code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tests/contrib/grpc/hello.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x1etests/contrib/grpc/hello.proto\x12\nhelloworld"\x1c\n\x0cHelloRequest\x12\x0c\n\x04name\x18\x01 \x01(\t"\x1d\n\nHelloReply\x12\x0f\n\x07message\x18\x01 \x01(\t2\xa2\x02\n\x05Hello\x12>\n\x08SayHello\x12\x18.helloworld.HelloRequest\x1a\x16.helloworld.HelloReply"\x00\x12\x45\n\rSayHelloTwice\x12\x18.helloworld.HelloRequest\x1a\x16.helloworld.HelloReply"\x00\x30\x01\x12L\n\x12SayHelloRepeatedly\x12\x18.helloworld.HelloRequest\x1a\x16.helloworld.HelloReply"\x00(\x01\x30\x01\x12\x44\n\x0cSayHelloLast\x12\x18.helloworld.HelloRequest\x1a\x16.helloworld.HelloReply"\x00(\x01\x62\x06proto3' ) _HELLOREQUEST = DESCRIPTOR.message_types_by_name["HelloRequest"] _HELLOREPLY = DESCRIPTOR.message_types_by_name["HelloReply"] HelloRequest = _reflection.GeneratedProtocolMessageType( "HelloRequest", (_message.Message,), { "DESCRIPTOR": _HELLOREQUEST, "__module__": "tests.contrib.grpc.hello_pb2" # @@protoc_insertion_point(class_scope:helloworld.HelloRequest) }, ) _sym_db.RegisterMessage(HelloRequest) HelloReply = _reflection.GeneratedProtocolMessageType( "HelloReply", (_message.Message,), { "DESCRIPTOR": _HELLOREPLY, "__module__": "tests.contrib.grpc.hello_pb2" # @@protoc_insertion_point(class_scope:helloworld.HelloReply) }, ) _sym_db.RegisterMessage(HelloReply) _HELLO = DESCRIPTOR.services_by_name["Hello"] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _HELLOREQUEST._serialized_start = 46 _HELLOREQUEST._serialized_end = 74 _HELLOREPLY._serialized_start = 76 _HELLOREPLY._serialized_end = 105 _HELLO._serialized_start = 108 _HELLO._serialized_end = 398 # @@protoc_insertion_point(module_scope)
[ "google.protobuf.descriptor_pool.Default", "google.protobuf.reflection.GeneratedProtocolMessageType", "google.protobuf.symbol_database.Default" ]
[((495, 521), 'google.protobuf.symbol_database.Default', '_symbol_database.Default', ([], {}), '()\n', (519, 521), True, 'from google.protobuf import symbol_database as _symbol_database\n'), ((1328, 1491), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""HelloRequest"""', '(_message.Message,)', "{'DESCRIPTOR': _HELLOREQUEST, '__module__': 'tests.contrib.grpc.hello_pb2'}"], {}), "('HelloRequest', (_message.Message,\n ), {'DESCRIPTOR': _HELLOREQUEST, '__module__':\n 'tests.contrib.grpc.hello_pb2'})\n", (1368, 1491), True, 'from google.protobuf import reflection as _reflection\n'), ((1644, 1798), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""HelloReply"""', '(_message.Message,)', "{'DESCRIPTOR': _HELLOREPLY, '__module__': 'tests.contrib.grpc.hello_pb2'}"], {}), "('HelloReply', (_message.Message,),\n {'DESCRIPTOR': _HELLOREPLY, '__module__': 'tests.contrib.grpc.hello_pb2'})\n", (1684, 1798), True, 'from google.protobuf import reflection as _reflection\n'), ((537, 563), 'google.protobuf.descriptor_pool.Default', '_descriptor_pool.Default', ([], {}), '()\n', (561, 563), True, 'from google.protobuf import descriptor_pool as _descriptor_pool\n')]
import tensorflow as tf import sonnet as snt from .build_utils import residual_stack, maybe_set_l2_conv_contractive_regularizer from .AbstractResNetLayer import AbstractResNetLayer class ResEnc(AbstractResNetLayer): """ res enc used in VQ """ #TODO remove biases before batch norm, see if it makes any difference. Remove dropouts? def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, activation, is_training, name='ResEnc', prob_drop=0.1, bn_momentum=0.99, bn_renormalization=True, creg_scale=None, **extra_params): super().