code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def _deriv_score_obs_dendog(self, params): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual. """ linpred = self.predict(params, which="linear") pdf_ = self.pdf(linpred) # clip to get rid of invalid divide complaint cdf_ = np.clip(self.cdf(linpred), FLOAT_EPS, 1 - FLOAT_EPS) deriv = pdf_ / cdf_ / (1 - cdf_) # deriv factor return deriv[:, None] * self.exog
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. This can is given by `score_factor0[:, None] * exog` where `score_factor0` is the score_factor without the residual.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pdf(self, eXB): """ NotImplemented """ raise NotImplementedError
NotImplemented
pdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def cdf(self, X): """ Multinomial logit cumulative distribution function. Parameters ---------- X : ndarray The linear predictor of the model XB. Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- In the multinomial logit model. .. math:: \\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)} """ eXB = np.column_stack((np.ones(len(X)), np.exp(X))) return eXB/eXB.sum(1)[:,None]
Multinomial logit cumulative distribution function. Parameters ---------- X : ndarray The linear predictor of the model XB. Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- In the multinomial logit model. .. math:: \\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}
cdf
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Log-likelihood of the multinomial logit model. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not. """ params = params.reshape(self.K, -1, order='F') d = self.wendog logprob = np.log(self.cdf(np.dot(self.exog,params))) return np.sum(d * logprob)
Log-likelihood of the multinomial logit model. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not.
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Log-likelihood of the multinomial logit model for each observation. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) for observations :math:`i=1,...,n` where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not. """ params = params.reshape(self.K, -1, order='F') d = self.wendog logprob = np.log(self.cdf(np.dot(self.exog,params))) return d * logprob
Log-likelihood of the multinomial logit model for each observation. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) for observations :math:`i=1,...,n` where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not.
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score(self, params): """ Score matrix for multinomial logit model log-likelihood Parameters ---------- params : ndarray The parameters of the multinomial logit model. Returns ------- score : ndarray, (K * (J-1),) The 2-d score vector, i.e. the first derivative of the loglikelihood function, of the multinomial logit model evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta_{j}}=\\sum_{i}\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J` In the multinomial model the score matrix is K x J-1 but is returned as a flattened array to work with the solvers. """ params = params.reshape(self.K, -1, order='F') firstterm = self.wendog[:,1:] - self.cdf(np.dot(self.exog, params))[:,1:] #NOTE: might need to switch terms if params is reshaped return np.dot(firstterm.T, self.exog).flatten()
Score matrix for multinomial logit model log-likelihood Parameters ---------- params : ndarray The parameters of the multinomial logit model. Returns ------- score : ndarray, (K * (J-1),) The 2-d score vector, i.e. the first derivative of the loglikelihood function, of the multinomial logit model evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta_{j}}=\\sum_{i}\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J` In the multinomial model the score matrix is K x J-1 but is returned as a flattened array to work with the solvers.
score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike_and_score(self, params): """ Returns log likelihood and score, efficiently reusing calculations. Note that both of these returned quantities will need to be negated before being minimized by the maximum likelihood fitting machinery. """ params = params.reshape(self.K, -1, order='F') cdf_dot_exog_params = self.cdf(np.dot(self.exog, params)) loglike_value = np.sum(self.wendog * np.log(cdf_dot_exog_params)) firstterm = self.wendog[:, 1:] - cdf_dot_exog_params[:, 1:] score_array = np.dot(firstterm.T, self.exog).flatten() return loglike_value, score_array
Returns log likelihood and score, efficiently reusing calculations. Note that both of these returned quantities will need to be negated before being minimized by the maximum likelihood fitting machinery.
loglike_and_score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_obs(self, params): """ Jacobian matrix for multinomial logit model log-likelihood Parameters ---------- params : ndarray The parameters of the multinomial logit model. Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params` . Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta_{j}}=\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J`, for observations :math:`i=1,...,n` In the multinomial model the score vector is K x (J-1) but is returned as a flattened array. The Jacobian has the observations in rows and the flattened array of derivatives in columns. """ params = params.reshape(self.K, -1, order='F') firstterm = self.wendog[:,1:] - self.cdf(np.dot(self.exog, params))[:,1:] #NOTE: might need to switch terms if params is reshaped return (firstterm[:,:,None] * self.exog[:,None,:]).reshape(self.exog.shape[0], -1)
Jacobian matrix for multinomial logit model log-likelihood Parameters ---------- params : ndarray The parameters of the multinomial logit model. Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params` . Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta_{j}}=\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J`, for observations :math:`i=1,...,n` In the multinomial model the score vector is K x (J-1) but is returned as a flattened array. The Jacobian has the observations in rows and the flattened array of derivatives in columns.
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Multinomial logit Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (J*K, J*K) The Hessian, second derivative of loglikelihood function with respect to the flattened parameters, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta_{j}\\partial\\beta_{l}}=-\\sum_{i=1}^{n}\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\left[\\boldsymbol{1}\\left(j=l\\right)-\\frac{\\exp\\left(\\beta_{l}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right]x_{i}x_{l}^{\\prime} where :math:`\\boldsymbol{1}\\left(j=l\\right)` equals 1 if `j` = `l` and 0 otherwise. The actual Hessian matrix has J**2 * K x K elements. Our Hessian is reshaped to be square (J*K, J*K) so that the solvers can use it. This implementation does not take advantage of the symmetry of the Hessian and could probably be refactored for speed. """ params = params.reshape(self.K, -1, order='F') X = self.exog pr = self.cdf(np.dot(X,params)) partials = [] J = self.J K = self.K for i in range(J-1): for j in range(J-1): # this loop assumes we drop the first col. if i == j: partials.append(\ -np.dot(((pr[:,i+1]*(1-pr[:,j+1]))[:,None]*X).T,X)) else: partials.append(-np.dot(((pr[:,i+1]*-pr[:,j+1])[:,None]*X).T,X)) H = np.array(partials) # the developer's notes on multinomial should clear this math up H = np.transpose(H.reshape(J-1, J-1, K, K), (0, 2, 1, 3)).reshape((J-1)*K, (J-1)*K) return H
Multinomial logit Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (J*K, J*K) The Hessian, second derivative of loglikelihood function with respect to the flattened parameters, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta_{j}\\partial\\beta_{l}}=-\\sum_{i=1}^{n}\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\left[\\boldsymbol{1}\\left(j=l\\right)-\\frac{\\exp\\left(\\beta_{l}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right]x_{i}x_{l}^{\\prime} where :math:`\\boldsymbol{1}\\left(j=l\\right)` equals 1 if `j` = `l` and 0 otherwise. The actual Hessian matrix has J**2 * K x K elements. Our Hessian is reshaped to be square (J*K, J*K) so that the solvers can use it. This implementation does not take advantage of the symmetry of the Hessian and could probably be refactored for speed.
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _score_nbin(self, params, Q=0): """ Score vector for NB2 model """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] a1 = 1/alpha * mu**Q prob = a1 / (a1 + mu) # a1 aka "size" in _ll_nbin if Q == 1: # nb1 # Q == 1 --> a1 = mu / alpha --> prob = 1 / (alpha + 1) dgpart = digamma(y + a1) - digamma(a1) dparams = exog * a1 * (np.log(prob) + dgpart) dalpha = ((alpha * (y - mu * np.log(prob) - mu*(dgpart + 1)) - mu * (np.log(prob) + dgpart))/ (alpha**2*(alpha + 1))).sum() elif Q == 0: # nb2 dgpart = digamma(y + a1) - digamma(a1) dparams = exog*a1 * (y-mu)/(mu+a1) da1 = -alpha**-2 dalpha = (dgpart + np.log(a1) - np.log(a1+mu) - (y-mu)/(a1+mu)).sum() * da1 #multiply above by constant outside sum to reduce rounding error if self._transparams: return np.r_[dparams.sum(0), dalpha*alpha] else: return np.r_[dparams.sum(0), dalpha]
Score vector for NB2 model
_score_nbin
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _hessian_nb1(self, params): """ Hessian of NB1 model. """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] a1 = mu/alpha dgpart = digamma(y + a1) - digamma(a1) prob = 1 / (1 + alpha) # equiv: a1 / (a1 + mu) # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) #const_arr = a1*mu*(a1+y)/(mu+a1)**2 # not all of dparams dparams = exog / alpha * (np.log(prob) + dgpart) dmudb = exog*mu xmu_alpha = exog * a1 trigamma = (special.polygamma(1, a1 + y) - special.polygamma(1, a1)) for i in range(dim): for j in range(dim): if j > i: continue hess_arr[i,j] = np.squeeze( np.sum( dparams[:,i,None] * dmudb[:,j,None] + xmu_alpha[:,i,None] * xmu_alpha[:,j,None] * trigamma, axis=0 ) ) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha # da1 = -alpha**-2 dldpda = np.sum(-a1 * dparams + exog * a1 * (-trigamma*mu/alpha**2 - prob), axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda log_alpha = np.log(prob) alpha3 = alpha**3 alpha2 = alpha**2 mu2 = mu**2 dada = ((alpha3*mu*(2*log_alpha + 2*dgpart + 3) - 2*alpha3*y + 4*alpha2*mu*(log_alpha + dgpart) + alpha2 * (2*mu - y) + 2*alpha*mu2*trigamma + mu2 * trigamma + alpha2 * mu2 * trigamma + 2*alpha*mu*(log_alpha + dgpart) )/(alpha**4*(alpha2 + 2*alpha + 1))) hess_arr[-1,-1] = dada.sum() return hess_arr
Hessian of NB1 model.
_hessian_nb1
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _hessian_nb2(self, params): """ Hessian of NB2 model. """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] a1 = 1/alpha params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] prob = a1 / (a1 + mu) dgpart = digamma(a1 + y) - digamma(a1) # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) const_arr = a1*mu*(a1+y)/(mu+a1)**2 for i in range(dim): for j in range(dim): if j > i: continue hess_arr[i,j] = np.sum(-exog[:,i,None] * exog[:,j,None] * const_arr, axis=0).squeeze() tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha da1 = -alpha**-2 dldpda = -np.sum(mu*exog*(y-mu)*a1**2/(mu+a1)**2 , axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda # for dl/dalpha dalpha #NOTE: polygamma(1,x) is the trigamma function da2 = 2*alpha**-3 dalpha = da1 * (dgpart + np.log(prob) - (y - mu)/(a1+mu)) dada = (da2 * dalpha/da1 + da1**2 * (special.polygamma(1, a1+y) - special.polygamma(1, a1) + 1/a1 - 1/(a1 + mu) + (y - mu)/(mu + a1)**2)).sum() hess_arr[-1,-1] = dada return hess_arr
Hessian of NB2 model.
