code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def set_debug(self, debug): """Set the debug mode (off by default). Set to True to enable debug mode. When active, some actions will launch a browser on the current page on failure to let you inspect the page content. """ self.__debug = debug
Set the debug mode (off by default). Set to True to enable debug mode. When active, some actions will launch a browser on the current page on failure to let you inspect the page content.
set_debug
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def get_debug(self): """Get the debug mode (off by default).""" return self.__debug
Get the debug mode (off by default).
get_debug
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def set_verbose(self, verbose): """Set the verbosity level (an integer). * 0 means no verbose output. * 1 shows one dot per visited page (looks like a progress bar) * >= 2 shows each visited URL. """ self.__verbose = verbose
Set the verbosity level (an integer). * 0 means no verbose output. * 1 shows one dot per visited page (looks like a progress bar) * >= 2 shows each visited URL.
set_verbose
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def get_verbose(self): """Get the verbosity level. See :func:`set_verbose()`.""" return self.__verbose
Get the verbosity level. See :func:`set_verbose()`.
get_verbose
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def page(self): """Get the current page as a soup object.""" return self.__state.page
Get the current page as a soup object.
page
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def url(self): """Get the URL of the currently visited page.""" return self.__state.url
Get the URL of the currently visited page.
url
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def form(self): """Get the currently selected form as a :class:`Form` object. See :func:`select_form`. """ if self.__state.form is None: raise AttributeError("No form has been selected yet on this page.") return self.__state.form
Get the currently selected form as a :class:`Form` object. See :func:`select_form`.
form
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def __setitem__(self, name, value): """Call item assignment on the currently selected form. See :func:`Form.__setitem__`. """ self.form[name] = value
Call item assignment on the currently selected form. See :func:`Form.__setitem__`.
__setitem__
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def new_control(self, type, name, value, **kwargs): """Call :func:`Form.new_control` on the currently selected form.""" return self.form.new_control(type, name, value, **kwargs)
Call :func:`Form.new_control` on the currently selected form.
new_control
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def absolute_url(self, url): """Return the absolute URL made from the current URL and ``url``. The current URL is only used to provide any missing components of ``url``, as in the `.urljoin() method of urllib.parse <https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urljoin>`__. """ return urllib.parse.urljoin(self.url, url)
Return the absolute URL made from the current URL and ``url``. The current URL is only used to provide any missing components of ``url``, as in the `.urljoin() method of urllib.parse <https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urljoin>`__.
absolute_url
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def open(self, url, *args, **kwargs): """Open the URL and store the Browser's state in this object. All arguments are forwarded to :func:`Browser.get`. :return: Forwarded from :func:`Browser.get`. """ if self.__verbose == 1: sys.stdout.write('.') sys.stdout.flush() elif self.__verbose >= 2: print(url) resp = self.get(url, *args, **kwargs) self.__state = _BrowserState(page=resp.soup, url=resp.url, request=resp.request) return resp
Open the URL and store the Browser's state in this object. All arguments are forwarded to :func:`Browser.get`. :return: Forwarded from :func:`Browser.get`.
open
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def open_fake_page(self, page_text, url=None, soup_config=None): """Mock version of :func:`open`. Behave as if opening a page whose text is ``page_text``, but do not perform any network access. If ``url`` is set, pretend it is the page's URL. Useful mainly for testing. """ soup_config = soup_config or self.soup_config self.__state = _BrowserState( page=bs4.BeautifulSoup(page_text, **soup_config), url=url)
Mock version of :func:`open`. Behave as if opening a page whose text is ``page_text``, but do not perform any network access. If ``url`` is set, pretend it is the page's URL. Useful mainly for testing.
open_fake_page
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def open_relative(self, url, *args, **kwargs): """Like :func:`open`, but ``url`` can be relative to the currently visited page. """ return self.open(self.absolute_url(url), *args, **kwargs)
Like :func:`open`, but ``url`` can be relative to the currently visited page.
open_relative
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def refresh(self): """Reload the current page with the same request as originally done. Any change (`select_form`, or any value filled-in in the form) made to the current page before refresh is discarded. :raise ValueError: Raised if no refreshable page is loaded, e.g., when using the shallow ``Browser`` wrapper functions. :return: Response of the request.""" old_request = self.__state.request if old_request is None: raise ValueError('The current page is not refreshable. Either no ' 'page is opened or low-level browser methods ' 'were used to do so') resp = self.session.send(old_request) Browser.add_soup(resp, self.soup_config) self.__state = _BrowserState(page=resp.soup, url=resp.url, request=resp.request) return resp
Reload the current page with the same request as originally done. Any change (`select_form`, or any value filled-in in the form) made to the current page before refresh is discarded. :raise ValueError: Raised if no refreshable page is loaded, e.g., when using the shallow ``Browser`` wrapper functions. :return: Response of the request.
refresh
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def find_associated_elements(form_id): """Find all elements associated to a form (i.e. an element with a form attribute -> ``form=form_id``) """ # Elements which can have a form owner elements_with_owner_form = ("input", "button", "fieldset", "object", "output", "select", "textarea") found_elements = [] for element in elements_with_owner_form: found_elements.extend( self.page.find_all(element, form=form_id) ) return found_elements
Find all elements associated to a form (i.e. an element with a form attribute -> ``form=form_id``)
select_form.find_associated_elements
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def select_form(self, selector="form", nr=0): """Select a form in the current page. :param selector: CSS selector or a bs4.element.Tag object to identify the form to select. If not specified, ``selector`` defaults to "form", which is useful if, e.g., there is only one form on the page. For ``selector`` syntax, see the `.select() method in BeautifulSoup <https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors>`__. :param nr: A zero-based index specifying which form among those that match ``selector`` will be selected. Useful when one or more forms have the same attributes as the form you want to select, and its position on the page is the only way to uniquely identify it. Default is the first matching form (``nr=0``). :return: The selected form as a soup object. It can also be retrieved later with the :attr:`form` attribute. """ def find_associated_elements(form_id): """Find all elements associated to a form (i.e. an element with a form attribute -> ``form=form_id``) """ # Elements which can have a form owner elements_with_owner_form = ("input", "button", "fieldset", "object", "output", "select", "textarea") found_elements = [] for element in elements_with_owner_form: found_elements.extend( self.page.find_all(element, form=form_id) ) return found_elements if isinstance(selector, bs4.element.Tag): if selector.name != "form": raise LinkNotFoundError form = selector else: # nr is a 0-based index for consistency with mechanize found_forms = self.page.select(selector, limit=nr + 1) if len(found_forms) != nr + 1: if self.__debug: print('select_form failed for', selector) self.launch_browser() raise LinkNotFoundError() form = found_forms[-1] if form and form.has_attr('id'): form_id = form["id"] new_elements = find_associated_elements(form_id) form.extend(new_elements) self.__state.form = Form(form) return self.form
Select a form in the current page. :param selector: CSS selector or a bs4.element.Tag object to identify the form to select. If not specified, ``selector`` defaults to "form", which is useful if, e.g., there is only one form on the page. For ``selector`` syntax, see the `.select() method in BeautifulSoup <https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors>`__. :param nr: A zero-based index specifying which form among those that match ``selector`` will be selected. Useful when one or more forms have the same attributes as the form you want to select, and its position on the page is the only way to uniquely identify it. Default is the first matching form (``nr=0``). :return: The selected form as a soup object. It can also be retrieved later with the :attr:`form` attribute.
select_form
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def _merge_referer(self, **kwargs): """Helper function to set the Referer header in kwargs passed to requests, if it has not already been overridden by the user.""" referer = self.url headers = CaseInsensitiveDict(kwargs.get('headers', {})) if referer is not None and 'Referer' not in headers: headers['Referer'] = referer kwargs['headers'] = headers return kwargs
Helper function to set the Referer header in kwargs passed to requests, if it has not already been overridden by the user.
_merge_referer
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def submit_selected(self, btnName=None, update_state=True, **kwargs): """Submit the form that was selected with :func:`select_form`. :return: Forwarded from :func:`Browser.submit`. :param btnName: Passed to :func:`Form.choose_submit` to choose the element of the current form to use for submission. If ``None``, will choose the first valid submit element in the form, if one exists. If ``False``, will not use any submit element; this is useful for simulating AJAX requests, for example. :param update_state: If False, the form will be submitted but the browser state will remain unchanged; this is useful for forms that result in a download of a file, for example. All other arguments are forwarded to :func:`Browser.submit`. """ self.form.choose_submit(btnName) kwargs = self._merge_referer(**kwargs) resp = self.submit(self.__state.form, url=self.__state.url, **kwargs) if update_state: self.__state = _BrowserState(page=resp.soup, url=resp.url, request=resp.request) return resp
Submit the form that was selected with :func:`select_form`. :return: Forwarded from :func:`Browser.submit`. :param btnName: Passed to :func:`Form.choose_submit` to choose the element of the current form to use for submission. If ``None``, will choose the first valid submit element in the form, if one exists. If ``False``, will not use any submit element; this is useful for simulating AJAX requests, for example. :param update_state: If False, the form will be submitted but the browser state will remain unchanged; this is useful for forms that result in a download of a file, for example. All other arguments are forwarded to :func:`Browser.submit`.
submit_selected
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def list_links(self, *args, **kwargs): """Display the list of links in the current page. Arguments are forwarded to :func:`links`. """ print("Links in the current page:") for link in self.links(*args, **kwargs): print(" ", link)
Display the list of links in the current page. Arguments are forwarded to :func:`links`.
list_links
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def links(self, url_regex=None, link_text=None, *args, **kwargs): """Return links in the page, as a list of bs4.element.Tag objects. To return links matching specific criteria, specify ``url_regex`` to match the *href*-attribute, or ``link_text`` to match the *text*-attribute of the Tag. All other arguments are forwarded to the `.find_all() method in BeautifulSoup <https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all>`__. """ all_links = self.page.find_all( 'a', href=True, *args, **kwargs) if url_regex is not None: all_links = [a for a in all_links if re.search(url_regex, a['href'])] if link_text is not None: all_links = [a for a in all_links if a.text == link_text] return all_links
Return links in the page, as a list of bs4.element.Tag objects. To return links matching specific criteria, specify ``url_regex`` to match the *href*-attribute, or ``link_text`` to match the *text*-attribute of the Tag. All other arguments are forwarded to the `.find_all() method in BeautifulSoup <https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all>`__.
links
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def find_link(self, *args, **kwargs): """Find and return a link, as a bs4.element.Tag object. The search can be refined by specifying any argument that is accepted by :func:`links`. If several links match, return the first one found. If no link is found, raise :class:`LinkNotFoundError`. """ links = self.links(*args, **kwargs) if len(links) == 0: raise LinkNotFoundError() else: return links[0]
Find and return a link, as a bs4.element.Tag object. The search can be refined by specifying any argument that is accepted by :func:`links`. If several links match, return the first one found. If no link is found, raise :class:`LinkNotFoundError`.
find_link
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def _find_link_internal(self, link, args, kwargs): """Wrapper around find_link that deals with convenience special-cases: * If ``link`` has an *href*-attribute, then return it. If not, consider it as a ``url_regex`` argument. * If searching for the link fails and debug is active, launch a browser. """ if hasattr(link, 'attrs') and 'href' in link.attrs: return link # Check if "link" parameter should be treated as "url_regex" # but reject obtaining it from both places. if link and 'url_regex' in kwargs: raise ValueError('link parameter cannot be treated as ' 'url_regex because url_regex is already ' 'present in keyword arguments') elif link: kwargs['url_regex'] = link try: return self.find_link(*args, **kwargs) except LinkNotFoundError: if self.get_debug(): print('find_link failed for', kwargs) self.list_links() self.launch_browser() raise
Wrapper around find_link that deals with convenience special-cases: * If ``link`` has an *href*-attribute, then return it. If not, consider it as a ``url_regex`` argument. * If searching for the link fails and debug is active, launch a browser.
