code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def kernel_pdf_lognorm_(x, sample, bw): """Log-normal kernel for density, pdf, estimation, explicit formula. Jin, Kawczak 2003 """ term = 8 * np.log(1 + bw) # this is 2 * variance in normal pdf pdf = (1 / np.sqrt(term * np.pi) / sample * np.exp(- (np.log(x) - np.log(sample))**2 / term)) return pdf.mean(-1)
Log-normal kernel for density, pdf, estimation, explicit formula. Jin, Kawczak 2003
kernel_pdf_lognorm_
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def _compute_min_std_IQR(data): """Compute minimum of std and IQR for each variable.""" s1 = np.std(data, axis=0) q75 = mquantiles(data, 0.75, axis=0).data[0] q25 = mquantiles(data, 0.25, axis=0).data[0] s2 = (q75 - q25) / 1.349 # IQR dispersion = np.minimum(s1, s2) return dispersion
Compute minimum of std and IQR for each variable.
_compute_min_std_IQR
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _compute_subset(class_type, data, bw, co, do, n_cvars, ix_ord, ix_unord, n_sub, class_vars, randomize, bound): """"Compute bw on subset of data. Called from ``GenericKDE._compute_efficient_*``. Notes ----- Needs to be outside the class in order for joblib to be able to pickle it. """ if randomize: np.random.shuffle(data) sub_data = data[:n_sub, :] else: sub_data = data[bound[0]:bound[1], :] if class_type == 'KDEMultivariate': from .kernel_density import KDEMultivariate var_type = class_vars[0] sub_model = KDEMultivariate(sub_data, var_type, bw=bw, defaults=EstimatorSettings(efficient=False)) elif class_type == 'KDEMultivariateConditional': from .kernel_density import KDEMultivariateConditional k_dep, dep_type, indep_type = class_vars endog = sub_data[:, :k_dep] exog = sub_data[:, k_dep:] sub_model = KDEMultivariateConditional(endog, exog, dep_type, indep_type, bw=bw, defaults=EstimatorSettings(efficient=False)) elif class_type == 'KernelReg': from .kernel_regression import KernelReg var_type, k_vars, reg_type = class_vars endog = _adjust_shape(sub_data[:, 0], 1) exog = _adjust_shape(sub_data[:, 1:], k_vars) sub_model = KernelReg(endog=endog, exog=exog, reg_type=reg_type, var_type=var_type, bw=bw, defaults=EstimatorSettings(efficient=False)) else: raise ValueError("class_type not recognized, should be one of " \ "{KDEMultivariate, KDEMultivariateConditional, KernelReg}") # Compute dispersion in next 4 lines if class_type == 'KernelReg': sub_data = sub_data[:, 1:] dispersion = _compute_min_std_IQR(sub_data) fct = dispersion * n_sub**(-1. / (n_cvars + co)) fct[ix_unord] = n_sub**(-2. / (n_cvars + do)) fct[ix_ord] = n_sub**(-2. / (n_cvars + do)) sample_scale_sub = sub_model.bw / fct #TODO: check if correct bw_sub = sub_model.bw return sample_scale_sub, bw_sub
Compute bw on subset of data. Called from ``GenericKDE._compute_efficient_*``. Notes ----- Needs to be outside the class in order for joblib to be able to pickle it.
_compute_subset
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _compute_bw(self, bw): """ Computes the bandwidth of the data. Parameters ---------- bw : {array_like, str} If array_like: user-specified bandwidth. If a string, should be one of: - cv_ml: cross validation maximum likelihood - normal_reference: normal reference rule of thumb - cv_ls: cross validation least squares Notes ----- The default values for bw is 'normal_reference'. """ if bw is None: bw = 'normal_reference' if not isinstance(bw, str): self._bw_method = "user-specified" res = np.asarray(bw) else: # The user specified a bandwidth selection method self._bw_method = bw # Workaround to avoid instance methods in __dict__ if bw == 'normal_reference': bwfunc = self._normal_reference elif bw == 'cv_ml': bwfunc = self._cv_ml else: # bw == 'cv_ls' bwfunc = self._cv_ls res = bwfunc() return res
Computes the bandwidth of the data. Parameters ---------- bw : {array_like, str} If array_like: user-specified bandwidth. If a string, should be one of: - cv_ml: cross validation maximum likelihood - normal_reference: normal reference rule of thumb - cv_ls: cross validation least squares Notes ----- The default values for bw is 'normal_reference'.
_compute_bw
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _compute_dispersion(self, data): """ Computes the measure of dispersion. The minimum of the standard deviation and interquartile range / 1.349 Notes ----- Reimplemented in `KernelReg`, because the first column of `data` has to be removed. References ---------- See the user guide for the np package in R. In the notes on bwscaling option in npreg, npudens, npcdens there is a discussion on the measure of dispersion """ return _compute_min_std_IQR(data)
Computes the measure of dispersion. The minimum of the standard deviation and interquartile range / 1.349 Notes ----- Reimplemented in `KernelReg`, because the first column of `data` has to be removed. References ---------- See the user guide for the np package in R. In the notes on bwscaling option in npreg, npudens, npcdens there is a discussion on the measure of dispersion
_compute_dispersion
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _get_class_vars_type(self): """Helper method to be able to pass needed vars to _compute_subset. Needs to be implemented by subclasses.""" pass
Helper method to be able to pass needed vars to _compute_subset. Needs to be implemented by subclasses.
_get_class_vars_type
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _compute_efficient(self, bw): """ Computes the bandwidth by estimating the scaling factor (c) in n_res resamples of size ``n_sub`` (in `randomize` case), or by dividing ``nobs`` into as many ``n_sub`` blocks as needed (if `randomize` is False). References ---------- See p.9 in socserv.mcmaster.ca/racine/np_faq.pdf """ if bw is None: self._bw_method = 'normal_reference' if isinstance(bw, str): self._bw_method = bw else: self._bw_method = "user-specified" return bw nobs = self.nobs n_sub = self.n_sub data = copy.deepcopy(self.data) n_cvars = self.data_type.count('c') co = 4 # 2*order of continuous kernel do = 4 # 2*order of discrete kernel _, ix_ord, ix_unord = _get_type_pos(self.data_type) # Define bounds for slicing the data if self.randomize: # randomize chooses blocks of size n_sub, independent of nobs bounds = [None] * self.n_res else: bounds = [(i * n_sub, (i+1) * n_sub) for i in range(nobs // n_sub)] if nobs % n_sub > 0: bounds.append((nobs - nobs % n_sub, nobs)) n_blocks = self.n_res if self.randomize else len(bounds) sample_scale = np.empty((n_blocks, self.k_vars)) only_bw = np.empty((n_blocks, self.k_vars)) class_type, class_vars = self._get_class_vars_type() if has_joblib: # `res` is a list of tuples (sample_scale_sub, bw_sub) res = joblib.Parallel(n_jobs=self.n_jobs)( joblib.delayed(_compute_subset)( class_type, data, bw, co, do, n_cvars, ix_ord, ix_unord, \ n_sub, class_vars, self.randomize, bounds[i]) \ for i in range(n_blocks)) else: res = [] for i in range(n_blocks): res.append(_compute_subset(class_type, data, bw, co, do, n_cvars, ix_ord, ix_unord, n_sub, class_vars, self.randomize, bounds[i])) for i in range(n_blocks): sample_scale[i, :] = res[i][0] only_bw[i, :] = res[i][1] s = self._compute_dispersion(data) order_func = np.median if self.return_median else np.mean m_scale = order_func(sample_scale, axis=0) # TODO: Check if 1/5 is correct in line below! bw = m_scale * s * nobs**(-1. / (n_cvars + co)) bw[ix_ord] = m_scale[ix_ord] * nobs**(-2./ (n_cvars + do)) bw[ix_unord] = m_scale[ix_unord] * nobs**(-2./ (n_cvars + do)) if self.return_only_bw: bw = np.median(only_bw, axis=0) return bw
Computes the bandwidth by estimating the scaling factor (c) in n_res resamples of size ``n_sub`` (in `randomize` case), or by dividing ``nobs`` into as many ``n_sub`` blocks as needed (if `randomize` is False). References ---------- See p.9 in socserv.mcmaster.ca/racine/np_faq.pdf
_compute_efficient
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _set_defaults(self, defaults): """Sets the default values for the efficient estimation""" self.n_res = defaults.n_res self.n_sub = defaults.n_sub self.randomize = defaults.randomize self.return_median = defaults.return_median self.efficient = defaults.efficient self.return_only_bw = defaults.return_only_bw self.n_jobs = defaults.n_jobs
Sets the default values for the efficient estimation
_set_defaults
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _normal_reference(self): """ Returns Scott's normal reference rule of thumb bandwidth parameter. Notes ----- See p.13 in [2] for an example and discussion. The formula for the bandwidth is .. math:: h = 1.06n^{-1/(4+q)} where ``n`` is the number of observations and ``q`` is the number of variables. """ X = np.std(self.data, axis=0) return 1.06 * X * self.nobs ** (- 1. / (4 + self.data.shape[1]))
Returns Scott's normal reference rule of thumb bandwidth parameter. Notes ----- See p.13 in [2] for an example and discussion. The formula for the bandwidth is .. math:: h = 1.06n^{-1/(4+q)} where ``n`` is the number of observations and ``q`` is the number of variables.
_normal_reference
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _set_bw_bounds(self, bw): """ Sets bandwidth lower bound to effectively zero )1e-10), and for discrete values upper bound to 1. """ bw[bw < 0] = 1e-10 _, ix_ord, ix_unord = _get_type_pos(self.data_type) bw[ix_ord] = np.minimum(bw[ix_ord], 1.) bw[ix_unord] = np.minimum(bw[ix_unord], 1.) return bw
Sets bandwidth lower bound to effectively zero )1e-10), and for discrete values upper bound to 1.
_set_bw_bounds
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def _adjust_shape(dat, k_vars): """ Returns an array of shape (nobs, k_vars) for use with `gpke`.""" dat = np.asarray(dat) if dat.ndim > 2: dat = np.squeeze(dat) if dat.ndim == 1 and k_vars > 1: # one obs many vars nobs = 1 elif dat.ndim == 1 and k_vars == 1: # one obs one var nobs = len(dat) else: if np.shape(dat)[0] == k_vars and np.shape(dat)[1] != k_vars: dat = dat.T nobs = np.shape(dat)[0] # ndim >1 so many obs many vars dat = np.reshape(dat, (nobs, k_vars)) return dat
Returns an array of shape (nobs, k_vars) for use with `gpke`.
_adjust_shape
python
statsmodels/statsmodels
statsmodels/nonparametric/_kernel_base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/_kernel_base.py
BSD-3-Clause
def gaussian(h, Xi, x): """ Gaussian Kernel for continuous variables Parameters ---------- h : 1-D ndarray, shape (K,) The bandwidths used to estimate the value of the kernel function. Xi : 1-D ndarray, shape (K,) The value of the training set. x : 1-D ndarray, shape (K,) The value at which the kernel density is being estimated. Returns ------- kernel_value : ndarray, shape (nobs, K) The value of the kernel function at each training point for each var. """ return (1. / np.sqrt(2 * np.pi)) * np.exp(-(Xi - x)**2 / (h**2 * 2.))
Gaussian Kernel for continuous variables Parameters ---------- h : 1-D ndarray, shape (K,) The bandwidths used to estimate the value of the kernel function. Xi : 1-D ndarray, shape (K,) The value of the training set. x : 1-D ndarray, shape (K,) The value at which the kernel density is being estimated. Returns ------- kernel_value : ndarray, shape (nobs, K) The value of the kernel function at each training point for each var.
gaussian
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels.py
BSD-3-Clause
def tricube(h, Xi, x): """ Tricube Kernel for continuous variables Parameters ---------- h : 1-D ndarray, shape (K,) The bandwidths used to estimate the value of the kernel function. Xi : 1-D ndarray, shape (K,) The value of the training set. x : 1-D ndarray, shape (K,) The value at which the kernel density is being estimated. Returns ------- kernel_value : ndarray, shape (nobs, K) The value of the kernel function at each training point for each var. """ u = (Xi - x) / h u[np.abs(u) > 1] = 0 return (70. / 81) * (1 - np.abs(u)**3)**3
Tricube Kernel for continuous variables Parameters ---------- h : 1-D ndarray, shape (K,) The bandwidths used to estimate the value of the kernel function. Xi : 1-D ndarray, shape (K,) The value of the training set. x : 1-D ndarray, shape (K,) The value at which the kernel density is being estimated. Returns ------- kernel_value : ndarray, shape (nobs, K) The value of the kernel function at each training point for each var.
tricube
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels.py
BSD-3-Clause
def gaussian_convolution(h, Xi, x): """ Calculates the Gaussian Convolution Kernel """ return (1. / np.sqrt(4 * np.pi)) * np.exp(- (Xi - x)**2 / (h**2 * 4.))
