code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def test_poisson_zeroinflation(self, method="prob", exog_infl=None): """Test for excess zeros, zero inflation or deflation. Parameters ---------- method : str Three methods ara available for the test: - "prob" : moment test for the probability of zeros - "broek" : score test against zero inflation with or without explanatory variables for inflation exog_infl : array_like or None Optional explanatory variables under the alternative of zero inflation, or deflation. Only used if method is "broek". Returns ------- results Notes ----- If method = "prob", then the moment test of He et al 1_ is used based on the explicit formula in Tang and Tang 2_. If method = "broek" and exog_infl is None, then the test by Van den Broek 3_ is used. This is a score test against and alternative of constant zero inflation or deflation. If method = "broek" and exog_infl is provided, then the extension of the broek test to varying zero inflation or deflation by Jansakul and Hinde is used. Warning: The Broek and the Jansakul and Hinde tests are not numerically stable when the probability of zeros in Poisson is small, i.e. if the conditional means of the estimated Poisson distribution are large. In these cases, p-values will not be accurate. """ if method == "prob": if exog_infl is not None: warnings.warn('exog_infl is only used if method = "broek"') res = test_poisson_zeros(self.results) elif method == "broek": if exog_infl is None: res = test_poisson_zeroinflation_broek(self.results) else: exog_infl = np.asarray(exog_infl) if exog_infl.ndim == 1: exog_infl = exog_infl[:, None] res = test_poisson_zeroinflation_jh(self.results, exog_infl=exog_infl) return res
Test for excess zeros, zero inflation or deflation. Parameters ---------- method : str Three methods ara available for the test: - "prob" : moment test for the probability of zeros - "broek" : score test against zero inflation with or without explanatory variables for inflation exog_infl : array_like or None Optional explanatory variables under the alternative of zero inflation, or deflation. Only used if method is "broek". Returns ------- results Notes ----- If method = "prob", then the moment test of He et al 1_ is used based on the explicit formula in Tang and Tang 2_. If method = "broek" and exog_infl is None, then the test by Van den Broek 3_ is used. This is a score test against and alternative of constant zero inflation or deflation. If method = "broek" and exog_infl is provided, then the extension of the broek test to varying zero inflation or deflation by Jansakul and Hinde is used. Warning: The Broek and the Jansakul and Hinde tests are not numerically stable when the probability of zeros in Poisson is small, i.e. if the conditional means of the estimated Poisson distribution are large. In these cases, p-values will not be accurate.
test_poisson_zeroinflation
python
statsmodels/statsmodels
statsmodels/discrete/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/diagnostic.py
BSD-3-Clause
def _chisquare_binned(self, sort_var=None, bins=10, k_max=None, df=None, sort_method="quicksort", frac_upp=0.1, alpha_nc=0.05): """Hosmer-Lemeshow style test for count data. Note, this does not take into account that parameters are estimated. The distribution of the test statistic is only an approximation. This corresponds to the Hosmer-Lemeshow type test for an ordinal response variable. The outcome space y = k is partitioned into bins and treated as ordinal variable. The observations are split into approximately equal sized groups of observations sorted according the ``sort_var``. """ if sort_var is None: sort_var = self.results.predict(which="lin") endog = self.results.model.endog # not sure yet how this is supposed to work # max_count = endog.max * 2 # no option for max count in predict # counts = (endog == np.arange(max_count)).astype(int) expected = self.results.predict(which="prob") counts = (endog[:, None] == np.arange(expected.shape[1])).astype(int) # truncate upper tail if k_max is None: nobs = len(endog) icumcounts_sum = nobs - counts.sum(0).cumsum(0) k_max = np.argmax(icumcounts_sum < nobs * frac_upp) - 1 expected = expected[:, :k_max] counts = counts[:, :k_max] # we should correct for or include truncated upper bin # inplace modification, we cannot reuse expected and counts anymore expected[:, -1] += 1 - expected.sum(1) counts[:, -1] += 1 - counts.sum(1) # TODO: what's the correct df, same as for multinomial/ordered ? res = test_chisquare_binning(counts, expected, sort_var=sort_var, bins=bins, df=df, ordered=True, sort_method=sort_method, alpha_nc=alpha_nc) return res
Hosmer-Lemeshow style test for count data. Note, this does not take into account that parameters are estimated. The distribution of the test statistic is only an approximation. This corresponds to the Hosmer-Lemeshow type test for an ordinal response variable. The outcome space y = k is partitioned into bins and treated as ordinal variable. The observations are split into approximately equal sized groups of observations sorted according the ``sort_var``.
_chisquare_binned
python
statsmodels/statsmodels
statsmodels/discrete/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/diagnostic.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Generic Truncated model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- """ return np.sum(self.loglikeobs(params))
Loglikelihood of Generic Truncated model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -----
loglike
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of Generic Truncated model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : ndarray (nobs,) The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- """ llf_main = self.model_main.loglikeobs(params) yt = self.trunc + 1 # equivalent ways to compute truncation probability # pmf0 = np.zeros_like(self.endog, dtype=np.float64) # for i in range(self.trunc + 1): # model = self.model_main.__class__(np.ones_like(self.endog) * i, # self.exog) # pmf0 += np.exp(model.loglikeobs(params)) # # pmf1 = self.model_main.predict( # params, which="prob", y_values=np.arange(yt)).sum(-1) pmf = self.predict( params, which="prob-base", y_values=np.arange(yt)).sum(-1) # Skip pmf = 1 to avoid warnings log_1_m_pmf = np.full_like(pmf, -np.inf) loc = pmf > 1 log_1_m_pmf[loc] = np.nan loc = pmf < 1 log_1_m_pmf[loc] = np.log(1 - pmf[loc]) llf = llf_main - log_1_m_pmf return llf
Loglikelihood for observations of Generic Truncated model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : ndarray (nobs,) The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -----
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def score_obs(self, params): """ Generic Truncated model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ score_main = self.model_main.score_obs(params) pmf = np.zeros_like(self.endog, dtype=np.float64) # TODO: can we rewrite to following without creating new models score_trunc = np.zeros_like(score_main, dtype=np.float64) for i in range(self.trunc + 1): model = self.model_main.__class__( np.ones_like(self.endog) * i, self.exog, offset=getattr(self, "offset", None), exposure=getattr(self, "exposure", None), ) pmf_i = np.exp(model.loglikeobs(params)) score_trunc += (model.score_obs(params).T * pmf_i).T pmf += pmf_i dparams = score_main + (score_trunc.T / (1 - pmf)).T return dparams
Generic Truncated model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def score(self, params): """ Generic Truncated model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ return self.score_obs(params).sum(0)
Generic Truncated model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def hessian(self, params): """ Generic Truncated model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- """ return approx_hess(params, self.loglike)
Generic Truncated model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes -----
hessian
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def predict(self, params, exog=None, exposure=None, offset=None, which='mean', y_values=None): """ Predict response variable or other statistic given exogenous variables. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. which : str (optional) Statitistic to predict. Default is 'mean'. - 'mean' : the conditional expectation of endog E(y | x) - 'mean-main' : mean parameter of truncated count model. Note, this is not the mean of the truncated distribution. - 'linear' : the linear predictor of the truncated count model. - 'var' : returns the estimated variance of endog implied by the model. - 'prob-trunc' : probability of truncation. This is the probability of observing a zero count implied by the truncation model. - 'prob' : probabilities of each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). The probabilities in the truncated region are zero. - 'prob-base' : probabilities for untruncated base distribution. The probabilities are for each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"`` Returns ------- predicted values Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ exog, offset, exposure = self._get_predict_arrays( exog=exog, offset=offset, exposure=exposure ) fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if which == 'mean': mu = np.exp(linpred) if self.truncation == 0: prob_main = self.model_main._prob_nonzero(mu, params) return mu / prob_main elif self.truncation == -1: return mu elif self.truncation > 0: counts = np.atleast_2d(np.arange(0, self.truncation + 1)) # next is same as in prob-main below probs = self.model_main.predict( params, exog=exog, exposure=np.exp(exposure), offset=offset, which="prob", y_values=counts) prob_tregion = probs.sum(1) mean_tregion = (np.arange(self.truncation + 1) * probs).sum(1) mean = (mu - mean_tregion) / (1 - prob_tregion) return mean else: raise ValueError("unsupported self.truncation") elif which == 'linear': return linpred elif which == 'mean-main': return np.exp(linpred) elif which == 'prob': if y_values is not None: counts = np.atleast_2d(y_values) else: counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1)) mu = np.exp(linpred)[:, None] if self.k_extra == 0: # poisson, no extra params probs = self.model_dist.pmf(counts, mu, self.trunc) elif self.k_extra == 1: p = self.model_main.parameterization probs = self.model_dist.pmf(counts, mu, params[-1], p, self.trunc) else: raise ValueError("k_extra is not 0 or 1") return probs elif which == 'prob-base': if y_values is not None: counts = np.asarray(y_values) else: counts = np.arange(0, np.max(self.endog)+1) probs = self.model_main.predict( params, exog=exog, exposure=np.exp(exposure), offset=offset, which="prob", y_values=counts) return probs elif which == 'var': mu = np.exp(linpred) counts = np.atleast_2d(np.arange(0, self.truncation + 1)) # next is same as in prob-main below probs = self.model_main.predict( params, exog=exog, exposure=np.exp(exposure), offset=offset, which="prob", y_values=counts) prob_tregion = probs.sum(1) mean_tregion = (np.arange(self.truncation + 1) * probs).sum(1) mean = (mu - mean_tregion) / (1 - prob_tregion) mnc2_tregion = (np.arange(self.truncation + 1)**2 * probs).sum(1) vm = self.model_main._var(mu, params) # uncentered 2nd moment mnc2 = (mu**2 + vm - mnc2_tregion) / (1 - prob_tregion) v = mnc2 - mean**2 return v else: raise ValueError( "argument which == %s not handled" % which)
Predict response variable or other statistic given exogenous variables. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. which : str (optional) Statitistic to predict. Default is 'mean'. - 'mean' : the conditional expectation of endog E(y | x) - 'mean-main' : mean parameter of truncated count model. Note, this is not the mean of the truncated distribution. - 'linear' : the linear predictor of the truncated count model. - 'var' : returns the estimated variance of endog implied by the model. - 'prob-trunc' : probability of truncation. This is the probability of observing a zero count implied by the truncation model. - 'prob' : probabilities of each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). The probabilities in the truncated region are zero. - 'prob-base' : probabilities for untruncated base distribution. The probabilities are for each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"`` Returns ------- predicted values Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first.