_hessian_nb2
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, exposure=None, offset=None): """get frozen instance of distribution """ mu = self.predict(params, exog=exog, exposure=exposure, offset=offset) if self.loglike_method == 'geometric': # distr = stats.geom(1 / (1 + mu[:, None]), loc=-1) distr = stats.geom(1 / (1 + mu), loc=-1) else: if self.loglike_method == 'nb2': p = 2 elif self.loglike_method == 'nb1': p = 1 alpha = params[-1] q = 2 - p size = 1. / alpha * mu**q prob = size / (size + mu) # distr = nbinom(size[:, None], prob[:, None]) distr = nbinom(size, prob) return distr
get frozen instance of distribution
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. """ return np.sum(self.loglikeobs(params))
Loglikelihood of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes.
loglike
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def loglikeobs(self, params): """ Loglikelihood for observations of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization y = self.endog mu = self.predict(params) mu_p = mu**(2 - p) a1 = mu_p / alpha a2 = mu + a1 llf = (gammaln(y + a1) - gammaln(y + 1) - gammaln(a1) + a1 * np.log(a1) + y * np.log(mu) - (y + a1) * np.log(a2)) return llf
Loglikelihood for observations of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes
loglikeobs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_obs(self, params): """ Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu dgpart = digamma(a3) - digamma(a1) dgterm = dgpart + np.log(a1 / a2) + 1 - a3 / a2 # TODO: better name/interpretation for dgterm? dparams = (a4 * dgterm - a3 / a2 + y / mu) dparams = (self.exog.T * mu * dparams).T dalpha = -a1 / alpha * dgterm return np.concatenate((dparams, np.atleast_2d(dalpha).T), axis=1)
Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score_obs
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score(self, params): """ Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ score = np.sum(self.score_obs(params), axis=0) if self._transparams: score[-1] == score[-1] ** 2 return score else: return score
Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def score_factor(self, params, endog=None): """ Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ params = np.asarray(params) if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog if endog is None else endog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu dgpart = digamma(a3) - digamma(a1) dparams = ((a4 * dgpart - a3 / a2) + y / mu + a4 * (1 - a3 / a2 + np.log(a1 / a2))) dparams = (mu * dparams).T dalpha = (-a1 / alpha * (dgpart + np.log(a1 / a2) + 1 - a3 / a2)) return dparams, dalpha
Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. Parameters ---------- params : array-like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params`
score_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian(self, params): """ Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hessian : ndarray, 2-D The hessian matrix of the model. """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog exog = self.exog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu prob = a1 / a2 lprob = np.log(prob) dgpart = digamma(a3) - digamma(a1) pgpart = polygamma(1, a3) - polygamma(1, a1) dim = exog.shape[1] hess_arr = np.zeros((dim + 1, dim + 1)) coeff = mu**2 * (((1 + a4)**2 * a3 / a2**2 - a3 / a2 * (p - 1) * a4 / mu - y / mu**2 - 2 * a4 * (1 + a4) / a2 + p * a4 / mu * (lprob + dgpart + 2) - a4 / mu * (lprob + dgpart + 1) + a4**2 * pgpart) + (-(1 + a4) * a3 / a2 + y / mu + a4 * (lprob + dgpart + 1)) / mu) for i in range(dim): hess_arr[i, :-1] = np.sum(self.exog[:, :].T * self.exog[:, i] * coeff, axis=1) hess_arr[-1,:-1] = (self.exog[:, :].T * mu * a1 * ((1 + a4) * (1 - a3 / a2) / a2 - p * (lprob + dgpart + 2) / mu + p / mu * (a3 + p * a1) / a2 - a4 * pgpart) / alpha).sum(axis=1) da2 = (a1 * (2 * lprob + 2 * dgpart + 3 - 2 * a3 / a2 + a1 * pgpart - 2 * prob + prob * a3 / a2) / alpha**2) hess_arr[-1, -1] = da2.sum() tri_idx = np.triu_indices(dim + 1, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] return hess_arr
Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hessian : ndarray, 2-D The hessian matrix of the model.
hessian
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def hessian_factor(self, params): """ Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hessian : ndarray, 2-D The hessian matrix of the model. """ params = np.asarray(params) if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu a5 = a4 * p / mu dgpart = digamma(a3) - digamma(a1) coeff = mu**2 * (((1 + a4)**2 * a3 / a2**2 - a3 * (a5 - a4 / mu) / a2 - y / mu**2 - 2 * a4 * (1 + a4) / a2 + a5 * (np.log(a1) - np.log(a2) + dgpart + 2) - a4 * (np.log(a1) - np.log(a2) + dgpart + 1) / mu - a4**2 * (polygamma(1, a1) - polygamma(1, a3))) + (-(1 + a4) * a3 / a2 + y / mu + a4 * (np.log(a1) - np.log(a2) + dgpart + 1)) / mu) hfbb = coeff hfba = (mu * a1 * ((1 + a4) * (1 - a3 / a2) / a2 - p * (np.log(a1 / a2) + dgpart + 2) / mu + p * (a3 / mu + a4) / a2 + a4 * (polygamma(1, a1) - polygamma(1, a3))) / alpha) hfaa = (a1 * (2 * np.log(a1 / a2) + 2 * dgpart + 3 - 2 * a3 / a2 - a1 * polygamma(1, a1) + a1 * polygamma(1, a3) - 2 * a1 / a2 + a1 * a3 / a2**2) / alpha**2) return hfbb, hfba, hfaa
Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood Parameters ---------- params : array-like The parameters of the model Returns ------- hessian : ndarray, 2-D The hessian matrix of the model.
hessian_factor
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def fit(self, start_params=None, method='bfgs', maxiter=35, full_output=1, disp=1, callback=None, use_transparams=False, cov_type='nonrobust', cov_kwds=None, use_t=None, optim_kwds_prelim=None, **kwargs): # TODO: Fix doc string """ use_transparams : bool This parameter enable internal transformation to impose non-negativity. True to enable. Default is False. use_transparams=True imposes the no underdispersion (alpha > 0) constraint. In case use_transparams=True and method="newton" or "ncg" transformation is ignored. """ if use_transparams and method not in ['newton', 'ncg']: self._transparams = True else: if use_transparams: warnings.warn('Parameter "use_transparams" is ignored', RuntimeWarning) self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None kwds_prelim = {'disp': 0, 'skip_hessian': True, 'warn_convergence': False} if optim_kwds_prelim is not None: kwds_prelim.update(optim_kwds_prelim) mod_poi = Poisson(self.endog, self.exog, offset=offset) with warnings.catch_warnings(): warnings.simplefilter("always") res_poi = mod_poi.fit(**kwds_prelim) start_params = res_poi.params a = self._estimate_dispersion(res_poi.predict(), res_poi.resid, df_resid=res_poi.df_resid) start_params = np.append(start_params, max(0.05, a)) if callback is None: # work around perfect separation callback #3895 def callback(*x): return x mlefit = super().fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, full_output=full_output, callback=callback, **kwargs) if optim_kwds_prelim is not None: mlefit.mle_settings["optim_kwds_prelim"] = optim_kwds_prelim if use_transparams and method not in ["newton", "ncg"]: self._transparams = False mlefit._results.params[-1] = np.exp(mlefit._results.params[-1]) nbinfit = NegativeBinomialPResults(self, mlefit._results) result = NegativeBinomialPResultsWrapper(nbinfit) if cov_kwds is None: cov_kwds = {} result._get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) return result
use_transparams : bool This parameter enable internal transformation to impose non-negativity. True to enable. Default is False. use_transparams=True imposes the no underdispersion (alpha > 0) constraint. In case use_transparams=True and method="newton" or "ncg" transformation is ignored.
fit
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _deriv_score_obs_dendog(self, params): """derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog. """ from statsmodels.tools.numdiff import _approx_fprime_cs_scalar def f(y): if y.ndim == 2 and y.shape[1] == 1: y = y[:, 0] sf = self.score_factor(params, endog=y) return np.column_stack(sf) dsf = _approx_fprime_cs_scalar(self.endog[:, None], f) # deriv is 2d vector d1 = dsf[:, :1] * self.exog d2 = dsf[:, 1:2] return np.column_stack((d1, d2))
derivative of score_obs w.r.t. endog Parameters ---------- params : ndarray parameter at which score is evaluated Returns ------- derivative : ndarray_2d The derivative of the score_obs with respect to endog.
_deriv_score_obs_dendog
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _var(self, mu, params=None): """variance implied by the distribution internal use, will be refactored or removed """ alpha = params[-1] p = self.parameterization # no `-1` as in GPP var_ = mu * (1 + alpha * mu**(p - 1)) return var_
variance implied by the distribution internal use, will be refactored or removed
_var
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _prob_nonzero(self, mu, params): """Probability that count is not zero internal use in Censored model, will be refactored or removed """ alpha = params[-1] p = self.parameterization prob_nz = 1 - (1 + alpha * mu**(p-1))**(- 1 / alpha) return prob_nz
Probability that count is not zero internal use in Censored model, will be refactored or removed
_prob_nonzero
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_distribution(self, params, exog=None, exposure=None, offset=None): """get frozen instance of distribution """ mu = self.predict(params, exog=exog, exposure=exposure, offset=offset) size, prob = self.convert_params(params, mu) # distr = nbinom(size[:, None], prob[:, None]) distr = nbinom(size, prob) return distr
get frozen instance of distribution
get_distribution
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def prsquared(self): """ McFadden's pseudo-R-squared. `1 - (llf / llnull)` """ return 1 - self.llf/self.llnull
McFadden's pseudo-R-squared. `1 - (llf / llnull)`
prsquared
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def llr(self): """ Likelihood ratio chi-squared statistic; `-2*(llnull - llf)` """ return -2*(self.llnull - self.llf)
Likelihood ratio chi-squared statistic; `-2*(llnull - llf)`
llr
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def llr_pvalue(self): """ The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom `df_model`. """ return stats.distributions.chi2.sf(self.llr, self.df_model)
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom `df_model`.
llr_pvalue
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def set_null_options(self, llnull=None, attach_results=True, **kwargs): """ Set the fit options for the Null (constant-only) model. This resets the cache for related attributes which is potentially fragile. This only sets the option, the null model is estimated when llnull is accessed, if llnull is not yet in cache. Parameters ---------- llnull : {None, float} If llnull is not None, then the value will be directly assigned to the cached attribute "llnull". attach_results : bool Sets an internal flag whether the results instance of the null model should be attached. By default without calling this method, thenull model results are not attached and only the loglikelihood value llnull is stored. **kwargs Additional keyword arguments used as fit keyword arguments for the null model. The override and model default values. Notes ----- Modifies attributes of this instance, and so has no return. """ # reset cache, note we need to add here anything that depends on # llnullor the null model. If something is missing, then the attribute # might be incorrect. self._cache.pop('llnull', None) self._cache.pop('llr', None) self._cache.pop('llr_pvalue', None) self._cache.pop('prsquared', None) if hasattr(self, 'res_null'): del self.res_null if llnull is not None: self._cache['llnull'] = llnull self._attach_nullmodel = attach_results self._optim_kwds_null = kwargs
Set the fit options for the Null (constant-only) model. This resets the cache for related attributes which is potentially fragile. This only sets the option, the null model is estimated when llnull is accessed, if llnull is not yet in cache. Parameters ---------- llnull : {None, float} If llnull is not None, then the value will be directly assigned to the cached attribute "llnull". attach_results : bool Sets an internal flag whether the results instance of the null model should be attached. By default without calling this method, thenull model results are not attached and only the loglikelihood value llnull is stored. **kwargs Additional keyword arguments used as fit keyword arguments for the null model. The override and model default values. Notes ----- Modifies attributes of this instance, and so has no return.