_find_link_internal
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def follow_link(self, link=None, *bs4_args, bs4_kwargs={}, requests_kwargs={}, **kwargs): """Follow a link. If ``link`` is a bs4.element.Tag (i.e. from a previous call to :func:`links` or :func:`find_link`), then follow the link. If ``link`` doesn't have a *href*-attribute or is None, treat ``link`` as a url_regex and look it up with :func:`find_link`. ``bs4_kwargs`` are forwarded to :func:`find_link`. For backward compatibility, any excess keyword arguments (aka ``**kwargs``) are also forwarded to :func:`find_link`. If the link is not found, raise :class:`LinkNotFoundError`. Before raising, if debug is activated, list available links in the page and launch a browser. ``requests_kwargs`` are forwarded to :func:`open_relative`. :return: Forwarded from :func:`open_relative`. """ link = self._find_link_internal(link, bs4_args, {**bs4_kwargs, **kwargs}) requests_kwargs = self._merge_referer(**requests_kwargs) return self.open_relative(link['href'], **requests_kwargs)
Follow a link. If ``link`` is a bs4.element.Tag (i.e. from a previous call to :func:`links` or :func:`find_link`), then follow the link. If ``link`` doesn't have a *href*-attribute or is None, treat ``link`` as a url_regex and look it up with :func:`find_link`. ``bs4_kwargs`` are forwarded to :func:`find_link`. For backward compatibility, any excess keyword arguments (aka ``**kwargs``) are also forwarded to :func:`find_link`. If the link is not found, raise :class:`LinkNotFoundError`. Before raising, if debug is activated, list available links in the page and launch a browser. ``requests_kwargs`` are forwarded to :func:`open_relative`. :return: Forwarded from :func:`open_relative`.
follow_link
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def download_link(self, link=None, file=None, *bs4_args, bs4_kwargs={}, requests_kwargs={}, **kwargs): """Downloads the contents of a link to a file. This function behaves similarly to :func:`follow_link`, but the browser state will not change when calling this function. :param file: Filesystem path where the page contents will be downloaded. If the file already exists, it will be overwritten. Other arguments are the same as :func:`follow_link` (``link`` can either be a bs4.element.Tag or a URL regex. ``bs4_kwargs`` arguments are forwarded to :func:`find_link`, as are any excess keyword arguments (aka ``**kwargs``) for backwards compatibility). :return: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`__ object. """ link = self._find_link_internal(link, bs4_args, {**bs4_kwargs, **kwargs}) url = self.absolute_url(link['href']) requests_kwargs = self._merge_referer(**requests_kwargs) response = self.session.get(url, **requests_kwargs) if self.raise_on_404 and response.status_code == 404: raise LinkNotFoundError() # Save the response content to file if file is not None: with open(file, 'wb') as f: f.write(response.content) return response
Downloads the contents of a link to a file. This function behaves similarly to :func:`follow_link`, but the browser state will not change when calling this function. :param file: Filesystem path where the page contents will be downloaded. If the file already exists, it will be overwritten. Other arguments are the same as :func:`follow_link` (``link`` can either be a bs4.element.Tag or a URL regex. ``bs4_kwargs`` arguments are forwarded to :func:`find_link`, as are any excess keyword arguments (aka ``**kwargs``) for backwards compatibility). :return: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`__ object.
download_link
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def launch_browser(self, soup=None): """Launch a browser to display a page, for debugging purposes. :param: soup: Page contents to display, supplied as a bs4 soup object. Defaults to the current page of the ``StatefulBrowser`` instance. """ if soup is None: soup = self.page super().launch_browser(soup)
Launch a browser to display a page, for debugging purposes. :param: soup: Page contents to display, supplied as a bs4 soup object. Defaults to the current page of the ``StatefulBrowser`` instance.
launch_browser
python
MechanicalSoup/MechanicalSoup
mechanicalsoup/stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/mechanicalsoup/stateful_browser.py
MIT
def open_legacy_httpbin(browser, httpbin): """Opens the start page of httpbin (given as a fixture). Tries the legacy page (available only on recent versions of httpbin), and if it fails fall back to the main page (which is JavaScript-only in recent versions of httpbin hence usable for us only on old versions). """ try: response = browser.open(httpbin + "/legacy") if response.status_code == 404: # The line above may or may not have raised the exception # depending on raise_on_404. Raise it unconditionally now. raise mechanicalsoup.LinkNotFoundError() return response except mechanicalsoup.LinkNotFoundError: return browser.open(httpbin.url)
Opens the start page of httpbin (given as a fixture). Tries the legacy page (available only on recent versions of httpbin), and if it fails fall back to the main page (which is JavaScript-only in recent versions of httpbin hence usable for us only on old versions).
open_legacy_httpbin
python
MechanicalSoup/MechanicalSoup
tests/utils.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/utils.py
MIT
def test_submit_online(httpbin): """Complete and submit the pizza form at http://httpbin.org/forms/post """ browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = page.soup.form form.find("input", {"name": "custname"})["value"] = "Philip J. Fry" # leave custtel blank without value assert "value" not in form.find("input", {"name": "custtel"}).attrs form.find("input", {"name": "size", "value": "medium"})["checked"] = "" form.find("input", {"name": "topping", "value": "cheese"})["checked"] = "" form.find("input", {"name": "topping", "value": "onion"})["checked"] = "" form.find("textarea", {"name": "comments"}).insert(0, "freezer") response = browser.submit(form, page.url) # helpfully the form submits to http://httpbin.org/post which simply # returns the request headers in json format json = response.json() data = json["form"] assert data["custname"] == "Philip J. Fry" assert data["custtel"] == "" # web browser submits "" for input left blank assert data["size"] == "medium" assert data["topping"] == ["cheese", "onion"] assert data["comments"] == "freezer" assert json["headers"]["User-Agent"].startswith('python-requests/') assert 'MechanicalSoup' in json["headers"]["User-Agent"]
Complete and submit the pizza form at http://httpbin.org/forms/post
test_submit_online
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_get_request_kwargs(httpbin): """Return kwargs without a submit""" browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = page.soup.form form.find("input", {"name": "custname"})["value"] = "Philip J. Fry" request_kwargs = browser.get_request_kwargs(form, page.url) assert "method" in request_kwargs assert "url" in request_kwargs assert "data" in request_kwargs assert ("custname", "Philip J. Fry") in request_kwargs["data"]
Return kwargs without a submit
test_get_request_kwargs
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_get_request_kwargs_when_method_is_in_kwargs(httpbin): """Raise TypeError exception""" browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = page.soup.form kwargs = {"method": "post"} with pytest.raises(TypeError): browser.get_request_kwargs(form, page.url, **kwargs)
Raise TypeError exception
test_get_request_kwargs_when_method_is_in_kwargs
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_get_request_kwargs_when_url_is_in_kwargs(httpbin): """Raise TypeError exception""" browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = page.soup.form kwargs = {"url": httpbin + "/forms/post"} with pytest.raises(TypeError): # pylint: disable=redundant-keyword-arg browser.get_request_kwargs(form, page.url, **kwargs)
Raise TypeError exception
test_get_request_kwargs_when_url_is_in_kwargs
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test__request_select_none(httpbin): """Make sure that a <select> with no options selected submits the first option, as it does in a browser.""" form_html = f""" <form method="post" action={httpbin.url}/post> <select name="shape"> <option value="round">Round</option> <option value="square">Square</option> </select> </form>""" form = BeautifulSoup(form_html, "lxml").form browser = mechanicalsoup.Browser() response = browser._request(form) assert response.json()['form'] == {'shape': 'round'}
Make sure that a <select> with no options selected submits the first option, as it does in a browser.
test__request_select_none
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test__request_disabled_attr(httpbin): """Make sure that disabled form controls are not submitted.""" form_html = f""" <form method="post" action="{httpbin.url}/post"> <input disabled name="nosubmit" value="1" /> </form>""" browser = mechanicalsoup.Browser() response = browser._request(BeautifulSoup(form_html, "lxml").form) assert response.json()['form'] == {}
Make sure that disabled form controls are not submitted.
test__request_disabled_attr
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_request_keyword_error(keyword): """Make sure exception is raised if kwargs duplicates an arg.""" form_html = "<form></form>" browser = mechanicalsoup.Browser() with pytest.raises(TypeError, match="multiple values for"): browser._request(BeautifulSoup(form_html, "lxml").form, 'myurl', **{keyword: 'somevalue'})
Make sure exception is raised if kwargs duplicates an arg.
test_request_keyword_error
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_set_cookiejar(httpbin): """Set cookies locally and test that they are received remotely.""" # construct a phony cookiejar and attach it to the session jar = RequestsCookieJar() jar.set('field', 'value') assert jar.get('field') == 'value' browser = mechanicalsoup.Browser() browser.set_cookiejar(jar) resp = browser.get(httpbin + "/cookies") assert resp.json() == {'cookies': {'field': 'value'}}
Set cookies locally and test that they are received remotely.
test_set_cookiejar
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_get_cookiejar(httpbin): """Test that cookies set by the remote host update our session.""" browser = mechanicalsoup.Browser() resp = browser.get(httpbin + "/cookies/set?k1=v1&k2=v2") assert resp.json() == {'cookies': {'k1': 'v1', 'k2': 'v2'}} jar = browser.get_cookiejar() assert jar.get('k1') == 'v1' assert jar.get('k2') == 'v2'
Test that cookies set by the remote host update our session.