predict
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def _predict_mom_trunc0(self, params, mu): """Predict mean and variance of zero-truncated distribution. experimental api, will likely be replaced by other methods Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. Returns ------- Predicted conditional variance. """ w = (1 - np.exp(-mu)) # prob of no truncation, 1 - P(y=0) m = mu / w var_ = m - (1 - w) * m**2 return m, var_
Predict mean and variance of zero-truncated distribution. experimental api, will likely be replaced by other methods Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. Returns ------- Predicted conditional variance.
_predict_mom_trunc0
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def _predict_mom_trunc0(self, params, mu): """Predict mean and variance of zero-truncated distribution. experimental api, will likely be replaced by other methods Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. Returns ------- Predicted conditional variance. """ # note: prob_zero and vm are distribution specific, rest is generic # when mean of base model is mu alpha = params[-1] p = self.model_main.parameterization prob_zero = (1 + alpha * mu**(p-1))**(- 1 / alpha) w = 1 - prob_zero # prob of no truncation, 1 - P(y=0) m = mu / w vm = mu * (1 + alpha * mu**(p-1)) # variance of NBP # uncentered 2nd moment is vm + mu**2 mnc2 = (mu**2 + vm) / w # uses mnc2_tregion = 0 var_ = mnc2 - m**2 return m, var_
Predict mean and variance of zero-truncated distribution. experimental api, will likely be replaced by other methods Parameters ---------- params : array_like The model parameters. This is only used to extract extra params like dispersion parameter. mu : array_like Array of mean predictions for main model. Returns ------- Predicted conditional variance.
_predict_mom_trunc0
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Generic Censored model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- """ return np.sum(self.loglikeobs(params))
Loglikelihood of Generic Censored model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -----
loglike
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of Generic Censored model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : ndarray (nobs,) The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- """ llf_main = self.model_main.loglikeobs(params) llf = np.concatenate( (llf_main[self.zero_idx], np.log(1 - np.exp(llf_main[self.nonzero_idx]))) ) return llf
Loglikelihood for observations of Generic Censored model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : ndarray (nobs,) The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -----
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def score_obs(self, params): """ Generic Censored model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ score_main = self.model_main.score_obs(params) llf_main = self.model_main.loglikeobs(params) score = np.concatenate(( score_main[self.zero_idx], (score_main[self.nonzero_idx].T * -np.exp(llf_main[self.nonzero_idx]) / (1 - np.exp(llf_main[self.nonzero_idx]))).T )) return score
Generic Censored model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def score(self, params): """ Generic Censored model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ return self.score_obs(params).sum(0)
Generic Censored model score (gradient) vector of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def hessian(self, params): """ Generic Censored model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- """ return approx_hess(params, self.loglike)
Generic Censored model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes -----
hessian
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def _prob_nonzero(self, mu, params): """Probability that count is not zero internal use in Censored model, will be refactored or removed """ prob_nz = self.model_main._prob_nonzero(mu, params) return prob_nz
Probability that count is not zero internal use in Censored model, will be refactored or removed
_prob_nonzero
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Generic Hurdle model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- """ k = int((len(params) - self.k_extra1 - self.k_extra2) / 2 ) + self.k_extra1 return (self.model1.loglike(params[:k]) + self.model2.loglike(params[k:]))
Loglikelihood of Generic Hurdle model Parameters ---------- params : array-like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -----
loglike
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def predict(self, params, exog=None, exposure=None, offset=None, which='mean', y_values=None): """ Predict response variable or other statistic given exogenous variables. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. exog_infl : ndarray, optional Explanatory variables for the zero-inflation model. ``exog_infl`` has to be provided if ``exog`` was provided unless ``exog_infl`` in the model is only a constant. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. which : str (optional) Statitistic to predict. Default is 'mean'. - 'mean' : the conditional expectation of endog E(y | x) - 'mean-main' : mean parameter of truncated count model. Note, this is not the mean of the truncated distribution. - 'linear' : the linear predictor of the truncated count model. - 'var' : returns the estimated variance of endog implied by the model. - 'prob-main' : probability of selecting the main model which is the probability of observing a nonzero count P(y > 0 | x). - 'prob-zero' : probability of observing a zero count. P(y=0 | x). This is equal to is ``1 - prob-main`` - 'prob-trunc' : probability of truncation of the truncated count model. This is the probability of observing a zero count implied by the truncation model. - 'mean-nonzero' : expected value conditional on having observation larger than zero, E(y | X, y>0) - 'prob' : probabilities of each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"`` Returns ------- predicted values Notes ----- 'prob-zero' / 'prob-trunc' is the ratio of probabilities of observing a zero count between hurdle model and the truncated count model. If this ratio is larger than one, then the hurdle model has an inflated number of zeros compared to the count model. If it is smaller than one, then the number of zeros is deflated. """ which = which.lower() # make it case insensitive no_exog = True if exog is None else False exog, offset, exposure = self._get_predict_arrays( exog=exog, offset=offset, exposure=exposure ) exog_zero = None # not yet if exog_zero is None: if no_exog: exog_zero = self.exog else: exog_zero = exog k_zeros = int((len(params) - self.k_extra1 - self.k_extra2) / 2 ) + self.k_extra1 params_zero = params[:k_zeros] params_main = params[k_zeros:] lin_pred = (np.dot(exog, params_main[:self.exog.shape[1]]) + exposure + offset) # this currently is mean_main, offset, exposure for zero part ? mu1 = self.model1.predict(params_zero, exog=exog) # prob that count model applies y>0 from zero model predict prob_main = self.model1.model_main._prob_nonzero(mu1, params_zero) prob_zero = (1 - prob_main) mu2 = np.exp(lin_pred) prob_ntrunc = self.model2.model_main._prob_nonzero(mu2, params_main) if which == 'mean': return prob_main * np.exp(lin_pred) / prob_ntrunc elif which == 'mean-main': return np.exp(lin_pred) elif which == 'linear': return lin_pred elif which == 'mean-nonzero': return np.exp(lin_pred) / prob_ntrunc elif which == 'prob-zero': return prob_zero elif which == 'prob-main': return prob_main elif which == 'prob-trunc': return 1 - prob_ntrunc # not yet supported elif which == 'var': # generic computation using results from submodels mu = np.exp(lin_pred) mt, vt = self.model2._predict_mom_trunc0(params_main, mu) var_ = prob_main * vt + prob_main * (1 - prob_main) * mt**2 return var_ elif which == 'prob': probs_main = self.model2.predict( params_main, exog, np.exp(exposure), offset, which="prob", y_values=y_values) probs_main *= prob_main[:, None] probs_main[:, 0] = prob_zero return probs_main else: raise ValueError('which = %s is not available' % which)
Predict response variable or other statistic given exogenous variables. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. exog_infl : ndarray, optional Explanatory variables for the zero-inflation model. ``exog_infl`` has to be provided if ``exog`` was provided unless ``exog_infl`` in the model is only a constant. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. which : str (optional) Statitistic to predict. Default is 'mean'. - 'mean' : the conditional expectation of endog E(y | x) - 'mean-main' : mean parameter of truncated count model. Note, this is not the mean of the truncated distribution. - 'linear' : the linear predictor of the truncated count model. - 'var' : returns the estimated variance of endog implied by the model. - 'prob-main' : probability of selecting the main model which is the probability of observing a nonzero count P(y > 0 | x). - 'prob-zero' : probability of observing a zero count. P(y=0 | x). This is equal to is ``1 - prob-main`` - 'prob-trunc' : probability of truncation of the truncated count model. This is the probability of observing a zero count implied by the truncation model. - 'mean-nonzero' : expected value conditional on having observation larger than zero, E(y | X, y>0) - 'prob' : probabilities of each count from 0 to max(endog), or for y_values if those are provided. This is a multivariate return (2-dim when predicting for several observations). y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"`` Returns ------- predicted values Notes ----- 'prob-zero' / 'prob-trunc' is the ratio of probabilities of observing a zero count between hurdle model and the truncated count model. If this ratio is larger than one, then the hurdle model has an inflated number of zeros compared to the count model. If it is smaller than one, then the number of zeros is deflated.
