.pvalues,
'GLS': self.pvalues,
'GLSAR': self.pvalues,
'WLS': self.pvalues,
'RLM': self.pvalues,
'GLM': self.pvalues
}
# Dictionary to store the header names for the parameter part of the
# summary table. look up by modeltype
alp = str((1-alpha)*100)+'%'
param_header = {
'OLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
'GLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
'WLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
'GLM' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution
'RLM' : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval'] #checke z
}
params_stubs = xname
params = self.params
conf_int = self.conf_int(alpha)
std_err = self.bse
exog_len = lrange(len(xname))
tstat = tstats[modeltype]
prob_stat = prob_stats[modeltype]
# Simpletable should be able to handle the formating
params_data = lzip(["%#6.4g" % (params[i]) for i in exog_len],
["%#6.4f" % (std_err[i]) for i in exog_len],
["%#6.4f" % (tstat[i]) for i in exog_len],
["%#6.4f" % (prob_stat[i]) for i in exog_len],
["(%#5g, %#5g)" % tuple(conf_int[i]) for i in exog_len])
parameter_table = SimpleTable(params_data,
param_header[modeltype],
params_stubs,
title=None,
txt_fmt=fmt_2
)
#special table
#-------------
#TODO: exists in linear_model, what about other models
#residual diagnostics
#output options
#--------------
#TODO: JP the rest needs to be fixed, similar to summary in linear_model
def ols_printer():
"""
print summary table for ols models
"""
table = str(general_table)+'\n'+str(parameter_table)
return table
def glm_printer():
table = str(general_table)+'\n'+str(parameter_table)
return table
printers = {'OLS': ols_printer, 'GLM': glm_printer}
if returns == 'print':
try:
return printers[modeltype]()
except KeyError:
return printers['OLS']() | Parameters
----------
yname : str
optional, Default is `Y`
xname : list[str]
optional, Default is `X.#` for # in p the number of regressors
Confidance interval : (0,1) not implimented
title : str
optional, Defualt is 'Generalized linear model'
returns : str
'text', 'table', 'csv', 'latex', 'html'
Returns
-------
Default :
returns='print'
Prints the summarirized results
Option :
returns='text'
Prints the summarirized results
Option :
returns='table'
SimpleTable instance : summarizing the fit of a linear model.
Option :
returns='csv'
returns a string of csv of the results, to import into a spreadsheet
Option :
returns='latex'
Not implimented yet
Option :
returns='HTML'
Not implimented yet
Examples (needs updating)
--------
>>> import statsmodels as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> ols_results = sm.OLS(data.endog, data.exog).results
>>> print ols_results.summary()
...
Notes
-----
conf_int calculated from normal dist. | summary | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def _getnames(self, yname=None, xname=None):
'''extract names from model or construct names
'''
if yname is None:
if getattr(self.model, 'endog_names', None) is not None:
yname = self.model.endog_names
else:
yname = 'y'
if xname is None:
if getattr(self.model, 'exog_names', None) is not None:
xname = self.model.exog_names
else:
xname = ['var_%d' % i for i in range(len(self.params))]
return yname, xname | extract names from model or construct names | _getnames | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None):
'''generate top table(s)
TODO: this still uses predefined model_methods
? allow gleft, gright to be 1 element tuples instead of filling with None?
'''
#change of names ?
gen_left, gen_right = gleft, gright
# time and names are always included
time_now = time.localtime()
time_of_day = [time.strftime("%H:%M:%S", time_now)]
date = time.strftime("%a, %d %b %Y", time_now)
yname, xname = _getnames(results, yname=yname, xname=xname)
# create dictionary with default
# use lambdas because some values raise exception if they are not available
default_items = dict([
('Dependent Variable:', lambda: [yname]),
('Dep. Variable:', lambda: [yname]),
('Model:', lambda: [results.model.__class__.__name__]),
('Date:', lambda: [date]),
('Time:', lambda: time_of_day),
('Number of Obs:', lambda: [results.nobs]),
('No. Observations:', lambda: [d_or_f(results.nobs)]),
('Df Model:', lambda: [d_or_f(results.df_model)]),
('Df Residuals:', lambda: [d_or_f(results.df_resid)]),
('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) # does not exist for RLM - exception
])
if title is None:
title = results.model.__class__.__name__ + 'Regression Results'
if gen_left is None:
# default: General part of the summary table, Applicable to all? models
gen_left = [('Dep. Variable:', None),
('Model type:', None),
('Date:', None),
('No. Observations:', None),
('Df model:', None),
('Df resid:', None)]
try:
llf = results.llf # noqa: F841
gen_left.append(('Log-Likelihood', None))
except (AttributeError, NotImplementedError):
# Might not have a log-likelihood
pass
gen_right = []
gen_title = title
gen_header = None
# replace missing (None) values with default values
gen_left_ = []
for item, value in gen_left:
if value is None:
value = default_items[item]() # let KeyErrors raise exception
gen_left_.append((item, value))
gen_left = gen_left_
if gen_right:
gen_right_ = []
for item, value in gen_right:
if value is None:
value = default_items[item]() # let KeyErrors raise exception
gen_right_.append((item, value))
gen_right = gen_right_
# check nothing was missed
missing_values = [k for k,v in gen_left + gen_right if v is None]
assert missing_values == [], missing_values
# pad both tables to equal number of rows
if gen_right:
if len(gen_right) < len(gen_left):
# fill up with blank lines to same length
gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right))
elif len(gen_right) > len(gen_left):
# fill up with blank lines to same length, just to keep it symmetric
gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left))
# padding in SimpleTable does not work like I want
#force extra spacing and exact string length in right table
gen_right = [('%-21s' % (' '+k), v) for k,v in gen_right]
gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col
gen_table_right = SimpleTable(gen_data_right,
gen_header,
gen_stubs_right,
title=gen_title,
txt_fmt=fmt_2cols
)
else:
gen_table_right = [] #because .extend_right seems works with []
#moved below so that we can pad if needed to match length of gen_right
#transpose rows and columns, `unzip`
gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col
gen_table_left = SimpleTable(gen_data_left,
gen_header,
gen_stubs_left,
title=gen_title,
txt_fmt=fmt_2cols
)
gen_table_left.extend_right(gen_table_right)
general_table = gen_table_left
return general_table | generate top table(s)
TODO: this still uses predefined model_methods
? allow gleft, gright to be 1 element tuples instead of filling with None? | summary_top | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True,
skip_header=False, title=None):
'''create a summary table for the parameters
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_headers : bool
If false (default), then the header row is added. If true, then no
header row is added.
Returns
-------
params_table : SimpleTable instance
'''
# Parameters part of the summary table
# ------------------------------------
# Note: this is not necessary since we standardized names,
# only t versus normal
if isinstance(results, tuple):
# for multivariate endog
# TODO: check whether I do not want to refactor this
#we need to give parameter alpha to conf_int
results, params, std_err, tvalues, pvalues, conf_int = results
else:
params = np.asarray(results.params)
std_err = np.asarray(results.bse)
tvalues = np.asarray(results.tvalues) # is this sometimes called zvalues
pvalues = np.asarray(results.pvalues)
conf_int = np.asarray(results.conf_int(alpha))
if params.size == 0:
return SimpleTable([['No Model Parameters']])
# Dictionary to store the header names for the parameter part of the
# summary table. look up by modeltype
if use_t:
param_header = ['coef', 'std err', 't', 'P>|t|',
'[' + str(alpha/2), str(1-alpha/2) + ']']
else:
param_header = ['coef', 'std err', 'z', 'P>|z|',
'[' + str(alpha/2), str(1-alpha/2) + ']']
if skip_header:
param_header = None
_, xname = _getnames(results, yname=yname, xname=xname)
if len(xname) != len(params):
raise ValueError('xnames and params do not have the same length')
params_stubs = xname
exog_idx = lrange(len(xname))
params = np.asarray(params)
std_err = np.asarray(std_err)
tvalues = np.asarray(tvalues)
pvalues = np.asarray(pvalues)
conf_int = np.asarray(conf_int)
params_data = lzip([forg(params[i], prec=4) for i in exog_idx],
[forg(std_err[i]) for i in exog_idx],
[forg(tvalues[i]) for i in exog_idx],
["%#6.3f" % (pvalues[i]) for i in exog_idx],
[forg(conf_int[i,0]) for i in exog_idx],
[forg(conf_int[i,1]) for i in exog_idx])
parameter_table = SimpleTable(params_data,
param_header,
params_stubs,
title=title,
txt_fmt=fmt_params
)
return parameter_table | create a summary table for the parameters
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_headers : bool
If false (default), then the header row is added. If true, then no
header row is added.