test_get_cookiejar
python
MechanicalSoup/MechanicalSoup
tests/test_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_browser.py
MIT
def test_construct_form_fail(): """Form objects must be constructed from form html elements.""" soup = bs4.BeautifulSoup('<notform>This is not a form</notform>', 'lxml') tag = soup.find('notform') assert isinstance(tag, bs4.element.Tag) with pytest.warns(FutureWarning, match="from a 'notform'"): mechanicalsoup.Form(tag)
Form objects must be constructed from form html elements.
test_construct_form_fail
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_submit_online(httpbin): """Complete and submit the pizza form at http://httpbin.org/forms/post """ browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = mechanicalsoup.Form(page.soup.form) input_data = {"custname": "Philip J. Fry"} form.input(input_data) check_data = {"size": "large", "topping": ["cheese"]} form.check(check_data) check_data = {"size": "medium", "topping": "onion"} form.check(check_data) form.textarea({"comments": "warm"}) form.textarea({"comments": "actually, no, not warm"}) form.textarea({"comments": "freezer"}) response = browser.submit(form, page.url) # helpfully the form submits to http://httpbin.org/post which simply # returns the request headers in json format json = response.json() data = json["form"] assert data["custname"] == "Philip J. Fry" assert data["custtel"] == "" # web browser submits "" for input left blank assert data["size"] == "medium" assert data["topping"] == ["cheese", "onion"] assert data["comments"] == "freezer"
Complete and submit the pizza form at http://httpbin.org/forms/post
test_submit_online
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_submit_set(httpbin): """Complete and submit the pizza form at http://httpbin.org/forms/post """ browser = mechanicalsoup.Browser() page = browser.get(httpbin + "/forms/post") form = mechanicalsoup.Form(page.soup.form) form["custname"] = "Philip J. Fry" form["size"] = "medium" form["topping"] = ("cheese", "onion") form["comments"] = "freezer" response = browser.submit(form, page.url) # helpfully the form submits to http://httpbin.org/post which simply # returns the request headers in json format json = response.json() data = json["form"] assert data["custname"] == "Philip J. Fry" assert data["custtel"] == "" # web browser submits "" for input left blank assert data["size"] == "medium" assert data["topping"] == ["cheese", "onion"] assert data["comments"] == "freezer"
Complete and submit the pizza form at http://httpbin.org/forms/post
test_submit_set
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_choose_submit_from_selector(value): """Test choose_submit by passing a CSS selector argument.""" text = """ <form method="post" action="mock://form.com/post"> <input type="submit" name="do" value="continue" /> <input type="submit" name="do" value="cancel" /> </form>""" browser, url = setup_mock_browser(expected_post=[('do', value)], text=text) browser.open(url) form = browser.select_form() submits = form.form.select(f'input[value="{value}"]') assert len(submits) == 1 form.choose_submit(submits[0]) res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!'
Test choose_submit by passing a CSS selector argument.
test_choose_submit_from_selector
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_choose_submit_twice(): """Test that calling choose_submit twice fails.""" text = ''' <form> <input type="submit" name="test1" value="Test1" /> <input type="submit" name="test2" value="Test2" /> </form> ''' soup = bs4.BeautifulSoup(text, 'lxml') form = mechanicalsoup.Form(soup.form) form.choose_submit('test1') expected_msg = 'Submit already chosen. Cannot change submit!' with pytest.raises(Exception, match=expected_msg): form.choose_submit('test2')
Test that calling choose_submit twice fails.
test_choose_submit_twice
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_set_select(option): '''Test the branch of Form.set that finds "select" elements.''' browser, url = setup_mock_browser(expected_post=option['result'], text=set_select_form) browser.open(url) browser.select_form('form') if not option['default']: browser[option['result'][0][0]] = option['result'][0][1] res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!'
Test the branch of Form.set that finds "select" elements.
test_set_select
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_set_select_multiple(options): """Test a <select multiple> element.""" # When a browser submits multiple selections, the qsl looks like: # name=option1&name=option2 if not isinstance(options, list) and not isinstance(options, tuple): expected = [('instrument', options)] else: expected = [('instrument', option) for option in options] browser, url = setup_mock_browser(expected_post=expected, text=set_select_multiple_form) browser.open(url) form = browser.select_form('form') form.set_select({'instrument': options}) res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!'
Test a <select multiple> element.
test_set_select_multiple
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_issue180(): """Test that a KeyError is not raised when Form.choose_submit is called on a form where a submit element is missing its name-attribute.""" browser = mechanicalsoup.StatefulBrowser() html = ''' <form> <input type="submit" value="Invalid" /> <input type="submit" name="valid" value="Valid" /> </form> ''' browser.open_fake_page(html) form = browser.select_form() with pytest.raises(mechanicalsoup.utils.LinkNotFoundError): form.choose_submit('not_found')
Test that a KeyError is not raised when Form.choose_submit is called on a form where a submit element is missing its name-attribute.
test_issue180
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_issue158(): """Test that form elements are processed in their order on the page and that elements with duplicate name-attributes are not clobbered.""" issue158_form = ''' <form method="post" action="mock://form.com/post"> <input name="box" type="hidden" value="1"/> <input checked="checked" name="box" type="checkbox" value="2"/> <input name="box" type="hidden" value="0"/> <input type="submit" value="Submit" /> </form> ''' expected_post = [('box', '1'), ('box', '2'), ('box', '0')] browser, url = setup_mock_browser(expected_post=expected_post, text=issue158_form) browser.open(url) browser.select_form() res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!' browser.close()
Test that form elements are processed in their order on the page and that elements with duplicate name-attributes are not clobbered.
test_issue158
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_duplicate_submit_buttons(): """Tests that duplicate submits doesn't break form submissions See issue https://github.com/MechanicalSoup/MechanicalSoup/issues/264""" issue264_form = ''' <form method="post" action="mock://form.com/post"> <input name="box" type="hidden" value="1"/> <input name="search" type="submit" value="Search"/> <input name="search" type="submit" value="Search"/> </form> ''' expected_post = [('box', '1'), ('search', 'Search')] browser, url = setup_mock_browser(expected_post=expected_post, text=issue264_form) browser.open(url) browser.select_form() res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!' browser.close()
Tests that duplicate submits doesn't break form submissions See issue https://github.com/MechanicalSoup/MechanicalSoup/issues/264
test_duplicate_submit_buttons
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_choose_submit_buttons(expected_post): """Buttons of type reset and button are not valid submits""" text = """ <form method="post" action="mock://form.com/post"> <button type="butTon" name="sub1" value="val1">Val1</button> <button type="suBmit" name="sub2" value="val2">Val2</button> <button type="reset" name="sub3" value="val3">Val3</button> <button name="sub4" value="val4">Val4</button> <input type="subMit" name="sub5" value="val5"> </form> """ browser, url = setup_mock_browser(expected_post=expected_post, text=text) browser.open(url) browser.select_form() res = browser.submit_selected(btnName=expected_post[0][0]) assert res.status_code == 200 and res.text == 'Success!'
Buttons of type reset and button are not valid submits
test_choose_submit_buttons
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_option_without_value(fail, selected, expected_post): """Option tag in select can have no value option""" text = """ <form method="post" action="mock://form.com/post"> <select name="selector"> <option value="with_value">We have a value here</option> <option>Without value</option> </select> <button type="submit">Submit</button> </form> """ browser, url = setup_mock_browser(expected_post=expected_post, text=text) browser.open(url) browser.select_form() if fail: with pytest.raises(mechanicalsoup.utils.LinkNotFoundError): browser['selector'] = selected else: browser['selector'] = selected res = browser.submit_selected() assert res.status_code == 200 and res.text == 'Success!'
Option tag in select can have no value option
test_option_without_value
python
MechanicalSoup/MechanicalSoup
tests/test_form.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_form.py
MIT
def test_properties(): """Check that properties return the same value as the getter.""" browser = mechanicalsoup.StatefulBrowser() browser.open_fake_page('<form></form>', url="http://example.com") assert browser.page == browser.get_current_page() assert browser.page is not None assert browser.url == browser.get_url() assert browser.url is not None browser.select_form() assert browser.form == browser.get_current_form() assert browser.form is not None
Check that properties return the same value as the getter.
test_properties
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_submit_online(httpbin): """Complete and submit the pizza form at http://httpbin.org/forms/post """ browser = mechanicalsoup.StatefulBrowser() browser.set_user_agent('testing MechanicalSoup') browser.open(httpbin.url) for link in browser.links(): if link["href"] == "/": browser.follow_link(link) break browser.follow_link("forms/post") assert browser.url == httpbin + "/forms/post" browser.select_form("form") browser["custname"] = "Customer Name Here" browser["size"] = "medium" browser["topping"] = ("cheese", "bacon") # Change our mind to make sure old boxes are unticked browser["topping"] = ("cheese", "onion") browser["comments"] = "Some comment here" browser.form.set("nosuchfield", "new value", True) response = browser.submit_selected() json = response.json() data = json["form"] assert data["custname"] == "Customer Name Here" assert data["custtel"] == "" # web browser submits "" for input left blank assert data["size"] == "medium" assert set(data["topping"]) == {"cheese", "onion"} assert data["comments"] == "Some comment here" assert data["nosuchfield"] == "new value" assert json["headers"]["User-Agent"] == 'testing MechanicalSoup' # Ensure we haven't blown away any regular headers expected_headers = ('Content-Length', 'Host', 'Content-Type', 'Connection', 'Accept', 'User-Agent', 'Accept-Encoding') assert set(expected_headers).issubset(json["headers"].keys())
Complete and submit the pizza form at http://httpbin.org/forms/post
test_submit_online
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_submit_btnName(expected_post): '''Tests that the btnName argument chooses the submit button.''' browser, url = setup_mock_browser(expected_post=expected_post) browser.open(url) browser.select_form('#choose-submit-form') browser['text'] = dict(expected_post)['text'] browser['comment'] = dict(expected_post)['comment'] initial_state = browser._StatefulBrowser__state res = browser.submit_selected(btnName=expected_post[2][0]) assert res.status_code == 200 and res.text == 'Success!' assert initial_state != browser._StatefulBrowser__state
Tests that the btnName argument chooses the submit button.
test_submit_btnName
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_submit_no_btn(expected_post): '''Tests that no submit inputs are posted when btnName=False.''' browser, url = setup_mock_browser(expected_post=expected_post) browser.open(url) browser.select_form('#choose-submit-form') browser['text'] = dict(expected_post)['text'] browser['comment'] = dict(expected_post)['comment'] initial_state = browser._StatefulBrowser__state res = browser.submit_selected(btnName=False) assert res.status_code == 200 and res.text == 'Success!' assert initial_state != browser._StatefulBrowser__state
Tests that no submit inputs are posted when btnName=False.