Calculates the Gaussian Convolution Kernel
gaussian_convolution
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels.py
BSD-3-Clause
def aitchison_aitken_reg(h, Xi, x): """ A version for the Aitchison-Aitken kernel for nonparametric regression. Suggested by Li and Racine. """ kernel_value = np.ones(Xi.size) ix = Xi != x inDom = ix * h kernel_value[ix] = inDom[ix] return kernel_value
A version for the Aitchison-Aitken kernel for nonparametric regression. Suggested by Li and Racine.
aitchison_aitken_reg
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels.py
BSD-3-Clause
def wang_ryzin_reg(h, Xi, x): """ A version for the Wang-Ryzin kernel for nonparametric regression. Suggested by Li and Racine in [1] ch.4 """ return h ** abs(Xi - x)
A version for the Wang-Ryzin kernel for nonparametric regression. Suggested by Li and Racine in [1] ch.4
wang_ryzin_reg
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels.py
BSD-3-Clause
def lowess(endog, exog, frac=2.0/3.0, it=3, delta=0.0, xvals=None, is_sorted=False, missing='drop', return_sorted=True): '''LOWESS (Locally Weighted Scatterplot Smoothing) A lowess function that outs smoothed estimates of endog at the given exog values from points (exog, endog) Parameters ---------- endog : 1-D numpy array The y-values of the observed points exog : 1-D numpy array The x-values of the observed points frac : float Between 0 and 1. The fraction of the data used when estimating each y-value. it : int The number of residual-based reweightings to perform. delta : float Distance within which to use linear-interpolation instead of weighted regression. xvals: 1-D numpy array Values of the exogenous variable at which to evaluate the regression. If supplied, cannot use delta. is_sorted : bool If False (default), then the data will be sorted by exog before calculating lowess. If True, then it is assumed that the data is already sorted by exog. If xvals is specified, then it too must be sorted if is_sorted is True. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'drop'. return_sorted : bool If True (default), then the returned array is sorted by exog and has missing (nan or infinite) observations removed. If False, then the returned array is in the same length and the same sequence of observations as the input array. Returns ------- out : {ndarray, float} The returned array is two-dimensional if return_sorted is True, and one dimensional if return_sorted is False. If return_sorted is True, then a numpy array with two columns. The first column contains the sorted x (exog) values and the second column the associated estimated y (endog) values. If return_sorted is False, then only the fitted values are returned, and the observations will be in the same order as the input arrays. If xvals is provided, then return_sorted is ignored and the returned array is always one dimensional, containing the y values fitted at the x values provided by xvals. Notes ----- This lowess function implements the algorithm given in the reference below using local linear estimates. Suppose the input data has N points. The algorithm works by estimating the `smooth` y_i by taking the frac*N closest points to (x_i,y_i) based on their x values and estimating y_i using a weighted linear regression. The weight for (x_j,y_j) is tricube function applied to abs(x_i-x_j). If it > 1, then further weighted local linear regressions are performed, where the weights are the same as above times the _lowess_bisquare function of the residuals. Each iteration takes approximately the same amount of time as the original fit, so these iterations are expensive. They are most useful when the noise has extremely heavy tails, such as Cauchy noise. Noise with less heavy-tails, such as t-distributions with df>2, are less problematic. The weights downgrade the influence of points with large residuals. In the extreme case, points whose residuals are larger than 6 times the median absolute residual are given weight 0. `delta` can be used to save computations. For each `x_i`, regressions are skipped for points closer than `delta`. The next regression is fit for the farthest point within delta of `x_i` and all points in between are estimated by linearly interpolating between the two regression fits. Judicious choice of delta can cut computation time considerably for large data (N > 5000). A good choice is ``delta = 0.01 * range(exog)``. If `xvals` is provided, the regression is then computed at those points and the fit values are returned. Otherwise, the regression is run at points of `exog`. Some experimentation is likely required to find a good choice of `frac` and `iter` for a particular dataset. References ---------- Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association 74 (368): 829-836. Examples -------- The below allows a comparison between how different the fits from lowess for different values of frac can be. >>> import numpy as np >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + np.random.normal(size=len(x)) >>> z = lowess(y, x) >>> w = lowess(y, x, frac=1./3) This gives a similar comparison for when it is 0 vs not. >>> import numpy as np >>> import scipy.stats as stats >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x)) >>> z = lowess(y, x, frac= 1./3, it=0) >>> w = lowess(y, x, frac=1./3) ''' endog = np.asarray(endog, float) exog = np.asarray(exog, float) # Whether xvals argument was provided given_xvals = (xvals is not None) # Inputs should be vectors (1-D arrays) of the # same length. if exog.ndim != 1: raise ValueError('exog must be a vector') if endog.ndim != 1: raise ValueError('endog must be a vector') if endog.shape[0] != exog.shape[0] : raise ValueError('exog and endog must have same length') if xvals is not None: xvals = np.ascontiguousarray(xvals) if xvals.ndim != 1: raise ValueError('exog_predict must be a vector') if missing in ['drop', 'raise']: mask_valid = (np.isfinite(exog) & np.isfinite(endog)) all_valid = np.all(mask_valid) if all_valid: y = endog x = exog else: if missing == 'drop': x = exog[mask_valid] y = endog[mask_valid] else: raise ValueError('nan or inf found in data') elif missing == 'none': y = endog x = exog all_valid = True # we assume it's true if missing='none' else: raise ValueError("missing can only be 'none', 'drop' or 'raise'") if not is_sorted: # Sort both inputs according to the ascending order of x values sort_index = np.argsort(x) x = np.array(x[sort_index]) y = np.array(y[sort_index]) if not given_xvals: # If given no explicit x values, we use the x-values in the exog array xvals = exog xvalues = x xvals_all_valid = all_valid if missing == 'drop': xvals_mask_valid = mask_valid else: if delta != 0.0: raise ValueError("Cannot have non-zero 'delta' and 'xvals' values") # TODO: allow this again mask_valid = np.isfinite(xvals) if missing == "raise": raise ValueError("NaN values in xvals with missing='raise'") elif missing == 'drop': xvals_mask_valid = mask_valid xvalues = xvals xvals_all_valid = True if missing == "none" else np.all(mask_valid) # With explicit xvals, we ignore 'return_sorted' and always # use the order provided return_sorted = False if missing in ['drop', 'raise']: xvals_mask_valid = np.isfinite(xvals) xvals_all_valid = np.all(xvals_mask_valid) if xvals_all_valid: xvalues = xvals else: if missing == 'drop': xvalues = xvals[xvals_mask_valid] else: raise ValueError("nan or inf found in xvals") if not is_sorted: sort_index = np.argsort(xvalues) xvalues = np.array(xvalues[sort_index]) else: xvals_all_valid = True y = np.ascontiguousarray(y) x = np.ascontiguousarray(x) if not given_xvals: # Run LOWESS on the data points res, _ = _lowess(y, x, x, np.ones_like(x), frac=frac, it=it, delta=delta, given_xvals=False) else: # First run LOWESS on the data points to get the weights of the data points # using it-1 iterations, last iter done next if it > 0: _, weights = _lowess(y, x, x, np.ones_like(x), frac=frac, it=it-1, delta=delta, given_xvals=False) else: weights = np.ones_like(x) xvalues = np.ascontiguousarray(xvalues, dtype=float) # Then run once more using those supplied weights at the points provided by xvals # No extra iterations are performed here since weights are fixed res, _ = _lowess(y, x, xvalues, weights, frac=frac, it=0, delta=delta, given_xvals=True) _, yfitted = res.T if return_sorted: return res else: # rebuild yfitted with original indices # a bit messy: y might have been selected twice if not is_sorted: yfitted_ = np.empty_like(xvalues) yfitted_.fill(np.nan) yfitted_[sort_index] = yfitted yfitted = yfitted_ else: yfitted = yfitted if not xvals_all_valid: yfitted_ = np.empty_like(xvals) yfitted_.fill(np.nan) yfitted_[xvals_mask_valid] = yfitted yfitted = yfitted_ # we do not need to return exog anymore return yfitted
LOWESS (Locally Weighted Scatterplot Smoothing) A lowess function that outs smoothed estimates of endog at the given exog values from points (exog, endog) Parameters ---------- endog : 1-D numpy array The y-values of the observed points exog : 1-D numpy array The x-values of the observed points frac : float Between 0 and 1. The fraction of the data used when estimating each y-value. it : int The number of residual-based reweightings to perform. delta : float Distance within which to use linear-interpolation instead of weighted regression. xvals: 1-D numpy array Values of the exogenous variable at which to evaluate the regression. If supplied, cannot use delta. is_sorted : bool If False (default), then the data will be sorted by exog before calculating lowess. If True, then it is assumed that the data is already sorted by exog. If xvals is specified, then it too must be sorted if is_sorted is True. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'drop'. return_sorted : bool If True (default), then the returned array is sorted by exog and has missing (nan or infinite) observations removed. If False, then the returned array is in the same length and the same sequence of observations as the input array. Returns ------- out : {ndarray, float} The returned array is two-dimensional if return_sorted is True, and one dimensional if return_sorted is False. If return_sorted is True, then a numpy array with two columns. The first column contains the sorted x (exog) values and the second column the associated estimated y (endog) values. If return_sorted is False, then only the fitted values are returned, and the observations will be in the same order as the input arrays. If xvals is provided, then return_sorted is ignored and the returned array is always one dimensional, containing the y values fitted at the x values provided by xvals. Notes ----- This lowess function implements the algorithm given in the reference below using local linear estimates. Suppose the input data has N points. The algorithm works by estimating the `smooth` y_i by taking the frac*N closest points to (x_i,y_i) based on their x values and estimating y_i using a weighted linear regression. The weight for (x_j,y_j) is tricube function applied to abs(x_i-x_j). If it > 1, then further weighted local linear regressions are performed, where the weights are the same as above times the _lowess_bisquare function of the residuals. Each iteration takes approximately the same amount of time as the original fit, so these iterations are expensive. They are most useful when the noise has extremely heavy tails, such as Cauchy noise. Noise with less heavy-tails, such as t-distributions with df>2, are less problematic. The weights downgrade the influence of points with large residuals. In the extreme case, points whose residuals are larger than 6 times the median absolute residual are given weight 0. `delta` can be used to save computations. For each `x_i`, regressions are skipped for points closer than `delta`. The next regression is fit for the farthest point within delta of `x_i` and all points in between are estimated by linearly interpolating between the two regression fits. Judicious choice of delta can cut computation time considerably for large data (N > 5000). A good choice is ``delta = 0.01 * range(exog)``. If `xvals` is provided, the regression is then computed at those points and the fit values are returned. Otherwise, the regression is run at points of `exog`. Some experimentation is likely required to find a good choice of `frac` and `iter` for a particular dataset. References ---------- Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association 74 (368): 829-836. Examples -------- The below allows a comparison between how different the fits from lowess for different values of frac can be. >>> import numpy as np >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + np.random.normal(size=len(x)) >>> z = lowess(y, x) >>> w = lowess(y, x, frac=1./3) This gives a similar comparison for when it is 0 vs not. >>> import numpy as np >>> import scipy.stats as stats >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x)) >>> z = lowess(y, x, frac= 1./3, it=0) >>> w = lowess(y, x, frac=1./3)
lowess
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess.py
BSD-3-Clause
def forrt(X, m=None): """ RFFT with order like Munro (1976) FORTT routine. """ if m is None: m = len(X) y = np.fft.rfft(X, m) / m return np.r_[y.real, y[1:-1].imag]
RFFT with order like Munro (1976) FORTT routine.
forrt
python
statsmodels/statsmodels
statsmodels/nonparametric/kdetools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kdetools.py
BSD-3-Clause
def revrt(X, m=None): """ Inverse of forrt. Equivalent to Munro (1976) REVRT routine. """ if m is None: m = len(X) i = int(m // 2 + 1) y = X[:i] + np.r_[0, X[i:], 0] * 1j return np.fft.irfft(y)*m
Inverse of forrt. Equivalent to Munro (1976) REVRT routine.
revrt
python
statsmodels/statsmodels
statsmodels/nonparametric/kdetools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kdetools.py
BSD-3-Clause
def silverman_transform(bw, M, RANGE): """ FFT of Gaussian kernel following to Silverman AS 176. Notes ----- Underflow is intentional as a dampener. """ J = np.arange(M/2+1) FAC1 = 2*(np.pi*bw/RANGE)**2 JFAC = J**2*FAC1 BC = 1 - 1. / 3 * (J * 1./M*np.pi)**2 FAC = np.exp(-JFAC)/BC kern_est = np.r_[FAC, FAC[1:-1]] return kern_est
FFT of Gaussian kernel following to Silverman AS 176. Notes ----- Underflow is intentional as a dampener.
silverman_transform
python
statsmodels/statsmodels
statsmodels/nonparametric/kdetools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kdetools.py
BSD-3-Clause
def counts(x, v): """ Counts the number of elements of x that fall within the grid points v Notes ----- Using np.digitize and np.bincount """ idx = np.digitize(x, v) return np.bincount(idx, minlength=len(v))
Counts the number of elements of x that fall within the grid points v Notes ----- Using np.digitize and np.bincount
counts
python
statsmodels/statsmodels
statsmodels/nonparametric/kdetools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kdetools.py
BSD-3-Clause
def fit( self, kernel="gau", bw="normal_reference", fft=True, weights=None, gridsize=None, adjust=1, cut=3, clip=(-np.inf, np.inf), ): """ Attach the density estimate to the KDEUnivariate class. Parameters ---------- kernel : str The Kernel to be used. Choices are: - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used fft : bool Whether or not to use FFT. FFT implementation is more computationally efficient. However, only the Gaussian kernel is implemented. If FFT is False, then a 'nobs' x 'gridsize' intermediate array is created. gridsize : int If gridsize is None, max(len(x), 50) is used. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are ``min(x) - cut * adjust * bw`` and ``max(x) + cut * adjust * bw``. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. Returns ------- KDEUnivariate The instance fit, """ if isinstance(bw, str): self.bw_method = bw else: self.bw_method = "user-given" if not callable(bw): bw = float_like(bw, "bw") endog = self.endog if fft: if kernel != "gau": msg = "Only gaussian kernel is available for fft" raise NotImplementedError(msg) if weights is not None: msg = "Weights are not implemented for fft" raise NotImplementedError(msg) density, grid, bw = kdensityfft( endog, kernel=kernel, bw=bw, adjust=adjust, weights=weights, gridsize=gridsize, clip=clip, cut=cut, ) else: density, grid, bw = kdensity( endog, kernel=kernel, bw=bw, adjust=adjust, weights=weights, gridsize=gridsize, clip=clip, cut=cut, ) self.density = density self.support = grid self.bw = bw self.kernel = kernel_switch[kernel](h=bw) # we instantiate twice, # should this passed to funcs? # put here to ensure empty cache after re-fit with new options self.kernel.weights = weights if weights is not None: self.kernel.weights /= weights.sum() self._cache = {} return self
Attach the density estimate to the KDEUnivariate class. Parameters ---------- kernel : str The Kernel to be used. Choices are: - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used fft : bool Whether or not to use FFT. FFT implementation is more computationally efficient. However, only the Gaussian kernel is implemented. If FFT is False, then a 'nobs' x 'gridsize' intermediate array is created. gridsize : int If gridsize is None, max(len(x), 50) is used. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are ``min(x) - cut * adjust * bw`` and ``max(x) + cut * adjust * bw``. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. Returns ------- KDEUnivariate The instance fit,
fit
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def cdf(self): """ Returns the cumulative distribution function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) kern = self.kernel if kern.domain is None: # TODO: test for grid point at domain bound a, b = -np.inf, np.inf else: a, b = kern.domain def func(x, s): return np.squeeze(kern.density(s, x)) support = self.support support = np.r_[a, support] gridsize = len(support) endog = self.endog probs = [ integrate.quad(func, support[i - 1], support[i], args=endog)[0] for i in range(1, gridsize) ] return np.cumsum(probs)
Returns the cumulative distribution function evaluated at the support. Notes ----- Will not work if fit has not been called.
