code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def __init__(
self,
ratings_file: str,
padding_length: int,
ignore_last_n: int, # used for creating train/valid/test sets
shift_id_by: int = 0,
chronological: bool = False,
sample_ratio: float = 1.0,
) -> None:
"""
Args:
csv_file (string): Path to the csv file.
"""
super().__init__()
self.ratings_frame: pd.DataFrame = pd.read_csv(
ratings_file,
delimiter=",",
# iterator=True,
)
self._padding_length: int = padding_length
self._ignore_last_n: int = ignore_last_n
self._cache: Dict[int, Dict[str, torch.Tensor]] = dict()
self._shift_id_by: int = shift_id_by
self._chronological: bool = chronological
self._sample_ratio: float = sample_ratio | Args:
csv_file (string): Path to the csv file. | __init__ | python | facebookresearch/generative-recommenders | generative_recommenders/research/data/dataset.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/data/dataset.py | Apache-2.0 |
def create_mol_interaction_module(
query_embedding_dim: int,
item_embedding_dim: int,
dot_product_dimension: int,
query_dot_product_groups: int,
item_dot_product_groups: int,
temperature: float,
query_dropout_rate: float,
query_hidden_dim: int,
item_dropout_rate: float,
item_hidden_dim: int,
gating_query_hidden_dim: int,
gating_qi_hidden_dim: int,
gating_item_hidden_dim: int,
softmax_dropout_rate: float,
bf16_training: bool,
gating_query_fn: bool = True,
gating_item_fn: bool = True,
dot_product_l2_norm: bool = True,
query_nonlinearity: str = "geglu",
item_nonlinearity: str = "geglu",
uid_dropout_rate: float = 0.5,
uid_embedding_hash_sizes: Optional[List[int]] = None,
uid_embedding_level_dropout: bool = False,
gating_combination_type: str = "glu_silu",
gating_item_dropout_rate: float = 0.0,
gating_qi_dropout_rate: float = 0.0,
eps: float = 1e-6,
) -> Tuple[MoLSimilarity, str]:
"""
Gin wrapper for creating MoL learned similarity.
"""
mol_module = MoLSimilarity(
query_embedding_dim=query_embedding_dim,
item_embedding_dim=item_embedding_dim,
dot_product_dimension=dot_product_dimension,
query_dot_product_groups=query_dot_product_groups,
item_dot_product_groups=item_dot_product_groups,
temperature=temperature,
dot_product_l2_norm=dot_product_l2_norm,
query_embeddings_fn=RecoMoLQueryEmbeddingsFn(
query_embedding_dim=query_embedding_dim,
query_dot_product_groups=query_dot_product_groups,
dot_product_dimension=dot_product_dimension,
dot_product_l2_norm=dot_product_l2_norm,
proj_fn=lambda input_dim, output_dim: (
torch.nn.Sequential(
torch.nn.Dropout(p=query_dropout_rate),
SwiGLU(
in_features=input_dim,
out_features=query_hidden_dim,
),
torch.nn.Linear(
in_features=query_hidden_dim,
out_features=output_dim,
),
).apply(init_mlp_xavier_weights_zero_bias)
),
eps=eps,
),
item_embeddings_fn=RecoMoLItemEmbeddingsFn(
item_embedding_dim=item_embedding_dim,
item_dot_product_groups=item_dot_product_groups,
dot_product_dimension=dot_product_dimension,
dot_product_l2_norm=dot_product_l2_norm,
proj_fn=lambda input_dim, output_dim: (
torch.nn.Sequential(
torch.nn.Dropout(p=item_dropout_rate),
SwiGLU(in_features=input_dim, out_features=item_hidden_dim),
torch.nn.Linear(
in_features=item_hidden_dim,
out_features=output_dim,
),
).apply(init_mlp_xavier_weights_zero_bias)
),
eps=eps,
),
gating_query_only_partial_fn=lambda input_dim, output_dim: ( # pyre-ignore [6]
torch.nn.Sequential(
torch.nn.Linear(
in_features=input_dim,
out_features=gating_query_hidden_dim,
),
torch.nn.SiLU(),
torch.nn.Linear(
in_features=gating_query_hidden_dim,
out_features=output_dim,
bias=False,
),
).apply(init_mlp_xavier_weights_zero_bias)
if gating_query_fn
else None
),
gating_item_only_partial_fn=lambda input_dim, output_dim: ( # pyre-ignore [6]
torch.nn.Sequential(
torch.nn.Dropout(p=gating_item_dropout_rate),
torch.nn.Linear(
in_features=input_dim,
out_features=gating_item_hidden_dim,
),
torch.nn.SiLU(),
torch.nn.Linear(
in_features=gating_item_hidden_dim,
out_features=output_dim,
bias=False,
),
).apply(init_mlp_xavier_weights_zero_bias)
if gating_item_fn
else None
),
gating_qi_partial_fn=lambda input_dim, output_dim: ( # pyre-ignore [6]
torch.nn.Sequential(
torch.nn.Dropout(p=gating_qi_dropout_rate),
torch.nn.Linear(
in_features=input_dim,
out_features=gating_qi_hidden_dim,
),
torch.nn.SiLU(),
torch.nn.Linear(
in_features=gating_qi_hidden_dim,
out_features=output_dim,
),
).apply(init_mlp_xavier_weights_zero_bias)
if gating_qi_hidden_dim > 0
else torch.nn.Sequential(
torch.nn.Dropout(p=gating_qi_dropout_rate),
torch.nn.Linear(
in_features=input_dim,
out_features=output_dim,
),
).apply(init_mlp_xavier_weights_zero_bias)
),
gating_combination_type=gating_combination_type,
gating_normalization_fn=lambda _: SoftmaxDropoutCombiner(
dropout_rate=softmax_dropout_rate, eps=1e-6
),
eps=eps,
autocast_bf16=bf16_training,
)
interaction_module_debug_str = (
f"MoL-{query_dot_product_groups}x{item_dot_product_groups}x{dot_product_dimension}"
+ f"-t{temperature}-d{softmax_dropout_rate}"
+ f"{'-l2' if dot_product_l2_norm else ''}"
+ f"-q{query_hidden_dim}d{query_dropout_rate}{query_nonlinearity}"
+ f"-i{item_hidden_dim}d{item_dropout_rate}{item_nonlinearity}"
+ (f"-gq{gating_query_hidden_dim}" if gating_query_fn else "")
+ (
f"-gi{gating_item_hidden_dim}d{gating_item_dropout_rate}"
if gating_item_fn
else ""
)
+ f"-gqi{gating_qi_hidden_dim}d{gating_qi_dropout_rate}-x-{gating_combination_type}"
)
return mol_module, interaction_module_debug_str | Gin wrapper for creating MoL learned similarity. | create_mol_interaction_module | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/similarity_utils.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/similarity_utils.py | Apache-2.0 |
def batch_gather_embeddings(
rowwise_indices: torch.Tensor,
embeddings: torch.Tensor,
) -> torch.Tensor:
"""
Args:
rowwise_indices: (B, N) x int, where each entry is in [0, X).
embeddings: (B, X, D,) x float.
Returns:
(B, N, D,) x float, embeddings corresponding to rowwise_indices.
"""
_, N = rowwise_indices.size()
B, X, D = embeddings.size()
flattened_indices = (
rowwise_indices
+ torch.arange(
start=0,
end=B,
step=1,
dtype=rowwise_indices.dtype,
device=rowwise_indices.device,
)
.unsqueeze(1)
.expand(-1, N)
* X
)
return embeddings.view(-1, D)[flattened_indices, :].reshape(
rowwise_indices.size() + (D,)
) | Args:
rowwise_indices: (B, N) x int, where each entry is in [0, X).
embeddings: (B, X, D,) x float.
Returns:
(B, N, D,) x float, embeddings corresponding to rowwise_indices. | batch_gather_embeddings | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/utils.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/utils.py | Apache-2.0 |
def batch_scatter_embeddings(
dst_embeddings: torch.Tensor,
rowwise_indices: torch.Tensor,
src_embeddings: torch.Tensor,
) -> None:
"""
Args:
dst_embeddings: (B, N, D,) x float.
rowwise_indices: (B,) x int, where each entry is in [0, N - 1).
source_embeddings: (B, D,) x float.
"""
B, N, D = dst_embeddings.size()
flattened_indices = rowwise_indices + torch.arange(
start=0,
end=B * N,
step=N,
dtype=rowwise_indices.dtype,
device=rowwise_indices.device,
)
dst_embeddings.view(B * N, D)[flattened_indices, :] = src_embeddings | Args:
dst_embeddings: (B, N, D,) x float.
rowwise_indices: (B,) x int, where each entry is in [0, N - 1).
source_embeddings: (B, D,) x float. | batch_scatter_embeddings | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/utils.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/utils.py | Apache-2.0 |
def get_current_embeddings(
lengths: torch.Tensor,
encoded_embeddings: torch.Tensor,
) -> torch.Tensor:
"""
Args:
lengths: (B,) x int
seq_embeddings: (B, N, D,) x float
Returns:
(B, D,) x float, where [i, :] == encoded_embeddings[i, lengths[i] - 1, :]
"""
B, N, D = encoded_embeddings.size()
flattened_offsets = (lengths - 1) + torch.arange(
start=0, end=B, step=1, dtype=lengths.dtype, device=lengths.device
) * N
return encoded_embeddings.reshape(-1, D)[flattened_offsets, :].reshape(B, D) | Args:
lengths: (B,) x int
seq_embeddings: (B, N, D,) x float
Returns:
(B, D,) x float, where [i, :] == encoded_embeddings[i, lengths[i] - 1, :] | get_current_embeddings | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/utils.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/utils.py | Apache-2.0 |
def generate_user_embeddings(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""
Args:
past_ids: (B, N,) x int
Returns:
(B, N, D,) x float
"""
past_lengths, user_embeddings, valid_mask = self._input_features_preproc(
past_lengths=past_lengths,
past_ids=past_ids,
past_embeddings=past_embeddings,
past_payloads=past_payloads,
)
for i in range(len(self.attention_layers)):
if self._activation_checkpoint:
user_embeddings = torch.utils.checkpoint.checkpoint(
self._run_one_layer,
i,
user_embeddings,
valid_mask,
use_reentrant=False,
)
else:
user_embeddings = self._run_one_layer(i, user_embeddings, valid_mask)
return self._output_postproc(user_embeddings) | Args:
past_ids: (B, N,) x int
Returns:
(B, N, D,) x float | generate_user_embeddings | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/sasrec.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/sasrec.py | Apache-2.0 |
def forward(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
batch_id: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
past_ids: [B, N] x int64 where the latest engaged ids come first. In
particular, [:, 0] should correspond to the last engaged values.
past_ratings: [B, N] x int64.
past_timestamps: [B, N] x int64.
Returns:
encoded_embeddings of [B, N, D].
"""
encoded_embeddings = self.generate_user_embeddings(
past_lengths,
past_ids,
past_embeddings,
past_payloads,
)
return encoded_embeddings | Args:
past_ids: [B, N] x int64 where the latest engaged ids come first. In
particular, [:, 0] should correspond to the last engaged values.
past_ratings: [B, N] x int64.
past_timestamps: [B, N] x int64.
Returns:
encoded_embeddings of [B, N, D]. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/sasrec.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/sasrec.py | Apache-2.0 |
def forward(
self,
positive_ids: torch.Tensor,
num_to_sample: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns:
A tuple of (sampled_ids, sampled_negative_embeddings).
"""
pass | Returns:
A tuple of (sampled_ids, sampled_negative_embeddings). | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
positive_ids: torch.Tensor,
num_to_sample: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns:
A tuple of (sampled_ids, sampled_negative_embeddings).
"""
# assert torch.max(torch.abs(self._item_emb(positive_ids) - positive_embeddings)) < 1e-4
output_shape = positive_ids.size() + (num_to_sample,)
sampled_offsets = torch.randint(
low=0,
high=self._num_items,
size=output_shape,
dtype=positive_ids.dtype,
device=positive_ids.device,
)
sampled_ids = self._all_item_ids[sampled_offsets.view(-1)].reshape(output_shape)
return sampled_ids, self.normalize_embeddings(self._item_emb(sampled_ids)) | Returns:
A tuple of (sampled_ids, sampled_negative_embeddings). | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def process_batch(
self,
ids: torch.Tensor,
presences: torch.Tensor,
embeddings: torch.Tensor,
) -> None:
"""
Args:
ids: (N') or (B, N) x int64
presences: (N') or (B, N) x bool
embeddings: (N', D) or (B, N, D) x float
"""
assert ids.size() == presences.size()
assert ids.size() == embeddings.size()[:-1]
if self._dedup_embeddings:
valid_ids = ids[presences]
unique_ids, unique_ids_inverse_indices = torch.unique(
input=valid_ids, sorted=False, return_inverse=True
)
device = unique_ids.device
unique_embedding_offsets = torch.empty(
(unique_ids.numel(),),
dtype=torch.int64,
device=device,
)
unique_embedding_offsets[unique_ids_inverse_indices] = torch.arange(
valid_ids.numel(), dtype=torch.int64, device=device
)
unique_embeddings = embeddings[presences][unique_embedding_offsets, :]
self._cached_embeddings = self._maybe_l2_norm( # pyre-ignore [16]
unique_embeddings
)
self._cached_ids = unique_ids # pyre-ignore [16]
else:
self._cached_embeddings = self._maybe_l2_norm(embeddings[presences])
self._cached_ids = ids[presences] | Args:
ids: (N') or (B, N) x int64
presences: (N') or (B, N) x bool
embeddings: (N', D) or (B, N, D) x float | process_batch | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
positive_ids: torch.Tensor,
num_to_sample: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns:
A tuple of (sampled_ids, sampled_negative_embeddings,).
"""
X = self._cached_ids.size(0)
sampled_offsets = torch.randint(
low=0,
high=X,
size=positive_ids.size() + (num_to_sample,),
dtype=positive_ids.dtype,
device=positive_ids.device,
)
return (
self._cached_ids[sampled_offsets], # pyre-ignore [29]
self._cached_embeddings[sampled_offsets], # pyre-ignore [29]
) | Returns:
A tuple of (sampled_ids, sampled_negative_embeddings,). | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def jagged_forward(
self,
output_embeddings: torch.Tensor,
supervision_ids: torch.Tensor,
supervision_embeddings: torch.Tensor,
supervision_weights: torch.Tensor,
negatives_sampler: NegativesSampler,
) -> torch.Tensor:
"""
Variant of forward() when the tensors are already in jagged format.
Args:
output_embeddings: [N', D] x float, embeddings for the current
input sequence.
supervision_ids: [N'] x int64, (positive) supervision ids.
supervision_embeddings: [N', D] x float.
supervision_weights: Optional [N'] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence.
"""
pass | Variant of forward() when the tensors are already in jagged format.
Args:
output_embeddings: [N', D] x float, embeddings for the current
input sequence.
supervision_ids: [N'] x int64, (positive) supervision ids.
supervision_embeddings: [N', D] x float.
supervision_weights: Optional [N'] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence. | jagged_forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
lengths: torch.Tensor,
output_embeddings: torch.Tensor,
supervision_ids: torch.Tensor,
supervision_embeddings: torch.Tensor,
supervision_weights: torch.Tensor,
negatives_sampler: NegativesSampler,
) -> torch.Tensor:
"""
Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence.
"""
pass | Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
lengths: torch.Tensor,
output_embeddings: torch.Tensor,
supervision_ids: torch.Tensor,
supervision_embeddings: torch.Tensor,
supervision_weights: torch.Tensor,
negatives_sampler: NegativesSampler,
) -> torch.Tensor:
"""
Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence.
"""
assert output_embeddings.size() == supervision_embeddings.size()
assert supervision_ids.size() == supervision_embeddings.size()[:-1]
jagged_id_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths)
jagged_supervision_ids = (
torch.ops.fbgemm.dense_to_jagged(
supervision_ids.unsqueeze(-1).float(), [jagged_id_offsets]
)[0]
.squeeze(1)
.long()
)
jagged_supervision_weights = torch.ops.fbgemm.dense_to_jagged(
supervision_weights.unsqueeze(-1),
[jagged_id_offsets],
)[0].squeeze(1)
return self.jagged_forward(
output_embeddings=torch.ops.fbgemm.dense_to_jagged(
output_embeddings,
[jagged_id_offsets],
)[0],
supervision_ids=jagged_supervision_ids,
supervision_embeddings=torch.ops.fbgemm.dense_to_jagged(
supervision_embeddings,
[jagged_id_offsets],
)[0],
supervision_weights=jagged_supervision_weights,
negatives_sampler=negatives_sampler,
) | Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
lengths: torch.Tensor,
output_embeddings: torch.Tensor,
supervision_ids: torch.Tensor,
supervision_embeddings: torch.Tensor,
supervision_weights: torch.Tensor,
supervision_ratings: torch.Tensor,
negatives_sampler: NegativesSampler,
) -> torch.Tensor:
"""
Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence.