test_submit_no_btn
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_submit_dont_modify_kwargs(): """Test that submit_selected() doesn't modify the caller's passed-in kwargs, for example when adding a Referer header. """ kwargs = {'headers': {'Content-Type': 'text/html'}} saved_kwargs = copy.deepcopy(kwargs) browser, url = setup_mock_browser(expected_post=[], text='<form></form>') browser.open(url) browser.select_form() browser.submit_selected(**kwargs) assert kwargs == saved_kwargs
Test that submit_selected() doesn't modify the caller's passed-in kwargs, for example when adding a Referer header.
test_submit_dont_modify_kwargs
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_verbose(capsys): '''Tests that the btnName argument chooses the submit button.''' browser, url = setup_mock_browser() browser.open(url) out, err = capsys.readouterr() assert out == "" assert err == "" assert browser.get_verbose() == 0 browser.set_verbose(1) browser.open(url) out, err = capsys.readouterr() assert out == "." assert err == "" assert browser.get_verbose() == 1 browser.set_verbose(2) browser.open(url) out, err = capsys.readouterr() assert out == "mock://form.com\n" assert err == "" assert browser.get_verbose() == 2
Tests that the btnName argument chooses the submit button.
test_verbose
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_upload_file_with_malicious_default(httpbin): """Check for CVE-2023-34457 by setting the form input value directly to a file that the user does not explicitly consent to upload, as a malicious server might do. """ browser = mechanicalsoup.StatefulBrowser() sensitive_path = tempfile.mkstemp()[1] with open(sensitive_path, "w") as fd: fd.write("Some sensitive information") url = httpbin + "/post" malicious_html = f""" <form method="post" action="{url}" enctype="multipart/form-data"> <input type="file" name="malicious" value="{sensitive_path}" /> </form> """ browser.open_fake_page(malicious_html) browser.select_form() response = browser.submit_selected() assert response.json()["files"] == {"malicious": ""}
Check for CVE-2023-34457 by setting the form input value directly to a file that the user does not explicitly consent to upload, as a malicious server might do.
test_upload_file_with_malicious_default
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_upload_file_raise_on_string_input(): """Check for use of the file upload API that was modified to remediate CVE-2023-34457. Users must now open files manually to upload them. """ browser = mechanicalsoup.StatefulBrowser() file_input_form = """ <form enctype="multipart/form-data"> <input type="file" name="upload" /> </form> """ browser.open_fake_page(file_input_form) browser.select_form() with pytest.raises(ValueError, match="CVE-2023-34457"): browser["upload"] = "/path/to/file" with pytest.raises(ValueError, match="CVE-2023-34457"): browser.new_control("file", "upload2", "/path/to/file")
Check for use of the file upload API that was modified to remediate CVE-2023-34457. Users must now open files manually to upload them.
test_upload_file_raise_on_string_input
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_with(): """Test that __enter__/__exit__ properly create/close the browser.""" with mechanicalsoup.StatefulBrowser() as browser: assert browser.session is not None assert browser.session is None
Test that __enter__/__exit__ properly create/close the browser.
test_with
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_select_form_nr(): """Test the nr option of select_form.""" forms = """<form id="a"></form><form id="b"></form><form id="c"></form>""" with mechanicalsoup.StatefulBrowser() as browser: browser.open_fake_page(forms) form = browser.select_form() assert form.form['id'] == "a" form = browser.select_form(nr=1) assert form.form['id'] == "b" form = browser.select_form(nr=2) assert form.form['id'] == "c" with pytest.raises(mechanicalsoup.LinkNotFoundError): browser.select_form(nr=3)
Test the nr option of select_form.
test_select_form_nr
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_select_form_tag_object(): """Test tag object as selector parameter type""" forms = """<form id="a"></form><form id="b"></form><p></p>""" soup = BeautifulSoup(forms, "lxml") with mechanicalsoup.StatefulBrowser() as browser: browser.open_fake_page(forms) form = browser.select_form(soup.find("form", {"id": "b"})) assert form.form['id'] == "b" with pytest.raises(mechanicalsoup.LinkNotFoundError): browser.select_form(soup.find("p"))
Test tag object as selector parameter type
test_select_form_tag_object
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_select_form_associated_elements(): """Test associated elements outside the form tag""" forms = """<form id="a"><input><textarea></form><input form="a"> <textarea form="a"/><input form="b"> <form id="ab" action="/test.php"><input></form> <textarea form="ab"></textarea> """ with mechanicalsoup.StatefulBrowser() as browser: browser.open_fake_page(forms) elements_form_a = set([ "<input/>", "<textarea></textarea>", '<input form="a"/>', '<textarea form="a"></textarea>']) elements_form_ab = set(["<input/>", '<textarea form="ab"></textarea>']) form_by_str = browser.select_form("#a") form_by_tag = browser.select_form(browser.page.find("form", id='a')) form_by_css = browser.select_form("form[action$='.php']") assert set([str(element) for element in form_by_str.form.find_all(( "input", "textarea"))]) == elements_form_a assert set([str(element) for element in form_by_tag.form.find_all(( "input", "textarea"))]) == elements_form_a assert set([str(element) for element in form_by_css.form.find_all(( "input", "textarea"))]) == elements_form_ab
Test associated elements outside the form tag
test_select_form_associated_elements
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_referer_submit_override(httpbin, referer_header): """Ensure the caller can override the Referer header that mechanicalsoup would normally add. Because headers are case insensitive, test with both 'Referer' and 'referer'. """ browser = mechanicalsoup.StatefulBrowser() ref = "https://example.com/my-referer" ref_override = "https://example.com/override" page = submit_form_headers.format(httpbin.url + "/headers") browser.open_fake_page(page, url=ref) browser.select_form() response = browser.submit_selected(headers={referer_header: ref_override}) headers = response.json()["headers"] referer = headers["Referer"] actual_ref = re.sub('/*$', '', referer) assert actual_ref == ref_override
Ensure the caller can override the Referer header that mechanicalsoup would normally add. Because headers are case insensitive, test with both 'Referer' and 'referer'.
test_referer_submit_override
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_follow_link_excess(httpbin): """Ensure that excess args are passed to BeautifulSoup""" browser = mechanicalsoup.StatefulBrowser() html = '<a href="/foo">Bar</a><a href="/get">Link</a>' browser.open_fake_page(html, httpbin.url) browser.follow_link(url_regex='get') assert browser.url == httpbin + '/get' browser = mechanicalsoup.StatefulBrowser() browser.open_fake_page('<a href="/get">Link</a>', httpbin.url) with pytest.raises(ValueError, match="link parameter cannot be .*"): browser.follow_link('foo', url_regex='bar')
Ensure that excess args are passed to BeautifulSoup
test_follow_link_excess
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_follow_link_ua(httpbin): """Tests passing requests parameters to follow_link() by setting the User-Agent field.""" browser = mechanicalsoup.StatefulBrowser() # html = '<a href="/foo">Bar</a><a href="/get">Link</a>' # browser.open_fake_page(html, httpbin.url) open_legacy_httpbin(browser, httpbin) bs4_kwargs = {'url_regex': 'user-agent'} requests_kwargs = {'headers': {"User-Agent": '007'}} resp = browser.follow_link(bs4_kwargs=bs4_kwargs, requests_kwargs=requests_kwargs) assert browser.url == httpbin + '/user-agent' assert resp.json() == {'user-agent': '007'} assert resp.request.headers['user-agent'] == '007'
Tests passing requests parameters to follow_link() by setting the User-Agent field.
test_follow_link_ua
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link(httpbin): """Test downloading the contents of a link to file.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) tmpdir = tempfile.mkdtemp() tmpfile = tmpdir + '/nosuchfile.png' current_url = browser.url current_page = browser.page response = browser.download_link(file=tmpfile, link='image/png') # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that the file was downloaded assert os.path.isfile(tmpfile) assert file_get_contents(tmpfile) == response.content # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG'
Test downloading the contents of a link to file.
test_download_link
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_nofile(httpbin): """Test downloading the contents of a link without saving it.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) current_url = browser.url current_page = browser.page response = browser.download_link(link='image/png') # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG'
Test downloading the contents of a link without saving it.
test_download_link_nofile
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_nofile_bs4(httpbin): """Test downloading the contents of a link without saving it.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) current_url = browser.url current_page = browser.page response = browser.download_link(bs4_kwargs={'url_regex': 'image.png'}) # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG'
Test downloading the contents of a link without saving it.
test_download_link_nofile_bs4
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_nofile_excess(httpbin): """Test downloading the contents of a link without saving it.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) current_url = browser.url current_page = browser.page response = browser.download_link(url_regex='image.png') # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG'
Test downloading the contents of a link without saving it.
test_download_link_nofile_excess
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_nofile_ua(httpbin): """Test downloading the contents of a link without saving it.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) current_url = browser.url current_page = browser.page requests_kwargs = {'headers': {"User-Agent": '007'}} response = browser.download_link(link='image/png', requests_kwargs=requests_kwargs) # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG' # Check that we actually set the User-agent outbound assert response.request.headers['user-agent'] == '007'
Test downloading the contents of a link without saving it.
test_download_link_nofile_ua
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_to_existing_file(httpbin): """Test downloading the contents of a link to an existing file.""" browser = mechanicalsoup.StatefulBrowser() open_legacy_httpbin(browser, httpbin) tmpdir = tempfile.mkdtemp() tmpfile = tmpdir + '/existing.png' with open(tmpfile, "w") as fd: fd.write("initial content") current_url = browser.url current_page = browser.page response = browser.download_link('image/png', tmpfile) # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that the file was downloaded assert os.path.isfile(tmpfile) assert file_get_contents(tmpfile) == response.content # Check that we actually downloaded a PNG file assert response.content[:4] == b'\x89PNG'
Test downloading the contents of a link to an existing file.
test_download_link_to_existing_file
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_404(httpbin): """Test downloading the contents of a broken link.""" browser = mechanicalsoup.StatefulBrowser(raise_on_404=True) browser.open_fake_page('<a href="/no-such-page-404">Link</a>', url=httpbin.url) tmpdir = tempfile.mkdtemp() tmpfile = tmpdir + '/nosuchfile.txt' current_url = browser.url current_page = browser.page with pytest.raises(mechanicalsoup.LinkNotFoundError): browser.download_link(file=tmpfile, link_text='Link') # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that the file was not downloaded assert not os.path.exists(tmpfile)
Test downloading the contents of a broken link.