cdf
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def cumhazard(self): """ Returns the hazard function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) return -np.log(self.sf)
Returns the hazard function evaluated at the support. Notes ----- Will not work if fit has not been called.
cumhazard
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def sf(self): """ Returns the survival function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) return 1 - self.cdf
Returns the survival function evaluated at the support. Notes ----- Will not work if fit has not been called.
sf
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def entropy(self): """ Returns the differential entropy evaluated at the support Notes ----- Will not work if fit has not been called. 1e-12 is added to each probability to ensure that log(0) is not called. """ _checkisfit(self) def entr(x, s): pdf = kern.density(s, x) return pdf * np.log(pdf + 1e-12) kern = self.kernel if kern.domain is not None: a, b = self.domain else: a, b = -np.inf, np.inf endog = self.endog # TODO: below could run into integr problems, cf. stats.dist._entropy return -integrate.quad(entr, a, b, args=(endog,))[0]
Returns the differential entropy evaluated at the support Notes ----- Will not work if fit has not been called. 1e-12 is added to each probability to ensure that log(0) is not called.
entropy
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def icdf(self): """ Inverse Cumulative Distribution (Quantile) Function Notes ----- Will not work if fit has not been called. Uses `scipy.stats.mstats.mquantiles`. """ _checkisfit(self) gridsize = len(self.density) return stats.mstats.mquantiles(self.endog, np.linspace(0, 1, gridsize))
Inverse Cumulative Distribution (Quantile) Function Notes ----- Will not work if fit has not been called. Uses `scipy.stats.mstats.mquantiles`.
icdf
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def evaluate(self, point): """ Evaluate density at a point or points. Parameters ---------- point : {float, ndarray} Point(s) at which to evaluate the density. """ _checkisfit(self) return self.kernel.density(self.endog, point)
Evaluate density at a point or points. Parameters ---------- point : {float, ndarray} Point(s) at which to evaluate the density.
evaluate
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def kdensity( x, kernel="gau", bw="normal_reference", weights=None, gridsize=None, adjust=1, clip=(-np.inf, np.inf), cut=3, retgrid=True, ): """ Rosenblatt-Parzen univariate kernel density estimator. Parameters ---------- x : array_like The variable for which the density estimate is desired. kernel : str The Kernel to be used. Choices are - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used weights : array or None Optional weights. If the x value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, max(len(x), 50) is used. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in x that are outside of the range given by clip are dropped. The number of observations in x is then shortened. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are -/+ cut*bw*{min(x) or max(x)} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : ndarray The densities estimated at the grid points. grid : ndarray, optional The grid points at which the density is estimated. Notes ----- Creates an intermediate (`gridsize` x `nobs`) array. Use FFT for a more computationally efficient version. """ x = np.asarray(x) if x.ndim == 1: x = x[:, None] clip_x = np.logical_and(x > clip[0], x < clip[1]) x = x[clip_x] nobs = len(x) # after trim if gridsize is None: gridsize = max(nobs, 50) # do not need to resize if no FFT # handle weights if weights is None: weights = np.ones(nobs) q = nobs else: # ensure weights is a numpy array weights = np.asarray(weights) if len(weights) != len(clip_x): msg = "The length of the weights must be the same as the given x." raise ValueError(msg) weights = weights[clip_x.squeeze()] q = weights.sum() # Get kernel object corresponding to selection kern = kernel_switch[kernel]() if callable(bw): bw = float(bw(x, kern)) # user passed a callable custom bandwidth function elif isinstance(bw, str): bw = bandwidths.select_bandwidth(x, bw, kern) # will cross-val fit this pattern? else: bw = float_like(bw, "bw") bw *= adjust a = np.min(x, axis=0) - cut * bw b = np.max(x, axis=0) + cut * bw grid = np.linspace(a, b, gridsize) k = ( x.T - grid[:, None] ) / bw # uses broadcasting to make a gridsize x nobs # set kernel bandwidth kern.seth(bw) # truncate to domain if ( kern.domain is not None ): # will not work for piecewise kernels like parzen z_lo, z_high = kern.domain domain_mask = (k < z_lo) | (k > z_high) k = kern(k) # estimate density k[domain_mask] = 0 else: k = kern(k) # estimate density k[k < 0] = 0 # get rid of any negative values, do we need this? dens = np.dot(k, weights) / (q * bw) if retgrid: return dens, grid, bw else: return dens, bw
Rosenblatt-Parzen univariate kernel density estimator. Parameters ---------- x : array_like The variable for which the density estimate is desired. kernel : str The Kernel to be used. Choices are - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used weights : array or None Optional weights. If the x value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, max(len(x), 50) is used. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in x that are outside of the range given by clip are dropped. The number of observations in x is then shortened. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are -/+ cut*bw*{min(x) or max(x)} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : ndarray The densities estimated at the grid points. grid : ndarray, optional The grid points at which the density is estimated. Notes ----- Creates an intermediate (`gridsize` x `nobs`) array. Use FFT for a more computationally efficient version.
kdensity
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def kdensityfft( x, kernel="gau", bw="normal_reference", weights=None, gridsize=None, adjust=1, clip=(-np.inf, np.inf), cut=3, retgrid=True, ): """ Rosenblatt-Parzen univariate kernel density estimator Parameters ---------- x : array_like The variable for which the density estimate is desired. kernel : str ONLY GAUSSIAN IS CURRENTLY IMPLEMENTED. "bi" for biweight "cos" for cosine "epa" for Epanechnikov, default "epa2" for alternative Epanechnikov "gau" for Gaussian. "par" for Parzen "rect" for rectangular "tri" for triangular bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used weights : array or None WEIGHTS ARE NOT CURRENTLY IMPLEMENTED. Optional weights. If the x value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, min(len(x), 512) is used. Note that the provided number is rounded up to the next highest power of 2. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in x that are outside of the range given by clip are dropped. The number of observations in x is then shortened. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are -/+ cut*bw*{x.min() or x.max()} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : ndarray The densities estimated at the grid points. grid : ndarray, optional The grid points at which the density is estimated. Notes ----- Only the default kernel is implemented. Weights are not implemented yet. This follows Silverman (1982) with changes suggested by Jones and Lotwick (1984). However, the discretization step is replaced by linear binning of Fan and Marron (1994). This should be extended to accept the parts that are dependent only on the data to speed things up for cross-validation. References ---------- Fan, J. and J.S. Marron. (1994) `Fast implementations of nonparametric curve estimators`. Journal of Computational and Graphical Statistics. 3.1, 35-56. Jones, M.C. and H.W. Lotwick. (1984) `Remark AS R50: A Remark on Algorithm AS 176. Kernal Density Estimation Using the Fast Fourier Transform`. Journal of the Royal Statistical Society. Series C. 33.1, 120-2. Silverman, B.W. (1982) `Algorithm AS 176. Kernel density estimation using the Fast Fourier Transform. Journal of the Royal Statistical Society. Series C. 31.2, 93-9. """ x = np.asarray(x) # will not work for two columns. x = x[np.logical_and(x > clip[0], x < clip[1])] # Get kernel object corresponding to selection kern = kernel_switch[kernel]() if callable(bw): bw = float(bw(x, kern)) # user passed a callable custom bandwidth function elif isinstance(bw, str): # if bw is None, select optimal bandwidth for kernel bw = bandwidths.select_bandwidth(x, bw, kern) # will cross-val fit this pattern? else: bw = float_like(bw, "bw") bw *= adjust nobs = len(x) # after trim # 1 Make grid and discretize the data if gridsize is None: gridsize = np.max((nobs, 512.0)) gridsize = 2 ** np.ceil(np.log2(gridsize)) # round to next power of 2 a = np.min(x) - cut * bw b = np.max(x) + cut * bw grid, delta = np.linspace(a, b, int(gridsize), retstep=True) RANGE = b - a # TODO: Fix this? # This is the Silverman binning function, but I believe it's buggy (SS) # weighting according to Silverman # count = counts(x,grid) # binned = np.zeros_like(grid) #xi_{k} in Silverman # j = 0 # for k in range(int(gridsize-1)): # if count[k]>0: # there are points of x in the grid here # Xingrid = x[j:j+count[k]] # get all these points # # get weights at grid[k],grid[k+1] # binned[k] += np.sum(grid[k+1]-Xingrid) # binned[k+1] += np.sum(Xingrid-grid[k]) # j += count[k] # binned /= (nobs)*delta**2 # normalize binned to sum to 1/delta # NOTE: THE ABOVE IS WRONG, JUST TRY WITH LINEAR BINNING binned = fast_linbin(x, a, b, gridsize) / (delta * nobs) # step 2 compute FFT of the weights, using Munro (1976) FFT convention y = forrt(binned) # step 3 and 4 for optimal bw compute zstar and the density estimate f # do not have to redo the above if just changing bw, ie., for cross val # NOTE: silverman_transform is the closed form solution of the FFT of the # gaussian kernel. Not yet sure how to generalize it. zstar = silverman_transform(bw, gridsize, RANGE) * y # 3.49 in Silverman # 3.50 w Gaussian kernel f = revrt(zstar) if retgrid: return f, grid, bw else: return f, bw
Rosenblatt-Parzen univariate kernel density estimator Parameters ---------- x : array_like The variable for which the density estimate is desired. kernel : str ONLY GAUSSIAN IS CURRENTLY IMPLEMENTED. "bi" for biweight "cos" for cosine "epa" for Epanechnikov, default "epa2" for alternative Epanechnikov "gau" for Gaussian. "par" for Parzen "rect" for rectangular "tri" for triangular bw : str, float, callable The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(x),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, its value is used as the bandwidth. - If a callable is given, it's return value is used. The callable should take exactly two parameters, i.e., fn(x, kern), and return a float, where: * x - the clipped input data * kern - the kernel instance used weights : array or None WEIGHTS ARE NOT CURRENTLY IMPLEMENTED. Optional weights. If the x value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, min(len(x), 512) is used. Note that the provided number is rounded up to the next highest power of 2. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in x that are outside of the range given by clip are dropped. The number of observations in x is then shortened. cut : float Defines the length of the grid past the lowest and highest values of x so that the kernel goes to zero. The end points are -/+ cut*bw*{x.min() or x.max()} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : ndarray The densities estimated at the grid points. grid : ndarray, optional The grid points at which the density is estimated. Notes ----- Only the default kernel is implemented. Weights are not implemented yet. This follows Silverman (1982) with changes suggested by Jones and Lotwick (1984). However, the discretization step is replaced by linear binning of Fan and Marron (1994). This should be extended to accept the parts that are dependent only on the data to speed things up for cross-validation. References ---------- Fan, J. and J.S. Marron. (1994) `Fast implementations of nonparametric curve estimators`. Journal of Computational and Graphical Statistics. 3.1, 35-56. Jones, M.C. and H.W. Lotwick. (1984) `Remark AS R50: A Remark on Algorithm AS 176. Kernal Density Estimation Using the Fast Fourier Transform`. Journal of the Royal Statistical Society. Series C. 33.1, 120-2. Silverman, B.W. (1982) `Algorithm AS 176. Kernel density estimation using the Fast Fourier Transform. Journal of the Royal Statistical Society. Series C. 31.2, 93-9.
kdensityfft
python
statsmodels/statsmodels
statsmodels/nonparametric/kde.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kde.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" rpr = "KDE instance\n" rpr += "Number of variables: k_vars = " + str(self.k_vars) + "\n" rpr += "Number of samples: nobs = " + str(self.nobs) + "\n" rpr += "Variable types: " + self.var_type + "\n" rpr += "BW selection method: " + self._bw_method + "\n" return rpr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_density.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_density.py
BSD-3-Clause
def _get_class_vars_type(self): """Helper method to be able to pass needed vars to _compute_subset.""" class_type = 'KDEMultivariate' class_vars = (self.var_type, ) return class_type, class_vars
Helper method to be able to pass needed vars to _compute_subset.