Returns
-------
params_table : SimpleTable instance | summary_params | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary_params_frame(results, yname=None, xname=None, alpha=.05,
use_t=True):
"""
Create a summary table for the parameters
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_headers : bool
If false (default), then the header row is added. If true, then no
header row is added.
Returns
-------
params_table : SimpleTable instance
"""
# Parameters part of the summary table
# ------------------------------------
# Note: this is not necessary since we standardized names,
# only t versus normal
if isinstance(results, tuple):
# for multivariate endog
# TODO: check whether I do not want to refactor this
#we need to give parameter alpha to conf_int
results, params, std_err, tvalues, pvalues, conf_int = results
else:
params = results.params
std_err = results.bse
tvalues = results.tvalues #is this sometimes called zvalues
pvalues = results.pvalues
conf_int = results.conf_int(alpha)
# Dictionary to store the header names for the parameter part of the
# summary table. look up by modeltype
if use_t:
param_header = ['coef', 'std err', 't', 'P>|t|',
'Conf. Int. Low', 'Conf. Int. Upp.']
else:
param_header = ['coef', 'std err', 'z', 'P>|z|',
'Conf. Int. Low', 'Conf. Int. Upp.']
_, xname = _getnames(results, yname=yname, xname=xname)
from pandas import DataFrame
table = np.column_stack((params, std_err, tvalues, pvalues, conf_int))
return DataFrame(table, columns=param_header, index=xname) | Create a summary table for the parameters
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
skip_headers : bool
If false (default), then the header row is added. If true, then no
header row is added.
Returns
-------
params_table : SimpleTable instance | summary_params_frame | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary_params_2d(result, extras=None, endog_names=None, exog_names=None,
title=None):
"""create summary table of regression parameters with several equations
This allows interleaving of parameters with bse and/or tvalues
Parameters
----------
result : result instance
the result instance with params and attributes in extras
extras : list[str]
additional attributes to add below a parameter row, e.g. bse or tvalues
endog_names : {list[str], None}
names for rows of the parameter array (multivariate endog)
exog_names : {list[str], None}
names for columns of the parameter array (exog)
alpha : float
level for confidence intervals, default 0.95
title : None or string
Returns
-------
tables : list of SimpleTable
this contains a list of all seperate Subtables
table_all : SimpleTable
the merged table with results concatenated for each row of the parameter
array
"""
if endog_names is None:
# TODO: note the [1:] is specific to current MNLogit
endog_names = ['endog_%d' % i for i in
np.unique(result.model.endog)[1:]]
if exog_names is None:
exog_names = ['var%d' % i for i in range(len(result.params))]
# TODO: check formatting options with different values
res_params = [[forg(item, prec=4) for item in row] for row in result.params]
if extras:
extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')')
for v in col]
for col in getattr(result, what)]
for what in extras
]
data = lzip(res_params, *extras_list)
data = [i for j in data for i in j] #flatten
stubs = lzip(endog_names, *[['']*len(endog_names)]*len(extras))
stubs = [i for j in stubs for i in j] #flatten
else:
data = res_params
stubs = endog_names
txt_fmt = copy.deepcopy(fmt_params)
txt_fmt["data_fmts"] = ["%s"]*result.params.shape[1]
return SimpleTable(data, headers=exog_names,
stubs=stubs,
title=title,
txt_fmt=txt_fmt) | create summary table of regression parameters with several equations
This allows interleaving of parameters with bse and/or tvalues
Parameters
----------
result : result instance
the result instance with params and attributes in extras
extras : list[str]
additional attributes to add below a parameter row, e.g. bse or tvalues
endog_names : {list[str], None}
names for rows of the parameter array (multivariate endog)
exog_names : {list[str], None}
names for columns of the parameter array (exog)
alpha : float
level for confidence intervals, default 0.95
title : None or string
Returns
-------
tables : list of SimpleTable
this contains a list of all seperate Subtables
table_all : SimpleTable
the merged table with results concatenated for each row of the parameter
array | summary_params_2d | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.05,
use_t=True, keep_headers=True, endog_cols=False):
"""summary table for parameters that are 2d, e.g. multi-equation models
Parameters
----------
result : result instance
the result instance with params, bse, tvalues and conf_int
endog_names : {list[str], None}
names for rows of the parameter array (multivariate endog)
exog_names : {list[str], None}
names for columns of the parameter array (exog)
alpha : float
level for confidence intervals, default 0.95
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
keep_headers : bool
If true (default), then sub-tables keep their headers. If false, then
only the first headers are kept, the other headerse are blanked out
endog_cols : bool
If false (default) then params and other result statistics have
equations by rows. If true, then equations are assumed to be in columns.
Not implemented yet.
Returns
-------
tables : list of SimpleTable
this contains a list of all seperate Subtables
table_all : SimpleTable
the merged table with results concatenated for each row of the parameter
array
"""
res = result
params = res.params
if params.ndim == 2: # we've got multiple equations
n_equ = params.shape[1]
if len(endog_names) != params.shape[1]:
raise ValueError('endog_names has wrong length')
else:
if len(endog_names) != len(params):
raise ValueError('endog_names has wrong length')
n_equ = 1
#VAR does not have conf_int
#params = res.params.T # this is a convention for multi-eq models
# check that we have the right length of names
if not isinstance(endog_names, list):
# TODO: this might be specific to multinomial logit type, move?
# TODO: note, the [1:] is specific to current MNLogit
endog_names = res.model.endog_names[1:]
tables = []
for eq in range(n_equ):
restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq],
res.pvalues[:,eq], res.conf_int(alpha)[eq])
skiph = False
tble = summary_params(restup, yname=endog_names[eq],
xname=exog_names, alpha=alpha, use_t=use_t,
skip_header=skiph)
tables.append(tble)
# add titles, they will be moved to header lines in table_extend
for i in range(len(endog_names)):
tables[i].title = endog_names[i]
table_all = table_extend(tables, keep_headers=keep_headers)
return tables, table_all | summary table for parameters that are 2d, e.g. multi-equation models
Parameters
----------
result : result instance
the result instance with params, bse, tvalues and conf_int
endog_names : {list[str], None}
names for rows of the parameter array (multivariate endog)
exog_names : {list[str], None}
names for columns of the parameter array (exog)
alpha : float
level for confidence intervals, default 0.95
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
keep_headers : bool
If true (default), then sub-tables keep their headers. If false, then
only the first headers are kept, the other headerse are blanked out
endog_cols : bool
If false (default) then params and other result statistics have
equations by rows. If true, then equations are assumed to be in columns.
Not implemented yet.
Returns
-------
tables : list of SimpleTable
this contains a list of all seperate Subtables
table_all : SimpleTable
the merged table with results concatenated for each row of the parameter
array | summary_params_2dflat | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def table_extend(tables, keep_headers=True):
"""extend a list of SimpleTables, adding titles to header of subtables
This function returns the merged table as a deepcopy, in contrast to the
SimpleTable extend method.
Parameters
----------
tables : list of SimpleTable instances
keep_headers : bool
If true, then all headers are kept. If falls, then the headers of
subtables are blanked out.
Returns
-------
table_all : SimpleTable
merged tables as a single SimpleTable instance
"""
from copy import deepcopy
for ii, t in enumerate(tables[:]): #[1:]:
t = deepcopy(t)
#move title to first cell of header
# TODO: check if we have multiline headers
if t[0].datatype == 'header':
t[0][0].data = t.title
t[0][0]._datatype = None
t[0][0].row = t[0][1].row
if not keep_headers and (ii > 0):
for c in t[0][1:]:
c.data = ''
# add separating line and extend tables
if ii == 0:
table_all = t
else:
r1 = table_all[-1]
r1.add_format('txt', row_dec_below='-')
table_all.extend(t)
table_all.title = None
return table_all | extend a list of SimpleTables, adding titles to header of subtables
This function returns the merged table as a deepcopy, in contrast to the
SimpleTable extend method.
Parameters
----------
tables : list of SimpleTable instances
keep_headers : bool
If true, then all headers are kept. If falls, then the headers of
subtables are blanked out.