__init__(num_hiddens, num_residual_layers, num_residual_hiddens, activation, is_training, name=name, prob_drop=prob_drop, bn_momentum=bn_momentum, bn_renormalization=bn_renormalization, creg_scale=creg_scale, **extra_params) def _build(self, x): # h_pre = x conv1 = snt.Conv2D( output_channels=self._num_hiddens / 2, kernel_shape=(4, 4), stride=(2, 2), # use_bias=False, **self._extra_params, name="enc_1") h = conv1(x) maybe_set_l2_conv_contractive_regularizer(conv1, h, self._activation, self._creg_scale, name="enc_1_creg") h = self._dropout(h, training=self._is_training) h = tf.layers.batch_normalization(h, training=self._is_training, momentum=self._bn_momentum, renorm=self._bn_renormalization, renorm_momentum=self._bn_momentum, renorm_clipping=self._renorm_clipping, name="batch_norm_1") h = self._activation(h) conv2 = snt.Conv2D( output_channels=self._num_hiddens, kernel_shape=(4, 4), stride=(2, 2), # use_bias=False, **self._extra_params, name="enc_2") h = conv2(h) maybe_set_l2_conv_contractive_regularizer(conv2, h, self._activation, self._creg_scale, name="enc_2_creg") h = self._dropout(h, training=self._is_training) h = tf.layers.batch_normalization(h, training=self._is_training, momentum=self._bn_momentum, renorm=self._bn_renormalization, renorm_momentum=self._bn_momentum, renorm_clipping=self._renorm_clipping, name="batch_norm_2") h = self._activation(h) h = residual_stack( h, self._num_hiddens, self._num_residual_layers, self._num_residual_hiddens, activation=self._activation, training=self._is_training, prob_drop=self._prob_drop, momentum=self._bn_momentum, renorm=self._bn_renormalization, renorm_momentum=self._bn_momentum, renorm_clipping=self._renorm_clipping, creg_scale = self._creg_scale, **self._extra_params ) return h
[ "sonnet.Conv2D", "tensorflow.layers.batch_normalization" ]
[((1247, 1372), 'sonnet.Conv2D', 'snt.Conv2D', ([], {'output_channels': '(self._num_hiddens / 2)', 'kernel_shape': '(4, 4)', 'stride': '(2, 2)', 'name': '"""enc_1"""'}), "(output_channels=self._num_hiddens / 2, kernel_shape=(4, 4),\n stride=(2, 2), **self._extra_params, name='enc_1')\n", (1257, 1372), True, 'import sonnet as snt\n'), ((1763, 1989), 'tensorflow.layers.batch_normalization', 'tf.layers.batch_normalization', (['h'], {'training': 'self._is_training', 'momentum': 'self._bn_momentum', 'renorm': 'self._bn_renormalization', 'renorm_momentum': 'self._bn_momentum', 'renorm_clipping': 'self._renorm_clipping', 'name': '"""batch_norm_1"""'}), "(h, training=self._is_training, momentum=self.\n _bn_momentum, renorm=self._bn_renormalization, renorm_momentum=self.\n _bn_momentum, renorm_clipping=self._renorm_clipping, name='batch_norm_1')\n", (1792, 1989), True, 'import tensorflow as tf\n'), ((2250, 2372), 'sonnet.Conv2D', 'snt.Conv2D', ([], {'output_channels': 'self._num_hiddens', 'kernel_shape': '(4, 4)', 'stride': '(2, 2)', 'name': '"""enc_2"""'}), "(output_channels=self._num_hiddens, kernel_shape=(4, 4), stride=(\n 2, 2), **self._extra_params, name='enc_2')\n", (2260, 2372), True, 'import sonnet as snt\n'), ((2761, 2987), 'tensorflow.layers.batch_normalization', 'tf.layers.batch_normalization', (['h'], {'training': 'self._is_training', 'momentum': 'self._bn_momentum', 'renorm': 'self._bn_renormalization', 'renorm_momentum': 'self._bn_momentum', 'renorm_clipping': 'self._renorm_clipping', 'name': '"""batch_norm_2"""'}), "(h, training=self._is_training, momentum=self.\n _bn_momentum, renorm=self._bn_renormalization, renorm_momentum=self.\n _bn_momentum, renorm_clipping=self._renorm_clipping, name='batch_norm_2')\n", (2790, 2987), True, 'import tensorflow as tf\n')]