set_null_options
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def llnull(self): """ Value of the constant-only loglikelihood """ model = self.model kwds = model._get_init_kwds().copy() for key in getattr(model, '_null_drop_keys', []): del kwds[key] # TODO: what parameters to pass to fit? mod_null = model.__class__(model.endog, np.ones(self.nobs), **kwds) # TODO: consider catching and warning on convergence failure? # in the meantime, try hard to converge. see # TestPoissonConstrained1a.test_smoke optim_kwds = getattr(self, '_optim_kwds_null', {}).copy() if 'start_params' in optim_kwds: # user provided sp_null = optim_kwds.pop('start_params') elif hasattr(model, '_get_start_params_null'): # get moment estimates if available sp_null = model._get_start_params_null() else: sp_null = None opt_kwds = dict(method='bfgs', warn_convergence=False, maxiter=10000, disp=0) opt_kwds.update(optim_kwds) if optim_kwds: res_null = mod_null.fit(start_params=sp_null, **opt_kwds) else: # this should be a reasonably method case across versions res_null = mod_null.fit(start_params=sp_null, method='nm', warn_convergence=False, maxiter=10000, disp=0) res_null = mod_null.fit(start_params=res_null.params, method='bfgs', warn_convergence=False, maxiter=10000, disp=0) if getattr(self, '_attach_nullmodel', False) is not False: self.res_null = res_null return res_null.llf
Value of the constant-only loglikelihood
llnull
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def fittedvalues(self): """ Linear predictor XB. """ return np.dot(self.model.exog, self.params[:self.model.exog.shape[1]])
Linear predictor XB.
fittedvalues
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_response(self): """ Respnose residuals. The response residuals are defined as `endog - fittedvalues` """ return self.model.endog - self.predict()
Respnose residuals. The response residuals are defined as `endog - fittedvalues`
resid_response
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_pearson(self): """ Pearson residuals defined as response residuals divided by standard deviation implied by the model. """ var_ = self.predict(which="var") return self.resid_response / np.sqrt(var_)
Pearson residuals defined as response residuals divided by standard deviation implied by the model.
resid_pearson
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def aic(self): """ Akaike information criterion. `-2*(llf - p)` where `p` is the number of regressors including the intercept. """ k_extra = getattr(self.model, 'k_extra', 0) return -2*(self.llf - (self.df_model + 1 + k_extra))
Akaike information criterion. `-2*(llf - p)` where `p` is the number of regressors including the intercept.
aic
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def bic(self): """ Bayesian information criterion. `-2*llf + ln(nobs)*p` where `p` is the number of regressors including the intercept. """ k_extra = getattr(self.model, 'k_extra', 0) return -2*self.llf + np.log(self.nobs)*(self.df_model + 1 + k_extra)
Bayesian information criterion. `-2*llf + ln(nobs)*p` where `p` is the number of regressors including the intercept.
bic
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def info_criteria(self, crit, dk_params=0): """Return an information criterion for the model. Parameters ---------- crit : string One of 'aic', 'bic', 'tic' or 'gbic'. dk_params : int or float Correction to the number of parameters used in the information criterion. Returns ------- Value of information criterion. Notes ----- Tic and gbic References ---------- Burnham KP, Anderson KR (2002). Model Selection and Multimodel Inference; Springer New York. """ crit = crit.lower() k_extra = getattr(self.model, 'k_extra', 0) k_params = self.df_model + 1 + k_extra + dk_params if crit == "aic": return -2 * self.llf + 2 * k_params elif crit == "bic": nobs = self.df_model + self.df_resid + 1 bic = -2*self.llf + k_params*np.log(nobs) return bic elif crit == "tic": return pinfer.tic(self) elif crit == "gbic": return pinfer.gbic(self) else: raise ValueError("Name of information criterion not recognized.")
Return an information criterion for the model. Parameters ---------- crit : string One of 'aic', 'bic', 'tic' or 'gbic'. dk_params : int or float Correction to the number of parameters used in the information criterion. Returns ------- Value of information criterion. Notes ----- Tic and gbic References ---------- Burnham KP, Anderson KR (2002). Model Selection and Multimodel Inference; Springer New York.
info_criteria
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_prediction(self, exog=None, transform=True, which="mean", linear=None, row_labels=None, average=False, agg_weights=None, y_values=None, **kwargs): """ Compute prediction results when endpoint transformation is valid. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. which : str Which statistic is to be predicted. Default is "mean". The available statistics and options depend on the model. see the model.predict docstring linear : bool Linear has been replaced by the `which` keyword and will be deprecated. If linear is True, then `which` is ignored and the linear prediction is returned. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. average : bool If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then the average over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Aggregation weights, only used if average is True. The weights are not normalized. y_values : None or nd_array Some predictive statistics like which="prob" are computed at values of the response variable. If y_values is not None, then it will be used instead of the default set of y_values. **Warning:** ``which="prob"`` for count models currently computes the pmf for all y=k up to max(endog). This can be a large array if the observed endog values are large. This will likely change so that the set of y_values will be chosen to limit the array size. **kwargs : Some models can take additional keyword arguments, such as offset, exposure or additional exog in multi-part models like zero inflated models. See the predict method of the model for the details. Returns ------- prediction_results : PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary dataframe for the prediction. Notes ----- Status: new in 0.14, experimental """ if linear is True: # compatibility with old keyword which = "linear" pred_kwds = kwargs # y_values is explicit so we can add it to the docstring if y_values is not None: pred_kwds["y_values"] = y_values res = pred.get_prediction( self, exog=exog, which=which, transform=transform, row_labels=row_labels, average=average, agg_weights=agg_weights, pred_kwds=pred_kwds ) return res
Compute prediction results when endpoint transformation is valid. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. which : str Which statistic is to be predicted. Default is "mean". The available statistics and options depend on the model. see the model.predict docstring linear : bool Linear has been replaced by the `which` keyword and will be deprecated. If linear is True, then `which` is ignored and the linear prediction is returned. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. average : bool If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then the average over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Aggregation weights, only used if average is True. The weights are not normalized. y_values : None or nd_array Some predictive statistics like which="prob" are computed at values of the response variable. If y_values is not None, then it will be used instead of the default set of y_values. **Warning:** ``which="prob"`` for count models currently computes the pmf for all y=k up to max(endog). This can be a large array if the observed endog values are large. This will likely change so that the set of y_values will be chosen to limit the array size. **kwargs : Some models can take additional keyword arguments, such as offset, exposure or additional exog in multi-part models like zero inflated models. See the predict method of the model for the details. Returns ------- prediction_results : PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary dataframe for the prediction. Notes ----- Status: new in 0.14, experimental
get_prediction
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available from the returned object. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. For interpretations of these methods see notes below. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- DiscreteMargins : marginal effects instance Returns an object that holds the marginal effects, standard errors, confidence intervals, etc. See `statsmodels.discrete.discrete_margins.DiscreteMargins` for more information. Notes ----- Interpretations of methods: - 'dydx' - change in `endog` for a change in `exog`. - 'eyex' - proportional change in `endog` for a proportional change in `exog`. - 'dyex' - change in `endog` for a proportional change in `exog`. - 'eydx' - proportional change in `endog` for a change in `exog`. When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ if getattr(self.model, "offset", None) is not None: raise NotImplementedError("Margins with offset are not available.") from statsmodels.discrete.discrete_margins import DiscreteMargins return DiscreteMargins(self, (at, method, atexog, dummy, count))
Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available from the returned object. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. For interpretations of these methods see notes below. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- DiscreteMargins : marginal effects instance Returns an object that holds the marginal effects, standard errors, confidence intervals, etc. See `statsmodels.discrete.discrete_margins.DiscreteMargins` for more information. Notes ----- Interpretations of methods: - 'dydx' - change in `endog` for a change in `exog`. - 'eyex' - proportional change in `endog` for a proportional change in `exog`. - 'dyex' - change in `endog` for a proportional change in `exog`. - 'eydx' - proportional change in `endog` for a change in `exog`. When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear.
get_margeff
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_influence(self): """ Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence """ from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence
get_influence
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def summary(self, yname=None, xname=None, title=None, alpha=.05, yname_list=None): """ Summarize the Regression Results. Parameters ---------- yname : str, optional The name of the endog variable in the tables. The default is `y`. xname : list[str], optional The names for the exogenous variables, default is "var_xx". Must match the number of parameters in the model. title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. Returns ------- Summary Class that holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : Class that hold summary results. """ top_left = [('Dep. Variable:', None), ('Model:', [self.model.__class__.__name__]), ('Method:', [self.method]), ('Date:', None), ('Time:', None), ('converged:', ["%s" % self.mle_retvals['converged']]), ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Pseudo R-squ.:', ["%#6.4g" % self.prsquared]), ('Log-Likelihood:', None), ('LL-Null:', ["%#8.5g" % self.llnull]), ('LLR p-value:', ["%#6.4g" % self.llr_pvalue]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" # boiler plate from statsmodels.iolib.summary import Summary smry = Summary() yname, yname_list = self._get_endog_name(yname, yname_list) # for top of table smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) # for parameters, etc smry.add_table_params(self, yname=yname_list, xname=xname, alpha=alpha, use_t=self.use_t) if hasattr(self, 'constraints'): smry.add_extra_txt(['Model has been estimated subject to linear ' 'equality constraints.']) return smry
Summarize the Regression Results. Parameters ---------- yname : str, optional The name of the endog variable in the tables. The default is `y`. xname : list[str], optional The names for the exogenous variables, default is "var_xx". Must match the number of parameters in the model. title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. Returns ------- Summary Class that holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : Class that hold summary results.
summary
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def summary2(self, yname=None, xname=None, title=None, alpha=.05, float_format="%.4f"): """ Experimental function to summarize regression results. Parameters ---------- yname : str Name of the dependent variable (optional). xname : list[str], optional List of strings of length equal to the number of parameters Names of the independent variables (optional). title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. float_format : str The print format for floats in parameters summary. Returns ------- Summary Instance that contains the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : Class that holds summary results. """ from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) if hasattr(self, 'constraints'): smry.add_text('Model has been estimated subject to linear ' 'equality constraints.') return smry
Experimental function to summarize regression results. Parameters ---------- yname : str Name of the dependent variable (optional). xname : list[str], optional List of strings of length equal to the number of parameters Names of the independent variables (optional). title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. float_format : str The print format for floats in parameters summary. Returns ------- Summary Instance that contains the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : Class that holds summary results.
summary2
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid(self): """ Residuals Notes ----- The residuals for Count models are defined as .. math:: y - p where :math:`p = \\exp(X\\beta)`. Any exposure and offset variables are also handled. """ return self.model.endog - self.predict()
Residuals Notes ----- The residuals for Count models are defined as .. math:: y - p where :math:`p = \\exp(X\\beta)`. Any exposure and offset variables are also handled.
resid
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_diagnostic(self, y_max=None): """ Get instance of class with specification and diagnostic methods. experimental, API of Diagnostic classes will change Returns ------- CountDiagnostic instance The instance has methods to perform specification and diagnostic tesst and plots See Also -------- statsmodels.statsmodels.discrete.diagnostic.CountDiagnostic """ from statsmodels.discrete.diagnostic import CountDiagnostic return CountDiagnostic(self, y_max=y_max)
Get instance of class with specification and diagnostic methods. experimental, API of Diagnostic classes will change Returns ------- CountDiagnostic instance The instance has methods to perform specification and diagnostic tesst and plots See Also -------- statsmodels.statsmodels.discrete.diagnostic.CountDiagnostic
get_diagnostic
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def lnalpha(self): """Natural log of alpha""" return np.log(self.params[-1])
Natural log of alpha
lnalpha
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def lnalpha_std_err(self): """Natural log of standardized error""" return self.bse[-1] / self.params[-1]
Natural log of standardized error
lnalpha_std_err
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def predict_prob(self, n=None, exog=None, exposure=None, offset=None, transform=True): """ Return predicted probability of each count level for each observation Parameters ---------- n : array_like or int The counts for which you want the probabilities. If n is None then the probabilities for each count from 0 to max(y) are given. Returns ------- ndarray A nobs x n array where len(`n`) columns are indexed by the count n. If n is None, then column 0 is the probability that each observation is 0, column 1 is the probability that each observation is 1, etc. """ if n is not None: counts = np.atleast_2d(n) else: counts = np.atleast_2d(np.arange(0, np.max(self.model.endog)+1)) mu = self.predict(exog=exog, exposure=exposure, offset=offset, transform=transform, which="mean")[:,None] # uses broadcasting return stats.poisson.pmf(counts, mu)
Return predicted probability of each count level for each observation Parameters ---------- n : array_like or int The counts for which you want the probabilities. If n is None then the probabilities for each count from 0 to max(y) are given. Returns ------- ndarray A nobs x n array where len(`n`) columns are indexed by the count n. If n is None, then column 0 is the probability that each observation is 0, column 1 is the probability that each observation is 1, etc.