test_download_link_404
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_download_link_referer(httpbin): """Test downloading the contents of a link to file.""" browser = mechanicalsoup.StatefulBrowser() ref = httpbin + "/my-referer" browser.open_fake_page('<a href="/headers">Link</a>', url=ref) tmpfile = tempfile.NamedTemporaryFile() current_url = browser.url current_page = browser.page browser.download_link(file=tmpfile.name, link_text='Link') # Check that the browser state has not changed assert browser.url == current_url assert browser.page == current_page # Check that the file was downloaded with open(tmpfile.name) as fd: json_data = json.load(fd) headers = json_data["headers"] assert headers["Referer"] == ref
Test downloading the contents of a link to file.
test_download_link_referer
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def test_requests_session_and_cookies(httpbin): """Check that the session object passed to the constructor of StatefulBrowser is actually taken into account.""" s = requests.Session() requests.utils.add_dict_to_cookiejar(s.cookies, {'key1': 'val1'}) browser = mechanicalsoup.StatefulBrowser(session=s) resp = browser.get(httpbin + "/cookies") assert resp.json() == {'cookies': {'key1': 'val1'}}
Check that the session object passed to the constructor of StatefulBrowser is actually taken into account.
test_requests_session_and_cookies
python
MechanicalSoup/MechanicalSoup
tests/test_stateful_browser.py
https://github.com/MechanicalSoup/MechanicalSoup/blob/master/tests/test_stateful_browser.py
MIT
def shuffle_sparse_matrix( sparse_matrix, dropout_rate=0.0, min_dropout_rate=0.05, max_dropout_rate=0.99 ): """ Shuffle sparse matrix encoded as a SciPy csr matrix. """ assert dropout_rate >= 0.0 and dropout_rate <= 1.0 (num_rows, num_cols) = sparse_matrix.shape shuffled_rows = shuffle(np.arange(num_rows)) shuffled_cols = shuffle(np.arange(num_cols)) sparse_matrix = _dropout_sparse_coo_matrix( sparse_matrix, dropout_rate, min_dropout_rate, max_dropout_rate ) new_row = np.take(shuffled_rows, sparse_matrix.row) new_col = np.take(shuffled_cols, sparse_matrix.col) return sparse.csr_matrix( (sparse_matrix.data, (new_row, new_col)), shape=(num_rows, num_cols) )
Shuffle sparse matrix encoded as a SciPy csr matrix.
shuffle_sparse_matrix
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def graph_reduce(usv, num_rows, num_cols): """Apply algorithm 2 in https://arxiv.org/pdf/1901.08910.pdf.""" def _closest_column_orthogonal_matrix(matrix): return np.matmul( matrix, np.linalg.inv(scipy.linalg.sqrtm(np.matmul(matrix.T, matrix))) ) u, s, v = usv k = min(num_rows, num_cols) u_random_proj = transform.resize(u[:, :k], (num_rows, k)) v_random_proj = transform.resize(v[:k, :], (k, num_cols)) u_random_proj_orth = _closest_column_orthogonal_matrix(u_random_proj) v_random_proj_orth = _closest_column_orthogonal_matrix(v_random_proj.T).T return np.matmul(u_random_proj_orth, np.matmul(np.diag(s[:k]), v_random_proj_orth))
Apply algorithm 2 in https://arxiv.org/pdf/1901.08910.pdf.
graph_reduce
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def rescale(matrix, rescale_w_abs=False): """Rescale all values of the matrix into [0, 1].""" if rescale_w_abs: abs_matrix = np.abs(matrix.copy()) return abs_matrix / abs_matrix.max() else: out = (matrix - matrix.min()) / (matrix.max() - matrix.min()) assert out.min() >= 0 and out.max() <= 1 return out
Rescale all values of the matrix into [0, 1].
rescale
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def _compute_row_block( i, left_matrix, right_matrix, indices_out_path, remove_empty_rows ): """Compute row block of expansion for row i of the left_matrix.""" kron_blocks = [] num_rows = 0 num_removed_rows = 0 num_interactions = 0 for j in range(left_matrix.shape[1]): dropout_rate = 1.0 - left_matrix[i, j] kron_block = shuffle_sparse_matrix(right_matrix, dropout_rate).tocsr() num_interactions += kron_block.nnz kron_blocks.append(kron_block) logger.info(f"Kronecker block ({i}, {j}) processed.") rows_to_write = sparse.hstack(kron_blocks).tocsr() logger.info("Writing dataset row by row.") # Write Kronecker product line per line. filepath = f"{indices_out_path}_{i}.csv" os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, "w", newline="") as file: writer = csv.writer(file) for k in range(right_matrix.shape[0]): items_to_write = rows_to_write.getrow(k).indices ratings_to_write = rows_to_write.getrow(k).data num = items_to_write.shape[0] if remove_empty_rows and (not num): logger.info(f"Removed empty output row {i * left_matrix.shape[0] + k}.") num_removed_rows += 1 continue num_rows += 1 writer.writerow( [ i * right_matrix.shape[0] + k, ",".join([str(x) for x in items_to_write]), ",".join([str(x) for x in ratings_to_write]), ] ) if k % 100000 == 0: logger.info(f"Done producing data set row {k}.") num_cols = rows_to_write.shape[1] metadata = SparseMatrixMetadata( num_interactions=num_interactions, num_rows=num_rows, num_cols=num_cols ) logger.info( f"Done with left matrix row {i}, {num_interactions} interactions written in shard, {num_removed_rows} rows removed in shard." ) return (num_removed_rows, metadata)
Compute row block of expansion for row i of the left_matrix.
_compute_row_block
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def build_randomized_kronecker( left_matrix, right_matrix, indices_out_path, metadata_out_path=None, remove_empty_rows=True, ): """Compute randomized Kronecker product and dump it on the fly based on https://arxiv.org/pdf/1901.08910.pdf.""" logger.info(f"Writing item sequences to pickle files {metadata_out_path}.") num_rows = 0 num_removed_rows = 0 num_cols = left_matrix.shape[1] * right_matrix.shape[1] num_interactions = 0 filepath = f"{indices_out_path}_users.csv" os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, "w", newline="") as file: writer = csv.writer(file) for i in tqdm(range(left_matrix.shape[0])): (shard_num_removed_rows, shard_metadata) = _compute_row_block( i, left_matrix, right_matrix, indices_out_path, remove_empty_rows ) writer.writerow([i, shard_metadata.num_rows]) file.flush() num_rows += shard_metadata.num_rows num_removed_rows += shard_num_removed_rows num_interactions += shard_metadata.num_interactions logger.info(f"{num_interactions / num_rows} average sequence length") logger.info(f"{num_interactions} total interactions written.") logger.info(f"{num_removed_rows} total rows removed.") metadata = SparseMatrixMetadata( num_interactions=num_interactions, num_rows=num_rows, num_cols=num_cols ) if metadata_out_path is not None: logger.info(f"Writing metadata file to {metadata_out_path}") with open(metadata_out_path, "wb") as output_file: pickle.dump(metadata, output_file) return metadata
Compute randomized Kronecker product and dump it on the fly based on https://arxiv.org/pdf/1901.08910.pdf.
build_randomized_kronecker
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def _preprocess_movie_lens(ratings_df, binary=False): """ Filters out users with less than three distinct timestamps. """ def _create_index(df, colname): value_set = sorted(set(df[colname].values)) num_unique = len(value_set) return dict(zip(value_set, range(num_unique))) if not binary: ratings_df["data"] = ratings_df["rating"] else: ratings_df["data"] = 1.0 ratings_df["binary_data"] = 1.0 num_timestamps = ratings_df[["userId", "timestamp"]].groupby("userId").nunique() ratings_df["numberOfTimestamps"] = ratings_df["userId"].apply( lambda x: num_timestamps["timestamp"][x] ) ratings_df = ratings_df[ratings_df["numberOfTimestamps"] > 2] user_id_to_user_idx = _create_index(ratings_df, "userId") item_id_to_item_idx = _create_index(ratings_df, "movieId") ratings_df["row"] = ratings_df["userId"].apply(lambda x: user_id_to_user_idx[x]) ratings_df["col"] = ratings_df["movieId"].apply(lambda x: item_id_to_item_idx[x]) return ratings_df
Filters out users with less than three distinct timestamps.
_preprocess_movie_lens
python
facebookresearch/generative-recommenders
run_fractal_expansion.py
https://github.com/facebookresearch/generative-recommenders/blob/master/run_fractal_expansion.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, item_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: query_embeddings: (B, input_embedding_dim) x float. item_embeddings: (1/B, X, item_embedding_dim) x float. **kwargs: Implementation-specific keys/values (e.g., item ids / sideinfo, etc.) Returns: A tuple of ( (B, X,) similarity values, keyed outputs representing auxiliary losses at training time. ). """ pass
Args: query_embeddings: (B, input_embedding_dim) x float. item_embeddings: (1/B, X, item_embedding_dim) x float. **kwargs: Implementation-specific keys/values (e.g., item ids / sideinfo, etc.) Returns: A tuple of ( (B, X,) similarity values, keyed outputs representing auxiliary losses at training time. ).
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/module.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/module.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, item_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: query_embeddings: (B, D,) or (B * r, D) x float. item_embeddings: (1, X, D) or (B, X, D) x float. Returns: (B, X) x float. """ B_I, X, D = item_embeddings.size() if B_I == 1: # [B, D] x ([1, X, D] -> [D, X]) => [B, X] return ( torch.mm(query_embeddings, item_embeddings.squeeze(0).t()), {}, ) # [B, X] elif query_embeddings.size(0) != B_I: # (B * r, D) x (B, X, D). return ( torch.bmm( query_embeddings.view(B_I, -1, D), item_embeddings.permute(0, 2, 1), ).view(-1, X), {}, ) else: # [B, X, D] x ([B, D] -> [B, D, 1]) => [B, X, 1] -> [B, X] return ( torch.bmm(item_embeddings, query_embeddings.unsqueeze(2)).squeeze(2), {}, )
Args: query_embeddings: (B, D,) or (B * r, D) x float. item_embeddings: (1, X, D) or (B, X, D) x float. Returns: (B, X) x float.
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/dot_product_similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/dot_product_similarity_fn.py
Apache-2.0
def forward( self, input_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: input_embeddings: (B, ...) x float where B is the batch size. kwargs: implementation-specific. Returns: Tuple of ( (B, query_dot_product_groups/item_dot_product_groups, dot_product_embedding_dim) x float, str-keyed auxiliary losses. ). """ pass
Args: input_embeddings: (B, ...) x float where B is the batch size. kwargs: implementation-specific. Returns: Tuple of ( (B, query_dot_product_groups/item_dot_product_groups, dot_product_embedding_dim) x float, str-keyed auxiliary losses. ).