Returns
-------
table_all : SimpleTable
merged tables as a single SimpleTable instance | table_extend | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def _repr_html_(self):
"""Display as HTML in IPython notebook."""
return self.as_html() | Display as HTML in IPython notebook. | _repr_html_ | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def _repr_latex_(self):
"""Display as LaTeX when converting IPython notebook to PDF."""
return self.as_latex() | Display as LaTeX when converting IPython notebook to PDF. | _repr_latex_ | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def add_table_2cols(self, res, title=None, gleft=None, gright=None,
yname=None, xname=None):
"""
Add a double table, 2 tables with one column merged horizontally
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
title : str, optional
if None, then a default title is used.
gleft : list[tuple], optional
elements for the left table, tuples are (name, value) pairs
If gleft is None, then a default table is created
gright : list[tuple], optional
elements for the right table, tuples are (name, value) pairs
yname : str, optional
optional name for the endogenous variable, default is "y"
xname : list[str], optional
optional names for the exogenous variables, default is "var_xx".
Must match the number of parameters in the model.
"""
table = summary_top(res, title=title, gleft=gleft, gright=gright,
yname=yname, xname=xname)
self.tables.append(table) | Add a double table, 2 tables with one column merged horizontally
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
title : str, optional
if None, then a default title is used.
gleft : list[tuple], optional
elements for the left table, tuples are (name, value) pairs
If gleft is None, then a default table is created
gright : list[tuple], optional
elements for the right table, tuples are (name, value) pairs
yname : str, optional
optional name for the endogenous variable, default is "y"
xname : list[str], optional
optional names for the exogenous variables, default is "var_xx".
Must match the number of parameters in the model. | add_table_2cols | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def add_table_params(self, res, yname=None, xname=None, alpha=.05,
use_t=True):
"""create and add a table for the parameter estimates
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
Returns
-------
None : table is attached
"""
if res.params.ndim == 1:
table = summary_params(res, yname=yname, xname=xname, alpha=alpha,
use_t=use_t)
elif res.params.ndim == 2:
_, table = summary_params_2dflat(res, endog_names=yname,
exog_names=xname,
alpha=alpha, use_t=use_t)
else:
raise ValueError('params has to be 1d or 2d')
self.tables.append(table) | create and add a table for the parameter estimates
Parameters
----------
res : results instance
some required information is directly taken from the result
instance
yname : {str, None}
optional name for the endogenous variable, default is "y"
xname : {list[str], None}
optional names for the exogenous variables, default is "var_xx"
alpha : float
significance level for the confidence intervals
use_t : bool
indicator whether the p-values are based on the Student-t
distribution (if True) or on the normal distribution (if False)
Returns
-------
None : table is attached | add_table_params | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def add_extra_txt(self, etext):
"""add additional text that will be added at the end in text format
Parameters
----------
etext : list[str]
string with lines that are added to the text output.
"""
self.extra_txt = '\n'.join(etext) | add additional text that will be added at the end in text format
Parameters
----------
etext : list[str]
string with lines that are added to the text output. | add_extra_txt | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def as_text(self):
"""return tables as string
Returns
-------
txt : str
summary tables and extra text as one string
"""
txt = summary_return(self.tables, return_fmt='text')
if self.extra_txt is not None:
txt = txt + '\n\n' + self.extra_txt
return txt | return tables as string
Returns
-------
txt : str
summary tables and extra text as one string | as_text | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def as_latex(self):
"""return tables as string
Returns
-------
latex : str
summary tables and extra text as string of Latex
Notes
-----
This currently merges tables with different number of columns.
It is recommended to use `as_latex_tabular` directly on the individual
tables.
"""
latex = summary_return(self.tables, return_fmt='latex')
if self.extra_txt is not None:
latex = latex + '\n\n' + self.extra_txt.replace('\n', ' \\newline\n ')
return latex | return tables as string
Returns
-------
latex : str
summary tables and extra text as string of Latex
Notes
-----
This currently merges tables with different number of columns.
It is recommended to use `as_latex_tabular` directly on the individual
tables. | as_latex | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def as_csv(self):
"""return tables as string
Returns
-------
csv : str
concatenated summary tables in comma delimited format
"""
csv = summary_return(self.tables, return_fmt='csv')
if self.extra_txt is not None:
csv = csv + '\n\n' + self.extra_txt
return csv | return tables as string
Returns
-------
csv : str
concatenated summary tables in comma delimited format | as_csv | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def as_html(self):
"""return tables as string
Returns
-------
html : str
concatenated summary tables in HTML format
"""
html = summary_return(self.tables, return_fmt='html')
if self.extra_txt is not None:
html = html + '<br/><br/>' + self.extra_txt.replace('\n', '<br/>')
return html | return tables as string
Returns
-------
html : str
concatenated summary tables in HTML format | as_html | python | statsmodels/statsmodels | statsmodels/iolib/summary.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/summary.py | BSD-3-Clause |
def save_pickle(obj, fname):
"""
Save the object to file via pickling.
Parameters
----------
fname : {str, pathlib.Path}
Filename to pickle to
"""
import pickle
with get_file_obj(fname, "wb") as fout:
pickle.dump(obj, fout, protocol=-1) | Save the object to file via pickling.
Parameters
----------
fname : {str, pathlib.Path}
Filename to pickle to | save_pickle | python | statsmodels/statsmodels | statsmodels/iolib/smpickle.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/smpickle.py | BSD-3-Clause |
def load_pickle(fname):
"""
Load a previously saved object
.. warning::
Loading pickled models is not secure against erroneous or maliciously
constructed data. Never unpickle data received from an untrusted or
unauthenticated source.
Parameters
----------
fname : {str, pathlib.Path}
Filename to unpickle
Notes
-----
This method can be used to load *both* models and results.
"""
import pickle
with get_file_obj(fname, "rb") as fin:
return pickle.load(fin) | Load a previously saved object
.. warning::
Loading pickled models is not secure against erroneous or maliciously
constructed data. Never unpickle data received from an untrusted or
unauthenticated source.
Parameters
----------
fname : {str, pathlib.Path}
Filename to unpickle
Notes
-----
This method can be used to load *both* models and results. | load_pickle | python | statsmodels/statsmodels | statsmodels/iolib/smpickle.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/smpickle.py | BSD-3-Clause |
def test_html_fmt1(self):
# Limited test of custom html_fmt
desired = """
<table class="simpletable">
<tr>
<td></td> <th>header1</th> <th>header2</th>
</tr>
<tr>
<th>stub1</th> <td>0.0</td> <td>1</td>
</tr>
<tr>
<th>stub2</th> <td>2</td> <td>3.333</td>
</tr>
</table>
"""
#the previous has significant trailing whitespace that got removed
#desired = '''\n<table class="simpletable">\n<tr>\n <td></td> <th>header1</th> <th>header2</th>\n</tr>\n<tr>\n <th>stub1</th> <td>0.0</td> <td>1</td> \n</tr>\n<tr>\n <th>stub2</th> <td>2</td> <td>3.333</td> \n</tr>\n</table>\n'''
actual = '\n%s\n' % tbl.as_html()
actual = '\n'.join(line.rstrip() for line in actual.split('\n'))
#print(actual)
#print(desired)
#print len(actual), len(desired)
assert_equal(actual, desired) | #the previous has significant trailing whitespace that got removed
#desired = '''\n<table class="simpletable">\n<tr>\n <td></td> <th>header1</th> <th>header2</th>\n</tr>\n<tr>\n <th>stub1</th> <td>0.0</td> <td>1</td> \n</tr>\n<tr>\n <th>stub2</th> <td>2</td> <td>3.333</td> \n</tr>\n</table>\n | test_html_fmt1 | python | statsmodels/statsmodels | statsmodels/iolib/tests/test_table_econpy.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/tests/test_table_econpy.py | BSD-3-Clause |
def test_ltx_fmt1(self):
# Limited test of custom ltx_fmt
desired = r"""
\begin{tabular}{lcc}
\toprule