predict_prob
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_pearson(self): """ Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ # Pearson residuals p = self.predict() # fittedvalues is still linear return (self.model.endog - p)/np.sqrt(p)
Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1.
resid_pearson
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_influence(self): """ Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence """ from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence
get_influence
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_diagnostic(self, y_max=None): """ Get instance of class with specification and diagnostic methods experimental, API of Diagnostic classes will change Returns ------- PoissonDiagnostic instance The instance has methods to perform specification and diagnostic tesst and plots See Also -------- statsmodels.statsmodels.discrete.diagnostic.PoissonDiagnostic """ from statsmodels.discrete.diagnostic import PoissonDiagnostic return PoissonDiagnostic(self, y_max=y_max)
Get instance of class with specification and diagnostic methods experimental, API of Diagnostic classes will change Returns ------- PoissonDiagnostic instance The instance has methods to perform specification and diagnostic tesst and plots See Also -------- statsmodels.statsmodels.discrete.diagnostic.PoissonDiagnostic
get_diagnostic
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pred_table(self, threshold=.5): """ Prediction table Parameters ---------- threshold : scalar Number between 0 and 1. Threshold above which a prediction is considered 1 and below which a prediction is considered 0. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal. """ model = self.model actual = model.endog pred = np.array(self.predict() > threshold, dtype=float) bins = np.array([0, 0.5, 1]) return np.histogram2d(actual, pred, bins=bins)[0]
Prediction table Parameters ---------- threshold : scalar Number between 0 and 1. Threshold above which a prediction is considered 1 and below which a prediction is considered 0. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal.
pred_table
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_dev(self): """ Deviance residuals Notes ----- Deviance residuals are defined .. math:: d_j = \\pm\\left(2\\left[Y_j\\ln\\left(\\frac{Y_j}{M_jp_j}\\right) + (M_j - Y_j\\ln\\left(\\frac{M_j-Y_j}{M_j(1-p_j)} \\right) \\right] \\right)^{1/2} where :math:`p_j = cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ #These are the deviance residuals #model = self.model endog = self.model.endog #exog = model.exog # M = # of individuals that share a covariate pattern # so M[i] = 2 for i = two share a covariate pattern M = 1 p = self.predict() #Y_0 = np.where(exog == 0) #Y_M = np.where(exog == M) #NOTE: Common covariate patterns are not yet handled res = -(1-endog)*np.sqrt(2*M*np.abs(np.log(1-p))) + \ endog*np.sqrt(2*M*np.abs(np.log(p))) return res
Deviance residuals Notes ----- Deviance residuals are defined .. math:: d_j = \\pm\\left(2\\left[Y_j\\ln\\left(\\frac{Y_j}{M_jp_j}\\right) + (M_j - Y_j\\ln\\left(\\frac{M_j-Y_j}{M_j(1-p_j)} \\right) \\right] \\right)^{1/2} where :math:`p_j = cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1.
resid_dev
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_pearson(self): """ Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ # Pearson residuals #model = self.model endog = self.model.endog #exog = model.exog # M = # of individuals that share a covariate pattern # so M[i] = 2 for i = two share a covariate pattern # use unique row pattern? M = 1 p = self.predict() return (endog - M*p)/np.sqrt(M*p*(1-p))
Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1.
resid_pearson
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_response(self): """ The response residuals Notes ----- Response residuals are defined to be .. math:: y - p where :math:`p=cdf(X\\beta)`. """ return self.model.endog - self.predict()
The response residuals Notes ----- Response residuals are defined to be .. math:: y - p where :math:`p=cdf(X\\beta)`.
resid_response
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_generalized(self): """ Generalized residuals Notes ----- The generalized residuals for the Logit model are defined .. math:: y - p where :math:`p=cdf(X\\beta)`. This is the same as the `resid_response` for the Logit model. """ # Generalized residuals return self.model.endog - self.predict()
Generalized residuals Notes ----- The generalized residuals for the Logit model are defined .. math:: y - p where :math:`p=cdf(X\\beta)`. This is the same as the `resid_response` for the Logit model.
resid_generalized
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_influence(self): """ Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence """ from statsmodels.stats.outliers_influence import MLEInfluence return MLEInfluence(self)
Get an instance of MLEInfluence with influence and outlier measures Returns ------- infl : MLEInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.MLEInfluence
get_influence
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_generalized(self): """ Generalized residuals Notes ----- The generalized residuals for the Probit model are defined .. math:: y\\frac{\\phi(X\\beta)}{\\Phi(X\\beta)}-(1-y)\\frac{\\phi(X\\beta)}{1-\\Phi(X\\beta)} """ # generalized residuals model = self.model endog = model.endog XB = self.predict(which="linear") pdf = model.pdf(XB) cdf = model.cdf(XB) return endog * pdf/cdf - (1-endog)*pdf/(1-cdf)
Generalized residuals Notes ----- The generalized residuals for the Probit model are defined .. math:: y\\frac{\\phi(X\\beta)}{\\Phi(X\\beta)}-(1-y)\\frac{\\phi(X\\beta)}{1-\\Phi(X\\beta)}
resid_generalized
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def _get_endog_name(self, yname, yname_list, all=False): """ If all is False, the first variable name is dropped """ model = self.model if yname is None: yname = model.endog_names if yname_list is None: ynames = model._ynames_map ynames = self._maybe_convert_ynames_int(ynames) # use range below to ensure sortedness ynames = [ynames[key] for key in range(int(model.J))] ynames = ['='.join([yname, name]) for name in ynames] if not all: yname_list = ynames[1:] # assumes first variable is dropped else: yname_list = ynames return yname, yname_list
If all is False, the first variable name is dropped
_get_endog_name
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def pred_table(self): """ Returns the J x J prediction table. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal. """ ju = self.model.J - 1 # highest index # these are the actual, predicted indices #idx = lzip(self.model.endog, self.predict().argmax(1)) bins = np.concatenate(([0], np.linspace(0.5, ju - 0.5, ju), [ju])) return np.histogram2d(self.model.endog, self.predict().argmax(1), bins=bins)[0]
Returns the J x J prediction table. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal.
pred_table
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def get_prediction(self): """Not implemented for Multinomial """ raise NotImplementedError
Not implemented for Multinomial
get_prediction
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def resid_misclassified(self): """ Residuals indicating which observations are misclassified. Notes ----- The residuals for the multinomial model are defined as .. math:: argmax(y_i) \\neq argmax(p_i) where :math:`argmax(y_i)` is the index of the category for the endogenous variable and :math:`argmax(p_i)` is the index of the predicted probabilities for each category. That is, the residual is a binary indicator that is 0 if the category with the highest predicted probability is the same as that of the observed variable and 1 otherwise. """ # it's 0 or 1 - 0 for correct prediction and 1 for a missed one return (self.model.wendog.argmax(1) != self.predict().argmax(1)).astype(float)
Residuals indicating which observations are misclassified. Notes ----- The residuals for the multinomial model are defined as .. math:: argmax(y_i) \\neq argmax(p_i) where :math:`argmax(y_i)` is the index of the category for the endogenous variable and :math:`argmax(p_i)` is the index of the predicted probabilities for each category. That is, the residual is a binary indicator that is 0 if the category with the highest predicted probability is the same as that of the observed variable and 1 otherwise.
resid_misclassified
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def summary2(self, alpha=0.05, float_format="%.4f"): """Experimental function to summarize regression results Parameters ---------- alpha : float significance level for the confidence intervals float_format : str print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results """ from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_dict(summary2.summary_model(self)) # One data frame per value of endog eqn = self.params.shape[1] confint = self.conf_int(alpha) for i in range(eqn): coefs = summary2.summary_params((self, self.params[:, i], self.bse[:, i], self.tvalues[:, i], self.pvalues[:, i], confint[i]), alpha=alpha) # Header must show value of endog level_str = self.model.endog_names + ' = ' + str(i) coefs[level_str] = coefs.index coefs = coefs.iloc[:, [-1, 0, 1, 2, 3, 4, 5]] smry.add_df(coefs, index=False, header=True, float_format=float_format) smry.add_title(results=self) return smry
Experimental function to summarize regression results Parameters ---------- alpha : float significance level for the confidence intervals float_format : str print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results
summary2
python
statsmodels/statsmodels
statsmodels/discrete/discrete_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/discrete_model.py
BSD-3-Clause
def test_logit_formula(): """Test that ConditionalLogit uses the right environment for formulas.""" def times_two(x): return 2 * x groups = np.repeat([0, 1], 50) exog = np.linspace(-2, 2, len(groups)) error = np.linspace(-1, 1, len(groups)) # Needed for within-group variance logit_link = 1 / (1 + np.exp(exog + groups)) + error endog = (logit_link > 0.5).astype(int) data = pd.DataFrame({"exog": exog, "groups": groups, "endog": endog}) result_direct = ConditionalLogit(endog, times_two(exog), groups=groups).fit() result_formula = ConditionalLogit.from_formula( "endog ~ 0 + times_two(exog)", groups="groups", data=data ).fit() assert_allclose(result_direct.params, result_formula.params) assert_allclose(result_direct.bse, result_formula.bse)
Test that ConditionalLogit uses the right environment for formulas.
test_logit_formula
python
statsmodels/statsmodels
statsmodels/discrete/tests/test_conditional.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/test_conditional.py
BSD-3-Clause
def __init__(self): """r Results are from Stata 11 (checked vs R nnet package). """ self.nobs = 944
r Results are from Stata 11 (checked vs R nnet package).