_get_class_vars_type
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_density.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_density.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" rpr = "KDEMultivariateConditional instance\n" rpr += "Number of independent variables: k_indep = " + \ str(self.k_indep) + "\n" rpr += "Number of dependent variables: k_dep = " + \ str(self.k_dep) + "\n" rpr += "Number of observations: nobs = " + str(self.nobs) + "\n" rpr += "Independent variable types: " + self.indep_type + "\n" rpr += "Dependent variable types: " + self.dep_type + "\n" rpr += "BW selection method: " + self._bw_method + "\n" return rpr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_density.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_density.py
BSD-3-Clause
def loo_likelihood(self, bw, func=lambda x: x): """ Returns the leave-one-out conditional likelihood of the data. If `func` is not equal to the default, what's calculated is a function of the leave-one-out conditional likelihood. Parameters ---------- bw : array_like The bandwidth parameter(s). func : callable, optional Function to transform the likelihood values (before summing); for the log likelihood, use ``func=np.log``. Default is ``f(x) = x``. Returns ------- L : float The value of the leave-one-out function for the data. Notes ----- Similar to ``KDE.loo_likelihood`, but substitute ``f(y|x)=f(x,y)/f(x)`` for ``f(x)``. """ yLOO = LeaveOneOut(self.data) xLOO = LeaveOneOut(self.exog).__iter__() L = 0 for i, Y_j in enumerate(yLOO): X_not_i = next(xLOO) f_yx = gpke(bw, data=-Y_j, data_predict=-self.data[i, :], var_type=(self.dep_type + self.indep_type)) f_x = gpke(bw[self.k_dep:], data=-X_not_i, data_predict=-self.exog[i, :], var_type=self.indep_type) f_i = f_yx / f_x L += func(f_i) return -L
Returns the leave-one-out conditional likelihood of the data. If `func` is not equal to the default, what's calculated is a function of the leave-one-out conditional likelihood. Parameters ---------- bw : array_like The bandwidth parameter(s). func : callable, optional Function to transform the likelihood values (before summing); for the log likelihood, use ``func=np.log``. Default is ``f(x) = x``. Returns ------- L : float The value of the leave-one-out function for the data. Notes ----- Similar to ``KDE.loo_likelihood`, but substitute ``f(y|x)=f(x,y)/f(x)`` for ``f(x)``.
loo_likelihood
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_density.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_density.py
BSD-3-Clause
def _get_class_vars_type(self): """Helper method to be able to pass needed vars to _compute_subset.""" class_type = 'KDEMultivariateConditional' class_vars = (self.k_dep, self.dep_type, self.indep_type) return class_type, class_vars
Helper method to be able to pass needed vars to _compute_subset.
_get_class_vars_type
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_density.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_density.py
BSD-3-Clause
def _select_sigma(x, percentile=25): """ Returns the smaller of std(X, ddof=1) or normalized IQR(X) over axis 0. References ---------- Silverman (1986) p.47 """ # normalize = norm.ppf(.75) - norm.ppf(.25) normalize = 1.349 IQR = (scoreatpercentile(x, 75) - scoreatpercentile(x, 25)) / normalize std_dev = np.std(x, axis=0, ddof=1) if IQR > 0: return np.minimum(std_dev, IQR) else: return std_dev
Returns the smaller of std(X, ddof=1) or normalized IQR(X) over axis 0. References ---------- Silverman (1986) p.47
_select_sigma
python
statsmodels/statsmodels
statsmodels/nonparametric/bandwidths.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
BSD-3-Clause
def bw_scott(x, kernel=None): """ Scott's Rule of Thumb Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Unused Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns 1.059 * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) References ---------- Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. """ A = _select_sigma(x) n = len(x) return 1.059 * A * n ** (-0.2)
Scott's Rule of Thumb Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Unused Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns 1.059 * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) References ---------- Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization.
bw_scott
python
statsmodels/statsmodels
statsmodels/nonparametric/bandwidths.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
BSD-3-Clause
def bw_silverman(x, kernel=None): """ Silverman's Rule of Thumb Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Unused Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns .9 * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) References ---------- Silverman, B.W. (1986) `Density Estimation.` """ A = _select_sigma(x) n = len(x) return .9 * A * n ** (-0.2)
Silverman's Rule of Thumb Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Unused Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns .9 * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) References ---------- Silverman, B.W. (1986) `Density Estimation.`
bw_silverman
python
statsmodels/statsmodels
statsmodels/nonparametric/bandwidths.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
BSD-3-Clause
def bw_normal_reference(x, kernel=None): """ Plug-in bandwidth with kernel specific constant based on normal reference. This bandwidth minimizes the mean integrated square error if the true distribution is the normal. This choice is an appropriate bandwidth for single peaked distributions that are similar to the normal distribution. Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Used to calculate the constant for the plug-in bandwidth. The default is a Gaussian kernel. Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns C * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) C = constant from Hansen (2009) When using a Gaussian kernel this is equivalent to the 'scott' bandwidth up to two decimal places. This is the accuracy to which the 'scott' constant is specified. References ---------- Silverman, B.W. (1986) `Density Estimation.` Hansen, B.E. (2009) `Lecture Notes on Nonparametrics.` """ if kernel is None: kernel = kernels.Gaussian() C = kernel.normal_reference_constant A = _select_sigma(x) n = len(x) return C * A * n ** (-0.2)
Plug-in bandwidth with kernel specific constant based on normal reference. This bandwidth minimizes the mean integrated square error if the true distribution is the normal. This choice is an appropriate bandwidth for single peaked distributions that are similar to the normal distribution. Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Used to calculate the constant for the plug-in bandwidth. The default is a Gaussian kernel. Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns C * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) C = constant from Hansen (2009) When using a Gaussian kernel this is equivalent to the 'scott' bandwidth up to two decimal places. This is the accuracy to which the 'scott' constant is specified. References ---------- Silverman, B.W. (1986) `Density Estimation.` Hansen, B.E. (2009) `Lecture Notes on Nonparametrics.`
bw_normal_reference
python
statsmodels/statsmodels
statsmodels/nonparametric/bandwidths.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
BSD-3-Clause
def select_bandwidth(x, bw, kernel): """ Selects bandwidth for a selection rule bw this is a wrapper around existing bandwidth selection rules Parameters ---------- x : array_like Array for which to get the bandwidth bw : str name of bandwidth selection rule, currently supported are: %s kernel : not used yet Returns ------- bw : float The estimate of the bandwidth """ bw = bw.lower() if bw not in bandwidth_funcs: raise ValueError("Bandwidth %s not understood" % bw) bandwidth = bandwidth_funcs[bw](x, kernel) if np.any(bandwidth == 0): # eventually this can fall back on another selection criterion. err = "Selected KDE bandwidth is 0. Cannot estimate density. " \ "Either provide the bandwidth during initialization or use " \ "an alternative method." raise RuntimeError(err) else: return bandwidth
Selects bandwidth for a selection rule bw this is a wrapper around existing bandwidth selection rules Parameters ---------- x : array_like Array for which to get the bandwidth bw : str name of bandwidth selection rule, currently supported are: %s kernel : not used yet Returns ------- bw : float The estimate of the bandwidth
select_bandwidth
python
statsmodels/statsmodels
statsmodels/nonparametric/bandwidths.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
BSD-3-Clause
def write2file(self, file_name, data): # pragma: no cover """Write some data to a csv file. Only use for debugging!""" import csv data_file = csv.writer(open(file_name, "w", encoding="utf-8")) data = np.column_stack(data) nobs = max(np.shape(data)) K = min(np.shape(data)) data = np.reshape(data, (nobs,K)) for i in range(nobs): data_file.writerow(list(data[i, :]))
Write some data to a csv file. Only use for debugging!
write2file
python
statsmodels/statsmodels
statsmodels/nonparametric/tests/test_kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/tests/test_kernel_regression.py
BSD-3-Clause
def predict(self, params, exog=None, exog_precision=None, which="mean"): """Predict values for mean or precision Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for precision parameter. which : str - "mean" : mean, conditional expectation E(endog | exog) - "precision" : predicted precision - "linear" : linear predictor for the mean function - "linear-precision" : linear predictor for the precision parameter Returns ------- ndarray, predicted values """ # compatibility with old names and misspelling if which == "linpred": which = "linear" if which in ["linpred_precision", "linear_precision"]: which = "linear-precision" k_mean = self.exog.shape[1] if which in ["mean", "linear"]: if exog is None: exog = self.exog params_mean = params[:k_mean] # Zparams = params[k_mean:] linpred = np.dot(exog, params_mean) if which == "mean": mu = self.link.inverse(linpred) res = mu else: res = linpred elif which in ["precision", "linear-precision"]: if exog_precision is None: exog_precision = self.exog_precision params_prec = params[k_mean:] linpred_prec = np.dot(exog_precision, params_prec) if which == "precision": phi = self.link_precision.inverse(linpred_prec) res = phi else: res = linpred_prec elif which == "var": res = self._predict_var( params, exog=exog, exog_precision=exog_precision ) else: raise ValueError('which = %s is not available' % which) return res
Predict values for mean or precision Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for precision parameter. which : str - "mean" : mean, conditional expectation E(endog | exog) - "precision" : predicted precision - "linear" : linear predictor for the mean function - "linear-precision" : linear predictor for the precision parameter Returns ------- ndarray, predicted values
predict
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _predict_precision(self, params, exog_precision=None): """Predict values for precision function for given exog_precision. Parameters ---------- params : array_like The model parameters. exog_precision : array_like Array of predictor variables for precision. Returns ------- Predicted precision. """ if exog_precision is None: exog_precision = self.exog_precision k_mean = self.exog.shape[1] params_precision = params[k_mean:] linpred_prec = np.dot(exog_precision, params_precision) phi = self.link_precision.inverse(linpred_prec) return phi
Predict values for precision function for given exog_precision. Parameters ---------- params : array_like The model parameters. exog_precision : array_like Array of predictor variables for precision. Returns ------- Predicted precision.
_predict_precision
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _predict_var(self, params, exog=None, exog_precision=None): """predict values for conditional variance V(endog | exog) Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for precision. Returns ------- Predicted conditional variance. """ mean = self.predict(params, exog=exog) precision = self._predict_precision(params, exog_precision=exog_precision) var_endog = mean * (1 - mean) / (1 + precision) return var_endog
predict values for conditional variance V(endog | exog) Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for precision. Returns ------- Predicted conditional variance.
_predict_var
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of the Beta regressionmodel. Parameters ---------- params : ndarray The parameters of the model, coefficients for linear predictors of the mean and of the precision function. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. """ return self._llobs(self.endog, self.exog, self.exog_precision, params)
Loglikelihood for observations of the Beta regressionmodel. Parameters ---------- params : ndarray The parameters of the model, coefficients for linear predictors of the mean and of the precision function. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`.
loglikeobs
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _llobs(self, endog, exog, exog_precision, params): """ Loglikelihood for observations with data arguments. Parameters ---------- endog : ndarray 1d array of endogenous variable. exog : ndarray 2d array of explanatory variables. exog_precision : ndarray 2d array of explanatory variables for precision. params : ndarray The parameters of the model, coefficients for linear predictors of the mean and of the precision function. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. """ y, X, Z = endog, exog, exog_precision nz = Z.shape[1] params_mean = params[:-nz] params_prec = params[-nz:] linpred = np.dot(X, params_mean) linpred_prec = np.dot(Z, params_prec) mu = self.link.inverse(linpred) phi = self.link_precision.inverse(linpred_prec) eps_lb = 1e-200 alpha = np.clip(mu * phi, eps_lb, np.inf) beta = np.clip((1 - mu) * phi, eps_lb, np.inf) ll = (lgamma(phi) - lgamma(alpha) - lgamma(beta) + (mu * phi - 1) * np.log(y) + (((1 - mu) * phi) - 1) * np.log(1 - y)) return ll
Loglikelihood for observations with data arguments. Parameters ---------- endog : ndarray 1d array of endogenous variable. exog : ndarray 2d array of explanatory variables. exog_precision : ndarray 2d array of explanatory variables for precision. params : ndarray The parameters of the model, coefficients for linear predictors of the mean and of the precision function. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`.