predict
python
statsmodels/statsmodels
statsmodels/discrete/truncated_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/truncated_model.py
BSD-3-Clause
def fit_regularized(self, method="elastic_net", alpha=0., start_params=None, refit=False, **kwargs): """ Return a regularized fit to a linear regression model. Parameters ---------- method : {'elastic_net'} Only the `elastic_net` approach is currently implemented. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. start_params : array_like Starting values for `params`. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. **kwargs Additional keyword argument that are used when fitting the model. Returns ------- Results A results instance. """ from statsmodels.base.elastic_net import fit_elasticnet if method != "elastic_net": raise ValueError("method for fit_regularized must be elastic_net") defaults = {"maxiter": 50, "L1_wt": 1, "cnvrg_tol": 1e-10, "zero_tol": 1e-10} defaults.update(kwargs) return fit_elasticnet(self, method=method, alpha=alpha, start_params=start_params, refit=refit, **defaults)
Return a regularized fit to a linear regression model. Parameters ---------- method : {'elastic_net'} Only the `elastic_net` approach is currently implemented. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. start_params : array_like Starting values for `params`. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. **kwargs Additional keyword argument that are used when fitting the model. Returns ------- Results A results instance.
fit_regularized
python
statsmodels/statsmodels
statsmodels/discrete/conditional_models.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/conditional_models.py
BSD-3-Clause
def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the fitted model. Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is "var_xx". Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float Significance level for the confidence intervals Returns ------- smry : Summary instance This holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [ ('Dep. Variable:', None), ('Model:', None), ('Log-Likelihood:', None), ('Method:', [self.method]), ('Date:', None), ('Time:', None), ] top_right = [ ('No. Observations:', None), ('No. groups:', [self.n_groups]), ('Min group size:', [self._group_stats[0]]), ('Max group size:', [self._group_stats[1]]), ('Mean group size:', [self._group_stats[2]]), ] if title is None: title = "Conditional Logit Model Regression Results" # create summary tables from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, # [], yname=yname, xname=xname, title=title) smry.add_table_params( self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) return smry
Summarize the fitted model. Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is "var_xx". Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float Significance level for the confidence intervals Returns ------- smry : Summary instance This holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results
summary
python
statsmodels/statsmodels
statsmodels/discrete/conditional_models.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/conditional_models.py
BSD-3-Clause
def _check_margeff_args(at, method): """ Checks valid options for margeff """ if at not in ['overall','mean','median','zero','all']: raise ValueError("%s not a valid option for `at`." % at) if method not in ['dydx','eyex','dyex','eydx']: raise ValueError("method is not understood. Got %s" % method)
Checks valid options for margeff
_check_margeff_args
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _check_discrete_args(at, method): """ Checks the arguments for margeff if the exogenous variables are discrete. """ if method in ['dyex','eyex']: raise ValueError("%s not allowed for discrete variables" % method) if at in ['median', 'zero']: raise ValueError("%s not allowed for discrete variables" % at)
Checks the arguments for margeff if the exogenous variables are discrete.
_check_discrete_args
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _get_const_index(exog): """ Returns a boolean array of non-constant column indices in exog and an scalar array of where the constant is or None """ effects_idx = exog.var(0) != 0 if np.any(~effects_idx): const_idx = np.where(~effects_idx)[0] else: const_idx = None return effects_idx, const_idx
Returns a boolean array of non-constant column indices in exog and an scalar array of where the constant is or None
_get_const_index
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _isdummy(X): """ Given an array X, returns the column indices for the dummy variables. Parameters ---------- X : array_like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 2, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _isdummy(X) >>> ind array([0, 3, 4]) """ X = np.asarray(X) if X.ndim > 1: ind = np.zeros(X.shape[1]).astype(bool) max = (np.max(X, axis=0) == 1) min = (np.min(X, axis=0) == 0) remainder = np.all(X % 1. == 0, axis=0) ind = min & max & remainder if X.ndim == 1: ind = np.asarray([ind]) return np.where(ind)[0]
Given an array X, returns the column indices for the dummy variables. Parameters ---------- X : array_like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 2, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _isdummy(X) >>> ind array([0, 3, 4])
_isdummy
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _iscount(X): """ Given an array X, returns the column indices for count variables. Parameters ---------- X : array_like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 10, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _iscount(X) >>> ind array([0, 3, 4]) """ X = np.asarray(X) remainder = np.logical_and(np.logical_and(np.all(X % 1. == 0, axis = 0), X.var(0) != 0), np.all(X >= 0, axis=0)) dummy = _isdummy(X) remainder = np.where(remainder)[0].tolist() for idx in dummy: remainder.remove(idx) return np.array(remainder)
Given an array X, returns the column indices for count variables. Parameters ---------- X : array_like A 1d or 2d array of numbers Examples -------- >>> X = np.random.randint(0, 10, size=(15,5)).astype(float) >>> X[:,1:3] = np.random.randn(15,2) >>> ind = _iscount(X) >>> ind array([0, 3, 4])
_iscount
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _get_count_effects(effects, exog, count_ind, method, model, params): """ If there's a count variable, the predicted difference is taken by subtracting one and adding one to exog then averaging the difference """ # this is the index for the effect and the index for count col in exog for i in count_ind: exog0 = exog.copy() exog0[:, i] -= 1 effect0 = model.predict(params, exog0) exog0[:, i] += 2 effect1 = model.predict(params, exog0) #NOTE: done by analogy with dummy effects but untested bc # stata does not handle both count and eydx anywhere if 'ey' in method: effect0 = np.log(effect0) effect1 = np.log(effect1) effects[:, i] = ((effect1 - effect0)/2) return effects
If there's a count variable, the predicted difference is taken by subtracting one and adding one to exog then averaging the difference
_get_count_effects
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _get_dummy_effects(effects, exog, dummy_ind, method, model, params): """ If there's a dummy variable, the predicted difference is taken at 0 and 1 """ # this is the index for the effect and the index for dummy col in exog for i in dummy_ind: exog0 = exog.copy() # only copy once, can we avoid a copy? exog0[:,i] = 0 effect0 = model.predict(params, exog0) #fittedvalues0 = np.dot(exog0,params) exog0[:,i] = 1 effect1 = model.predict(params, exog0) if 'ey' in method: effect0 = np.log(effect0) effect1 = np.log(effect1) effects[:, i] = (effect1 - effect0) return effects
If there's a dummy variable, the predicted difference is taken at 0 and 1
_get_dummy_effects
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def margeff_cov_params(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J): """ Computes the variance-covariance of marginal effects by the delta method. Parameters ---------- model : model instance The model that returned the fitted results. Its pdf method is used for computing the Jacobian of discrete variables in dummy_ind and count_ind params : array_like estimated model parameters exog : array_like exogenous variables at which to calculate the derivative cov_params : array_like The variance-covariance of the parameters at : str Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. Only overall has any effect here.you derivative : function or array_like If a function, it returns the marginal effects of the model with respect to the exogenous variables evaluated at exog. Expected to be called derivative(params, exog). This will be numerically differentiated. Otherwise, it can be the Jacobian of the marginal effects with respect to the parameters. dummy_ind : array_like Indices of the columns of exog that contain dummy variables count_ind : array_like Indices of the columns of exog that contain count variables Notes ----- For continuous regressors, the variance-covariance is given by Asy. Var[MargEff] = [d margeff / d params] V [d margeff / d params]' where V is the parameter variance-covariance. The outer Jacobians are computed via numerical differentiation if derivative is a function. """ if callable(derivative): from statsmodels.tools.numdiff import approx_fprime_cs params = params.ravel('F') # for Multinomial try: jacobian_mat = approx_fprime_cs(params, derivative, args=(exog,method)) except TypeError: # norm.cdf does not take complex values from statsmodels.tools.numdiff import approx_fprime jacobian_mat = approx_fprime(params, derivative, args=(exog,method)) if at == 'overall': jacobian_mat = np.mean(jacobian_mat, axis=1) else: jacobian_mat = jacobian_mat.squeeze() # exog was 2d row vector if dummy_ind is not None: jacobian_mat = _margeff_cov_params_dummy(model, jacobian_mat, params, exog, dummy_ind, method, J) if count_ind is not None: jacobian_mat = _margeff_cov_params_count(model, jacobian_mat, params, exog, count_ind, method, J) else: jacobian_mat = derivative #NOTE: this will not go through for at == 'all' return np.dot(np.dot(jacobian_mat, cov_params), jacobian_mat.T)
Computes the variance-covariance of marginal effects by the delta method. Parameters ---------- model : model instance The model that returned the fitted results. Its pdf method is used for computing the Jacobian of discrete variables in dummy_ind and count_ind params : array_like estimated model parameters exog : array_like exogenous variables at which to calculate the derivative cov_params : array_like The variance-covariance of the parameters at : str Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. Only overall has any effect here.you derivative : function or array_like If a function, it returns the marginal effects of the model with respect to the exogenous variables evaluated at exog. Expected to be called derivative(params, exog). This will be numerically differentiated. Otherwise, it can be the Jacobian of the marginal effects with respect to the parameters. dummy_ind : array_like Indices of the columns of exog that contain dummy variables count_ind : array_like Indices of the columns of exog that contain count variables Notes ----- For continuous regressors, the variance-covariance is given by Asy. Var[MargEff] = [d margeff / d params] V [d margeff / d params]' where V is the parameter variance-covariance. The outer Jacobians are computed via numerical differentiation if derivative is a function.