#this is a number guess game. import random secretnumber=random.randint(1,50) #asking player to guess 6 times. for guesstaken in range(1,7): print(" guess number between 1 to 50 :)") guess = int(input()) if guess < secretnumber: print("your guess is too low. ") elif guess>secretnumber: print("your guess is too high") else: break if guess == secretnumber: print("Good Job! you guessed my number in" + " " + str(guesstaken) +"guesses!") else: print("nope. the number i was thinking of was"+" "+ str(secretnumber))
[ "random.randint" ]
[((57, 78), 'random.randint', 'random.randint', (['(1)', '(50)'], {}), '(1, 50)\n', (71, 78), False, 'import random\n')]
from typing import Optional from redis import Redis def get_redis_client(socket_path: str = "/tmp/redis.sock"): return Redis(decode_responses=True, unix_socket_path=socket_path) class FSMContext: def __init__( self, redis_client: Optional[Redis] = None, socket_path: Optional[str] = None ): socket_path = "/tmp/redis.sock" if socket_path is None else socket_path self.redis_client = ( redis_client if redis_client else get_redis_client(socket_path=socket_path) ) def get(self, cache_key): return self.redis_client.get(cache_key) def set(self, cache_key, value): self.redis_client.set(cache_key, value=value) def set_by_generator(self): pass
[ "redis.Redis" ]
[((126, 184), 'redis.Redis', 'Redis', ([], {'decode_responses': '(True)', 'unix_socket_path': 'socket_path'}), '(decode_responses=True, unix_socket_path=socket_path)\n', (131, 184), False, 'from redis import Redis\n')]
import random from torch.utils.data import Dataset from torchvision.transforms import ToTensor from .binmnist import get_binmnist_datasets from .fashion import get_fashion_datasets from .gaussian_toy import GaussianToyDataset from .gmm import GaussianMixtureDataset from .omniglot import get_omniglot_datasets from .shapes import get_shapes_datasets MINI_TRAIN_SIZE = 5000 MINI_VALID_SIZE = 500 MINI_TEST_SIZE = 500 class MiniDataset(Dataset): def __init__(self, dset, k, seed): super().__init__() if seed is not None: random.seed(seed) self.index = list(random.choices(list(range(len(dset))), k=k)) self.dset = dset def __getitem__(self, item): return self.dset[self.index[item]] def __len__(self): return len(self.index) def get_datasets(opt, transform=ToTensor()): if "shapes" in opt['dataset']: output = get_shapes_datasets(transform=transform) elif "gaussian-toy" in opt['dataset']: dset = GaussianToyDataset() output = dset, dset, dset elif "gmm" in opt['dataset']: _train_dset = GaussianMixtureDataset(N=100000, C=opt['N']) _valid_dset = GaussianMixtureDataset(N=100, C=opt['N']) _test_dset = GaussianMixtureDataset(N=100, C=opt['N']) output = _train_dset, _valid_dset, _test_dset elif "binmnist" in opt['dataset']: output = get_binmnist_datasets(opt['data_root'], transform=transform) elif "omniglot" in opt['dataset']: output = get_omniglot_datasets(opt['data_root'], transform=transform, dynamic=True) elif "fashion" in opt['dataset']: output = get_fashion_datasets(opt['data_root'], transform=transform, binarize=True) else: raise ValueError(f"Unknown data: {opt['dataset']}") if opt.get('mini', False): def wrapper(dset_train, dset_valid, dset_test): return MiniDataset(dset_train, MINI_TRAIN_SIZE, opt['seed']), \ MiniDataset(dset_valid, MINI_VALID_SIZE, opt['seed']), \ MiniDataset(dset_test, MINI_TEST_SIZE, opt['seed'] + 1) output = wrapper(*output) if opt.get('only_train_set', False): def use_only_training(dset_train, *args): return dset_train, dset_train, dset_train output = use_only_training(*output) return output
[ "torchvision.transforms.ToTensor", "random.seed" ]
[((838, 848), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (846, 848), False, 'from torchvision.transforms import ToTensor\n'), ((557, 574), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (568, 574), False, 'import random\n')]