& \textbf{header1} & \textbf{header2} \\
\midrule
\textbf{stub1} & 0.0 & 1 \\
\textbf{stub2} & 2 & 3.333 \\
\bottomrule
\end{tabular}
"""
actual = '\n%s\n' % tbl.as_latex_tabular(center=False)
#print(actual)
#print(desired)
assert_equal(actual, desired)
# Test "center=True" (the default):
desired_centered = r"""
\begin{center}
%s
\end{center}
""" % desired[1:-1]
actual_centered = '\n%s\n' % tbl.as_latex_tabular()
assert_equal(actual_centered, desired_centered) | actual = '\n%s\n' % tbl.as_latex_tabular(center=False)
#print(actual)
#print(desired)
assert_equal(actual, desired)
# Test "center=True" (the default):
desired_centered = r | test_simple_table_4.test_ltx_fmt1 | python | statsmodels/statsmodels | statsmodels/iolib/tests/test_table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/tests/test_table.py | BSD-3-Clause |
def test_simple_table_4(self):
# Basic test, test_simple_table_4 test uses custom txt_fmt
txt_fmt1 = dict(data_fmts = ['%3.2f', '%d'],
empty_cell = ' ',
colwidths = 1,
colsep=' * ',
row_pre = '* ',
row_post = ' *',
table_dec_above='*',
table_dec_below='*',
header_dec_below='*',
header_fmt = '%s',
stub_fmt = '%s',
title_align='r',
header_align = 'r',
data_aligns = "r",
stubs_align = "l",
fmt = 'txt'
)
ltx_fmt1 = default_latex_fmt.copy()
html_fmt1 = default_html_fmt.copy()
cell0data = 0.0000
cell1data = 1
row0data = [cell0data, cell1data]
row1data = [2, 3.333]
table1data = [ row0data, row1data ]
test1stubs = ('stub1', 'stub2')
test1header = ('header1', 'header2')
tbl = SimpleTable(table1data, test1header, test1stubs,txt_fmt=txt_fmt1,
ltx_fmt=ltx_fmt1, html_fmt=html_fmt1)
def test_txt_fmt1(self):
# Limited test of custom txt_fmt
desired = """
*****************************
* * header1 * header2 *
*****************************
* stub1 * 0.00 * 1 *
* stub2 * 2.00 * 3 *
*****************************
"""
actual = '\n%s\n' % tbl.as_text()
#print(actual)
#print(desired)
assert_equal(actual, desired)
def test_ltx_fmt1(self):
# Limited test of custom ltx_fmt
desired = r"""
\begin{tabular}{lcc}
\toprule
& \textbf{header1} & \textbf{header2} \\
\midrule
\textbf{stub1} & 0.0 & 1 \\
\textbf{stub2} & 2 & 3.333 \\
\bottomrule
\end{tabular}
"""
actual = '\n%s\n' % tbl.as_latex_tabular(center=False)
#print(actual)
#print(desired)
assert_equal(actual, desired)
# Test "center=True" (the default):
desired_centered = r"""
\begin{center}
%s
\end{center}
""" % desired[1:-1]
actual_centered = '\n%s\n' % tbl.as_latex_tabular()
assert_equal(actual_centered, desired_centered)
def test_html_fmt1(self):
# Limited test of custom html_fmt
desired = """
<table class="simpletable">
<tr>
<td></td> <th>header1</th> <th>header2</th>
</tr>
<tr>
<th>stub1</th> <td>0.0</td> <td>1</td>
</tr>
<tr>
<th>stub2</th> <td>2</td> <td>3.333</td>
</tr>
</table>
""" # noqa:W291
actual = '\n%s\n' % tbl.as_html()
assert_equal(actual, desired)
test_txt_fmt1(self)
test_ltx_fmt1(self)
test_html_fmt1(self) | actual = '\n%s\n' % tbl.as_text()
#print(actual)
#print(desired)
assert_equal(actual, desired)
def test_ltx_fmt1(self):
# Limited test of custom ltx_fmt
desired = r | test_simple_table_4 | python | statsmodels/statsmodels | statsmodels/iolib/tests/test_table.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/iolib/tests/test_table.py | BSD-3-Clause |
def _inverse_transform(pca, data):
"""
Inverse transform on PCA.
Use PCA's `project` method by temporary replacing its factors with
`data`.
Parameters
----------
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
Returns
-------
projection : ndarray
nobs by nvar array of the projection onto ncomp factors
"""
factors = pca.factors
pca.factors = data.reshape(-1, factors.shape[1])
projection = pca.project()
pca.factors = factors
return projection | Inverse transform on PCA.
Use PCA's `project` method by temporary replacing its factors with
`data`.
Parameters
----------
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
Returns
-------
projection : ndarray
nobs by nvar array of the projection onto ncomp factors | _inverse_transform | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def _curve_constrained(x, idx, sign, band, pca, ks_gaussian):
"""Find out if the curve is within the band.
The curve value at :attr:`idx` for a given PDF is only returned if
within bounds defined by the band. Otherwise, 1E6 is returned.
Parameters
----------
x : float
Curve in reduced space.
idx : int
Index value of the components to compute.
sign : int
Return positive or negative value.
band : list of float
PDF values `[min_pdf, max_pdf]` to be within.
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
ks_gaussian : KDEMultivariate instance
Returns
-------
value : float
Curve value at `idx`.
"""
x = x.reshape(1, -1)
pdf = ks_gaussian.pdf(x)
if band[0] < pdf < band[1]:
value = sign * _inverse_transform(pca, x)[0][idx]
else:
value = 1E6
return value | Find out if the curve is within the band.
The curve value at :attr:`idx` for a given PDF is only returned if
within bounds defined by the band. Otherwise, 1E6 is returned.
Parameters
----------
x : float
Curve in reduced space.
idx : int
Index value of the components to compute.
sign : int
Return positive or negative value.
band : list of float
PDF values `[min_pdf, max_pdf]` to be within.
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
ks_gaussian : KDEMultivariate instance
Returns
-------
value : float
Curve value at `idx`. | _curve_constrained | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def _min_max_band(args):
"""
Min and max values at `idx`.
Global optimization to find the extrema per component.
Parameters
----------
args: list
It is a list of an idx and other arguments as a tuple:
idx : int
Index value of the components to compute
The tuple contains:
band : list of float
PDF values `[min_pdf, max_pdf]` to be within.
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
bounds : sequence
``(min, max)`` pair for each components
ks_gaussian : KDEMultivariate instance
Returns
-------
band : tuple of float
``(max, min)`` curve values at `idx`
"""
idx, (band, pca, bounds, ks_gaussian, use_brute, seed) = args
if have_de_optim and not use_brute:
max_ = differential_evolution(_curve_constrained, bounds=bounds,
args=(idx, -1, band, pca, ks_gaussian),
maxiter=7, seed=seed).x
min_ = differential_evolution(_curve_constrained, bounds=bounds,
args=(idx, 1, band, pca, ks_gaussian),
maxiter=7, seed=seed).x
else:
max_ = brute(_curve_constrained, ranges=bounds, finish=fmin,
args=(idx, -1, band, pca, ks_gaussian))
min_ = brute(_curve_constrained, ranges=bounds, finish=fmin,
args=(idx, 1, band, pca, ks_gaussian))
band = (_inverse_transform(pca, max_)[0][idx],
_inverse_transform(pca, min_)[0][idx])
return band | Min and max values at `idx`.
Global optimization to find the extrema per component.
Parameters
----------
args: list
It is a list of an idx and other arguments as a tuple:
idx : int
Index value of the components to compute
The tuple contains:
band : list of float
PDF values `[min_pdf, max_pdf]` to be within.
pca : statsmodels Principal Component Analysis instance
The PCA object to use.
bounds : sequence
``(min, max)`` pair for each components
ks_gaussian : KDEMultivariate instance
Returns
-------
band : tuple of float
``(max, min)`` curve values at `idx` | _min_max_band | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def _band_quantiles(band, use_brute=use_brute, seed=seed):
"""
Find extreme curves for a quantile band.
From the `band` of quantiles, the associated PDF extrema values
are computed. If `min_alpha` is not provided (single quantile value),
`max_pdf` is set to `1E6` in order not to constrain the problem on high
values.
An optimization is performed per component in order to find the min and
max curves. This is done by comparing the PDF value of a given curve
with the band PDF.
Parameters
----------
band : array_like
alpha values ``(max_alpha, min_alpha)`` ex: ``[0.9, 0.5]``
use_brute : bool
Use the brute force optimizer instead of the default differential
evolution to find the curves. Default is False.
seed : {None, int, np.random.RandomState}
Seed value to pass to scipy.optimize.differential_evolution. Can
be an integer or RandomState instance. If None, then the default
RandomState provided by np.random is used.
Returns
-------
band_quantiles : list of 1-D array
``(max_quantile, min_quantile)`` (2, n_features)
"""
min_pdf = pvalues[alpha.index(band[0])]
try:
max_pdf = pvalues[alpha.index(band[1])]
except IndexError:
max_pdf = 1E6
band = [min_pdf, max_pdf]
pool = Pool()
data = zip(range(dim), itertools.repeat((band, pca,
bounds, ks_gaussian,
seed, use_brute)))
band_quantiles = pool.map(_min_max_band, data)
pool.terminate()
pool.close()
band_quantiles = list(zip(*band_quantiles))
return band_quantiles | Find extreme curves for a quantile band.