_llobs
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def score(self, params): """ Returns the score vector of the log-likelihood. http://www.tandfonline.com/doi/pdf/10.1080/00949650903389993 Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score : ndarray First derivative of loglikelihood function. """ sf1, sf2 = self.score_factor(params) d1 = np.dot(sf1, self.exog) d2 = np.dot(sf2, self.exog_precision) return np.concatenate((d1, d2))
Returns the score vector of the log-likelihood. http://www.tandfonline.com/doi/pdf/10.1080/00949650903389993 Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score : ndarray First derivative of loglikelihood function.
score
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _score_check(self, params): """Inherited score with finite differences Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score based on numerical derivatives """ return super().score(params)
Inherited score with finite differences Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score based on numerical derivatives
_score_check
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def score_factor(self, params, endog=None): """Derivative of loglikelihood function w.r.t. linear predictors. This needs to be multiplied with the exog to obtain the score_obs. Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score_factor : ndarray, 2-D A 2d weight vector used in the calculation of the score_obs. Notes ----- The score_obs can be obtained from score_factor ``sf`` using - d1 = sf[:, :1] * exog - d2 = sf[:, 1:2] * exog_precision """ from scipy import special digamma = special.psi y = self.endog if endog is None else endog X, Z = self.exog, self.exog_precision nz = Z.shape[1] Xparams = params[:-nz] Zparams = params[-nz:] # NO LINKS mu = self.link.inverse(np.dot(X, Xparams)) phi = self.link_precision.inverse(np.dot(Z, Zparams)) eps_lb = 1e-200 # lower bound for evaluating digamma, avoids -inf alpha = np.clip(mu * phi, eps_lb, np.inf) beta = np.clip((1 - mu) * phi, eps_lb, np.inf) ystar = np.log(y / (1. - y)) dig_beta = digamma(beta) mustar = digamma(alpha) - dig_beta yt = np.log(1 - y) mut = dig_beta - digamma(phi) t = 1. / self.link.deriv(mu) h = 1. / self.link_precision.deriv(phi) # sf1 = phi * t * (ystar - mustar) sf2 = h * (mu * (ystar - mustar) + yt - mut) return (sf1, sf2)
Derivative of loglikelihood function w.r.t. linear predictors. This needs to be multiplied with the exog to obtain the score_obs. Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score_factor : ndarray, 2-D A 2d weight vector used in the calculation of the score_obs. Notes ----- The score_obs can be obtained from score_factor ``sf`` using - d1 = sf[:, :1] * exog - d2 = sf[:, 1:2] * exog_precision
score_factor
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def score_hessian_factor(self, params, return_hessian=False, observed=True): """Derivatives of loglikelihood function w.r.t. linear predictors. This calculates score and hessian factors at the same time, because there is a large overlap in calculations. Parameters ---------- params : ndarray Parameter at which score is evaluated. return_hessian : bool If False, then only score_factors are returned If True, the both score and hessian factors are returned observed : bool If True, then the observed Hessian is returned (default). If False, then the expected information matrix is returned. Returns ------- score_factor : ndarray, 2-D A 2d weight vector used in the calculation of the score_obs. (-jbb, -jbg, -jgg) : tuple A tuple with 3 hessian factors, corresponding to the upper triangle of the Hessian matrix. TODO: check why there are minus """ from scipy import special digamma = special.psi y, X, Z = self.endog, self.exog, self.exog_precision nz = Z.shape[1] Xparams = params[:-nz] Zparams = params[-nz:] # NO LINKS mu = self.link.inverse(np.dot(X, Xparams)) phi = self.link_precision.inverse(np.dot(Z, Zparams)) # We need to prevent mu = 0 and (1-mu) = 0 in digamma call eps_lb = 1e-200 # lower bound for evaluating digamma, avoids -inf alpha = np.clip(mu * phi, eps_lb, np.inf) beta = np.clip((1 - mu) * phi, eps_lb, np.inf) ystar = np.log(y / (1. - y)) dig_beta = digamma(beta) mustar = digamma(alpha) - dig_beta yt = np.log(1 - y) mut = dig_beta - digamma(phi) t = 1. / self.link.deriv(mu) h = 1. / self.link_precision.deriv(phi) ymu_star = (ystar - mustar) sf1 = phi * t * ymu_star sf2 = h * (mu * ymu_star + yt - mut) if return_hessian: def trigamma(x): return special.polygamma(1, x) trig_beta = trigamma(beta) var_star = trigamma(alpha) + trig_beta var_t = trig_beta - trigamma(phi) c = - trig_beta s = self.link.deriv2(mu) q = self.link_precision.deriv2(phi) jbb = (phi * t) * var_star if observed: jbb += s * t**2 * ymu_star jbb *= t * phi jbg = phi * t * h * (mu * var_star + c) if observed: jbg -= ymu_star * t * h jgg = h**2 * (mu**2 * var_star + 2 * mu * c + var_t) if observed: jgg += (mu * ymu_star + yt - mut) * q * h**3 # **3 ? return (sf1, sf2), (-jbb, -jbg, -jgg) else: return (sf1, sf2)
Derivatives of loglikelihood function w.r.t. linear predictors. This calculates score and hessian factors at the same time, because there is a large overlap in calculations. Parameters ---------- params : ndarray Parameter at which score is evaluated. return_hessian : bool If False, then only score_factors are returned If True, the both score and hessian factors are returned observed : bool If True, then the observed Hessian is returned (default). If False, then the expected information matrix is returned. Returns ------- score_factor : ndarray, 2-D A 2d weight vector used in the calculation of the score_obs. (-jbb, -jbg, -jgg) : tuple A tuple with 3 hessian factors, corresponding to the upper triangle of the Hessian matrix. TODO: check why there are minus
score_hessian_factor
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def score_obs(self, params): """ Score, first derivative of the loglikelihood for each observation. Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score_obs : ndarray, 2d The first derivative of the loglikelihood function evaluated at params for each observation. """ sf1, sf2 = self.score_factor(params) # elementwise product for each row (observation) d1 = sf1[:, None] * self.exog d2 = sf2[:, None] * self.exog_precision return np.column_stack((d1, d2))
Score, first derivative of the loglikelihood for each observation. Parameters ---------- params : ndarray Parameter at which score is evaluated. Returns ------- score_obs : ndarray, 2d The first derivative of the loglikelihood function evaluated at params for each observation.
score_obs
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def hessian(self, params, observed=None): """Hessian, second derivative of loglikelihood function Parameters ---------- params : ndarray Parameter at which Hessian is evaluated. observed : bool If True, then the observed Hessian is returned (default). If False, then the expected information matrix is returned. Returns ------- hessian : ndarray Hessian, i.e. observed information, or expected information matrix. """ if self.hess_type == "eim": observed = False else: observed = True _, hf = self.score_hessian_factor(params, return_hessian=True, observed=observed) hf11, hf12, hf22 = hf # elementwise product for each row (observation) d11 = (self.exog.T * hf11).dot(self.exog) d12 = (self.exog.T * hf12).dot(self.exog_precision) d22 = (self.exog_precision.T * hf22).dot(self.exog_precision) return np.block([[d11, d12], [d12.T, d22]])
Hessian, second derivative of loglikelihood function Parameters ---------- params : ndarray Parameter at which Hessian is evaluated. observed : bool If True, then the observed Hessian is returned (default). If False, then the expected information matrix is returned. Returns ------- hessian : ndarray Hessian, i.e. observed information, or expected information matrix.
hessian
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def hessian_factor(self, params, observed=True): """Derivatives of loglikelihood function w.r.t. linear predictors. """ _, hf = self.score_hessian_factor(params, return_hessian=True, observed=observed) return hf
Derivatives of loglikelihood function w.r.t. linear predictors.
hessian_factor
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _start_params(self, niter=2, return_intermediate=False): """find starting values Parameters ---------- niter : int Number of iterations of WLS approximation return_intermediate : bool If False (default), then only the preliminary parameter estimate will be returned. If True, then also the two results instances of the WLS estimate for mean parameters and for the precision parameters will be returned. Returns ------- sp : ndarray start parameters for the optimization res_m2 : results instance (optional) Results instance for the WLS regression of the mean function. res_p2 : results instance (optional) Results instance for the WLS regression of the precision function. Notes ----- This calculates a few iteration of weighted least squares. This is not a full scoring algorithm. """ # WLS of the mean equation uses the implied weights (inverse variance), # WLS for the precision equations uses weights that only take # account of the link transformation of the precision endog. from statsmodels.regression.linear_model import OLS, WLS res_m = OLS(self.link(self.endog), self.exog).fit() fitted = self.link.inverse(res_m.fittedvalues) resid = self.endog - fitted prec_i = fitted * (1 - fitted) / np.maximum(np.abs(resid), 1e-2)**2 - 1 res_p = OLS(self.link_precision(prec_i), self.exog_precision).fit() prec_fitted = self.link_precision.inverse(res_p.fittedvalues) # sp = np.concatenate((res_m.params, res_p.params)) for _ in range(niter): y_var_inv = (1 + prec_fitted) / (fitted * (1 - fitted)) # y_var = fitted * (1 - fitted) / (1 + prec_fitted) ylink_var_inv = y_var_inv / self.link.deriv(fitted)**2 res_m2 = WLS(self.link(self.endog), self.exog, weights=ylink_var_inv).fit() fitted = self.link.inverse(res_m2.fittedvalues) resid2 = self.endog - fitted prec_i2 = (fitted * (1 - fitted) / np.maximum(np.abs(resid2), 1e-2)**2 - 1) w_p = 1. / self.link_precision.deriv(prec_fitted)**2 res_p2 = WLS(self.link_precision(prec_i2), self.exog_precision, weights=w_p).fit() prec_fitted = self.link_precision.inverse(res_p2.fittedvalues) sp2 = np.concatenate((res_m2.params, res_p2.params)) if return_intermediate: return sp2, res_m2, res_p2 return sp2
find starting values Parameters ---------- niter : int Number of iterations of WLS approximation return_intermediate : bool If False (default), then only the preliminary parameter estimate will be returned. If True, then also the two results instances of the WLS estimate for mean parameters and for the precision parameters will be returned. Returns ------- sp : ndarray start parameters for the optimization res_m2 : results instance (optional) Results instance for the WLS regression of the mean function. res_p2 : results instance (optional) Results instance for the WLS regression of the precision function. Notes ----- This calculates a few iteration of weighted least squares. This is not a full scoring algorithm.
_start_params
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def fit(self, start_params=None, maxiter=1000, disp=False, method='bfgs', **kwds): """ Fit the model by maximum likelihood. Parameters ---------- start_params : array-like A vector of starting values for the regression coefficients. If None, a default is chosen. maxiter : integer The maximum number of iterations disp : bool Show convergence stats. method : str The optimization method to use. kwds : Keyword arguments for the optimizer. Returns ------- BetaResults instance. """ if start_params is None: start_params = self._start_params() # # http://www.ime.usp.br/~sferrari/beta.pdf suggests starting phi # # on page 8 if "cov_type" in kwds: # this is a workaround because we cannot tell super to use eim if kwds["cov_type"].lower() == "eim": self.hess_type = "eim" del kwds["cov_type"] else: self.hess_type = "oim" res = super().fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, **kwds) if not isinstance(res, BetaResultsWrapper): # currently GenericLikelihoodModel doe not add wrapper res = BetaResultsWrapper(res) return res
Fit the model by maximum likelihood. Parameters ---------- start_params : array-like A vector of starting values for the regression coefficients. If None, a default is chosen. maxiter : integer The maximum number of iterations disp : bool Show convergence stats. method : str The optimization method to use. kwds : Keyword arguments for the optimizer. Returns ------- BetaResults instance.
fit
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _deriv_mean_dparams(self, params): """ Derivative of the expected endog with respect to the parameters. not verified yet Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. """ link = self.link lin_pred = self.predict(params, which="linear") idl = link.inverse_deriv(lin_pred) dmat = self.exog * idl[:, None] return np.column_stack((dmat, np.zeros(self.exog_precision.shape)))
Derivative of the expected endog with respect to the parameters. not verified yet Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- The value of the derivative of the expected endog with respect to the parameter vector.
_deriv_mean_dparams
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def _deriv_score_obs_dendog(self, params): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. """ from statsmodels.tools.numdiff import _approx_fprime_cs_scalar def f(y): if y.ndim == 2 and y.shape[1] == 1: y = y[:, 0] sf = self.score_factor(params, endog=y) return np.column_stack(sf) dsf = _approx_fprime_cs_scalar(self.endog[:, None], f) # deriv is 2d vector d1 = dsf[:, :1] * self.exog d2 = dsf[:, 1:2] * self.exog_precision return np.column_stack((d1, d2))
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def get_distribution_params(self, params, exog=None, exog_precision=None): """ Return distribution parameters converted from model prediction. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. Returns ------- (alpha, beta) : tuple of ndarrays Parameters for the scipy distribution to evaluate predictive distribution. """ mean = self.predict(params, exog=exog) precision = self.predict(params, exog_precision=exog_precision, which="precision") return precision * mean, precision * (1 - mean)
Return distribution parameters converted from model prediction. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. Returns ------- (alpha, beta) : tuple of ndarrays Parameters for the scipy distribution to evaluate predictive distribution.
get_distribution_params
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def get_distribution(self, params, exog=None, exog_precision=None): """ Return a instance of the predictive distribution. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. Returns ------- Instance of a scipy frozen distribution based on estimated parameters. See Also -------- predict Notes ----- This function delegates to the predict method to handle exog and exog_precision, which in turn makes any required transformations. Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced. """ from scipy import stats args = self.get_distribution_params(params, exog=exog, exog_precision=exog_precision) distr = stats.beta(*args) return distr
Return a instance of the predictive distribution. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. Returns ------- Instance of a scipy frozen distribution based on estimated parameters. See Also -------- predict Notes ----- This function delegates to the predict method to handle exog and exog_precision, which in turn makes any required transformations. Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced.
get_distribution
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def fittedvalues(self): """In-sample predicted mean, conditional expectation.""" return self.model.predict(self.params)
In-sample predicted mean, conditional expectation.
fittedvalues
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def fitted_precision(self): """In-sample predicted precision""" return self.model.predict(self.params, which="precision")
In-sample predicted precision
fitted_precision
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def resid(self): """Response residual""" return self.model.endog - self.fittedvalues
Response residual
resid
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def resid_pearson(self): """Pearson standardize residual""" std = np.sqrt(self.model.predict(self.params, which="var")) return self.resid / std
Pearson standardize residual
resid_pearson
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def prsquared(self): """Cox-Snell Likelihood-Ratio pseudo-R-squared. 1 - exp((llnull - .llf) * (2 / nobs)) """ return self.pseudo_rsquared(kind="lr")
Cox-Snell Likelihood-Ratio pseudo-R-squared. 1 - exp((llnull - .llf) * (2 / nobs))
prsquared
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def get_distribution_params(self, exog=None, exog_precision=None, transform=True): """ Return distribution parameters converted from model prediction. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. transform : bool If transform is True and formulas have been used, then predictor ``exog`` is passed through the formula processing. Default is True. Returns ------- (alpha, beta) : tuple of ndarrays Parameters for the scipy distribution to evaluate predictive distribution. """ mean = self.predict(exog=exog, transform=transform) precision = self.predict(exog_precision=exog_precision, which="precision", transform=transform) return precision * mean, precision * (1 - mean)
Return distribution parameters converted from model prediction. Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. transform : bool If transform is True and formulas have been used, then predictor ``exog`` is passed through the formula processing. Default is True. Returns ------- (alpha, beta) : tuple of ndarrays Parameters for the scipy distribution to evaluate predictive distribution.