"""
assert output_embeddings.size() == supervision_embeddings.size()
assert supervision_ids.size() == supervision_embeddings.size()[:-1]
jagged_id_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths)
jagged_supervision_ids = (
torch.ops.fbgemm.dense_to_jagged(
supervision_ids.unsqueeze(-1).float(), [jagged_id_offsets]
)[0]
.squeeze(1)
.long()
)
jagged_supervision_weights = torch.ops.fbgemm.dense_to_jagged(
supervision_weights.unsqueeze(-1),
[jagged_id_offsets],
)[0].squeeze(1)
return self.jagged_forward(
output_embeddings=torch.ops.fbgemm.dense_to_jagged(
output_embeddings,
[jagged_id_offsets],
)[0],
supervision_ids=jagged_supervision_ids,
supervision_embeddings=torch.ops.fbgemm.dense_to_jagged(
supervision_embeddings,
[jagged_id_offsets],
)[0],
supervision_weights=jagged_supervision_weights,
supervision_ratings=torch.ops.fbgemm.dense_to_jagged(
supervision_ratings.unsqueeze(-1),
[jagged_id_offsets],
)[0].squeeze(1),
negatives_sampler=negatives_sampler,
) | Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
(1), loss for the current engaged sequence. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/autoregressive_losses.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/autoregressive_losses.py | Apache-2.0 |
def forward(
self,
all_timestamps: torch.Tensor,
) -> torch.Tensor:
"""
Args:
all_timestamps: [B, N] x int64
Returns:
torch.float tensor broadcastable to [B, N, N]
"""
pass | Args:
all_timestamps: [B, N] x int64
Returns:
torch.float tensor broadcastable to [B, N, N] | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def forward(
self,
all_timestamps: torch.Tensor,
) -> torch.Tensor:
"""
Args:
all_timestamps: (B, N).
Returns:
(B, N, N).
"""
B = all_timestamps.size(0)
N = self._max_seq_len
t = F.pad(self._pos_w[: 2 * N - 1], [0, N]).repeat(N)
t = t[..., :-N].reshape(1, N, 3 * N - 2)
r = (2 * N - 1) // 2
# [B, N + 1] to simplify tensor manipulations.
ext_timestamps = torch.cat(
[all_timestamps, all_timestamps[:, N - 1 : N]], dim=1
)
# causal masking. Otherwise [:, :-1] - [:, 1:] works
bucketed_timestamps = torch.clamp(
self._bucketization_fn(
ext_timestamps[:, 1:].unsqueeze(2) - ext_timestamps[:, :-1].unsqueeze(1)
),
min=0,
max=self._num_buckets,
).detach()
rel_pos_bias = t[:, :, r:-r]
rel_ts_bias = torch.index_select(
self._ts_w, dim=0, index=bucketed_timestamps.view(-1)
).view(B, N, N)
return rel_pos_bias + rel_ts_bias | Args:
all_timestamps: (B, N).
Returns:
(B, N, N). | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def forward( # pyre-ignore [3]
self,
x: torch.Tensor,
x_offsets: torch.Tensor,
all_timestamps: Optional[torch.Tensor],
invalid_attn_mask: torch.Tensor,
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cache: Optional[HSTUCacheState] = None,
return_cache_states: bool = False,
):
"""
Args:
x: (\sum_i N_i, D) x float.
x_offsets: (B + 1) x int32.
all_timestamps: optional (B, N) x int64.
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}.
delta_x_offsets: optional 2-tuple ((B,) x int32, (B,) x int32).
For the 1st element in the tuple, each element is in [0, x_offsets[-1]). For the
2nd element in the tuple, each element is in [0, N).
cache: Optional 4-tuple of (v, padded_q, padded_k, output) from prior runs,
where all except padded_q, padded_k are jagged.
Returns:
x' = f(x), (\sum_i N_i, D) x float.
"""
n: int = invalid_attn_mask.size(-1)
cached_q = None
cached_k = None
if delta_x_offsets is not None:
# In this case, for all the following code, x, u, v, q, k become restricted to
# [delta_x_offsets[0], :].
assert cache is not None
x = x[delta_x_offsets[0], :]
cached_v, cached_q, cached_k, cached_outputs = cache
normed_x = self._norm_input(x)
if self._linear_config == "uvqk":
batched_mm_output = torch.mm(normed_x, self._uvqk)
if self._linear_activation == "silu":
batched_mm_output = F.silu(batched_mm_output)
elif self._linear_activation == "none":
batched_mm_output = batched_mm_output
u, v, q, k = torch.split(
batched_mm_output,
[
self._linear_dim * self._num_heads,
self._linear_dim * self._num_heads,
self._attention_dim * self._num_heads,
self._attention_dim * self._num_heads,
],
dim=1,
)
else:
raise ValueError(f"Unknown self._linear_config {self._linear_config}")
if delta_x_offsets is not None:
v = cached_v.index_copy_(dim=0, index=delta_x_offsets[0], source=v)
B: int = x_offsets.size(0) - 1
if self._normalization == "rel_bias" or self._normalization == "hstu_rel_bias":
assert self._rel_attn_bias is not None
attn_output, padded_q, padded_k = _hstu_attention_maybe_from_cache(
num_heads=self._num_heads,
attention_dim=self._attention_dim,
linear_dim=self._linear_dim,
q=q,
k=k,
v=v,
cached_q=cached_q,
cached_k=cached_k,
delta_x_offsets=delta_x_offsets,
x_offsets=x_offsets,
all_timestamps=all_timestamps,
invalid_attn_mask=invalid_attn_mask,
rel_attn_bias=self._rel_attn_bias,
)
elif self._normalization == "softmax_rel_bias":
if delta_x_offsets is not None:
B = x_offsets.size(0) - 1
padded_q, padded_k = cached_q, cached_k
flattened_offsets = delta_x_offsets[1] + torch.arange(
start=0,
end=B * n,
step=n,
device=delta_x_offsets[1].device,
dtype=delta_x_offsets[1].dtype,
)
assert padded_q is not None
assert padded_k is not None
padded_q = (
padded_q.view(B * n, -1)
.index_copy_(
dim=0,
index=flattened_offsets,
source=q,
)
.view(B, n, -1)
)
padded_k = (
padded_k.view(B * n, -1)
.index_copy_(
dim=0,
index=flattened_offsets,
source=k,
)
.view(B, n, -1)
)
else:
padded_q = torch.ops.fbgemm.jagged_to_padded_dense(
values=q, offsets=[x_offsets], max_lengths=[n], padding_value=0.0
)
padded_k = torch.ops.fbgemm.jagged_to_padded_dense(
values=k, offsets=[x_offsets], max_lengths=[n], padding_value=0.0
)
qk_attn = torch.einsum("bnd,bmd->bnm", padded_q, padded_k)
if self._rel_attn_bias is not None:
qk_attn = qk_attn + self._rel_attn_bias(all_timestamps)
qk_attn = F.softmax(qk_attn / math.sqrt(self._attention_dim), dim=-1)
qk_attn = qk_attn * invalid_attn_mask
attn_output = torch.ops.fbgemm.dense_to_jagged(
torch.bmm(
qk_attn,
torch.ops.fbgemm.jagged_to_padded_dense(v, [x_offsets], [n]),
),
[x_offsets],
)[0]
else:
raise ValueError(f"Unknown normalization method {self._normalization}")
attn_output = (
attn_output
if delta_x_offsets is None
else attn_output[delta_x_offsets[0], :]
)
if self._concat_ua:
a = self._norm_attn_output(attn_output)
o_input = torch.cat([u, a, u * a], dim=-1)
else:
o_input = u * self._norm_attn_output(attn_output)
new_outputs = (
self._o(
F.dropout(
o_input,
p=self._dropout_ratio,
training=self.training,
)
)
+ x
)
if delta_x_offsets is not None:
new_outputs = cached_outputs.index_copy_(
dim=0, index=delta_x_offsets[0], source=new_outputs
)
if return_cache_states and delta_x_offsets is None:
v = v.contiguous()
return new_outputs, (v, padded_q, padded_k, new_outputs) | Args:
x: (\sum_i N_i, D) x float.
x_offsets: (B + 1) x int32.
all_timestamps: optional (B, N) x int64.
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}.
delta_x_offsets: optional 2-tuple ((B,) x int32, (B,) x int32).
For the 1st element in the tuple, each element is in [0, x_offsets[-1]). For the
2nd element in the tuple, each element is in [0, N).
cache: Optional 4-tuple of (v, padded_q, padded_k, output) from prior runs,
where all except padded_q, padded_k are jagged.
Returns:
x' = f(x), (\sum_i N_i, D) x float. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def jagged_forward(
self,
x: torch.Tensor,
x_offsets: torch.Tensor,
all_timestamps: Optional[torch.Tensor],
invalid_attn_mask: torch.Tensor,
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cache: Optional[List[HSTUCacheState]] = None,
return_cache_states: bool = False,
) -> Tuple[torch.Tensor, List[HSTUCacheState]]:
"""
Args:
x: (\sum_i N_i, D) x float
x_offsets: (B + 1) x int32
all_timestamps: (B, 1 + N) x int64
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}
return_cache_states: bool. True if we should return cache states.
Returns:
x' = f(x), (\sum_i N_i, D) x float
"""
cache_states: List[HSTUCacheState] = []
with torch.autocast(
"cuda",
enabled=self._autocast_dtype is not None,
dtype=self._autocast_dtype or torch.float16,
):
for i, layer in enumerate(self._attention_layers):
x, cache_states_i = layer(
x=x,
x_offsets=x_offsets,
all_timestamps=all_timestamps,
invalid_attn_mask=invalid_attn_mask,
delta_x_offsets=delta_x_offsets,
cache=cache[i] if cache is not None else None,
return_cache_states=return_cache_states,
)
if return_cache_states:
cache_states.append(cache_states_i)
return x, cache_states | Args:
x: (\sum_i N_i, D) x float
x_offsets: (B + 1) x int32
all_timestamps: (B, 1 + N) x int64
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}
return_cache_states: bool. True if we should return cache states.
Returns:
x' = f(x), (\sum_i N_i, D) x float | jagged_forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def forward(
self,
x: torch.Tensor,
x_offsets: torch.Tensor,
all_timestamps: Optional[torch.Tensor],
invalid_attn_mask: torch.Tensor,
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cache: Optional[List[HSTUCacheState]] = None,
return_cache_states: bool = False,
) -> Tuple[torch.Tensor, List[HSTUCacheState]]:
"""
Args:
x: (B, N, D) x float.
x_offsets: (B + 1) x int32.
all_timestamps: (B, 1 + N) x int64
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}.
Returns:
x' = f(x), (B, N, D) x float
"""
if len(x.size()) == 3:
x = torch.ops.fbgemm.dense_to_jagged(x, [x_offsets])[0]
jagged_x, cache_states = self.jagged_forward(
x=x,
x_offsets=x_offsets,
all_timestamps=all_timestamps,
invalid_attn_mask=invalid_attn_mask,
delta_x_offsets=delta_x_offsets,
cache=cache,
return_cache_states=return_cache_states,
)
y = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged_x,
offsets=[x_offsets],
max_lengths=[invalid_attn_mask.size(1)],
padding_value=0.0,
)
return y, cache_states | Args:
x: (B, N, D) x float.
x_offsets: (B + 1) x int32.
all_timestamps: (B, 1 + N) x int64
invalid_attn_mask: (B, N, N) x float, each element in {0, 1}.
Returns:
x' = f(x), (B, N, D) x float | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def generate_user_embeddings(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cache: Optional[List[HSTUCacheState]] = None,
return_cache_states: bool = False,
) -> Tuple[torch.Tensor, List[HSTUCacheState]]:
"""
[B, N] -> [B, N, D].
"""
device = past_lengths.device
float_dtype = past_embeddings.dtype
B, N, _ = past_embeddings.size()
past_lengths, user_embeddings, _ = self._input_features_preproc(
past_lengths=past_lengths,
past_ids=past_ids,
past_embeddings=past_embeddings,
past_payloads=past_payloads,
)
float_dtype = user_embeddings.dtype
user_embeddings, cached_states = self._hstu(
x=user_embeddings,
x_offsets=torch.ops.fbgemm.asynchronous_complete_cumsum(past_lengths),
all_timestamps=(
past_payloads[TIMESTAMPS_KEY]
if TIMESTAMPS_KEY in past_payloads
else None
),
invalid_attn_mask=1.0 - self._attn_mask.to(float_dtype),
delta_x_offsets=delta_x_offsets,
cache=cache,
return_cache_states=return_cache_states,
)
return self._output_postproc(user_embeddings), cached_states | [B, N] -> [B, N, D]. | generate_user_embeddings | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def forward(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
batch_id: Optional[int] = None,
) -> torch.Tensor:
"""
Runs the main encoder.
Args:
past_lengths: (B,) x int64
past_ids: (B, N,) x int64 where the latest engaged ids come first. In
particular, past_ids[i, past_lengths[i] - 1] should correspond to
the latest engaged values.
past_embeddings: (B, N, D) x float or (\sum_b N_b, D) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
Returns:
encoded_embeddings of [B, N, D].
"""
encoded_embeddings, _ = self.generate_user_embeddings(
past_lengths=past_lengths,
past_ids=past_ids,
past_embeddings=past_embeddings,
past_payloads=past_payloads,
)
return encoded_embeddings | Runs the main encoder.
Args:
past_lengths: (B,) x int64
past_ids: (B, N,) x int64 where the latest engaged ids come first. In
particular, past_ids[i, past_lengths[i] - 1] should correspond to
the latest engaged values.
past_embeddings: (B, N, D) x float or (\sum_b N_b, D) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
Returns:
encoded_embeddings of [B, N, D]. | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def _encode(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]],
cache: Optional[List[HSTUCacheState]],
return_cache_states: bool,
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[HSTUCacheState]]]:
"""
Args:
past_lengths: (B,) x int64.
past_ids: (B, N,) x int64.
past_embeddings: (B, N, D,) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
return_cache_states: bool.
Returns:
(B, D) x float, representing embeddings for the current state.
"""
encoded_seq_embeddings, cache_states = self.generate_user_embeddings(
past_lengths=past_lengths,
past_ids=past_ids,
past_embeddings=past_embeddings,
past_payloads=past_payloads,
delta_x_offsets=delta_x_offsets,
cache=cache,
return_cache_states=return_cache_states,
) # [B, N, D]
current_embeddings = get_current_embeddings(
lengths=past_lengths, encoded_embeddings=encoded_seq_embeddings
)
if return_cache_states:
return current_embeddings, cache_states
else:
return current_embeddings | Args:
past_lengths: (B,) x int64.
past_ids: (B, N,) x int64.
past_embeddings: (B, N, D,) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
return_cache_states: bool.
Returns:
(B, D) x float, representing embeddings for the current state. | _encode | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def encode(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
delta_x_offsets: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cache: Optional[List[HSTUCacheState]] = None,
return_cache_states: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[HSTUCacheState]]]:
"""
Runs encoder to obtain the current hidden states.
Args:
past_lengths: (B,) x int.
past_ids: (B, N,) x int.
past_embeddings: (B, N, D) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
Returns:
(B, D,) x float, representing encoded states at the most recent time step.
"""
return self._encode(
past_lengths=past_lengths,
past_ids=past_ids,
past_embeddings=past_embeddings,
past_payloads=past_payloads,
delta_x_offsets=delta_x_offsets,
cache=cache,
return_cache_states=return_cache_states,
) | Runs encoder to obtain the current hidden states.
Args:
past_lengths: (B,) x int.
past_ids: (B, N,) x int.
past_embeddings: (B, N, D) x float.
past_payloads: implementation-specific keyed tensors of shape (B, N, ...).
Returns:
(B, D,) x float, representing encoded states at the most recent time step. | encode | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/hstu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/hstu.py | Apache-2.0 |
def get_preprocessed_ids(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""
Returns (B, N * 2,) x int64.
"""
B, N = past_ids.size()
return torch.cat(
[
past_ids.unsqueeze(2), # (B, N, 1)
past_payloads["ratings"].to(past_ids.dtype).unsqueeze(2),
],
dim=2,
).reshape(B, N * 2) | Returns (B, N * 2,) x int64. | get_preprocessed_ids | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/input_features_preprocessors.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/input_features_preprocessors.py | Apache-2.0 |
def get_preprocessed_masks(
self,
past_lengths: torch.Tensor,
past_ids: torch.Tensor,
past_embeddings: torch.Tensor,
past_payloads: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""
Returns (B, N * 2,) x bool.
"""
B, N = past_ids.size()
return (past_ids != 0).unsqueeze(2).expand(-1, -1, 2).reshape(B, N * 2) | Returns (B, N * 2,) x bool. | get_preprocessed_masks | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/input_features_preprocessors.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/input_features_preprocessors.py | Apache-2.0 |
def forward( # pyre-ignore [15]
self,
lengths: torch.Tensor,
output_embeddings: torch.Tensor,
supervision_ids: torch.Tensor,
supervision_embeddings: torch.Tensor,
supervision_weights: torch.Tensor,
negatives_sampler: NegativesSampler,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
Tuple of (loss for the current engaged sequence, str-keyed aux_losses).