__init__
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def __init__(self): """ Special results for L1 models Uses the Spector data and a script to generate the baseline results """ pass
Special results for L1 models Uses the Spector data and a script to generate the baseline results
__init__
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def logit(): """ Results generated with: data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = 3 * np.array([0, 1, 1, 1]) res2 = sm.Logit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='size', size_trim_tol=1e-5, acc=1e-10, maxiter=1000) """ obj = Namespace() nan = np.nan obj.params = [-4.10271595, 0., 0.15493781, 0.] obj.conf_int = [ [-9.15205122, 0.94661932], [nan, nan], [-0.06539482, 0.37527044], [nan, nan]] obj.bse = [2.5762388, nan, 0.11241668, nan] obj.nnz_params = 2 obj.aic = 42.091439368583671 obj.bic = 45.022911174183122 obj.cov_params = [ [6.63700638, nan, -0.28636261, nan], [nan, nan, nan, nan], [-0.28636261, nan, 0.01263751, nan], [nan, nan, nan, nan]] return obj
Results generated with: data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = 3 * np.array([0, 1, 1, 1]) res2 = sm.Logit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='size', size_trim_tol=1e-5, acc=1e-10, maxiter=1000)
logit
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def sweep(): """ Results generated with params = np.zeros((3, 4)) alphas = np.array( [[0.1, 0.1, 0.1, 0.1], [0.4, 0.4, 0.5, 0.5], [0.5, 0.5, 1, 1]]) model = sm.Logit(data.endog, data.exog) for i in range(3): alpha = alphas[i, :] res2 = model.fit_regularized(method="l1", alpha=alpha, disp=0, acc=1e-10, maxiter=1000, trim_mode='off') params[i, :] = res2.params print(params) """ obj = Namespace() obj.params = [ [-10.37593611, 2.27080968, 0.06670638, 2.05723691], [-5.32670811, 1.18216019, 0.01402395, 1.45178712], [-3.92630318, 0.90126958, -0., 1.09498178]] return obj
Results generated with params = np.zeros((3, 4)) alphas = np.array( [[0.1, 0.1, 0.1, 0.1], [0.4, 0.4, 0.5, 0.5], [0.5, 0.5, 1, 1]]) model = sm.Logit(data.endog, data.exog) for i in range(3): alpha = alphas[i, :] res2 = model.fit_regularized(method="l1", alpha=alpha, disp=0, acc=1e-10, maxiter=1000, trim_mode='off') params[i, :] = res2.params print(params)
sweep
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def probit(): """ Results generated with data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = np.array([0.1, 0.2, 0.3, 10]) res2 = sm.Probit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10, maxiter=1000) """ obj = Namespace() nan = np.nan obj.params = [-5.40476992, 1.25018458, 0.04744558, 0.] obj.conf_int = [ [-9.44077951, -1.36876033], [0.03716721, 2.46320194], [-0.09727571, 0.19216687], [np.nan, np.nan]] obj.bse = [2.05922641, 0.61889778, 0.07383875, np.nan] obj.nnz_params = 3 obj.aic = 38.399773877542927 obj.bic = 42.796981585942106 obj.cov_params = [ [4.24041339, -0.83432592, -0.06827915, nan], [-0.83432592, 0.38303447, -0.01700249, nan], [-0.06827915, -0.01700249, 0.00545216, nan], [nan, nan, nan, nan]] return obj
Results generated with data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = np.array([0.1, 0.2, 0.3, 10]) res2 = sm.Probit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10, maxiter=1000)
probit
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def mnlogit(): """ Results generated with anes_data = sm.datasets.anes96.load() anes_exog = anes_data.exog anes_exog = sm.add_constant(anes_exog, prepend=False) mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog) alpha = 10 * np.ones((mlogit_mod.J - 1, mlogit_mod.K)) alpha[-1, :] = 0 mlogit_l1_res = mlogit_mod.fit_regularized( method='l1', alpha=alpha, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10) """ obj = Namespace() obj.params = [ [0.00100163, -0.05864195, -0.06147822, -0.04769671, -0.05222987, -0.09522432], [0., 0.03186139, 0.12048999, 0.83211915, 0.92330292, 1.5680646], [-0.0218185, -0.01988066, -0.00808564, -0.00487463, -0.01400173, -0.00562079], [0., 0.03306875, 0., 0.02362861, 0.05486435, 0.14656966], [0., 0.04448213, 0.03252651, 0.07661761, 0.07265266, 0.0967758], [0.90993803, -0.50081247, -2.08285102, -5.26132955, -4.86783179, -9.31537963]] obj.conf_int = [ [[-0.0646223, 0.06662556], [np.nan, np.nan], [-0.03405931, -0.00957768], [np.nan, np.nan], [np.nan, np.nan], [0.26697895, 1.55289711]], [[-0.1337913, 0.01650741], [-0.14477255, 0.20849532], [-0.03500303, -0.00475829], [-0.11406121, 0.18019871], [0.00479741, 0.08416684], [-1.84626136, 0.84463642]], [[-0.17237962, 0.04942317], [-0.15146029, 0.39244026], [-0.02947379, 0.01330252], [np.nan, np.nan], [-0.02501483, 0.09006785], [-3.90379391, -0.26190812]], [[-0.12938296, 0.03398954], [0.62612955, 1.03810876], [-0.02046322, 0.01071395], [-0.13738534, 0.18464256], [0.03017236, 0.12306286], [-6.91227465, -3.61038444]], [[-0.12469773, 0.02023799], [0.742564, 1.10404183], [-0.02791975, -0.00008371], [-0.08491561, 0.19464431], [0.0332926, 0.11201273], [-6.29331126, -3.44235233]], [[-0.17165567, -0.01879296], [1.33994079, 1.79618841], [-0.02027503, 0.00903345], [-0.00267819, 0.29581751], [0.05343135, 0.14012026], [-11.10419107, -7.52656819]]] obj.bse = [ [0.03348221, 0.03834221, 0.05658338, 0.04167742, 0.03697408, 0.03899631], [np.nan, 0.09012101, 0.13875269, 0.10509867, 0.09221543, 0.11639184], [0.00624543, 0.00771564, 0.01091253, 0.00795351, 0.00710116, 0.00747679], [np.nan, 0.07506769, np.nan, 0.08215148, 0.07131762, 0.07614826], [np.nan, 0.02024768, 0.02935837, 0.02369699, 0.02008204, 0.02211492], [0.32804638, 0.68646613, 0.92906957, 0.84233441, 0.72729881, 0.91267567]] obj.nnz_params = 32 obj.aic = 3019.4391360294126 obj.bic = 3174.6431733460686 return obj
Results generated with anes_data = sm.datasets.anes96.load() anes_exog = anes_data.exog anes_exog = sm.add_constant(anes_exog, prepend=False) mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog) alpha = 10 * np.ones((mlogit_mod.J - 1, mlogit_mod.K)) alpha[-1, :] = 0 mlogit_l1_res = mlogit_mod.fit_regularized( method='l1', alpha=alpha, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10)
mnlogit
python
statsmodels/statsmodels
statsmodels/discrete/tests/results/results_discrete.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/discrete/tests/results/results_discrete.py
BSD-3-Clause
def _est_loc_linear(self, bw, endog, exog, data_predict): """ Local linear estimator of g(x) in the regression ``y = g(x) + e``. Parameters ---------- bw : array_like Vector of bandwidth value(s). endog : 1D array_like The dependent variable. exog : 1D or 2D array_like The independent variable(s). data_predict : 1D array_like of length K, where K is the number of variables. The point at which the density is estimated. Returns ------- D_x : array_like The value of the conditional mean at `data_predict`. Notes ----- See p. 81 in [1] and p.38 in [2] for the formulas. Unlike other methods, this one requires that `data_predict` be 1D. """ nobs, k_vars = exog.shape ker = gpke(bw, data=exog, data_predict=data_predict, var_type=self.var_type, ckertype=self.ckertype, ukertype=self.ukertype, okertype=self.okertype, tosum=False) / float(nobs) # Create the matrix on p.492 in [7], after the multiplication w/ K_h,ij # See also p. 38 in [2] #ix_cont = np.arange(self.k_vars) # Use all vars instead of continuous only # Note: because ix_cont was defined here such that it selected all # columns, I removed the indexing with it from exog/data_predict. # Convert ker to a 2-D array to make matrix operations below work ker = ker[:, np.newaxis] M12 = exog - data_predict M22 = np.dot(M12.T, M12 * ker) M12 = (M12 * ker).sum(axis=0) M = np.empty((k_vars + 1, k_vars + 1)) M[0, 0] = ker.sum() M[0, 1:] = M12 M[1:, 0] = M12 M[1:, 1:] = M22 ker_endog = ker * endog V = np.empty((k_vars + 1, 1)) V[0, 0] = ker_endog.sum() V[1:, 0] = ((exog - data_predict) * ker_endog).sum(axis=0) mean_mfx = np.dot(np.linalg.pinv(M), V) mean = mean_mfx[0] mfx = mean_mfx[1:, :] return mean, mfx
Local linear estimator of g(x) in the regression ``y = g(x) + e``. Parameters ---------- bw : array_like Vector of bandwidth value(s). endog : 1D array_like The dependent variable. exog : 1D or 2D array_like The independent variable(s). data_predict : 1D array_like of length K, where K is the number of variables. The point at which the density is estimated. Returns ------- D_x : array_like The value of the conditional mean at `data_predict`. Notes ----- See p. 81 in [1] and p.38 in [2] for the formulas. Unlike other methods, this one requires that `data_predict` be 1D.
_est_loc_linear
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _est_loc_constant(self, bw, endog, exog, data_predict): """ Local constant estimator of g(x) in the regression y = g(x) + e Parameters ---------- bw : array_like Array of bandwidth value(s). endog : 1D array_like The dependent variable. exog : 1D or 2D array_like The independent variable(s). data_predict : 1D or 2D array_like The point(s) at which the density is estimated. Returns ------- G : ndarray The value of the conditional mean at `data_predict`. B_x : ndarray The marginal effects. """ ker_x = gpke(bw, data=exog, data_predict=data_predict, var_type=self.var_type, ckertype=self.ckertype, ukertype=self.ukertype, okertype=self.okertype, tosum=False) ker_x = np.reshape(ker_x, np.shape(endog)) G_numer = (ker_x * endog).sum(axis=0) G_denom = ker_x.sum(axis=0) G = G_numer / G_denom nobs = exog.shape[0] f_x = G_denom / float(nobs) ker_xc = gpke(bw, data=exog, data_predict=data_predict, var_type=self.var_type, ckertype='d_gaussian', #okertype='wangryzin_reg', tosum=False) ker_xc = ker_xc[:, np.newaxis] d_mx = -(endog * ker_xc).sum(axis=0) / float(nobs) #* np.prod(bw[:, ix_cont])) d_fx = -ker_xc.sum(axis=0) / float(nobs) #* np.prod(bw[:, ix_cont])) B_x = d_mx / f_x - G * d_fx / f_x B_x = (G_numer * d_fx - G_denom * d_mx) / (G_denom**2) #B_x = (f_x * d_mx - m_x * d_fx) / (f_x ** 2) return G, B_x
Local constant estimator of g(x) in the regression y = g(x) + e Parameters ---------- bw : array_like Array of bandwidth value(s). endog : 1D array_like The dependent variable. exog : 1D or 2D array_like The independent variable(s). data_predict : 1D or 2D array_like The point(s) at which the density is estimated. Returns ------- G : ndarray The value of the conditional mean at `data_predict`. B_x : ndarray The marginal effects.