get_distribution_params
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def get_distribution(self, exog=None, exog_precision=None, transform=True): """ Return a instance of the predictive distribution. Parameters ---------- exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. transform : bool If transform is True and formulas have been used, then predictor ``exog`` is passed through the formula processing. Default is True. Returns ------- Instance of a scipy frozen distribution based on estimated parameters. See Also -------- predict Notes ----- This function delegates to the predict method to handle exog and exog_precision, which in turn makes any required transformations. Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced. """ from scipy import stats args = self.get_distribution_params(exog=exog, exog_precision=exog_precision, transform=transform) args = (np.asarray(arg) for arg in args) distr = stats.beta(*args) return distr
Return a instance of the predictive distribution. Parameters ---------- exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for mean. transform : bool If transform is True and formulas have been used, then predictor ``exog`` is passed through the formula processing. Default is True. Returns ------- Instance of a scipy frozen distribution based on estimated parameters. See Also -------- predict Notes ----- This function delegates to the predict method to handle exog and exog_precision, which in turn makes any required transformations. Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced.
get_distribution
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def get_influence(self): """ Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence Notes ----- Support for mutli-link and multi-exog models is still experimental in MLEInfluence. Interface and some definitions might still change. Note: Difference to R betareg: Betareg has the same general leverage as this model. However, they use a linear approximation hat matrix to scale and studentize influence and residual statistics. MLEInfluence uses the generalized leverage as hat_matrix_diag. Additionally, MLEInfluence uses pearson residuals for residual analusis. References ---------- todo """ from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence Notes ----- Support for mutli-link and multi-exog models is still experimental in MLEInfluence. Interface and some definitions might still change. Note: Difference to R betareg: Betareg has the same general leverage as this model. However, they use a linear approximation hat matrix to scale and studentize influence and residual statistics. MLEInfluence uses the generalized leverage as hat_matrix_diag. Additionally, MLEInfluence uses pearson residuals for residual analusis. References ---------- todo
get_influence
python
statsmodels/statsmodels
statsmodels/othermod/betareg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/othermod/betareg.py
BSD-3-Clause
def logsumexp(a, axis=None): """ Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of a Avoids numerical overflow. Parameters ---------- a : array_like The vector to exponentiate and sum axis : int, optional The axis along which to apply the operation. Defaults is None. Returns ------- sum(log(exp(a))) Notes ----- This function was taken from the mailing list http://mail.scipy.org/pipermail/scipy-user/2009-October/022931.html This should be superceded by the ufunc when it is finished. """ if axis is None: # Use the scipy.maxentropy version. return sp_logsumexp(a) a = np.asarray(a) shp = list(a.shape) shp[axis] = 1 a_max = a.max(axis=axis) s = np.log(np.exp(a - a_max.reshape(shp)).sum(axis=axis)) lse = a_max + s return lse
Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of a Avoids numerical overflow. Parameters ---------- a : array_like The vector to exponentiate and sum axis : int, optional The axis along which to apply the operation. Defaults is None. Returns ------- sum(log(exp(a))) Notes ----- This function was taken from the mailing list http://mail.scipy.org/pipermail/scipy-user/2009-October/022931.html This should be superceded by the ufunc when it is finished.
logsumexp
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def _isproperdist(X): """ Checks to see if `X` is a proper probability distribution """ X = np.asarray(X) if not np.allclose(np.sum(X), 1) or not np.all(X>=0) or not np.all(X<=1): return False else: return True
Checks to see if `X` is a proper probability distribution
_isproperdist
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def discretize(X, method="ef", nbins=None): """ Discretize `X` Parameters ---------- bins : int, optional Number of bins. Default is floor(sqrt(N)) method : str "ef" is equal-frequency binning "ew" is equal-width binning Examples -------- """ nobs = len(X) if nbins is None: nbins = np.floor(np.sqrt(nobs)) if method == "ef": discrete = np.ceil(nbins * stats.rankdata(X)/nobs) if method == "ew": width = np.max(X) - np.min(X) width = np.floor(width/nbins) svec, ivec = stats.fastsort(X) discrete = np.zeros(nobs) binnum = 1 base = svec[0] discrete[ivec[0]] = binnum for i in range(1,nobs): if svec[i] < base + width: discrete[ivec[i]] = binnum else: base = svec[i] binnum += 1 discrete[ivec[i]] = binnum return discrete
Discretize `X` Parameters ---------- bins : int, optional Number of bins. Default is floor(sqrt(N)) method : str "ef" is equal-frequency binning "ew" is equal-width binning Examples --------
discretize
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def logbasechange(a,b): """ There is a one-to-one transformation of the entropy value from a log base b to a log base a : H_{b}(X)=log_{b}(a)[H_{a}(X)] Returns ------- log_{b}(a) """ return np.log(b)/np.log(a)
There is a one-to-one transformation of the entropy value from a log base b to a log base a : H_{b}(X)=log_{b}(a)[H_{a}(X)] Returns ------- log_{b}(a)
logbasechange
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def natstobits(X): """ Converts from nats to bits """ return logbasechange(np.e, 2) * X
Converts from nats to bits
natstobits
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def bitstonats(X): """ Converts from bits to nats """ return logbasechange(2, np.e) * X
Converts from bits to nats
bitstonats
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def shannonentropy(px, logbase=2): """ This is Shannon's entropy Parameters ---------- logbase, int or np.e The base of the log px : 1d or 2d array_like Can be a discrete probability distribution, a 2d joint distribution, or a sequence of probabilities. Returns ----- For log base 2 (bits) given a discrete distribution H(p) = sum(px * log2(1/px) = -sum(pk*log2(px)) = E[log2(1/p(X))] For log base 2 (bits) given a joint distribution H(px,py) = -sum_{k,j}*w_{kj}log2(w_{kj}) Notes ----- shannonentropy(0) is defined as 0 """ #TODO: have not defined the px,py case? px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") entropy = -np.sum(np.nan_to_num(px*np.log2(px))) if logbase != 2: return logbasechange(2,logbase) * entropy else: return entropy
This is Shannon's entropy Parameters ---------- logbase, int or np.e The base of the log px : 1d or 2d array_like Can be a discrete probability distribution, a 2d joint distribution, or a sequence of probabilities. Returns ----- For log base 2 (bits) given a discrete distribution H(p) = sum(px * log2(1/px) = -sum(pk*log2(px)) = E[log2(1/p(X))] For log base 2 (bits) given a joint distribution H(px,py) = -sum_{k,j}*w_{kj}log2(w_{kj}) Notes ----- shannonentropy(0) is defined as 0
shannonentropy
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def shannoninfo(px, logbase=2): """ Shannon's information Parameters ---------- px : float or array_like `px` is a discrete probability distribution Returns ------- For logbase = 2 np.log2(px) """ px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") if logbase != 2: return - logbasechange(2,logbase) * np.log2(px) else: return - np.log2(px)
Shannon's information Parameters ---------- px : float or array_like `px` is a discrete probability distribution Returns ------- For logbase = 2 np.log2(px)
shannoninfo
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def condentropy(px, py, pxpy=None, logbase=2): """ Return the conditional entropy of X given Y. Parameters ---------- px : array_like py : array_like pxpy : array_like, optional If pxpy is None, the distributions are assumed to be independent and conendtropy(px,py) = shannonentropy(px) logbase : int or np.e Returns ------- sum_{kj}log(q_{j}/w_{kj} where q_{j} = Y[j] and w_kj = X[k,j] """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy is not None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy is None: pxpy = np.outer(py,px) condent = np.sum(pxpy * np.nan_to_num(np.log2(py/pxpy))) if logbase == 2: return condent else: return logbasechange(2, logbase) * condent
Return the conditional entropy of X given Y. Parameters ---------- px : array_like py : array_like pxpy : array_like, optional If pxpy is None, the distributions are assumed to be independent and conendtropy(px,py) = shannonentropy(px) logbase : int or np.e Returns ------- sum_{kj}log(q_{j}/w_{kj} where q_{j} = Y[j] and w_kj = X[k,j]
condentropy
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def mutualinfo(px,py,pxpy, logbase=2): """ Returns the mutual information between X and Y. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like The joint probability distribution of random variables X and Y. Note that if X and Y are independent then the mutual information is zero. logbase : int or np.e, optional Default is 2 (bits) Returns ------- shannonentropy(px) - condentropy(px,py,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy is not None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy is None: pxpy = np.outer(py,px) return shannonentropy(px, logbase=logbase) - condentropy(px,py,pxpy, logbase=logbase)
Returns the mutual information between X and Y. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like The joint probability distribution of random variables X and Y. Note that if X and Y are independent then the mutual information is zero. logbase : int or np.e, optional Default is 2 (bits) Returns ------- shannonentropy(px) - condentropy(px,py,pxpy)
mutualinfo
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def corrent(px,py,pxpy,logbase=2): """ An information theoretic correlation measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py,logbase=logbase) Notes ----- This is also equivalent to corrent(px,py,pxpy) = 1 - condent(px,py,pxpy)/shannonentropy(py) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy is not None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy is None: pxpy = np.outer(py,px) return mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py, logbase=logbase)
An information theoretic correlation measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py,logbase=logbase) Notes ----- This is also equivalent to corrent(px,py,pxpy) = 1 - condent(px,py,pxpy)/shannonentropy(py)
corrent
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def covent(px,py,pxpy,logbase=2): """ An information theoretic covariance measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) Notes ----- This is also equivalent to covent(px,py,pxpy) = condent(px,py,pxpy) + condent(py,px,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy is not None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy is None: pxpy = np.outer(py,px) # FIXME: these should be `condentropy`, not `condent` return (condent(px, py, pxpy, logbase=logbase) # noqa:F821 See GH#5756 + condent(py, px, pxpy, logbase=logbase)) # noqa:F821 See GH#5756
An information theoretic covariance measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) Notes ----- This is also equivalent to covent(px,py,pxpy) = condent(px,py,pxpy) + condent(py,px,pxpy)
covent
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def renyientropy(px,alpha=1,logbase=2,measure='R'): """ Renyi's generalized entropy Parameters ---------- px : array_like Discrete probability distribution of random variable X. Note that px is assumed to be a proper probability distribution. logbase : int or np.e, optional Default is 2 (bits) alpha : float or inf The order of the entropy. The default is 1, which in the limit is just Shannon's entropy. 2 is Renyi (Collision) entropy. If the string "inf" or numpy.inf is specified the min-entropy is returned. measure : str, optional The type of entropy measure desired. 'R' returns Renyi entropy measure. 'T' returns the Tsallis entropy measure. Returns ------- 1/(1-alpha)*log(sum(px**alpha)) In the limit as alpha -> 1, Shannon's entropy is returned. In the limit as alpha -> inf, min-entropy is returned. """ #TODO:finish returns #TODO:add checks for measure if not _isproperdist(px): raise ValueError("px is not a proper probability distribution") alpha = float(alpha) if alpha == 1: genent = shannonentropy(px) if logbase != 2: return logbasechange(2, logbase) * genent return genent elif 'inf' in str(alpha).lower() or alpha == np.inf: return -np.log(np.max(px)) # gets here if alpha != (1 or inf) px = px**alpha genent = np.log(px.sum()) if logbase == 2: return 1/(1-alpha) * genent else: return 1/(1-alpha) * logbasechange(2, logbase) * genent
Renyi's generalized entropy Parameters ---------- px : array_like Discrete probability distribution of random variable X. Note that px is assumed to be a proper probability distribution. logbase : int or np.e, optional Default is 2 (bits) alpha : float or inf The order of the entropy. The default is 1, which in the limit is just Shannon's entropy. 2 is Renyi (Collision) entropy. If the string "inf" or numpy.inf is specified the min-entropy is returned. measure : str, optional The type of entropy measure desired. 'R' returns Renyi entropy measure. 'T' returns the Tsallis entropy measure. Returns ------- 1/(1-alpha)*log(sum(px**alpha)) In the limit as alpha -> 1, Shannon's entropy is returned. In the limit as alpha -> inf, min-entropy is returned.
renyientropy
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def gencrossentropy(px,py,pxpy,alpha=1,logbase=2, measure='T'): """ Generalized cross-entropy measures. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) measure : str, optional The measure is the type of generalized cross-entropy desired. 'T' is the cross-entropy version of the Tsallis measure. 'CR' is Cressie-Read measure. """
Generalized cross-entropy measures. Parameters ---------- px : array_like Discrete probability distribution of random variable X py : array_like Discrete probability distribution of random variable Y pxpy : 2d array_like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) measure : str, optional The measure is the type of generalized cross-entropy desired. 'T' is the cross-entropy version of the Tsallis measure. 'CR' is Cressie-Read measure.
gencrossentropy
python
statsmodels/statsmodels
statsmodels/sandbox/infotheo.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/infotheo.py
BSD-3-Clause
def _compute_sigma(self, resids): """ Computes the sigma matrix and update the cholesky decomposition. """ M = self._M nobs = self.nobs sig = np.dot(resids, resids.T) # faster way to do this? if not self._dfk: div = nobs elif self._dfk.lower() == 'dfk1': div = np.zeros(M**2) for i in range(M): for j in range(M): div[i+j] = ((self.df_model[i]+1) *\ (self.df_model[j]+1))**(1/2) div.reshape(M,M) else: # 'dfk2' error checking is done earlier div = np.zeros(M**2) for i in range(M): for j in range(M): div[i+j] = nobs - np.max(self.df_model[i]+1, self.df_model[j]+1) div.reshape(M,M) # does not handle (#,) self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(sig/div)).T return sig/div
Computes the sigma matrix and update the cholesky decomposition.