From the `band` of quantiles, the associated PDF extrema values
are computed. If `min_alpha` is not provided (single quantile value),
`max_pdf` is set to `1E6` in order not to constrain the problem on high
values.
An optimization is performed per component in order to find the min and
max curves. This is done by comparing the PDF value of a given curve
with the band PDF.
Parameters
----------
band : array_like
alpha values ``(max_alpha, min_alpha)`` ex: ``[0.9, 0.5]``
use_brute : bool
Use the brute force optimizer instead of the default differential
evolution to find the curves. Default is False.
seed : {None, int, np.random.RandomState}
Seed value to pass to scipy.optimize.differential_evolution. Can
be an integer or RandomState instance. If None, then the default
RandomState provided by np.random is used.
Returns
-------
band_quantiles : list of 1-D array
``(max_quantile, min_quantile)`` (2, n_features) | hdrboxplot._band_quantiles | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def hdrboxplot(data, ncomp=2, alpha=None, threshold=0.95, bw=None,
xdata=None, labels=None, ax=None, use_brute=False, seed=None):
"""
High Density Region boxplot
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
ncomp : int, optional
Number of components to use. If None, returns the as many as the
smaller of the number of rows or columns in data.
alpha : list of floats between 0 and 1, optional
Extra quantile values to compute. Default is None
threshold : float between 0 and 1, optional
Percentile threshold value for outliers detection. High value means
a lower sensitivity to outliers. Default is `0.95`.
bw : array_like or str, optional
If an array, it is a fixed user-specified bandwidth. If `None`, set to
`normal_reference`. If a string, should be one of:
- normal_reference: normal reference rule of thumb (default)
- cv_ml: cross validation maximum likelihood
- cv_ls: cross validation least squares
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
labels : sequence of scalar or str, optional
The labels or identifiers of the curves in `data`. If not given,
outliers are labeled in the plot with array indices.
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
use_brute : bool
Use the brute force optimizer instead of the default differential
evolution to find the curves. Default is False.
seed : {None, int, np.random.RandomState}
Seed value to pass to scipy.optimize.differential_evolution. Can be an
integer or RandomState instance. If None, then the default RandomState
provided by np.random is used.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
hdr_res : HdrResults instance
An `HdrResults` instance with the following attributes:
- 'median', array. Median curve.
- 'hdr_50', array. 50% quantile band. [sup, inf] curves
- 'hdr_90', list of array. 90% quantile band. [sup, inf]
curves.
- 'extra_quantiles', list of array. Extra quantile band.
[sup, inf] curves.
- 'outliers', ndarray. Outlier curves.
See Also
--------
banddepth, rainbowplot, fboxplot
Notes
-----
The median curve is the curve with the highest probability on the reduced
space of a Principal Component Analysis (PCA).
Outliers are defined as curves that fall outside the band corresponding
to the quantile given by `threshold`.
The non-outlying region is defined as the band made up of all the
non-outlying curves.
Behind the scene, the dataset is represented as a matrix. Each line
corresponding to a 1D curve. This matrix is then decomposed using Principal
Components Analysis (PCA). This allows to represent the data using a finite
number of modes, or components. This compression process allows to turn the
functional representation into a scalar representation of the matrix. In
other words, you can visualize each curve from its components. Each curve
is thus a point in this reduced space. With 2 components, this is called a
bivariate plot (2D plot).
In this plot, if some points are adjacent (similar components), it means
that back in the original space, the curves are similar. Then, finding the
median curve means finding the higher density region (HDR) in the reduced
space. Moreover, the more you get away from this HDR, the more the curve is
unlikely to be similar to the other curves.
Using a kernel smoothing technique, the probability density function (PDF)
of the multivariate space can be recovered. From this PDF, it is possible
to compute the density probability linked to the cluster of points and plot
its contours.
Finally, using these contours, the different quantiles can be extracted
along with the median curve and the outliers.
Steps to produce the HDR boxplot include:
1. Compute a multivariate kernel density estimation
2. Compute contour lines for quantiles 90%, 50% and `alpha` %
3. Plot the bivariate plot
4. Compute median curve along with quantiles and outliers curves.
References
----------
[1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-45, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a functional boxplot. We see that the years 1982-83 and 1997-98 are
outliers; these are the years where El Nino (a climate pattern
characterized by warming up of the sea surface and higher air pressures)
occurred with unusual intensity.
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.hdrboxplot(data.raw_data[:, 1:],
... labels=data.raw_data[:, 0].astype(int),
... ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_hdrboxplot.py
"""
fig, ax = utils.create_mpl_ax(ax)
if labels is None:
# For use with pandas, get the labels
if hasattr(data, 'index'):
labels = data.index
else:
labels = np.arange(len(data))
data = np.asarray(data)
if xdata is None:
xdata = np.arange(data.shape[1])
n_samples, dim = data.shape
# PCA and bivariate plot
pca = PCA(data, ncomp=ncomp)
data_r = pca.factors
# Create gaussian kernel
ks_gaussian = KDEMultivariate(data_r, bw=bw,
var_type='c' * data_r.shape[1])
# Boundaries of the n-variate space
bounds = np.array([data_r.min(axis=0), data_r.max(axis=0)]).T
# Compute contour line of pvalue linked to a given probability level
if alpha is None:
alpha = [threshold, 0.9, 0.5]
else:
alpha.extend([threshold, 0.9, 0.5])
alpha = list(set(alpha))
alpha.sort(reverse=True)
n_quantiles = len(alpha)
pdf_r = ks_gaussian.pdf(data_r).flatten()
if NP_LT_123:
pvalues = [np.percentile(pdf_r, (1 - alpha[i]) * 100,
interpolation='linear')
for i in range(n_quantiles)]
else:
pvalues = [np.percentile(pdf_r, (1 - alpha[i]) * 100,
method='midpoint')
for i in range(n_quantiles)]
# Find mean, outliers curves
if have_de_optim and not use_brute:
median = differential_evolution(lambda x: - ks_gaussian.pdf(x),
bounds=bounds, maxiter=5, seed=seed).x
else:
median = brute(lambda x: - ks_gaussian.pdf(x),
ranges=bounds, finish=fmin)
outliers_idx = np.where(pdf_r < pvalues[alpha.index(threshold)])[0]
labels_outlier = [labels[i] for i in outliers_idx]
outliers = data[outliers_idx]
# Find HDR given some quantiles
def _band_quantiles(band, use_brute=use_brute, seed=seed):
"""
Find extreme curves for a quantile band.
From the `band` of quantiles, the associated PDF extrema values
are computed. If `min_alpha` is not provided (single quantile value),
`max_pdf` is set to `1E6` in order not to constrain the problem on high
values.
An optimization is performed per component in order to find the min and
max curves. This is done by comparing the PDF value of a given curve
with the band PDF.
Parameters
----------
band : array_like
alpha values ``(max_alpha, min_alpha)`` ex: ``[0.9, 0.5]``
use_brute : bool
Use the brute force optimizer instead of the default differential
evolution to find the curves. Default is False.
seed : {None, int, np.random.RandomState}
Seed value to pass to scipy.optimize.differential_evolution. Can
be an integer or RandomState instance. If None, then the default
RandomState provided by np.random is used.