_est_loc_constant
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def aic_hurvich(self, bw, func=None): """ Computes the AIC Hurvich criteria for the estimation of the bandwidth. Parameters ---------- bw : str or array_like See the ``bw`` parameter of `KernelReg` for details. Returns ------- aic : ndarray The AIC Hurvich criteria, one element for each variable. func : None Unused here, needed in signature because it's used in `cv_loo`. References ---------- See ch.2 in [1] and p.35 in [2]. """ H = np.empty((self.nobs, self.nobs)) for j in range(self.nobs): H[:, j] = gpke(bw, data=self.exog, data_predict=self.exog[j,:], ckertype=self.ckertype, ukertype=self.ukertype, okertype=self.okertype, var_type=self.var_type, tosum=False) denom = H.sum(axis=1) H = H / denom gx = KernelReg(endog=self.endog, exog=self.exog, var_type=self.var_type, reg_type=self.reg_type, bw=bw, defaults=EstimatorSettings(efficient=False)).fit()[0] gx = np.reshape(gx, (self.nobs, 1)) sigma = ((self.endog - gx)**2).sum(axis=0) / float(self.nobs) frac = (1 + np.trace(H) / float(self.nobs)) / \ (1 - (np.trace(H) + 2) / float(self.nobs)) #siga = np.dot(self.endog.T, (I - H).T) #sigb = np.dot((I - H), self.endog) #sigma = np.dot(siga, sigb) / float(self.nobs) aic = np.log(sigma) + frac return aic
Computes the AIC Hurvich criteria for the estimation of the bandwidth. Parameters ---------- bw : str or array_like See the ``bw`` parameter of `KernelReg` for details. Returns ------- aic : ndarray The AIC Hurvich criteria, one element for each variable. func : None Unused here, needed in signature because it's used in `cv_loo`. References ---------- See ch.2 in [1] and p.35 in [2].
aic_hurvich
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def fit(self, data_predict=None): """ Returns the mean and marginal effects at the `data_predict` points. Parameters ---------- data_predict : array_like, optional Points at which to return the mean and marginal effects. If not given, ``data_predict == exog``. Returns ------- mean : ndarray The regression result for the mean (i.e. the actual curve). mfx : ndarray The marginal effects, i.e. the partial derivatives of the mean. """ func = self.est[self.reg_type] if data_predict is None: data_predict = self.exog else: data_predict = _adjust_shape(data_predict, self.k_vars) N_data_predict = np.shape(data_predict)[0] mean = np.empty((N_data_predict,)) mfx = np.empty((N_data_predict, self.k_vars)) for i in range(N_data_predict): mean_mfx = func(self.bw, self.endog, self.exog, data_predict=data_predict[i, :]) mean[i] = np.squeeze(mean_mfx[0]) mfx_c = np.squeeze(mean_mfx[1]) mfx[i, :] = mfx_c return mean, mfx
Returns the mean and marginal effects at the `data_predict` points. Parameters ---------- data_predict : array_like, optional Points at which to return the mean and marginal effects. If not given, ``data_predict == exog``. Returns ------- mean : ndarray The regression result for the mean (i.e. the actual curve). mfx : ndarray The marginal effects, i.e. the partial derivatives of the mean.
fit
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def sig_test(self, var_pos, nboot=50, nested_res=25, pivot=False): """ Significance test for the variables in the regression. Parameters ---------- var_pos : sequence The position of the variable in exog to be tested. Returns ------- sig : str The level of significance: - `*` : at 90% confidence level - `**` : at 95% confidence level - `***` : at 99* confidence level - "Not Significant" : if not significant """ var_pos = np.asarray(var_pos) ix_cont, ix_ord, ix_unord = _get_type_pos(self.var_type) if np.any(ix_cont[var_pos]): if np.any(ix_ord[var_pos]) or np.any(ix_unord[var_pos]): raise ValueError("Discrete variable in hypothesis. Must be continuous") Sig = TestRegCoefC(self, var_pos, nboot, nested_res, pivot) else: Sig = TestRegCoefD(self, var_pos, nboot) return Sig.sig
Significance test for the variables in the regression. Parameters ---------- var_pos : sequence The position of the variable in exog to be tested. Returns ------- sig : str The level of significance: - `*` : at 90% confidence level - `**` : at 95% confidence level - `***` : at 99* confidence level - "Not Significant" : if not significant
sig_test
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" rpr = "KernelReg instance\n" rpr += "Number of variables: k_vars = " + str(self.k_vars) + "\n" rpr += "Number of samples: N = " + str(self.nobs) + "\n" rpr += "Variable types: " + self.var_type + "\n" rpr += "BW selection method: " + self._bw_method + "\n" rpr += "Estimator type: " + self.reg_type + "\n" return rpr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _get_class_vars_type(self): """Helper method to be able to pass needed vars to _compute_subset.""" class_type = 'KernelReg' class_vars = (self.var_type, self.k_vars, self.reg_type) return class_type, class_vars
Helper method to be able to pass needed vars to _compute_subset.
_get_class_vars_type
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_dispersion(self, data): """ Computes the measure of dispersion. The minimum of the standard deviation and interquartile range / 1.349 References ---------- See the user guide for the np package in R. In the notes on bwscaling option in npreg, npudens, npcdens there is a discussion on the measure of dispersion """ data = data[:, 1:] return _compute_min_std_IQR(data)
Computes the measure of dispersion. The minimum of the standard deviation and interquartile range / 1.349 References ---------- See the user guide for the np package in R. In the notes on bwscaling option in npreg, npudens, npcdens there is a discussion on the measure of dispersion
_compute_dispersion
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" rpr = "KernelCensoredReg instance\n" rpr += "Number of variables: k_vars = " + str(self.k_vars) + "\n" rpr += "Number of samples: nobs = " + str(self.nobs) + "\n" rpr += "Variable types: " + self.var_type + "\n" rpr += "BW selection method: " + self._bw_method + "\n" rpr += "Estimator type: " + self.reg_type + "\n" return rpr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _est_loc_linear(self, bw, endog, exog, data_predict, W): """ Local linear estimator of g(x) in the regression ``y = g(x) + e``. Parameters ---------- bw : array_like Vector of bandwidth value(s) endog : 1D array_like The dependent variable exog : 1D or 2D array_like The independent variable(s) data_predict : 1D array_like of length K, where K is the number of variables. The point at which the density is estimated Returns ------- D_x : array_like The value of the conditional mean at data_predict Notes ----- See p. 81 in [1] and p.38 in [2] for the formulas Unlike other methods, this one requires that data_predict be 1D """ nobs, k_vars = exog.shape ker = gpke(bw, data=exog, data_predict=data_predict, var_type=self.var_type, ckertype=self.ckertype, ukertype=self.ukertype, okertype=self.okertype, tosum=False) # Create the matrix on p.492 in [7], after the multiplication w/ K_h,ij # See also p. 38 in [2] # Convert ker to a 2-D array to make matrix operations below work ker = W * ker[:, np.newaxis] M12 = exog - data_predict M22 = np.dot(M12.T, M12 * ker) M12 = (M12 * ker).sum(axis=0) M = np.empty((k_vars + 1, k_vars + 1)) M[0, 0] = ker.sum() M[0, 1:] = M12 M[1:, 0] = M12 M[1:, 1:] = M22 ker_endog = ker * endog V = np.empty((k_vars + 1, 1)) V[0, 0] = ker_endog.sum() V[1:, 0] = ((exog - data_predict) * ker_endog).sum(axis=0) mean_mfx = np.dot(np.linalg.pinv(M), V) mean = mean_mfx[0] mfx = mean_mfx[1:, :] return mean, mfx
Local linear estimator of g(x) in the regression ``y = g(x) + e``. Parameters ---------- bw : array_like Vector of bandwidth value(s) endog : 1D array_like The dependent variable exog : 1D or 2D array_like The independent variable(s) data_predict : 1D array_like of length K, where K is the number of variables. The point at which the density is estimated Returns ------- D_x : array_like The value of the conditional mean at data_predict Notes ----- See p. 81 in [1] and p.38 in [2] for the formulas Unlike other methods, this one requires that data_predict be 1D
_est_loc_linear
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def fit(self, data_predict=None): """ Returns the marginal effects at the data_predict points. """ func = self.est[self.reg_type] if data_predict is None: data_predict = self.exog else: data_predict = _adjust_shape(data_predict, self.k_vars) N_data_predict = np.shape(data_predict)[0] mean = np.empty((N_data_predict,)) mfx = np.empty((N_data_predict, self.k_vars)) for i in range(N_data_predict): mean_mfx = func(self.bw, self.endog, self.exog, data_predict=data_predict[i, :], W=self.W_in) mean[i] = np.squeeze(mean_mfx[0]) mfx_c = np.squeeze(mean_mfx[1]) mfx[i, :] = mfx_c return mean, mfx
Returns the marginal effects at the data_predict points.
fit
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_test_stat(self, Y, X): """ Computes the test statistic. See p.371 in [8]. """ lam = self._compute_lambda(Y, X) t = lam if self.pivot: se_lam = self._compute_se_lambda(Y, X) t = lam / float(se_lam) return t
Computes the test statistic. See p.371 in [8].
_compute_test_stat
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_lambda(self, Y, X): """Computes only lambda -- the main part of the test statistic""" n = np.shape(X)[0] Y = _adjust_shape(Y, 1) X = _adjust_shape(X, self.k_vars) b = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw, defaults = EstimatorSettings(efficient=False)).fit()[1] b = b[:, self.test_vars] b = np.reshape(b, (n, len(self.test_vars))) #fct = np.std(b) # Pivot the statistic by dividing by SE fct = 1. # Do not Pivot -- Bootstrapping works better if Pivot lam = ((b / fct) ** 2).sum() / float(n) return lam
Computes only lambda -- the main part of the test statistic
_compute_lambda
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_se_lambda(self, Y, X): """ Calculates the SE of lambda by nested resampling Used to pivot the statistic. Bootstrapping works better with estimating pivotal statistics but slows down computation significantly. """ n = np.shape(Y)[0] lam = np.empty(shape=(self.nres,)) for i in range(self.nres): ind = np.random.randint(0, n, size=(n, 1)) Y1 = Y[ind, 0] X1 = X[ind, :] lam[i] = self._compute_lambda(Y1, X1) se_lambda = np.std(lam) return se_lambda
Calculates the SE of lambda by nested resampling Used to pivot the statistic. Bootstrapping works better with estimating pivotal statistics but slows down computation significantly.
_compute_se_lambda
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_sig(self): """ Computes the significance value for the variable(s) tested. The empirical distribution of the test statistic is obtained through bootstrapping the sample. The null hypothesis is rejected if the test statistic is larger than the 90, 95, 99 percentiles. """ t_dist = np.empty(shape=(self.nboot, )) Y = self.endog X = copy.deepcopy(self.exog) n = np.shape(Y)[0] X[:, self.test_vars] = np.mean(X[:, self.test_vars], axis=0) # Calculate the restricted mean. See p. 372 in [8] M = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw, defaults=EstimatorSettings(efficient=False)).fit()[0] M = np.reshape(M, (n, 1)) e = Y - M e = e - np.mean(e) # recenter residuals for i in range(self.nboot): ind = np.random.randint(0, n, size=(n, 1)) e_boot = e[ind, 0] Y_boot = M + e_boot t_dist[i] = self._compute_test_stat(Y_boot, self.exog) self.t_dist = t_dist sig = "Not Significant" if self.test_stat > mquantiles(t_dist, 0.9): sig = "*" if self.test_stat > mquantiles(t_dist, 0.95): sig = "**" if self.test_stat > mquantiles(t_dist, 0.99): sig = "***" return sig
Computes the significance value for the variable(s) tested. The empirical distribution of the test statistic is obtained through bootstrapping the sample. The null hypothesis is rejected if the test statistic is larger than the 90, 95, 99 percentiles.