_compute_sigma
python
statsmodels/statsmodels
statsmodels/sandbox/sysreg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/sysreg.py
BSD-3-Clause
def whiten(self, X): """ SUR whiten method. Parameters ---------- X : list of arrays Data to be whitened. Returns ------- If X is the exogenous RHS of the system. ``np.dot(np.kron(cholsigmainv,np.eye(M)),np.diag(X))`` If X is the endogenous LHS of the system. """ nobs = self.nobs if X is self.endog: # definitely not a robust check return np.dot(np.kron(self.cholsigmainv,np.eye(nobs)), X.reshape(-1,1)) elif X is self.sp_exog: return (sparse.kron(self.cholsigmainv, sparse.eye(nobs,nobs))*X).toarray()#*=dot until cast to array
SUR whiten method. Parameters ---------- X : list of arrays Data to be whitened. Returns ------- If X is the exogenous RHS of the system. ``np.dot(np.kron(cholsigmainv,np.eye(M)),np.diag(X))`` If X is the endogenous LHS of the system.
whiten
python
statsmodels/statsmodels
statsmodels/sandbox/sysreg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/sysreg.py
BSD-3-Clause
def fit(self, igls=False, tol=1e-5, maxiter=100): """ igls : bool Iterate until estimates converge if sigma is None instead of two-step GLS, which is the default is sigma is None. tol : float maxiter : int Notes ----- This ia naive implementation that does not exploit the block diagonal structure. It should work for ill-conditioned `sigma` but this is untested. """ if not np.any(self.sigma): self.sigma = self._compute_sigma(self.endog, self.exog) M = self._M beta = np.dot(self.pinv_wexog, self.wendog) self._update_history(beta) self.iterations += 1 if not igls: sur_fit = SysResults(self, beta, self.normalized_cov_params) return sur_fit conv = self.history['params'] while igls and (np.any(np.abs(conv[-2] - conv[-1]) > tol)) and \ (self.iterations < maxiter): fittedvalues = (self.sp_exog*beta).reshape(M,-1) resids = self.endog - fittedvalues # do not attach results yet self.sigma = self._compute_sigma(resids) # need to attach for compute? self.wendog = self.whiten(self.endog) self.wexog = self.whiten(self.sp_exog) self.pinv_wexog = np.linalg.pinv(self.wexog) self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog)) beta = np.dot(self.pinv_wexog, self.wendog) self._update_history(beta) self.iterations += 1 sur_fit = SysResults(self, beta, self.normalized_cov_params) return sur_fit
igls : bool Iterate until estimates converge if sigma is None instead of two-step GLS, which is the default is sigma is None. tol : float maxiter : int Notes ----- This ia naive implementation that does not exploit the block diagonal structure. It should work for ill-conditioned `sigma` but this is untested.
fit
python
statsmodels/statsmodels
statsmodels/sandbox/sysreg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/sysreg.py
BSD-3-Clause
def whiten(self, Y): """ Runs the first stage of the 2SLS. Returns the RHS variables that include the instruments. """ wexog = [] indep_endog = self._indep_endog # this has the col mapping # fullexog = self.fullexog for eq in range(self._M): # need to go through all equations regardless instr_eq = Y.get(eq, None) # Y has the eq to ind endog array map newRHS = self.exog[eq].copy() if instr_eq: for i,LHS in enumerate(instr_eq): yhat = GLS(LHS, self.instruments).fit().fittedvalues newRHS[:,indep_endog[eq][i]] = yhat # this might fail if there is a one variable column (nobs,) # in exog wexog.append(newRHS) return wexog
Runs the first stage of the 2SLS. Returns the RHS variables that include the instruments.
whiten
python
statsmodels/statsmodels
statsmodels/sandbox/sysreg.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/sysreg.py
BSD-3-Clause
def descstats(data, cols=None, axis=0): ''' Prints descriptive statistics for one or multiple variables. Parameters ---------- data: numpy array `x` is the data v: list, optional A list of the column number of variables. Default is all columns. axis: 1 or 0 axis order of data. Default is 0 for column-ordered data. Examples -------- >>> descstats(data.exog,v=['x_1','x_2','x_3']) ''' x = np.array(data) # or rather, the data we're interested in if cols is None: x = x[:, None] if cols is None and x.ndim == 1: x = x[:,None] if x.shape[1] == 1: desc = ''' --------------------------------------------- Univariate Descriptive Statistics --------------------------------------------- Var. Name %(name)12s ---------- Obs. %(nobs)22i Range %(range)22s Sum of Wts. %(sum)22s Coeff. of Variation %(coeffvar)22.4g Mode %(mode)22.4g Skewness %(skewness)22.4g Repeats %(nmode)22i Kurtosis %(kurtosis)22.4g Mean %(mean)22.4g Uncorrected SS %(uss)22.4g Median %(median)22.4g Corrected SS %(ss)22.4g Variance %(variance)22.4g Sum Observations %(sobs)22.4g Std. Dev. %(stddev)22.4g ''' % {'name': cols, 'sum': 'N/A', 'nobs': len(x), 'mode': \ stats.mode(x)[0][0], 'nmode': stats.mode(x)[1][0], \ 'mean': x.mean(), 'median': np.median(x), 'range': \ '('+str(x.min())+', '+str(x.max())+')', 'variance': \ x.var(), 'stddev': x.std(), 'coeffvar': \ stats.variation(x), 'skewness': stats.skew(x), \ 'kurtosis': stats.kurtosis(x), 'uss': np.sum(x**2, axis=0),\ 'ss': np.sum((x-x.mean())**2, axis=0), 'sobs': np.sum(x)} desc+= ''' Percentiles ------------- 1 %% %12.4g 5 %% %12.4g 10 %% %12.4g 25 %% %12.4g 50 %% %12.4g 75 %% %12.4g 90 %% %12.4g 95 %% %12.4g 99 %% %12.4g ''' % tuple([stats.scoreatpercentile(x,per) for per in (1,5,10,25, 50,75,90,95,99)]) t,p_t=stats.ttest_1samp(x,0) M,p_M=sign_test(x) S,p_S=stats.wilcoxon(np.squeeze(x)) desc+= ''' Tests of Location (H0: Mu0=0) ----------------------------- Test Statistic Two-tailed probability -----------------+----------------------------------------- Student's t | t {:7.5f} Pr > |t| <{:.4f} Sign | M {:8.2f} Pr >= |M| <{:.4f} Signed Rank | S {:8.2f} Pr >= |S| <{:.4f} '''.format(t,p_t,M,p_M,S,p_S) # Should this be part of a 'descstats' # in any event these should be split up, so that they can be called # individually and only returned together if someone calls summary # or something of the sort elif x.shape[1] > 1: desc =''' Var. Name | Obs. Mean Std. Dev. Range ------------+--------------------------------------------------------'''+\ os.linesep for var in range(x.shape[1]): xv = x[:, var] kwargs = { 'name': var, 'obs': len(xv), 'mean': xv.mean(), 'stddev': xv.std(), 'range': '('+str(xv.min())+', '+str(xv.max())+')'+os.linesep } desc += ("%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g " "%(range)20s" % kwargs) else: raise ValueError("data not understood") return desc
Prints descriptive statistics for one or multiple variables. Parameters ---------- data: numpy array `x` is the data v: list, optional A list of the column number of variables. Default is all columns. axis: 1 or 0 axis order of data. Default is 0 for column-ordered data. Examples -------- >>> descstats(data.exog,v=['x_1','x_2','x_3'])
descstats
python
statsmodels/statsmodels
statsmodels/sandbox/descstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/descstats.py
BSD-3-Clause
def _model2dataframe(model_endog, model_exog, model_type=OLS, **kwargs): """return a series containing the summary of a linear model All the exceding parameters will be redirected to the linear model """ # create the linear model and perform the fit model_result = model_type(model_endog, model_exog, **kwargs).fit() # keeps track of some global statistics statistics = pd.Series( {"r2": model_result.rsquared, "adj_r2": model_result.rsquared_adj} ) # put them togher with the result for each term result_df = pd.DataFrame( { "params": model_result.params, "pvals": model_result.pvalues, "std": model_result.bse, "statistics": statistics, } ) # add the complexive results for f-value and the total p-value fisher_df = pd.DataFrame( { "params": {"_f_test": model_result.fvalue}, "pvals": {"_f_test": model_result.f_pvalue}, } ) # merge them and unstack to obtain a hierarchically indexed series res_series = pd.concat([result_df, fisher_df]).unstack() return res_series.dropna()
return a series containing the summary of a linear model All the exceding parameters will be redirected to the linear model
_model2dataframe
python
statsmodels/statsmodels
statsmodels/sandbox/multilinear.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/multilinear.py
BSD-3-Clause
def multiOLS(model, dataframe, column_list=None, method='fdr_bh', alpha=0.05, subset=None, model_type=OLS, **kwargs): """apply a linear model to several endogenous variables on a dataframe Take a linear model definition via formula and a dataframe that will be the environment of the model, and apply the linear model to a subset (or all) of the columns of the dataframe. It will return a dataframe with part of the information from the linear model summary. Parameters ---------- model : str formula description of the model dataframe : pandas.dataframe dataframe where the model will be evaluated column_list : list[str], optional Names of the columns to analyze with the model. If None (Default) it will perform the function on all the eligible columns (numerical type and not in the model definition) model_type : model class, optional The type of model to be used. The default is the linear model. Can be any linear model (OLS, WLS, GLS, etc..) method : str, optional the method used to perform the pvalue correction for multiple testing. default is the Benjamini/Hochberg, other available methods are: `bonferroni` : one-step correction `sidak` : on-step correction `holm-sidak` : `holm` : `simes-hochberg` : `hommel` : `fdr_bh` : Benjamini/Hochberg `fdr_by` : Benjamini/Yekutieli alpha : float, optional the significance level used for the pvalue correction (default 0.05) subset : bool array the selected rows to be used in the regression all the other parameters will be directed to the model creation. Returns ------- summary : pandas.DataFrame a dataframe containing an extract from the summary of the model obtained for each columns. It will give the model complexive f test result and p-value, and the regression value and standard deviarion for each of the regressors. The DataFrame has a hierachical column structure, divided as: - params: contains the parameters resulting from the models. Has an additional column named _f_test containing the result of the F test. - pval: the pvalue results of the models. Has the _f_test column for the significativity of the whole test. - adj_pval: the corrected pvalues via the multitest function. - std: uncertainties of the model parameters - statistics: contains the r squared statistics and the adjusted r squared. Notes ----- The main application of this function is on system biology to perform a linear model testing of a lot of different parameters, like the different genetic expression of several genes. See Also -------- statsmodels.stats.multitest contains several functions to perform the multiple p-value correction Examples -------- Using the longley data as dataframe example >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load_pandas() >>> df = data.exog >>> df['TOTEMP'] = data.endog This will perform the specified linear model on all the other columns of the dataframe >>> multiOLS('GNP + 1', df) This select only a certain subset of the columns >>> multiOLS('GNP + 0', df, ['GNPDEFL', 'TOTEMP', 'POP']) It is possible to specify a trasformation also on the target column, conforming to the patsy formula specification >>> multiOLS('GNP + 0', df, ['I(GNPDEFL**2)', 'center(TOTEMP)']) It is possible to specify the subset of the dataframe on which perform the analysis >> multiOLS('GNP + 1', df, subset=df.GNPDEFL > 90) Even a single column name can be given without enclosing it in a list >>> multiOLS('GNP + 0', df, 'GNPDEFL') """ # data normalization # if None take all the numerical columns that are not present in the model # it's not waterproof but is a good enough criterion for everyday use if column_list is None: column_list = [ name for name in dataframe.columns if dataframe[name].dtype != object and name not in model ] # if it's a single string transform it in a single element list if isinstance(column_list, str): column_list = [column_list] if subset is not None: dataframe = dataframe.loc[subset] # perform each model and retrieve the statistics col_results = {} # as the model will use always the same endogenous variables # we can create them once and reuse mgr = FormulaManager() model_exog = mgr.get_matrices(model, dataframe, pandas=True) for col_name in column_list: # it will try to interpret the column name as a valid dataframe # index as it can be several times faster. If it fails it # interpret it as a patsy formula (for example for centering) try: model_endog = dataframe[col_name] except KeyError: model_endog = mgr.get_matrices( col_name + " + 0", data=dataframe, pandas=True ) # retrieve the result and store them res = _model2dataframe(model_endog, model_exog, model_type, **kwargs) col_results[col_name] = res # mangle them togheter and sort by complexive p-value summary = pd.DataFrame(col_results) # order by the p-value: the most useful model first! summary = summary.T.sort_values([('pvals', '_f_test')]) summary.index.name = 'endogenous vars' # implementing the pvalue correction method smt = stats.multipletests for (key1, key2) in summary: if key1 != 'pvals': continue p_values = summary[key1, key2] corrected = smt(p_values, method=method, alpha=alpha)[1] # extend the dataframe of results with the column # of the corrected p_values summary['adj_' + key1, key2] = corrected return summary
apply a linear model to several endogenous variables on a dataframe Take a linear model definition via formula and a dataframe that will be the environment of the model, and apply the linear model to a subset (or all) of the columns of the dataframe. It will return a dataframe with part of the information from the linear model summary. Parameters ---------- model : str formula description of the model dataframe : pandas.dataframe dataframe where the model will be evaluated column_list : list[str], optional Names of the columns to analyze with the model. If None (Default) it will perform the function on all the eligible columns (numerical type and not in the model definition) model_type : model class, optional The type of model to be used. The default is the linear model. Can be any linear model (OLS, WLS, GLS, etc..) method : str, optional the method used to perform the pvalue correction for multiple testing. default is the Benjamini/Hochberg, other available methods are: `bonferroni` : one-step correction `sidak` : on-step correction `holm-sidak` : `holm` : `simes-hochberg` : `hommel` : `fdr_bh` : Benjamini/Hochberg `fdr_by` : Benjamini/Yekutieli alpha : float, optional the significance level used for the pvalue correction (default 0.05) subset : bool array the selected rows to be used in the regression all the other parameters will be directed to the model creation. Returns ------- summary : pandas.DataFrame a dataframe containing an extract from the summary of the model obtained for each columns. It will give the model complexive f test result and p-value, and the regression value and standard deviarion for each of the regressors. The DataFrame has a hierachical column structure, divided as: - params: contains the parameters resulting from the models. Has an additional column named _f_test containing the result of the F test. - pval: the pvalue results of the models. Has the _f_test column for the significativity of the whole test. - adj_pval: the corrected pvalues via the multitest function. - std: uncertainties of the model parameters - statistics: contains the r squared statistics and the adjusted r squared. Notes ----- The main application of this function is on system biology to perform a linear model testing of a lot of different parameters, like the different genetic expression of several genes. See Also -------- statsmodels.stats.multitest contains several functions to perform the multiple p-value correction Examples -------- Using the longley data as dataframe example >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load_pandas() >>> df = data.exog >>> df['TOTEMP'] = data.endog This will perform the specified linear model on all the other columns of the dataframe >>> multiOLS('GNP + 1', df) This select only a certain subset of the columns >>> multiOLS('GNP + 0', df, ['GNPDEFL', 'TOTEMP', 'POP']) It is possible to specify a trasformation also on the target column, conforming to the patsy formula specification >>> multiOLS('GNP + 0', df, ['I(GNPDEFL**2)', 'center(TOTEMP)']) It is possible to specify the subset of the dataframe on which perform the analysis >> multiOLS('GNP + 1', df, subset=df.GNPDEFL > 90) Even a single column name can be given without enclosing it in a list >>> multiOLS('GNP + 0', df, 'GNPDEFL')
multiOLS
python
statsmodels/statsmodels
statsmodels/sandbox/multilinear.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/multilinear.py
BSD-3-Clause
def _test_group(pvalues, group_name, group, exact=True): """test if the objects in the group are different from the general set. The test is performed on the pvalues set (ad a pandas series) over the group specified via a fisher exact test. """ from scipy.stats import chi2_contingency, fisher_exact totals = 1.0 * len(pvalues) total_significant = 1.0 * np.sum(pvalues) cross_index = [c for c in group if c in pvalues.index] missing = [c for c in group if c not in pvalues.index] if missing: s = ('the test is not well defined if the group ' 'has elements not presents in the significativity ' 'array. group name: {}, missing elements: {}') logging.warning(s.format(group_name, missing)) # how many are significant and not in the group group_total = 1.0 * len(cross_index) group_sign = 1.0 * len([c for c in cross_index if pvalues[c]]) group_nonsign = 1.0 * (group_total - group_sign) # how many are significant and not outside the group extern_sign = 1.0 * (total_significant - group_sign) extern_nonsign = 1.0 * (totals - total_significant - group_nonsign) # make the fisher test or the chi squared test = fisher_exact if exact else chi2_contingency table = [[extern_nonsign, extern_sign], [group_nonsign, group_sign]] pvalue = test(np.array(table))[1] # is the group more represented or less? part = group_sign, group_nonsign, extern_sign, extern_nonsign # increase = (group_sign / group_total) > (total_significant / totals) increase = np.log((totals * group_sign) / (total_significant * group_total)) return pvalue, increase, part
test if the objects in the group are different from the general set. The test is performed on the pvalues set (ad a pandas series) over the group specified via a fisher exact test.