margeff_cov_params
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def margeff_cov_with_se(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J): """ See margeff_cov_params. Same function but returns both the covariance of the marginal effects and their standard errors. """ cov_me = margeff_cov_params(model, params, exog, cov_params, at, derivative, dummy_ind, count_ind, method, J) return cov_me, np.sqrt(np.diag(cov_me))
See margeff_cov_params. Same function but returns both the covariance of the marginal effects and their standard errors.
margeff_cov_with_se
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def summary_frame(self, alpha=.05): """ Returns a DataFrame summarizing the marginal effects. Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- frame : DataFrames A DataFrame summarizing the marginal effects. Notes ----- The dataframe is created on each call and not cached, as are the tables build in `summary()` """ _check_at_is_all(self.margeff_options) results = self.results model = self.results.model from pandas import DataFrame, MultiIndex names = [_transform_names[self.margeff_options['method']], 'Std. Err.', 'z', 'Pr(>|z|)', 'Conf. Int. Low', 'Cont. Int. Hi.'] ind = self.results.model.exog.var(0) != 0 # True if not a constant exog_names = self.results.model.exog_names k_extra = getattr(model, 'k_extra', 0) if k_extra > 0: exog_names = exog_names[:-k_extra] var_names = [name for i,name in enumerate(exog_names) if ind[i]] if self.margeff.ndim == 2: # MNLogit case ci = self.conf_int(alpha) table = np.column_stack([i.ravel("F") for i in [self.margeff, self.margeff_se, self.tvalues, self.pvalues, ci[:, 0, :], ci[:, 1, :]]]) _, yname_list = results._get_endog_name(model.endog_names, None, all=True) ynames = np.repeat(yname_list, len(var_names)) xnames = np.tile(var_names, len(yname_list)) index = MultiIndex.from_tuples(list(zip(ynames, xnames)), names=['endog', 'exog']) else: table = np.column_stack((self.margeff, self.margeff_se, self.tvalues, self.pvalues, self.conf_int(alpha))) index=var_names return DataFrame(table, columns=names, index=index)
Returns a DataFrame summarizing the marginal effects. Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- frame : DataFrames A DataFrame summarizing the marginal effects. Notes ----- The dataframe is created on each call and not cached, as are the tables build in `summary()`
summary_frame
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def conf_int(self, alpha=.05): """ Returns the confidence intervals of the marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- conf_int : ndarray An array with lower, upper confidence intervals for the marginal effects. """ _check_at_is_all(self.margeff_options) me_se = self.margeff_se q = norm.ppf(1 - alpha / 2) lower = self.margeff - q * me_se upper = self.margeff + q * me_se return np.asarray(lzip(lower, upper))
Returns the confidence intervals of the marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- conf_int : ndarray An array with lower, upper confidence intervals for the marginal effects.
conf_int
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def summary(self, alpha=.05): """ Returns a summary table for marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- Summary : SummaryTable A SummaryTable instance """ _check_at_is_all(self.margeff_options) results = self.results model = results.model title = model.__class__.__name__ + " Marginal Effects" method = self.margeff_options['method'] top_left = [('Dep. Variable:', [model.endog_names]), ('Method:', [method]), ('At:', [self.margeff_options['at']]),] from statsmodels.iolib.summary import ( Summary, summary_params, table_extend, ) exog_names = model.exog_names[:] # copy smry = Summary() # TODO: sigh, we really need to hold on to this in _data... _, const_idx = _get_const_index(model.exog) if const_idx is not None: exog_names.pop(const_idx[0]) if getattr(model, 'k_extra', 0) > 0: exog_names = exog_names[:-model.k_extra] J = int(getattr(model, "J", 1)) if J > 1: yname, yname_list = results._get_endog_name(model.endog_names, None, all=True) else: yname = model.endog_names yname_list = [yname] smry.add_table_2cols(self, gleft=top_left, gright=[], yname=yname, xname=exog_names, title=title) # NOTE: add_table_params is not general enough yet for margeff # could use a refactor with getattr instead of hard-coded params # tvalues etc. table = [] conf_int = self.conf_int(alpha) margeff = self.margeff margeff_se = self.margeff_se tvalues = self.tvalues pvalues = self.pvalues if J > 1: for eq in range(J): restup = (results, margeff[:,eq], margeff_se[:,eq], tvalues[:,eq], pvalues[:,eq], conf_int[:,:,eq]) tble = summary_params(restup, yname=yname_list[eq], xname=exog_names, alpha=alpha, use_t=False, skip_header=True) tble.title = yname_list[eq] # overwrite coef with method name header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] tble.insert_header_row(0, header) table.append(tble) table = table_extend(table, keep_headers=True) else: restup = (results, margeff, margeff_se, tvalues, pvalues, conf_int) table = summary_params(restup, yname=yname, xname=exog_names, alpha=alpha, use_t=False, skip_header=True) header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] table.insert_header_row(0, header) smry.tables.append(table) return smry
Returns a summary table for marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- Summary : SummaryTable A SummaryTable instance
summary
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndarray the marginal effect corresponding to the input options Notes ----- When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ self._reset() # always reset the cache when this is called #TODO: if at is not all or overall, we can also put atexog values # in summary table head method = method.lower() at = at.lower() _check_margeff_args(at, method) self.margeff_options = dict(method=method, at=at) results = self.results model = results.model params = results.params exog = model.exog.copy() # copy because values are changed effects_idx, const_idx = _get_const_index(exog) if dummy: _check_discrete_args(at, method) dummy_idx, dummy = _get_dummy_index(exog, const_idx) else: dummy_idx = None if count: _check_discrete_args(at, method) count_idx, count = _get_count_index(exog, const_idx) else: count_idx = None # attach dummy_idx and cout_idx self.dummy_idx = dummy_idx self.count_idx = count_idx # get the exogenous variables exog = _get_margeff_exog(exog, at, atexog, effects_idx) # get base marginal effects, handled by sub-classes effects = model._derivative_exog(params, exog, method, dummy_idx, count_idx) J = getattr(model, 'J', 1) effects_idx = np.tile(effects_idx, J) # adjust for multi-equation. effects = _effects_at(effects, at) if at == 'all': if J > 1: K = model.K - np.any(~effects_idx) # subtract constant self.margeff = effects[:, effects_idx].reshape(-1, K, J, order='F') else: self.margeff = effects[:, effects_idx] else: # Set standard error of the marginal effects by Delta method. margeff_cov, margeff_se = margeff_cov_with_se(model, params, exog, results.cov_params(), at, model._derivative_exog, dummy_idx, count_idx, method, J) # reshape for multi-equation if J > 1: K = model.K - np.any(~effects_idx) # subtract constant self.margeff = effects[effects_idx].reshape(K, J, order='F') self.margeff_se = margeff_se[effects_idx].reshape(K, J, order='F') self.margeff_cov = margeff_cov[effects_idx][:, effects_idx] else: # do not care about at constant # hack truncate effects_idx again if necessary # if eyex, then effects is truncated to be without extra params effects_idx = effects_idx[:len(effects)] self.margeff_cov = margeff_cov[effects_idx][:, effects_idx] self.margeff_se = margeff_se[effects_idx] self.margeff = effects[effects_idx]
Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndarray the marginal effect corresponding to the input options Notes ----- When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear.
get_margeff
python
statsmodels/statsmodels
statsmodels/discrete/discrete_margins.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_margins.py
BSD-3-Clause
def _validate_l1_method(method): """ As of 0.10.0, the supported values for `method` in `fit_regularized` are "l1" and "l1_cvxopt_cp". If an invalid value is passed, raise with a helpful error message Parameters ---------- method : str Raises ------ ValueError """ if method not in ['l1', 'l1_cvxopt_cp']: raise ValueError('`method` = {method} is not supported, use either ' '"l1" or "l1_cvxopt_cp"'.format(method=method))
As of 0.10.0, the supported values for `method` in `fit_regularized` are "l1" and "l1_cvxopt_cp". If an invalid value is passed, raise with a helpful error message Parameters ---------- method : str Raises ------ ValueError
_validate_l1_method
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def initialize(self): """ Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. """ if self._check_rank: # assumes constant rank = tools.matrix_rank(self.exog, method="qr") else: # If rank check is skipped, assume full rank = self.exog.shape[1] self.df_model = float(rank - 1) self.df_resid = float(self.exog.shape[0] - rank)
Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model.
initialize
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cdf(self, X): """ The cumulative distribution function of the model. """ raise NotImplementedError
The cumulative distribution function of the model.
cdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pdf(self, X): """ The probability density (mass) function of the model. """ raise NotImplementedError
The probability density (mass) function of the model.
pdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): """ Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.base.model.LikelihoodModel.fit """ if callback is None: callback = self._check_perfect_pred else: pass # TODO: make a function factory to have multiple call-backs mlefit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) return mlefit # It is up to subclasses to wrap results
Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.base.model.LikelihoodModel.fit
fit
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=True, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, qc_verbose=False, **kwargs): """ Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : 'l1' or 'l1_cvxopt_cp' See notes for details. maxiter : {int, 'defined_by_method'} Maximum number of iterations to perform. If 'defined_by_method', then use method defaults (see notes). full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. fargs : tuple Extra arguments passed to the likelihood function, i.e., loglike(x,*args). callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term. trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value. size_trim_tol : float or 'auto' (default = 'auto') Tolerance used when trim_mode == 'size'. auto_trim_tol : float Tolerance used when trim_mode == 'auto'. qc_tol : float Print warning and do not allow auto trim when (ii) (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure. **kwargs Additional keyword arguments used when fitting the model. Returns ------- Results A results instance. Notes ----- Using 'l1_cvxopt_cp' requires the cvxopt module. Extra parameters are not penalized if alpha is given as a scalar. An example is the shape parameter in NegativeBinomial `nb1` and `nb2`. Optional arguments for the solvers (available in Results.mle_settings):: 'l1' acc : float (default 1e-6) Requested accuracy as used by slsqp 'l1_cvxopt_cp' abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1). Optimization methodology With :math:`L` the negative log likelihood, we solve the convex but non-smooth problem .. math:: \\min_\\beta L(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} L(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. With :math:`\\partial_k L` the derivative of :math:`L` in the :math:`k^{th}` parameter direction, theory dictates that, at the minimum, exactly one of two conditions holds: (i) :math:`|\\partial_k L| = \\alpha_k` and :math:`\\beta_k \\neq 0` (ii) :math:`|\\partial_k L| \\leq \\alpha_k` and :math:`\\beta_k = 0` """ _validate_l1_method(method) # Set attributes based on method cov_params_func = self.cov_params_func_l1 ### Bundle up extra kwargs for the dictionary kwargs. These are ### passed through super(...).fit() as kwargs and unpacked at ### appropriate times alpha = np.array(alpha) assert alpha.min() >= 0 try: kwargs['alpha'] = alpha except TypeError: kwargs = dict(alpha=alpha) kwargs['alpha_rescaled'] = kwargs['alpha'] / float(self.endog.shape[0]) kwargs['trim_mode'] = trim_mode kwargs['size_trim_tol'] = size_trim_tol kwargs['auto_trim_tol'] = auto_trim_tol kwargs['qc_tol'] = qc_tol kwargs['qc_verbose'] = qc_verbose ### Define default keyword arguments to be passed to super(...).fit() if maxiter == 'defined_by_method': if method == 'l1': maxiter = 1000 elif method == 'l1_cvxopt_cp': maxiter = 70 ## Parameters to pass to super(...).fit() # For the 'extra' parameters, pass all that are available, # even if we know (at this point) we will only use one. extra_fit_funcs = {'l1': fit_l1_slsqp} if have_cvxopt and method == 'l1_cvxopt_cp': from statsmodels.base.l1_cvxopt import fit_l1_cvxopt_cp extra_fit_funcs['l1_cvxopt_cp'] = fit_l1_cvxopt_cp elif method.lower() == 'l1_cvxopt_cp': raise ValueError("Cannot use l1_cvxopt_cp as cvxopt " "was not found (install it, or use method='l1' instead)") if callback is None: callback = self._check_perfect_pred else: pass # make a function factory to have multiple call-backs mlefit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, extra_fit_funcs=extra_fit_funcs, cov_params_func=cov_params_func, **kwargs) return mlefit # up to subclasses to wrap results
Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : 'l1' or 'l1_cvxopt_cp' See notes for details. maxiter : {int, 'defined_by_method'} Maximum number of iterations to perform. If 'defined_by_method', then use method defaults (see notes). full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. fargs : tuple Extra arguments passed to the likelihood function, i.e., loglike(x,*args). callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term. trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value. size_trim_tol : float or 'auto' (default = 'auto') Tolerance used when trim_mode == 'size'. auto_trim_tol : float Tolerance used when trim_mode == 'auto'. qc_tol : float Print warning and do not allow auto trim when (ii) (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure. **kwargs Additional keyword arguments used when fitting the model. Returns ------- Results A results instance. Notes ----- Using 'l1_cvxopt_cp' requires the cvxopt module. Extra parameters are not penalized if alpha is given as a scalar. An example is the shape parameter in NegativeBinomial `nb1` and `nb2`. Optional arguments for the solvers (available in Results.mle_settings):: 'l1' acc : float (default 1e-6) Requested accuracy as used by slsqp 'l1_cvxopt_cp' abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1). Optimization methodology With :math:`L` the negative log likelihood, we solve the convex but non-smooth problem .. math:: \\min_\\beta L(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} L(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. With :math:`\\partial_k L` the derivative of :math:`L` in the :math:`k^{th}` parameter direction, theory dictates that, at the minimum, exactly one of two conditions holds: (i) :math:`|\\partial_k L| = \\alpha_k` and :math:`\\beta_k \\neq 0` (ii) :math:`|\\partial_k L| \\leq \\alpha_k` and :math:`\\beta_k = 0`
fit_regularized
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cov_params_func_l1(self, likelihood_model, xopt, retvals): """ Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. Returns a full cov_params matrix, with entries corresponding to zero'd values set to np.nan. """ H = likelihood_model.hessian(xopt) trimmed = retvals['trimmed'] nz_idx = np.nonzero(~trimmed)[0] nnz_params = (~trimmed).sum() if nnz_params > 0: H_restricted = H[nz_idx[:, None], nz_idx] # Covariance estimate for the nonzero params H_restricted_inv = np.linalg.inv(-H_restricted) else: H_restricted_inv = np.zeros(0) cov_params = np.nan * np.ones(H.shape) cov_params[nz_idx[:, None], nz_idx] = H_restricted_inv return cov_params
Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. Returns a full cov_params matrix, with entries corresponding to zero'd values set to np.nan.
cov_params_func_l1
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict(self, params, exog=None, which="mean", linear=None): """ Predict response variable of a model given exogenous variables. """ raise NotImplementedError
Predict response variable of a model given exogenous variables.
predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_exog(self, params, exog=None, dummy_idx=None, count_idx=None): """ This should implement the derivative of the non-linear function """ raise NotImplementedError
This should implement the derivative of the non-linear function
_derivative_exog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_exog_helper(self, margeff, params, exog, dummy_idx, count_idx, transform): """ Helper for _derivative_exog to wrap results appropriately """ from .discrete_margins import _get_count_effects, _get_dummy_effects if count_idx is not None: margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff
Helper for _derivative_exog to wrap results appropriately
_derivative_exog_helper
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict(self, params, exog=None, which="mean", linear=None, offset=None): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like Fitted parameters of the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. which : {'mean', 'linear', 'var', 'prob'}, optional Statistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Returns ------- array Fitted values at exog. """ if linear is not None: msg = 'linear keyword is deprecated, use which="linear"' warnings.warn(msg, FutureWarning) if linear is True: which = "linear" # Use fit offset if appropriate if offset is None and exog is None and hasattr(self, 'offset'): offset = self.offset elif offset is None: offset = 0. if exog is None: exog = self.exog linpred = np.dot(exog, params) + offset if which == "mean": return self.cdf(linpred) elif which == "linear": return linpred if which == "var": mu = self.cdf(linpred) var_ = mu * (1 - mu) return var_ else: raise ValueError('Only `which` is "mean", "linear" or "var" are' ' available.')
Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like Fitted parameters of the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. which : {'mean', 'linear', 'var', 'prob'}, optional Statistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Returns ------- array Fitted values at exog.
predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_predict(self, params, exog=None, transform='dydx', offset=None): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog linpred = self.predict(params, exog, offset=offset, which="linear") dF = self.pdf(linpred)[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog, offset=offset)[:,None] return dF
For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform.
_derivative_predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None, offset=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog linpred = self.predict(params, exog, offset=offset, which="linear") margeff = np.dot(self.pdf(linpred)[:,None], params[None,:]) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform)
For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff.
_derivative_exog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_mean_dparams(self, params): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. """ link = self.link lin_pred = self.predict(params, which="linear") idl = link.inverse_deriv(lin_pred) dmat = self.exog * idl[:, None] return dmat
Derivative of the expected endog with respect to the parameters. Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector.
_deriv_mean_dparams
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, offset=None): """Get frozen instance of distribution based on predicted parameters. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor of the mean function with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. Returns ------- Instance of frozen scipy distribution. """ mu = self.predict(params, exog=exog, offset=offset) # distr = stats.bernoulli(mu[:, None]) distr = stats.bernoulli(mu) return distr
Get frozen instance of distribution based on predicted parameters. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor of the mean function with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. Returns ------- Instance of frozen scipy distribution.