from django.urls import path from async_demos.web.views import SlowTaskView urlpatterns = ( path('<int:is_slow>/', SlowTaskView.as_view(), name='slow view'), )
[ "async_demos.web.views.SlowTaskView.as_view" ]
[((121, 143), 'async_demos.web.views.SlowTaskView.as_view', 'SlowTaskView.as_view', ([], {}), '()\n', (141, 143), False, 'from async_demos.web.views import SlowTaskView\n')]
from __future__ import absolute_import import pytest import kslurm.models.validators as validators from kslurm.exceptions import TemplateError class TestJobTemplateValidator: @pytest.mark.parametrize("arg", ["16core64gb24h", "Fat", "Regular"]) def test_args_that_should_work(self, arg: str): assert validators.job_template(arg) @pytest.mark.parametrize("arg", ["random", "nonsense", "notfound"]) def test_args_that_shouldnt_work(self, arg: str): with pytest.raises(TemplateError): assert not validators.job_template(arg)
[ "pytest.mark.parametrize", "pytest.raises", "kslurm.models.validators.job_template" ]
[((184, 251), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""arg"""', "['16core64gb24h', 'Fat', 'Regular']"], {}), "('arg', ['16core64gb24h', 'Fat', 'Regular'])\n", (207, 251), False, 'import pytest\n'), ((354, 420), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""arg"""', "['random', 'nonsense', 'notfound']"], {}), "('arg', ['random', 'nonsense', 'notfound'])\n", (377, 420), False, 'import pytest\n'), ((319, 347), 'kslurm.models.validators.job_template', 'validators.job_template', (['arg'], {}), '(arg)\n', (342, 347), True, 'import kslurm.models.validators as validators\n'), ((488, 516), 'pytest.raises', 'pytest.raises', (['TemplateError'], {}), '(TemplateError)\n', (501, 516), False, 'import pytest\n'), ((541, 569), 'kslurm.models.validators.job_template', 'validators.job_template', (['arg'], {}), '(arg)\n', (564, 569), True, 'import kslurm.models.validators as validators\n')]
from __future__ import unicode_literals from django.db import models from polymodels.fields import PolymorphicTypeField from polymodels.models import PolymorphicModel try: from django.utils.encoding import python_2_unicode_compatible except ImportError: def python_2_unicode_compatible(cls): return cls class Zoo(models.Model): animals = models.ManyToManyField('Animal', related_name='zoos') @python_2_unicode_compatible class Animal(PolymorphicModel): name = models.CharField(max_length=50) class Meta: ordering = ['id'] def __str__(self): return self.name class NotInstalledAnimal(Animal): class Meta: app_label = 'not_installed' class Mammal(Animal): pass class Monkey(Mammal): friends = models.ManyToManyField('self') class Trait(PolymorphicModel): trait_type = PolymorphicTypeField('self', on_delete=models.CASCADE, blank=True, null=True) mammal_type = PolymorphicTypeField(Mammal, on_delete=models.CASCADE, blank=True, null=True) snake_type = PolymorphicTypeField('Snake', on_delete=models.CASCADE) class AcknowledgedTrait(Trait): class Meta: proxy = True class Reptile(Animal): length = models.SmallIntegerField() class Meta: abstract = True ordering = ['id'] class Snake(Reptile): color = models.CharField(max_length=100, blank=True) class Meta: ordering = ['id'] class BigSnake(Snake): class Meta: proxy = True class HugeSnake(BigSnake): class Meta: proxy = True
[ "polymodels.fields.PolymorphicTypeField", "django.db.models.ManyToManyField", "django.db.models.CharField", "django.db.models.SmallIntegerField" ]