Returns
-------
band_quantiles : list of 1-D array
``(max_quantile, min_quantile)`` (2, n_features)
"""
min_pdf = pvalues[alpha.index(band[0])]
try:
max_pdf = pvalues[alpha.index(band[1])]
except IndexError:
max_pdf = 1E6
band = [min_pdf, max_pdf]
pool = Pool()
data = zip(range(dim), itertools.repeat((band, pca,
bounds, ks_gaussian,
seed, use_brute)))
band_quantiles = pool.map(_min_max_band, data)
pool.terminate()
pool.close()
band_quantiles = list(zip(*band_quantiles))
return band_quantiles
extra_alpha = [i for i in alpha
if 0.5 != i and 0.9 != i and threshold != i]
if len(extra_alpha) > 0:
extra_quantiles = []
for x in extra_alpha:
for y in _band_quantiles([x], use_brute=use_brute, seed=seed):
extra_quantiles.append(y)
else:
extra_quantiles = []
# Inverse transform from n-variate plot to dataset dataset's shape
median = _inverse_transform(pca, median)[0]
hdr_90 = _band_quantiles([0.9, 0.5], use_brute=use_brute, seed=seed)
hdr_50 = _band_quantiles([0.5], use_brute=use_brute, seed=seed)
hdr_res = HdrResults({
"median": median,
"hdr_50": hdr_50,
"hdr_90": hdr_90,
"extra_quantiles": extra_quantiles,
"outliers": outliers,
"outliers_idx": outliers_idx
})
# Plots
ax.plot(np.array([xdata] * n_samples).T, data.T,
c='c', alpha=.1, label=None)
ax.plot(xdata, median, c='k', label='Median')
fill_betweens = []
fill_betweens.append(ax.fill_between(xdata, *hdr_50, color='gray',
alpha=.4, label='50% HDR'))
fill_betweens.append(ax.fill_between(xdata, *hdr_90, color='gray',
alpha=.3, label='90% HDR'))
if len(extra_quantiles) != 0:
ax.plot(np.array([xdata] * len(extra_quantiles)).T,
np.array(extra_quantiles).T,
c='y', ls='-.', alpha=.4, label='Extra quantiles')
if len(outliers) != 0:
for ii, outlier in enumerate(outliers):
if labels_outlier is None:
label = 'Outliers'
else:
label = str(labels_outlier[ii])
ax.plot(xdata, outlier, ls='--', alpha=0.7, label=label)
handles, labels = ax.get_legend_handles_labels()
# Proxy artist for fill_between legend entry
# See https://matplotlib.org/1.3.1/users/legend_guide.html
plt = _import_mpl()
for label, fill_between in zip(['50% HDR', '90% HDR'], fill_betweens):
p = plt.Rectangle((0, 0), 1, 1,
fc=fill_between.get_facecolor()[0])
handles.append(p)
labels.append(label)
by_label = dict(zip(labels, handles))
if len(outliers) != 0:
by_label.pop('Median')
by_label.pop('50% HDR')
by_label.pop('90% HDR')
ax.legend(by_label.values(), by_label.keys(), loc='best')
return fig, hdr_res | High Density Region boxplot
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
ncomp : int, optional
Number of components to use. If None, returns the as many as the
smaller of the number of rows or columns in data.
alpha : list of floats between 0 and 1, optional
Extra quantile values to compute. Default is None
threshold : float between 0 and 1, optional
Percentile threshold value for outliers detection. High value means
a lower sensitivity to outliers. Default is `0.95`.
bw : array_like or str, optional
If an array, it is a fixed user-specified bandwidth. If `None`, set to
`normal_reference`. If a string, should be one of:
- normal_reference: normal reference rule of thumb (default)
- cv_ml: cross validation maximum likelihood
- cv_ls: cross validation least squares
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
labels : sequence of scalar or str, optional
The labels or identifiers of the curves in `data`. If not given,
outliers are labeled in the plot with array indices.
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
use_brute : bool
Use the brute force optimizer instead of the default differential
evolution to find the curves. Default is False.
seed : {None, int, np.random.RandomState}
Seed value to pass to scipy.optimize.differential_evolution. Can be an
integer or RandomState instance. If None, then the default RandomState
provided by np.random is used.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
hdr_res : HdrResults instance
An `HdrResults` instance with the following attributes:
- 'median', array. Median curve.
- 'hdr_50', array. 50% quantile band. [sup, inf] curves
- 'hdr_90', list of array. 90% quantile band. [sup, inf]
curves.
- 'extra_quantiles', list of array. Extra quantile band.
[sup, inf] curves.
- 'outliers', ndarray. Outlier curves.
See Also
--------
banddepth, rainbowplot, fboxplot
Notes
-----
The median curve is the curve with the highest probability on the reduced
space of a Principal Component Analysis (PCA).
Outliers are defined as curves that fall outside the band corresponding
to the quantile given by `threshold`.
The non-outlying region is defined as the band made up of all the
non-outlying curves.
Behind the scene, the dataset is represented as a matrix. Each line
corresponding to a 1D curve. This matrix is then decomposed using Principal
Components Analysis (PCA). This allows to represent the data using a finite
number of modes, or components. This compression process allows to turn the
functional representation into a scalar representation of the matrix. In
other words, you can visualize each curve from its components. Each curve
is thus a point in this reduced space. With 2 components, this is called a
bivariate plot (2D plot).
In this plot, if some points are adjacent (similar components), it means
that back in the original space, the curves are similar. Then, finding the
median curve means finding the higher density region (HDR) in the reduced
space. Moreover, the more you get away from this HDR, the more the curve is
unlikely to be similar to the other curves.
Using a kernel smoothing technique, the probability density function (PDF)
of the multivariate space can be recovered. From this PDF, it is possible
to compute the density probability linked to the cluster of points and plot
its contours.
Finally, using these contours, the different quantiles can be extracted
along with the median curve and the outliers.
Steps to produce the HDR boxplot include:
1. Compute a multivariate kernel density estimation
2. Compute contour lines for quantiles 90%, 50% and `alpha` %
3. Plot the bivariate plot
4. Compute median curve along with quantiles and outliers curves.
References
----------
[1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-45, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a functional boxplot. We see that the years 1982-83 and 1997-98 are
outliers; these are the years where El Nino (a climate pattern
characterized by warming up of the sea surface and higher air pressures)
occurred with unusual intensity.
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.hdrboxplot(data.raw_data[:, 1:],
... labels=data.raw_data[:, 0].astype(int),
... ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_hdrboxplot.py | hdrboxplot | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def fboxplot(data, xdata=None, labels=None, depth=None, method='MBD',
wfactor=1.5, ax=None, plot_opts=None):
"""
Plot functional boxplot.
A functional boxplot is the analog of a boxplot for functional data.
Functional data is any type of data that varies over a continuum, i.e.
curves, probability distributions, seasonal data, etc.
The data is first ordered, the order statistic used here is `banddepth`.
Plotted are then the median curve, the envelope of the 50% central region,
the maximum non-outlying envelope and the outlier curves.
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
labels : sequence of scalar or str, optional
The labels or identifiers of the curves in `data`. If given, outliers
are labeled in the plot.
depth : ndarray, optional
A 1-D array of band depths for `data`, or equivalent order statistic.
If not given, it will be calculated through `banddepth`.
method : {'MBD', 'BD2'}, optional
The method to use to calculate the band depth. Default is 'MBD'.
wfactor : float, optional
Factor by which the central 50% region is multiplied to find the outer
region (analog of "whiskers" of a classical boxplot).
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
plot_opts : dict, optional
A dictionary with plotting options. Any of the following can be
provided, if not present in `plot_opts` the defaults will be used::
- 'cmap_outliers', a Matplotlib LinearSegmentedColormap instance.
- 'c_inner', valid MPL color. Color of the central 50% region
- 'c_outer', valid MPL color. Color of the non-outlying region
- 'c_median', valid MPL color. Color of the median.
- 'lw_outliers', scalar. Linewidth for drawing outlier curves.
- 'lw_median', scalar. Linewidth for drawing the median curve.
- 'draw_nonout', bool. If True, also draw non-outlying curves.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
depth : ndarray
A 1-D array containing the calculated band depths of the curves.
ix_depth : ndarray
A 1-D array of indices needed to order curves (or `depth`) from most to
least central curve.
ix_outliers : ndarray
A 1-D array of indices of outlying curves in `data`.
See Also
--------
banddepth, rainbowplot
Notes
-----
The median curve is the curve with the highest band depth.
Outliers are defined as curves that fall outside the band created by
multiplying the central region by `wfactor`. Note that the range over
which they fall outside this band does not matter, a single data point
outside the band is enough. If the data is noisy, smoothing may therefore
be required.
The non-outlying region is defined as the band made up of all the
non-outlying curves.
References
----------
[1] Y. Sun and M.G. Genton, "Functional Boxplots", Journal of Computational
and Graphical Statistics, vol. 20, pp. 1-19, 2011.
[2] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-45, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a functional boxplot. We see that the years 1982-83 and 1997-98 are
outliers; these are the years where El Nino (a climate pattern
characterized by warming up of the sea surface and higher air pressures)
occurred with unusual intensity.
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.fboxplot(data.raw_data[:, 1:], wfactor=2.58,
... labels=data.raw_data[:, 0].astype(int),
... ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_fboxplot.py
"""
fig, ax = utils.create_mpl_ax(ax)
plot_opts = {} if plot_opts is None else plot_opts
if plot_opts.get('cmap_outliers') is None:
from matplotlib.cm import rainbow_r
plot_opts['cmap_outliers'] = rainbow_r
data = np.asarray(data)
if xdata is None:
xdata = np.arange(data.shape[1])
# Calculate band depth if required.
if depth is None:
if method not in ['MBD', 'BD2']:
raise ValueError("Unknown value for parameter `method`.")
depth = banddepth(data, method=method)
else:
if depth.size != data.shape[0]:
raise ValueError("Provided `depth` array is not of correct size.")
# Inner area is 25%-75% region of band-depth ordered curves.
ix_depth = np.argsort(depth)[::-1]
median_curve = data[ix_depth[0], :]
ix_IQR = data.shape[0] // 2
lower = data[ix_depth[0:ix_IQR], :].min(axis=0)
upper = data[ix_depth[0:ix_IQR], :].max(axis=0)
# Determine region for outlier detection
inner_median = np.median(data[ix_depth[0:ix_IQR], :], axis=0)
lower_fence = inner_median - (inner_median - lower) * wfactor
upper_fence = inner_median + (upper - inner_median) * wfactor
# Find outliers.
ix_outliers = []
ix_nonout = []
for ii in range(data.shape[0]):
if (np.any(data[ii, :] > upper_fence) or
np.any(data[ii, :] < lower_fence)):
ix_outliers.append(ii)
else:
ix_nonout.append(ii)
ix_outliers = np.asarray(ix_outliers)
# Plot envelope of all non-outlying data
lower_nonout = data[ix_nonout, :].min(axis=0)
upper_nonout = data[ix_nonout, :].max(axis=0)
ax.fill_between(xdata, lower_nonout, upper_nonout,
color=plot_opts.get('c_outer', (0.75, 0.75, 0.75)))
# Plot central 50% region
ax.fill_between(xdata, lower, upper,
color=plot_opts.get('c_inner', (0.5, 0.5, 0.5)))
# Plot median curve
ax.plot(xdata, median_curve, color=plot_opts.get('c_median', 'k'),
lw=plot_opts.get('lw_median', 2))
# Plot outliers
cmap = plot_opts.get('cmap_outliers')
for ii, ix in enumerate(ix_outliers):
label = str(labels[ix]) if labels is not None else None
ax.plot(xdata, data[ix, :],
color=cmap(float(ii) / (len(ix_outliers)-1)), label=label,
lw=plot_opts.get('lw_outliers', 1))
if plot_opts.get('draw_nonout', False):
for ix in ix_nonout:
ax.plot(xdata, data[ix, :], 'k-', lw=0.5)
if labels is not None:
ax.legend()
return fig, depth, ix_depth, ix_outliers | Plot functional boxplot.
A functional boxplot is the analog of a boxplot for functional data.
Functional data is any type of data that varies over a continuum, i.e.
curves, probability distributions, seasonal data, etc.
The data is first ordered, the order statistic used here is `banddepth`.
Plotted are then the median curve, the envelope of the 50% central region,
the maximum non-outlying envelope and the outlier curves.
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
labels : sequence of scalar or str, optional
The labels or identifiers of the curves in `data`. If given, outliers
are labeled in the plot.
depth : ndarray, optional
A 1-D array of band depths for `data`, or equivalent order statistic.
If not given, it will be calculated through `banddepth`.
method : {'MBD', 'BD2'}, optional
The method to use to calculate the band depth. Default is 'MBD'.
wfactor : float, optional
Factor by which the central 50% region is multiplied to find the outer
region (analog of "whiskers" of a classical boxplot).
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
plot_opts : dict, optional
A dictionary with plotting options. Any of the following can be
provided, if not present in `plot_opts` the defaults will be used::
- 'cmap_outliers', a Matplotlib LinearSegmentedColormap instance.
- 'c_inner', valid MPL color. Color of the central 50% region
- 'c_outer', valid MPL color. Color of the non-outlying region
- 'c_median', valid MPL color. Color of the median.
- 'lw_outliers', scalar. Linewidth for drawing outlier curves.
- 'lw_median', scalar. Linewidth for drawing the median curve.
- 'draw_nonout', bool. If True, also draw non-outlying curves.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
depth : ndarray
A 1-D array containing the calculated band depths of the curves.
ix_depth : ndarray
A 1-D array of indices needed to order curves (or `depth`) from most to
least central curve.
ix_outliers : ndarray
A 1-D array of indices of outlying curves in `data`.
See Also
--------
banddepth, rainbowplot
Notes
-----
The median curve is the curve with the highest band depth.
Outliers are defined as curves that fall outside the band created by
multiplying the central region by `wfactor`. Note that the range over
which they fall outside this band does not matter, a single data point
outside the band is enough. If the data is noisy, smoothing may therefore
be required.
The non-outlying region is defined as the band made up of all the
non-outlying curves.
References
----------
[1] Y. Sun and M.G. Genton, "Functional Boxplots", Journal of Computational
and Graphical Statistics, vol. 20, pp. 1-19, 2011.
[2] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-45, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a functional boxplot. We see that the years 1982-83 and 1997-98 are
outliers; these are the years where El Nino (a climate pattern
characterized by warming up of the sea surface and higher air pressures)
occurred with unusual intensity.
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.fboxplot(data.raw_data[:, 1:], wfactor=2.58,
... labels=data.raw_data[:, 0].astype(int),
... ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_fboxplot.py | fboxplot | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def rainbowplot(data, xdata=None, depth=None, method='MBD', ax=None,
cmap=None):
"""
Create a rainbow plot for a set of curves.
A rainbow plot contains line plots of all curves in the dataset, colored in
order of functional depth. The median curve is shown in black.
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
depth : ndarray, optional
A 1-D array of band depths for `data`, or equivalent order statistic.
If not given, it will be calculated through `banddepth`.
method : {'MBD', 'BD2'}, optional
The method to use to calculate the band depth. Default is 'MBD'.
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
cmap : Matplotlib LinearSegmentedColormap instance, optional
The colormap used to color curves with. Default is a rainbow colormap,
with red used for the most central and purple for the least central
curves.
Returns
-------
Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
See Also
--------
banddepth, fboxplot
References
----------
[1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-25, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a rainbow plot:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.rainbowplot(data.raw_data[:, 1:], ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_rainbowplot.py
"""
fig, ax = utils.create_mpl_ax(ax)
if cmap is None:
from matplotlib.cm import rainbow_r
cmap = rainbow_r
data = np.asarray(data)
if xdata is None:
xdata = np.arange(data.shape[1])
# Calculate band depth if required.
if depth is None:
if method not in ['MBD', 'BD2']:
raise ValueError("Unknown value for parameter `method`.")
depth = banddepth(data, method=method)
else:
if depth.size != data.shape[0]:
raise ValueError("Provided `depth` array is not of correct size.")
ix_depth = np.argsort(depth)[::-1]
# Plot all curves, colored by depth
num_curves = data.shape[0]
for ii in range(num_curves):
ax.plot(xdata, data[ix_depth[ii], :], c=cmap(ii / (num_curves - 1.)))
# Plot the median curve
median_curve = data[ix_depth[0], :]
ax.plot(xdata, median_curve, 'k-', lw=2)
return fig | Create a rainbow plot for a set of curves.
A rainbow plot contains line plots of all curves in the dataset, colored in
order of functional depth. The median curve is shown in black.
Parameters
----------
data : sequence of ndarrays or 2-D ndarray
The vectors of functions to create a functional boxplot from. If a
sequence of 1-D arrays, these should all be the same size.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
xdata : ndarray, optional
The independent variable for the data. If not given, it is assumed to
be an array of integers 0..N-1 with N the length of the vectors in
`data`.
depth : ndarray, optional
A 1-D array of band depths for `data`, or equivalent order statistic.
If not given, it will be calculated through `banddepth`.
method : {'MBD', 'BD2'}, optional
The method to use to calculate the band depth. Default is 'MBD'.
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
cmap : Matplotlib LinearSegmentedColormap instance, optional
The colormap used to color curves with. Default is a rainbow colormap,
with red used for the most central and purple for the least central
curves.
Returns
-------
Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
See Also
--------
banddepth, fboxplot
References
----------
[1] R.J. Hyndman and H.L. Shang, "Rainbow Plots, Bagplots, and Boxplots for
Functional Data", vol. 19, pp. 29-25, 2010.
Examples
--------
Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea
surface temperature data.
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
Create a rainbow plot:
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.rainbowplot(data.raw_data[:, 1:], ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()
.. plot:: plots/graphics_functional_rainbowplot.py | rainbowplot | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def banddepth(data, method='MBD'):
"""
Calculate the band depth for a set of functional curves.
Band depth is an order statistic for functional data (see `fboxplot`), with
a higher band depth indicating larger "centrality". In analog to scalar
data, the functional curve with highest band depth is called the median
curve, and the band made up from the first N/2 of N curves is the 50%
central region.
Parameters
----------
data : ndarray
The vectors of functions to create a functional boxplot from.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
method : {'MBD', 'BD2'}, optional
Whether to use the original band depth (with J=2) of [1]_ or the
modified band depth. See Notes for details.
Returns
-------
ndarray
Depth values for functional curves.
Notes
-----
Functional band depth as an order statistic for functional data was
proposed in [1]_ and applied to functional boxplots and bagplots in [2]_.
The method 'BD2' checks for each curve whether it lies completely inside
bands constructed from two curves. All permutations of two curves in the
set of curves are used, and the band depth is normalized to one. Due to
the complete curve having to fall within the band, this method yields a lot
of ties.
The method 'MBD' is similar to 'BD2', but checks the fraction of the curve
falling within the bands. It therefore generates very few ties.
The algorithm uses the efficient implementation proposed in [3]_.
References
----------
.. [1] S. Lopez-Pintado and J. Romo, "On the Concept of Depth for
Functional Data", Journal of the American Statistical Association,
vol. 104, pp. 718-734, 2009.
.. [2] Y. Sun and M.G. Genton, "Functional Boxplots", Journal of
Computational and Graphical Statistics, vol. 20, pp. 1-19, 2011.
.. [3] Y. Sun, M. G. Gentonb and D. W. Nychkac, "Exact fast computation
of band depth for large functional datasets: How quickly can one
million curves be ranked?", Journal for the Rapid Dissemination
of Statistics Research, vol. 1, pp. 68-74, 2012.
"""
n, p = data.shape
rv = np.argsort(data, axis=0)
rmat = np.argsort(rv, axis=0) + 1
# band depth
def _fbd2():
down = np.min(rmat, axis=1) - 1
up = n - np.max(rmat, axis=1)
return (up * down + n - 1) / comb(n, 2)
# modified band depth
def _fmbd():
down = rmat - 1
up = n - rmat
return ((np.sum(up * down, axis=1) / p) + n - 1) / comb(n, 2)
if method == 'BD2':
depth = _fbd2()
elif method == 'MBD':
depth = _fmbd()
else:
raise ValueError("Unknown input value for parameter `method`.")
return depth | Calculate the band depth for a set of functional curves.
Band depth is an order statistic for functional data (see `fboxplot`), with
a higher band depth indicating larger "centrality". In analog to scalar
data, the functional curve with highest band depth is called the median
curve, and the band made up from the first N/2 of N curves is the 50%
central region.
Parameters
----------
data : ndarray
The vectors of functions to create a functional boxplot from.
The first axis is the function index, the second axis the one along
which the function is defined. So ``data[0, :]`` is the first
functional curve.
method : {'MBD', 'BD2'}, optional
Whether to use the original band depth (with J=2) of [1]_ or the
modified band depth. See Notes for details.
Returns
-------
ndarray
Depth values for functional curves.
Notes
-----
Functional band depth as an order statistic for functional data was
proposed in [1]_ and applied to functional boxplots and bagplots in [2]_.
The method 'BD2' checks for each curve whether it lies completely inside
bands constructed from two curves. All permutations of two curves in the
set of curves are used, and the band depth is normalized to one. Due to
the complete curve having to fall within the band, this method yields a lot
of ties.
The method 'MBD' is similar to 'BD2', but checks the fraction of the curve
falling within the bands. It therefore generates very few ties.
The algorithm uses the efficient implementation proposed in [3]_.
References
----------
.. [1] S. Lopez-Pintado and J. Romo, "On the Concept of Depth for
Functional Data", Journal of the American Statistical Association,
vol. 104, pp. 718-734, 2009.
.. [2] Y. Sun and M.G. Genton, "Functional Boxplots", Journal of
Computational and Graphical Statistics, vol. 20, pp. 1-19, 2011.
.. [3] Y. Sun, M. G. Gentonb and D. W. Nychkac, "Exact fast computation
of band depth for large functional datasets: How quickly can one
million curves be ranked?", Journal for the Rapid Dissemination
of Statistics Research, vol. 1, pp. 68-74, 2012. | banddepth | python | statsmodels/statsmodels | statsmodels/graphics/functional.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/functional.py | BSD-3-Clause |
def rainbow(n):
"""
Returns a list of colors sampled at equal intervals over the spectrum.
Parameters
----------
n : int
The number of colors to return
Returns
-------
R : (n,3) array
An of rows of RGB color values
Notes
-----
Converts from HSV coordinates (0, 1, 1) to (1, 1, 1) to RGB. Based on
the Sage function of the same name.
"""
from matplotlib import colors
R = np.ones((1,n,3))
R[0,:,0] = np.linspace(0, 1, n, endpoint=False)
#Note: could iterate and use colorsys.hsv_to_rgb
return colors.hsv_to_rgb(R).squeeze() | Returns a list of colors sampled at equal intervals over the spectrum.
Parameters
----------
n : int
The number of colors to return
Returns
-------
R : (n,3) array
An of rows of RGB color values
Notes
-----
Converts from HSV coordinates (0, 1, 1) to (1, 1, 1) to RGB. Based on
the Sage function of the same name. | rainbow | python | statsmodels/statsmodels | statsmodels/graphics/plottools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/plottools.py | BSD-3-Clause |
def _import_mpl():
"""This function is not needed outside this utils module."""
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError("Matplotlib is not found.")
return plt | This function is not needed outside this utils module. | _import_mpl | python | statsmodels/statsmodels | statsmodels/graphics/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/utils.py | BSD-3-Clause |
def create_mpl_ax(ax=None):
"""Helper function for when a single plot axis is needed.
Parameters
----------
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
ax : AxesSubplot
The created axis if `ax` is None, otherwise the axis that was passed
in.
Notes
-----
This function imports `matplotlib.pyplot`, which should only be done to
create (a) figure(s) with ``plt.figure``. All other functionality exposed
by the pyplot module can and should be imported directly from its
Matplotlib module.
See Also
--------
create_mpl_fig
Examples
--------
A plotting function has a keyword ``ax=None``. Then calls:
>>> from statsmodels.graphics import utils
>>> fig, ax = utils.create_mpl_ax(ax)
"""
if ax is None:
plt = _import_mpl()
fig = plt.figure()
ax = fig.add_subplot(111)
else:
fig = ax.figure
return fig, ax | Helper function for when a single plot axis is needed.
Parameters
----------
ax : AxesSubplot, optional
If given, this subplot is used to plot in instead of a new figure being
created.
Returns
-------
fig : Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
ax : AxesSubplot
The created axis if `ax` is None, otherwise the axis that was passed
in.
Notes
-----
This function imports `matplotlib.pyplot`, which should only be done to
create (a) figure(s) with ``plt.figure``. All other functionality exposed
by the pyplot module can and should be imported directly from its
Matplotlib module.
See Also
--------
create_mpl_fig
Examples
--------
A plotting function has a keyword ``ax=None``. Then calls:
>>> from statsmodels.graphics import utils
>>> fig, ax = utils.create_mpl_ax(ax) | create_mpl_ax | python | statsmodels/statsmodels | statsmodels/graphics/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/utils.py | BSD-3-Clause |
def create_mpl_fig(fig=None, figsize=None):
"""Helper function for when multiple plot axes are needed.
Those axes should be created in the functions they are used in, with
``fig.add_subplot()``.
Parameters
----------
fig : Figure, optional
If given, this figure is simply returned. Otherwise a new figure is
created.
Returns
-------
Figure
If `fig` is None, the created figure. Otherwise the input `fig` is
returned.
See Also
--------
create_mpl_ax
"""
if fig is None:
plt = _import_mpl()
fig = plt.figure(figsize=figsize)
return fig | Helper function for when multiple plot axes are needed.
Those axes should be created in the functions they are used in, with
``fig.add_subplot()``.
Parameters
----------
fig : Figure, optional
If given, this figure is simply returned. Otherwise a new figure is
created.
Returns
-------
Figure
If `fig` is None, the created figure. Otherwise the input `fig` is
returned.
See Also
--------
create_mpl_ax | create_mpl_fig | python | statsmodels/statsmodels | statsmodels/graphics/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/graphics/utils.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.