"""
torch._assert(
output_embeddings.size() == supervision_embeddings.size(),
"Invalid supervision embeddings size.",
)
torch._assert(
supervision_ids.size() == supervision_embeddings.size()[:-1],
"Invalid supervision ids size.",
)
jagged_id_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths)
jagged_supervision_ids = (
torch.ops.fbgemm.dense_to_jagged(
supervision_ids.unsqueeze(-1).float(), [jagged_id_offsets]
)[0]
.squeeze(1)
.long()
)
if "user_ids" in kwargs:
# expand to jagged.
max_length: int = int(lengths.max())
kwargs["user_ids"] = torch.ops.fbgemm.dense_to_jagged(
kwargs["user_ids"]
.unsqueeze(1)
.expand(-1, max_length)
.unsqueeze(2), # (B, max_length, 1)
[jagged_id_offsets],
)[0].squeeze(1)
args = OrderedDict(
[
(
"output_embeddings",
torch.ops.fbgemm.dense_to_jagged(
output_embeddings,
[jagged_id_offsets],
)[0],
),
("supervision_ids", jagged_supervision_ids),
(
"supervision_embeddings",
torch.ops.fbgemm.dense_to_jagged(
supervision_embeddings,
[jagged_id_offsets],
)[0],
),
(
"supervision_weights",
torch.ops.fbgemm.dense_to_jagged(
supervision_weights.unsqueeze(-1),
[jagged_id_offsets],
)[0].squeeze(1),
),
("negatives_sampler", negatives_sampler),
]
)
args.update(kwargs)
if self._activation_checkpoint:
return checkpoint(
self.jagged_forward,
*args.values(),
use_reentrant=False,
)
else:
return self.jagged_forward(
output_embeddings=torch.ops.fbgemm.dense_to_jagged(
output_embeddings,
[jagged_id_offsets],
)[0],
supervision_ids=jagged_supervision_ids,
supervision_embeddings=torch.ops.fbgemm.dense_to_jagged(
supervision_embeddings,
[jagged_id_offsets],
)[0],
supervision_weights=torch.ops.fbgemm.dense_to_jagged(
supervision_weights.unsqueeze(-1),
[jagged_id_offsets],
)[0].squeeze(1),
negatives_sampler=negatives_sampler,
**kwargs,
) | Args:
lengths: [B] x int32 representing number of non-zero elements per row.
output_embeddings: [B, N, D] x float, embeddings for the current
input sequence.
supervision_ids: [B, N] x int64, (positive) supervision ids.
supervision_embeddings: [B, N, D] x float.
supervision_weights: Optional [B, N] x float. Optional weights for
masking out invalid positions, or reweighting supervision labels.
negatives_sampler: sampler used to obtain negative examples paired with
positives.
Returns:
Tuple of (loss for the current engaged sequence, str-keyed aux_losses). | forward | python | facebookresearch/generative-recommenders | generative_recommenders/research/modeling/sequential/losses/sampled_softmax.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/research/modeling/sequential/losses/sampled_softmax.py | Apache-2.0 |
def get_args(): # pyre-ignore [3]
"""Parse commandline."""
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset", default="debug", choices=SUPPORTED_DATASETS, help="dataset"
)
args, unknown_args = parser.parse_known_args()
logger.warning(f"unknown_args: {unknown_args}")
return args | Parse commandline. | get_args | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/main.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/main.py | Apache-2.0 |
def generate_loadgen_version_definitions_sha1(ofile, loadgen_root):
"""Writes definition for Sha1OfFiles."""
sha1s = ""
loadgen_files = (
["/bindings/" + s for s in os.listdir(loadgen_root + "/bindings")] +
["/" + s for s in os.listdir(loadgen_root)])
for fn in sorted(loadgen_files):
full_fn = loadgen_root + fn
if not os.path.isfile(full_fn):
continue
file_data = open(full_fn, "rb").read()
sha1s += hashlib.sha1(file_data).hexdigest() + " " + fn + "\n"
ofile.write(func_def("Sha1OfFiles", make_raw_string(sha1s[0:-1]))) | Writes definition for Sha1OfFiles. | generate_loadgen_version_definitions_sha1 | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/version_generator.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/version_generator.py | Apache-2.0 |
def generate_loadgen_version_definitions(cc_filename, loadgen_root):
"""Generates the C++ source file with the loadgen version info."""
try:
os.makedirs(os.path.dirname(cc_filename))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
ofile = open(cc_filename, "w")
ofile.write("// DO NOT EDIT: Autogenerated by version_generator.py.\n\n")
ofile.write("#include <string>\n\n")
ofile.write("namespace mlperf {\n\n")
ofile.write(func_def("Version", "\"4.1\""))
date_time_now_local = datetime.datetime.now().isoformat()
date_time_now_utc = datetime.datetime.utcnow().isoformat()
ofile.write(func_def("BuildDateLocal", "\"" + date_time_now_local + "\""))
ofile.write(func_def("BuildDateUtc", "\"" + date_time_now_utc + "\""))
git_dir = "--git-dir=\"" + loadgen_root + "/../.git\" "
git_work_tree = "--work-tree=\"" + loadgen_root + "/..\" "
git_command = "git " + git_dir + git_work_tree
git_status = os.popen(git_command + "status")
git_status.read()
is_git_repo = git_status.close() is None
if is_git_repo:
generate_loadgen_version_definitions_git(ofile, git_command)
else:
generate_loadgen_verstion_definitions_git_stubs(ofile)
generate_loadgen_version_definitions_sha1(ofile, loadgen_root)
ofile.write("} // namespace mlperf\n")
ofile.close() | Generates the C++ source file with the loadgen version info. | generate_loadgen_version_definitions | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/version_generator.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/version_generator.py | Apache-2.0 |
def process_query_async(query_samples):
"""Processes the list of queries."""
time.sleep(.001)
responses = []
response_array = array.array(
"f", [0, 1, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128, 254, 255])
response_info = response_array.buffer_info()
response_data = response_info[0]
response_size = response_info[1] * response_array.itemsize
for s in query_samples:
responses.append(
mlperf_loadgen.QuerySampleResponse(
s.id, response_data, response_size))
mlperf_loadgen.QuerySamplesComplete(responses) | Processes the list of queries. | process_query_async | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/py_demo_single_stream.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/py_demo_single_stream.py | Apache-2.0 |
def process_query_async(query_samples):
"""Processes the list of queries."""
query_responses = []
for s in query_samples:
response_array = np.array(responses[s.index], np.int32)
time.sleep(.0002)
token = response_array[:1]
response_token = array.array("B", token.tobytes())
response_token_info = response_token.buffer_info()
response_token_data = response_token_info[0]
response_token_size = response_token_info[1] * response_token.itemsize
mlperf_loadgen.FirstTokenComplete([mlperf_loadgen.QuerySampleResponse(s.id, response_token_data, response_token_size)])
time.sleep(.02)
n_tokens = len(response_array)
response_array = array.array("B", response_array.tobytes())
response_info = response_array.buffer_info()
response_data = response_info[0]
response_size = response_info[1] * response_array.itemsize
query_responses.append(
mlperf_loadgen.QuerySampleResponse(
s.id, response_data, response_size, n_tokens))
mlperf_loadgen.QuerySamplesComplete(query_responses) | Processes the list of queries. | process_query_async | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_single_stream.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_single_stream.py | Apache-2.0 |
def process_query_async(query_samples):
"""Processes the list of queries."""
query_responses = []
for s in query_samples:
response_array = np.array(responses[s.index], np.int32)
token = response_array[0]
time.sleep(.0002)
response_token = array.array("B", token.tobytes())
response_token_info = response_token.buffer_info()
response_token_data = response_token_info[0]
response_token_size = response_token_info[1] * response_token.itemsize
time.sleep(.02)
n_tokens = len(response_array)
response_array = array.array("B", response_array.tobytes())
response_info = response_array.buffer_info()
response_data = response_info[0]
response_size = response_info[1] * response_array.itemsize
# print(f"Reported size python: {n_tokens}")
query_responses.append(
mlperf_loadgen.QuerySampleResponse(
s.id, response_data, response_size))
mlperf_loadgen.QuerySamplesComplete(query_responses) | Processes the list of queries. | process_query_async | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_server_inferred.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_server_inferred.py | Apache-2.0 |
def process_query_async(query_samples):
"""Processes the list of queries."""
query_responses = []
for s in query_samples:
response_array = np.array(responses[s.index], np.int32)
token = response_array[0]
time.sleep(.0002)
response_token = array.array("B", token.tobytes())
response_token_info = response_token.buffer_info()
response_token_data = response_token_info[0]
response_token_size = response_token_info[1] * response_token.itemsize
mlperf_loadgen.FirstTokenComplete([mlperf_loadgen.QuerySampleResponse(s.id, response_token_data, response_token_size)])
time.sleep(.02)
n_tokens = len(response_array)
response_array = array.array("B", response_array.tobytes())
response_info = response_array.buffer_info()
response_data = response_info[0]
response_size = response_info[1] * response_array.itemsize
# print(f"Reported size python: {n_tokens}")
query_responses.append(
mlperf_loadgen.QuerySampleResponse(
s.id, response_data, response_size, n_tokens))
mlperf_loadgen.QuerySamplesComplete(query_responses) | Processes the list of queries. | process_query_async | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_server.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/token_metrics/py_demo_server.py | Apache-2.0 |
def get_features(self, sample_id):
"""Returns the feature for a given sample id."""
return self.eval_features[sample_id] | Returns the feature for a given sample id. | get_features | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def load_samples_to_ram(self, query_samples):
"""Loads the features for the given query samples into RAM."""
# Current implementation is not using this functionality.
del query_samples
return | Loads the features for the given query samples into RAM. | load_samples_to_ram | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def unload_samples_from_ram(self, query_samples):
"""Unloads the features for the given query samples from RAM."""
# Current implementation is not using this functionality.
del query_samples
return | Unloads the features for the given query samples from RAM. | unload_samples_from_ram | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def __init__(self, qsl: QSL, sut_server_addr: list):
"""
Constructor for the QDL.
Args:
qsl: The QSL to use.
sut_server_addr: A list of addresses of the SUT.
"""
self.qsl = qsl
# Construct QDL from the python binding
self.qdl = mlperf_loadgen.ConstructQDL(
self.issue_query, self.flush_queries, self.client_get_name)
self.sut_server_addr = sut_server_addr
self.num_nodes = len(sut_server_addr)
# For round robin between the SUTs:
self.next_sut_id = 0
self.lock = threading.Lock() | Constructor for the QDL.
Args:
qsl: The QSL to use.
sut_server_addr: A list of addresses of the SUT. | __init__ | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def issue_query(self, query_samples):
"""Process the query to send to the SUT"""
threading.Thread(target=self.process_query_async,
args=[query_samples]).start() | Process the query to send to the SUT | issue_query | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def flush_queries(self):
"""Flush the queries. Dummy implementation."""
pass | Flush the queries. Dummy implementation. | flush_queries | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def process_query_async(self, query_samples):
"""
This function is called by the Loadgen in a separate thread.
It is responsible for
1. Creating a query for the SUT, by reading the features from the QSL.
2. Sending the query to the SUT.
3. Waiting for the response from the SUT.
4. Deserializing the response.
5. Calling mlperf_loadgen.QuerySamplesComplete(query_samples, response)
Args:
query_samples: A list of QuerySample objects.
"""
responses = []
for s in query_samples:
# Overall process:
# QDL builds a real-world query and sends to SUT --> SUT processes --> SUT sends back to QDL
# Read features from the QSL
features = self.qsl.get_features(s.index)
time.sleep(.001) # Ensure a maximal rate of queries to the SUT
# Send the query to SUT in round robin
# Wait for a response
sut_result = self.client_predict(features, s.index)
response_array = array.array('B', sut_result.encode('utf-8'))
bi = response_array.buffer_info()
responses.append(mlperf_loadgen.QuerySampleResponse(
s.id, bi[0], bi[1]))
mlperf_loadgen.QuerySamplesComplete(responses) | This function is called by the Loadgen in a separate thread.
It is responsible for
1. Creating a query for the SUT, by reading the features from the QSL.
2. Sending the query to the SUT.
3. Waiting for the response from the SUT.
4. Deserializing the response.
5. Calling mlperf_loadgen.QuerySamplesComplete(query_samples, response)
Args:
query_samples: A list of QuerySample objects. | process_query_async | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def get_sut_id_round_robin(self):
"""Get the SUT id in round robin."""
with self.lock:
res = self.next_sut_id
self.next_sut_id = (self.next_sut_id + 1) % self.num_nodes
return res | Get the SUT id in round robin. | get_sut_id_round_robin | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def client_predict(self, query, id):
"""Serialize the query, send it to the SUT in round robin, and return the deserialized response."""
url = '{}/predict/'.format(self.sut_server_addr[self.get_sut_id_round_robin()])
response = requests.post(url, json={'query': query, id: id})
return response.json()['result'] | Serialize the query, send it to the SUT in round robin, and return the deserialized response. | client_predict | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def client_get_name(self):
"""Get the name of the SUT from ALL the SUTS."""
if len(self.sut_server_addr) == 1:
return requests.post(f'{self.sut_server_addr[0]}/getname/').json()['name']
sut_names = [requests.post(f'{addr}/getname/').json()['name'] for addr in self.sut_server_addr]
return "Multi-node SUT: " + ', '.join(sut_names) | Get the name of the SUT from ALL the SUTS. | client_get_name | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/py_demo_server_lon.py | Apache-2.0 |
def preprocess(query):
"""[SUT Node] A dummy preprocess."""
# Here may come for example batching, tokenization, resizing, normalization, etc.
response = query
return response | [SUT Node] A dummy preprocess. | preprocess | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | Apache-2.0 |
def dnn_model(query):
"""[SUT Node] A dummy DNN model."""
# Here may come for example a call to a dnn model such as resnet, bert, etc.
response = query
return response | [SUT Node] A dummy DNN model. | dnn_model | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | Apache-2.0 |
def postprocess(query):
"""[SUT Node] A dummy postprocess."""
# Here may come for example a postprocessing call, e.g., NMS, detokenization, etc.
response = query
return response | [SUT Node] A dummy postprocess. | postprocess | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | Apache-2.0 |
def predict():
"""Receives a query (e.g., a text) runs inference, and returns a prediction."""
query = request.get_json(force=True)['query']
result = postprocess(dnn_model(preprocess(query)))
return jsonify(result=result) | Receives a query (e.g., a text) runs inference, and returns a prediction. | predict | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | Apache-2.0 |
def getname():
"""Returns the name of the SUT."""