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/embeddings_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/embeddings_fn.py
Apache-2.0
def forward( self, input_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: input_embeddings: (B, query_embedding_dim,) x float where B is the batch size. kwargs: str-keyed tensors. Implementation-specific. Returns: Tuple of ( (B, query_dot_product_groups, dot_product_embedding_dim) x float, str-keyed aux_losses, ). """ split_query_embeddings = self._query_emb_proj_module(input_embeddings).reshape( ( input_embeddings.size(0), self._query_emb_based_dot_product_groups, self._dot_product_dimension, ) ) aux_losses: Dict[str, torch.Tensor] = {} if len(self._uid_embedding_hash_sizes) > 0: all_uid_embeddings = [] for i, hash_size in enumerate(self._uid_embedding_hash_sizes): # TODO: decouple this from MoLQueryEmbeddingFn. uid_embeddings = getattr(self, f"_uid_embeddings_{i}")( (kwargs["user_ids"] % hash_size) + 1 ) if self.training: l2_norm = (uid_embeddings * uid_embeddings).sum(-1).mean() if i == 0: aux_losses["uid_embedding_l2_norm"] = l2_norm else: aux_losses["uid_embedding_l2_norm"] = ( aux_losses["uid_embedding_l2_norm"] + l2_norm ) if self._uid_dropout_rate > 0.0: if self._uid_embedding_level_dropout: # conditionally dropout the entire embedding. if self.training: uid_dropout_mask = ( torch.rand( uid_embeddings.size()[:-1], device=uid_embeddings.device, ) > self._uid_dropout_rate ) uid_embeddings = ( uid_embeddings * uid_dropout_mask.unsqueeze(-1) / (1.0 - self._uid_dropout_rate) ) else: uid_embeddings = F.dropout( uid_embeddings, p=self._uid_dropout_rate, training=self.training, ) all_uid_embeddings.append(uid_embeddings.unsqueeze(1)) split_query_embeddings = torch.cat( [split_query_embeddings] + all_uid_embeddings, dim=1 ) if self._dot_product_l2_norm: split_query_embeddings = split_query_embeddings / torch.clamp( torch.linalg.norm( split_query_embeddings, ord=None, dim=-1, keepdim=True, ), min=self._eps, ) return split_query_embeddings, aux_losses
Args: input_embeddings: (B, query_embedding_dim,) x float where B is the batch size. kwargs: str-keyed tensors. Implementation-specific. Returns: Tuple of ( (B, query_dot_product_groups, dot_product_embedding_dim) x float, str-keyed aux_losses, ).
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/query_embeddings_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/query_embeddings_fn.py
Apache-2.0
def forward( self, input_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: input_embeddings: (B, item_embedding_dim,) x float where B is the batch size. kwargs: str-keyed tensors. Implementation-specific. Returns: Tuple of ( (B, item_dot_product_groups, dot_product_embedding_dim) x float, str-keyed aux_losses, ). """ split_item_embeddings = self._item_emb_proj_module(input_embeddings).reshape( input_embeddings.size()[:-1] + ( self._item_emb_based_dot_product_groups, self._dot_product_dimension, ) ) if self._dot_product_l2_norm: split_item_embeddings = split_item_embeddings / torch.clamp( torch.linalg.norm( split_item_embeddings, ord=None, dim=-1, keepdim=True, ), min=self._eps, ) return split_item_embeddings, {}
Args: input_embeddings: (B, item_embedding_dim,) x float where B is the batch size. kwargs: str-keyed tensors. Implementation-specific. Returns: Tuple of ( (B, item_dot_product_groups, dot_product_embedding_dim) x float, str-keyed aux_losses, ).
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/item_embeddings_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/item_embeddings_fn.py
Apache-2.0
def _softmax_dropout_combiner_fn( x: torch.Tensor, y: torch.Tensor, dropout_pr: float, eps: float, training: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Computes (_softmax_dropout_fn(x) * y).sum(-1). """ x = F.softmax(x, dim=-1) if dropout_pr > 0.0: x = F.dropout(x, p=dropout_pr, training=training) x = x / torch.clamp(x.sum(-1, keepdims=True), min=eps) # pyre-ignore [19] return x, (x * y).sum(-1)
Computes (_softmax_dropout_fn(x) * y).sum(-1).
_softmax_dropout_combiner_fn
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def _load_balancing_mi_loss_fn( gating_prs: torch.Tensor, eps: float, ) -> torch.Tensor: """ See Retrieval with Learned Similarities (RAILS, https://arxiv.org/abs/2407.15462) for discussions. """ B, X, E = gating_prs.size() expert_util_prs = gating_prs.view(B * X, E).sum(0, keepdim=False) / (1.0 * B * X) expert_util_entropy = -(expert_util_prs * torch.log(expert_util_prs + eps)).sum() per_example_expert_entropy = -(gating_prs * torch.log(gating_prs + eps)).sum() / ( 1.0 * B * X ) return -expert_util_entropy + per_example_expert_entropy
See Retrieval with Learned Similarities (RAILS, https://arxiv.org/abs/2407.15462) for discussions.
_load_balancing_mi_loss_fn
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def forward( self, logits: torch.Tensor, query_embeddings: torch.Tensor, item_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: logits: (B, X, P_Q * P_X) x float; query_embeddings: (B, D) x float; item_embeddings: (1/B, X, D') x float; Returns: (B, X) x float, Dict[str, Tensor] representing auxiliary losses. """ B, X, _ = logits.size() # [B, 1, F], [1/B, X, F], [B, X, F] query_partial_inputs, item_partial_inputs, qi_partial_inputs = None, None, None if self._query_only_partial_module is not None: query_partial_inputs = self._query_only_partial_module( query_embeddings ).unsqueeze(1) if self._item_only_partial_module is not None: item_partial_inputs = self._item_only_partial_module(item_embeddings) if self._qi_partial_module is not None: qi_partial_inputs = self._qi_partial_module(logits) if self._combination_type == "glu_silu": gating_inputs = ( query_partial_inputs * item_partial_inputs + qi_partial_inputs ) gating_weights = gating_inputs * F.sigmoid(gating_inputs) elif self._combination_type == "glu_silu_ln": gating_inputs = ( query_partial_inputs * item_partial_inputs + qi_partial_inputs ) gating_weights = gating_inputs * F.sigmoid( F.layer_norm(gating_inputs, normalized_shape=[self._num_logits]) ) elif self._combination_type == "none": gating_inputs = query_partial_inputs if gating_inputs is None: gating_inputs = item_partial_inputs elif item_partial_inputs is not None: gating_inputs += item_partial_inputs if gating_inputs is None: gating_inputs = qi_partial_inputs elif qi_partial_inputs is not None: gating_inputs += qi_partial_inputs gating_weights = gating_inputs else: raise ValueError(f"Unknown combination_type {self._combination_type}") return self._normalization_fn(gating_weights, logits)
Args: logits: (B, X, P_Q * P_X) x float; query_embeddings: (B, D) x float; item_embeddings: (1/B, X, D') x float; Returns: (B, X) x float, Dict[str, Tensor] representing auxiliary losses.
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def __init__( self, query_embedding_dim: int, item_embedding_dim: int, dot_product_dimension: int, query_dot_product_groups: int, item_dot_product_groups: int, temperature: float, dot_product_l2_norm: bool, query_embeddings_fn: MoLEmbeddingsFn, item_embeddings_fn: Optional[MoLEmbeddingsFn], gating_query_only_partial_fn: Optional[Callable[[int, int], torch.nn.Module]], gating_item_only_partial_fn: Optional[Callable[[int, int], torch.nn.Module]], gating_qi_partial_fn: Optional[Callable[[int], torch.nn.Module]], gating_combination_type: str, gating_normalization_fn: Callable[[int], torch.nn.Module], eps: float, apply_query_embeddings_fn: bool = True, apply_item_embeddings_fn: bool = True, autocast_bf16: bool = False, ) -> None: """ Args: apply_query_embeddings_fn: bool. If true, compute query_embeddings_fn to input during forward(). Otherwise, we assume the caller will invoke get_query_component_embeddings() separately before calling forward(). apply_item_embeddings_fn: bool. If true, compute item_embeddings_fn to input during forward(). Otherwise, we assume the caller will invoke get_item_component_embeddings() separately before calling forward(). """ super().__init__() self._gating_fn: MoLGatingFn = MoLGatingFn( num_logits=query_dot_product_groups * item_dot_product_groups, query_embedding_dim=query_embedding_dim, item_embedding_dim=item_embedding_dim, query_only_partial_fn=gating_query_only_partial_fn, item_only_partial_fn=gating_item_only_partial_fn, qi_partial_fn=gating_qi_partial_fn, # pyre-ignore [6] combination_type=gating_combination_type, normalization_fn=gating_normalization_fn, ) self._query_embeddings_fn: MoLEmbeddingsFn = query_embeddings_fn self._item_embeddings_fn: MoLEmbeddingsFn = ( # pyre-ignore [8] item_embeddings_fn ) self._apply_query_embeddings_fn: bool = apply_query_embeddings_fn self._apply_item_embeddings_fn: bool = apply_item_embeddings_fn self._dot_product_l2_norm: bool = dot_product_l2_norm self._query_dot_product_groups: int = query_dot_product_groups self._item_dot_product_groups: int = item_dot_product_groups self._dot_product_dimension: int = dot_product_dimension self._temperature: float = temperature self._eps: float = eps self._autocast_bf16: bool = autocast_bf16
Args: apply_query_embeddings_fn: bool. If true, compute query_embeddings_fn to input during forward(). Otherwise, we assume the caller will invoke get_query_component_embeddings() separately before calling forward(). apply_item_embeddings_fn: bool. If true, compute item_embeddings_fn to input during forward(). Otherwise, we assume the caller will invoke get_item_component_embeddings() separately before calling forward().
__init__
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def get_query_component_embeddings( self, input_embeddings: torch.Tensor, decoupled_inference: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: input_embeddings: (B, self._input_embedding_dim,) x float or (B, P_Q, self._dot_product_dimension) x float. decoupled_inference: bool. If true, the call represents an attempt to run forward() in decoupled mode at inference time (e.g., to pre-compute component-level query embeddings for filtering, etc.). We simulate the logic in forward() in this case (e.g., if forward() doesn't apply query_embeddings_fn, then this call won't either). kwargs: additional implementation-specific arguments. Returns: (B, query_dot_product_groups, dot_product_embedding_dim) x float. """ if decoupled_inference and not self._apply_query_embeddings_fn: return input_embeddings, {} return self._query_embeddings_fn(input_embeddings, **kwargs)
Args: input_embeddings: (B, self._input_embedding_dim,) x float or (B, P_Q, self._dot_product_dimension) x float. decoupled_inference: bool. If true, the call represents an attempt to run forward() in decoupled mode at inference time (e.g., to pre-compute component-level query embeddings for filtering, etc.). We simulate the logic in forward() in this case (e.g., if forward() doesn't apply query_embeddings_fn, then this call won't either). kwargs: additional implementation-specific arguments. Returns: (B, query_dot_product_groups, dot_product_embedding_dim) x float.
get_query_component_embeddings
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def get_item_component_embeddings( self, input_embeddings: torch.Tensor, decoupled_inference: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: input_embeddings: (..., self._input_embedding_dim,) x float or (..., P_X, self._dot_product_dimension) x float. decoupled_inference: bool. If true, the call represents an attempt to run forward() in decoupled mode at inference time (e.g., to pre-compute component-level item embeddings for filtering, etc.). We simulate the logic in forward() in this case (e.g., if forward() doesn't apply item_embeddings_fn, then this call won't either). kwargs: additional implementation-specific arguments. Returns: (..., item_dot_product_groups, dot_product_embedding_dim) x float. """ if decoupled_inference and not self._apply_item_embeddings_fn: return input_embeddings, {} return self._item_embeddings_fn(input_embeddings, **kwargs)
Args: input_embeddings: (..., self._input_embedding_dim,) x float or (..., P_X, self._dot_product_dimension) x float. decoupled_inference: bool. If true, the call represents an attempt to run forward() in decoupled mode at inference time (e.g., to pre-compute component-level item embeddings for filtering, etc.). We simulate the logic in forward() in this case (e.g., if forward() doesn't apply item_embeddings_fn, then this call won't either). kwargs: additional implementation-specific arguments. Returns: (..., item_dot_product_groups, dot_product_embedding_dim) x float.
get_item_component_embeddings
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, item_embeddings: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Args: query_embeddings: (B, self._input_embedding_dim) x float or (B, P_Q, self._dot_product_dimension) x float (when query_embeddings_fn is applied externally). item_embeddings: (1/B, X, self._item_embedding_dim) x float or (1/B, X, P_X, self._dot_product_dimension) x float (when item_embeddings_fn is applied externally). kwargs: additional implementation-specific arguments. Returns: (B, X) x float, Dict[str, Tensor] representing auxiliary losses. """ with torch.autocast( enabled=self._autocast_bf16, dtype=torch.bfloat16, device_type="cuda" ): B = query_embeddings.size(0) B_prime = item_embeddings.shape[0] # 1 or B X = item_embeddings.shape[1] if self._apply_query_embeddings_fn: ( split_query_embeddings, query_aux_losses, ) = self.get_query_component_embeddings( query_embeddings, **kwargs, ) else: split_query_embeddings, query_aux_losses = query_embeddings, {} if self._apply_item_embeddings_fn: ( split_item_embeddings, item_aux_losses, ) = self.get_item_component_embeddings( input_embeddings=item_embeddings, **kwargs, ) else: split_item_embeddings, item_aux_losses = item_embeddings, {} if B_prime == 1: logits = torch.einsum( "bnd,xmd->bxnm", split_query_embeddings, split_item_embeddings.squeeze(0), ).reshape( B, X, self._query_dot_product_groups * self._item_dot_product_groups ) else: logits = torch.einsum( "bnd,bxmd->bxnm", split_query_embeddings, split_item_embeddings ).reshape( B, X, self._query_dot_product_groups * self._item_dot_product_groups ) gated_outputs, gating_aux_losses = self._gating_fn( logits=logits / self._temperature, # [B, X, L] query_embeddings=query_embeddings, # [B, D] item_embeddings=item_embeddings, # [1/B, X, D'] ) return gated_outputs, { **gating_aux_losses, **query_aux_losses, **item_aux_losses, }
Args: query_embeddings: (B, self._input_embedding_dim) x float or (B, P_Q, self._dot_product_dimension) x float (when query_embeddings_fn is applied externally). item_embeddings: (1/B, X, self._item_embedding_dim) x float or (1/B, X, P_X, self._dot_product_dimension) x float (when item_embeddings_fn is applied externally). kwargs: additional implementation-specific arguments. Returns: (B, X) x float, Dict[str, Tensor] representing auxiliary losses.
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/similarities/mol/similarity_fn.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/similarities/mol/similarity_fn.py
Apache-2.0
def __init__( self, mol_module: MoLSimilarity, item_embeddings: torch.Tensor, item_ids: torch.Tensor, flatten_item_ids_and_embeddings: bool, keep_component_level_item_embeddings: bool, component_level_item_embeddings_dtype: torch.dtype = torch.bfloat16, ) -> None: """ Args: mol_module: MoLSimilarity. item_embeddings: (1, X, D) if mol_module._apply_item_embeddings_fn is True, (1, X, P_X, D_P) otherwise. item_ids: (1, X,) representing the item ids. flatten_item_ids_and_embeddings: bool. If true, do not keep the extra (1,) dimension at size(0). keep_component_level_item_embeddings: bool. If true, keep P_x component-level embeddings in `self._mol_item_embeddings` for downstream applications. component_level_item_embeddings_dtype: torch.dtype. If set, the dtype to keep component-level item embeddings in. By default we use bfloat16. """ super().__init__() self._mol_module: MoLSimilarity = mol_module self._item_embeddings: torch.Tensor = ( item_embeddings if not flatten_item_ids_and_embeddings else item_embeddings.squeeze(0) ) if keep_component_level_item_embeddings: self._mol_item_embeddings: torch.Tensor = ( mol_module.get_item_component_embeddings( ( self._item_embeddings.squeeze(0) if not flatten_item_ids_and_embeddings else self._item_embeddings ), decoupled_inference=True, )[0] # (X, D) -> (X, P_X, D_P) ).to(component_level_item_embeddings_dtype) self._item_ids: torch.Tensor = ( item_ids if not flatten_item_ids_and_embeddings else item_ids.squeeze(0) )
Args: mol_module: MoLSimilarity. item_embeddings: (1, X, D) if mol_module._apply_item_embeddings_fn is True, (1, X, P_X, D_P) otherwise. item_ids: (1, X,) representing the item ids. flatten_item_ids_and_embeddings: bool. If true, do not keep the extra (1,) dimension at size(0). keep_component_level_item_embeddings: bool. If true, keep P_x component-level embeddings in `self._mol_item_embeddings` for downstream applications. component_level_item_embeddings_dtype: torch.dtype. If set, the dtype to keep component-level item embeddings in. By default we use bfloat16.
__init__
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/indexing/mol_top_k.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/indexing/mol_top_k.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, k: int, sorted: bool = True, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: query_embeddings: (B, X, D) if mol_module._apply_query_embeddings_fn is True, (B, X, P_Q, D_P) otherwise. k: int. final top-k to return. sorted: bool. whether to sort final top-k results or not. **kwargs: Implementation-specific keys/values. Returns: Tuple of (top_k_scores x float, top_k_ids x int), both of shape (B, K,) """ # (B, X,) all_logits, _ = self.mol_module( query_embeddings, self._item_embeddings, **kwargs, ) top_k_logits, top_k_indices = torch.topk( all_logits, dim=1, k=k, sorted=sorted, largest=True, ) # (B, k,) return top_k_logits, self._item_ids.squeeze(0)[top_k_indices]
Args: query_embeddings: (B, X, D) if mol_module._apply_query_embeddings_fn is True, (B, X, P_Q, D_P) otherwise. k: int. final top-k to return. sorted: bool. whether to sort final top-k results or not. **kwargs: Implementation-specific keys/values. Returns: Tuple of (top_k_scores x float, top_k_ids x int), both of shape (B, K,)
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/indexing/mol_top_k.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/indexing/mol_top_k.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, k: int, sorted: bool = True, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: query_embeddings: (B, X, ...). Implementation-specific. k: int. top k to return. sorted: bool. Returns: Tuple of (top_k_scores, top_k_ids), both of shape (B, K,) """ pass
Args: query_embeddings: (B, X, ...). Implementation-specific. k: int. top k to return. sorted: bool. Returns: Tuple of (top_k_scores, top_k_ids), both of shape (B, K,)
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/indexing/candidate_index.py
Apache-2.0
def __init__( self, item_embeddings: torch.Tensor, item_ids: torch.Tensor, ) -> None: """ Args: item_embeddings: (1, X, D) item_ids: (1, X,) """ super().__init__() self._item_embeddings: torch.Tensor = item_embeddings self._item_ids: torch.Tensor = item_ids
Args: item_embeddings: (1, X, D) item_ids: (1, X,)
__init__
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/indexing/mips_top_k.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/indexing/mips_top_k.py
Apache-2.0
def forward( self, query_embeddings: torch.Tensor, k: int, sorted: bool = True, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: query_embeddings: (B, ...). Implementation-specific. k: int. final top-k to return. sorted: bool. whether to sort final top-k results or not. Returns: Tuple of (top_k_scores x float, top_k_ids x int), both of shape (B, K,) """ # (B, X,) all_logits = torch.mm(query_embeddings, self._item_embeddings_t) top_k_logits, top_k_indices = torch.topk( all_logits, dim=1, k=k, sorted=sorted, largest=True, ) # (B, k,) return top_k_logits, self._item_ids.squeeze(0)[top_k_indices]
Args: query_embeddings: (B, ...). Implementation-specific. k: int. final top-k to return. sorted: bool. whether to sort final top-k results or not. Returns: Tuple of (top_k_scores x float, top_k_ids x int), both of shape (B, K,)
forward
python
facebookresearch/generative-recommenders
generative_recommenders/research/rails/indexing/mips_top_k.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/rails/indexing/mips_top_k.py
Apache-2.0
def ids(self) -> torch.Tensor: """ Returns: (1, X) or (B, X), where valid ids are positive integers. """ return self._ids
Returns: (1, X) or (B, X), where valid ids are positive integers.
ids
python
facebookresearch/generative-recommenders
generative_recommenders/research/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/indexing/candidate_index.py
Apache-2.0
def embeddings(self) -> torch.Tensor: """ Returns: (1, X, D) or (B, X, D) with the same shape as `ids'. """ return self._embeddings
Returns: (1, X, D) or (B, X, D) with the same shape as `ids'.
embeddings
python
facebookresearch/generative-recommenders
generative_recommenders/research/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/indexing/candidate_index.py
Apache-2.0
def filter_invalid_ids( self, invalid_ids: torch.Tensor, ) -> "CandidateIndex": """ Filters invalid_ids (batch dimension dependent) from the current index. Args: invalid_ids: (B, N) x int64. Returns: CandidateIndex with invalid_ids filtered. """ X = self._ids.size(1) if self._ids.size(0) == 1: # ((1, X, 1) == (B, 1, N)) -> (B, X) invalid_mask, _ = (self._ids.unsqueeze(2) == invalid_ids.unsqueeze(1)).max( dim=2 ) lengths = (~invalid_mask).int().sum(-1) # (B,) valid_1d_mask = (~invalid_mask).view(-1) B: int = lengths.size(0) D: int = self._embeddings.size(-1) jagged_ids = self._ids.expand(B, -1).reshape(-1)[valid_1d_mask] jagged_embeddings = self._embeddings.expand(B, -1, -1).reshape(-1, D)[ valid_1d_mask ] X_prime: int = lengths.max(-1)[0].item() jagged_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) return CandidateIndex( ids=torch.ops.fbgemm.jagged_to_padded_dense( values=jagged_ids.unsqueeze(-1), offsets=[jagged_offsets], max_lengths=[X_prime], padding_value=0, ).squeeze(-1), embeddings=torch.ops.fbgemm.jagged_to_padded_dense( values=jagged_embeddings, offsets=[jagged_offsets], max_lengths=[X_prime], padding_value=0.0, ), debug_path=self._debug_path, ) else: assert self._invalid_ids == None return CandidateIndex( ids=self.ids, embeddings=self.embeddings, invalid_ids=invalid_ids, debug_path=self._debug_path, )
Filters invalid_ids (batch dimension dependent) from the current index. Args: invalid_ids: (B, N) x int64. Returns: CandidateIndex with invalid_ids filtered.
filter_invalid_ids
python
facebookresearch/generative-recommenders
generative_recommenders/research/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/indexing/candidate_index.py
Apache-2.0
def get_top_k_outputs( self, query_embeddings: torch.Tensor, k: int, top_k_module: TopKModule, invalid_ids: Optional[torch.Tensor], r: int = 1, return_embeddings: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """ Gets top-k outputs specified by `policy_fn', while filtering out invalid ids per row as specified by `invalid_ids'. Args: k: int. top k to return. policy_fn: lambda that takes in item-side embeddings (B, X, D,) and user-side embeddings (B * r, ...), and returns predictions (unnormalized logits) of shape (B * r, X,). invalid_ids: (B * r, N_0) x int64. The list of ids (if > 0) to filter from results if present. Expect N_0 to be a small constant. return_embeddings: bool if we should additionally return embeddings for the top k results. Returns: A tuple of (top_k_ids, top_k_prs, top_k_embeddings) of shape (B * r, k, ...). """ B: int = query_embeddings.size(0) max_num_invalid_ids = 0 if invalid_ids is not None: max_num_invalid_ids = invalid_ids.size(1) k_prime = min(k + max_num_invalid_ids, self.num_objects) top_k_prime_scores, top_k_prime_ids = top_k_module( query_embeddings=query_embeddings, k=k_prime ) # Masks out invalid items rowwise. if invalid_ids is not None: id_is_valid = ~( (top_k_prime_ids.unsqueeze(2) == invalid_ids.unsqueeze(1)).max(2)[0] ) # [B, K + N_0] id_is_valid = torch.logical_and( id_is_valid, torch.cumsum(id_is_valid.int(), dim=1) <= k ) # [[1, 0, 1, 0], [0, 1, 1, 1]], k=2 -> [[0, 2], [1, 2]] top_k_rowwise_offsets = torch.nonzero(id_is_valid, as_tuple=True)[1].view( -1, k ) top_k_scores = torch.gather( top_k_prime_scores, dim=1, index=top_k_rowwise_offsets ) top_k_ids = torch.gather( top_k_prime_ids, dim=1, index=top_k_rowwise_offsets ) else: top_k_scores = top_k_prime_scores top_k_ids = top_k_prime_ids # TODO: this should be decoupled from candidate_index. if return_embeddings: raise ValueError("return_embeddings not supported yet.") else: top_k_embeddings = None return top_k_ids, top_k_scores, top_k_embeddings
Gets top-k outputs specified by `policy_fn', while filtering out invalid ids per row as specified by `invalid_ids'. Args: k: int. top k to return. policy_fn: lambda that takes in item-side embeddings (B, X, D,) and user-side embeddings (B * r, ...), and returns predictions (unnormalized logits) of shape (B * r, X,). invalid_ids: (B * r, N_0) x int64. The list of ids (if > 0) to filter from results if present. Expect N_0 to be a small constant. return_embeddings: bool if we should additionally return embeddings for the top k results. Returns: A tuple of (top_k_ids, top_k_prs, top_k_embeddings) of shape (B * r, k, ...).
get_top_k_outputs
python
facebookresearch/generative-recommenders
generative_recommenders/research/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/indexing/candidate_index.py
Apache-2.0
def apply_object_filter(self) -> "CandidateIndex": """ Applies general per batch filters. """ raise NotImplementedError("not implemented.")
Applies general per batch filters.
apply_object_filter
python
facebookresearch/generative-recommenders
generative_recommenders/research/indexing/candidate_index.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/indexing/candidate_index.py
Apache-2.0
def eval_metrics_v2_from_tensors( eval_state: EvalState, model: SimilarityModule, seq_features: SequentialFeatures, target_ids: torch.Tensor, # [B, 1] min_positive_rating: int = 4, target_ratings: Optional[torch.Tensor] = None, # [B, 1] epoch: Optional[str] = None, filter_invalid_ids: bool = True, user_max_batch_size: Optional[int] = None, dtype: Optional[torch.dtype] = None, ) -> Dict[str, Union[float, torch.Tensor]]: """ Args: eval_negatives_ids: Optional[Tensor]. If not present, defaults to eval over the entire corpus (`num_items`) excluding all the items that users have seen in the past (historical_ids, target_ids). This is consistent with papers like SASRec and TDM but may not be fair in practice as retrieval modules don't have access to read state during the initial fetch stage. filter_invalid_ids: bool. If true, filters seen ids by default. Returns: keyed metric -> list of values for each example. """ B, _ = target_ids.shape device = target_ids.device for target_id in target_ids: target_id = int(target_id) if target_id not in eval_state.all_item_ids: print(f"missing target_id {target_id}") # computes ro- part exactly once. # pyre-fixme[29]: `Union[Tensor, Module]` is not a function. shared_input_embeddings = model.encode( past_lengths=seq_features.past_lengths, past_ids=seq_features.past_ids, # pyre-fixme[29]: `Union[Tensor, Module]` is not a function. past_embeddings=model.get_item_embeddings(seq_features.past_ids), past_payloads=seq_features.past_payloads, ) if dtype is not None: shared_input_embeddings = shared_input_embeddings.to(dtype) MAX_K = 2500 k = min(MAX_K, eval_state.candidate_index.ids.size(1)) user_max_batch_size = user_max_batch_size or shared_input_embeddings.size(0) num_batches = ( shared_input_embeddings.size(0) + user_max_batch_size - 1 ) // user_max_batch_size eval_top_k_ids_all = [] eval_top_k_prs_all = [] for mb in range(num_batches): eval_top_k_ids, eval_top_k_prs, _ = ( eval_state.candidate_index.get_top_k_outputs( query_embeddings=shared_input_embeddings[ mb * user_max_batch_size : (mb + 1) * user_max_batch_size, ... ], top_k_module=eval_state.top_k_module, k=k, invalid_ids=( seq_features.past_ids[ mb * user_max_batch_size : (mb + 1) * user_max_batch_size, : ] if filter_invalid_ids else None ), return_embeddings=False, ) ) eval_top_k_ids_all.append(eval_top_k_ids) eval_top_k_prs_all.append(eval_top_k_prs) if num_batches == 1: eval_top_k_ids = eval_top_k_ids_all[0] eval_top_k_prs = eval_top_k_prs_all[0] else: eval_top_k_ids = torch.cat(eval_top_k_ids_all, dim=0) eval_top_k_prs = torch.cat(eval_top_k_prs_all, dim=0) assert eval_top_k_ids.size(1) == k _, eval_rank_indices = torch.max( torch.cat( [eval_top_k_ids, target_ids], dim=1, ) == target_ids, dim=1, ) eval_ranks = torch.where(eval_rank_indices == k, MAX_K + 1, eval_rank_indices + 1) output = { "ndcg@1": torch.where( eval_ranks <= 1, torch.div(1.0, torch.log2(eval_ranks + 1)), torch.zeros(1, dtype=torch.float32, device=device), ), "ndcg@10": torch.where( eval_ranks <= 10, torch.div(1.0, torch.log2(eval_ranks + 1)), torch.zeros(1, dtype=torch.float32, device=device), ), "ndcg@50": torch.where( eval_ranks <= 50, torch.div(1.0, torch.log2(eval_ranks + 1)), torch.zeros(1, dtype=torch.float32, device=device), ), "ndcg@100": torch.where( eval_ranks <= 100, torch.div(1.0, torch.log2(eval_ranks + 1)), torch.zeros(1, dtype=torch.float32, device=device), ), "ndcg@200": torch.where( eval_ranks <= 200, torch.div(1.0, torch.log2(eval_ranks + 1)), torch.zeros(1, dtype=torch.float32, device=device), ), "hr@1": (eval_ranks <= 1), "hr@10": (eval_ranks <= 10), "hr@50": (eval_ranks <= 50), "hr@100": (eval_ranks <= 100), "hr@200": (eval_ranks <= 200), "hr@500": (eval_ranks <= 500), "hr@1000": (eval_ranks <= 1000), "mrr": torch.div(1.0, eval_ranks), } if target_ratings is not None: target_ratings = target_ratings.squeeze(1) # [B] output["ndcg@10_>=4"] = torch.where( eval_ranks[target_ratings >= 4] <= 10, torch.div(1.0, torch.log2(eval_ranks[target_ratings >= 4] + 1)), torch.zeros(1, dtype=torch.float32, device=device), ) output[f"hr@10_>={min_positive_rating}"] = ( eval_ranks[target_ratings >= min_positive_rating] <= 10 ) output[f"hr@50_>={min_positive_rating}"] = ( eval_ranks[target_ratings >= min_positive_rating] <= 50 ) output[f"mrr_>={min_positive_rating}"] = torch.div( 1.0, eval_ranks[target_ratings >= min_positive_rating] ) return output # pyre-ignore [7]
Args: eval_negatives_ids: Optional[Tensor]. If not present, defaults to eval over the entire corpus (`num_items`) excluding all the items that users have seen in the past (historical_ids, target_ids). This is consistent with papers like SASRec and TDM but may not be fair in practice as retrieval modules don't have access to read state during the initial fetch stage. filter_invalid_ids: bool. If true, filters seen ids by default. Returns: keyed metric -> list of values for each example.
eval_metrics_v2_from_tensors
python
facebookresearch/generative-recommenders
generative_recommenders/research/data/eval.py
https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/data/eval.py
Apache-2.0