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def initialize(self): """ Preprocesses the data for MNLogit. """ super().initialize() # This is also a "whiten" method in other models (eg regression) self.endog = self.endog.argmax(1) # turn it into an array of col idx self.J = self.wendog.shape[1] self.K = self.exog.shape[1] self.df_model *= (self.J-1) # for each J - 1 equation. self.df_resid = self.exog.shape[0] - self.df_model - (self.J-1)
Preprocesses the data for MNLogit.
initialize
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict(self, params, exog=None, which="mean", linear=None): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. which : {'mean', 'linear', 'var', 'prob'}, optional Statistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Notes ----- Column 0 is the base case, the rest conform to the rows of params shifted up one for the base case. """ if linear is not None: msg = 'linear keyword is deprecated, use which="linear"' warnings.warn(msg, FutureWarning) if linear is True: which = "linear" if exog is None: # do here to accommodate user-given exog exog = self.exog if exog.ndim == 1: exog = exog[None] pred = super().predict(params, exog, which=which) if which == "linear": pred = np.column_stack((np.zeros(len(exog)), pred)) return pred
Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. which : {'mean', 'linear', 'var', 'prob'}, optional Statistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Notes ----- Column 0 is the base case, the rest conform to the rows of params shifted up one for the base case.
predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predicted probabilities for each choice. dFdparams is of shape nobs x (J*K) x (J-1)*K. The zero derivatives for the base category are not included. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(self.K, self.J-1, order='F') eXB = np.exp(np.dot(exog, params)) sum_eXB = (1 + eXB.sum(1))[:,None] J = int(self.J) K = int(self.K) repeat_eXB = np.repeat(eXB, J, axis=1) X = np.tile(exog, J-1) # this is the derivative wrt the base level F0 = -repeat_eXB * X / sum_eXB ** 2 # this is the derivative wrt the other levels when # dF_j / dParams_j (ie., own equation) #NOTE: this computes too much, any easy way to cut down? F1 = eXB.T[:,:,None]*X * (sum_eXB - repeat_eXB) / (sum_eXB**2) F1 = F1.transpose((1,0,2)) # put the nobs index first # other equation index other_idx = ~np.kron(np.eye(J-1), np.ones(K)).astype(bool) F1[:, other_idx] = (-eXB.T[:,:,None]*X*repeat_eXB / \ (sum_eXB**2)).transpose((1,0,2))[:, other_idx] dFdX = np.concatenate((F0[:, None,:], F1), axis=1) if 'ey' in transform: dFdX /= self.predict(params, exog)[:, :, None] return dFdX
For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predicted probabilities for each choice. dFdparams is of shape nobs x (J*K) x (J-1)*K. The zero derivatives for the base category are not included. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform.
_derivative_predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. For Multinomial models the marginal effects are P[j] * (params[j] - sum_k P[k]*params[k]) It is returned unshaped, so that each row contains each of the J equations. This makes it easier to take derivatives of this for standard errors. If you want average marginal effects you can do margeff.reshape(nobs, K, J, order='F).mean(0) and the marginal effects for choice J are in column J """ J = int(self.J) # number of alternative choices K = int(self.K) # number of variables # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(K, J-1, order='F') zeroparams = np.c_[np.zeros(K), params] # add base in cdf = self.cdf(np.dot(exog, params)) # TODO: meaningful interpretation for `iterm`? iterm = np.array([cdf[:, [i]] * zeroparams[:, i] for i in range(int(J))]).sum(0) margeff = np.array([cdf[:, [j]] * (zeroparams[:, j] - iterm) for j in range(J)]) # swap the axes to make sure margeff are in order nobs, K, J margeff = np.transpose(margeff, (1, 2, 0)) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None,:] margeff = self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) return margeff.reshape(len(exog), -1, order='F')
For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. For Multinomial models the marginal effects are P[j] * (params[j] - sum_k P[k]*params[k]) It is returned unshaped, so that each row contains each of the J equations. This makes it easier to take derivatives of this for standard errors. If you want average marginal effects you can do margeff.reshape(nobs, K, J, order='F).mean(0) and the marginal effects for choice J are in column J
_derivative_exog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, offset=None): """get frozen instance of distribution """ raise NotImplementedError
get frozen instance of distribution
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict(self, params, exog=None, exposure=None, offset=None, which='mean', linear=None): """ Predict response variable of a count model given exogenous variables Parameters ---------- params : array_like Model parameters exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. If exposure is not provided and exog is None, uses the model's exposure if present. If not, uses 0 as the default value. offset : array_like, optional Offset is added to the linear prediction with coefficient equal to 1. If offset is not provided and exog is None, uses the model's offset if present. If not, uses 0 as the default value. which : 'mean', 'linear', 'var', 'prob' (optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' variance of endog implied by the likelihood model - 'prob' predicted probabilities for counts. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ if linear is not None: msg = 'linear keyword is deprecated, use which="linear"' warnings.warn(msg, FutureWarning) if linear is True: which = "linear" # the following is copied from GLM predict (without family/link check) # Use fit offset if appropriate if offset is None and exog is None and hasattr(self, 'offset'): offset = self.offset elif offset is None: offset = 0. # Use fit exposure if appropriate if exposure is None and exog is None and hasattr(self, 'exposure'): # Already logged exposure = self.exposure elif exposure is None: exposure = 0. else: exposure = np.log(exposure) if exog is None: exog = self.exog fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if which == "mean": return np.exp(linpred) elif which.startswith("lin"): return linpred else: raise ValueError('keyword which has to be "mean" and "linear"')
Predict response variable of a count model given exogenous variables Parameters ---------- params : array_like Model parameters exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. If exposure is not provided and exog is None, uses the model's exposure if present. If not, uses 0 as the default value. offset : array_like, optional Offset is added to the linear prediction with coefficient equal to 1. If offset is not provided and exog is None, uses the model's offset if present. If not, uses 0 as the default value. which : 'mean', 'linear', 'var', 'prob' (optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' variance of endog implied by the likelihood model - 'prob' predicted probabilities for counts. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first.
predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog #NOTE: this handles offset and exposure dF = self.predict(params, exog)[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog)[:,None] return dF
For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform.
_derivative_predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _derivative_exog(self, params, exog=None, transform="dydx", dummy_idx=None, count_idx=None): """ For computing marginal effects. These are the marginal effects d F(XB) / dX For the Poisson model F(XB) is the predicted counts rather than the probabilities. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # group 3 poisson, nbreg, zip, zinb if exog is None: exog = self.exog k_extra = getattr(self, 'k_extra', 0) params_exog = params if k_extra == 0 else params[:-k_extra] margeff = self.predict(params, exog)[:,None] * params_exog[None,:] if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform)
For computing marginal effects. These are the marginal effects d F(XB) / dX For the Poisson model F(XB) is the predicted counts rather than the probabilities. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff.
_derivative_exog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_mean_dparams(self, params): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. """ from statsmodels.genmod.families import links link = links.Log() lin_pred = self.predict(params, which="linear") idl = link.inverse_deriv(lin_pred) dmat = self.exog * idl[:, None] if self.k_extra > 0: dmat_extra = np.zeros((dmat.shape[0], self.k_extra)) dmat = np.column_stack((dmat, dmat_extra)) return dmat
Derivative of the expected endog with respect to the parameters. Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector.
_deriv_mean_dparams
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cdf(self, X): """ Poisson model cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- The value of the Poisson CDF at each point. Notes ----- The CDF is defined as .. math:: \\exp\\left(-\\lambda\\right)\\sum_{i=0}^{y}\\frac{\\lambda^{i}}{i!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=X\\beta The parameter `X` is :math:`X\\beta` in the above formula. """ y = self.endog return stats.poisson.cdf(y, np.exp(X))
Poisson model cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- The value of the Poisson CDF at each point. Notes ----- The CDF is defined as .. math:: \\exp\\left(-\\lambda\\right)\\sum_{i=0}^{y}\\frac{\\lambda^{i}}{i!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=X\\beta The parameter `X` is :math:`X\\beta` in the above formula.
cdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pdf(self, X): """ Poisson model probability mass function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- pdf : ndarray The value of the Poisson probability mass function, PMF, for each point of X. Notes ----- The PMF is defined as .. math:: \\frac{e^{-\\lambda_{i}}\\lambda_{i}^{y_{i}}}{y_{i}!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=x_{i}\\beta The parameter `X` is :math:`x_{i}\\beta` in the above formula. """ y = self.endog return np.exp(stats.poisson.logpmf(y, np.exp(X)))
Poisson model probability mass function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- pdf : ndarray The value of the Poisson probability mass function, PMF, for each point of X. Notes ----- The PMF is defined as .. math:: \\frac{e^{-\\lambda_{i}}\\lambda_{i}^{y_{i}}}{y_{i}!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=x_{i}\\beta The parameter `X` is :math:`x_{i}\\beta` in the above formula.
pdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog return np.sum( -np.exp(np.clip(XB, None, EXP_UPPER_LIMIT)) + endog * XB - gammaln(endog + 1) )
Loglikelihood of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] for observations :math:`i=1,...,n` """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog #np.sum(stats.poisson.logpmf(endog, np.exp(XB))) return -np.exp(XB) + endog*XB - gammaln(endog+1)
Loglikelihood for observations of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] for observations :math:`i=1,...,n`
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def fit_constrained(self, constraints, start_params=None, **fit_kwds): """fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance """ #constraints = (R, q) # TODO: temporary trailing underscore to not overwrite the monkey # patched version # TODO: decide whether to move the imports from statsmodels.base._constraints import ( LinearConstraints, fit_constrained, ) # same pattern as in base.LikelihoodModel.t_test from statsmodels.formula._manager import FormulaManager mgr = FormulaManager() lc = mgr.get_linear_constraints(constraints, self.exog_names) R, q = lc.constraint_matrix, lc.constraint_values # TODO: add start_params option, need access to tranformation # fit_constrained needs to do the transformation params, cov, res_constr = fit_constrained(self, R, q, start_params=start_params, fit_kwds=fit_kwds) #create dummy results Instance, TODO: wire up properly res = self.fit(maxiter=0, method='nm', disp=0, warn_convergence=False) # we get a wrapper back res.mle_retvals['fcall'] = res_constr.mle_retvals.get('fcall', np.nan) res.mle_retvals['iterations'] = res_constr.mle_retvals.get( 'iterations', np.nan) res.mle_retvals['converged'] = res_constr.mle_retvals['converged'] res._results.params = params res._results.cov_params_default = cov cov_type = fit_kwds.get('cov_type', 'nonrobust') if cov_type != 'nonrobust': res._results.normalized_cov_params = cov # assume scale=1 else: res._results.normalized_cov_params = None k_constr = len(q) res._results.df_resid += k_constr res._results.df_model -= k_constr res._results.constraints = LinearConstraints.from_formula_parser(lc) res._results.k_constr = k_constr res._results.results_constrained = res_constr return res
fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance
fit_constrained
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score(self, params): """ Poisson model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\lambda_{i}\\right)x_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return np.dot(self.endog - L, X)
Poisson model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\lambda_{i}\\right)x_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_obs(self, params): """ Poisson model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score vector (nobs, k_vars) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L)[:,None] * X
Poisson model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score vector (nobs, k_vars) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_factor(self, params): """ Poisson model score_factor for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score factor (nobs, ) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L)
Poisson model score_factor for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score factor (nobs, ) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
score_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i}x_{i}x_{i}^{\\prime} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return -np.dot(L*X.T, X)
Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i}x_{i}x_{i}^{\\prime} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian_factor(self, params): """ Poisson model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return -L
Poisson model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
hessian_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_score_obs_dendog(self, params, scale=None): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated scale : None or float If scale is None, then the default scale will be calculated. Default scale is defined by `self.scaletype` and set in fit. If scale is not None, then it is used as a fixed scale. Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual. """ return self.exog
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated scale : None or float If scale is None, then the default scale will be calculated. Default scale is defined by `self.scaletype` and set in fit. If scale is not None, then it is used as a fixed scale. Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict(self, params, exog=None, exposure=None, offset=None, which='mean', linear=None, y_values=None): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like, optional 1d or 2d array of exogenous values. If not supplied, then the exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. offset : array_like, optional Offset is added to the linear predictor with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. Default is one if exog is is not None, and is the model exposure if exog is None. which : 'mean', 'linear', 'var', 'prob' (optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. - 'prob' return probabilities for counts from 0 to max(endog) or for y_values if those are provided. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"`` """ # Note docstring is reused by other count models if linear is not None: msg = 'linear keyword is deprecated, use which="linear"' warnings.warn(msg, FutureWarning) if linear is True: which = "linear" if which.startswith("lin"): which = "linear" if which in ["mean", "linear"]: return super().predict(params, exog=exog, exposure=exposure, offset=offset, which=which, linear=linear) # TODO: add full set of which elif which == "var": mu = self.predict(params, exog=exog, exposure=exposure, offset=offset, ) return mu elif which == "prob": if y_values is not None: y_values = np.atleast_2d(y_values) else: y_values = np.atleast_2d( np.arange(0, np.max(self.endog) + 1)) mu = self.predict(params, exog=exog, exposure=exposure, offset=offset, )[:, None] # uses broadcasting return stats.poisson._pmf(y_values, mu) else: raise ValueError('Value of the `which` option is not recognized')
Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like, optional 1d or 2d array of exogenous values. If not supplied, then the exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. offset : array_like, optional Offset is added to the linear predictor with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. Default is one if exog is is not None, and is the model exposure if exog is None. which : 'mean', 'linear', 'var', 'prob' (optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var' returns the estimated variance of endog implied by the model. - 'prob' return probabilities for counts from 0 to max(endog) or for y_values if those are provided. .. versionadded: 0.14 ``which`` replaces and extends the deprecated ``linear`` argument. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. .. deprecated: 0.14 The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. y_values : array_like Values of the random variable endog at which pmf is evaluated. Only used if ``which="prob"``
predict
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _prob_nonzero(self, mu, params=None): """Probability that count is not zero internal use in Censored model, will be refactored or removed """ prob_nz = - np.expm1(-mu) return prob_nz
Probability that count is not zero internal use in Censored model, will be refactored or removed
_prob_nonzero
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _var(self, mu, params=None): """variance implied by the distribution internal use, will be refactored or removed """ return mu
variance implied by the distribution internal use, will be refactored or removed
_var
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, exposure=None, offset=None): """Get frozen instance of distribution based on predicted parameters. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor of the mean function with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. Returns ------- Instance of frozen scipy distribution subclass. """ mu = self.predict(params, exog=exog, exposure=exposure, offset=offset) distr = stats.poisson(mu) return distr
Get frozen instance of distribution based on predicted parameters. Parameters ---------- params : array_like The parameters of the model. exog : ndarray, optional Explanatory variables for the main count model. If ``exog`` is None, then the data from the model will be used. offset : ndarray, optional Offset is added to the linear predictor of the mean function with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None. exposure : ndarray, optional Log(exposure) is added to the linear predictor of the mean function with coefficient equal to 1. If exposure is specified, then it will be logged by the method. The user does not need to log it first. Default is one if exog is is not None, and it is the model exposure if exog is None. Returns ------- Instance of frozen scipy distribution subclass.
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] """ return np.sum(self.loglikeobs(params))
Loglikelihood of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right]
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] for observations :math:`i=1,...,n` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization endog = self.endog mu = self.predict(params) mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + (a1 - 1) * endog a1 = np.maximum(1e-20, a1) a2 = np.maximum(1e-20, a2) return (np.log(mu) + (endog - 1) * np.log(a2) - endog * np.log(a1) - gammaln(endog + 1) - a2 / a1)
Loglikelihood for observations of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] for observations :math:`i=1,...,n`
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _score_p(self, params): """ Generalized Poisson model derivative of the log-likelihood by p-parameter Parameters ---------- params : array_like The parameters of the model Returns ------- dldp : float dldp is first derivative of the loglikelihood function, evaluated at `p-parameter`. """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y dp = np.sum(np.log(mu) * ((a2 - mu) * ((y - 1) / a2 - 2 / a1) + (a1 - 1) * a2 / a1 ** 2)) return dp
Generalized Poisson model derivative of the log-likelihood by p-parameter Parameters ---------- params : array_like The parameters of the model Returns ------- dldp : float dldp is first derivative of the loglikelihood function, evaluated at `p-parameter`.
_score_p
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y a5 = p * mu ** (p - 1) dmudb = mu * exog # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) for i in range(dim): for j in range(i + 1): hess_val = np.sum(mu * exog[:,i,None] * exog[:,j,None] * (mu * (a3 * a4 / a1**2 - 2 * a3**2 * a2 / a1**3 + 2 * a3 * (a4 + 1) / a1**2 - a4 * p / (mu * a1) + a3 * p * a2 / (mu * a1**2) + (y - 1) * a4 * (p - 1) / (a2 * mu) - (y - 1) * (1 + a4)**2 / a2**2 - a4 * (p - 1) / (a1 * mu)) + ((y - 1) * (1 + a4) / a2 - (1 + a4) / a1)), axis=0) hess_arr[i, j] = np.squeeze(hess_val) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha dldpda = np.sum((2 * a4 * mu_p / a1**2 - 2 * a3 * mu_p * a2 / a1**3 - mu_p * y * (y - 1) * (1 + a4) / a2**2 + mu_p * (1 + a4) / a1**2 + a5 * y * (y - 1) / a2 - 2 * a5 * y / a1 + a5 * a2 / a1**2) * dmudb, axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda # for dl/dalpha dalpha dldada = mu_p**2 * (3 * y / a1**2 - (y / a2)**2. * (y - 1) - 2 * a2 / a1**3) hess_arr[-1,-1] = dldada.sum() return hess_arr
Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params`
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian_factor(self, params): """ Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (nobs, 3) The Hessian factor, second derivative of loglikelihood function with respect to linear predictor and dispersion parameter evaluated at `params` The first column contains the second derivative w.r.t. linpred, the second column contains the cross derivative, and the third column contains the second derivative w.r.t. the dispersion parameter. """ params = np.asarray(params) if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization y = self.endog mu = self.predict(params) mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y a5 = p * mu ** (p - 1) dmudb = mu dbb = mu * ( mu * (a3 * a4 / a1**2 - 2 * a3**2 * a2 / a1**3 + 2 * a3 * (a4 + 1) / a1**2 - a4 * p / (mu * a1) + a3 * p * a2 / (mu * a1**2) + a4 / (mu * a1) - a3 * a2 / (mu * a1**2) + (y - 1) * a4 * (p - 1) / (a2 * mu) - (y - 1) * (1 + a4)**2 / a2**2 - a4 * (p - 1) / (a1 * mu) - 1 / mu**2) + (-a4 / a1 + a3 * a2 / a1**2 + (y - 1) * (1 + a4) / a2 - (1 + a4) / a1 + 1 / mu)) # for dl/dlinpred dalpha dba = ((2 * a4 * mu_p / a1**2 - 2 * a3 * mu_p * a2 / a1**3 - mu_p * y * (y - 1) * (1 + a4) / a2**2 + mu_p * (1 + a4) / a1**2 + a5 * y * (y - 1) / a2 - 2 * a5 * y / a1 + a5 * a2 / a1**2) * dmudb) # for dl/dalpha dalpha daa = mu_p**2 * (3 * y / a1**2 - (y / a2)**2. * (y - 1) - 2 * a2 / a1**3) return dbb, dba, daa
Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (nobs, 3) The Hessian factor, second derivative of loglikelihood function with respect to linear predictor and dispersion parameter evaluated at `params` The first column contains the second derivative w.r.t. linpred, the second column contains the cross derivative, and the third column contains the second derivative w.r.t. the dispersion parameter.