return jsonify(name=f'Demo SUT (Network SUT) node' + (' ' + node) if node else '') | Returns the name of the SUT. | getname | python | facebookresearch/generative-recommenders | generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/dlrm_v3/inference/thirdparty/loadgen/demos/lon/sut_over_network_demo.py | Apache-2.0 |
def jagged_dense_bmm_broadcast_add(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
bias: torch.Tensor,
kernel: HammerKernel = HammerKernel.PYTORCH,
) -> torch.Tensor:
"""
Computing out = jagged x dense + bias
jagged has shape (sum_B(M_i), K), dense has shape (B, K, N), and bias has shape (B, N)
out has shape (sum_B(M_i), N)
"""
if not is_fx_tracing():
_, K = jagged.shape
B, _, N = dense.shape
torch._assert(dense.shape[1] == K, "wrong dense shape[1]")
torch._assert(seq_offsets.shape[0] == B + 1, "wrong seq_offsets shape[0]")
torch._assert(bias.shape[0] == B, "wrong bias shape[0]")
torch._assert(bias.shape[1] == N, "wrong bias shape[1]")
if kernel == HammerKernel.TRITON:
return triton_jagged_dense_bmm_broadcast_add(
max_seq_len=max_seq_len,
seq_offsets=seq_offsets,
jagged=jagged,
dense=dense,
bias=bias,
)
elif kernel == HammerKernel.TRITON_CC:
return triton_cc_jagged_dense_bmm(
max_seq_len=max_seq_len,
seq_offsets=seq_offsets,
jagged=jagged,
dense=dense,
bias=bias,
)
else:
return pytorch_jagged_dense_bmm_broadcast_add(
max_seq_len=max_seq_len,
seq_offsets=seq_offsets,
jagged=jagged,
dense=dense,
bias=bias,
) | Computing out = jagged x dense + bias
jagged has shape (sum_B(M_i), K), dense has shape (B, K, N), and bias has shape (B, N)
out has shape (sum_B(M_i), N) | jagged_dense_bmm_broadcast_add | python | facebookresearch/generative-recommenders | generative_recommenders/ops/jagged_tensors.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/jagged_tensors.py | Apache-2.0 |
def cuda_hstu_mha(
max_seq_len: int,
alpha: float,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
seq_offsets: Optional[torch.Tensor] = None,
causal: bool = False,
num_targets: Optional[torch.Tensor] = None,
max_attn_len: int = 0,
contextual_seq_len: int = 0,
q_descale: Optional[torch.Tensor] = None,
k_descale: Optional[torch.Tensor] = None,
v_descale: Optional[torch.Tensor] = None,
sort_by_length: bool = False,
deterministic: bool = False,
sm_margin: int = 0,
) -> torch.Tensor:
"""
Arguments:
q, k, v: (batch_size, seqlen, nheads, headdim) or (total_seqlen, nheads, headdim)
"""
return HSTUFlashAttentionFunction.apply(
max_seq_len,
alpha,
q,
k,
v,
seq_offsets,
causal,
num_targets,
max_attn_len,
contextual_seq_len,
q_descale,
k_descale,
v_descale,
sort_by_length,
deterministic,
sm_margin,
) | Arguments:
q, k, v: (batch_size, seqlen, nheads, headdim) or (total_seqlen, nheads, headdim) | cuda_hstu_mha | python | facebookresearch/generative-recommenders | generative_recommenders/ops/cpp/cuda_hstu_attention.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/cpp/cuda_hstu_attention.py | Apache-2.0 |
def jagged_dense_bmm_broadcast_add_kernel(
seq_offsets,
Jagged,
Dense,
Bias,
Out,
AUTOTUNE_MAX_SEQ_LEN,
N,
K,
stride_jm,
stride_db,
stride_dk,
stride_dn,
stride_bias_b,
stride_om,
HAS_BIAS: tl.constexpr,
ALLOW_TF32: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
):
"""
Computing bmm Out = Jagged x Dense + Bias
M is the jagged dimension
Jagged has shape (sum_B(M_i), K), Dense has shape (B, K, N), Bias has shape (B, N), and Out has shape (sum_B(M_i), N)
"""
off_n = tl.program_id(0)
off_m = tl.program_id(1)
off_b = tl.program_id(2)
seq_start = tl.load(seq_offsets + off_b).to(tl.int64)
seq_end = tl.load(seq_offsets + off_b + 1)
seq_len = seq_end - seq_start
start_m = off_m * BLOCK_M
start_n = off_n * BLOCK_N
if start_m >= seq_len:
return
Jagged += seq_start * stride_jm
Dense += off_b.to(tl.int64) * stride_db
Out += seq_start * stride_om
offs_m = start_m + tl.arange(0, BLOCK_M)
offs_n = start_n + tl.arange(0, BLOCK_N)
offs_k = tl.arange(0, BLOCK_K)
jg_ptrs = Jagged + offs_m[:, None] * stride_jm + offs_k[None, :]
dn_ptrs = Dense + offs_k[:, None] * stride_dk + offs_n[None, :] * stride_dn
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
for k in range(0, K, BLOCK_K):
jg = tl.load(
jg_ptrs,
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
mask=(offs_m[:, None] < seq_len) and ((k + offs_k)[None, :] < K),
other=0.0,
)
dn = tl.load(
dn_ptrs,
mask=((k + offs_k)[:, None] < K) and (offs_n[None, :] < N),
other=0.0,
)
accumulator += tl.dot(jg, dn, allow_tf32=ALLOW_TF32)
jg_ptrs += BLOCK_K
dn_ptrs += BLOCK_K * stride_dk
if HAS_BIAS:
bias_ptrs = Bias + off_b * stride_bias_b + offs_n
bias = tl.load(bias_ptrs, mask=offs_n < N)
accumulator += bias[None, :].to(tl.float32)
out = accumulator.to(Out.dtype.element_ty)
offs_m = start_m + tl.arange(0, BLOCK_M)
offs_n = start_n + tl.arange(0, BLOCK_N)
out_ptrs = Out + offs_m[:, None] * stride_om + offs_n[None, :]
tl.store(out_ptrs, out, mask=(offs_m[:, None] < seq_len) & (offs_n[None, :] < N)) | Computing bmm Out = Jagged x Dense + Bias
M is the jagged dimension
Jagged has shape (sum_B(M_i), K), Dense has shape (B, K, N), Bias has shape (B, N), and Out has shape (sum_B(M_i), N) | jagged_dense_bmm_broadcast_add_kernel | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_jagged.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_jagged.py | Apache-2.0 |
def _jagged_jagged_bmm_reduce_sum(
seq_offsets,
JaggedA,
JaggedB,
Out,
ReduceOut,
M,
N,
AUTOTUNE_MAX_SEQ_LEN,
stride_ak,
stride_bk,
stride_ob,
stride_om,
stride_on,
stride_orb,
stride_orn,
REDUCE_JAGGEDB: tl.constexpr,
ALLOW_TF32: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
):
"""
Computing bmm Out = Jagged x Jagged
K is the jagged dimension
JaggedA has shape (sum_B(K_i), M), JaggedB has shape (sum_B(K_i), N), and Out has shape (B, M, N)
"""
off_b = tl.program_id(0)
off_m = tl.program_id(1)
off_n = tl.program_id(2)
seq_start = tl.load(seq_offsets + off_b).to(tl.int64)
seq_end = tl.load(seq_offsets + off_b + 1)
seq_len = seq_end - seq_start
start_m = off_m * BLOCK_M
start_n = off_n * BLOCK_N
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
Out += off_b.to(tl.int64) * stride_ob
offs_m = start_m + tl.arange(0, BLOCK_M)
offs_n = start_n + tl.arange(0, BLOCK_N)
out_ptrs = Out + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on
if REDUCE_JAGGEDB:
out_reduce_ptrs = ReduceOut + off_b * stride_orb + offs_n * stride_orn
acc_reduce = tl.zeros((BLOCK_N,), dtype=tl.float32)
if seq_len == 0:
out = accumulator.to(Out.dtype.element_ty)
tl.store(out_ptrs, out, mask=(offs_m[:, None] < M) & (offs_n[None, :] < N))
if REDUCE_JAGGEDB:
if off_m == 0:
tl.store(
out_reduce_ptrs, # pyre-ignore [61]
acc_reduce.to(ReduceOut.dtype.element_ty),
mask=(offs_n < N),
)
return
JaggedA += seq_start * stride_ak
JaggedB += seq_start * stride_bk
offs_k = tl.arange(0, BLOCK_K)
jg_a_ptrs = JaggedA + offs_k[None, :] * stride_ak + offs_m[:, None]
jg_b_ptrs = JaggedB + offs_k[:, None] * stride_bk + offs_n[None, :]
for k in range(0, seq_len, BLOCK_K):
jg_a = tl.load(
jg_a_ptrs,
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
mask=(offs_m[:, None] < M) and ((k + offs_k)[None, :] < seq_len),
other=0.0,
)
jg_b = tl.load(
jg_b_ptrs,
mask=(offs_n[None, :] < N) and ((k + offs_k)[:, None] < seq_len),
other=0.0,
)
accumulator += tl.dot(jg_a, jg_b, allow_tf32=ALLOW_TF32)
if REDUCE_JAGGEDB:
if off_m == 0:
acc_reduce += tl.sum(jg_b.to(tl.float32), axis=0)
jg_a_ptrs += BLOCK_K * stride_ak
jg_b_ptrs += BLOCK_K * stride_bk
out = accumulator.to(Out.dtype.element_ty)
tl.store(out_ptrs, out, mask=(offs_m[:, None] < M) & (offs_n[None, :] < N))
if REDUCE_JAGGEDB:
if off_m == 0:
tl.store(
out_reduce_ptrs, # pyre-ignore [61]
acc_reduce.to(ReduceOut.dtype.element_ty),
mask=(offs_n < N),
) | Computing bmm Out = Jagged x Jagged
K is the jagged dimension
JaggedA has shape (sum_B(K_i), M), JaggedB has shape (sum_B(K_i), N), and Out has shape (B, M, N) | _jagged_jagged_bmm_reduce_sum | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_jagged.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_jagged.py | Apache-2.0 |
def jagged_dense_broadcast_add_kernel(
seq_offsets,
Jagged,
Dense,
Out,
AUTOTUNE_MAX_SEQ_LEN,
D,
stride_jn,
stride_db,
stride_on,
BLOCK_N: tl.constexpr,
BLOCK_D: tl.constexpr,
):
"""
Computing Out = Jagged + Dense
JaggedA has shape (sum_B(N_i), D), Dense has shape (B, D), and Out has shape (sum_B(N_i), D)
"""
off_b = tl.program_id(0)
off_n = tl.program_id(1)
seq_start = tl.load(seq_offsets + off_b)
seq_end = tl.load(seq_offsets + off_b + 1)
seq_len = seq_end - seq_start
start_n = off_n * BLOCK_N
if start_n >= seq_len:
return
Jagged += seq_start * stride_jn
Dense += off_b * stride_db
Out += seq_start * stride_on
offs_n = start_n + tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_D)
jagged_ptrs = Jagged + offs_n[:, None] * stride_jn + offs_d[None, :]
dense_ptrs = Dense + offs_d
out_ptrs = Out + offs_n[:, None] * stride_jn + offs_d[None, :]
for d in range(0, D, BLOCK_D):
jg = tl.load(
jagged_ptrs,
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
mask=(offs_n[:, None] < seq_len) and (d + offs_d)[None, :] < D,
)
dn = tl.load(dense_ptrs, mask=d + offs_d < D)
out = jg + dn[None, :]
tl.store(
out_ptrs,
out,
mask=(offs_n[:, None] < seq_len) and (d + offs_d)[None, :] < D,
)
dense_ptrs += BLOCK_D
jagged_ptrs += BLOCK_D
out_ptrs += BLOCK_D | Computing Out = Jagged + Dense
JaggedA has shape (sum_B(N_i), D), Dense has shape (B, D), and Out has shape (sum_B(N_i), D) | jagged_dense_broadcast_add_kernel | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_jagged.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_jagged.py | Apache-2.0 |
def jagged_reduce_sum(
seq_offsets,
Jagged,
Out,
D,
stride_jn,
stride_ob,
BLOCK_D: tl.constexpr,
):
"""
Computing Out = Jagged + Dense
JaggedA has shape (sum_B(N_i), D), Dense has shape (B, D), and Out has shape (sum_B(N_i), D)
"""
off_b = tl.program_id(0)
off_d = tl.program_id(1) * BLOCK_D
seq_start = tl.load(seq_offsets + off_b)
seq_end = tl.load(seq_offsets + off_b + 1)
seq_len = seq_end - seq_start
Jagged += seq_start * stride_jn
Out += off_b * stride_ob
offs_d = off_d + tl.arange(0, BLOCK_D)
jagged_ptrs = Jagged + offs_d
out_ptrs = Out + offs_d
accumulator = tl.zeros((BLOCK_D,), dtype=tl.float32)
for _ in range(0, seq_len):
jg = tl.load(
jagged_ptrs,
mask=offs_d < D,
)
accumulator += jg
jagged_ptrs += stride_jn
out = accumulator.to(Out.dtype.element_ty)
tl.store(
out_ptrs,
out,
mask=offs_d < D,
) | Computing Out = Jagged + Dense
JaggedA has shape (sum_B(N_i), D), Dense has shape (B, D), and Out has shape (sum_B(N_i), D) | jagged_reduce_sum | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_jagged.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_jagged.py | Apache-2.0 |
def _add_position_embeddings_kernel(
Jagged,
seq_offsets,
high_inds,
Dense,
Out,
AUTOTUNE_MAX_SEQ_LEN,
D,
scale,
stride_jn,
stride_dk,
stride_on,
SCALE_JAGGED: tl.constexpr,
BLOCK_D: tl.constexpr,
BLOCK_N: tl.constexpr,
):
"""
Jagged has shape (sum_B(N_i), D),
Dense has shape (K, D),
Out has shape (sum_B(N_i), D)
"""
off_b = tl.program_id(0)
off_n = tl.program_id(1)
seq_start = tl.load(seq_offsets + off_b)
seq_end = tl.load(seq_offsets + off_b + 1)
max_ind = tl.load(high_inds + off_b)
seq_len = seq_end - seq_start
start_n = off_n * BLOCK_N
if start_n >= seq_len:
return
offs_n = start_n + tl.arange(0, BLOCK_N)
clamped_offs_n = tl.where(offs_n >= max_ind, max_ind, offs_n)
offs_d = tl.arange(0, BLOCK_D)
Jagged += seq_start.to(tl.int64) * stride_jn
jagged_ptr_offsets = offs_n[:, None] * stride_jn + offs_d[None, :]
Out += seq_start.to(tl.int64) * stride_on
out_ptrs = Out + offs_n[:, None] * stride_on + offs_d[None, :]
dense_ptrs = Dense + clamped_offs_n[:, None] * stride_dk + offs_d[None, :]
for _d in range(0, D, BLOCK_D):
mask = (offs_n[:, None] < seq_len) and offs_d[None, :] < D
jg = tl.load(Jagged + jagged_ptr_offsets, mask=mask)
if SCALE_JAGGED:
jg = jg * scale
dn = tl.load(dense_ptrs, mask=mask)
jg += dn
tl.store(out_ptrs, jg, mask=mask)
dense_ptrs += BLOCK_D
out_ptrs += BLOCK_D
offs_d += BLOCK_D
jagged_ptr_offsets += BLOCK_D | Jagged has shape (sum_B(N_i), D),
Dense has shape (K, D),
Out has shape (sum_B(N_i), D) | _add_position_embeddings_kernel | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_position.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_position.py | Apache-2.0 |
def _add_timestamp_position_embeddings_kernel(
SeqEmb,
Offsets,
Lengths,
PosEmb,
TsEmb,
Out,
TS,
PosInds,
TsInds,
NumTargets,
AUTOTUNE_MAX_SEQ_LEN,
D,
num_time_buckets,
time_bucket_increments,
time_bucket_scale,
time_delta,
max_contextual_seq_len,
max_pos_ind,
stride_sn,
stride_pn,
stride_tn,
stride_on,
TRAINING: tl.constexpr,
HAS_MULTIPLE_TARGETS: tl.constexpr,
INTERLEAVE_TARGETS: tl.constexpr,
TIME_BUCKET_FN: tl.constexpr,
BLOCK_D: tl.constexpr,
BLOCK_N: tl.constexpr,
):
"""
SeqEmb has shape (sum_B(N_i), D),
PosEmb has shape (N_p, D),
TsEmb has shape (N_t, D),
Out has shape (sum_B(N_i), D)
"""
off_b = tl.program_id(0)
off_n = tl.program_id(1)
seq_start = tl.load(Offsets + off_b)
seq_end = tl.load(Offsets + off_b + 1)
seq_len = seq_end - seq_start
start_n = off_n * BLOCK_N
if start_n >= seq_len:
return
offs_n = start_n + tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_D)
seq_emb_offsets = offs_n[:, None] * stride_sn + offs_d[None, :]
SeqEmb += seq_start.to(tl.int64) * stride_sn
mask_n = offs_n < seq_len
# position encoding
seq_len = tl.load(Lengths + off_b)
if HAS_MULTIPLE_TARGETS:
num_targets = tl.load(NumTargets + off_b)
if INTERLEAVE_TARGETS:
high_ind = seq_len - num_targets * 2
else:
high_ind = seq_len - num_targets
else:
high_ind = seq_len
pos_inds = tl.where(offs_n < high_ind, offs_n, high_ind)
pos_inds = high_ind - pos_inds + max_contextual_seq_len
pos_inds = tl.where(pos_inds < max_pos_ind - 1, pos_inds, max_pos_ind - 1)
pos_inds = tl.where(offs_n < max_contextual_seq_len, offs_n, pos_inds)
if TRAINING:
tl.store(PosInds + seq_start + offs_n, pos_inds, mask=mask_n)
pos_emb_offsets = pos_inds[:, None] * stride_pn + offs_d[None, :]
# timestamp encoding
ts = tl.load(TS + seq_start + offs_n, mask=mask_n)
query_time = tl.load(TS + seq_end - 1)
ts = query_time - ts + time_delta
ts = tl.where(ts > 1e-6, ts, 1e-6) / time_bucket_increments
if TIME_BUCKET_FN == "log":
ts = tl.log(ts)
else:
ts = tl.sqrt(ts)
ts = ts * time_bucket_scale
ts = ts.to(tl.int32)
ts = tl.where(ts > 0, ts, 0)
ts = tl.where(ts < num_time_buckets, ts, num_time_buckets)
if TRAINING:
tl.store(TsInds + seq_start + offs_n, ts, mask=mask_n)
ts_emb_offsets = ts[:, None] * stride_tn + offs_d[None, :]
Out += seq_start.to(tl.int64) * stride_on
out_offsets = Out + offs_n[:, None] * stride_on + offs_d[None, :]
for _d in range(0, D, BLOCK_D):
mask = (offs_n[:, None] < seq_len) and offs_d[None, :] < D
seq_emb = tl.load(SeqEmb + seq_emb_offsets, mask=mask)
pos_emb = tl.load(PosEmb + pos_emb_offsets, mask=mask)
ts_emb = tl.load(TsEmb + ts_emb_offsets, mask=mask)
tl.store(out_offsets, seq_emb + (pos_emb + ts_emb).to(seq_emb.dtype), mask=mask)
seq_emb_offsets += BLOCK_D
pos_emb_offsets += BLOCK_D
ts_emb_offsets += BLOCK_D
out_offsets += BLOCK_D
offs_d += BLOCK_D | SeqEmb has shape (sum_B(N_i), D),
PosEmb has shape (N_p, D),
TsEmb has shape (N_t, D),
Out has shape (sum_B(N_i), D) | _add_timestamp_position_embeddings_kernel | python | facebookresearch/generative-recommenders | generative_recommenders/ops/triton/triton_position.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/ops/triton/triton_position.py | Apache-2.0 |
def forward(
self,
max_seq_len: int,
seq_embeddings: torch.Tensor,
seq_offsets: torch.Tensor,
contextual_embeddings: Optional[torch.Tensor],
) -> torch.Tensor:
"""
Args:
seq_embeddings: (L, D)
seq_offsets: (B + 1,)
max_seq_len: int
contextual_embeddings: (B, D')
"""
pass | Args:
seq_embeddings: (L, D)
seq_offsets: (B + 1,)
max_seq_len: int
contextual_embeddings: (B, D') | forward | python | facebookresearch/generative-recommenders | generative_recommenders/modules/contextualize_mlps.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/modules/contextualize_mlps.py | Apache-2.0 |
def __init__(
self,
stu: STU,
is_inference: bool,
dropout_ratio: float = 0.5,
seed: int = 0,
) -> None:
"""
Stochastic Depth STU
"""
super().__init__(stu=stu, is_inference=is_inference)
self._dropout_ratio: float = dropout_ratio
self._iter: int = 0
self._seed: int = seed
self._skip_x: Optional[torch.Tensor] = None | Stochastic Depth STU | __init__ | python | facebookresearch/generative-recommenders | generative_recommenders/modules/dynamic_stu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/modules/dynamic_stu.py | Apache-2.0 |
def __init__(
self,
stu: STU,
max_l2_len: int,
is_inference: bool,
contextual_seq_len: int = 0,
) -> None:
"""
Stochastic Depth STU
"""
super().__init__(stu=stu, is_inference=is_inference)
self._max_l2_len: int = max_l2_len
self._contextual_seq_len: int = contextual_seq_len
self._saved_tensors: Optional[
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
] = None
self._runtime_max_l2_len: int = 0
self._runtime_minus_l2_len: int = 0 | Stochastic Depth STU | __init__ | python | facebookresearch/generative-recommenders | generative_recommenders/modules/dynamic_stu.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/modules/dynamic_stu.py | Apache-2.0 |
def forward(
self,
seq_embeddings: torch.Tensor,
seq_timestamps: torch.Tensor,
seq_payloads: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""
Args:
seq_embeddings: (L, D)
seq_timestamps: (L, )
seq_payloads: str-keyed tensors. Implementation specific.
Returns:
postprocessed seq_embeddings, (L, D)
"""
pass | Args:
seq_embeddings: (L, D)
seq_timestamps: (L, )
seq_payloads: str-keyed tensors. Implementation specific.
Returns:
postprocessed seq_embeddings, (L, D) | forward | python | facebookresearch/generative-recommenders | generative_recommenders/modules/postprocessors.py | https://github.com/facebookresearch/generative-recommenders/blob/master/generative_recommenders/modules/postprocessors.py | Apache-2.0 |
def __init__(
self,
feature_layer=21,
overfeat_bin='overfeat', # or 'overfeat_cuda'
pretrained_params=None,
network_size=0,
merge='maxmean',
batch_size=200,
verbose=0,
):
"""
:param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to layer
`21`.
:param overfeat_bin: The path to the `overfeat` binary.
:param pretrained_params: The path to the pretrained
parameters file. These files come
with the overfeat distribution and
can be found in `overfeat/data`.
:param network_size: Use the small (0) or large network (1).
:param merge: How spatial features are merged. May be one of
'maxmean', 'meanmax' or a callable.
"""
self.feature_layer = feature_layer
self.overfeat_bin = overfeat_bin
self.pretrained_params = pretrained_params
self.network_size = network_size
self.merge = merge
self.batch_size = batch_size
self.verbose = verbose | :param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to layer
`21`.
:param overfeat_bin: The path to the `overfeat` binary.
:param pretrained_params: The path to the pretrained
parameters file. These files come
with the overfeat distribution and
can be found in `overfeat/data`.
:param network_size: Use the small (0) or large network (1).
:param merge: How spatial features are merged. May be one of
'maxmean', 'meanmax' or a callable. | __init__ | python | dnouri/nolearn | nolearn/overfeat.py | https://github.com/dnouri/nolearn/blob/master/nolearn/overfeat.py | MIT |
def __init__(
self,
feature_layer=21,
pretrained_params='net_weight_0',
network_size=None,
merge='maxmean',
batch_size=200,
verbose=0,
):
"""
:param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to layer
`21`. Please refer to `this post
<https://groups.google.com/forum/#!topic/overfeat/hQeI5hcw8f0>`_
to find out which layers are available
for the two different networks.
:param pretrained_params: The path to the pretrained
parameters file. These files come
with the overfeat distribution and
can be found in `overfeat/data`.
:param merge: How spatial features are merged. May be one of
'maxmean', 'meanmax' or a callable.
"""
if network_size is None:
network_size = int(pretrained_params[-1])
self.feature_layer = feature_layer
self.pretrained_params = pretrained_params
self.network_size = network_size
self.merge = merge
self.batch_size = batch_size
self.verbose = verbose | :param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to layer
`21`. Please refer to `this post
<https://groups.google.com/forum/#!topic/overfeat/hQeI5hcw8f0>`_
to find out which layers are available
for the two different networks.
:param pretrained_params: The path to the pretrained
parameters file. These files come
with the overfeat distribution and
can be found in `overfeat/data`.
:param merge: How spatial features are merged. May be one of
'maxmean', 'meanmax' or a callable. | __init__ | python | dnouri/nolearn | nolearn/overfeat.py | https://github.com/dnouri/nolearn/blob/master/nolearn/overfeat.py | MIT |
def __init__(
self,
layer_sizes=None,
scales=0.05,
fan_outs=None,
output_act_funct=None,
real_valued_vis=True,
use_re_lu=True,
uniforms=False,
learn_rates=0.1,
learn_rate_decays=1.0,
learn_rate_minimums=0.0,
momentum=0.9,
l2_costs=0.0001,
dropouts=0,
nesterov=True,
nest_compare=True,
rms_lims=None,
learn_rates_pretrain=None,
momentum_pretrain=None,
l2_costs_pretrain=None,
nest_compare_pretrain=None,
epochs=10,
epochs_pretrain=0,
loss_funct=None,
minibatch_size=64,
minibatches_per_epoch=None,
pretrain_callback=None,
fine_tune_callback=None,
random_state=None,
verbose=0,
):
"""
Many parameters such as `learn_rates`, `dropouts` etc. will
also accept a single value, in which case that value will be
used for all layers. To control the value per layer, pass a
list of values instead; see examples below.
Parameters ending with `_pretrain` may be provided to override
the given parameter for pretraining. Consider an example
where you want the pre-training to use a lower learning rate
than the fine tuning (the backprop), then you'd maybe pass
something like::
DBN([783, 300, 10], learn_rates=0.1, learn_rates_pretrain=0.005)
If you don't pass the `learn_rates_pretrain` parameter, the
value of `learn_rates` will be used for both pre-training and
fine tuning. (Which seems to not work very well.)
:param layer_sizes: A list of integers of the form
``[n_vis_units, n_hid_units1,
n_hid_units2, ..., n_out_units]``.
An example: ``[784, 300, 10]``
The number of units in the input layer and
the output layer will be set automatically
if you set them to -1. Thus, the above
example is equivalent to ``[-1, 300, -1]``
if you pass an ``X`` with 784 features,
and a ``y`` with 10 classes.
:param scales: Scale of the randomly initialized weights. A
list of floating point values. When you find
good values for the scale of the weights you
can speed up training a lot, and also improve
performance. Defaults to `0.05`.
:param fan_outs: Number of nonzero incoming connections to a
hidden unit. Defaults to `None`, which means
that all connections have non-zero weights.
:param output_act_funct: Output activation function. Instance
of type
:class:`~gdbn.activationFunctions.Sigmoid`,
:class:`~.gdbn.activationFunctions.Linear`,
:class:`~.gdbn.activationFunctions.Softmax`
from the
:mod:`gdbn.activationFunctions`
module. Defaults to
:class:`~.gdbn.activationFunctions.Softmax`.
:param real_valued_vis: Set `True` (the default) if visible
units are real-valued.
:param use_re_lu: Set `True` to use rectified linear units.
Defaults to `False`.
:param uniforms: Not documented at this time.
:param learn_rates: A list of learning rates, one entry per
weight layer.
An example: ``[0.1, 0.1]``
:param learn_rate_decays: The number with which the
`learn_rate` is multiplied after
each epoch of fine-tuning.
:param learn_rate_minimums: The minimum `learn_rates`; after
the learn rate reaches the minimum
learn rate, the
`learn_rate_decays` no longer has
any effect.
:param momentum: Momentum
:param l2_costs: L2 costs per weight layer.
:param dropouts: Dropouts per weight layer.
:param nesterov: Not documented at this time.
:param nest_compare: Not documented at this time.
:param rms_lims: Not documented at this time.
:param learn_rates_pretrain: A list of learning rates similar
to `learn_rates_pretrain`, but
used for pretraining. Defaults
to value of `learn_rates` parameter.
:param momentum_pretrain: Momentum for pre-training. Defaults
to value of `momentum` parameter.
:param l2_costs_pretrain: L2 costs per weight layer, for
pre-training. Defaults to the value
of `l2_costs` parameter.
:param nest_compare_pretrain: Not documented at this time.
:param epochs: Number of epochs to train (with backprop).
:param epochs_pretrain: Number of epochs to pre-train (with CDN).
:param loss_funct: A function that calculates the loss. Used
for displaying learning progress and for
:meth:`score`.
:param minibatch_size: Size of a minibatch.
:param minibatches_per_epoch: Number of minibatches per epoch.
The default is to use as many as
fit into our training set.
:param pretrain_callback: An optional function that takes as
arguments the :class:`DBN` instance,
the epoch and the layer index as its
argument, and is called for each
epoch of pretraining.
:param fine_tune_callback: An optional function that takes as
arguments the :class:`DBN` instance
and the epoch, and is called for
each epoch of fine tuning.
:param random_state: An optional int used as the seed by the
random number generator.
:param verbose: Debugging output.
"""
if layer_sizes is None:
layer_sizes = [-1, -1]
if output_act_funct is None:
output_act_funct = activationFunctions.Softmax()
elif isinstance(output_act_funct, str):
output_act_funct = getattr(activationFunctions, output_act_funct)()
if random_state is not None:
raise ValueError("random_sate must be an int")
self.layer_sizes = layer_sizes
self.scales = scales
self.fan_outs = fan_outs
self.output_act_funct = output_act_funct
self.real_valued_vis = real_valued_vis
self.use_re_lu = use_re_lu
self.uniforms = uniforms
self.learn_rates = learn_rates
self.learn_rate_decays = learn_rate_decays
self.learn_rate_minimums = learn_rate_minimums
self.momentum = momentum
self.l2_costs = l2_costs
self.dropouts = dropouts
self.nesterov = nesterov
self.nest_compare = nest_compare
self.rms_lims = rms_lims
self.learn_rates_pretrain = learn_rates_pretrain
self.momentum_pretrain = momentum_pretrain
self.l2_costs_pretrain = l2_costs_pretrain
self.nest_compare_pretrain = nest_compare_pretrain
self.epochs = epochs
self.epochs_pretrain = epochs_pretrain
self.loss_funct = loss_funct
self.use_dropout = True if dropouts else False
self.minibatch_size = minibatch_size
self.minibatches_per_epoch = minibatches_per_epoch
self.pretrain_callback = pretrain_callback
self.fine_tune_callback = fine_tune_callback
self.random_state = random_state
self.verbose = verbose | Many parameters such as `learn_rates`, `dropouts` etc. will
also accept a single value, in which case that value will be
used for all layers. To control the value per layer, pass a
list of values instead; see examples below.
Parameters ending with `_pretrain` may be provided to override
the given parameter for pretraining. Consider an example
where you want the pre-training to use a lower learning rate
than the fine tuning (the backprop), then you'd maybe pass
something like::
DBN([783, 300, 10], learn_rates=0.1, learn_rates_pretrain=0.005)
If you don't pass the `learn_rates_pretrain` parameter, the
value of `learn_rates` will be used for both pre-training and
fine tuning. (Which seems to not work very well.)
:param layer_sizes: A list of integers of the form
``[n_vis_units, n_hid_units1,
n_hid_units2, ..., n_out_units]``.
An example: ``[784, 300, 10]``
The number of units in the input layer and
the output layer will be set automatically
if you set them to -1. Thus, the above
example is equivalent to ``[-1, 300, -1]``
if you pass an ``X`` with 784 features,
and a ``y`` with 10 classes.
:param scales: Scale of the randomly initialized weights. A
list of floating point values. When you find
good values for the scale of the weights you
can speed up training a lot, and also improve
performance. Defaults to `0.05`.
:param fan_outs: Number of nonzero incoming connections to a
hidden unit. Defaults to `None`, which means
that all connections have non-zero weights.
:param output_act_funct: Output activation function. Instance
of type
:class:`~gdbn.activationFunctions.Sigmoid`,
:class:`~.gdbn.activationFunctions.Linear`,
:class:`~.gdbn.activationFunctions.Softmax`
from the
:mod:`gdbn.activationFunctions`
module. Defaults to
:class:`~.gdbn.activationFunctions.Softmax`.
:param real_valued_vis: Set `True` (the default) if visible
units are real-valued.
:param use_re_lu: Set `True` to use rectified linear units.
Defaults to `False`.
:param uniforms: Not documented at this time.
:param learn_rates: A list of learning rates, one entry per
weight layer.
An example: ``[0.1, 0.1]``
:param learn_rate_decays: The number with which the
`learn_rate` is multiplied after
each epoch of fine-tuning.
:param learn_rate_minimums: The minimum `learn_rates`; after
the learn rate reaches the minimum
learn rate, the
`learn_rate_decays` no longer has
any effect.
:param momentum: Momentum
:param l2_costs: L2 costs per weight layer.
:param dropouts: Dropouts per weight layer.
:param nesterov: Not documented at this time.
:param nest_compare: Not documented at this time.
:param rms_lims: Not documented at this time.
:param learn_rates_pretrain: A list of learning rates similar
to `learn_rates_pretrain`, but
used for pretraining. Defaults
to value of `learn_rates` parameter.
:param momentum_pretrain: Momentum for pre-training. Defaults
to value of `momentum` parameter.
:param l2_costs_pretrain: L2 costs per weight layer, for
pre-training. Defaults to the value
of `l2_costs` parameter.
:param nest_compare_pretrain: Not documented at this time.
:param epochs: Number of epochs to train (with backprop).
:param epochs_pretrain: Number of epochs to pre-train (with CDN).
:param loss_funct: A function that calculates the loss. Used
for displaying learning progress and for
:meth:`score`.
:param minibatch_size: Size of a minibatch.
:param minibatches_per_epoch: Number of minibatches per epoch.
The default is to use as many as
fit into our training set.
:param pretrain_callback: An optional function that takes as
arguments the :class:`DBN` instance,
the epoch and the layer index as its
argument, and is called for each
epoch of pretraining.
:param fine_tune_callback: An optional function that takes as
arguments the :class:`DBN` instance
and the epoch, and is called for
each epoch of fine tuning.
:param random_state: An optional int used as the seed by the
random number generator.
:param verbose: Debugging output. | __init__ | python | dnouri/nolearn | nolearn/dbn.py | https://github.com/dnouri/nolearn/blob/master/nolearn/dbn.py | MIT |
def __init__(
self,
feature_layer='fc7_cudanet_out',
pretrained_params='imagenet.decafnet.epoch90',
pretrained_meta='imagenet.decafnet.meta',
center_only=True,
classify_direct=False,
verbose=0,
):
"""
:param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to
`fc7_cudanet_out`. A description of all
available layers for the
ImageNet-1k-pretrained ConvNet is found
in the DeCAF wiki. They are:
- `pool5_cudanet_out`
- `fc6_cudanet_out`
- `fc6_neuron_cudanet_out`
- `fc7_cudanet_out`
- `fc7_neuron_cudanet_out`
- `probs_cudanet_out`
:param pretrained_params: This must point to the file with the
pretrained parameters. Defaults to
`imagenet.decafnet.epoch90`. For
the ImageNet-1k-pretrained ConvNet
this file can be obtained from here:
http://www.eecs.berkeley.edu/~jiayq/decaf_pretrained/
:param pretrained_meta: Similar to `pretrained_params`, this
must file to the file with the
pretrained parameters' metadata.
Defaults to `imagenet.decafnet.meta`.
:param center_only: Use the center patch of the image only
when extracting features. If `False`, use
four corners, the image center and flipped
variants and average a total of 10 feature
vectors, which will usually yield better
results. Defaults to `True`.
:param classify_direct: When `True`, assume that input X is an
array of shape (num x 256 x 256 x 3)
as returned by `prepare_image`.
"""
self.feature_layer = feature_layer
self.pretrained_params = pretrained_params
self.pretrained_meta = pretrained_meta
self.center_only = center_only
self.classify_direct = classify_direct
self.net_ = None
if (not os.path.exists(pretrained_params) or
not os.path.exists(pretrained_meta)):
raise ValueError(
"Pre-trained ConvNet parameters not found. You may"
"need to download the files from "
"http://www.eecs.berkeley.edu/~jiayq/decaf_pretrained/ and "
"pass the path to the two files as `pretrained_params` and "
"`pretrained_meta` to the `{}` estimator.".format(
self.__class__.__name__)) | :param feature_layer: The ConvNet layer that's used for
feature extraction. Defaults to
`fc7_cudanet_out`. A description of all
available layers for the
ImageNet-1k-pretrained ConvNet is found
in the DeCAF wiki. They are:
- `pool5_cudanet_out`
- `fc6_cudanet_out`
- `fc6_neuron_cudanet_out`
- `fc7_cudanet_out`
- `fc7_neuron_cudanet_out`
- `probs_cudanet_out`
:param pretrained_params: This must point to the file with the
pretrained parameters. Defaults to
`imagenet.decafnet.epoch90`. For
the ImageNet-1k-pretrained ConvNet
this file can be obtained from here:
http://www.eecs.berkeley.edu/~jiayq/decaf_pretrained/
:param pretrained_meta: Similar to `pretrained_params`, this
must file to the file with the
pretrained parameters' metadata.
Defaults to `imagenet.decafnet.meta`.
:param center_only: Use the center patch of the image only
when extracting features. If `False`, use
four corners, the image center and flipped
variants and average a total of 10 feature
vectors, which will usually yield better
results. Defaults to `True`.
:param classify_direct: When `True`, assume that input X is an
array of shape (num x 256 x 256 x 3)
as returned by `prepare_image`. | __init__ | python | dnouri/nolearn | nolearn/decaf.py | https://github.com/dnouri/nolearn/blob/master/nolearn/decaf.py | MIT |
def prepare_image(self, image):
"""Returns image of shape `(256, 256, 3)`, as expected by
`transform` when `classify_direct = True`.
"""
from decaf.util import transform # soft dep
_JEFFNET_FLIP = True
# first, extract the 256x256 center.
image = transform.scale_and_extract(transform.as_rgb(image), 256)
# convert to [0,255] float32
image = image.astype(np.float32) * 255.
if _JEFFNET_FLIP:
# Flip the image if necessary, maintaining the c_contiguous order
image = image[::-1, :].copy()
# subtract the mean
image -= self.net_._data_mean
return image | Returns image of shape `(256, 256, 3)`, as expected by
`transform` when `classify_direct = True`. | prepare_image | python | dnouri/nolearn | nolearn/decaf.py | https://github.com/dnouri/nolearn/blob/master/nolearn/decaf.py | MIT |
def chunks(l, n):
""" Yield successive n-sized chunks from l.
"""
for i in xrange(0, len(l), n):
yield l[i:i + n] | Yield successive n-sized chunks from l. | chunks | python | dnouri/nolearn | nolearn/util.py | https://github.com/dnouri/nolearn/blob/master/nolearn/util.py | MIT |
def multiclass_logloss(actual, predicted, eps=1e-15):
"""Multi class version of Logarithmic Loss metric.
:param actual: Array containing the actual target classes
:param predicted: Matrix with class predictions, one probability per class
"""
# Convert 'actual' to a binary array if it's not already:
if len(actual.shape) == 1:
actual2 = np.zeros((actual.shape[0], predicted.shape[1]))
for i, val in enumerate(actual):
actual2[i, val] = 1
actual = actual2
clip = np.clip(predicted, eps, 1 - eps)
rows = actual.shape[0]
vsota = np.sum(actual * np.log(clip))
return -1.0 / rows * vsota | Multi class version of Logarithmic Loss metric.
:param actual: Array containing the actual target classes
:param predicted: Matrix with class predictions, one probability per class | multiclass_logloss | python | dnouri/nolearn | nolearn/metrics.py | https://github.com/dnouri/nolearn/blob/master/nolearn/metrics.py | MIT |
def __call__(self, dataset, classifier, steps=10,
verbose=0, random_state=42):
"""Create a learning curve that uses more training cases with
each step.
:param dataset: Dataset to work with
:type dataset: :class:`~nolearn.dataset.Dataset`
:param classifier: Classifier for fitting and making predictions.
:type classifier: :class:`~sklearn.base.BaseEstimator`
:param steps: Number of steps in the learning curve.
:type steps: int
:result: 3-tuple with lists `scores_train`, `scores_test`, `sizes`
Drawing the resulting learning curve can be done like this:
.. code-block:: python
dataset = Dataset()
clf = LogisticRegression()
scores_train, scores_test, sizes = learning_curve(dataset, clf)
pl.plot(sizes, scores_train, 'b', label='training set')
pl.plot(sizes, scores_test, 'r', label='test set')
pl.legend(loc='lower right')
pl.show()
"""
X_train, X_test, y_train, y_test = dataset.train_test_split()
scores_train = []
scores_test = []
sizes = []
if verbose:
print(" n train test")
for frac in np.linspace(0.1, 1.0, num=steps):
frac_size = int(X_train.shape[0] * frac)
sizes.append(frac_size)
X_train1 = X_train[:frac_size]
y_train1 = y_train[:frac_size]
clf = clone(classifier)
clf.fit(X_train1, y_train1)
predict_train = self.predict(clf, X_train1)
predict_test = self.predict(clf, X_test)
score_train = self.score_func(y_train1, predict_train)
score_test = self.score_func(y_test, predict_test)
scores_train.append(score_train)
scores_test.append(score_test)
if verbose:
print(" %8d %0.4f %0.4f" % (
frac_size, score_train, score_test))
return scores_train, scores_test, sizes | Create a learning curve that uses more training cases with
each step.
:param dataset: Dataset to work with
:type dataset: :class:`~nolearn.dataset.Dataset`
:param classifier: Classifier for fitting and making predictions.
:type classifier: :class:`~sklearn.base.BaseEstimator`
:param steps: Number of steps in the learning curve.
:type steps: int
:result: 3-tuple with lists `scores_train`, `scores_test`, `sizes`
Drawing the resulting learning curve can be done like this:
.. code-block:: python
dataset = Dataset()
clf = LogisticRegression()
scores_train, scores_test, sizes = learning_curve(dataset, clf)
pl.plot(sizes, scores_train, 'b', label='training set')
pl.plot(sizes, scores_test, 'r', label='test set')
pl.legend(loc='lower right')
pl.show() | __call__ | python | dnouri/nolearn | nolearn/metrics.py | https://github.com/dnouri/nolearn/blob/master/nolearn/metrics.py | MIT |
def __init__(self, save_to=None, write_every=8):
"""
:param save_to: If given, `save_to` must be a path into which
I will write weight statistics in CSV format.
"""
self.last_weights = None
self.history = []
self.save_to = save_to
self.write_every = write_every
self._dictwriter = None
self._save_to_file = None | :param save_to: If given, `save_to` must be a path into which
I will write weight statistics in CSV format. | __init__ | python | dnouri/nolearn | nolearn/lasagne/handlers.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/handlers.py | MIT |
def objective(layers,
loss_function,
target,
aggregate=aggregate,
deterministic=False,
l1=0,
l2=0,
get_output_kw=None):
"""
Default implementation of the NeuralNet objective.
:param layers: The underlying layers of the NeuralNetwork
:param loss_function: The callable loss function to use
:param target: the expected output
:param aggregate: the aggregation function to use
:param deterministic: Whether or not to get a deterministic output
:param l1: Optional l1 regularization parameter
:param l2: Optional l2 regularization parameter
:param get_output_kw: optional kwargs to pass to
:meth:`NeuralNetwork.get_output`
:return: The total calculated loss
"""
if get_output_kw is None:
get_output_kw = {}
output_layer = layers[-1]
network_output = get_output(
output_layer, deterministic=deterministic, **get_output_kw)
loss = aggregate(loss_function(network_output, target))
if l1:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l1) * l1
if l2:
loss += regularization.regularize_layer_params(
layers.values(), regularization.l2) * l2
return loss | Default implementation of the NeuralNet objective.
:param layers: The underlying layers of the NeuralNetwork
:param loss_function: The callable loss function to use
:param target: the expected output
:param aggregate: the aggregation function to use
:param deterministic: Whether or not to get a deterministic output
:param l1: Optional l1 regularization parameter
:param l2: Optional l2 regularization parameter
:param get_output_kw: optional kwargs to pass to
:meth:`NeuralNetwork.get_output`
:return: The total calculated loss | objective | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def __init__(
self,
layers,
update=nesterov_momentum,
loss=None, # BBB
objective=objective,
objective_loss_function=None,
batch_iterator_train=BatchIterator(batch_size=128),
batch_iterator_test=BatchIterator(batch_size=128),
regression=False,
max_epochs=100,
train_split=TrainSplit(eval_size=0.2),
custom_scores=None,
scores_train=None,
scores_valid=None,
X_tensor_type=None,
y_tensor_type=None,
use_label_encoder=False,
on_batch_finished=None,
on_epoch_finished=None,
on_training_started=None,
on_training_finished=None,
more_params=None,
check_input=True,
verbose=0,
**kwargs
):
"""
Initialize a Neural Network
Parameters
----------
layers:
A list of lasagne layers to compose into the final neural net.
See :ref:`layer-def`
update:
The update function to use when training. Uses the form
provided by the :mod:`lasagne.updates` implementations.
objective:
The objective function to use when training. The callable
will be passed the NeuralNetwork's :attr:`.layers_`
attribute as the first argument, and the output target as
the second argument.
max_epochs:
The number of epochs to train. This is used as the
default when calling the :meth:`.fit` method without an
epochs argument.
Other Parameters
----------------
batch_iterator_train:
The sample iterator to use while training the network.
batch_iterator_test:
The sample Iterator to use while testing and validating
the network.
regression:
Whether or not this is a regressor network. Determines
the default objective and scoring functions.
train_split:
The method used to separate training and validation
samples. See :class:`TrainSplit` for the default
implementation.
y_tensor_type:
The type of tensor to use to hold the network's output.
Typically ``T.ivector`` (the default) for classification
tasks.
on_training_started, on_batch_finished, on_epoch_finished,
on_training_finished:
A list of functions which are called during training at
the corresponding times.
The functions will be passed the NeuralNet as the first
parameter and its :attr:`.train_history_` attribute as the
second parameter.
custom_scores:
A list of callable custom scoring functions.
The functions will be passed the expected y values as the
first argument, and the predicted y_values as the second
argument.
use_label_encoder:
If true, all y_values will be encoded using a
:class:`sklearn.preprocessing.LabelEncoder` instance.
verbose:
The verbosity level of the network.
Any non-zero value will cause the network to print the
layer info at the start of training, as well as print a
log of the training history after each epoch. Larger
values will increase the amount of info shown.
more_params:
A set of more parameters to use when initializing layers
defined using the dictionary method.
Note
----
* Extra arguments can be passed to the call to the *update*
function by prepending the string ``update_`` to the
corresponding argument name,
e.g. ``update_learning_rate=0.01`` will define the
``learning_rate`` parameter of the update function.
* Extra arguments can be provided to the objective call
through the Neural Network by prepending the string
``objective_`` to the corresponding argument name.
"""
if loss is not None:
raise ValueError(
"The 'loss' parameter was removed, please use "
"'objective_loss_function' instead.") # BBB
if hasattr(objective, 'get_loss'):
raise ValueError(
"The 'Objective' class is no longer supported, please "
"use 'nolearn.lasagne.objective' or similar.") # BBB
if objective_loss_function is None:
objective_loss_function = (
squared_error if regression else categorical_crossentropy)
if hasattr(self, 'train_test_split'): # BBB
warn("The 'train_test_split' method has been deprecated, please "
"use the 'train_split' parameter instead.")
train_split = LegacyTrainTestSplit(
eval_size=kwargs.pop('eval_size', 0.2))
if 'eval_size' in kwargs: # BBB
warn("The 'eval_size' argument has been deprecated, please use "
"the 'train_split' parameter instead, e.g.\n"
"train_split=TrainSplit(eval_size=0.4)")
train_split.eval_size = kwargs.pop('eval_size')
if y_tensor_type is None:
if regression:
y_tensor_type = T.TensorType(
theano.config.floatX, (False, False))
else:
y_tensor_type = T.ivector
if X_tensor_type is not None:
raise ValueError(
"The 'X_tensor_type' parameter has been removed. "
"It's unnecessary.") # BBB
if 'custom_score' in kwargs:
warn("The 'custom_score' argument has been deprecated, please use "
"the 'custom_scores' parameter instead, which is just "
"a list of custom scores e.g.\n"
"custom_scores=[('first output', lambda y1, y2: abs(y1[0,0]-y2[0,0])), ('second output', lambda y1,y2: abs(y1[0,1]-y2[0,1]))]")
# add it to custom_scores
if custom_scores is None:
custom_scores = [kwargs.pop('custom_score')]
else:
custom_scores.append(kwargs.pop('custom_score'))
if isinstance(layers, Layer):
layers = _list([layers])
elif isinstance(layers, Iterable):
layers = _list(layers)
self.layers = layers
self.update = update
self.objective = objective
self.objective_loss_function = objective_loss_function
self.batch_iterator_train = batch_iterator_train
self.batch_iterator_test = batch_iterator_test
self.regression = regression
self.max_epochs = max_epochs
self.train_split = train_split
self.custom_scores = custom_scores
self.scores_train = scores_train or []
self.scores_valid = scores_valid or []
self.y_tensor_type = y_tensor_type
self.use_label_encoder = use_label_encoder
self.on_batch_finished = on_batch_finished or []
self.on_epoch_finished = on_epoch_finished or []
self.on_training_started = on_training_started or []
self.on_training_finished = on_training_finished or []
self.more_params = more_params or {}
self.check_input = check_input
self.verbose = verbose
if self.verbose:
# XXX: PrintLog should come before any other handlers,
# because early stopping will otherwise cause the last
# line not to be printed
self.on_epoch_finished.append(PrintLog())
self.on_training_started.append(PrintLayerInfo())
for key in kwargs.keys():
assert not hasattr(self, key)
vars(self).update(kwargs)
self._kwarg_keys = list(kwargs.keys())
self.train_history_ = []
if 'batch_iterator' in kwargs: # BBB
raise ValueError(
"The 'batch_iterator' argument has been replaced. "
"Use 'batch_iterator_train' and 'batch_iterator_test' instead."
) | Initialize a Neural Network
Parameters
----------
layers:
A list of lasagne layers to compose into the final neural net.
See :ref:`layer-def`
update:
The update function to use when training. Uses the form
provided by the :mod:`lasagne.updates` implementations.
objective:
The objective function to use when training. The callable
will be passed the NeuralNetwork's :attr:`.layers_`
attribute as the first argument, and the output target as
the second argument.
max_epochs:
The number of epochs to train. This is used as the
default when calling the :meth:`.fit` method without an
epochs argument.
Other Parameters
----------------
batch_iterator_train:
The sample iterator to use while training the network.
batch_iterator_test:
The sample Iterator to use while testing and validating
the network.
regression:
Whether or not this is a regressor network. Determines
the default objective and scoring functions.
train_split:
The method used to separate training and validation
samples. See :class:`TrainSplit` for the default
implementation.
y_tensor_type:
The type of tensor to use to hold the network's output.
Typically ``T.ivector`` (the default) for classification
tasks.
on_training_started, on_batch_finished, on_epoch_finished,
on_training_finished:
A list of functions which are called during training at
the corresponding times.
The functions will be passed the NeuralNet as the first
parameter and its :attr:`.train_history_` attribute as the
second parameter.
custom_scores:
A list of callable custom scoring functions.
The functions will be passed the expected y values as the
first argument, and the predicted y_values as the second
argument.
use_label_encoder:
If true, all y_values will be encoded using a
:class:`sklearn.preprocessing.LabelEncoder` instance.
verbose:
The verbosity level of the network.
Any non-zero value will cause the network to print the
layer info at the start of training, as well as print a
log of the training history after each epoch. Larger
values will increase the amount of info shown.
more_params:
A set of more parameters to use when initializing layers
defined using the dictionary method.
Note
----
* Extra arguments can be passed to the call to the *update*
function by prepending the string ``update_`` to the
corresponding argument name,
e.g. ``update_learning_rate=0.01`` will define the
``learning_rate`` parameter of the update function.
* Extra arguments can be provided to the objective call
through the Neural Network by prepending the string
``objective_`` to the corresponding argument name. | __init__ | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def initialize(self):
"""Initializes the network. Checks that no extra kwargs were
passed to the constructor, and compiles the train, predict,
and evaluation functions.
Subsequent calls to this function will return without any action.
"""
if getattr(self, '_initialized', False):
return
out = getattr(self, '_output_layers', None)
if out is None:
self.initialize_layers()
self._check_for_unused_kwargs()
iter_funcs = self._create_iter_funcs(
self.layers_, self.objective, self.update,
self.y_tensor_type,
)
self.train_iter_, self.eval_iter_, self.predict_iter_ = iter_funcs
self._initialized = True | Initializes the network. Checks that no extra kwargs were
passed to the constructor, and compiles the train, predict,
and evaluation functions.
Subsequent calls to this function will return without any action. | initialize | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def initialize_layers(self, layers=None):
"""Sets up the Lasagne layers
:param layers: The dictionary of layers, or a
:class:`lasagne.Layers` instance, describing the underlying
network
:return: the output layer of the underlying lasagne network.
:seealso: :ref:`layer-def`
"""
if layers is not None:
self.layers = layers
self.layers_ = Layers()
#If a Layer, or a list of Layers was passed in
if isinstance(self.layers[0], Layer):
for out_layer in self.layers:
for i, layer in enumerate(get_all_layers(out_layer)):
if layer not in self.layers_.values():
name = layer.name or self._layer_name(layer.__class__, i)
self.layers_[name] = layer
if self._get_params_for(name) != {}:
raise ValueError(
"You can't use keyword params when passing a Lasagne "
"instance object as the 'layers' parameter of "
"'NeuralNet'."
)
self._output_layers = self.layers
return self.layers
# 'self.layers' are a list of '(Layer class, kwargs)', so
# we'll have to actually instantiate the layers given the
# arguments:
layer = None
for i, layer_def in enumerate(self.layers):
if isinstance(layer_def[1], dict):
# Newer format: (Layer, {'layer': 'kwargs'})
layer_factory, layer_kw = layer_def
layer_kw = layer_kw.copy()
else:
# The legacy format: ('name', Layer)
layer_name, layer_factory = layer_def
layer_kw = {'name': layer_name}
if isinstance(layer_factory, str):
layer_factory = locate(layer_factory)
assert layer_factory is not None
if 'name' not in layer_kw:
layer_kw['name'] = self._layer_name(layer_factory, i)
more_params = self._get_params_for(layer_kw['name'])
layer_kw.update(more_params)
if layer_kw['name'] in self.layers_:
raise ValueError(
"Two layers with name {}.".format(layer_kw['name']))
# Any layers that aren't subclasses of InputLayer are
# assumed to require an 'incoming' paramter. By default,
# we'll use the previous layer as input:
try:
is_input_layer = issubclass(layer_factory, InputLayer)
except TypeError:
is_input_layer = False
if not is_input_layer:
if 'incoming' in layer_kw:
layer_kw['incoming'] = self.layers_[
layer_kw['incoming']]
elif 'incomings' in layer_kw:
layer_kw['incomings'] = [
self.layers_[name] for name in layer_kw['incomings']]
else:
layer_kw['incoming'] = layer
# Deal with additional string parameters that may
# reference other layers; currently only 'mask_input'.
for param in self.layer_reference_params:
if param in layer_kw:
val = layer_kw[param]
if isinstance(val, basestring):
layer_kw[param] = self.layers_[val]
for attr in ('W', 'b'):
if isinstance(layer_kw.get(attr), str):
name = layer_kw[attr]
layer_kw[attr] = getattr(self.layers_[name], attr, None)
try:
layer_wrapper = layer_kw.pop('layer_wrapper', None)
layer = layer_factory(**layer_kw)
except TypeError as e:
msg = ("Failed to instantiate {} with args {}.\n"
"Maybe parameter names have changed?".format(
layer_factory, layer_kw))
chain_exception(TypeError(msg), e)
self.layers_[layer_kw['name']] = layer
if layer_wrapper is not None:
layer = layer_wrapper(layer)
self.layers_["LW_%s" % layer_kw['name']] = layer
self._output_layers = [layer]
return [layer] | Sets up the Lasagne layers
:param layers: The dictionary of layers, or a
:class:`lasagne.Layers` instance, describing the underlying
network
:return: the output layer of the underlying lasagne network.
:seealso: :ref:`layer-def` | initialize_layers | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def fit(self, X, y, epochs=None):
"""
Runs the training loop for a given number of epochs
:param X: The input data
:param y: The ground truth
:param epochs: The number of epochs to run, if `None` runs for the
network's :attr:`max_epochs`
:return: This instance
"""
if self.check_input:
X, y = self._check_good_input(X, y)
if self.use_label_encoder:
self.enc_ = LabelEncoder()
y = self.enc_.fit_transform(y).astype(np.int32)
self.classes_ = self.enc_.classes_
self.initialize()
try:
self.train_loop(X, y, epochs=epochs)
except KeyboardInterrupt:
pass
return self | Runs the training loop for a given number of epochs
:param X: The input data
:param y: The ground truth
:param epochs: The number of epochs to run, if `None` runs for the
network's :attr:`max_epochs`
:return: This instance | fit | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def partial_fit(self, X, y, classes=None):
"""
Runs a single epoch using the provided data
:return: This instance
"""
return self.fit(X, y, epochs=1) | Runs a single epoch using the provided data
:return: This instance | partial_fit | python | dnouri/nolearn | nolearn/lasagne/base.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py | MIT |
def plot_conv_weights(layer, figsize=(6, 6)):
"""Plot the weights of a specific layer.
Only really makes sense with convolutional layers.
Parameters
----------
layer : lasagne.layers.Layer
"""
W = layer.W.get_value()
shape = W.shape
nrows = np.ceil(np.sqrt(shape[0])).astype(int)
ncols = nrows
for feature_map in range(shape[1]):
figs, axes = plt.subplots(nrows, ncols, figsize=figsize, squeeze=False)
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[0]:
break
axes[r, c].imshow(W[i, feature_map], cmap='gray',
interpolation='none')
return plt | Plot the weights of a specific layer.
Only really makes sense with convolutional layers.
Parameters
----------
layer : lasagne.layers.Layer | plot_conv_weights | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def plot_conv_activity(layer, x, figsize=(6, 8)):
"""Plot the acitivities of a specific layer.
Only really makes sense with layers that work 2D data (2D
convolutional layers, 2D pooling layers ...).
Parameters
----------
layer : lasagne.layers.Layer
x : numpy.ndarray
Only takes one sample at a time, i.e. x.shape[0] == 1.
"""
if x.shape[0] != 1:
raise ValueError("Only one sample can be plotted at a time.")
# compile theano function
xs = T.tensor4('xs').astype(theano.config.floatX)
get_activity = theano.function([xs], get_output(layer, xs))
activity = get_activity(x)
shape = activity.shape
nrows = np.ceil(np.sqrt(shape[1])).astype(int)
ncols = nrows
figs, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False)
axes[0, ncols // 2].imshow(1 - x[0][0], cmap='gray',
interpolation='none')
axes[0, ncols // 2].set_title('original')
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[1]:
break
ndim = activity[0][i].ndim
if ndim != 2:
raise ValueError("Wrong number of dimensions, image data should "
"have 2, instead got {}".format(ndim))
axes[r + 1, c].imshow(-activity[0][i], cmap='gray',
interpolation='none')
return plt | Plot the acitivities of a specific layer.
Only really makes sense with layers that work 2D data (2D
convolutional layers, 2D pooling layers ...).
Parameters
----------
layer : lasagne.layers.Layer
x : numpy.ndarray
Only takes one sample at a time, i.e. x.shape[0] == 1. | plot_conv_activity | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def occlusion_heatmap(net, x, target, square_length=7):
"""An occlusion test that checks an image for its critical parts.
In this function, a square part of the image is occluded (i.e. set
to 0) and then the net is tested for its propensity to predict the
correct label. One should expect that this propensity shrinks of
critical parts of the image are occluded. If not, this indicates
overfitting.
Depending on the depth of the net and the size of the image, this
function may take awhile to finish, since one prediction for each
pixel of the image is made.
Currently, all color channels are occluded at the same time. Also,
this does not really work if images are randomly distorted by the
batch iterator.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
x : np.array
The input data, should be of shape (1, c, x, y). Only makes
sense with image data.
target : int
The true value of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
Results
-------
heat_array : np.array (with same size as image)
An 2D np.array that at each point (i, j) contains the predicted
probability of the correct class if the image is occluded by a
square with center (i, j).
"""
if (x.ndim != 4) or x.shape[0] != 1:
raise ValueError("This function requires the input data to be of "
"shape (1, c, x, y), instead got {}".format(x.shape))
if square_length % 2 == 0:
raise ValueError("Square length has to be an odd number, instead "
"got {}.".format(square_length))
num_classes = get_output_shape(net.layers_[-1])[1]
img = x[0].copy()
bs, col, s0, s1 = x.shape
heat_array = np.zeros((s0, s1))
pad = square_length // 2 + 1
x_occluded = np.zeros((s1, col, s0, s1), dtype=img.dtype)
probs = np.zeros((s0, s1, num_classes))
# generate occluded images
for i in range(s0):
# batch s1 occluded images for faster prediction
for j in range(s1):
x_pad = np.pad(img, ((0, 0), (pad, pad), (pad, pad)), 'constant')
x_pad[:, i:i + square_length, j:j + square_length] = 0.
x_occluded[j] = x_pad[:, pad:-pad, pad:-pad]
y_proba = net.predict_proba(x_occluded)
probs[i] = y_proba.reshape(s1, num_classes)
# from predicted probabilities, pick only those of target class
for i in range(s0):
for j in range(s1):
heat_array[i, j] = probs[i, j, target]
return heat_array | An occlusion test that checks an image for its critical parts.
In this function, a square part of the image is occluded (i.e. set
to 0) and then the net is tested for its propensity to predict the
correct label. One should expect that this propensity shrinks of
critical parts of the image are occluded. If not, this indicates
overfitting.
Depending on the depth of the net and the size of the image, this
function may take awhile to finish, since one prediction for each
pixel of the image is made.
Currently, all color channels are occluded at the same time. Also,
this does not really work if images are randomly distorted by the
batch iterator.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
x : np.array
The input data, should be of shape (1, c, x, y). Only makes
sense with image data.
target : int
The true value of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
Results
-------
heat_array : np.array (with same size as image)
An 2D np.array that at each point (i, j) contains the predicted
probability of the correct class if the image is occluded by a
square with center (i, j). | occlusion_heatmap | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def plot_occlusion(net, X, target, square_length=7, figsize=(9, None)):
"""Plot which parts of an image are particularly import for the
net to classify the image correctly.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
X : numpy.array
The input data, should be of shape (b, c, 0, 1). Only makes
sense with image data.
target : list or numpy.array of ints
The true values of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at. If more than one sample is passed to X, each of them needs
its own target.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
figsize : tuple (int, int)
Size of the figure.
Plots
-----
Figure with 3 subplots: the original image, the occlusion heatmap,
and both images super-imposed.
"""
return _plot_heat_map(
net, X, figsize, lambda net, X, n: occlusion_heatmap(
net, X, target[n], square_length)) | Plot which parts of an image are particularly import for the
net to classify the image correctly.
See paper: Zeiler, Fergus 2013
Parameters
----------
net : NeuralNet instance
The neural net to test.
X : numpy.array
The input data, should be of shape (b, c, 0, 1). Only makes
sense with image data.
target : list or numpy.array of ints
The true values of the image. If the net makes several
predictions, say 10 classes, this indicates which one to look
at. If more than one sample is passed to X, each of them needs
its own target.
square_length : int (default=7)
The length of the side of the square that occludes the image.
Must be an odd number.
figsize : tuple (int, int)
Size of the figure.
Plots
-----
Figure with 3 subplots: the original image, the occlusion heatmap,
and both images super-imposed. | plot_occlusion | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def get_hex_color(layer_type):
"""
Determines the hex color for a layer.
:parameters:
- layer_type : string
Class name of the layer
:returns:
- color : string containing a hex color for filling block.
"""
COLORS = ['#4A88B3', '#98C1DE', '#6CA2C8', '#3173A2', '#17649B',
'#FFBB60', '#FFDAA9', '#FFC981', '#FCAC41', '#F29416',
'#C54AAA', '#E698D4', '#D56CBE', '#B72F99', '#B0108D',
'#75DF54', '#B3F1A0', '#91E875', '#5DD637', '#3FCD12']
hashed = int(hash(layer_type)) % 5
if "conv" in layer_type.lower():
return COLORS[:5][hashed]
if layer_type in lasagne.layers.pool.__all__:
return COLORS[5:10][hashed]
if layer_type in lasagne.layers.recurrent.__all__:
return COLORS[10:15][hashed]
else:
return COLORS[15:20][hashed] | Determines the hex color for a layer.
:parameters:
- layer_type : string
Class name of the layer
:returns:
- color : string containing a hex color for filling block. | get_hex_color | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def make_pydot_graph(layers, output_shape=True, verbose=False):
"""
:parameters:
- layers : list
List of the layers, as obtained from lasagne.layers.get_all_layers
- output_shape: (default `True`)
If `True`, the output shape of each layer will be displayed.
- verbose: (default `False`)
If `True`, layer attributes like filter shape, stride, etc.
will be displayed.
:returns:
- pydot_graph : PyDot object containing the graph
"""
import pydotplus as pydot
pydot_graph = pydot.Dot('Network', graph_type='digraph')
pydot_nodes = {}
pydot_edges = []
for i, layer in enumerate(layers):
layer_name = getattr(layer, 'name', None)
if layer_name is None:
layer_name = layer.__class__.__name__
layer_type = '{0}'.format(layer_name)
key = repr(layer)
label = layer_type
color = get_hex_color(layer_type)
if verbose:
for attr in ['num_filters', 'num_units', 'ds',
'filter_shape', 'stride', 'strides', 'p']:
if hasattr(layer, attr):
label += '\n{0}: {1}'.format(attr, getattr(layer, attr))
if hasattr(layer, 'nonlinearity'):
try:
nonlinearity = layer.nonlinearity.__name__
except AttributeError:
nonlinearity = layer.nonlinearity.__class__.__name__
label += '\nnonlinearity: {0}'.format(nonlinearity)
if output_shape:
label += '\nOutput shape: {0}'.format(layer.output_shape)
pydot_nodes[key] = pydot.Node(
key, label=label, shape='record', fillcolor=color, style='filled')
if hasattr(layer, 'input_layers'):
for input_layer in layer.input_layers:
pydot_edges.append([repr(input_layer), key])
if hasattr(layer, 'input_layer'):
pydot_edges.append([repr(layer.input_layer), key])
for node in pydot_nodes.values():
pydot_graph.add_node(node)
for edges in pydot_edges:
pydot_graph.add_edge(
pydot.Edge(pydot_nodes[edges[0]], pydot_nodes[edges[1]]))
return pydot_graph | :parameters:
- layers : list
List of the layers, as obtained from lasagne.layers.get_all_layers
- output_shape: (default `True`)
If `True`, the output shape of each layer will be displayed.
- verbose: (default `False`)
If `True`, layer attributes like filter shape, stride, etc.
will be displayed.
:returns:
- pydot_graph : PyDot object containing the graph | make_pydot_graph | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def draw_to_file(layers, filename, **kwargs):
"""
Draws a network diagram to a file
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- filename : string
The filename to save output to
- **kwargs: see docstring of make_pydot_graph for other options
"""
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
ext = filename[filename.rfind('.') + 1:]
with io.open(filename, 'wb') as fid:
fid.write(dot.create(format=ext)) | Draws a network diagram to a file
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- filename : string
The filename to save output to
- **kwargs: see docstring of make_pydot_graph for other options | draw_to_file | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def draw_to_notebook(layers, **kwargs):
"""
Draws a network diagram in an IPython notebook
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- **kwargs : see the docstring of make_pydot_graph for other options
"""
from IPython.display import Image
layers = (layers.get_all_layers() if hasattr(layers, 'get_all_layers')
else layers)
dot = make_pydot_graph(layers, **kwargs)
return Image(dot.create_png()) | Draws a network diagram in an IPython notebook
:parameters:
- layers : list or NeuralNet instance
List of layers or the neural net to draw.
- **kwargs : see the docstring of make_pydot_graph for other options | draw_to_notebook | python | dnouri/nolearn | nolearn/lasagne/visualize.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/visualize.py | MIT |
def get_real_filter(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
real_filter = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
real_filter[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
else:
new_filter = np.array(layer.filter_size) * expon
real_filter[j] = new_filter
first_conv_layer = False
elif is_maxpool2d(layer):
real_filter[j] = real_filter[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
real_filter[j] = img_size
real_filter[0] = img_size
return real_filter | Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks. | get_real_filter | python | dnouri/nolearn | nolearn/lasagne/util.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/util.py | MIT |
def get_receptive_field(layers, img_size):
"""Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks.
"""
receptive_field = np.zeros((len(layers), 2))
conv_mode = True
first_conv_layer = True
expon = np.ones((1, 2))
for i, layer in enumerate(layers[1:]):
j = i + 1
if not conv_mode:
receptive_field[j] = img_size
continue
if is_conv2d(layer):
if not first_conv_layer:
last_field = receptive_field[i]
new_field = (last_field + expon *
(np.array(layer.filter_size) - 1))
receptive_field[j] = new_field
else:
receptive_field[j] = layer.filter_size
first_conv_layer = False
elif is_maxpool2d(layer):
receptive_field[j] = receptive_field[i]
expon *= np.array(layer.pool_size)
else:
conv_mode = False
receptive_field[j] = img_size
receptive_field[0] = img_size
return receptive_field | Get the real filter sizes of each layer involved in
convoluation. See Xudong Cao:
https://www.kaggle.com/c/datasciencebowl/forums/t/13166/happy-lantern-festival-report-and-code
This does not yet take into consideration feature pooling,
padding, striding and similar gimmicks. | get_receptive_field | python | dnouri/nolearn | nolearn/lasagne/util.py | https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/util.py | MIT |
def __init__(
self,
nlp: "Language",
separator: str | None = "\n\n",
attrs: dict[str, str] = {},
headings: list[str] = [
DocItemLabel.SECTION_HEADER,
DocItemLabel.PAGE_HEADER,
DocItemLabel.TITLE,
],
display_table: Callable[["DataFrame"], str] | str = TABLE_PLACEHOLDER,
docling_options: dict["InputFormat", "FormatOption"] | None = None,
) -> None:
"""Initialize the layout parser and Docling converter."""
self.nlp = nlp
self.sep = separator
self.attrs = Attrs(
doc_layout=attrs.get("doc_layout", "layout"),
doc_pages=attrs.get("doc_pages", "pages"),
doc_tables=attrs.get("doc_tables", "tables"),
doc_markdown=attrs.get("doc_markdown", "markdown"),
span_layout=attrs.get("span_layout", "layout"),
span_heading=attrs.get("span_heading", "heading"),
span_data=attrs.get("span_data", "data"),
span_group=attrs.get("span_group", "layout"),
)
self.headings = headings
self.display_table = display_table
self.converter = DocumentConverter(format_options=docling_options)
# Set spaCy extension attributes for custom data
Doc.set_extension(self.attrs.doc_layout, default=None, force=True)
Doc.set_extension(self.attrs.doc_pages, getter=self.get_pages, force=True)
Doc.set_extension(self.attrs.doc_tables, getter=self.get_tables, force=True)
Doc.set_extension(self.attrs.doc_markdown, default=None, force=True)
Span.set_extension(self.attrs.span_layout, default=None, force=True)
Span.set_extension(self.attrs.span_data, default=None, force=True)
Span.set_extension(self.attrs.span_heading, getter=self.get_heading, force=True) | Initialize the layout parser and Docling converter. | __init__ | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def __call__(self, source: str | Path | bytes | DoclingDocument) -> Doc:
"""Call parser on a path to create a spaCy Doc object."""
if isinstance(source, DoclingDocument):
result = source
else:
result = self.converter.convert(self._get_source(source)).document
return self._result_to_doc(result) | Call parser on a path to create a spaCy Doc object. | __call__ | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def pipe(
self,
sources: (
Iterable[str | Path | bytes]
| Iterable[tuple[str | Path | bytes, _AnyContext]]
),
as_tuples: bool = False,
) -> Iterator[Doc] | Iterator[tuple[Doc, _AnyContext]]:
"""Process multiple documents and create spaCy Doc objects."""
if as_tuples:
sources = cast(Iterable[tuple[str | Path | bytes, _AnyContext]], sources)
data = (self._get_source(source) for source, _ in sources)
contexts = (context for _, context in sources)
results = self.converter.convert_all(data)
for result, context in zip(results, contexts):
yield (self._result_to_doc(result.document), context)
else:
sources = cast(Iterable[str | Path | bytes], sources)
data = (self._get_source(source) for source in sources)
results = self.converter.convert_all(data)
for result in results:
yield self._result_to_doc(result.document) | Process multiple documents and create spaCy Doc objects. | pipe | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def _texts_to_doc(
self, inputs: list[tuple[str, DoclingItem]], pages: dict[int, PageLayout]
) -> Doc:
"""Convert Docling structure to spaCy Doc."""
words = []
spaces = []
span_data = []
token_idx = 0
# Tokenize the span because we can't rely on the document parsing to
# give us items that are not split across token boundaries
with self.nlp.select_pipes(disable=self.nlp.pipe_names):
for span_doc, item in self.nlp.pipe(inputs, as_tuples=True):
words += [token.text for token in span_doc]
spaces += [bool(token.whitespace_) for token in span_doc]
# Add separator token and don't include it in the layout span
if self.sep:
words.append(self.sep)
spaces[-1] = False
spaces.append(False)
end = token_idx + len(span_doc)
span_data.append((item, token_idx, end))
token_idx += len(span_doc) + (1 if self.sep else 0)
doc = Doc(self.nlp.vocab, words=words, spaces=spaces)
spans = []
for i, (item, start, end) in enumerate(span_data):
span = Span(doc, start=start, end=end, label=item.label, span_id=i)
layout = self._get_span_layout(item, pages)
span._.set(self.attrs.span_layout, layout)
if item.label in TABLE_ITEM_LABELS:
span._.set(self.attrs.span_data, item.export_to_dataframe())
spans.append(span)
doc.spans[self.attrs.span_group] = SpanGroup(
doc, name=self.attrs.span_group, spans=spans
)
return doc | Convert Docling structure to spaCy Doc. | _texts_to_doc | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def get_pages(self, doc: Doc) -> list[tuple[PageLayout, list[Span]]]:
"""Get all pages and their layout spans."""
layout = doc._.get(self.attrs.doc_layout)
pages = {page.page_no: page for page in layout.pages}
page_spans = {page.page_no: [] for page in layout.pages}
for span in doc.spans[self.attrs.span_group]:
span_layout = span._.get(self.attrs.span_layout)
page_spans[span_layout.page_no].append(span)
return [(pages[i], page_spans[i]) for i in page_spans] | Get all pages and their layout spans. | get_pages | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def get_heading(self, span: Span) -> Span | None:
"""Get the closest heading for a span."""
spans = list(span.doc.spans[self.attrs.span_group])
if span.label_ not in self.headings:
# Go through previous layout spans in reverse and find first match
for candidate in spans[: span.id][::-1]:
if candidate.label_ in self.headings:
return candidate | Get the closest heading for a span. | get_heading | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def get_tables(self, doc: Doc) -> list[Span]:
"""Get all tables in the document."""
return [
span
for span in doc.spans[self.attrs.span_group]
if span.label_ in TABLE_ITEM_LABELS
] | Get all tables in the document. | get_tables | python | explosion/spacy-layout | spacy_layout/layout.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/layout.py | MIT |
def encode_obj(obj: Any, chain: Callable | None = None) -> Any:
"""Convert custom dataclass to dict for serialization."""
if isinstance(obj, tuple(OBJ_TYPES.values())):
result = dataclasses.asdict(obj)
result[TYPE_ATTR] = type(obj).__name__
return result
return obj if chain is None else chain(obj) | Convert custom dataclass to dict for serialization. | encode_obj | python | explosion/spacy-layout | spacy_layout/util.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/util.py | MIT |
def decode_obj(obj: Any, chain: Callable | None = None) -> Any:
"""Load custom dataclass from serialized dict."""
if isinstance(obj, dict) and obj.get(TYPE_ATTR) in OBJ_TYPES:
obj_type = obj.pop(TYPE_ATTR)
return OBJ_TYPES[obj_type].from_dict(obj)
return obj if chain is None else chain(obj) | Load custom dataclass from serialized dict. | decode_obj | python | explosion/spacy-layout | spacy_layout/util.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/util.py | MIT |
def encode_df(obj: Any, chain: Callable | None = None) -> Any:
"""Convert pandas.DataFrame for serialization."""
if isinstance(obj, DataFrame):
return {"data": obj.to_dict(), TYPE_ATTR: "DataFrame"}
return obj if chain is None else chain(obj) | Convert pandas.DataFrame for serialization. | encode_df | python | explosion/spacy-layout | spacy_layout/util.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/util.py | MIT |
def decode_df(obj: Any, chain: Callable | None = None) -> Any:
"""Load pandas.DataFrame from serialized data."""
if isinstance(obj, dict) and obj.get(TYPE_ATTR) == "DataFrame":
return DataFrame(obj["data"])
return obj if chain is None else chain(obj) | Load pandas.DataFrame from serialized data. | decode_df | python | explosion/spacy-layout | spacy_layout/util.py | https://github.com/explosion/spacy-layout/blob/master/spacy_layout/util.py | MIT |
def raise_disconnected_warning(
edges_removed,
vertices_disconnected,
disconnection_distance,
total_rows,
threshold=0.1,
verbose=False,
):
"""A simple wrapper function to avoid large amounts of code repetition."""
if verbose & (vertices_disconnected == 0) & (edges_removed > 0):
print(
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges. "
f"This is not a problem as no vertices were disconnected."
)
elif (vertices_disconnected > 0) & (
vertices_disconnected <= threshold * total_rows
):
warn(
f"A few of your vertices were disconnected from the manifold. This shouldn't cause problems.\n"
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
f"It has only fully disconnected {vertices_disconnected} vertices.\n"
f"Use umap.utils.disconnected_vertices() to identify them.",
)
elif vertices_disconnected > threshold * total_rows:
warn(
f"A large number of your vertices were disconnected from the manifold.\n"
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
f"It has fully disconnected {vertices_disconnected} vertices.\n"
f"You might consider using find_disconnected_points() to find and remove these points from your data.\n"
f"Use umap.utils.disconnected_vertices() to identify them.",
) | A simple wrapper function to avoid large amounts of code repetition. | raise_disconnected_warning | python | lmcinnes/umap | umap/umap_.py | https://github.com/lmcinnes/umap/blob/master/umap/umap_.py | BSD-3-Clause |
def smooth_knn_dist(distances, k, n_iter=64, local_connectivity=1.0, bandwidth=1.0):
"""Compute a continuous version of the distance to the kth nearest
neighbor. That is, this is similar to knn-distance but allows continuous
k values rather than requiring an integral k. In essence we are simply
computing the distance such that the cardinality of fuzzy set we generate
is k.
Parameters
----------
distances: array of shape (n_samples, n_neighbors)
Distances to nearest neighbors for each sample. Each row should be a
sorted list of distances to a given samples nearest neighbors.
k: float
The number of nearest neighbors to approximate for.
n_iter: int (optional, default 64)
We need to binary search for the correct distance value. This is the
max number of iterations to use in such a search.
local_connectivity: int (optional, default 1)
The local connectivity required -- i.e. the number of nearest
neighbors that should be assumed to be connected at a local level.
The higher this value the more connected the manifold becomes
locally. In practice this should be not more than the local intrinsic
dimension of the manifold.
bandwidth: float (optional, default 1)
The target bandwidth of the kernel, larger values will produce
larger return values.
Returns
-------
knn_dist: array of shape (n_samples,)
The distance to kth nearest neighbor, as suitably approximated.
nn_dist: array of shape (n_samples,)
The distance to the 1st nearest neighbor for each point.
"""
target = np.log2(k) * bandwidth
rho = np.zeros(distances.shape[0], dtype=np.float32)
result = np.zeros(distances.shape[0], dtype=np.float32)
mean_distances = np.mean(distances)
for i in range(distances.shape[0]):
lo = 0.0
hi = NPY_INFINITY
mid = 1.0
# TODO: This is very inefficient, but will do for now. FIXME
ith_distances = distances[i]
non_zero_dists = ith_distances[ith_distances > 0.0]
if non_zero_dists.shape[0] >= local_connectivity:
index = int(np.floor(local_connectivity))
interpolation = local_connectivity - index
if index > 0:
rho[i] = non_zero_dists[index - 1]
if interpolation > SMOOTH_K_TOLERANCE:
rho[i] += interpolation * (
non_zero_dists[index] - non_zero_dists[index - 1]
)
else:
rho[i] = interpolation * non_zero_dists[0]
elif non_zero_dists.shape[0] > 0:
rho[i] = np.max(non_zero_dists)
for n in range(n_iter):
psum = 0.0
for j in range(1, distances.shape[1]):
d = distances[i, j] - rho[i]
if d > 0:
psum += np.exp(-(d / mid))
else:
psum += 1.0
if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
break
if psum > target:
hi = mid
mid = (lo + hi) / 2.0
else:
lo = mid
if hi == NPY_INFINITY:
mid *= 2
else:
mid = (lo + hi) / 2.0
result[i] = mid
# TODO: This is very inefficient, but will do for now. FIXME
if rho[i] > 0.0:
mean_ith_distances = np.mean(ith_distances)
if result[i] < MIN_K_DIST_SCALE * mean_ith_distances:
result[i] = MIN_K_DIST_SCALE * mean_ith_distances
else:
if result[i] < MIN_K_DIST_SCALE * mean_distances:
result[i] = MIN_K_DIST_SCALE * mean_distances
return result, rho | Compute a continuous version of the distance to the kth nearest
neighbor. That is, this is similar to knn-distance but allows continuous
k values rather than requiring an integral k. In essence we are simply
computing the distance such that the cardinality of fuzzy set we generate
is k.
Parameters
----------
distances: array of shape (n_samples, n_neighbors)
Distances to nearest neighbors for each sample. Each row should be a
sorted list of distances to a given samples nearest neighbors.
k: float
The number of nearest neighbors to approximate for.
n_iter: int (optional, default 64)
We need to binary search for the correct distance value. This is the
max number of iterations to use in such a search.
local_connectivity: int (optional, default 1)
The local connectivity required -- i.e. the number of nearest
neighbors that should be assumed to be connected at a local level.
The higher this value the more connected the manifold becomes
locally. In practice this should be not more than the local intrinsic
dimension of the manifold.
bandwidth: float (optional, default 1)
The target bandwidth of the kernel, larger values will produce
larger return values.
Returns
-------
knn_dist: array of shape (n_samples,)
The distance to kth nearest neighbor, as suitably approximated.
nn_dist: array of shape (n_samples,)
The distance to the 1st nearest neighbor for each point. | smooth_knn_dist | python | lmcinnes/umap | umap/umap_.py | https://github.com/lmcinnes/umap/blob/master/umap/umap_.py | BSD-3-Clause |
def nearest_neighbors(
X,
n_neighbors,
metric,
metric_kwds,
angular,
random_state,
low_memory=True,
use_pynndescent=True,
n_jobs=-1,
verbose=False,
):
"""Compute the ``n_neighbors`` nearest points for each data point in ``X``
under ``metric``. This may be exact, but more likely is approximated via
nearest neighbor descent.
Parameters
----------
X: array of shape (n_samples, n_features)
The input data to compute the k-neighbor graph of.
n_neighbors: int
The number of nearest neighbors to compute for each sample in ``X``.
metric: string or callable
The metric to use for the computation.
metric_kwds: dict
Any arguments to pass to the metric computation function.
angular: bool
Whether to use angular rp trees in NN approximation.
random_state: np.random state
The random state to use for approximate NN computations.
low_memory: bool (optional, default True)
Whether to pursue lower memory NNdescent.
verbose: bool (optional, default False)
Whether to print status data during the computation.
Returns
-------
knn_indices: array of shape (n_samples, n_neighbors)
The indices on the ``n_neighbors`` closest points in the dataset.
knn_dists: array of shape (n_samples, n_neighbors)
The distances to the ``n_neighbors`` closest points in the dataset.
rp_forest: list of trees
The random projection forest used for searching (if used, None otherwise).
"""
if verbose:
print(ts(), "Finding Nearest Neighbors")
if metric == "precomputed":
# Note that this does not support sparse distance matrices yet ...
# Compute indices of n nearest neighbors
knn_indices = fast_knn_indices(X, n_neighbors)
# knn_indices = np.argsort(X)[:, :n_neighbors]
# Compute the nearest neighbor distances
# (equivalent to np.sort(X)[:,:n_neighbors])
knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy()
# Prune any nearest neighbours that are infinite distance apart.
disconnected_index = knn_dists == np.inf
knn_indices[disconnected_index] = -1
knn_search_index = None
else:
# TODO: Hacked values for now
n_trees = min(64, 5 + int(round((X.shape[0]) ** 0.5 / 20.0)))
n_iters = max(5, int(round(np.log2(X.shape[0]))))
knn_search_index = NNDescent(
X,
n_neighbors=n_neighbors,
metric=metric,
metric_kwds=metric_kwds,
random_state=random_state,
n_trees=n_trees,
n_iters=n_iters,
max_candidates=60,
low_memory=low_memory,
n_jobs=n_jobs,
verbose=verbose,
compressed=False,
)
knn_indices, knn_dists = knn_search_index.neighbor_graph
if verbose:
print(ts(), "Finished Nearest Neighbor Search")
return knn_indices, knn_dists, knn_search_index | Compute the ``n_neighbors`` nearest points for each data point in ``X``
under ``metric``. This may be exact, but more likely is approximated via
nearest neighbor descent.
Parameters
----------
X: array of shape (n_samples, n_features)
The input data to compute the k-neighbor graph of.
n_neighbors: int
The number of nearest neighbors to compute for each sample in ``X``.
metric: string or callable
The metric to use for the computation.
metric_kwds: dict
Any arguments to pass to the metric computation function.
angular: bool
Whether to use angular rp trees in NN approximation.
random_state: np.random state
The random state to use for approximate NN computations.
low_memory: bool (optional, default True)
Whether to pursue lower memory NNdescent.
verbose: bool (optional, default False)
Whether to print status data during the computation.
Returns
-------
knn_indices: array of shape (n_samples, n_neighbors)
The indices on the ``n_neighbors`` closest points in the dataset.
knn_dists: array of shape (n_samples, n_neighbors)
The distances to the ``n_neighbors`` closest points in the dataset.
rp_forest: list of trees
The random projection forest used for searching (if used, None otherwise). | nearest_neighbors | python | lmcinnes/umap | umap/umap_.py | https://github.com/lmcinnes/umap/blob/master/umap/umap_.py | BSD-3-Clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.