_compute_sig
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_test_stat(self, Y, X): """Computes the test statistic""" dom_x = np.sort(np.unique(self.exog[:, self.test_vars])) n = np.shape(X)[0] model = KernelReg(Y, X, self.var_type, self.model.reg_type, self.bw, defaults = EstimatorSettings(efficient=False)) X1 = copy.deepcopy(X) X1[:, self.test_vars] = 0 m0 = model.fit(data_predict=X1)[0] m0 = np.reshape(m0, (n, 1)) zvec = np.zeros((n, 1)) # noqa:E741 for i in dom_x[1:] : X1[:, self.test_vars] = i m1 = model.fit(data_predict=X1)[0] m1 = np.reshape(m1, (n, 1)) zvec += (m1 - m0) ** 2 # noqa:E741 avg = zvec.sum(axis=0) / float(n) return avg
Computes the test statistic
_compute_test_stat
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _compute_sig(self): """Calculates the significance level of the variable tested""" m = self._est_cond_mean() Y = self.endog X = self.exog n = np.shape(X)[0] u = Y - m u = u - np.mean(u) # center fct1 = (1 - 5**0.5) / 2. fct2 = (1 + 5**0.5) / 2. u1 = fct1 * u u2 = fct2 * u r = fct2 / (5 ** 0.5) I_dist = np.empty((self.nboot,1)) for j in range(self.nboot): u_boot = copy.deepcopy(u2) prob = np.random.uniform(0,1, size = (n,1)) ind = prob < r u_boot[ind] = u1[ind] Y_boot = m + u_boot I_dist[j] = self._compute_test_stat(Y_boot, X) sig = "Not Significant" if self.test_stat > mquantiles(I_dist, 0.9): sig = "*" if self.test_stat > mquantiles(I_dist, 0.95): sig = "**" if self.test_stat > mquantiles(I_dist, 0.99): sig = "***" return sig
Calculates the significance level of the variable tested
_compute_sig
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def _est_cond_mean(self): """ Calculates the expected conditional mean m(X, Z=l) for all possible l """ self.dom_x = np.sort(np.unique(self.exog[:, self.test_vars])) X = copy.deepcopy(self.exog) m=0 for i in self.dom_x: X[:, self.test_vars] = i m += self.model.fit(data_predict = X)[0] m = m / float(len(self.dom_x)) m = np.reshape(m, (np.shape(self.exog)[0], 1)) return m
Calculates the expected conditional mean m(X, Z=l) for all possible l
_est_cond_mean
python
statsmodels/statsmodels
statsmodels/nonparametric/kernel_regression.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernel_regression.py
BSD-3-Clause
def lowess(endog, exog, frac=2./3, it=3): """ LOWESS (Locally Weighted Scatterplot Smoothing) A lowess function that outs smoothed estimates of endog at the given exog values from points (exog, endog) Parameters ---------- endog : 1-D numpy array The y-values of the observed points exog : 1-D numpy array The x-values of the observed points frac : float Between 0 and 1. The fraction of the data used when estimating each y-value. it : int The number of residual-based reweightings to perform. Returns ------- out: numpy array A numpy array with two columns. The first column is the sorted x values and the second column the associated estimated y-values. Notes ----- This lowess function implements the algorithm given in the reference below using local linear estimates. Suppose the input data has N points. The algorithm works by estimating the true ``y_i`` by taking the frac*N closest points to ``(x_i,y_i)`` based on their x values and estimating ``y_i`` using a weighted linear regression. The weight for ``(x_j,y_j)`` is `_lowess_tricube` function applied to ``|x_i-x_j|``. If ``iter > 0``, then further weighted local linear regressions are performed, where the weights are the same as above times the `_lowess_bisquare` function of the residuals. Each iteration takes approximately the same amount of time as the original fit, so these iterations are expensive. They are most useful when the noise has extremely heavy tails, such as Cauchy noise. Noise with less heavy-tails, such as t-distributions with ``df > 2``, are less problematic. The weights downgrade the influence of points with large residuals. In the extreme case, points whose residuals are larger than 6 times the median absolute residual are given weight 0. Some experimentation is likely required to find a good choice of frac and iter for a particular dataset. References ---------- Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association 74 (368): 829-836. Examples -------- The below allows a comparison between how different the fits from `lowess` for different values of frac can be. >>> import numpy as np >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low=-2*np.pi, high=2*np.pi, size=500) >>> y = np.sin(x) + np.random.normal(size=len(x)) >>> z = lowess(y, x) >>> w = lowess(y, x, frac=1./3) This gives a similar comparison for when it is 0 vs not. >>> import scipy.stats as stats >>> x = np.random.uniform(low=-2*np.pi, high=2*np.pi, size=500) >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x)) >>> z = lowess(y, x, frac= 1./3, it=0) >>> w = lowess(y, x, frac=1./3) """ x = exog if exog.ndim != 1: raise ValueError('exog must be a vector') if endog.ndim != 1: raise ValueError('endog must be a vector') if endog.shape[0] != x.shape[0] : raise ValueError('exog and endog must have same length') n = exog.shape[0] fitted = np.zeros(n) k = int(frac * n) index_array = np.argsort(exog) x_copy = np.array(exog[index_array]) #, dtype ='float32') y_copy = endog[index_array] fitted, weights = _lowess_initial_fit(x_copy, y_copy, k, n) for i in range(it): _lowess_robustify_fit(x_copy, y_copy, fitted, weights, k, n) out = np.array([x_copy, fitted]).T out.shape = (n,2) return out
LOWESS (Locally Weighted Scatterplot Smoothing) A lowess function that outs smoothed estimates of endog at the given exog values from points (exog, endog) Parameters ---------- endog : 1-D numpy array The y-values of the observed points exog : 1-D numpy array The x-values of the observed points frac : float Between 0 and 1. The fraction of the data used when estimating each y-value. it : int The number of residual-based reweightings to perform. Returns ------- out: numpy array A numpy array with two columns. The first column is the sorted x values and the second column the associated estimated y-values. Notes ----- This lowess function implements the algorithm given in the reference below using local linear estimates. Suppose the input data has N points. The algorithm works by estimating the true ``y_i`` by taking the frac*N closest points to ``(x_i,y_i)`` based on their x values and estimating ``y_i`` using a weighted linear regression. The weight for ``(x_j,y_j)`` is `_lowess_tricube` function applied to ``|x_i-x_j|``. If ``iter > 0``, then further weighted local linear regressions are performed, where the weights are the same as above times the `_lowess_bisquare` function of the residuals. Each iteration takes approximately the same amount of time as the original fit, so these iterations are expensive. They are most useful when the noise has extremely heavy tails, such as Cauchy noise. Noise with less heavy-tails, such as t-distributions with ``df > 2``, are less problematic. The weights downgrade the influence of points with large residuals. In the extreme case, points whose residuals are larger than 6 times the median absolute residual are given weight 0. Some experimentation is likely required to find a good choice of frac and iter for a particular dataset. References ---------- Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association 74 (368): 829-836. Examples -------- The below allows a comparison between how different the fits from `lowess` for different values of frac can be. >>> import numpy as np >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low=-2*np.pi, high=2*np.pi, size=500) >>> y = np.sin(x) + np.random.normal(size=len(x)) >>> z = lowess(y, x) >>> w = lowess(y, x, frac=1./3) This gives a similar comparison for when it is 0 vs not. >>> import scipy.stats as stats >>> x = np.random.uniform(low=-2*np.pi, high=2*np.pi, size=500) >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x)) >>> z = lowess(y, x, frac= 1./3, it=0) >>> w = lowess(y, x, frac=1./3)
lowess
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_initial_fit(x_copy, y_copy, k, n): """ The initial weighted local linear regression for lowess. Parameters ---------- x_copy : 1-d ndarray The x-values/exogenous part of the data being smoothed y_copy : 1-d ndarray The y-values/ endogenous part of the data being smoothed k : int The number of data points which affect the linear fit for each estimated point n : int The total number of points Returns ------- fitted : 1-d ndarray The fitted y-values weights : 2-d ndarray An n by k array. The contribution to the weights in the local linear fit coming from the distances between the x-values """ weights = np.zeros((n,k), dtype = x_copy.dtype) nn_indices = [0,k] X = np.ones((k,2)) fitted = np.zeros(n) for i in range(n): #note: all _lowess functions are inplace, no return left_width = x_copy[i] - x_copy[nn_indices[0]] right_width = x_copy[nn_indices[1]-1] - x_copy[i] width = max(left_width, right_width) _lowess_wt_standardize(weights[i,:], x_copy[nn_indices[0]:nn_indices[1]], x_copy[i], width) _lowess_tricube(weights[i,:]) weights[i,:] = np.sqrt(weights[i,:]) X[:,1] = x_copy[nn_indices[0]:nn_indices[1]] y_i = weights[i,:] * y_copy[nn_indices[0]:nn_indices[1]] beta = lstsq(weights[i,:].reshape(k,1) * X, y_i, rcond=-1)[0] fitted[i] = beta[0] + beta[1]*x_copy[i] _lowess_update_nn(x_copy, nn_indices, i+1) return fitted, weights
The initial weighted local linear regression for lowess. Parameters ---------- x_copy : 1-d ndarray The x-values/exogenous part of the data being smoothed y_copy : 1-d ndarray The y-values/ endogenous part of the data being smoothed k : int The number of data points which affect the linear fit for each estimated point n : int The total number of points Returns ------- fitted : 1-d ndarray The fitted y-values weights : 2-d ndarray An n by k array. The contribution to the weights in the local linear fit coming from the distances between the x-values
_lowess_initial_fit
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_wt_standardize(weights, new_entries, x_copy_i, width): """ The initial phase of creating the weights. Subtract the current x_i and divide by the width. Parameters ---------- weights : ndarray The memory where (new_entries - x_copy_i)/width will be placed new_entries : ndarray The x-values of the k closest points to x[i] x_copy_i : float x[i], the i'th point in the (sorted) x values width : float The maximum distance between x[i] and any point in new_entries Returns ------- Nothing. The modifications are made to weight in place. """ weights[:] = new_entries weights -= x_copy_i weights /= width
The initial phase of creating the weights. Subtract the current x_i and divide by the width. Parameters ---------- weights : ndarray The memory where (new_entries - x_copy_i)/width will be placed new_entries : ndarray The x-values of the k closest points to x[i] x_copy_i : float x[i], the i'th point in the (sorted) x values width : float The maximum distance between x[i] and any point in new_entries Returns ------- Nothing. The modifications are made to weight in place.
_lowess_wt_standardize
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_robustify_fit(x_copy, y_copy, fitted, weights, k, n): """ Additional weighted local linear regressions, performed if iter>0. They take into account the sizes of the residuals, to eliminate the effect of extreme outliers. Parameters ---------- x_copy : 1-d ndarray The x-values/exogenous part of the data being smoothed y_copy : 1-d ndarray The y-values/ endogenous part of the data being smoothed fitted : 1-d ndarray The fitted y-values from the previous iteration weights : 2-d ndarray An n by k array. The contribution to the weights in the local linear fit coming from the distances between the x-values k : int The number of data points which affect the linear fit for each estimated point n : int The total number of points Returns ------- Nothing. The fitted values are modified in place. """ nn_indices = [0,k] X = np.ones((k,2)) residual_weights = np.copy(y_copy) residual_weights.shape = (n,) residual_weights -= fitted residual_weights = np.absolute(residual_weights)#, out=residual_weights) s = np.median(residual_weights) residual_weights /= (6*s) too_big = residual_weights>=1 _lowess_bisquare(residual_weights) residual_weights[too_big] = 0 for i in range(n): total_weights = weights[i,:] * np.sqrt(residual_weights[nn_indices[0]: nn_indices[1]]) X[:,1] = x_copy[nn_indices[0]:nn_indices[1]] y_i = total_weights * y_copy[nn_indices[0]:nn_indices[1]] total_weights.shape = (k,1) beta = lstsq(total_weights * X, y_i, rcond=-1)[0] fitted[i] = beta[0] + beta[1] * x_copy[i] _lowess_update_nn(x_copy, nn_indices, i+1)
Additional weighted local linear regressions, performed if iter>0. They take into account the sizes of the residuals, to eliminate the effect of extreme outliers. Parameters ---------- x_copy : 1-d ndarray The x-values/exogenous part of the data being smoothed y_copy : 1-d ndarray The y-values/ endogenous part of the data being smoothed fitted : 1-d ndarray The fitted y-values from the previous iteration weights : 2-d ndarray An n by k array. The contribution to the weights in the local linear fit coming from the distances between the x-values k : int The number of data points which affect the linear fit for each estimated point n : int The total number of points Returns ------- Nothing. The fitted values are modified in place.