hessian_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_score_obs_dendog(self, params): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. """ # code duplication with NegativeBinomialP from statsmodels.tools.numdiff import _approx_fprime_cs_scalar def f(y): if y.ndim == 2 and y.shape[1] == 1: y = y[:, 0] sf = self.score_factor(params, endog=y) return np.column_stack(sf) dsf = _approx_fprime_cs_scalar(self.endog[:, None], f) # deriv is 2d vector d1 = dsf[:, :1] * self.exog d2 = dsf[:, 1:2] return np.column_stack((d1, d2))
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _var(self, mu, params=None): """variance implied by the distribution internal use, will be refactored or removed """ alpha = params[-1] pm1 = self.parameterization # `p-1` in GPP var_ = mu * (1 + alpha * mu**pm1)**2 return var_
variance implied by the distribution internal use, will be refactored or removed
_var
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _prob_nonzero(self, mu, params): """Probability that count is not zero internal use in Censored model, will be refactored or removed """ alpha = params[-1] pm1 = self.parameterization # p-1 in GPP prob_zero = np.exp(- mu / (1 + alpha * mu**pm1)) prob_nz = 1 - prob_zero return prob_nz
Probability that count is not zero internal use in Censored model, will be refactored or removed
_prob_nonzero
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, exposure=None, offset=None): """get frozen instance of distribution """ mu = self.predict(params, exog=exog, exposure=exposure, offset=offset) p = self.parameterization + 1 # distr = genpoisson_p(mu[:, None], params[-1], p) distr = genpoisson_p(mu, params[-1], p) return distr
get frozen instance of distribution
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cdf(self, X): """ The logistic cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- 1/(1 + exp(-X)) Notes ----- In the logit model, .. math:: \\Lambda\\left(x^{\\prime}\\beta\\right)= \\text{Prob}\\left(Y=1|x\\right)= \\frac{e^{x^{\\prime}\\beta}}{1+e^{x^{\\prime}\\beta}} """ X = np.asarray(X) return 1/(1+np.exp(-X))
The logistic cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- 1/(1 + exp(-X)) Notes ----- In the logit model, .. math:: \\Lambda\\left(x^{\\prime}\\beta\\right)= \\text{Prob}\\left(Y=1|x\\right)= \\frac{e^{x^{\\prime}\\beta}}{1+e^{x^{\\prime}\\beta}}
cdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pdf(self, X): """ The logistic probability density function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- pdf : ndarray The value of the Logit probability mass function, PMF, for each point of X. ``np.exp(-x)/(1+np.exp(-X))**2`` Notes ----- In the logit model, .. math:: \\lambda\\left(x^{\\prime}\\beta\\right)=\\frac{e^{-x^{\\prime}\\beta}}{\\left(1+e^{-x^{\\prime}\\beta}\\right)^{2}} """ X = np.asarray(X) return np.exp(-X)/(1+np.exp(-X))**2
The logistic probability density function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- pdf : ndarray The value of the Logit probability mass function, PMF, for each point of X. ``np.exp(-x)/(1+np.exp(-X))**2`` Notes ----- In the logit model, .. math:: \\lambda\\left(x^{\\prime}\\beta\\right)=\\frac{e^{-x^{\\prime}\\beta}}{\\left(1+e^{-x^{\\prime}\\beta}\\right)^{2}}
pdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Log-likelihood of logit model. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 linpred = self.predict(params, which="linear") return np.sum(np.log(self.cdf(q * linpred)))
Log-likelihood of logit model. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric.
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Log-likelihood of logit model for each observation. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 linpred = self.predict(params, which="linear") return np.log(self.cdf(q * linpred))
Log-likelihood of logit model for each observation. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric.
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score(self, params): """ Logit model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\Lambda_{i}\\right)x_{i} """ y = self.endog X = self.exog fitted = self.predict(params) return np.dot(y - fitted, X)
Logit model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\Lambda_{i}\\right)x_{i}
score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_obs(self, params): """ Logit model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\Lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` """ y = self.endog X = self.exog fitted = self.predict(params) return (y - fitted)[:,None] * X
Logit model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\Lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n`
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_factor(self, params): """ Logit model derivative of the log-likelihood with respect to linpred. Parameters ---------- params : array_like The parameters of the model Returns ------- score_factor : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ y = self.endog fitted = self.predict(params) return (y - fitted)
Logit model derivative of the log-likelihood with respect to linpred. Parameters ---------- params : array_like The parameters of the model Returns ------- score_factor : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta
score_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Logit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i}\\Lambda_{i}\\left(1-\\Lambda_{i}\\right)x_{i}x_{i}^{\\prime} """ X = self.exog L = self.predict(params) return -np.dot(L*(1-L)*X.T,X)
Logit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i}\\Lambda_{i}\\left(1-\\Lambda_{i}\\right)x_{i}x_{i}^{\\prime}
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian_factor(self, params): """ Logit model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params` """ L = self.predict(params) return -L * (1 - L)
Logit model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params`
hessian_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_score_obs_dendog(self, params): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual. """ return self.exog
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cdf(self, X): """ Probit (Normal) cumulative distribution function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- This function is just an alias for scipy.stats.norm.cdf """ return stats.norm._cdf(X)
Probit (Normal) cumulative distribution function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- This function is just an alias for scipy.stats.norm.cdf
cdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pdf(self, X): """ Probit (Normal) probability density function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- pdf : ndarray The value of the normal density function for each point of X. Notes ----- This function is just an alias for scipy.stats.norm.pdf """ X = np.asarray(X) return stats.norm._pdf(X)
Probit (Normal) probability density function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- pdf : ndarray The value of the normal density function for each point of X. Notes ----- This function is just an alias for scipy.stats.norm.pdf
pdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Log-likelihood of probit model (i.e., the normal distribution). Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 linpred = self.predict(params, which="linear") return np.sum(np.log(np.clip(self.cdf(q * linpred), FLOAT_EPS, 1)))
Log-likelihood of probit model (i.e., the normal distribution). Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric.
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Log-likelihood of probit model for each observation Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 linpred = self.predict(params, which="linear") return np.log(np.clip(self.cdf(q*linpred), FLOAT_EPS, 1))
Log-likelihood of probit model for each observation Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric.
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score(self, params): """ Probit model score (gradient) vector Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = self.predict(params, which="linear") q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return np.dot(L,X)
Probit model score (gradient) vector Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric.
score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_obs(self, params): """ Probit model Jacobian for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = self.predict(params, which="linear") q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return L[:,None] * X
Probit model Jacobian for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric.
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_factor(self, params): """ Probit model Jacobian for each observation Parameters ---------- params : array-like The parameters of the model Returns ------- score_factor : array_like (nobs,) The derivative of the loglikelihood function for each observation with respect to linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog XB = self.predict(params, which="linear") q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return L
Probit model Jacobian for each observation Parameters ---------- params : array-like The parameters of the model Returns ------- score_factor : array_like (nobs,) The derivative of the loglikelihood function for each observation with respect to linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric.
score_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Probit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1` """ X = self.exog XB = self.predict(params, which="linear") q = 2*self.endog - 1 L = q*self.pdf(q*XB)/self.cdf(q*XB) return np.dot(-L*(L+XB)*X.T,X)
Probit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1`
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian_factor(self, params): """ Probit model Hessian factor of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1` """ XB = self.predict(params, which="linear") q = 2 * self.endog - 1 L = q * self.pdf(q * XB) / self.cdf(q * XB) return -L * (L + XB)
Probit model Hessian factor of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1`
hessian_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause