code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def compute_membership_strengths( knn_indices, knn_dists, sigmas, rhos, return_dists=False, bipartite=False, ): """Construct the membership strength data for the 1-skeleton of each local fuzzy simplicial set -- this is formed as a sparse matrix where each row is a local fuzzy simplicial set, with a membership strength for the 1-simplex to each other data point. Parameters ---------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. knn_dists: array of shape (n_samples, n_neighbors) The distances to the ``n_neighbors`` closest points in the dataset. sigmas: array of shape(n_samples) The normalization factor derived from the metric tensor approximation. rhos: array of shape(n_samples) The local connectivity adjustment. return_dists: bool (optional, default False) Whether to return the pairwise distance associated with each edge. bipartite: bool (optional, default False) Does the nearest neighbour set represent a bipartite graph? That is, are the nearest neighbour indices from the same point set as the row indices? Returns ------- rows: array of shape (n_samples * n_neighbors) Row data for the resulting sparse matrix (coo format) cols: array of shape (n_samples * n_neighbors) Column data for the resulting sparse matrix (coo format) vals: array of shape (n_samples * n_neighbors) Entries for the resulting sparse matrix (coo format) dists: array of shape (n_samples * n_neighbors) Distance associated with each entry in the resulting sparse matrix """ n_samples = knn_indices.shape[0] n_neighbors = knn_indices.shape[1] rows = np.zeros(knn_indices.size, dtype=np.int32) cols = np.zeros(knn_indices.size, dtype=np.int32) vals = np.zeros(knn_indices.size, dtype=np.float32) if return_dists: dists = np.zeros(knn_indices.size, dtype=np.float32) else: dists = None for i in range(n_samples): for j in range(n_neighbors): if knn_indices[i, j] == -1: continue # We didn't get the full knn for i # If applied to an adjacency matrix points shouldn't be similar to themselves. # If applied to an incidence matrix (or bipartite) then the row and column indices are different. if (bipartite == False) & (knn_indices[i, j] == i): val = 0.0 elif knn_dists[i, j] - rhos[i] <= 0.0 or sigmas[i] == 0.0: val = 1.0 else: val = np.exp(-((knn_dists[i, j] - rhos[i]) / (sigmas[i]))) rows[i * n_neighbors + j] = i cols[i * n_neighbors + j] = knn_indices[i, j] vals[i * n_neighbors + j] = val if return_dists: dists[i * n_neighbors + j] = knn_dists[i, j] return rows, cols, vals, dists
Construct the membership strength data for the 1-skeleton of each local fuzzy simplicial set -- this is formed as a sparse matrix where each row is a local fuzzy simplicial set, with a membership strength for the 1-simplex to each other data point. Parameters ---------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. knn_dists: array of shape (n_samples, n_neighbors) The distances to the ``n_neighbors`` closest points in the dataset. sigmas: array of shape(n_samples) The normalization factor derived from the metric tensor approximation. rhos: array of shape(n_samples) The local connectivity adjustment. return_dists: bool (optional, default False) Whether to return the pairwise distance associated with each edge. bipartite: bool (optional, default False) Does the nearest neighbour set represent a bipartite graph? That is, are the nearest neighbour indices from the same point set as the row indices? Returns ------- rows: array of shape (n_samples * n_neighbors) Row data for the resulting sparse matrix (coo format) cols: array of shape (n_samples * n_neighbors) Column data for the resulting sparse matrix (coo format) vals: array of shape (n_samples * n_neighbors) Entries for the resulting sparse matrix (coo format) dists: array of shape (n_samples * n_neighbors) Distance associated with each entry in the resulting sparse matrix
compute_membership_strengths
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def fuzzy_simplicial_set( X, n_neighbors, random_state, metric, metric_kwds={}, knn_indices=None, knn_dists=None, angular=False, set_op_mix_ratio=1.0, local_connectivity=1.0, apply_set_operations=True, verbose=False, return_dists=None, ): """Given a set of data X, a neighborhood size, and a measure of distance compute the fuzzy simplicial set (here represented as a fuzzy graph in the form of a sparse matrix) associated to the data. This is done by locally approximating geodesic distance at each point, creating a fuzzy simplicial set for each such point, and then combining all the local fuzzy simplicial sets into a global one via a fuzzy union. Parameters ---------- X: array of shape (n_samples, n_features) The data to be modelled as a fuzzy simplicial set. n_neighbors: int The number of neighbors to use to approximate geodesic distance. Larger numbers induce more global estimates of the manifold that can miss finer detail, while smaller values will focus on fine manifold structure to the detriment of the larger picture. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or function (optional, default 'euclidean') The metric to use to compute distances in high dimensional space. If a string is passed it must match a valid predefined metric. If a general metric is required a function that takes two 1d arrays and returns a float can be provided. For performance purposes it is required that this be a numba jit'd function. Valid string metrics include: * euclidean (or l2) * manhattan (or l1) * cityblock * braycurtis * canberra * chebyshev * correlation * cosine * dice * hamming * jaccard * kulsinski * ll_dirichlet * mahalanobis * matching * minkowski * rogerstanimoto * russellrao * seuclidean * sokalmichener * sokalsneath * sqeuclidean * yule * wminkowski Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. knn_indices: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the indices of the k-nearest neighbors as a row for each data point. knn_dists: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the distances of the k-nearest neighbors as a row for each data point. angular: bool (optional, default False) Whether to use angular/cosine distance for the random projection forest for seeding NN-descent to determine approximate nearest neighbors. set_op_mix_ratio: float (optional, default 1.0) Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local_connectivity: int (optional, default 1) The local connectivity required -- i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. return_dists: bool or None (optional, default None) Whether to return the pairwise distance associated with each edge. Returns ------- fuzzy_simplicial_set: coo_matrix A fuzzy simplicial set represented as a sparse matrix. The (i, j) entry of the matrix represents the membership strength of the 1-simplex between the ith and jth sample points. """ if knn_indices is None or knn_dists is None: knn_indices, knn_dists, _ = nearest_neighbors( X, n_neighbors, metric, metric_kwds, angular, random_state, verbose=verbose, ) knn_dists = knn_dists.astype(np.float32) sigmas, rhos = smooth_knn_dist( knn_dists, float(n_neighbors), local_connectivity=float(local_connectivity), ) rows, cols, vals, dists = compute_membership_strengths( knn_indices, knn_dists, sigmas, rhos, return_dists ) result = scipy.sparse.coo_matrix( (vals, (rows, cols)), shape=(X.shape[0], X.shape[0]) ) result.eliminate_zeros() if apply_set_operations: transpose = result.transpose() prod_matrix = result.multiply(transpose) result = ( set_op_mix_ratio * (result + transpose - prod_matrix) + (1.0 - set_op_mix_ratio) * prod_matrix ) result.eliminate_zeros() if return_dists is None: return result, sigmas, rhos else: if return_dists: dmat = scipy.sparse.coo_matrix( (dists, (rows, cols)), shape=(X.shape[0], X.shape[0]) ) dists = dmat.maximum(dmat.transpose()).todok() else: dists = None return result, sigmas, rhos, dists
Given a set of data X, a neighborhood size, and a measure of distance compute the fuzzy simplicial set (here represented as a fuzzy graph in the form of a sparse matrix) associated to the data. This is done by locally approximating geodesic distance at each point, creating a fuzzy simplicial set for each such point, and then combining all the local fuzzy simplicial sets into a global one via a fuzzy union. Parameters ---------- X: array of shape (n_samples, n_features) The data to be modelled as a fuzzy simplicial set. n_neighbors: int The number of neighbors to use to approximate geodesic distance. Larger numbers induce more global estimates of the manifold that can miss finer detail, while smaller values will focus on fine manifold structure to the detriment of the larger picture. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or function (optional, default 'euclidean') The metric to use to compute distances in high dimensional space. If a string is passed it must match a valid predefined metric. If a general metric is required a function that takes two 1d arrays and returns a float can be provided. For performance purposes it is required that this be a numba jit'd function. Valid string metrics include: * euclidean (or l2) * manhattan (or l1) * cityblock * braycurtis * canberra * chebyshev * correlation * cosine * dice * hamming * jaccard * kulsinski * ll_dirichlet * mahalanobis * matching * minkowski * rogerstanimoto * russellrao * seuclidean * sokalmichener * sokalsneath * sqeuclidean * yule * wminkowski Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. knn_indices: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the indices of the k-nearest neighbors as a row for each data point. knn_dists: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the distances of the k-nearest neighbors as a row for each data point. angular: bool (optional, default False) Whether to use angular/cosine distance for the random projection forest for seeding NN-descent to determine approximate nearest neighbors. set_op_mix_ratio: float (optional, default 1.0) Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local_connectivity: int (optional, default 1) The local connectivity required -- i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. return_dists: bool or None (optional, default None) Whether to return the pairwise distance associated with each edge. Returns ------- fuzzy_simplicial_set: coo_matrix A fuzzy simplicial set represented as a sparse matrix. The (i, j) entry of the matrix represents the membership strength of the 1-simplex between the ith and jth sample points.
fuzzy_simplicial_set
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def fast_intersection(rows, cols, values, target, unknown_dist=1.0, far_dist=5.0): """Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array An array of the value of each non-zero in the sparse matrix representation. target: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist float (optional, default 5.0) The distance between unmatched labels. Returns ------- None """ for nz in range(rows.shape[0]): i = rows[nz] j = cols[nz] if (target[i] == -1) or (target[j] == -1): values[nz] *= np.exp(-unknown_dist) elif target[i] != target[j]: values[nz] *= np.exp(-far_dist) return
Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array An array of the value of each non-zero in the sparse matrix representation. target: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist float (optional, default 5.0) The distance between unmatched labels. Returns ------- None
fast_intersection
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def fast_metric_intersection( rows, cols, values, discrete_space, metric, metric_args, scale ): """Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array of shape An array of the values of each non-zero in the sparse matrix representation. discrete_space: array of shape (n_samples, n_features) The vectors of categorical labels to use in the intersection. metric: numba function The function used to calculate distance over the target array. scale: float A scaling to apply to the metric. Returns ------- None """ for nz in range(rows.shape[0]): i = rows[nz] j = cols[nz] dist = metric(discrete_space[i], discrete_space[j], *metric_args) values[nz] *= np.exp(-(scale * dist)) return
Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array of shape An array of the values of each non-zero in the sparse matrix representation. discrete_space: array of shape (n_samples, n_features) The vectors of categorical labels to use in the intersection. metric: numba function The function used to calculate distance over the target array. scale: float A scaling to apply to the metric. Returns ------- None
fast_metric_intersection
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def reset_local_connectivity(simplicial_set, reset_local_metric=False): """Reset the local connectivity requirement -- each data sample should have complete confidence in at least one 1-simplex in the simplicial set. We can enforce this by locally rescaling confidences, and then remerging the different local simplicial sets together. Parameters ---------- simplicial_set: sparse matrix The simplicial set for which to recalculate with respect to local connectivity. Returns ------- simplicial_set: sparse_matrix The recalculated simplicial set, now with the local connectivity assumption restored. """ simplicial_set = normalize(simplicial_set, norm="max") if reset_local_metric: simplicial_set = simplicial_set.tocsr() reset_local_metrics(simplicial_set.indptr, simplicial_set.data) simplicial_set = simplicial_set.tocoo() transpose = simplicial_set.transpose() prod_matrix = simplicial_set.multiply(transpose) simplicial_set = simplicial_set + transpose - prod_matrix simplicial_set.eliminate_zeros() return simplicial_set
Reset the local connectivity requirement -- each data sample should have complete confidence in at least one 1-simplex in the simplicial set. We can enforce this by locally rescaling confidences, and then remerging the different local simplicial sets together. Parameters ---------- simplicial_set: sparse matrix The simplicial set for which to recalculate with respect to local connectivity. Returns ------- simplicial_set: sparse_matrix The recalculated simplicial set, now with the local connectivity assumption restored.
reset_local_connectivity
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def discrete_metric_simplicial_set_intersection( simplicial_set, discrete_space, unknown_dist=1.0, far_dist=5.0, metric=None, metric_kws={}, metric_scale=1.0, ): """Combine a fuzzy simplicial set with another fuzzy simplicial set generated from discrete metric data using discrete distances. The target data is assumed to be categorical label data (a vector of labels), and this will update the fuzzy simplicial set to respect that label data. TODO: optional category cardinality based weighting of distance Parameters ---------- simplicial_set: sparse matrix The input fuzzy simplicial set. discrete_space: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist: float (optional, default 5.0) The distance between unmatched labels. metric: str (optional, default None) If not None, then use this metric to determine the distance between values. metric_scale: float (optional, default 1.0) If using a custom metric scale the distance values by this value -- this controls the weighting of the intersection. Larger values weight more toward target. Returns ------- simplicial_set: sparse matrix The resulting intersected fuzzy simplicial set. """ simplicial_set = simplicial_set.tocoo() if metric is not None: # We presume target is now a 2d array, with each row being a # vector of target info if metric in dist.named_distances: metric_func = dist.named_distances[metric] else: raise ValueError("Discrete intersection metric is not recognized") fast_metric_intersection( simplicial_set.row, simplicial_set.col, simplicial_set.data, discrete_space, metric_func, tuple(metric_kws.values()), metric_scale, ) else: fast_intersection( simplicial_set.row, simplicial_set.col, simplicial_set.data, discrete_space, unknown_dist, far_dist, ) simplicial_set.eliminate_zeros() return reset_local_connectivity(simplicial_set)
Combine a fuzzy simplicial set with another fuzzy simplicial set generated from discrete metric data using discrete distances. The target data is assumed to be categorical label data (a vector of labels), and this will update the fuzzy simplicial set to respect that label data. TODO: optional category cardinality based weighting of distance Parameters ---------- simplicial_set: sparse matrix The input fuzzy simplicial set. discrete_space: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist: float (optional, default 5.0) The distance between unmatched labels. metric: str (optional, default None) If not None, then use this metric to determine the distance between values. metric_scale: float (optional, default 1.0) If using a custom metric scale the distance values by this value -- this controls the weighting of the intersection. Larger values weight more toward target. Returns ------- simplicial_set: sparse matrix The resulting intersected fuzzy simplicial set.
discrete_metric_simplicial_set_intersection
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def make_epochs_per_sample(weights, n_epochs): """Given a set of weights and number of epochs generate the number of epochs per sample for each weight. Parameters ---------- weights: array of shape (n_1_simplices) The weights of how much we wish to sample each 1-simplex. n_epochs: int The total number of epochs we want to train for. Returns ------- An array of number of epochs per sample, one for each 1-simplex. """ result = -1.0 * np.ones(weights.shape[0], dtype=np.float64) n_samples = n_epochs * (weights / weights.max()) result[n_samples > 0] = float(n_epochs) / np.float64(n_samples[n_samples > 0]) return result
Given a set of weights and number of epochs generate the number of epochs per sample for each weight. Parameters ---------- weights: array of shape (n_1_simplices) The weights of how much we wish to sample each 1-simplex. n_epochs: int The total number of epochs we want to train for. Returns ------- An array of number of epochs per sample, one for each 1-simplex.
make_epochs_per_sample
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def simplicial_set_embedding( data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric=dist.named_distances_with_gradients["euclidean"], output_metric_kwds={}, euclidean_output=True, parallel=False, verbose=False, tqdm_kwds=None, ): """Perform a fuzzy simplicial set embedding, using a specified initialisation method and then minimizing the fuzzy set cross entropy between the 1-skeletons of the high and low dimensional fuzzy simplicial sets. Parameters ---------- data: array of shape (n_samples, n_features) The source data to be embedded by UMAP. graph: sparse matrix The 1-skeleton of the high dimensional fuzzy simplicial set as represented by a graph for which we require a sparse matrix for the (weighted) adjacency matrix. n_components: int The dimensionality of the euclidean space into which to embed the data. initial_alpha: float Initial learning rate for the SGD. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor gamma: float Weight to apply to negative samples. negative_sample_rate: int (optional, default 5) The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. n_epochs: int (optional, default 0), or list of int The number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If 0 is specified a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). If a list of int is specified, then the intermediate embeddings at the different epochs specified in that list are returned in ``aux_data["embedding_list"]``. init: string How to initialize the low dimensional embedding. Options are: * 'spectral': use a spectral embedding of the fuzzy 1-skeleton * 'random': assign initial embedding positions at random. * 'pca': use the first n_components from PCA applied to the input data. * A numpy array of initial embedding positions. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable The metric used to measure distance in high dimensional space; used if multiple connected components need to be layed out. metric_kwds: dict Key word arguments to be passed to the metric function; used if multiple connected components need to be layed out. densmap: bool Whether to use the density-augmented objective function to optimize the embedding according to the densMAP algorithm. densmap_kwds: dict Key word arguments to be used by the densMAP optimization. output_dens: bool Whether to output local radii in the original data and the embedding. output_metric: function Function returning the distance between two points in embedding space and the gradient of the distance wrt the first argument. output_metric_kwds: dict Key word arguments to be passed to the output_metric function. euclidean_output: bool Whether to use the faster code specialised for euclidean output metrics parallel: bool (optional, default False) Whether to run the computation using numba parallel. Running in parallel is non-deterministic, and is not used if a random seed has been set, to ensure reproducibility. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict Key word arguments to be used by the tqdm progress bar. Returns ------- embedding: array of shape (n_samples, n_components) The optimized of ``graph`` into an ``n_components`` dimensional euclidean space. aux_data: dict Auxiliary output returned with the embedding. When densMAP extension is turned on, this dictionary includes local radii in the original data (``rad_orig``) and in the embedding (``rad_emb``). """ graph = graph.tocoo() graph.sum_duplicates() n_vertices = graph.shape[1] # For smaller datasets we can use more epochs if graph.shape[0] <= 10000: default_epochs = 500 else: default_epochs = 200 # Use more epochs for densMAP if densmap: default_epochs += 200 if n_epochs is None: n_epochs = default_epochs # If n_epoch is a list, get the maximum epoch to reach n_epochs_max = max(n_epochs) if isinstance(n_epochs, list) else n_epochs if n_epochs_max > 10: graph.data[graph.data < (graph.data.max() / float(n_epochs_max))] = 0.0 else: graph.data[graph.data < (graph.data.max() / float(default_epochs))] = 0.0 graph.eliminate_zeros() if isinstance(init, str) and init == "random": embedding = random_state.uniform( low=-10.0, high=10.0, size=(graph.shape[0], n_components) ).astype(np.float32) elif isinstance(init, str) and init == "pca": if scipy.sparse.issparse(data): pca = TruncatedSVD(n_components=n_components, random_state=random_state) else: pca = PCA(n_components=n_components, random_state=random_state) embedding = pca.fit_transform(data).astype(np.float32) embedding = noisy_scale_coords( embedding, random_state, max_coord=10, noise=0.0001 ) elif isinstance(init, str) and init == "spectral": embedding = spectral_layout( data, graph, n_components, random_state, metric=metric, metric_kwds=metric_kwds, ) # We add a little noise to avoid local minima for optimization to come embedding = noisy_scale_coords( embedding, random_state, max_coord=10, noise=0.0001 ) elif isinstance(init, str) and init == "tswspectral": embedding = tswspectral_layout( data, graph, n_components, random_state, metric=metric, metric_kwds=metric_kwds, ) embedding = noisy_scale_coords( embedding, random_state, max_coord=10, noise=0.0001 ) else: init_data = np.array(init) if len(init_data.shape) == 2: if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]: tree = KDTree(init_data) dist, ind = tree.query(init_data, k=2) nndist = np.mean(dist[:, 1]) embedding = init_data + random_state.normal( scale=0.001 * nndist, size=init_data.shape ).astype(np.float32) else: embedding = init_data epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs_max) head = graph.row tail = graph.col weight = graph.data rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64) aux_data = {} if densmap or output_dens: if verbose: print(ts() + " Computing original densities") dists = densmap_kwds["graph_dists"] mu_sum = np.zeros(n_vertices, dtype=np.float32) ro = np.zeros(n_vertices, dtype=np.float32) for i in range(len(head)): j = head[i] k = tail[i] D = dists[j, k] * dists[j, k] # match sq-Euclidean used for embedding mu = graph.data[i] ro[j] += mu * D ro[k] += mu * D mu_sum[j] += mu mu_sum[k] += mu epsilon = 1e-8 ro = np.log(epsilon + (ro / mu_sum)) if densmap: R = (ro - np.mean(ro)) / np.std(ro) densmap_kwds["mu"] = graph.data densmap_kwds["mu_sum"] = mu_sum densmap_kwds["R"] = R if output_dens: aux_data["rad_orig"] = ro embedding = ( 10.0 * (embedding - np.min(embedding, 0)) / (np.max(embedding, 0) - np.min(embedding, 0)) ).astype(np.float32, order="C") if euclidean_output: embedding = optimize_layout_euclidean( embedding, embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma, initial_alpha, negative_sample_rate, parallel=parallel, verbose=verbose, densmap=densmap, densmap_kwds=densmap_kwds, tqdm_kwds=tqdm_kwds, move_other=True, ) else: embedding = optimize_layout_generic( embedding, embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma, initial_alpha, negative_sample_rate, output_metric, tuple(output_metric_kwds.values()), verbose=verbose, tqdm_kwds=tqdm_kwds, move_other=True, ) if isinstance(embedding, list): aux_data["embedding_list"] = embedding embedding = embedding[-1].copy() if output_dens: if verbose: print(ts() + " Computing embedding densities") # Compute graph in embedding ( knn_indices, knn_dists, rp_forest, ) = nearest_neighbors( embedding, densmap_kwds["n_neighbors"], "euclidean", {}, False, random_state, verbose=verbose, ) emb_graph, emb_sigmas, emb_rhos, emb_dists = fuzzy_simplicial_set( embedding, densmap_kwds["n_neighbors"], random_state, "euclidean", {}, knn_indices, knn_dists, verbose=verbose, return_dists=True, ) emb_graph = emb_graph.tocoo() emb_graph.sum_duplicates() emb_graph.eliminate_zeros() n_vertices = emb_graph.shape[1] mu_sum = np.zeros(n_vertices, dtype=np.float32) re = np.zeros(n_vertices, dtype=np.float32) head = emb_graph.row tail = emb_graph.col for i in range(len(head)): j = head[i] k = tail[i] D = emb_dists[j, k] mu = emb_graph.data[i] re[j] += mu * D re[k] += mu * D mu_sum[j] += mu mu_sum[k] += mu epsilon = 1e-8 re = np.log(epsilon + (re / mu_sum)) aux_data["rad_emb"] = re return embedding, aux_data
Perform a fuzzy simplicial set embedding, using a specified initialisation method and then minimizing the fuzzy set cross entropy between the 1-skeletons of the high and low dimensional fuzzy simplicial sets. Parameters ---------- data: array of shape (n_samples, n_features) The source data to be embedded by UMAP. graph: sparse matrix The 1-skeleton of the high dimensional fuzzy simplicial set as represented by a graph for which we require a sparse matrix for the (weighted) adjacency matrix. n_components: int The dimensionality of the euclidean space into which to embed the data. initial_alpha: float Initial learning rate for the SGD. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor gamma: float Weight to apply to negative samples. negative_sample_rate: int (optional, default 5) The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. n_epochs: int (optional, default 0), or list of int The number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If 0 is specified a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). If a list of int is specified, then the intermediate embeddings at the different epochs specified in that list are returned in ``aux_data["embedding_list"]``. init: string How to initialize the low dimensional embedding. Options are: * 'spectral': use a spectral embedding of the fuzzy 1-skeleton * 'random': assign initial embedding positions at random. * 'pca': use the first n_components from PCA applied to the input data. * A numpy array of initial embedding positions. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable The metric used to measure distance in high dimensional space; used if multiple connected components need to be layed out. metric_kwds: dict Key word arguments to be passed to the metric function; used if multiple connected components need to be layed out. densmap: bool Whether to use the density-augmented objective function to optimize the embedding according to the densMAP algorithm. densmap_kwds: dict Key word arguments to be used by the densMAP optimization. output_dens: bool Whether to output local radii in the original data and the embedding. output_metric: function Function returning the distance between two points in embedding space and the gradient of the distance wrt the first argument. output_metric_kwds: dict Key word arguments to be passed to the output_metric function. euclidean_output: bool Whether to use the faster code specialised for euclidean output metrics parallel: bool (optional, default False) Whether to run the computation using numba parallel. Running in parallel is non-deterministic, and is not used if a random seed has been set, to ensure reproducibility. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict Key word arguments to be used by the tqdm progress bar. Returns ------- embedding: array of shape (n_samples, n_components) The optimized of ``graph`` into an ``n_components`` dimensional euclidean space. aux_data: dict Auxiliary output returned with the embedding. When densMAP extension is turned on, this dictionary includes local radii in the original data (``rad_orig``) and in the embedding (``rad_emb``).
simplicial_set_embedding
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def init_transform(indices, weights, embedding): """Given indices and weights and an original embeddings initialize the positions of new points relative to the indices and weights (of their neighbors in the source data). Parameters ---------- indices: array of shape (n_new_samples, n_neighbors) The indices of the neighbors of each new sample weights: array of shape (n_new_samples, n_neighbors) The membership strengths of associated 1-simplices for each of the new samples. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points. """ result = np.zeros((indices.shape[0], embedding.shape[1]), dtype=np.float32) for i in range(indices.shape[0]): for j in range(indices.shape[1]): for d in range(embedding.shape[1]): result[i, d] += weights[i, j] * embedding[indices[i, j], d] return result
Given indices and weights and an original embeddings initialize the positions of new points relative to the indices and weights (of their neighbors in the source data). Parameters ---------- indices: array of shape (n_new_samples, n_neighbors) The indices of the neighbors of each new sample weights: array of shape (n_new_samples, n_neighbors) The membership strengths of associated 1-simplices for each of the new samples. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points.
init_transform
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def init_graph_transform(graph, embedding): """Given a bipartite graph representing the 1-simplices and strengths between the new points and the original data set along with an embedding of the original points initialize the positions of new points relative to the strengths (of their neighbors in the source data). If a point is in our original data set it embeds at the original points coordinates. If a point has no neighbours in our original dataset it embeds as the np.nan vector. Otherwise a point is the weighted average of it's neighbours embedding locations. Parameters ---------- graph: csr_matrix (n_new_samples, n_samples) A matrix indicating the 1-simplices and their associated strengths. These strengths should be values between zero and one and not normalized. One indicating that the new point was identical to one of our original points. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points. """ result = np.zeros((graph.shape[0], embedding.shape[1]), dtype=np.float32) for row_index in range(graph.shape[0]): graph_row = graph[row_index] if graph_row.nnz == 0: result[row_index] = np.nan continue row_sum = graph_row.sum() for graph_value, col_index in zip(graph_row.data, graph_row.indices): if graph_value == 1: result[row_index, :] = embedding[col_index, :] break result[row_index] += graph_value / row_sum * embedding[col_index] return result
Given a bipartite graph representing the 1-simplices and strengths between the new points and the original data set along with an embedding of the original points initialize the positions of new points relative to the strengths (of their neighbors in the source data). If a point is in our original data set it embeds at the original points coordinates. If a point has no neighbours in our original dataset it embeds as the np.nan vector. Otherwise a point is the weighted average of it's neighbours embedding locations. Parameters ---------- graph: csr_matrix (n_new_samples, n_samples) A matrix indicating the 1-simplices and their associated strengths. These strengths should be values between zero and one and not normalized. One indicating that the new point was identical to one of our original points. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points.
init_graph_transform
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def find_ab_params(spread, min_dist): """Fit a, b params for the differentiable curve used in lower dimensional fuzzy simplicial complex construction. We want the smooth curve (from a pre-defined family with simple gradient) that best matches an offset exponential decay. """ def curve(x, a, b): return 1.0 / (1.0 + a * x ** (2 * b)) xv = np.linspace(0, spread * 3, 300) yv = np.zeros(xv.shape) yv[xv < min_dist] = 1.0 yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread) params, covar = curve_fit(curve, xv, yv) return params[0], params[1]
Fit a, b params for the differentiable curve used in lower dimensional fuzzy simplicial complex construction. We want the smooth curve (from a pre-defined family with simple gradient) that best matches an offset exponential decay.
find_ab_params
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def fit(self, X, y=None, ensure_all_finite=True, **kwargs): """Fit X into an embedded space. Optionally use y for supervised dimension reduction. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. **kwargs : optional Any additional keyword arguments are passed to _fit_embed_data. """ if self.metric in ("bit_hamming", "bit_jaccard"): X = check_array( X, dtype=np.uint8, order="C", ensure_all_finite=ensure_all_finite ) else: X = check_array( X, dtype=np.float32, accept_sparse="csr", order="C", ensure_all_finite=ensure_all_finite, ) self._raw_data = X # Handle all the optional arguments, setting default if self.a is None or self.b is None: self._a, self._b = find_ab_params(self.spread, self.min_dist) else: self._a = self.a self._b = self.b if isinstance(self.init, np.ndarray): init = check_array( self.init, dtype=np.float32, accept_sparse=False, ensure_all_finite=ensure_all_finite, ) else: init = self.init self._initial_alpha = self.learning_rate self.knn_indices = self.precomputed_knn[0] self.knn_dists = self.precomputed_knn[1] # #848: allow precomputed knn to not have a search index if len(self.precomputed_knn) == 2: self.knn_search_index = None else: self.knn_search_index = self.precomputed_knn[2] self._validate_parameters() if self.verbose: print(str(self)) self._original_n_threads = numba.get_num_threads() if self.n_jobs > 0 and self.n_jobs is not None: numba.set_num_threads(self.n_jobs) # Check if we should unique the data # We've already ensured that we aren't in the precomputed case if self.unique: # check if the matrix is dense if self._sparse_data: # Call a sparse unique function index, inverse, counts = csr_unique(X) else: index, inverse, counts = np.unique( X, return_index=True, return_inverse=True, return_counts=True, axis=0, )[1:4] if self.verbose: print( "Unique=True -> Number of data points reduced from ", X.shape[0], " to ", X[index].shape[0], ) most_common = np.argmax(counts) print( "Most common duplicate is", index[most_common], " with a count of ", counts[most_common], ) # We'll expose an inverse map when unique=True for users to map from our internal structures to their data self._unique_inverse_ = inverse # If we aren't asking for unique use the full index. # This will save special cases later. else: index = list(range(X.shape[0])) inverse = list(range(X.shape[0])) # Error check n_neighbors based on data size if X[index].shape[0] <= self.n_neighbors: if X[index].shape[0] == 1: self.embedding_ = np.zeros( (1, self.n_components) ) # needed to sklearn comparability return self warn( "n_neighbors is larger than the dataset size; truncating to " "X.shape[0] - 1" ) self._n_neighbors = X[index].shape[0] - 1 if self.densmap: self._densmap_kwds["n_neighbors"] = self._n_neighbors else: self._n_neighbors = self.n_neighbors # Note: unless it causes issues for setting 'index', could move this to # initial sparsity check above if self._sparse_data and not X.has_sorted_indices: X.sort_indices() random_state = check_random_state(self.random_state) if self.verbose: print(ts(), "Construct fuzzy simplicial set") if self.metric == "precomputed" and self._sparse_data: # For sparse precomputed distance matrices, we just argsort the rows to find # nearest neighbors. To make this easier, we expect matrices that are # symmetrical (so we can find neighbors by looking at rows in isolation, # rather than also having to consider that sample's column too). # print("Computing KNNs for sparse precomputed distances...") if sparse_tril(X).getnnz() != sparse_triu(X).getnnz(): raise ValueError( "Sparse precomputed distance matrices should be symmetrical!" ) if not np.all(X.diagonal() == 0): raise ValueError("Non-zero distances from samples to themselves!") if self.knn_dists is None: self._knn_indices = np.zeros((X.shape[0], self.n_neighbors), dtype=int) self._knn_dists = np.zeros(self._knn_indices.shape, dtype=float) for row_id in range(X.shape[0]): # Find KNNs row-by-row row_data = X[row_id].data row_indices = X[row_id].indices if len(row_data) < self._n_neighbors: raise ValueError( "Some rows contain fewer than n_neighbors distances!" ) row_nn_data_indices = np.argsort(row_data)[: self._n_neighbors] self._knn_indices[row_id] = row_indices[row_nn_data_indices] self._knn_dists[row_id] = row_data[row_nn_data_indices] else: self._knn_indices = self.knn_indices self._knn_dists = self.knn_dists # Disconnect any vertices farther apart than _disconnection_distance disconnected_index = self._knn_dists >= self._disconnection_distance self._knn_indices[disconnected_index] = -1 self._knn_dists[disconnected_index] = np.inf edges_removed = disconnected_index.sum() ( self.graph_, self._sigmas, self._rhos, self.graph_dists_, ) = fuzzy_simplicial_set( X[index], self.n_neighbors, random_state, "precomputed", self._metric_kwds, self._knn_indices, self._knn_dists, self.angular_rp_forest, self.set_op_mix_ratio, self.local_connectivity, True, self.verbose, self.densmap or self.output_dens, ) # Report the number of vertices with degree 0 in our our umap.graph_ # This ensures that they were properly disconnected. vertices_disconnected = np.sum( np.array(self.graph_.sum(axis=1)).flatten() == 0 ) raise_disconnected_warning( edges_removed, vertices_disconnected, self._disconnection_distance, self._raw_data.shape[0], verbose=self.verbose, ) # Handle small cases efficiently by computing all distances elif X[index].shape[0] < 4096 and not self.force_approximation_algorithm: self._small_data = True try: # sklearn pairwise_distances fails for callable metric on sparse data _m = self.metric if self._sparse_data else self._input_distance_func dmat = pairwise_distances(X[index], metric=_m, **self._metric_kwds) except (ValueError, TypeError) as e: # metric is numba.jit'd or not supported by sklearn, # fallback to pairwise special if self._sparse_data: # Get a fresh metric since we are casting to dense if not callable(self.metric): _m = dist.named_distances[self.metric] dmat = dist.pairwise_special_metric( X[index].toarray(), metric=_m, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) else: dmat = dist.pairwise_special_metric( X[index], metric=self._input_distance_func, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) else: dmat = dist.pairwise_special_metric( X[index], metric=self._input_distance_func, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) # set any values greater than disconnection_distance to be np.inf. # This will have no effect when _disconnection_distance is not set since it defaults to np.inf. edges_removed = np.sum(dmat >= self._disconnection_distance) dmat[dmat >= self._disconnection_distance] = np.inf ( self.graph_, self._sigmas, self._rhos, self.graph_dists_, ) = fuzzy_simplicial_set( dmat, self._n_neighbors, random_state, "precomputed", self._metric_kwds, None, None, self.angular_rp_forest, self.set_op_mix_ratio, self.local_connectivity, True, self.verbose, self.densmap or self.output_dens, ) # Report the number of vertices with degree 0 in our umap.graph_ # This ensures that they were properly disconnected. vertices_disconnected = np.sum( np.array(self.graph_.sum(axis=1)).flatten() == 0 ) raise_disconnected_warning( edges_removed, vertices_disconnected, self._disconnection_distance, self._raw_data.shape[0], verbose=self.verbose, ) else: # Standard case self._small_data = False # Standard case if self._sparse_data and self.metric in pynn_sparse_named_distances: nn_metric = self.metric elif not self._sparse_data and self.metric in pynn_named_distances: nn_metric = self.metric else: nn_metric = self._input_distance_func if self.knn_dists is None: ( self._knn_indices, self._knn_dists, self._knn_search_index, ) = nearest_neighbors( X[index], self._n_neighbors, nn_metric, self._metric_kwds, self.angular_rp_forest, random_state, self.low_memory, use_pynndescent=True, n_jobs=self.n_jobs, verbose=self.verbose, ) else: self._knn_indices = self.knn_indices self._knn_dists = self.knn_dists self._knn_search_index = self.knn_search_index # Disconnect any vertices farther apart than _disconnection_distance disconnected_index = self._knn_dists >= self._disconnection_distance self._knn_indices[disconnected_index] = -1 self._knn_dists[disconnected_index] = np.inf edges_removed = disconnected_index.sum() ( self.graph_, self._sigmas, self._rhos, self.graph_dists_, ) = fuzzy_simplicial_set( X[index], self.n_neighbors, random_state, nn_metric, self._metric_kwds, self._knn_indices, self._knn_dists, self.angular_rp_forest, self.set_op_mix_ratio, self.local_connectivity, True, self.verbose, self.densmap or self.output_dens, ) # Report the number of vertices with degree 0 in our umap.graph_ # This ensures that they were properly disconnected. vertices_disconnected = np.sum( np.array(self.graph_.sum(axis=1)).flatten() == 0 ) raise_disconnected_warning( edges_removed, vertices_disconnected, self._disconnection_distance, self._raw_data.shape[0], verbose=self.verbose, ) # Currently not checking if any duplicate points have differing labels # Might be worth throwing a warning... if y is not None: len_X = len(X) if not self._sparse_data else X.shape[0] if len_X != len(y): raise ValueError( "Length of x = {len_x}, length of y = {len_y}, while it must be equal.".format( len_x=len_X, len_y=len(y) ) ) if self.target_metric == "string": y_ = y[index] else: y_ = check_array(y, ensure_2d=False, ensure_all_finite=ensure_all_finite)[ index ] if self.target_metric == "categorical": if self.target_weight < 1.0: far_dist = 2.5 * (1.0 / (1.0 - self.target_weight)) else: far_dist = 1.0e12 self.graph_ = discrete_metric_simplicial_set_intersection( self.graph_, y_, far_dist=far_dist ) elif self.target_metric in dist.DISCRETE_METRICS: if self.target_weight < 1.0: scale = 2.5 * (1.0 / (1.0 - self.target_weight)) else: scale = 1.0e12 # self.graph_ = discrete_metric_simplicial_set_intersection( # self.graph_, # y_, # metric=self.target_metric, # metric_kws=self.target_metric_kwds, # metric_scale=scale # ) metric_kws = dist.get_discrete_params(y_, self.target_metric) self.graph_ = discrete_metric_simplicial_set_intersection( self.graph_, y_, metric=self.target_metric, metric_kws=metric_kws, metric_scale=scale, ) else: if len(y_.shape) == 1: y_ = y_.reshape(-1, 1) if self.target_n_neighbors == -1: target_n_neighbors = self._n_neighbors else: target_n_neighbors = self.target_n_neighbors # Handle the small case as precomputed as before if y.shape[0] < 4096: try: ydmat = pairwise_distances( y_, metric=self.target_metric, **self._target_metric_kwds ) except (TypeError, ValueError): ydmat = dist.pairwise_special_metric( y_, metric=self.target_metric, kwds=self._target_metric_kwds, ensure_all_finite=ensure_all_finite, ) ( target_graph, target_sigmas, target_rhos, ) = fuzzy_simplicial_set( ydmat, target_n_neighbors, random_state, "precomputed", self._target_metric_kwds, None, None, False, 1.0, 1.0, False, ) else: # Standard case ( target_graph, target_sigmas, target_rhos, ) = fuzzy_simplicial_set( y_, target_n_neighbors, random_state, self.target_metric, self._target_metric_kwds, None, None, False, 1.0, 1.0, False, ) # product = self.graph_.multiply(target_graph) # # self.graph_ = 0.99 * product + 0.01 * (self.graph_ + # # target_graph - # # product) # self.graph_ = product self.graph_ = general_simplicial_set_intersection( self.graph_, target_graph, self.target_weight ) self.graph_ = reset_local_connectivity(self.graph_) self._supervised = True else: self._supervised = False if self.densmap or self.output_dens: self._densmap_kwds["graph_dists"] = self.graph_dists_ if self.verbose: print(ts(), "Construct embedding") if self.transform_mode == "embedding": epochs = ( self.n_epochs_list if self.n_epochs_list is not None else self.n_epochs ) self.embedding_, aux_data = self._fit_embed_data( self._raw_data[index], epochs, init, random_state, # JH why raw data? **kwargs, ) if self.n_epochs_list is not None: if "embedding_list" not in aux_data: raise KeyError( "No list of embedding were found in 'aux_data'. " "It is likely the layout optimization function " "doesn't support the list of int for 'n_epochs'." ) else: self.embedding_list_ = [ e[inverse] for e in aux_data["embedding_list"] ] # Assign any points that are fully disconnected from our manifold(s) to have embedding # coordinates of np.nan. These will be filtered by our plotting functions automatically. # They also prevent users from being deceived a distance query to one of these points. # Might be worth moving this into simplicial_set_embedding or _fit_embed_data disconnected_vertices = np.array(self.graph_.sum(axis=1)).flatten() == 0 if len(disconnected_vertices) > 0: self.embedding_[disconnected_vertices] = np.full( self.n_components, np.nan ) self.embedding_ = self.embedding_[inverse] if self.output_dens: self.rad_orig_ = aux_data["rad_orig"][inverse] self.rad_emb_ = aux_data["rad_emb"][inverse] if self.verbose: print(ts() + " Finished embedding") numba.set_num_threads(self._original_n_threads) self._input_hash = joblib.hash(self._raw_data) if self.transform_mode == "embedding": # Set number of features out for sklearn API self._n_features_out = self.embedding_.shape[1] else: self._n_features_out = self.graph_.shape[1] return self
Fit X into an embedded space. Optionally use y for supervised dimension reduction. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. **kwargs : optional Any additional keyword arguments are passed to _fit_embed_data.
fit
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def _fit_embed_data(self, X, n_epochs, init, random_state, **kwargs): """A method wrapper for simplicial_set_embedding that can be replaced by subclasses. Arbitrary keyword arguments can be passed through .fit() and .fit_transform(). """ return simplicial_set_embedding( X, self.graph_, self.n_components, self._initial_alpha, self._a, self._b, self.repulsion_strength, self.negative_sample_rate, n_epochs, init, random_state, self._input_distance_func, self._metric_kwds, self.densmap, self._densmap_kwds, self.output_dens, self._output_distance_func, self._output_metric_kwds, self.output_metric in ("euclidean", "l2"), self.random_state is None, self.verbose, tqdm_kwds=self.tqdm_kwds, )
A method wrapper for simplicial_set_embedding that can be replaced by subclasses. Arbitrary keyword arguments can be passed through .fit() and .fit_transform().
_fit_embed_data
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def fit_transform(self, X, y=None, ensure_all_finite=True, **kwargs): """Fit X into an embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. **kwargs : Any additional keyword arguments are passed to _fit_embed_data. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. or a tuple (X_new, r_orig, r_emb) if ``output_dens`` flag is set, which additionally includes: r_orig: array, shape (n_samples) Local radii of data points in the original data space (log-transformed). r_emb: array, shape (n_samples) Local radii of data points in the embedding (log-transformed). """ self.fit(X, y, ensure_all_finite, **kwargs) if self.transform_mode == "embedding": if self.output_dens: return self.embedding_, self.rad_orig_, self.rad_emb_ else: return self.embedding_ elif self.transform_mode == "graph": return self.graph_ else: raise ValueError( "Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format( self.transform_mode ) )
Fit X into an embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. **kwargs : Any additional keyword arguments are passed to _fit_embed_data. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. or a tuple (X_new, r_orig, r_emb) if ``output_dens`` flag is set, which additionally includes: r_orig: array, shape (n_samples) Local radii of data points in the original data space (log-transformed). r_emb: array, shape (n_samples) Local radii of data points in the embedding (log-transformed).
fit_transform
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def transform(self, X, ensure_all_finite=True): """Transform X into the existing embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the new data in low-dimensional space. """ # If we fit just a single instance then error if self._raw_data.shape[0] == 1: raise ValueError( "Transform unavailable when model was fit with only a single data sample." ) # If we just have the original input then short circuit things if self.metric in ("bit_hamming", "bit_jaccard"): X = check_array( X, dtype=np.uint8, order="C", ensure_all_finite=ensure_all_finite ) else: X = check_array( X, dtype=np.float32, accept_sparse="csr", order="C", ensure_all_finite=ensure_all_finite, ) x_hash = joblib.hash(X) if x_hash == self._input_hash: if self.transform_mode == "embedding": return self.embedding_ elif self.transform_mode == "graph": return self.graph_ else: raise ValueError( "Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format( self.transform_mode ) ) if self.densmap: raise NotImplementedError( "Transforming data into an existing embedding not supported for densMAP." ) # #848: knn_search_index is allowed to be None if not transforming new data, # so now we must validate that if it exists it is not None if hasattr(self, "_knn_search_index") and self._knn_search_index is None: raise NotImplementedError( "No search index available: transforming data" " into an existing embedding is not supported" ) # X = check_array(X, dtype=np.float32, order="C", accept_sparse="csr") random_state = check_random_state(self.transform_seed) rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64) if self.metric == "precomputed": warn( "Transforming new data with precomputed metric. " "We are assuming the input data is a matrix of distances from the new points " "to the points in the training set. If the input matrix is sparse, it should " "contain distances from the new points to their nearest neighbours " "or approximate nearest neighbours in the training set." ) assert X.shape[1] == self._raw_data.shape[0] if scipy.sparse.issparse(X): indices = np.full( (X.shape[0], self._n_neighbors), dtype=np.int32, fill_value=-1 ) dists = np.full_like(indices, dtype=np.float32, fill_value=-1) for i in range(X.shape[0]): data_indices = np.argsort(X[i].data) if len(data_indices) < self._n_neighbors: raise ValueError( f"Need at least n_neighbors ({self.n_neighbors}) distances for each row!" ) indices[i] = X[i].indices[data_indices[: self._n_neighbors]] dists[i] = X[i].data[data_indices[: self._n_neighbors]] else: indices = np.argsort(X, axis=1)[:, : self._n_neighbors].astype(np.int32) dists = np.take_along_axis(X, indices, axis=1) assert np.min(indices) >= 0 and np.min(dists) >= 0.0 elif self._small_data: try: # sklearn pairwise_distances fails for callable metric on sparse data _m = self.metric if self._sparse_data else self._input_distance_func dmat = pairwise_distances( X, self._raw_data, metric=_m, **self._metric_kwds ) except (TypeError, ValueError): # metric is numba.jit'd or not supported by sklearn, # fallback to pairwise special if self._sparse_data: # Get a fresh metric since we are casting to dense if not callable(self.metric): _m = dist.named_distances[self.metric] dmat = dist.pairwise_special_metric( X.toarray(), self._raw_data.toarray(), metric=_m, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) else: dmat = dist.pairwise_special_metric( X, self._raw_data, metric=self._input_distance_func, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) else: dmat = dist.pairwise_special_metric( X, self._raw_data, metric=self._input_distance_func, kwds=self._metric_kwds, ensure_all_finite=ensure_all_finite, ) indices = np.argpartition(dmat, self._n_neighbors)[:, : self._n_neighbors] dmat_shortened = submatrix(dmat, indices, self._n_neighbors) indices_sorted = np.argsort(dmat_shortened) indices = submatrix(indices, indices_sorted, self._n_neighbors) dists = submatrix(dmat_shortened, indices_sorted, self._n_neighbors) else: epsilon = 0.24 if self._knn_search_index._angular_trees else 0.12 indices, dists = self._knn_search_index.query( X, self.n_neighbors, epsilon=epsilon ) dists = dists.astype(np.float32, order="C") # Remove any nearest neighbours who's distances are greater than our disconnection_distance indices[dists >= self._disconnection_distance] = -1 adjusted_local_connectivity = max(0.0, self.local_connectivity - 1.0) sigmas, rhos = smooth_knn_dist( dists, float(self._n_neighbors), local_connectivity=float(adjusted_local_connectivity), ) rows, cols, vals, dists = compute_membership_strengths( indices, dists, sigmas, rhos, bipartite=True ) graph = scipy.sparse.coo_matrix( (vals, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0]) ) if self.transform_mode == "graph": return graph # This was a very specially constructed graph with constant degree. # That lets us do fancy unpacking by reshaping the csr matrix indices # and data. Doing so relies on the constant degree assumption! # csr_graph = normalize(graph.tocsr(), norm="l1") # inds = csr_graph.indices.reshape(X.shape[0], self._n_neighbors) # weights = csr_graph.data.reshape(X.shape[0], self._n_neighbors) # embedding = init_transform(inds, weights, self.embedding_) # This is less fast code than the above numba.jit'd code. # It handles the fact that our nearest neighbour graph can now contain variable numbers of vertices. csr_graph = graph.tocsr() csr_graph.eliminate_zeros() embedding = init_graph_transform(csr_graph, self.embedding_) if self.n_epochs is None: # For smaller datasets we can use more epochs if graph.shape[0] <= 10000: n_epochs = 100 else: n_epochs = 30 else: n_epochs = int(self.n_epochs // 3.0) graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0 graph.eliminate_zeros() epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs) head = graph.row tail = graph.col weight = graph.data # optimize_layout = make_optimize_layout( # self._output_distance_func, # tuple(self.output_metric_kwds.values()), # ) if self.output_metric == "euclidean": embedding = optimize_layout_euclidean( embedding, self.embedding_.astype(np.float32, copy=True), # Fixes #179 & #217, head, tail, n_epochs, graph.shape[1], epochs_per_sample, self._a, self._b, rng_state, self.repulsion_strength, self._initial_alpha / 4.0, self.negative_sample_rate, self.random_state is None, verbose=self.verbose, tqdm_kwds=self.tqdm_kwds, ) else: embedding = optimize_layout_generic( embedding, self.embedding_.astype(np.float32, copy=True), # Fixes #179 & #217 head, tail, n_epochs, graph.shape[1], epochs_per_sample, self._a, self._b, rng_state, self.repulsion_strength, self._initial_alpha / 4.0, self.negative_sample_rate, self._output_distance_func, tuple(self._output_metric_kwds.values()), verbose=self.verbose, tqdm_kwds=self.tqdm_kwds, ) return embedding
Transform X into the existing embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. ensure_all_finite : Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the new data in low-dimensional space.
transform
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def inverse_transform(self, X): """Transform X in the existing embedded space back into the input data space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_components) New points to be inverse transformed. Returns ------- X_new : array, shape (n_samples, n_features) Generated data points new data in data space. """ if self._sparse_data: raise ValueError("Inverse transform not available for sparse input.") elif self._inverse_distance_func is None: raise ValueError("Inverse transform not available for given metric.") elif self.densmap: raise ValueError("Inverse transform not available for densMAP.") elif self.n_components >= 8: warn( "Inverse transform works best with low dimensional embeddings." " Results may be poor, or this approach to inverse transform" " may fail altogether! If you need a high dimensional latent" " space and inverse transform operations consider using an" " autoencoder." ) elif self.transform_mode == "graph": raise ValueError( "Inverse transform not available for transform_mode = 'graph'" ) X = check_array(X, dtype=np.float32, order="C") random_state = check_random_state(self.transform_seed) rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64) # build Delaunay complex (Does this not assume a roughly euclidean output metric)? deltri = scipy.spatial.Delaunay( self.embedding_, incremental=True, qhull_options="QJ" ) neighbors = deltri.simplices[deltri.find_simplex(X)] adjmat = scipy.sparse.lil_matrix( (self.embedding_.shape[0], self.embedding_.shape[0]), dtype=int ) for i in np.arange(0, deltri.simplices.shape[0]): for j in deltri.simplices[i]: if j < self.embedding_.shape[0]: idx = deltri.simplices[i][ deltri.simplices[i] < self.embedding_.shape[0] ] adjmat[j, idx] = 1 adjmat[idx, j] = 1 adjmat = scipy.sparse.csr_matrix(adjmat) min_vertices = min(self._raw_data.shape[-1], self._raw_data.shape[0]) neighborhood = [ breadth_first_search(adjmat, v[0], min_vertices=min_vertices) for v in neighbors ] if callable(self.output_metric): # need to create another numba.jit-able wrapper for callable # output_metrics that return a tuple (already checked that it does # during param validation in `fit` method) _out_m = self.output_metric @numba.njit(fastmath=True) def _output_dist_only(x, y, *kwds): return _out_m(x, y, *kwds)[0] dist_only_func = _output_dist_only elif self.output_metric in dist.named_distances.keys(): dist_only_func = dist.named_distances[self.output_metric] else: # shouldn't really ever get here because of checks already performed, # but works as a failsafe in case attr was altered manually after fitting raise ValueError( "Unrecognized output metric: {}".format(self.output_metric) ) dist_args = tuple(self._output_metric_kwds.values()) distances = [ np.array( [ dist_only_func(X[i], self.embedding_[nb], *dist_args) for nb in neighborhood[i] ] ) for i in range(X.shape[0]) ] idx = np.array([np.argsort(e)[:min_vertices] for e in distances]) dists_output_space = np.array( [distances[i][idx[i]] for i in range(len(distances))] ) indices = np.array([neighborhood[i][idx[i]] for i in range(len(neighborhood))]) rows, cols, distances = np.array( [ [i, indices[i, j], dists_output_space[i, j]] for i in range(indices.shape[0]) for j in range(min_vertices) ] ).T # calculate membership strength of each edge weights = 1 / (1 + self._a * distances ** (2 * self._b)) # compute 1-skeleton # convert 1-skeleton into coo_matrix adjacency matrix graph = scipy.sparse.coo_matrix( (weights, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0]) ) # That lets us do fancy unpacking by reshaping the csr matrix indices # and data. Doing so relies on the constant degree assumption! # csr_graph = graph.tocsr() csr_graph = normalize(graph.tocsr(), norm="l1") inds = csr_graph.indices.reshape(X.shape[0], min_vertices) weights = csr_graph.data.reshape(X.shape[0], min_vertices) inv_transformed_points = init_transform(inds, weights, self._raw_data) if self.n_epochs is None: # For smaller datasets we can use more epochs if graph.shape[0] <= 10000: n_epochs = 100 else: n_epochs = 30 else: n_epochs = int(self.n_epochs // 3.0) # graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0 # graph.eliminate_zeros() epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs) head = graph.row tail = graph.col weight = graph.data inv_transformed_points = optimize_layout_inverse( inv_transformed_points, self._raw_data, head, tail, weight, self._sigmas, self._rhos, n_epochs, graph.shape[1], epochs_per_sample, self._a, self._b, rng_state, self.repulsion_strength, self._initial_alpha / 4.0, self.negative_sample_rate, self._inverse_distance_func, tuple(self._metric_kwds.values()), verbose=self.verbose, tqdm_kwds=self.tqdm_kwds, ) return inv_transformed_points
Transform X in the existing embedded space back into the input data space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_components) New points to be inverse transformed. Returns ------- X_new : array, shape (n_samples, n_features) Generated data points new data in data space.
inverse_transform
python
lmcinnes/umap
umap/umap_.py
https://github.com/lmcinnes/umap/blob/master/umap/umap_.py
BSD-3-Clause
def ll_dirichlet(data1, data2): """The symmetric relative log likelihood of rolling data2 vs data1 in n trials on a die that rolled data1 in sum(data1) trials. ..math:: D(data1, data2) = DirichletMultinomail(data2 | data1) """ n1 = np.sum(data1) n2 = np.sum(data2) log_b = 0.0 self_denom1 = 0.0 self_denom2 = 0.0 for i in range(data1.shape[0]): if data1[i] * data2[i] > 0.9: log_b += log_beta(data1[i], data2[i]) self_denom1 += log_single_beta(data1[i]) self_denom2 += log_single_beta(data2[i]) else: if data1[i] > 0.9: self_denom1 += log_single_beta(data1[i]) if data2[i] > 0.9: self_denom2 += log_single_beta(data2[i]) return np.sqrt( 1.0 / n2 * (log_b - log_beta(n1, n2) - (self_denom2 - log_single_beta(n2))) + 1.0 / n1 * (log_b - log_beta(n2, n1) - (self_denom1 - log_single_beta(n1))) )
The symmetric relative log likelihood of rolling data2 vs data1 in n trials on a die that rolled data1 in sum(data1) trials. ..math:: D(data1, data2) = DirichletMultinomail(data2 | data1)
ll_dirichlet
python
lmcinnes/umap
umap/distances.py
https://github.com/lmcinnes/umap/blob/master/umap/distances.py
BSD-3-Clause
def symmetric_kl_grad(x, y, z=1e-11): # pragma: no cover """ symmetrized KL divergence and its gradient """ n = x.shape[0] x_sum = 0.0 y_sum = 0.0 kl1 = 0.0 kl2 = 0.0 for i in range(n): x[i] += z x_sum += x[i] y[i] += z y_sum += y[i] for i in range(n): x[i] /= x_sum y[i] /= y_sum for i in range(n): kl1 += x[i] * np.log(x[i] / y[i]) kl2 += y[i] * np.log(y[i] / x[i]) dist = (kl1 + kl2) / 2 grad = (np.log(y / x) - (x / y) + 1) / 2 return dist, grad
symmetrized KL divergence and its gradient
symmetric_kl_grad
python
lmcinnes/umap
umap/distances.py
https://github.com/lmcinnes/umap/blob/master/umap/distances.py
BSD-3-Clause
def fast_knn_indices(X, n_neighbors): """A fast computation of knn indices. Parameters ---------- X: array of shape (n_samples, n_features) The input data to compute the k-neighbor indices of. n_neighbors: int The number of nearest neighbors to compute for each sample in ``X``. Returns ------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. """ knn_indices = np.empty((X.shape[0], n_neighbors), dtype=np.int32) for row in numba.prange(X.shape[0]): # v = np.argsort(X[row]) # Need to call argsort this way for numba v = X[row].argsort(kind="quicksort") v = v[:n_neighbors] knn_indices[row] = v return knn_indices
A fast computation of knn indices. Parameters ---------- X: array of shape (n_samples, n_features) The input data to compute the k-neighbor indices of. n_neighbors: int The number of nearest neighbors to compute for each sample in ``X``. Returns ------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset.
fast_knn_indices
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def tau_rand_int(state): """A fast (pseudo)-random number generator. Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random int32 value """ state[0] = (((state[0] & 4294967294) << 12) & 0xFFFFFFFF) ^ ( (((state[0] << 13) & 0xFFFFFFFF) ^ state[0]) >> 19 ) state[1] = (((state[1] & 4294967288) << 4) & 0xFFFFFFFF) ^ ( (((state[1] << 2) & 0xFFFFFFFF) ^ state[1]) >> 25 ) state[2] = (((state[2] & 4294967280) << 17) & 0xFFFFFFFF) ^ ( (((state[2] << 3) & 0xFFFFFFFF) ^ state[2]) >> 11 ) return state[0] ^ state[1] ^ state[2]
A fast (pseudo)-random number generator. Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random int32 value
tau_rand_int
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def tau_rand(state): """A fast (pseudo)-random number generator for floats in the range [0,1] Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random float32 in the interval [0, 1] """ integer = tau_rand_int(state) return abs(float(integer) / 0x7FFFFFFF)
A fast (pseudo)-random number generator for floats in the range [0,1] Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random float32 in the interval [0, 1]
tau_rand
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def norm(vec): """Compute the (standard l2) norm of a vector. Parameters ---------- vec: array of shape (dim,) Returns ------- The l2 norm of vec. """ result = 0.0 for i in range(vec.shape[0]): result += vec[i] ** 2 return np.sqrt(result)
Compute the (standard l2) norm of a vector. Parameters ---------- vec: array of shape (dim,) Returns ------- The l2 norm of vec.
norm
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def submatrix(dmat, indices_col, n_neighbors): """Return a submatrix given an orginal matrix and the indices to keep. Parameters ---------- dmat: array, shape (n_samples, n_samples) Original matrix. indices_col: array, shape (n_samples, n_neighbors) Indices to keep. Each row consists of the indices of the columns. n_neighbors: int Number of neighbors. Returns ------- submat: array, shape (n_samples, n_neighbors) The corresponding submatrix. """ n_samples_transform, n_samples_fit = dmat.shape submat = np.zeros((n_samples_transform, n_neighbors), dtype=dmat.dtype) for i in numba.prange(n_samples_transform): for j in numba.prange(n_neighbors): submat[i, j] = dmat[i, indices_col[i, j]] return submat
Return a submatrix given an orginal matrix and the indices to keep. Parameters ---------- dmat: array, shape (n_samples, n_samples) Original matrix. indices_col: array, shape (n_samples, n_neighbors) Indices to keep. Each row consists of the indices of the columns. n_neighbors: int Number of neighbors. Returns ------- submat: array, shape (n_samples, n_neighbors) The corresponding submatrix.
submatrix
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def csr_unique(matrix, return_index=True, return_inverse=True, return_counts=True): """Find the unique elements of a sparse csr matrix. We don't explicitly construct the unique matrix leaving that to the user who may not want to duplicate a massive array in memory. Returns the indices of the input array that give the unique values. Returns the indices of the unique array that reconstructs the input array. Returns the number of times each unique row appears in the input matrix. matrix: a csr matrix return_index = bool, optional If true, return the row indices of 'matrix' return_inverse: bool, optional If true, return the indices of the unique array that can be used to reconstruct 'matrix'. return_counts = bool, optional If true, returns the number of times each unique item appears in 'matrix' The unique matrix can computed via unique_matrix = matrix[index] and the original matrix reconstructed via unique_matrix[inverse] """ lil_matrix = matrix.tolil() rows = np.asarray( [tuple(x + y) for x, y in zip(lil_matrix.rows, lil_matrix.data)], dtype=object ) return_values = return_counts + return_inverse + return_index return np.unique( rows, return_index=return_index, return_inverse=return_inverse, return_counts=return_counts, )[1 : (return_values + 1)]
Find the unique elements of a sparse csr matrix. We don't explicitly construct the unique matrix leaving that to the user who may not want to duplicate a massive array in memory. Returns the indices of the input array that give the unique values. Returns the indices of the unique array that reconstructs the input array. Returns the number of times each unique row appears in the input matrix. matrix: a csr matrix return_index = bool, optional If true, return the row indices of 'matrix' return_inverse: bool, optional If true, return the indices of the unique array that can be used to reconstruct 'matrix'. return_counts = bool, optional If true, returns the number of times each unique item appears in 'matrix' The unique matrix can computed via unique_matrix = matrix[index] and the original matrix reconstructed via unique_matrix[inverse]
csr_unique
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def disconnected_vertices(model): """ Returns a boolean vector indicating which vertices are disconnected from the umap graph. These vertices will often be scattered across the space and make it difficult to focus on the main manifold. They can either be filtered and have UMAP re-run or simply filtered from the interactive plotting tool via the subset_points parameter. Use ~disconnected_vertices(model) to only plot the connected points. Parameters ---------- model: a trained UMAP model Returns ------- A boolean vector indicating which points are disconnected """ check_is_fitted(model, "graph_") if model.unique: vertices_disconnected = ( np.array(model.graph_[model._unique_inverse_].sum(axis=1)).flatten() == 0 ) else: vertices_disconnected = np.array(model.graph_.sum(axis=1)).flatten() == 0 return vertices_disconnected
Returns a boolean vector indicating which vertices are disconnected from the umap graph. These vertices will often be scattered across the space and make it difficult to focus on the main manifold. They can either be filtered and have UMAP re-run or simply filtered from the interactive plotting tool via the subset_points parameter. Use ~disconnected_vertices(model) to only plot the connected points. Parameters ---------- model: a trained UMAP model Returns ------- A boolean vector indicating which points are disconnected
disconnected_vertices
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def average_nn_distance(dist_matrix): """Calculate the average distance to each points nearest neighbors. Parameters ---------- dist_matrix: a csr_matrix A distance matrix (usually umap_model.graph_) Returns ------- An array with the average distance to each points nearest neighbors """ (row_idx, col_idx, val) = scipy.sparse.find(dist_matrix) # Count/sum is done per row count_non_zero_elems = np.bincount(row_idx) sum_non_zero_elems = np.bincount(row_idx, weights=val) averages = sum_non_zero_elems / count_non_zero_elems if any(np.isnan(averages)): warn( "Embedding contains disconnected vertices which will be ignored." "Use umap.utils.disconnected_vertices() to identify them." ) return averages
Calculate the average distance to each points nearest neighbors. Parameters ---------- dist_matrix: a csr_matrix A distance matrix (usually umap_model.graph_) Returns ------- An array with the average distance to each points nearest neighbors
average_nn_distance
python
lmcinnes/umap
umap/utils.py
https://github.com/lmcinnes/umap/blob/master/umap/utils.py
BSD-3-Clause
def component_layout( data, n_components, component_labels, dim, random_state, metric="euclidean", metric_kwds={}, ): """Provide a layout relating the separate connected components. This is done by taking the centroid of each component and then performing a spectral embedding of the centroids. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average' Returns ------- component_embedding: array of shape (n_components, dim) The ``dim``-dimensional embedding of the ``n_components``-many connected components. """ if data is None: # We don't have data to work with; just guess return np.random.random(size=(n_components, dim)) * 10.0 component_centroids = np.empty((n_components, data.shape[1]), dtype=np.float64) if metric == "precomputed": # cannot compute centroids from precomputed distances # instead, compute centroid distances using linkage distance_matrix = np.zeros((n_components, n_components), dtype=np.float64) linkage = metric_kwds.get("linkage", "average") if linkage == "average": linkage = np.mean elif linkage == "complete": linkage = np.max elif linkage == "single": linkage = np.min else: raise ValueError( "Unrecognized linkage '%s'. Please choose from " "'average', 'complete', or 'single'" % linkage ) for c_i in range(n_components): dm_i = data[component_labels == c_i] for c_j in range(c_i + 1, n_components): dist = linkage(dm_i[:, component_labels == c_j]) distance_matrix[c_i, c_j] = dist distance_matrix[c_j, c_i] = dist else: for label in range(n_components): component_centroids[label] = data[component_labels == label].mean(axis=0) if scipy.sparse.isspmatrix(component_centroids): warn( "Forcing component centroids to dense; if you are running out of " "memory then consider increasing n_neighbors." ) component_centroids = component_centroids.toarray() if metric in SPECIAL_METRICS: distance_matrix = pairwise_special_metric( component_centroids, metric=metric, kwds=metric_kwds, ) elif metric in SPARSE_SPECIAL_METRICS: distance_matrix = pairwise_special_metric( component_centroids, metric=SPARSE_SPECIAL_METRICS[metric], kwds=metric_kwds, ) else: if callable(metric) and scipy.sparse.isspmatrix(data): function_to_name_mapping = { sparse_named_distances[k]: k for k in set(SKLEARN_PAIRWISE_VALID_METRICS) & set(sparse_named_distances.keys()) } try: metric_name = function_to_name_mapping[metric] except KeyError: raise NotImplementedError( "Multicomponent layout for custom " "sparse metrics is not implemented at " "this time." ) distance_matrix = pairwise_distances( component_centroids, metric=metric_name, **metric_kwds ) else: distance_matrix = pairwise_distances( component_centroids, metric=metric, **metric_kwds ) affinity_matrix = np.exp(-(distance_matrix**2)) component_embedding = SpectralEmbedding( n_components=dim, affinity="precomputed", random_state=random_state ).fit_transform(affinity_matrix) component_embedding /= component_embedding.max() return component_embedding
Provide a layout relating the separate connected components. This is done by taking the centroid of each component and then performing a spectral embedding of the centroids. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average' Returns ------- component_embedding: array of shape (n_components, dim) The ``dim``-dimensional embedding of the ``n_components``-many connected components.
component_layout
python
lmcinnes/umap
umap/spectral.py
https://github.com/lmcinnes/umap/blob/master/umap/spectral.py
BSD-3-Clause
def multi_component_layout( data, graph, n_components, component_labels, dim, random_state, metric="euclidean", metric_kwds={}, init="random", tol=0.0, maxiter=0, ): """Specialised layout algorithm for dealing with graphs with many connected components. This will first find relative positions for the components by spectrally embedding their centroids, then spectrally embed each individual connected component positioning them according to the centroid embeddings. This provides a decent embedding of each component while placing the components in good relative positions to one another. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. graph: sparse matrix The adjacency matrix of the graph to be embedded. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. init: string, either "random" or "tsvd" Indicates to initialize the eigensolver. Use "random" (the default) to use uniformly distributed random initialization; use "tsvd" to warm-start the eigensolver with singular vectors of the Laplacian associated to the largest singular values. This latter option also forces usage of the LOBPCG eigensolver; with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_samples, dim) The initial embedding of ``graph``. """ result = np.empty((graph.shape[0], dim), dtype=np.float32) if n_components > 2 * dim: meta_embedding = component_layout( data, n_components, component_labels, dim, random_state, metric=metric, metric_kwds=metric_kwds, ) else: k = int(np.ceil(n_components / 2.0)) base = np.hstack([np.eye(k), np.zeros((k, dim - k))]) meta_embedding = np.vstack([base, -base])[:n_components] for label in range(n_components): component_graph = graph.tocsr()[component_labels == label, :].tocsc() component_graph = component_graph[:, component_labels == label].tocoo() distances = pairwise_distances([meta_embedding[label]], meta_embedding) data_range = distances[distances > 0.0].min() / 2.0 if component_graph.shape[0] < 2 * dim or component_graph.shape[0] <= dim + 1: result[component_labels == label] = ( random_state.uniform( low=-data_range, high=data_range, size=(component_graph.shape[0], dim), ) + meta_embedding[label] ) else: component_embedding = _spectral_layout( data=None, graph=component_graph, dim=dim, random_state=random_state, metric=metric, metric_kwds=metric_kwds, init=init, tol=tol, maxiter=maxiter, ) expansion = data_range / np.max(np.abs(component_embedding)) component_embedding *= expansion result[component_labels == label] = ( component_embedding + meta_embedding[label] ) return result
Specialised layout algorithm for dealing with graphs with many connected components. This will first find relative positions for the components by spectrally embedding their centroids, then spectrally embed each individual connected component positioning them according to the centroid embeddings. This provides a decent embedding of each component while placing the components in good relative positions to one another. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. graph: sparse matrix The adjacency matrix of the graph to be embedded. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. init: string, either "random" or "tsvd" Indicates to initialize the eigensolver. Use "random" (the default) to use uniformly distributed random initialization; use "tsvd" to warm-start the eigensolver with singular vectors of the Laplacian associated to the largest singular values. This latter option also forces usage of the LOBPCG eigensolver; with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_samples, dim) The initial embedding of ``graph``.
multi_component_layout
python
lmcinnes/umap
umap/spectral.py
https://github.com/lmcinnes/umap/blob/master/umap/spectral.py
BSD-3-Clause
def spectral_layout( data, graph, dim, random_state, metric="euclidean", metric_kwds={}, tol=0.0, maxiter=0, ): """ Given a graph compute the spectral embedding of the graph. This is simply the eigenvectors of the laplacian of the graph. Here we use the normalized laplacian. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph. """ return _spectral_layout( data=data, graph=graph, dim=dim, random_state=random_state, metric=metric, metric_kwds=metric_kwds, init="random", tol=tol, maxiter=maxiter, )
Given a graph compute the spectral embedding of the graph. This is simply the eigenvectors of the laplacian of the graph. Here we use the normalized laplacian. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph.
spectral_layout
python
lmcinnes/umap
umap/spectral.py
https://github.com/lmcinnes/umap/blob/master/umap/spectral.py
BSD-3-Clause
def tswspectral_layout( data, graph, dim, random_state, metric="euclidean", metric_kwds={}, method=None, tol=0.0, maxiter=0, ): """Given a graph, compute the spectral embedding of the graph. This is simply the eigenvectors of the Laplacian of the graph. Here we use the normalized laplacian and a truncated SVD-based guess of the eigenvectors to "warm" up the eigensolver. This function should give results of similar accuracy to the spectral_layout function, but may converge more quickly for graph Laplacians that cause spectral_layout to take an excessive amount of time to complete. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. Used only if the multiple connected components are found in the graph. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average'. Used only if the multiple connected components are found in the graph. method: str (optional, default None, values either 'eigsh' or 'lobpcg') Name of the eigenvalue computation method to use to compute the spectral embedding. If left to None (or empty string), as by default, the method is chosen from the number of vectors in play: larger vector collections are handled with lobpcg, smaller collections with eigsh. Method names correspond to SciPy routines in scipy.sparse.linalg. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph. """ return _spectral_layout( data=data, graph=graph, dim=dim, random_state=random_state, metric=metric, metric_kwds=metric_kwds, init="tsvd", method=method, tol=tol, maxiter=maxiter, )
Given a graph, compute the spectral embedding of the graph. This is simply the eigenvectors of the Laplacian of the graph. Here we use the normalized laplacian and a truncated SVD-based guess of the eigenvectors to "warm" up the eigensolver. This function should give results of similar accuracy to the spectral_layout function, but may converge more quickly for graph Laplacians that cause spectral_layout to take an excessive amount of time to complete. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. Used only if the multiple connected components are found in the graph. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average'. Used only if the multiple connected components are found in the graph. method: str (optional, default None, values either 'eigsh' or 'lobpcg') Name of the eigenvalue computation method to use to compute the spectral embedding. If left to None (or empty string), as by default, the method is chosen from the number of vectors in play: larger vector collections are handled with lobpcg, smaller collections with eigsh. Method names correspond to SciPy routines in scipy.sparse.linalg. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph.
tswspectral_layout
python
lmcinnes/umap
umap/spectral.py
https://github.com/lmcinnes/umap/blob/master/umap/spectral.py
BSD-3-Clause
def _spectral_layout( data, graph, dim, random_state, metric="euclidean", metric_kwds={}, init="random", method=None, tol=0.0, maxiter=0, ): """General implementation of the spectral embedding of the graph, derived as a subset of the eigenvectors of the normalized Laplacian of the graph. The numerical method for computing the eigendecomposition is chosen through heuristics. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. Used only if the multiple connected components are found in the graph. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average'. Used only if the multiple connected components are found in the graph. init: string, either "random" or "tsvd" Indicates to initialize the eigensolver. Use "random" (the default) to use uniformly distributed random initialization; use "tsvd" to warm-start the eigensolver with singular vectors of the Laplacian associated to the largest singular values. This latter option also forces usage of the LOBPCG eigensolver; with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians. method: string -- either "eigsh" or "lobpcg" -- or None Name of the eigenvalue computation method to use to compute the spectral embedding. If left to None (or empty string), as by default, the method is chosen from the number of vectors in play: larger vector collections are handled with lobpcg, smaller collections with eigsh. Method names correspond to SciPy routines in scipy.sparse.linalg. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph. """ n_samples = graph.shape[0] n_components, labels = scipy.sparse.csgraph.connected_components(graph) if n_components > 1: return multi_component_layout( data, graph, n_components, labels, dim, random_state, metric=metric, metric_kwds=metric_kwds, ) sqrt_deg = np.sqrt(np.asarray(graph.sum(axis=0)).squeeze()) # standard Laplacian # D = scipy.sparse.spdiags(diag_data, 0, graph.shape[0], graph.shape[0]) # L = D - graph # Normalized Laplacian I = scipy.sparse.identity(graph.shape[0], dtype=np.float64) D = scipy.sparse.spdiags(1.0 / sqrt_deg, 0, graph.shape[0], graph.shape[0]) L = I - D * graph * D if not scipy.sparse.issparse(L): L = np.asarray(L) k = dim + 1 num_lanczos_vectors = max(2 * k + 1, int(np.sqrt(graph.shape[0]))) gen = ( random_state if isinstance(random_state, (np.random.Generator, np.random.RandomState)) else np.random.default_rng(seed=random_state) ) if not method: method = "eigsh" if L.shape[0] < 2000000 else "lobpcg" try: if init == "random": X = gen.normal(size=(L.shape[0], k)) elif init == "tsvd": X = TruncatedSVD( n_components=k, random_state=random_state, # algorithm="arpack" ).fit_transform(L) else: raise ValueError( "The init parameter must be either 'random' or 'tsvd': " f"{init} is invalid." ) # For such a normalized Laplacian, the first eigenvector is always # proportional to sqrt(degrees). We thus replace the first t-SVD guess # with the exact value. X[:, 0] = sqrt_deg / np.linalg.norm(sqrt_deg) if method == "eigsh": eigenvalues, eigenvectors = scipy.sparse.linalg.eigsh( L, k, which="SM", ncv=num_lanczos_vectors, tol=tol or 1e-4, v0=np.ones(L.shape[0]), maxiter=maxiter or graph.shape[0] * 5, ) elif method == "lobpcg": with warnings.catch_warnings(): warnings.filterwarnings( category=UserWarning, message=r"(?ms).*not reaching the requested tolerance", action="error", ) eigenvalues, eigenvectors = scipy.sparse.linalg.lobpcg( L, np.asarray(X), largest=False, tol=tol or 1e-4, maxiter=maxiter or 5 * graph.shape[0], ) else: raise ValueError("Method should either be None, 'eigsh' or 'lobpcg'") order = np.argsort(eigenvalues)[1:k] return eigenvectors[:, order] except (scipy.sparse.linalg.ArpackError, UserWarning): warn( "Spectral initialisation failed! The eigenvector solver\n" "failed. This is likely due to too small an eigengap. Consider\n" "adding some noise or jitter to your data.\n\n" "Falling back to random initialisation!" ) return gen.uniform(low=-10.0, high=10.0, size=(graph.shape[0], dim))
General implementation of the spectral embedding of the graph, derived as a subset of the eigenvectors of the normalized Laplacian of the graph. The numerical method for computing the eigendecomposition is chosen through heuristics. Parameters ---------- data: array of shape (n_samples, n_features) The source data graph: sparse matrix The (weighted) adjacency matrix of the graph as a sparse matrix. dim: int The dimension of the space into which to embed. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. Used only if the multiple connected components are found in the graph. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. If metric is 'precomputed', 'linkage' keyword can be used to specify 'average', 'complete', or 'single' linkage. Default is 'average'. Used only if the multiple connected components are found in the graph. init: string, either "random" or "tsvd" Indicates to initialize the eigensolver. Use "random" (the default) to use uniformly distributed random initialization; use "tsvd" to warm-start the eigensolver with singular vectors of the Laplacian associated to the largest singular values. This latter option also forces usage of the LOBPCG eigensolver; with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians. method: string -- either "eigsh" or "lobpcg" -- or None Name of the eigenvalue computation method to use to compute the spectral embedding. If left to None (or empty string), as by default, the method is chosen from the number of vectors in play: larger vector collections are handled with lobpcg, smaller collections with eigsh. Method names correspond to SciPy routines in scipy.sparse.linalg. tol: float, default chosen by implementation Stopping tolerance for the numerical algorithm computing the embedding. maxiter: int, default chosen by implementation Number of iterations the numerical algorithm will go through at most as it attempts to compute the embedding. Returns ------- embedding: array of shape (n_vertices, dim) The spectral embedding of the graph.
_spectral_layout
python
lmcinnes/umap
umap/spectral.py
https://github.com/lmcinnes/umap/blob/master/umap/spectral.py
BSD-3-Clause
def _nhood_compare(indices_left, indices_right): """Compute Jaccard index of two neighborhoods""" result = np.empty(indices_left.shape[0]) for i in range(indices_left.shape[0]): with numba.objmode(intersection_size="intp"): intersection_size = np.intersect1d( indices_left[i], indices_right[i], assume_unique=True ).shape[0] union_size = np.unique(np.hstack((indices_left[i], indices_right[i]))).shape[0] result[i] = float(intersection_size) / float(union_size) return result
Compute Jaccard index of two neighborhoods
_nhood_compare
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def _get_extent(points): """Compute bounds on a space with appropriate padding""" min_x = np.nanmin(points[:, 0]) max_x = np.nanmax(points[:, 0]) min_y = np.nanmin(points[:, 1]) max_y = np.nanmax(points[:, 1]) extent = ( np.round(min_x - 0.05 * (max_x - min_x)), np.round(max_x + 0.05 * (max_x - min_x)), np.round(min_y - 0.05 * (max_y - min_y)), np.round(max_y + 0.05 * (max_y - min_y)), ) return extent
Compute bounds on a space with appropriate padding
_get_extent
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def _datashade_points( points, ax=None, labels=None, values=None, cmap="Blues", color_key=None, color_key_cmap="Spectral", background="white", width=800, height=800, show_legend=True, alpha=255, ): """Use datashader to plot points""" extent = _get_extent(points) canvas = ds.Canvas( plot_width=width, plot_height=height, x_range=(extent[0], extent[1]), y_range=(extent[2], extent[3]), ) data = pd.DataFrame(points, columns=("x", "y")) legend_elements = None # Color by labels if labels is not None: if labels.shape[0] != points.shape[0]: raise ValueError( "Labels must have a label for " "each sample (size mismatch: {} {})".format( labels.shape[0], points.shape[0] ) ) data["label"] = pd.Categorical(labels) aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("label")) if color_key is None and color_key_cmap is None: result = tf.shade(aggregation, how="eq_hist", alpha=alpha) elif color_key is None: unique_labels = np.unique(labels) num_labels = unique_labels.shape[0] color_key = _to_hex( plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels)) ) legend_elements = [ Patch(facecolor=color_key[i], label=k) for i, k in enumerate(unique_labels) ] result = tf.shade( aggregation, color_key=color_key, how="eq_hist", alpha=alpha ) else: legend_elements = [ Patch(facecolor=color_key[k], label=k) for k in color_key.keys() ] result = tf.shade( aggregation, color_key=color_key, how="eq_hist", alpha=alpha ) # Color by values elif values is not None: if values.shape[0] != points.shape[0]: raise ValueError( "Values must have a value for " "each sample (size mismatch: {} {})".format( values.shape[0], points.shape[0] ) ) unique_values = np.unique(values) if unique_values.shape[0] >= 256: min_val, max_val = np.min(values), np.max(values) bin_size = (max_val - min_val) / 255.0 data["val_cat"] = pd.Categorical( np.round((values - min_val) / bin_size).astype(np.int16) ) aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat")) color_key = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256))) result = tf.shade( aggregation, color_key=color_key, how="eq_hist", alpha=alpha ) else: data["val_cat"] = pd.Categorical(values) aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat")) color_key_cols = _to_hex( plt.get_cmap(cmap)(np.linspace(0, 1, unique_values.shape[0])) ) color_key = dict(zip(unique_values, color_key_cols)) result = tf.shade( aggregation, color_key=color_key, how="eq_hist", alpha=alpha ) # Color by density (default datashader option) else: aggregation = canvas.points(data, "x", "y", agg=ds.count()) result = tf.shade(aggregation, cmap=plt.get_cmap(cmap), alpha=alpha) if background is not None: result = tf.set_background(result, background) if ax is not None: _embed_datashader_in_an_axis(result, ax) if show_legend and legend_elements is not None: ax.legend(handles=legend_elements) return ax else: return result
Use datashader to plot points
_datashade_points
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def _matplotlib_points( points, ax=None, labels=None, values=None, cmap="Blues", color_key=None, color_key_cmap="Spectral", background="white", width=800, height=800, show_legend=True, alpha=None, ): """Use matplotlib to plot points""" point_size = 100.0 / np.sqrt(points.shape[0]) legend_elements = None if ax is None: dpi = plt.rcParams["figure.dpi"] fig = plt.figure(figsize=(width / dpi, height / dpi)) ax = fig.add_subplot(111) ax.set_facecolor(background) # Color by labels if labels is not None: if labels.shape[0] != points.shape[0]: raise ValueError( "Labels must have a label for " "each sample (size mismatch: {} {})".format( labels.shape[0], points.shape[0] ) ) if color_key is None: unique_labels = np.unique(labels) num_labels = unique_labels.shape[0] color_key = plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels)) legend_elements = [ Patch(facecolor=color_key[i], label=unique_labels[i]) for i, k in enumerate(unique_labels) ] if isinstance(color_key, dict): colors = pd.Series(labels).map(color_key) unique_labels = np.unique(labels) legend_elements = [ Patch(facecolor=color_key[k], label=k) for k in unique_labels ] else: unique_labels = np.unique(labels) if len(color_key) < unique_labels.shape[0]: raise ValueError( "Color key must have enough colors for the number of labels" ) new_color_key = { k: matplotlib.colors.to_hex(color_key[i]) for i, k in enumerate(unique_labels) } legend_elements = [ Patch(facecolor=color_key[i], label=k) for i, k in enumerate(unique_labels) ] colors = pd.Series(labels).map(new_color_key) ax.scatter(points[:, 0], points[:, 1], s=point_size, c=colors, alpha=alpha) # Color by values elif values is not None: if values.shape[0] != points.shape[0]: raise ValueError( "Values must have a value for " "each sample (size mismatch: {} {})".format( values.shape[0], points.shape[0] ) ) ax.scatter( points[:, 0], points[:, 1], s=point_size, c=values, cmap=cmap, alpha=alpha ) # No color (just pick the midpoint of the cmap) else: color = plt.get_cmap(cmap)(0.5) ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color) if show_legend and legend_elements is not None: ax.legend(handles=legend_elements) return ax
Use matplotlib to plot points
_matplotlib_points
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def show(plot_to_show): """Display a plot, either interactive or static. Parameters ---------- plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure) The plot to show Returns ------- None """ if isinstance(plot_to_show, plt.Axes): show_static() elif isinstance(plot_to_show, bpl.figure): show_interactive(plot_to_show) elif isinstance(plot_to_show, hv.core.spaces.DynamicMap): show_interactive(hv.render(plot_to_show), backend="bokeh") else: raise ValueError( "The type of ``plot_to_show`` was not valid, or not understood." )
Display a plot, either interactive or static. Parameters ---------- plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure) The plot to show Returns ------- None
show
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def points( umap_object, points=None, labels=None, values=None, theme=None, cmap="Blues", color_key=None, color_key_cmap="Spectral", background="white", width=800, height=800, show_legend=True, subset_points=None, ax=None, alpha=None, ): """Plot an embedding as points. Currently this only works for 2D embeddings. While there are many optional parameters to further control and tailor the plotting, you need only pass in the trained/fit umap model to get results. This plot utility will attempt to do the hard work of avoiding over-plotting issues, and make it easy to automatically colour points by a categorical labelling or numeric values. This method is intended to be used within a Jupyter notebook with ``%matplotlib inline``. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. points: array, shape (n_samples, dim) (optional, default None) An array of points to be plotted. Usually this is None and so the original embedding points of the umap_object are used. However points can be passed explicitly instead which is useful for points manually transformed. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white) The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels show_legend: bool (optional, default True) Whether to display a legend of the labels subset_points: array, shape (n_samples,) (optional, default None) A way to select a subset of points based on an array of boolean values. ax: matplotlib axis (optional, default None) The matplotlib axis to draw the plot to, or if None, which is the default, a new axis will be created and returned. alpha: float (optional, default: None) The alpha blending value, between 0 (transparent) and 1 (opaque). Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebooks and have ``%matplotlib inline`` set then this will simply display inline. """ # if not hasattr(umap_object, "embedding_"): # raise ValueError( # "UMAP object must perform fit on data before it can be visualized" # ) if theme is not None: cmap = _themes[theme]["cmap"] color_key_cmap = _themes[theme]["color_key_cmap"] background = _themes[theme]["background"] if labels is not None and values is not None: raise ValueError( "Conflicting options; only one of labels or values should be set" ) if alpha is not None: if not 0.0 <= alpha <= 1.0: raise ValueError("Alpha must be between 0 and 1 inclusive") if points is None: points = _get_embedding(umap_object) if subset_points is not None: if len(subset_points) != points.shape[0]: raise ValueError( "Size of subset points ({}) does not match number of input points ({})".format( len(subset_points), points.shape[0] ) ) points = points[subset_points] if labels is not None: labels = labels[subset_points] if values is not None: values = values[subset_points] if points.shape[1] != 2: raise ValueError("Plotting is currently only implemented for 2D embeddings") font_color = _select_font_color(background) if ax is None: dpi = plt.rcParams["figure.dpi"] fig = plt.figure(figsize=(width / dpi, height / dpi)) ax = fig.add_subplot(111) if points.shape[0] <= width * height // 10: ax = _matplotlib_points( points, ax, labels, values, cmap, color_key, color_key_cmap, background, width, height, show_legend, alpha, ) else: # Datashader uses 0-255 as the range for alpha, with 255 as the default if alpha is not None: alpha = alpha * 255 else: alpha = 255 ax = _datashade_points( points, ax, labels, values, cmap, color_key, color_key_cmap, background, width, height, show_legend, alpha, ) ax.set(xticks=[], yticks=[]) if _get_metric(umap_object) != "euclidean": ax.text( 0.99, 0.01, "UMAP: metric={}, n_neighbors={}, min_dist={}".format( _get_metric(umap_object), umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) else: ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) return ax
Plot an embedding as points. Currently this only works for 2D embeddings. While there are many optional parameters to further control and tailor the plotting, you need only pass in the trained/fit umap model to get results. This plot utility will attempt to do the hard work of avoiding over-plotting issues, and make it easy to automatically colour points by a categorical labelling or numeric values. This method is intended to be used within a Jupyter notebook with ``%matplotlib inline``. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. points: array, shape (n_samples, dim) (optional, default None) An array of points to be plotted. Usually this is None and so the original embedding points of the umap_object are used. However points can be passed explicitly instead which is useful for points manually transformed. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white) The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels show_legend: bool (optional, default True) Whether to display a legend of the labels subset_points: array, shape (n_samples,) (optional, default None) A way to select a subset of points based on an array of boolean values. ax: matplotlib axis (optional, default None) The matplotlib axis to draw the plot to, or if None, which is the default, a new axis will be created and returned. alpha: float (optional, default: None) The alpha blending value, between 0 (transparent) and 1 (opaque). Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebooks and have ``%matplotlib inline`` set then this will simply display inline.
points
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def connectivity( umap_object, edge_bundling=None, edge_cmap="gray_r", show_points=False, labels=None, values=None, theme=None, cmap="Blues", color_key=None, color_key_cmap="Spectral", background="white", width=800, height=800, ): """Plot connectivity relationships of the underlying UMAP simplicial set data structure. Internally UMAP will make use of what can be viewed as a weighted graph. This graph can be plotted using the layout provided by UMAP as a potential diagnostic view of the embedding. Currently this only works for 2D embeddings. While there are many optional parameters to further control and tailor the plotting, you need only pass in the trained/fit umap model to get results. This plot utility will attempt to do the hard work of avoiding over-plotting issues and provide options for plotting the points as well as using edge bundling for graph visualization. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. edge_bundling: string or None (optional, default None) The edge bundling method to use. Currently supported are None or 'hammer'. See the datashader docs on graph visualization for more details. edge_cmap: string (default 'gray_r') The name of a matplotlib colormap to use for shading/ coloring the edges of the connectivity graph. Note that the ``theme``, if specified, will override this. show_points: bool (optional False) Whether to display the points over top of the edge connectivity. Further options allow for coloring/ shading the points accordingly. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white) The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebook and have ``%matplotlib inline`` set then this will simply display inline. """ if theme is not None: cmap = _themes[theme]["cmap"] color_key_cmap = _themes[theme]["color_key_cmap"] edge_cmap = _themes[theme]["edge_cmap"] background = _themes[theme]["background"] points = _get_embedding(umap_object) point_df = pd.DataFrame(points, columns=("x", "y")) point_size = 100.0 / np.sqrt(points.shape[0]) if point_size > 1: px_size = int(np.round(point_size)) else: px_size = 1 if show_points: edge_how = "log" else: edge_how = "eq_hist" coo_graph = umap_object.graph_.tocoo() edge_df = pd.DataFrame( np.vstack([coo_graph.row, coo_graph.col, coo_graph.data]).T, columns=("source", "target", "weight"), ) edge_df["source"] = edge_df.source.astype(np.int32) edge_df["target"] = edge_df.target.astype(np.int32) extent = _get_extent(points) canvas = ds.Canvas( plot_width=width, plot_height=height, x_range=(extent[0], extent[1]), y_range=(extent[2], extent[3]), ) if edge_bundling is None: edges = bd.directly_connect_edges(point_df, edge_df, weight="weight") elif edge_bundling == "hammer": warn( "Hammer edge bundling is expensive for large graphs!\n" "This may take a long time to compute!" ) edges = bd.hammer_bundle(point_df, edge_df, weight="weight") else: raise ValueError("{} is not a recognised bundling method".format(edge_bundling)) edge_img = tf.shade( canvas.line(edges, "x", "y", agg=ds.sum("weight")), cmap=plt.get_cmap(edge_cmap), how=edge_how, ) edge_img = tf.set_background(edge_img, background) if show_points: point_img = _datashade_points( points, None, labels, values, cmap, color_key, color_key_cmap, None, width, height, False, ) if px_size > 1: point_img = tf.dynspread(point_img, threshold=0.5, max_px=px_size) result = tf.stack(edge_img, point_img, how="over") else: result = edge_img font_color = _select_font_color(background) dpi = plt.rcParams["figure.dpi"] fig = plt.figure(figsize=(width / dpi, height / dpi)) ax = fig.add_subplot(111) _embed_datashader_in_an_axis(result, ax) ax.set(xticks=[], yticks=[]) ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) return ax
Plot connectivity relationships of the underlying UMAP simplicial set data structure. Internally UMAP will make use of what can be viewed as a weighted graph. This graph can be plotted using the layout provided by UMAP as a potential diagnostic view of the embedding. Currently this only works for 2D embeddings. While there are many optional parameters to further control and tailor the plotting, you need only pass in the trained/fit umap model to get results. This plot utility will attempt to do the hard work of avoiding over-plotting issues and provide options for plotting the points as well as using edge bundling for graph visualization. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. edge_bundling: string or None (optional, default None) The edge bundling method to use. Currently supported are None or 'hammer'. See the datashader docs on graph visualization for more details. edge_cmap: string (default 'gray_r') The name of a matplotlib colormap to use for shading/ coloring the edges of the connectivity graph. Note that the ``theme``, if specified, will override this. show_points: bool (optional False) Whether to display the points over top of the edge connectivity. Further options allow for coloring/ shading the points accordingly. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white) The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebook and have ``%matplotlib inline`` set then this will simply display inline.
connectivity
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def diagnostic( umap_object, diagnostic_type="pca", nhood_size=15, local_variance_threshold=0.8, ax=None, cmap="viridis", point_size=None, background="white", width=800, height=800, ): """Provide a diagnostic plot or plots for a UMAP embedding. There are a number of plots that can be helpful for diagnostic purposes in understanding your embedding. Currently these are restricted to methods of coloring a scatterplot of the embedding to show more about how the embedding is representing the data. The first class of such plots uses a linear method that preserves global structure well to embed the data into three dimensions, and then interprets such coordinates as a color space -- coloring the points by their location in the linear global structure preserving embedding. In such plots one should look for discontinuities of colour, and consider overall global gradients of color. The diagnostic types here are ``'pca'``, ``'ica'``, and ``'vq'`` (vector quantization). The second class consider the local neighbor structure. One can either look at how well the neighbor structure is preserved, or how the estimated local dimension of the data varies. Both of these are available, although the local dimension estimation is the preferred option. You can access these are diagnostic types ``'local_dim'`` and ``'neighborhood'``. Finally the diagnostic type ``'all'`` will provide a grid of diagnostic plots. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. diagnostic_type: str (optional, default 'pca') The type of diagnostic plot to show. The options are * 'pca' * 'ica' * 'vq' * 'local_dim' * 'neighborhood' * 'all' nhood_size: int (optional, default 15) The size of neighborhood to compare for local neighborhood preservation estimates. local_variance_threshold: float (optional, default 0.8) To estimate the local dimension we consider a PCA of the local neighborhood and estimate the dimension as that which provides ``local_variance_threshold`` or more of the ``variance_explained_ratio``. ax: matplotlib axis (optional, default None) A matplotlib axis to plot to, or, if None, a new axis will be created and returned. cmap: str (optional, default 'viridis') The name of a matplotlib colormap to use for coloring points if the ``'local_dim'`` or ``'neighborhood'`` option are selected. point_size: int (optional, None) If provided this will fix the point size for the plot(s). If None then a suitable point size will be estimated from the data. Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebook and have ``%matplotlib inline`` set then this will simply display inline. """ points = _get_embedding(umap_object) if points.shape[1] != 2: raise ValueError("Plotting is currently only implemented for 2D embeddings") if point_size is None: point_size = 100.0 / np.sqrt(points.shape[0]) if ax is None: dpi = plt.rcParams["figure.dpi"] if diagnostic_type in ("local_dim", "neighborhood"): width *= 1.1 font_color = _select_font_color(background) if ax is None and diagnostic_type != "all": fig = plt.figure() ax = fig.add_subplot(111) if diagnostic_type == "pca": color_proj = sklearn.decomposition.PCA(n_components=3).fit_transform( umap_object._raw_data ) color_proj -= np.min(color_proj) color_proj /= np.max(color_proj, axis=0) ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66) ax.set_title("Colored by RGB coords of PCA embedding") ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) ax.set(xticks=[], yticks=[]) elif diagnostic_type == "ica": color_proj = sklearn.decomposition.FastICA(n_components=3).fit_transform( umap_object._raw_data ) color_proj -= np.min(color_proj) color_proj /= np.max(color_proj, axis=0) ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66) ax.set_title("Colored by RGB coords of FastICA embedding") ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) ax.set(xticks=[], yticks=[]) elif diagnostic_type == "vq": color_projector = sklearn.cluster.KMeans(n_clusters=3).fit( umap_object._raw_data ) color_proj = sklearn.metrics.pairwise_distances( umap_object._raw_data, color_projector.cluster_centers_ ) color_proj -= np.min(color_proj) color_proj /= np.max(color_proj, axis=0) ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66) ax.set_title("Colored by RGB coords of Vector Quantization") ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) ax.set(xticks=[], yticks=[]) elif diagnostic_type == "neighborhood": highd_indices, highd_dists = _nhood_search(umap_object, nhood_size) tree = sklearn.neighbors.KDTree(points) lowd_dists, lowd_indices = tree.query(points, k=nhood_size) accuracy = _nhood_compare( highd_indices.astype(np.int32), lowd_indices.astype(np.int32) ) vmin = np.percentile(accuracy, 5) vmax = np.percentile(accuracy, 95) ax.scatter( points[:, 0], points[:, 1], s=point_size, c=accuracy, cmap=cmap, vmin=vmin, vmax=vmax, ) ax.set_title("Colored by neighborhood Jaccard index") ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) ax.set(xticks=[], yticks=[]) norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) mappable.set_array(accuracy) plt.colorbar(mappable, ax=ax) elif diagnostic_type == "local_dim": highd_indices, highd_dists = _nhood_search(umap_object, umap_object.n_neighbors) data = umap_object._raw_data local_dim = np.empty(data.shape[0], dtype=np.int64) for i in range(data.shape[0]): pca = sklearn.decomposition.PCA().fit(data[highd_indices[i]]) local_dim[i] = np.where( np.cumsum(pca.explained_variance_ratio_) > local_variance_threshold )[0][0] vmin = np.percentile(local_dim, 5) vmax = np.percentile(local_dim, 95) ax.scatter( points[:, 0], points[:, 1], s=point_size, c=local_dim, cmap=cmap, vmin=vmin, vmax=vmax, ) ax.set_title("Colored by approx local dimension") ax.text( 0.99, 0.01, "UMAP: n_neighbors={}, min_dist={}".format( umap_object.n_neighbors, umap_object.min_dist ), transform=ax.transAxes, horizontalalignment="right", color=font_color, ) ax.set(xticks=[], yticks=[]) norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) mappable.set_array(local_dim) plt.colorbar(mappable, ax=ax) elif diagnostic_type == "all": cols = int(len(_diagnostic_types) ** 0.5 // 1) rows = len(_diagnostic_types) // cols + 1 fig, axs = plt.subplots(rows, cols, figsize=(10, 10), constrained_layout=True) axs = axs.flat for ax in axs[len(_diagnostic_types) :]: ax.remove() for ax, plt_type in zip(axs, _diagnostic_types): diagnostic( umap_object, diagnostic_type=plt_type, ax=ax, point_size=point_size / 4.0, ) else: raise ValueError( "Unknown diagnostic; should be one of " + ", ".join(list(_diagnostic_types)) + ' or "all"' ) return ax
Provide a diagnostic plot or plots for a UMAP embedding. There are a number of plots that can be helpful for diagnostic purposes in understanding your embedding. Currently these are restricted to methods of coloring a scatterplot of the embedding to show more about how the embedding is representing the data. The first class of such plots uses a linear method that preserves global structure well to embed the data into three dimensions, and then interprets such coordinates as a color space -- coloring the points by their location in the linear global structure preserving embedding. In such plots one should look for discontinuities of colour, and consider overall global gradients of color. The diagnostic types here are ``'pca'``, ``'ica'``, and ``'vq'`` (vector quantization). The second class consider the local neighbor structure. One can either look at how well the neighbor structure is preserved, or how the estimated local dimension of the data varies. Both of these are available, although the local dimension estimation is the preferred option. You can access these are diagnostic types ``'local_dim'`` and ``'neighborhood'``. Finally the diagnostic type ``'all'`` will provide a grid of diagnostic plots. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. diagnostic_type: str (optional, default 'pca') The type of diagnostic plot to show. The options are * 'pca' * 'ica' * 'vq' * 'local_dim' * 'neighborhood' * 'all' nhood_size: int (optional, default 15) The size of neighborhood to compare for local neighborhood preservation estimates. local_variance_threshold: float (optional, default 0.8) To estimate the local dimension we consider a PCA of the local neighborhood and estimate the dimension as that which provides ``local_variance_threshold`` or more of the ``variance_explained_ratio``. ax: matplotlib axis (optional, default None) A matplotlib axis to plot to, or, if None, a new axis will be created and returned. cmap: str (optional, default 'viridis') The name of a matplotlib colormap to use for coloring points if the ``'local_dim'`` or ``'neighborhood'`` option are selected. point_size: int (optional, None) If provided this will fix the point size for the plot(s). If None then a suitable point size will be estimated from the data. Returns ------- result: matplotlib axis The result is a matplotlib axis with the relevant plot displayed. If you are using a notebook and have ``%matplotlib inline`` set then this will simply display inline.
diagnostic
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def interactive( umap_object, labels=None, values=None, hover_data=None, tools=None, theme=None, cmap="Blues", color_key=None, color_key_cmap="Spectral", background="white", width=800, height=800, point_size=None, subset_points=None, interactive_text_search=False, interactive_text_search_columns=None, interactive_text_search_alpha_contrast=0.95, alpha=None, ): """Create an interactive bokeh plot of a UMAP embedding. While static plots are useful, sometimes a plot that supports interactive zooming, and hover tooltips for individual points is much more desirable. This function provides a simple interface for creating such plots. The result is a bokeh plot that will be displayed in a notebook. Note that more complex tooltips etc. will require custom code -- this is merely meant to provide fast and easy access to interactive plotting. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. hover_data: DataFrame, shape (n_samples, n_tooltip_features) (optional, default None) A dataframe of tooltip data. Each column of the dataframe should be a Series of length ``n_samples`` providing a value for each data point. Column names will be used for identifying information within the tooltip. tools: List (optional, default None), Defines the tools to be configured for interactive plots. The list can be mixed type of string and tools objects defined by Bokeh like HoverTool. Default tool list Bokeh uses is ["pan","wheel_zoom","box_zoom","save","reset","help",]. When tools are specified, and includes hovertool, automatic tooltip based on hover_data is not created. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white') The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels point_size: int (optional, default None) The size of each point marker subset_points: array, shape (n_samples,) (optional, default None) A way to select a subset of points based on an array of boolean values. interactive_text_search: bool (optional, default False) Whether to include a text search widget above the interactive plot interactive_text_search_columns: list (optional, default None) Columns of data source to search. Searches labels and hover_data by default. interactive_text_search_alpha_contrast: float (optional, default 0.95) Alpha value for points matching text search. Alpha value for points not matching text search will be 1 - interactive_text_search_alpha_contrast alpha: float (optional, default: None) The alpha blending value, between 0 (transparent) and 1 (opaque). Returns ------- """ if theme is not None: cmap = _themes[theme]["cmap"] color_key_cmap = _themes[theme]["color_key_cmap"] background = _themes[theme]["background"] if labels is not None and values is not None: raise ValueError( "Conflicting options; only one of labels or values should be set" ) if alpha is not None: if not 0.0 <= alpha <= 1.0: raise ValueError("Alpha must be between 0 and 1 inclusive") points = _get_embedding(umap_object) if subset_points is not None: if len(subset_points) != points.shape[0]: raise ValueError( "Size of subset points ({}) does not match number of input points ({})".format( len(subset_points), points.shape[0] ) ) points = points[subset_points] if points.shape[1] != 2: raise ValueError("Plotting is currently only implemented for 2D embeddings") if point_size is None: point_size = 100.0 / np.sqrt(points.shape[0]) data = pd.DataFrame(_get_embedding(umap_object), columns=("x", "y")) if labels is not None: data["label"] = np.asarray(labels) if color_key is None: unique_labels = np.unique(labels) num_labels = unique_labels.shape[0] color_key = _to_hex( plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels)) ) if isinstance(color_key, dict): data["color"] = pd.Series(labels).map(color_key) else: unique_labels = np.unique(labels) if len(color_key) < unique_labels.shape[0]: raise ValueError( "Color key must have enough colors for the number of labels" ) new_color_key = {k: color_key[i] for i, k in enumerate(unique_labels)} data["color"] = pd.Series(labels).map(new_color_key) colors = "color" elif values is not None: data["value"] = np.asarray(values) palette = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256))) colors = btr.linear_cmap( "value", palette, low=np.min(values), high=np.max(values) ) else: colors = matplotlib.colors.rgb2hex(plt.get_cmap(cmap)(0.5)) if subset_points is not None: data = data[subset_points] if hover_data is not None: hover_data = hover_data[subset_points] if points.shape[0] <= width * height // 10: tooltips = None tooltip_needed = True if hover_data is not None: tooltip_dict = {} for col_name in hover_data: data[col_name] = hover_data[col_name] tooltip_dict[col_name] = "@{" + col_name + "}" tooltips = list(tooltip_dict.items()) if tools is not None: for _tool in tools: if _tool.__class__.__name__ == "HoverTool": tooltip_needed = False break if alpha is not None: data["alpha"] = alpha else: data["alpha"] = 1 # bpl.output_notebook(hide_banner=True) # this doesn't work for non-notebook use data_source = bpl.ColumnDataSource(data) plot = bpl.figure( width=width, height=height, tooltips=None if not tooltip_needed else tooltips, tools=( tools if tools is not None else "pan,wheel_zoom,box_zoom,save,reset,help" ), background_fill_color=background, ) plot.circle( x="x", y="y", source=data_source, color=colors, size=point_size, alpha="alpha", ) plot.grid.visible = False plot.axis.visible = False if interactive_text_search: text_input = TextInput(value="", title="Search:") if interactive_text_search_columns is None: interactive_text_search_columns = [] if hover_data is not None: interactive_text_search_columns.extend(hover_data.columns) if labels is not None: interactive_text_search_columns.append("label") if len(interactive_text_search_columns) == 0: warn( "interactive_text_search_columns set to True, but no hover_data or labels provided." "Please provide hover_data or labels to use interactive text search." ) else: callback = CustomJS( args=dict( source=data_source, matching_alpha=interactive_text_search_alpha_contrast, non_matching_alpha=1 - interactive_text_search_alpha_contrast, search_columns=interactive_text_search_columns, ), code=""" var data = source.data; var text_search = cb_obj.value; var search_columns_dict = {} for (var col in search_columns){ search_columns_dict[col] = search_columns[col] } // Loop over columns and values // If there is no match for any column for a given row, change the alpha value var string_match = false; for (var i = 0; i < data.x.length; i++) { string_match = false for (var j in search_columns_dict) { if (String(data[search_columns_dict[j]][i]).includes(text_search) ) { string_match = true } } if (string_match){ data['alpha'][i] = matching_alpha }else{ data['alpha'][i] = non_matching_alpha } } source.change.emit(); """, ) text_input.js_on_change("value", callback) plot = column(text_input, plot) # bpl.show(plot) else: if hover_data is not None: warn( "Too many points for hover data -- tooltips will not" "be displayed. Sorry; try subsampling your data." ) if interactive_text_search: warn("Too many points for text search." "Sorry; try subsampling your data.") if alpha is not None: warn("Alpha parameter will not be applied on holoviews plots") hv.extension("bokeh") hv.output(size=300) hv.opts.defaults(hv.opts.RGB(bgcolor=background, xaxis=None, yaxis=None)) if labels is not None: point_plot = hv.Points(data, kdims=["x", "y"]) plot = hd.datashade( point_plot, aggregator=ds.count_cat("color"), color_key=color_key, cmap=plt.get_cmap(cmap), width=width, height=height, ) elif values is not None: min_val = data.values.min() val_range = data.values.max() - min_val data["val_cat"] = pd.Categorical( (data.values - min_val) // (val_range // 256) ) point_plot = hv.Points(data, kdims=["x", "y"], vdims=["val_cat"]) plot = hd.datashade( point_plot, aggregator=ds.count_cat("val_cat"), cmap=plt.get_cmap(cmap), width=width, height=height, ) else: point_plot = hv.Points(data, kdims=["x", "y"]) plot = hd.datashade( point_plot, aggregator=ds.count(), cmap=plt.get_cmap(cmap), width=width, height=height, ) return plot
Create an interactive bokeh plot of a UMAP embedding. While static plots are useful, sometimes a plot that supports interactive zooming, and hover tooltips for individual points is much more desirable. This function provides a simple interface for creating such plots. The result is a bokeh plot that will be displayed in a notebook. Note that more complex tooltips etc. will require custom code -- this is merely meant to provide fast and easy access to interactive plotting. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has a 2D embedding. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. hover_data: DataFrame, shape (n_samples, n_tooltip_features) (optional, default None) A dataframe of tooltip data. Each column of the dataframe should be a Series of length ``n_samples`` providing a value for each data point. Column names will be used for identifying information within the tooltip. tools: List (optional, default None), Defines the tools to be configured for interactive plots. The list can be mixed type of string and tools objects defined by Bokeh like HoverTool. Default tool list Bokeh uses is ["pan","wheel_zoom","box_zoom","save","reset","help",]. When tools are specified, and includes hovertool, automatic tooltip based on hover_data is not created. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: string (optional, default 'Spectral') The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string (optional, default 'white') The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. width: int (optional, default 800) The desired width of the plot in pixels. height: int (optional, default 800) The desired height of the plot in pixels point_size: int (optional, default None) The size of each point marker subset_points: array, shape (n_samples,) (optional, default None) A way to select a subset of points based on an array of boolean values. interactive_text_search: bool (optional, default False) Whether to include a text search widget above the interactive plot interactive_text_search_columns: list (optional, default None) Columns of data source to search. Searches labels and hover_data by default. interactive_text_search_alpha_contrast: float (optional, default 0.95) Alpha value for points matching text search. Alpha value for points not matching text search will be 1 - interactive_text_search_alpha_contrast alpha: float (optional, default: None) The alpha blending value, between 0 (transparent) and 1 (opaque). Returns -------
interactive
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def nearest_neighbour_distribution(umap_object, bins=25, ax=None): """Create a histogram of the average distance to each points nearest neighbors. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has an embedding. bins: int (optional, default 25) Number of bins to put the points into ax: matplotlib axis (optional, default None) A matplotlib axis to plot to, or, if None, a new axis will be created and returned. Returns ------- """ nn_distances = average_nn_distance(umap_object.graph_) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel(f"Average distance to nearest neighbors") ax.set_ylabel("Frequency") ax.hist(nn_distances, bins=bins) return ax
Create a histogram of the average distance to each points nearest neighbors. Parameters ---------- umap_object: trained UMAP object A trained UMAP object that has an embedding. bins: int (optional, default 25) Number of bins to put the points into ax: matplotlib axis (optional, default None) A matplotlib axis to plot to, or, if None, a new axis will be created and returned. Returns -------
nearest_neighbour_distribution
python
lmcinnes/umap
umap/plot.py
https://github.com/lmcinnes/umap/blob/master/umap/plot.py
BSD-3-Clause
def clip(val): """Standard clamping of a value into a fixed range (in this case -4.0 to 4.0) Parameters ---------- val: float The value to be clamped. Returns ------- The clamped value, now fixed to be in the range -4.0 to 4.0. """ if val > 4.0: return 4.0 elif val < -4.0: return -4.0 else: return val
Standard clamping of a value into a fixed range (in this case -4.0 to 4.0) Parameters ---------- val: float The value to be clamped. Returns ------- The clamped value, now fixed to be in the range -4.0 to 4.0.
clip
python
lmcinnes/umap
umap/layouts.py
https://github.com/lmcinnes/umap/blob/master/umap/layouts.py
BSD-3-Clause
def rdist(x, y): """Reduced Euclidean distance. Parameters ---------- x: array of shape (embedding_dim,) y: array of shape (embedding_dim,) Returns ------- The squared euclidean distance between x and y """ result = 0.0 dim = x.shape[0] for i in range(dim): diff = x[i] - y[i] result += diff * diff return result
Reduced Euclidean distance. Parameters ---------- x: array of shape (embedding_dim,) y: array of shape (embedding_dim,) Returns ------- The squared euclidean distance between x and y
rdist
python
lmcinnes/umap
umap/layouts.py
https://github.com/lmcinnes/umap/blob/master/umap/layouts.py
BSD-3-Clause
def optimize_layout_euclidean( head_embedding, tail_embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma=1.0, initial_alpha=1.0, negative_sample_rate=5.0, parallel=False, verbose=False, densmap=False, densmap_kwds=None, tqdm_kwds=None, move_other=False, ): """Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. n_epochs: int, or list of int The number of training epochs to use in optimization, or a list of epochs at which to save the embedding. In case of a list, the optimization will use the maximum number of epochs in the list, and will return a list of embedding in the order of increasing epoch, regardless of the order in the epoch list. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. parallel: bool (optional, default False) Whether to run the computation using numba parallel. Running in parallel is non-deterministic, and is not used if a random seed has been set, to ensure reproducibility. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. densmap: bool (optional, default False) Whether to use the density-augmented densMAP objective densmap_kwds: dict (optional, default None) Auxiliary data for densMAP tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding. """ dim = head_embedding.shape[1] alpha = initial_alpha epochs_per_negative_sample = epochs_per_sample / negative_sample_rate epoch_of_next_negative_sample = epochs_per_negative_sample.copy() epoch_of_next_sample = epochs_per_sample.copy() # Fix for calling UMAP many times for small datasets, otherwise we spend here # a lot of time in compilation step (first call to numba function) optimize_fn = _get_optimize_layout_euclidean_single_epoch_fn(parallel) if densmap_kwds is None: densmap_kwds = {} if tqdm_kwds is None: tqdm_kwds = {} if densmap: dens_init_fn = numba.njit( _optimize_layout_euclidean_densmap_epoch_init, fastmath=True, parallel=parallel, ) dens_mu_tot = np.sum(densmap_kwds["mu_sum"]) / 2 dens_lambda = densmap_kwds["lambda"] dens_R = densmap_kwds["R"] dens_mu = densmap_kwds["mu"] dens_phi_sum = np.zeros(n_vertices, dtype=np.float32) dens_re_sum = np.zeros(n_vertices, dtype=np.float32) dens_var_shift = densmap_kwds["var_shift"] else: dens_mu_tot = 0 dens_lambda = 0 dens_R = np.zeros(1, dtype=np.float32) dens_mu = np.zeros(1, dtype=np.float32) dens_phi_sum = np.zeros(1, dtype=np.float32) dens_re_sum = np.zeros(1, dtype=np.float32) epochs_list = None embedding_list = [] if isinstance(n_epochs, list): epochs_list = n_epochs n_epochs = max(epochs_list) if "disable" not in tqdm_kwds: tqdm_kwds["disable"] = not verbose rng_state_per_sample = np.full( (head_embedding.shape[0], len(rng_state)), rng_state, dtype=np.int64 ) + head_embedding[:, 0].astype(np.float64).view(np.int64).reshape(-1, 1) for n in tqdm(range(n_epochs), **tqdm_kwds): densmap_flag = ( densmap and (densmap_kwds["lambda"] > 0) and (((n + 1) / float(n_epochs)) > (1 - densmap_kwds["frac"])) ) if densmap_flag: # FIXME: dens_init_fn might be referenced before assignment dens_init_fn( head_embedding, tail_embedding, head, tail, a, b, dens_re_sum, dens_phi_sum, ) # FIXME: dens_var_shift might be referenced before assignment dens_re_std = np.sqrt(np.var(dens_re_sum) + dens_var_shift) dens_re_mean = np.mean(dens_re_sum) dens_re_cov = np.dot(dens_re_sum, dens_R) / (n_vertices - 1) else: dens_re_std = 0 dens_re_mean = 0 dens_re_cov = 0 optimize_fn( head_embedding, tail_embedding, head, tail, n_vertices, epochs_per_sample, a, b, rng_state_per_sample, gamma, dim, move_other, alpha, epochs_per_negative_sample, epoch_of_next_negative_sample, epoch_of_next_sample, n, densmap_flag, dens_phi_sum, dens_re_sum, dens_re_cov, dens_re_std, dens_re_mean, dens_lambda, dens_R, dens_mu, dens_mu_tot, ) alpha = initial_alpha * (1.0 - (float(n) / float(n_epochs))) if verbose and n % int(n_epochs / 10) == 0: print("\tcompleted ", n, " / ", n_epochs, "epochs") if epochs_list is not None and n in epochs_list: embedding_list.append(head_embedding.copy()) # Add the last embedding to the list as well if epochs_list is not None: embedding_list.append(head_embedding.copy()) return head_embedding if epochs_list is None else embedding_list
Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. n_epochs: int, or list of int The number of training epochs to use in optimization, or a list of epochs at which to save the embedding. In case of a list, the optimization will use the maximum number of epochs in the list, and will return a list of embedding in the order of increasing epoch, regardless of the order in the epoch list. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. parallel: bool (optional, default False) Whether to run the computation using numba parallel. Running in parallel is non-deterministic, and is not used if a random seed has been set, to ensure reproducibility. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. densmap: bool (optional, default False) Whether to use the density-augmented densMAP objective densmap_kwds: dict (optional, default None) Auxiliary data for densMAP tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding.
optimize_layout_euclidean
python
lmcinnes/umap
umap/layouts.py
https://github.com/lmcinnes/umap/blob/master/umap/layouts.py
BSD-3-Clause
def optimize_layout_generic( head_embedding, tail_embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma=1.0, initial_alpha=1.0, negative_sample_rate=5.0, output_metric=dist.euclidean, output_metric_kwds=(), verbose=False, tqdm_kwds=None, move_other=False, ): """Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. n_epochs: int The number of training epochs to use in optimization. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding. """ dim = head_embedding.shape[1] alpha = initial_alpha epochs_per_negative_sample = epochs_per_sample / negative_sample_rate epoch_of_next_negative_sample = epochs_per_negative_sample.copy() epoch_of_next_sample = epochs_per_sample.copy() optimize_fn = numba.njit( _optimize_layout_generic_single_epoch, fastmath=True, ) if tqdm_kwds is None: tqdm_kwds = {} if "disable" not in tqdm_kwds: tqdm_kwds["disable"] = not verbose rng_state_per_sample = np.full( (head_embedding.shape[0], len(rng_state)), rng_state, dtype=np.int64 ) + head_embedding[:, 0].astype(np.float64).view(np.int64).reshape(-1, 1) for n in tqdm(range(n_epochs), **tqdm_kwds): optimize_fn( epochs_per_sample, epoch_of_next_sample, head, tail, head_embedding, tail_embedding, output_metric, output_metric_kwds, dim, alpha, move_other, n, epoch_of_next_negative_sample, epochs_per_negative_sample, rng_state_per_sample, n_vertices, a, b, gamma, ) alpha = initial_alpha * (1.0 - (float(n) / float(n_epochs))) return head_embedding
Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. n_epochs: int The number of training epochs to use in optimization. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding.
optimize_layout_generic
python
lmcinnes/umap
umap/layouts.py
https://github.com/lmcinnes/umap/blob/master/umap/layouts.py
BSD-3-Clause
def optimize_layout_inverse( head_embedding, tail_embedding, head, tail, weight, sigmas, rhos, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma=1.0, initial_alpha=1.0, negative_sample_rate=5.0, output_metric=dist.euclidean, output_metric_kwds=(), verbose=False, tqdm_kwds=None, move_other=False, ): """Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. weight: array of shape (n_1_simplices) The membership weights of the 1-simplices. sigmas: rhos: n_epochs: int The number of training epochs to use in optimization. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding. """ dim = head_embedding.shape[1] alpha = initial_alpha epochs_per_negative_sample = epochs_per_sample / negative_sample_rate epoch_of_next_negative_sample = epochs_per_negative_sample.copy() epoch_of_next_sample = epochs_per_sample.copy() optimize_fn = numba.njit( _optimize_layout_inverse_single_epoch, fastmath=True, ) if tqdm_kwds is None: tqdm_kwds = {} if "disable" not in tqdm_kwds: tqdm_kwds["disable"] = not verbose for n in tqdm(range(n_epochs), **tqdm_kwds): optimize_fn( epochs_per_sample, epoch_of_next_sample, head, tail, head_embedding, tail_embedding, output_metric, output_metric_kwds, weight, sigmas, dim, alpha, move_other, n, epoch_of_next_negative_sample, epochs_per_negative_sample, rng_state, n_vertices, rhos, gamma, ) alpha = initial_alpha * (1.0 - (float(n) / float(n_epochs))) return head_embedding
Improve an embedding using stochastic gradient descent to minimize the fuzzy set cross entropy between the 1-skeletons of the high dimensional and low dimensional fuzzy simplicial sets. In practice this is done by sampling edges based on their membership strength (with the (1-p) terms coming from negative sampling similar to word2vec). Parameters ---------- head_embedding: array of shape (n_samples, n_components) The initial embedding to be improved by SGD. tail_embedding: array of shape (source_samples, n_components) The reference embedding of embedded points. If not embedding new previously unseen points with respect to an existing embedding this is simply the head_embedding (again); otherwise it provides the existing embedding to embed with respect to. head: array of shape (n_1_simplices) The indices of the heads of 1-simplices with non-zero membership. tail: array of shape (n_1_simplices) The indices of the tails of 1-simplices with non-zero membership. weight: array of shape (n_1_simplices) The membership weights of the 1-simplices. sigmas: rhos: n_epochs: int The number of training epochs to use in optimization. n_vertices: int The number of vertices (0-simplices) in the dataset. epochs_per_sample: array of shape (n_1_simplices) A float value of the number of epochs per 1-simplex. 1-simplices with weaker membership strength will have more epochs between being sampled. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor rng_state: array of int64, shape (3,) The internal state of the rng gamma: float (optional, default 1.0) Weight to apply to negative samples. initial_alpha: float (optional, default 1.0) Initial learning rate for the SGD. negative_sample_rate: int (optional, default 5) Number of negative samples to use per positive sample. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. tqdm_kwds: dict (optional, default None) Keyword arguments for tqdm progress bar. move_other: bool (optional, default False) Whether to adjust tail_embedding alongside head_embedding Returns ------- embedding: array of shape (n_samples, n_components) The optimized embedding.
optimize_layout_inverse
python
lmcinnes/umap
umap/layouts.py
https://github.com/lmcinnes/umap/blob/master/umap/layouts.py
BSD-3-Clause
def __init__( self, batch_size=None, dims=None, encoder=None, decoder=None, parametric_reconstruction=False, parametric_reconstruction_loss_fcn=None, parametric_reconstruction_loss_weight=1.0, autoencoder_loss=False, reconstruction_validation=None, global_correlation_loss_weight=0, landmark_loss_fn=None, landmark_loss_weight=1.0, keras_fit_kwargs={}, **kwargs, ): """ Parametric UMAP subclassing UMAP-learn, based on keras/tensorflow. There is also a non-parametric implementation contained within to compare with the base non-parametric implementation. Parameters ---------- batch_size : int, optional size of batch used for batch training, by default None dims : tuple, optional dimensionality of data, if not flat (e.g. (32x32x3 images for ConvNet), by default None encoder : keras.Sequential, optional The encoder Keras network decoder : keras.Sequential, optional the decoder Keras network parametric_reconstruction : bool, optional Whether the decoder is parametric or non-parametric, by default False parametric_reconstruction_loss_fcn : bool, optional What loss function to use for parametric reconstruction, by default keras.losses.BinaryCrossentropy parametric_reconstruction_loss_weight : float, optional How to weight the parametric reconstruction loss relative to umap loss, by default 1.0 autoencoder_loss : bool, optional [description], by default False reconstruction_validation : array, optional validation X data for reconstruction loss, by default None global_correlation_loss_weight : float, optional Whether to additionally train on correlation of global pairwise relationships (>0), by default 0 landmark_loss_fn : callable, optional The function to use for landmark loss, by default the euclidean distance landmark_loss_weight : float, optional How to weight the landmark loss relative to umap loss, by default 1.0 keras_fit_kwargs : dict, optional additional arguments for model.fit (like callbacks), by default {} """ super().__init__(**kwargs) # add to network self.dims = dims # if this is an image, we should reshape for network self.encoder = encoder # neural network used for embedding self.decoder = decoder # neural network used for decoding self.parametric_reconstruction = parametric_reconstruction self.parametric_reconstruction_loss_weight = ( parametric_reconstruction_loss_weight ) self.parametric_reconstruction_loss_fcn = parametric_reconstruction_loss_fcn self.autoencoder_loss = autoencoder_loss self.batch_size = batch_size self.loss_report_frequency = 10 self.global_correlation_loss_weight = global_correlation_loss_weight self.landmark_loss_fn = landmark_loss_fn self.landmark_loss_weight = landmark_loss_weight self.prev_epoch_X = None self.window_vals = None self.reconstruction_validation = ( reconstruction_validation # holdout data for reconstruction acc ) self.keras_fit_kwargs = keras_fit_kwargs # arguments for model.fit self.parametric_model = None # Pass the random state on to keras. This will set the numpy, # backend, and python random seeds # For reproducable training. if isinstance(self.random_state, int): keras.utils.set_random_seed(self.random_state) # How many epochs to train for # (different than n_epochs which is specific to each sample) self.n_training_epochs = 1 # Set optimizer. # Adam is better for parametric_embedding. Use gradient clipping by value. self.optimizer = keras.optimizers.Adam(1e-3, clipvalue=4.0) if self.encoder is not None: if encoder.outputs[0].shape[-1] != self.n_components: raise ValueError( ( "Dimensionality of embedder network output ({}) does" "not match n_components ({})".format( encoder.outputs[0].shape[-1], self.n_components ) ) )
Parametric UMAP subclassing UMAP-learn, based on keras/tensorflow. There is also a non-parametric implementation contained within to compare with the base non-parametric implementation. Parameters ---------- batch_size : int, optional size of batch used for batch training, by default None dims : tuple, optional dimensionality of data, if not flat (e.g. (32x32x3 images for ConvNet), by default None encoder : keras.Sequential, optional The encoder Keras network decoder : keras.Sequential, optional the decoder Keras network parametric_reconstruction : bool, optional Whether the decoder is parametric or non-parametric, by default False parametric_reconstruction_loss_fcn : bool, optional What loss function to use for parametric reconstruction, by default keras.losses.BinaryCrossentropy parametric_reconstruction_loss_weight : float, optional How to weight the parametric reconstruction loss relative to umap loss, by default 1.0 autoencoder_loss : bool, optional [description], by default False reconstruction_validation : array, optional validation X data for reconstruction loss, by default None global_correlation_loss_weight : float, optional Whether to additionally train on correlation of global pairwise relationships (>0), by default 0 landmark_loss_fn : callable, optional The function to use for landmark loss, by default the euclidean distance landmark_loss_weight : float, optional How to weight the landmark loss relative to umap loss, by default 1.0 keras_fit_kwargs : dict, optional additional arguments for model.fit (like callbacks), by default {}
__init__
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def fit(self, X, y=None, precomputed_distances=None, landmark_positions=None): """Fit X into an embedded space. Optionally use a precomputed distance matrix, y for supervised dimension reduction, or landmarked positions. Parameters ---------- X : array, shape (n_samples, n_features) Contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. Unlike UMAP, ParametricUMAP requires precomputed distances to be passed seperately. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. precomputed_distances : array, shape (n_samples, n_samples), optional A precomputed a square distance matrix. Unlike UMAP, ParametricUMAP still requires X to be passed seperately for training. landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates. """ if (self.prev_epoch_X is not None) & (landmark_positions is None): # Add the landmark points for training, then make a landmark vector. landmark_positions = np.stack( [np.array([np.nan, np.nan])]*X.shape[0] + list( self.transform( self.prev_epoch_X ) ) ) X = np.concatenate((X, self.prev_epoch_X)) if landmark_positions is not None: len_X = len(X) len_land = len(landmark_positions) if len_X != len_land: raise ValueError( f"Length of x = {len_X}, length of landmark_positions \ = {len_land}, while it must be equal." ) if self.metric == "precomputed": if precomputed_distances is None: raise ValueError( "Precomputed distances must be supplied if metric \ is precomputed." ) # prepare X for training the network self._X = X # geneate the graph on precomputed distances return super().fit( precomputed_distances, y, landmark_positions=landmark_positions ) else: return super().fit(X, y, landmark_positions=landmark_positions)
Fit X into an embedded space. Optionally use a precomputed distance matrix, y for supervised dimension reduction, or landmarked positions. Parameters ---------- X : array, shape (n_samples, n_features) Contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. Unlike UMAP, ParametricUMAP requires precomputed distances to be passed seperately. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. precomputed_distances : array, shape (n_samples, n_samples), optional A precomputed a square distance matrix. Unlike UMAP, ParametricUMAP still requires X to be passed seperately for training. landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates.
fit
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def fit_transform( self, X, y=None, precomputed_distances=None, landmark_positions=None ): """Fit X into an embedded space. Optionally use a precomputed distance matrix, y for supervised dimension reduction, or landmarked positions. Parameters ---------- X : array, shape (n_samples, n_features) Contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. Unlike UMAP, ParametricUMAP requires precomputed distances to be passed seperately. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. precomputed_distances : array, shape (n_samples, n_samples), optional A precomputed a square distance matrix. Unlike UMAP, ParametricUMAP still requires X to be passed seperately for training. landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates. """ if (self.prev_epoch_X is not None) & (landmark_positions is None): # Add the landmark points for training, then make a landmark vector. landmark_positions = np.stack( [np.array([np.nan, np.nan])]*X.shape[0] + list( self.transform( self.prev_epoch_X ) ) ) X = np.concatenate((X, self.prev_epoch_X)) if landmark_positions is not None: len_X = len(X) len_land = len(landmark_positions) if len_X != len_land: raise ValueError( f"Length of x = {len_X}, length of landmark_positions \ = {len_land}, while it must be equal." ) if self.metric == "precomputed": if precomputed_distances is None: raise ValueError( "Precomputed distances must be supplied if metric \ is precomputed." ) # prepare X for training the network self._X = X # generate the graph on precomputed distances # landmark positions are cleaned up inside the # .fit() component of .fit_transform() return super().fit_transform( precomputed_distances, y, landmark_positions=landmark_positions ) else: # landmark positions are cleaned up inside the # .fit() component of .fit_transform() return super().fit_transform(X, y, landmark_positions=landmark_positions)
Fit X into an embedded space. Optionally use a precomputed distance matrix, y for supervised dimension reduction, or landmarked positions. Parameters ---------- X : array, shape (n_samples, n_features) Contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. Unlike UMAP, ParametricUMAP requires precomputed distances to be passed seperately. y : array, shape (n_samples) A target array for supervised dimension reduction. How this is handled is determined by parameters UMAP was instantiated with. The relevant attributes are ``target_metric`` and ``target_metric_kwds``. precomputed_distances : array, shape (n_samples, n_samples), optional A precomputed a square distance matrix. Unlike UMAP, ParametricUMAP still requires X to be passed seperately for training. landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates.
fit_transform
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def transform(self, X, batch_size=None): """Transform X into the existing embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. batch_size : int, optional Batch size for inference, defaults to the self.batch_size used in training. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the new data in low-dimensional space. """ batch_size = batch_size if batch_size else self.batch_size return self.encoder.predict( np.asanyarray(X), batch_size=batch_size, verbose=self.verbose )
Transform X into the existing embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. batch_size : int, optional Batch size for inference, defaults to the self.batch_size used in training. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the new data in low-dimensional space.
transform
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def inverse_transform(self, X): """Transform X in the existing embedded space back into the input data space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_components) New points to be inverse transformed. Returns ------- X_new : array, shape (n_samples, n_features) Generated data points new data in data space. """ if self.parametric_reconstruction: return self.decoder.predict( np.asanyarray(X), batch_size=self.batch_size, verbose=self.verbose ) else: return super().inverse_transform(X)
Transform X in the existing embedded space back into the input data space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_components) New points to be inverse transformed. Returns ------- X_new : array, shape (n_samples, n_features) Generated data points new data in data space.
inverse_transform
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def _define_model(self): """Define the model in keras""" prlw = self.parametric_reconstruction_loss_weight self.parametric_model = UMAPModel( self._a, self._b, negative_sample_rate=self.negative_sample_rate, encoder=self.encoder, decoder=self.decoder, parametric_reconstruction_loss_fn=self.parametric_reconstruction_loss_fcn, parametric_reconstruction=self.parametric_reconstruction, parametric_reconstruction_loss_weight=prlw, global_correlation_loss_weight=self.global_correlation_loss_weight, autoencoder_loss=self.autoencoder_loss, landmark_loss_fn=self.landmark_loss_fn, landmark_loss_weight=self.landmark_loss_weight, optimizer=self.optimizer, )
Define the model in keras
_define_model
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def add_landmarks( self, X, sample_pct=0.01, sample_mode="uniform", landmark_loss_weight=0.01, idx=None, ): """Add some points from a dataset X as "landmarks." Parameters ---------- X : array, shape (n_samples, n_features) Old data to be retained. sample_pct : float, optional Percentage of old data to use as landmarks. sample_mode : str, optional Method for sampling points. Allows "uniform" and "predefined." landmark_loss_weight : float, optional Multiplier for landmark loss function. """ self.sample_pct = sample_pct self.sample_mode = sample_mode self.landmark_loss_weight = landmark_loss_weight if self.sample_mode == "uniform": self.prev_epoch_idx = list( np.random.choice( range(X.shape[0]), int(X.shape[0]*sample_pct), replace=False ) ) self.prev_epoch_X = X[self.prev_epoch_idx] elif self.sample_mode == "predetermined": if idx is None: raise ValueError( "Choice of sample_mode is not supported." ) else: self.prev_epoch_idx = idx self.prev_epoch_X = X[self.prev_epoch_idx] else: raise ValueError( "Choice of sample_mode is not supported." )
Add some points from a dataset X as "landmarks." Parameters ---------- X : array, shape (n_samples, n_features) Old data to be retained. sample_pct : float, optional Percentage of old data to use as landmarks. sample_mode : str, optional Method for sampling points. Allows "uniform" and "predefined." landmark_loss_weight : float, optional Multiplier for landmark loss function.
add_landmarks
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def to_ONNX(self, save_location): """Exports trained parametric UMAP as ONNX.""" # Extract encoder km = self.encoder # Extract weights pm = PumapNet(self.dims[0], self.n_components) pm = weight_copier(km, pm) # Put in ONNX dummy_input = torch.randn(1, self.dims[0]) # Invoke export return torch.onnx.export(pm, dummy_input, save_location)
Exports trained parametric UMAP as ONNX.
to_ONNX
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def get_graph_elements(graph_, n_epochs): """ gets elements of graphs, weights, and number of epochs per edge Parameters ---------- graph_ : scipy.sparse.csr.csr_matrix umap graph of probabilities n_epochs : int maximum number of epochs per edge Returns ------- graph scipy.sparse.csr.csr_matrix umap graph epochs_per_sample np.array number of epochs to train each sample for head np.array edge head tail np.array edge tail weight np.array edge weight n_vertices int number of vertices in graph """ ### should we remove redundancies () here?? # graph_ = remove_redundant_edges(graph_) graph = graph_.tocoo() # eliminate duplicate entries by summing them together graph.sum_duplicates() # number of vertices in dataset n_vertices = graph.shape[1] # get the number of epochs based on the size of the dataset if n_epochs is None: # For smaller datasets we can use more epochs if graph.shape[0] <= 10000: n_epochs = 500 else: n_epochs = 200 # remove elements with very low probability graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0 graph.eliminate_zeros() # get epochs per sample based upon edge probability epochs_per_sample = n_epochs * graph.data head = graph.row tail = graph.col weight = graph.data return graph, epochs_per_sample, head, tail, weight, n_vertices
gets elements of graphs, weights, and number of epochs per edge Parameters ---------- graph_ : scipy.sparse.csr.csr_matrix umap graph of probabilities n_epochs : int maximum number of epochs per edge Returns ------- graph scipy.sparse.csr.csr_matrix umap graph epochs_per_sample np.array number of epochs to train each sample for head np.array edge head tail np.array edge tail weight np.array edge weight n_vertices int number of vertices in graph
get_graph_elements
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def init_embedding_from_graph( _raw_data, graph, n_components, random_state, metric, _metric_kwds, init="spectral" ): """Initialize embedding using graph. This is for direct embeddings. Parameters ---------- init : str, optional Type of initialization to use. Either random, or spectral, by default "spectral" Returns ------- embedding : np.array the initialized embedding """ if random_state is None: random_state = check_random_state(None) if isinstance(init, str) and init == "random": embedding = random_state.uniform( low=-10.0, high=10.0, size=(graph.shape[0], n_components) ).astype(np.float32) elif isinstance(init, str) and init == "spectral": # We add a little noise to avoid local minima for optimization to come initialisation = spectral_layout( _raw_data, graph, n_components, random_state, metric=metric, metric_kwds=_metric_kwds, ) expansion = 10.0 / np.abs(initialisation).max() embedding = (initialisation * expansion).astype( np.float32 ) + random_state.normal( scale=0.0001, size=[graph.shape[0], n_components] ).astype( np.float32 ) else: init_data = np.array(init) if len(init_data.shape) == 2: if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]: tree = KDTree(init_data) dist, ind = tree.query(init_data, k=2) nndist = np.mean(dist[:, 1]) embedding = init_data + random_state.normal( scale=0.001 * nndist, size=init_data.shape ).astype(np.float32) else: embedding = init_data return embedding
Initialize embedding using graph. This is for direct embeddings. Parameters ---------- init : str, optional Type of initialization to use. Either random, or spectral, by default "spectral" Returns ------- embedding : np.array the initialized embedding
init_embedding_from_graph
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def convert_distance_to_log_probability(distances, a=1.0, b=1.0): """ convert distance representation into log probability, as a function of a, b params Parameters ---------- distances : array euclidean distance between two points in embedding a : float, optional parameter based on min_dist, by default 1.0 b : float, optional parameter based on min_dist, by default 1.0 Returns ------- float log probability in embedding space """ return -ops.log1p(a * distances ** (2 * b))
convert distance representation into log probability, as a function of a, b params Parameters ---------- distances : array euclidean distance between two points in embedding a : float, optional parameter based on min_dist, by default 1.0 b : float, optional parameter based on min_dist, by default 1.0 Returns ------- float log probability in embedding space
convert_distance_to_log_probability
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def compute_cross_entropy( probabilities_graph, log_probabilities_distance, EPS=1e-4, repulsion_strength=1.0 ): """ Compute cross entropy between low and high probability Parameters ---------- probabilities_graph : array high dimensional probabilities log_probabilities_distance : array low dimensional log probabilities EPS : float, optional offset to ensure log is taken of a positive number, by default 1e-4 repulsion_strength : float, optional strength of repulsion between negative samples, by default 1.0 Returns ------- attraction_term: float attraction term for cross entropy loss repellant_term: float repellent term for cross entropy loss cross_entropy: float cross entropy umap loss """ # cross entropy attraction_term = -probabilities_graph * ops.log_sigmoid(log_probabilities_distance) # use numerically stable repellent term # Shi et al. 2022 (https://arxiv.org/abs/2111.08851) # log(1 - sigmoid(logits)) = log(sigmoid(logits)) - logits repellant_term = ( -(1.0 - probabilities_graph) * (ops.log_sigmoid(log_probabilities_distance) - log_probabilities_distance) * repulsion_strength ) # balance the expected losses between attraction and repel CE = attraction_term + repellant_term return attraction_term, repellant_term, CE
Compute cross entropy between low and high probability Parameters ---------- probabilities_graph : array high dimensional probabilities log_probabilities_distance : array low dimensional log probabilities EPS : float, optional offset to ensure log is taken of a positive number, by default 1e-4 repulsion_strength : float, optional strength of repulsion between negative samples, by default 1.0 Returns ------- attraction_term: float attraction term for cross entropy loss repellant_term: float repellent term for cross entropy loss cross_entropy: float cross entropy umap loss
compute_cross_entropy
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def prepare_networks( encoder, decoder, n_components, dims, n_data, parametric_reconstruction, init_embedding=None, ): """ Generates a set of keras networks for the encoder and decoder if one has not already been predefined. Parameters ---------- encoder : keras.Sequential The encoder Keras network decoder : keras.Sequential the decoder Keras network n_components : int the dimensionality of the latent space dims : tuple of shape (dim1, dim2, dim3...) dimensionality of data n_data : number of elements in dataset # of elements in training dataset parametric_reconstruction : bool Whether the decoder is parametric or non-parametric init_embedding : array (optional, default None) The initial embedding, for nonparametric embeddings Returns ------- encoder: keras.Sequential encoder keras network decoder: keras.Sequential decoder keras network """ if encoder is None: encoder = keras.Sequential( [ keras.layers.Input(shape=dims), keras.layers.Flatten(), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense(units=n_components, name="z"), ] ) if decoder is None: if parametric_reconstruction: decoder = keras.Sequential( [ keras.layers.Input(shape=(n_components,)), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense(units=100, activation="relu"), keras.layers.Dense( units=np.prod(dims), name="recon", activation=None ), keras.layers.Reshape(dims), ] ) return encoder, decoder
Generates a set of keras networks for the encoder and decoder if one has not already been predefined. Parameters ---------- encoder : keras.Sequential The encoder Keras network decoder : keras.Sequential the decoder Keras network n_components : int the dimensionality of the latent space dims : tuple of shape (dim1, dim2, dim3...) dimensionality of data n_data : number of elements in dataset # of elements in training dataset parametric_reconstruction : bool Whether the decoder is parametric or non-parametric init_embedding : array (optional, default None) The initial embedding, for nonparametric embeddings Returns ------- encoder: keras.Sequential encoder keras network decoder: keras.Sequential decoder keras network
prepare_networks
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def construct_edge_dataset( X, graph_, n_epochs, batch_size, parametric_reconstruction, global_correlation_loss_weight, landmark_positions=None, ): """ Construct a tf.data.Dataset of edges, sampled by edge weight. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. graph_ : scipy.sparse.csr.csr_matrix Generated UMAP graph n_epochs : int # of epochs to train each edge batch_size : int batch size parametric_reconstruction : bool Whether the decoder is parametric or non-parametric landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates. """ def gather_index(tensor, index): return tensor[index] # if X is > 512Mb in size, we need to use a different, slower method for # batching data. gather_indices_in_python = True if X.nbytes * 1e-9 > 0.5 else False if landmark_positions is not None: gather_landmark_indices_in_python = ( True if landmark_positions.nbytes * 1e-9 > 0.5 else False ) def gather_X(edge_to, edge_from): # gather data from indexes (edges) in either numpy of tf, depending on array size if gather_indices_in_python: edge_to_batch = tf.py_function(gather_index, [X, edge_to], [tf.float32])[0] edge_from_batch = tf.py_function( gather_index, [X, edge_from], [tf.float32] )[0] else: edge_to_batch = tf.gather(X, edge_to) edge_from_batch = tf.gather(X, edge_from) return edge_to, edge_from, edge_to_batch, edge_from_batch def get_outputs(edge_to, edge_from, edge_to_batch, edge_from_batch): outputs = {"umap": ops.repeat(0, batch_size)} if global_correlation_loss_weight > 0: outputs["global_correlation"] = edge_to_batch if parametric_reconstruction: # add reconstruction to iterator output # edge_out = ops.concatenate([edge_to_batch, edge_from_batch], axis=0) outputs["reconstruction"] = edge_to_batch if landmark_positions is not None: if gather_landmark_indices_in_python: outputs["landmark_to"] = tf.py_function( gather_index, [landmark_positions, edge_to], [tf.float32] )[0] else: # Make sure we explicitly cast landmark_positions to float32, # as it's user-provided and needs to play nice with loss functions. outputs["landmark_to"] = tf.gather(landmark_positions, edge_to) return (edge_to_batch, edge_from_batch), outputs # get data from graph _, epochs_per_sample, head, tail, weight, n_vertices = get_graph_elements( graph_, n_epochs ) # number of elements per batch for embedding if batch_size is None: # batch size can be larger if its just over embeddings batch_size = int(np.min([n_vertices, 1000])) edges_to_exp, edges_from_exp = ( np.repeat(head, epochs_per_sample.astype("int")), np.repeat(tail, epochs_per_sample.astype("int")), ) # shuffle edges shuffle_mask = np.random.permutation(range(len(edges_to_exp))) edges_to_exp = edges_to_exp[shuffle_mask].astype(np.int64) edges_from_exp = edges_from_exp[shuffle_mask].astype(np.int64) # create edge iterator edge_dataset = tf.data.Dataset.from_tensor_slices((edges_to_exp, edges_from_exp)) edge_dataset = edge_dataset.repeat() edge_dataset = edge_dataset.shuffle(10000) edge_dataset = edge_dataset.batch(batch_size, drop_remainder=True) edge_dataset = edge_dataset.map( gather_X, num_parallel_calls=tf.data.experimental.AUTOTUNE ) edge_dataset = edge_dataset.map( get_outputs, num_parallel_calls=tf.data.experimental.AUTOTUNE ) edge_dataset = edge_dataset.prefetch(10) return edge_dataset, batch_size, len(edges_to_exp), head, tail, weight
Construct a tf.data.Dataset of edges, sampled by edge weight. Parameters ---------- X : array, shape (n_samples, n_features) New data to be transformed. graph_ : scipy.sparse.csr.csr_matrix Generated UMAP graph n_epochs : int # of epochs to train each edge batch_size : int batch size parametric_reconstruction : bool Whether the decoder is parametric or non-parametric landmark_positions : array, shape (n_samples, n_components), optional The desired position in low-dimensional space of each sample in X. Points that are not landmarks should have nan coordinates.
construct_edge_dataset
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def should_pickle(key, val): """ Checks if a dictionary item can be pickled Parameters ---------- key : try key for dictionary element val : None element of dictionary Returns ------- picklable: bool whether the dictionary item can be pickled """ try: ## make sure object can be pickled and then re-read # pickle object pickled = codecs.encode(pickle.dumps(val), "base64").decode() # unpickle object _ = pickle.loads(codecs.decode(pickled.encode(), "base64")) except ( pickle.PicklingError, tf.errors.InvalidArgumentError, TypeError, tf.errors.InternalError, tf.errors.NotFoundError, OverflowError, TypingError, AttributeError, ) as e: warn("Did not pickle {}: {}".format(key, e)) return False except ValueError as e: warn(f"Failed at pickling {key}:{val} due to {e}") return False return True
Checks if a dictionary item can be pickled Parameters ---------- key : try key for dictionary element val : None element of dictionary Returns ------- picklable: bool whether the dictionary item can be pickled
should_pickle
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def load_ParametricUMAP(save_location, verbose=True): """ Load a parametric UMAP model consisting of a umap-learn UMAP object and corresponding keras models. Parameters ---------- save_location : str the folder that the model was saved in verbose : bool, optional Whether to print the loading steps, by default True Returns ------- parametric_umap.ParametricUMAP Parametric UMAP objects """ ## Loads a ParametricUMAP model and its related keras models model_output = os.path.join(save_location, "model.pkl") model = pickle.load((open(model_output, "rb"))) if verbose: print("Pickle of ParametricUMAP model loaded from {}".format(model_output)) # load encoder encoder_output = os.path.join(save_location, "encoder.keras") if os.path.exists(encoder_output): model.encoder = keras.models.load_model(encoder_output) if verbose: print("Keras encoder model loaded from {}".format(encoder_output)) # save decoder decoder_output = os.path.join(save_location, "decoder.keras") if os.path.exists(decoder_output): model.decoder = keras.models.load_model(decoder_output) print("Keras decoder model loaded from {}".format(decoder_output)) # save parametric_model parametric_model_output = os.path.join(save_location, "parametric_model") if os.path.exists(parametric_model_output): model.parametric_model = keras.models.load_model(parametric_model_output) print("Keras full model loaded from {}".format(parametric_model_output)) return model
Load a parametric UMAP model consisting of a umap-learn UMAP object and corresponding keras models. Parameters ---------- save_location : str the folder that the model was saved in verbose : bool, optional Whether to print the loading steps, by default True Returns ------- parametric_umap.ParametricUMAP Parametric UMAP objects
load_ParametricUMAP
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def covariance(x, y=None, keepdims=False): """Adapted from TF Probability.""" x = ops.convert_to_tensor(x) # Covariance *only* uses the centered versions of x (and y). x = x - ops.mean(x, axis=0, keepdims=True) if y is None: y = x event_axis = ops.mean(x * ops.conj(y), axis=0, keepdims=keepdims) else: y = ops.convert_to_tensor(y, dtype=x.dtype) y = y - ops.mean(y, axis=0, keepdims=True) event_axis = [len(x.shape) - 1] sample_axis = [0] event_axis = ops.cast(event_axis, dtype="int32") sample_axis = ops.cast(sample_axis, dtype="int32") x_permed = ops.transpose(x) y_permed = ops.transpose(y) n_events = ops.shape(x_permed)[0] n_samples = ops.shape(x_permed)[1] # Flatten sample_axis into one long dim. x_permed_flat = ops.reshape(x_permed, (n_events, n_samples)) y_permed_flat = ops.reshape(y_permed, (n_events, n_samples)) # Do the same for event_axis. x_permed_flat = ops.reshape(x_permed, (n_events, n_samples)) y_permed_flat = ops.reshape(y_permed, (n_events, n_samples)) # After matmul, cov.shape = batch_shape + [n_events, n_events] cov = ops.matmul(x_permed_flat, ops.transpose(y_permed_flat)) / ops.cast( n_samples, x.dtype ) cov = ops.reshape( cov, (n_events**2, 1), ) # Permuting by the argsort inverts the permutation, making # cov.shape have ones in the position where there were samples, and # [n_events * n_events] in the event position. cov = ops.transpose(cov) # Now expand event_shape**2 into event_shape + event_shape. # We here use (for the first time) the fact that we require event_axis to be # contiguous. cov = ops.reshape( cov, ops.shape(cov)[:1] + (n_events, n_events), ) if not keepdims: cov = ops.squeeze(cov, axis=0) return cov
Adapted from TF Probability.
covariance
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def __init__(self, indim, outdim): super(PumapNet, self).__init__() self.dense1 = nn.Linear(indim, 100) self.dense2 = nn.Linear(100, 100) self.dense3 = nn.Linear(100, 100) self.dense4 = nn.Linear(100, outdim) """ Creates the same network as the one used by parametric UMAP. Note: shape of network is fixed. Parameters ---------- indim : int dimension of input to network. outdim : int dimension of output of network. """
Creates the same network as the one used by parametric UMAP. Note: shape of network is fixed. Parameters ---------- indim : int dimension of input to network. outdim : int dimension of output of network.