_lowess_robustify_fit
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_update_nn(x, cur_nn,i): """ Update the endpoints of the nearest neighbors to the ith point. Parameters ---------- x : iterable The sorted points of x-values cur_nn : list of length 2 The two current indices between which are the k closest points to x[i]. (The actual value of k is irrelevant for the algorithm. i : int The index of the current value in x for which the k closest points are desired. Returns ------- Nothing. It modifies cur_nn in place. """ while True: if cur_nn[1]<x.size: left_dist = x[i] - x[cur_nn[0]] new_right_dist = x[cur_nn[1]] - x[i] if new_right_dist < left_dist: cur_nn[0] = cur_nn[0] + 1 cur_nn[1] = cur_nn[1] + 1 else: break else: break
Update the endpoints of the nearest neighbors to the ith point. Parameters ---------- x : iterable The sorted points of x-values cur_nn : list of length 2 The two current indices between which are the k closest points to x[i]. (The actual value of k is irrelevant for the algorithm. i : int The index of the current value in x for which the k closest points are desired. Returns ------- Nothing. It modifies cur_nn in place.
_lowess_update_nn
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_tricube(t): """ The _tricube function applied to a numpy array. The tricube function is (1-abs(t)**3)**3. Parameters ---------- t : ndarray Array the tricube function is applied to elementwise and in-place. Returns ------- Nothing """ #t = (1-np.abs(t)**3)**3 t[:] = np.absolute(t) #, out=t) #numpy version? _lowess_mycube(t) t[:] = np.negative(t) #, out = t) t += 1 _lowess_mycube(t)
The _tricube function applied to a numpy array. The tricube function is (1-abs(t)**3)**3. Parameters ---------- t : ndarray Array the tricube function is applied to elementwise and in-place. Returns ------- Nothing
_lowess_tricube
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_mycube(t): """ Fast matrix cube Parameters ---------- t : ndarray Array that is cubed, elementwise and in-place Returns ------- Nothing """ #t **= 3 t2 = t*t t *= t2
Fast matrix cube Parameters ---------- t : ndarray Array that is cubed, elementwise and in-place Returns ------- Nothing
_lowess_mycube
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def _lowess_bisquare(t): """ The bisquare function applied to a numpy array. The bisquare function is (1-t**2)**2. Parameters ---------- t : ndarray array bisquare function is applied to, element-wise and in-place. Returns ------- Nothing """ #t = (1-t**2)**2 t *= t t[:] = np.negative(t) #, out=t) t += 1 t *= t
The bisquare function applied to a numpy array. The bisquare function is (1-t**2)**2. Parameters ---------- t : ndarray array bisquare function is applied to, element-wise and in-place. Returns ------- Nothing
_lowess_bisquare
python
statsmodels/statsmodels
statsmodels/nonparametric/smoothers_lowess_old.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_lowess_old.py
BSD-3-Clause
def pdf_kernel_asym(x, sample, bw, kernel_type, weights=None, batch_size=10): """Density estimate based on asymmetric kernel. Parameters ---------- x : array_like, float Points for which density is evaluated. ``x`` can be scalar or 1-dim. sample : ndarray, 1-d Sample from which kernel estimate is computed. bw : float Bandwidth parameter, there is currently no default value for it. kernel_type : str or callable Kernel name or kernel function. Currently supported kernel names are "beta", "beta2", "gamma", "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and "weibull". weights : None or ndarray If weights is not None, then kernel for sample points are weighted by it. No weights corresponds to uniform weighting of each component with 1 / nobs, where nobs is the size of `sample`. batch_size : float If x is an 1-dim array, then points can be evaluated in vectorized form. To limit the amount of memory, a loop can work in batches. The number of batches is determined so that the intermediate array sizes are limited by ``np.size(batch) * len(sample) < batch_size * 1000``. Default is to have at most 10000 elements in intermediate arrays. Returns ------- pdf : float or ndarray Estimate of pdf at points x. ``pdf`` has the same size or shape as x. """ if callable(kernel_type): kfunc = kernel_type else: kfunc = kernel_dict_pdf[kernel_type] batch_size = batch_size * 1000 if np.size(x) * len(sample) < batch_size: # no batch-loop if np.size(x) > 1: x = np.asarray(x)[:, None] pdfi = kfunc(x, sample, bw) if weights is None: pdf = pdfi.mean(-1) else: pdf = pdfi @ weights else: # batch, designed for 1-d x if weights is None: weights = np.ones(len(sample)) / len(sample) k = batch_size // len(sample) n = len(x) // k x_split = np.array_split(x, n) pdf = np.concatenate([(kfunc(xi[:, None], sample, bw) @ weights) for xi in x_split]) return pdf
Density estimate based on asymmetric kernel. Parameters ---------- x : array_like, float Points for which density is evaluated. ``x`` can be scalar or 1-dim. sample : ndarray, 1-d Sample from which kernel estimate is computed. bw : float Bandwidth parameter, there is currently no default value for it. kernel_type : str or callable Kernel name or kernel function. Currently supported kernel names are "beta", "beta2", "gamma", "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and "weibull". weights : None or ndarray If weights is not None, then kernel for sample points are weighted by it. No weights corresponds to uniform weighting of each component with 1 / nobs, where nobs is the size of `sample`. batch_size : float If x is an 1-dim array, then points can be evaluated in vectorized form. To limit the amount of memory, a loop can work in batches. The number of batches is determined so that the intermediate array sizes are limited by ``np.size(batch) * len(sample) < batch_size * 1000``. Default is to have at most 10000 elements in intermediate arrays. Returns ------- pdf : float or ndarray Estimate of pdf at points x. ``pdf`` has the same size or shape as x.
pdf_kernel_asym
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def cdf_kernel_asym(x, sample, bw, kernel_type, weights=None, batch_size=10): """Estimate of cumulative distribution based on asymmetric kernel. Parameters ---------- x : array_like, float Points for which density is evaluated. ``x`` can be scalar or 1-dim. sample : ndarray, 1-d Sample from which kernel estimate is computed. bw : float Bandwidth parameter, there is currently no default value for it. kernel_type : str or callable Kernel name or kernel function. Currently supported kernel names are "beta", "beta2", "gamma", "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and "weibull". weights : None or ndarray If weights is not None, then kernel for sample points are weighted by it. No weights corresponds to uniform weighting of each component with 1 / nobs, where nobs is the size of `sample`. batch_size : float If x is an 1-dim array, then points can be evaluated in vectorized form. To limit the amount of memory, a loop can work in batches. The number of batches is determined so that the intermediate array sizes are limited by ``np.size(batch) * len(sample) < batch_size * 1000``. Default is to have at most 10000 elements in intermediate arrays. Returns ------- cdf : float or ndarray Estimate of cdf at points x. ``cdf`` has the same size or shape as x. """ if callable(kernel_type): kfunc = kernel_type else: kfunc = kernel_dict_cdf[kernel_type] batch_size = batch_size * 1000 if np.size(x) * len(sample) < batch_size: # no batch-loop if np.size(x) > 1: x = np.asarray(x)[:, None] cdfi = kfunc(x, sample, bw) if weights is None: cdf = cdfi.mean(-1) else: cdf = cdfi @ weights else: # batch, designed for 1-d x if weights is None: weights = np.ones(len(sample)) / len(sample) k = batch_size // len(sample) n = len(x) // k x_split = np.array_split(x, n) cdf = np.concatenate([(kfunc(xi[:, None], sample, bw) @ weights) for xi in x_split]) return cdf
Estimate of cumulative distribution based on asymmetric kernel. Parameters ---------- x : array_like, float Points for which density is evaluated. ``x`` can be scalar or 1-dim. sample : ndarray, 1-d Sample from which kernel estimate is computed. bw : float Bandwidth parameter, there is currently no default value for it. kernel_type : str or callable Kernel name or kernel function. Currently supported kernel names are "beta", "beta2", "gamma", "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and "weibull". weights : None or ndarray If weights is not None, then kernel for sample points are weighted by it. No weights corresponds to uniform weighting of each component with 1 / nobs, where nobs is the size of `sample`. batch_size : float If x is an 1-dim array, then points can be evaluated in vectorized form. To limit the amount of memory, a loop can work in batches. The number of batches is determined so that the intermediate array sizes are limited by ``np.size(batch) * len(sample) < batch_size * 1000``. Default is to have at most 10000 elements in intermediate arrays. Returns ------- cdf : float or ndarray Estimate of cdf at points x. ``cdf`` has the same size or shape as x.
cdf_kernel_asym
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def _kernel_pdf_gamma(x, sample, bw): """Gamma kernel for pdf, without boundary corrected part. drops `+ 1` in shape parameter It should be possible to use this if probability in neighborhood of zero boundary is small. """ return stats.gamma.pdf(sample, x / bw, scale=bw)
Gamma kernel for pdf, without boundary corrected part. drops `+ 1` in shape parameter It should be possible to use this if probability in neighborhood of zero boundary is small.
_kernel_pdf_gamma
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def _kernel_cdf_gamma(x, sample, bw): """Gamma kernel for cdf, without boundary corrected part. drops `+ 1` in shape parameter It should be possible to use this if probability in neighborhood of zero boundary is small. """ return stats.gamma.sf(sample, x / bw, scale=bw)
Gamma kernel for cdf, without boundary corrected part. drops `+ 1` in shape parameter It should be possible to use this if probability in neighborhood of zero boundary is small.
_kernel_cdf_gamma
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def kernel_pdf_invgauss_(x, sample, bw): """Inverse gaussian kernel density, explicit formula. Scaillet 2004 """ pdf = (1 / np.sqrt(2 * np.pi * bw * sample**3) * np.exp(- 1 / (2 * bw * x) * (sample / x - 2 + x / sample))) return pdf.mean(-1)
Inverse gaussian kernel density, explicit formula. Scaillet 2004
kernel_pdf_invgauss_
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause
def kernel_pdf_recipinvgauss_(x, sample, bw): """Reciprocal inverse gaussian kernel density, explicit formula. Scaillet 2004 """ pdf = (1 / np.sqrt(2 * np.pi * bw * sample) * np.exp(- (x - bw) / (2 * bw) * sample / (x - bw) - 2 + (x - bw) / sample)) return pdf
Reciprocal inverse gaussian kernel density, explicit formula. Scaillet 2004
kernel_pdf_recipinvgauss_
python
statsmodels/statsmodels
statsmodels/nonparametric/kernels_asymmetric.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/kernels_asymmetric.py
BSD-3-Clause