_test_group
python
statsmodels/statsmodels
statsmodels/sandbox/multilinear.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/multilinear.py
BSD-3-Clause
def multigroup(pvals, groups, exact=True, keep_all=True, alpha=0.05): """Test if the given groups are different from the total partition. Given a boolean array test if each group has a proportion of positives different than the complexive proportion. The test can be done as an exact Fisher test or approximated as a Chi squared test for more speed. Parameters ---------- pvals : pandas series of boolean the significativity of the variables under analysis groups : dict of list the name of each category of variables under exam. each one is a list of the variables included exact : bool, optional If True (default) use the fisher exact test, otherwise use the chi squared test for contingencies tables. For high number of elements in the array the fisher test can be significantly slower than the chi squared. keep_all : bool, optional if False it will drop those groups where the fraction of positive is below the expected result. If True (default) it will keep all the significant results. alpha : float, optional the significativity level for the pvalue correction on the whole set of groups (not inside the groups themselves). Returns ------- result_df: pandas dataframe for each group returns: pvals - the fisher p value of the test adj_pvals - the adjusted pvals increase - the log of the odd ratio between the internal significant ratio versus the external one _in_sign - significative elements inside the group _in_non - non significative elements inside the group _out_sign - significative elements outside the group _out_non - non significative elements outside the group Notes ----- This test allow to see if a category of variables is generally better suited to be described for the model. For example to see if a predictor gives more information on demographic or economical parameters, by creating two groups containing the endogenous variables of each category. This function is conceived for medical dataset with a lot of variables that can be easily grouped into functional groups. This is because The significativity of a group require a rather large number of composing elements. Examples -------- A toy example on a real dataset, the Guerry dataset from R >>> url = "https://raw.githubusercontent.com/vincentarelbundock/" >>> url = url + "Rdatasets/csv/HistData/Guerry.csv" >>> df = pd.read_csv(url, index_col='dept') evaluate the relationship between the various paramenters whith the Wealth >>> pvals = multiOLS('Wealth', df)['adj_pvals', '_f_test'] define the groups >>> groups = {} >>> groups['crime'] = ['Crime_prop', 'Infanticide', ... 'Crime_parents', 'Desertion', 'Crime_pers'] >>> groups['religion'] = ['Donation_clergy', 'Clergy', 'Donations'] >>> groups['wealth'] = ['Commerce', 'Lottery', 'Instruction', 'Literacy'] do the analysis of the significativity >>> multigroup(pvals < 0.05, groups) """ pvals = pd.Series(pvals) if not (set(pvals.unique()) <= {False, True}): raise ValueError("the series should be binary") if hasattr(pvals.index, "is_unique") and not pvals.index.is_unique: raise ValueError("series with duplicated index is not accepted") results = { "pvals": {}, "increase": {}, "_in_sign": {}, "_in_non": {}, "_out_sign": {}, "_out_non": {}, } for group_name, group_list in groups.items(): res = _test_group(pvals, group_name, group_list, exact) results['pvals'][group_name] = res[0] results['increase'][group_name] = res[1] results['_in_sign'][group_name] = res[2][0] results['_in_non'][group_name] = res[2][1] results['_out_sign'][group_name] = res[2][2] results['_out_non'][group_name] = res[2][3] result_df = pd.DataFrame(results).sort_values('pvals') if not keep_all: result_df = result_df[result_df.increase] smt = stats.multipletests corrected = smt(result_df['pvals'], method='fdr_bh', alpha=alpha)[1] result_df['adj_pvals'] = corrected return result_df
Test if the given groups are different from the total partition. Given a boolean array test if each group has a proportion of positives different than the complexive proportion. The test can be done as an exact Fisher test or approximated as a Chi squared test for more speed. Parameters ---------- pvals : pandas series of boolean the significativity of the variables under analysis groups : dict of list the name of each category of variables under exam. each one is a list of the variables included exact : bool, optional If True (default) use the fisher exact test, otherwise use the chi squared test for contingencies tables. For high number of elements in the array the fisher test can be significantly slower than the chi squared. keep_all : bool, optional if False it will drop those groups where the fraction of positive is below the expected result. If True (default) it will keep all the significant results. alpha : float, optional the significativity level for the pvalue correction on the whole set of groups (not inside the groups themselves). Returns ------- result_df: pandas dataframe for each group returns: pvals - the fisher p value of the test adj_pvals - the adjusted pvals increase - the log of the odd ratio between the internal significant ratio versus the external one _in_sign - significative elements inside the group _in_non - non significative elements inside the group _out_sign - significative elements outside the group _out_non - non significative elements outside the group Notes ----- This test allow to see if a category of variables is generally better suited to be described for the model. For example to see if a predictor gives more information on demographic or economical parameters, by creating two groups containing the endogenous variables of each category. This function is conceived for medical dataset with a lot of variables that can be easily grouped into functional groups. This is because The significativity of a group require a rather large number of composing elements. Examples -------- A toy example on a real dataset, the Guerry dataset from R >>> url = "https://raw.githubusercontent.com/vincentarelbundock/" >>> url = url + "Rdatasets/csv/HistData/Guerry.csv" >>> df = pd.read_csv(url, index_col='dept') evaluate the relationship between the various paramenters whith the Wealth >>> pvals = multiOLS('Wealth', df)['adj_pvals', '_f_test'] define the groups >>> groups = {} >>> groups['crime'] = ['Crime_prop', 'Infanticide', ... 'Crime_parents', 'Desertion', 'Crime_pers'] >>> groups['religion'] = ['Donation_clergy', 'Clergy', 'Donations'] >>> groups['wealth'] = ['Commerce', 'Lottery', 'Instruction', 'Literacy'] do the analysis of the significativity >>> multigroup(pvals < 0.05, groups)
multigroup
python
statsmodels/statsmodels
statsmodels/sandbox/multilinear.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/multilinear.py
BSD-3-Clause
def rwexog(self): """Whitened exogenous variables augmented with restrictions""" if self._rwexog is None: P = self.ncoeffs K = self.nconstraint design = np.zeros((P + K, P + K)) design[:P, :P] = np.dot(self.wexog.T, self.wexog) #top left constr = np.reshape(self.constraint, (K, P)) design[:P, P:] = constr.T #top right partition design[P:, :P] = constr #bottom left partition design[P:, P:] = np.zeros((K, K)) #bottom right partition self._rwexog = design return self._rwexog
Whitened exogenous variables augmented with restrictions
rwexog
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def inv_rwexog(self): """Inverse of self.rwexog""" if self._inv_rwexog is None: self._inv_rwexog = np.linalg.inv(self.rwexog) return self._inv_rwexog
Inverse of self.rwexog
inv_rwexog
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def rwendog(self): """Whitened endogenous variable augmented with restriction parameters""" if self._rwendog is None: P = self.ncoeffs K = self.nconstraint response = np.zeros((P + K,)) response[:P] = np.dot(self.wexog.T, self.wendog) response[P:] = self.param self._rwendog = response return self._rwendog
Whitened endogenous variable augmented with restriction parameters
rwendog
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def rnorm_cov_params(self): """Parameter covariance under restrictions""" if self._ncp is None: P = self.ncoeffs self._ncp = self.inv_rwexog[:P, :P] return self._ncp
Parameter covariance under restrictions
rnorm_cov_params
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def wrnorm_cov_params(self): """ Heteroskedasticity-consistent parameter covariance Used to calculate White standard errors. """ if self._wncp is None: df = self.df_resid pred = np.dot(self.wexog, self.coeffs) eps = np.diag((self.wendog - pred) ** 2) sigmaSq = np.sum(eps) pinvX = np.dot(self.rnorm_cov_params, self.wexog.T) self._wncp = np.dot(np.dot(pinvX, eps), pinvX.T) * df / sigmaSq return self._wncp
Heteroskedasticity-consistent parameter covariance Used to calculate White standard errors.
wrnorm_cov_params
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def coeffs(self): """Estimated parameters""" if self._coeffs is None: betaLambda = np.dot(self.inv_rwexog, self.rwendog) self._coeffs = betaLambda[:self.ncoeffs] return self._coeffs
Estimated parameters
coeffs
python
statsmodels/statsmodels
statsmodels/sandbox/rls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/rls.py
BSD-3-Clause
def __init__(self,data,names=None): """ p X N matrix input """ A = np.array(data).T n,p = A.shape self.n,self.p = n,p if p > n: from warnings import warn warn('p > n - intentional?', RuntimeWarning) self.A = A self._origA=A.copy() self.__calc() self._colors= np.tile(self._colors,int((p-1)/len(self._colors))+1)[:p] if names is not None and len(names) != p: raise ValueError('names must match data dimension') self.names = None if names is None else tuple([str(x) for x in names])
p X N matrix input
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/pca.py
BSD-3-Clause
def getCovarianceMatrix(self): """ returns the covariance matrix for the dataset """ return np.cov(self.N.T)
returns the covariance matrix for the dataset
getCovarianceMatrix
python
statsmodels/statsmodels
statsmodels/sandbox/pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/pca.py
BSD-3-Clause
def getEigensystem(self): """ returns a tuple of (eigenvalues,eigenvectors) for the data set. """ if self._eig is None: res = np.linalg.eig(self.getCovarianceMatrix()) sorti=np.argsort(res[0])[::-1] res=(res[0][sorti],res[1][:,sorti]) self._eig=res return self._eig
returns a tuple of (eigenvalues,eigenvectors) for the data set.
getEigensystem
python
statsmodels/statsmodels
statsmodels/sandbox/pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/pca.py
BSD-3-Clause
def getEnergies(self): """ "energies" are just normalized eigenvectors """ v=self.getEigenvalues() return v/np.sum(v)
"energies" are just normalized eigenvectors
getEnergies
python
statsmodels/statsmodels
statsmodels/sandbox/pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/pca.py
BSD-3-Clause