__init__
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def weight_copier(km, pm): """Copies weights from a parametric UMAP encoder to pytorch. Parameters ---------- km : encoder extracted from parametric UMAP. pm: a PumapNet object. Will be overwritten. Returns ------- pm : PumapNet Object. Net with copied weights. """ kweights = km.get_weights() n_layers = int(len(kweights) / 2) # The actual number of layers # Get the names of the pytorch layers all_keys = [x for x in pm.state_dict().keys()] pm_names = [all_keys[2 * i].split(".")[0] for i in range(4)] # Set a variable for the state dict pyt_state_dict = pm.state_dict() for i in range(n_layers): pyt_state_dict[pm_names[i] + ".bias"] = kweights[2 * i + 1] pyt_state_dict[pm_names[i] + ".weight"] = np.transpose(kweights[2 * i]) for key in pyt_state_dict.keys(): pyt_state_dict[key] = torch.from_numpy(pyt_state_dict[key]) # Update pm.load_state_dict(pyt_state_dict) return pm
Copies weights from a parametric UMAP encoder to pytorch. Parameters ---------- km : encoder extracted from parametric UMAP. pm: a PumapNet object. Will be overwritten. Returns ------- pm : PumapNet Object. Net with copied weights.
weight_copier
python
lmcinnes/umap
umap/parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/parametric_umap.py
BSD-3-Clause
def __init__(self, **kwds): warn( """The umap.parametric_umap package requires Tensorflow > 2.0 to be installed. You can install Tensorflow at https://www.tensorflow.org/install or you can install the CPU version of Tensorflow using pip install umap-learn[parametric_umap] """ ) raise ImportError( "umap.parametric_umap requires Tensorflow >= 2.0" ) from None
The umap.parametric_umap package requires Tensorflow > 2.0 to be installed. You can install Tensorflow at https://www.tensorflow.org/install or you can install the CPU version of Tensorflow using pip install umap-learn[parametric_umap]
__init__
python
lmcinnes/umap
umap/__init__.py
https://github.com/lmcinnes/umap/blob/master/umap/__init__.py
BSD-3-Clause
def test_umap_transform_embedding_stability(iris, iris_subset_model, iris_selection): """Test that transforming data does not alter the learned embeddings Issue #217 describes how using transform to embed new data using a trained UMAP transformer causes the fitting embedding matrix to change in cases when the new data has the same number of rows as the original training data. """ data = iris.data[iris_selection] fitter = iris_subset_model original_embedding = fitter.embedding_.copy() # The important point is that the new data has the same number of rows # as the original fit data new_data = np.random.random(data.shape) _ = fitter.transform(new_data) assert_array_equal( original_embedding, fitter.embedding_, "Transforming new data changed the original embeddings", ) # Example from issue #217 a = np.random.random((100, 10)) b = np.random.random((100, 5)) umap = UMAP(n_epochs=100) u1 = umap.fit_transform(a[:, :5]) u1_orig = u1.copy() assert_array_equal(u1_orig, umap.embedding_) _ = umap.transform(b) assert_array_equal(u1_orig, umap.embedding_)
Test that transforming data does not alter the learned embeddings Issue #217 describes how using transform to embed new data using a trained UMAP transformer causes the fitting embedding matrix to change in cases when the new data has the same number of rows as the original training data.
test_umap_transform_embedding_stability
python
lmcinnes/umap
umap/tests/test_umap_ops.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_umap_ops.py
BSD-3-Clause
def test_check_input_data(all_finite_data, inverse_data): """ Data input to UMAP gets checked for liability. This tests checks the if data input is dismissed/accepted according to the "ensure_all_finite" keyword as used by sklearn. Parameters ---------- all_finite_data inverse_data ------- """ inf_data = all_finite_data.copy() inf_data[0] = np.inf nan_data = all_finite_data.copy() nan_data[0] = np.nan inf_nan_data = all_finite_data.copy() inf_nan_data[0] = np.nan inf_nan_data[1] = np.inf # wrapper to call each data handling function of UMAP in a convenient way def call_umap_functions(data, ensure_all_finite): u = UMAP(metric=nan_dist) if ensure_all_finite is None: u.fit_transform(data) u.fit(data) u.transform(data) u.update(data) u.inverse_transform(inverse_data) else: u.fit_transform(data, ensure_all_finite=ensure_all_finite) u.fit(data, ensure_all_finite=ensure_all_finite) u.transform(data, ensure_all_finite=ensure_all_finite) u.update(data, ensure_all_finite=ensure_all_finite) u.inverse_transform(inverse_data) # Check whether correct data input is accepted call_umap_functions(all_finite_data, None) call_umap_functions(all_finite_data, True) call_umap_functions(nan_data, "allow-nan") call_umap_functions(all_finite_data, "allow-nan") call_umap_functions(inf_data, False) call_umap_functions(inf_nan_data, False) call_umap_functions(nan_data, False) call_umap_functions(all_finite_data, False) # Check whether illegal data raises a ValueError with pytest.raises(ValueError): call_umap_functions(nan_data, None) call_umap_functions(inf_data, None) call_umap_functions(inf_nan_data, None) call_umap_functions(nan_data, True) call_umap_functions(inf_data, True) call_umap_functions(inf_nan_data, True) call_umap_functions(inf_data, "allow-nan") call_umap_functions(inf_nan_data, "allow-nan")
Data input to UMAP gets checked for liability. This tests checks the if data input is dismissed/accepted according to the "ensure_all_finite" keyword as used by sklearn. Parameters ---------- all_finite_data inverse_data -------
test_check_input_data
python
lmcinnes/umap
umap/tests/test_data_input.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_data_input.py
BSD-3-Clause
def test_create_model(moon_dataset): """test a simple parametric UMAP network""" embedder = ParametricUMAP() embedding = embedder.fit_transform(moon_dataset) # completes successfully assert embedding is not None assert embedding.shape == (moon_dataset.shape[0], 2)
test a simple parametric UMAP network
test_create_model
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def test_global_loss(moon_dataset): """test a simple parametric UMAP network""" embedder = ParametricUMAP(global_correlation_loss_weight=1.0) embedding = embedder.fit_transform(moon_dataset) # completes successfully assert embedding is not None assert embedding.shape == (moon_dataset.shape[0], 2)
test a simple parametric UMAP network
test_global_loss
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def test_inverse_transform(moon_dataset): """tests inverse_transform""" def norm(x): return (x - np.min(x)) / (np.max(x) - np.min(x)) X = norm(moon_dataset) embedder = ParametricUMAP(parametric_reconstruction=True) Z = embedder.fit_transform(X) X_r = embedder.inverse_transform(Z) # completes successfully assert X_r is not None assert X_r.shape == X.shape
tests inverse_transform
test_inverse_transform
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def test_custom_encoder_decoder(moon_dataset): """test using a custom encoder / decoder""" dims = (2,) n_components = 2 encoder = tf.keras.Sequential( [ tf.keras.layers.Input(shape=dims), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense(units=n_components, name="z"), ] ) decoder = tf.keras.Sequential( [ tf.keras.layers.Input(shape=(n_components,)), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense(units=100, activation="relu"), tf.keras.layers.Dense( units=np.prod(dims), name="recon", activation=None ), tf.keras.layers.Reshape(dims), ] ) embedder = ParametricUMAP( encoder=encoder, decoder=decoder, dims=dims, parametric_reconstruction=True, verbose=True, ) embedding = embedder.fit_transform(moon_dataset) # completes successfully assert embedding is not None assert embedding.shape == (moon_dataset.shape[0], 2)
test using a custom encoder / decoder
test_custom_encoder_decoder
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def test_validation(moon_dataset): """tests adding a validation dataset""" X_train, X_valid = train_test_split(moon_dataset, train_size=0.5) embedder = ParametricUMAP( parametric_reconstruction=True, reconstruction_validation=X_valid, verbose=True ) embedding = embedder.fit_transform(X_train) # completes successfully assert embedding is not None assert embedding.shape == (X_train.shape[0], 2)
tests adding a validation dataset
test_validation
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def test_save_load(moon_dataset): """tests saving and loading""" embedder = ParametricUMAP() embedding = embedder.fit_transform(moon_dataset) # completes successfully assert embedding is not None assert embedding.shape == (moon_dataset.shape[0], 2) # Portable tempfile model_path = tempfile.mkdtemp(suffix="_umap_model") embedder.save(model_path) loaded_model = load_ParametricUMAP(model_path) assert loaded_model is not None loaded_embedding = loaded_model.transform(moon_dataset) assert_array_almost_equal( embedding, loaded_embedding, decimal=5, err_msg="Loaded model transform fails to match original embedding", )
tests saving and loading
test_save_load
python
lmcinnes/umap
umap/tests/test_parametric_umap.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_parametric_umap.py
BSD-3-Clause
def run_test_metric(metric, test_data, dist_matrix, with_grad=False): """Core utility function to test target metric on test data""" if with_grad: dist_function = dist.named_distances_with_gradients[metric] else: dist_function = dist.named_distances[metric] sample_size = test_data.shape[0] test_matrix = [ [dist_function(test_data[i], test_data[j]) for j in range(sample_size)] for i in range(sample_size) ] if with_grad: test_matrix = [d for pairs in test_matrix for d, grad in pairs] test_matrix = np.array(test_matrix).reshape(sample_size, sample_size) assert_array_almost_equal( test_matrix, dist_matrix, err_msg="Distances don't match " "for metric {}".format(metric), )
Core utility function to test target metric on test data
run_test_metric
python
lmcinnes/umap
umap/tests/test_umap_metrics.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_umap_metrics.py
BSD-3-Clause
def run_test_sparse_metric(metric, sparse_test_data, dist_matrix): """Core utility function to run test of target metric on sparse data""" dist_function = spdist.sparse_named_distances[metric] if metric in spdist.sparse_need_n_features: test_matrix = np.array( [ [ dist_function( sparse_test_data[i].indices, sparse_test_data[i].data, sparse_test_data[j].indices, sparse_test_data[j].data, sparse_test_data.shape[1], ) for j in range(sparse_test_data.shape[0]) ] for i in range(sparse_test_data.shape[0]) ] ) else: test_matrix = np.array( [ [ dist_function( sparse_test_data[i].indices, sparse_test_data[i].data, sparse_test_data[j].indices, sparse_test_data[j].data, ) for j in range(sparse_test_data.shape[0]) ] for i in range(sparse_test_data.shape[0]) ] ) assert_array_almost_equal( test_matrix, dist_matrix, err_msg="Sparse distances don't match " "for metric {}".format(metric), )
Core utility function to run test of target metric on sparse data
run_test_sparse_metric
python
lmcinnes/umap
umap/tests/test_umap_metrics.py
https://github.com/lmcinnes/umap/blob/master/umap/tests/test_umap_metrics.py
BSD-3-Clause
def torus_euclidean_grad(x, y, torus_dimensions=(2 * np.pi, 2 * np.pi)): """Standard euclidean distance. ..math:: D(x, y) = \sqrt{\sum_i (x_i - y_i)^2} """ distance_sqr = 0.0 g = np.zeros_like(x) for i in range(x.shape[0]): a = abs(x[i] - y[i]) if 2 * a < torus_dimensions[i]: distance_sqr += a**2 g[i] = x[i] - y[i] else: distance_sqr += (torus_dimensions[i] - a) ** 2 g[i] = (x[i] - y[i]) * (a - torus_dimensions[i]) / a distance = np.sqrt(distance_sqr) return distance, g / (1e-6 + distance)
Standard euclidean distance. ..math:: D(x, y) = \sqrt{\sum_i (x_i - y_i)^2}
torus_euclidean_grad
python
lmcinnes/umap
examples/mnist_torus_sphere_example.py
https://github.com/lmcinnes/umap/blob/master/examples/mnist_torus_sphere_example.py
BSD-3-Clause
def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows
Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C)
window_partition
python
JingyunLiang/SwinIR
models/network_swinir.py
https://github.com/JingyunLiang/SwinIR/blob/master/models/network_swinir.py
Apache-2.0
def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x
Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C)
window_reverse
python
JingyunLiang/SwinIR
models/network_swinir.py
https://github.com/JingyunLiang/SwinIR/blob/master/models/network_swinir.py
Apache-2.0
def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x
Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
forward
python
JingyunLiang/SwinIR
models/network_swinir.py
https://github.com/JingyunLiang/SwinIR/blob/master/models/network_swinir.py
Apache-2.0
def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x
x: B, H*W, C
forward
python
JingyunLiang/SwinIR
models/network_swinir.py
https://github.com/JingyunLiang/SwinIR/blob/master/models/network_swinir.py
Apache-2.0
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate PSNR (Peak Signal-to-Noise Ratio). Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) mse = np.mean((img1 - img2) ** 2) if mse == 0: return float('inf') return 20. * np.log10(255. / np.sqrt(mse))
Calculate PSNR (Peak Signal-to-Noise Ratio). Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result.
calculate_psnr
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def _ssim(img1, img2): """Calculate SSIM (structural similarity) for one channel images. It is called by func:`calculate_ssim`. Args: img1 (ndarray): Images with range [0, 255] with order 'HWC'. img2 (ndarray): Images with range [0, 255] with order 'HWC'. Returns: float: ssim result. """ C1 = (0.01 * 255) ** 2 C2 = (0.03 * 255) ** 2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1 ** 2 mu2_sq = mu2 ** 2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean()
Calculate SSIM (structural similarity) for one channel images. It is called by func:`calculate_ssim`. Args: img1 (ndarray): Images with range [0, 255] with order 'HWC'. img2 (ndarray): Images with range [0, 255] with order 'HWC'. Returns: float: ssim result.
_ssim
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate SSIM (structural similarity). Ref: Image quality assessment: From error visibility to structural similarity The results are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged. Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the SSIM calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: ssim result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) ssims = [] for i in range(img1.shape[2]): ssims.append(_ssim(img1[..., i], img2[..., i])) return np.array(ssims).mean()
Calculate SSIM (structural similarity). Ref: Image quality assessment: From error visibility to structural similarity The results are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged. Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the SSIM calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: ssim result.
calculate_ssim
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate PSNR-B (Peak Signal-to-Noise Ratio). Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation # https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) # follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255. img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255. total = 0 for c in range(img1.shape[1]): mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none') bef = _blocking_effect_factor(img1[:, c:c + 1, :, :]) mse = mse.view(mse.shape[0], -1).mean(1) total += 10 * torch.log10(1 / (mse + bef)) return float(total) / img1.shape[1]
Calculate PSNR-B (Peak Signal-to-Noise Ratio). Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation # https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result.
calculate_psnrb
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def reorder_image(img, input_order='HWC'): """Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image. """ if input_order not in ['HWC', 'CHW']: raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") if len(img.shape) == 2: img = img[..., None] if input_order == 'CHW': img = img.transpose(1, 2, 0) return img
Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image.
reorder_image
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = bgr2ycbcr(img, y_only=True) img = img[..., None] return img * 255.
Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round.
to_y_channel
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def _convert_input_type_range(img): """Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1]. """ img_type = img.dtype img = img.astype(np.float32) if img_type == np.float32: pass elif img_type == np.uint8: img /= 255. else: raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') return img
Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1].
_convert_input_type_range
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def _convert_output_type_range(img, dst_type): """Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range. """ if dst_type not in (np.uint8, np.float32): raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') if dst_type == np.uint8: img = img.round() else: img /= 255. return img.astype(dst_type)
Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range.
_convert_output_type_range
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] out_img = _convert_output_type_range(out_img, img_type) return out_img
Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image.
bgr2ycbcr
python
JingyunLiang/SwinIR
utils/util_calculate_psnr_ssim.py
https://github.com/JingyunLiang/SwinIR/blob/master/utils/util_calculate_psnr_ssim.py
Apache-2.0
def memoize(_func=None, *, key_func=None): """@memoize(key_func=None). Makes decorated function memoize its results. If key_func is specified uses key_func(*func_args, **func_kwargs) as memory key. Otherwise uses args + tuple(sorted(kwargs.items())) Exposes its memory via .memory attribute. """ if _func is not None: return memoize()(_func) return _memory_decorator({}, key_func)
@memoize(key_func=None). Makes decorated function memoize its results. If key_func is specified uses key_func(*func_args, **func_kwargs) as memory key. Otherwise uses args + tuple(sorted(kwargs.items())) Exposes its memory via .memory attribute.
memoize
python
Suor/funcy
funcy/calc.py
https://github.com/Suor/funcy/blob/master/funcy/calc.py
BSD-3-Clause
def cache(timeout, *, key_func=None): """Caches a function results for timeout seconds.""" if isinstance(timeout, timedelta): timeout = timeout.total_seconds() return _memory_decorator(CacheMemory(timeout), key_func)
Caches a function results for timeout seconds.
cache
python
Suor/funcy
funcy/calc.py
https://github.com/Suor/funcy/blob/master/funcy/calc.py
BSD-3-Clause
def make_lookuper(func): """ Creates a single argument function looking up result in a memory. Decorated function is called once on first lookup and should return all available arg-value pairs. Resulting function will raise LookupError when using @make_lookuper or simply return None when using @silent_lookuper. """ has_args, has_keys = has_arg_types(func) assert not has_keys, \ 'Lookup table building function should not have keyword arguments' if has_args: @memoize def wrapper(*args): f = lambda: func(*args) f.__name__ = '%s(%s)' % (func.__name__, ', '.join(map(str, args))) return make_lookuper(f) else: memory = {} def wrapper(arg): if not memory: memory[object()] = None # prevent continuos memory refilling memory.update(func()) if silent: return memory.get(arg) elif arg in memory: return memory[arg] else: raise LookupError("Failed to look up %s(%s)" % (func.__name__, arg)) return wraps(func)(wrapper)
Creates a single argument function looking up result in a memory. Decorated function is called once on first lookup and should return all available arg-value pairs. Resulting function will raise LookupError when using @make_lookuper or simply return None when using @silent_lookuper.
_make_lookuper.make_lookuper
python
Suor/funcy
funcy/calc.py
https://github.com/Suor/funcy/blob/master/funcy/calc.py
BSD-3-Clause
def _make_lookuper(silent): def make_lookuper(func): """ Creates a single argument function looking up result in a memory. Decorated function is called once on first lookup and should return all available arg-value pairs. Resulting function will raise LookupError when using @make_lookuper or simply return None when using @silent_lookuper. """ has_args, has_keys = has_arg_types(func) assert not has_keys, \ 'Lookup table building function should not have keyword arguments' if has_args: @memoize def wrapper(*args): f = lambda: func(*args) f.__name__ = '%s(%s)' % (func.__name__, ', '.join(map(str, args))) return make_lookuper(f) else: memory = {} def wrapper(arg): if not memory: memory[object()] = None # prevent continuos memory refilling memory.update(func()) if silent: return memory.get(arg) elif arg in memory: return memory[arg] else: raise LookupError("Failed to look up %s(%s)" % (func.__name__, arg)) return wraps(func)(wrapper) return make_lookuper
Creates a single argument function looking up result in a memory. Decorated function is called once on first lookup and should return all available arg-value pairs. Resulting function will raise LookupError when using @make_lookuper or simply return None when using @silent_lookuper.
_make_lookuper
python
Suor/funcy
funcy/calc.py
https://github.com/Suor/funcy/blob/master/funcy/calc.py
BSD-3-Clause
def re_iter(regex, s, flags=0): """Iterates over matches of regex in s, presents them in simplest possible form""" regex, getter = _prepare(regex, flags) return map(getter, regex.finditer(s))
Iterates over matches of regex in s, presents them in simplest possible form
re_iter
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause
def re_all(regex, s, flags=0): """Lists all matches of regex in s, presents them in simplest possible form""" return list(re_iter(regex, s, flags))
Lists all matches of regex in s, presents them in simplest possible form
re_all
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause
def re_find(regex, s, flags=0): """Matches regex against the given string, returns the match in the simplest possible form.""" return re_finder(regex, flags)(s)
Matches regex against the given string, returns the match in the simplest possible form.
re_find
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause
def re_test(regex, s, flags=0): """Tests whether regex matches against s.""" return re_tester(regex, flags)(s)
Tests whether regex matches against s.
re_test
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause
def re_finder(regex, flags=0): """Creates a function finding regex in passed string.""" regex, _getter = _prepare(regex, flags) getter = lambda m: _getter(m) if m else None return lambda s: getter(regex.search(s))
Creates a function finding regex in passed string.
re_finder
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause
def re_tester(regex, flags=0): """Creates a predicate testing passed string with regex.""" if not isinstance(regex, _re_type): regex = re.compile(regex, flags) return lambda s: bool(regex.search(s))
Creates a predicate testing passed string with regex.
re_tester
python
Suor/funcy
funcy/strings.py
https://github.com/Suor/funcy/blob/master/funcy/strings.py
BSD-3-Clause