[((363, 416), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['"""Animal"""'], {'related_name': '"""zoos"""'}), "('Animal', related_name='zoos')\n", (385, 416), False, 'from django.db import models\n'), ((491, 522), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (507, 522), False, 'from django.db import models\n'), ((774, 804), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['"""self"""'], {}), "('self')\n", (796, 804), False, 'from django.db import models\n'), ((855, 932), 'polymodels.fields.PolymorphicTypeField', 'PolymorphicTypeField', (['"""self"""'], {'on_delete': 'models.CASCADE', 'blank': '(True)', 'null': '(True)'}), "('self', on_delete=models.CASCADE, blank=True, null=True)\n", (875, 932), False, 'from polymodels.fields import PolymorphicTypeField\n'), ((951, 1028), 'polymodels.fields.PolymorphicTypeField', 'PolymorphicTypeField', (['Mammal'], {'on_delete': 'models.CASCADE', 'blank': '(True)', 'null': '(True)'}), '(Mammal, on_delete=models.CASCADE, blank=True, null=True)\n', (971, 1028), False, 'from polymodels.fields import PolymorphicTypeField\n'), ((1046, 1101), 'polymodels.fields.PolymorphicTypeField', 'PolymorphicTypeField', (['"""Snake"""'], {'on_delete': 'models.CASCADE'}), "('Snake', on_delete=models.CASCADE)\n", (1066, 1101), False, 'from polymodels.fields import PolymorphicTypeField\n'), ((1211, 1237), 'django.db.models.SmallIntegerField', 'models.SmallIntegerField', ([], {}), '()\n', (1235, 1237), False, 'from django.db import models\n'), ((1341, 1385), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'blank': '(True)'}), '(max_length=100, blank=True)\n', (1357, 1385), False, 'from django.db import models\n')]
# -*- coding: utf-8 -*- # author:jiangyu # modify:2016-08-18 # gov_affair_detail.py import pymongo from settings import MONGO_URI, MONGO_DATABASE from flask import Flask, render_template app = Flask(__name__) @app.route('/') def show_result(): client = pymongo.MongoClient(MONGO_URI) db = client[MONGO_DATABASE] results = db["GovAffairDetailItem"].find() client.close() return render_template('result_index.html',p_results=results) if __name__ == '__main__': app.run()
[ "flask.render_template", "pymongo.MongoClient", "flask.Flask" ]
[((195, 210), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (200, 210), False, 'from flask import Flask, render_template\n'), ((257, 287), 'pymongo.MongoClient', 'pymongo.MongoClient', (['MONGO_URI'], {}), '(MONGO_URI)\n', (276, 287), False, 'import pymongo\n'), ((385, 440), 'flask.render_template', 'render_template', (['"""result_index.html"""'], {'p_results': 'results'}), "('result_index.html', p_results=results)\n", (400, 440), False, 'from flask import Flask, render_template\n')]
"""Merge two or more tables as data frames. """ import argparse from functools import reduce import pandas as pd if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tables", nargs="+", help="tables to concatenate") parser.add_argument("--separator", default="\t", help="separator between columns in the given tables") parser.add_argument("--suffixes", nargs=2, help="what to add when two columns have the same value") parser.add_argument("--output", help="concatenated table") args = parser.parse_args() # Read tables. tables = [] for i in range(0, len(args.tables)): tables.append(pd.read_csv(args.tables[i], sep=args.separator)) if args.suffixes is not None: df = reduce(lambda x, y: pd.merge(x, y, on = 'strain', suffixes=(args.suffixes[0], args.suffixes[1])), tables) else: df = reduce(lambda x, y: pd.merge(x, y, on = 'strain'), tables) df.to_csv(args.output, sep=args.separator, header=True, index=False)
[ "pandas.merge", "argparse.ArgumentParser", "pandas.read_csv" ]
[((155, 180), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (178, 180), False, 'import argparse\n'), ((663, 710), 'pandas.read_csv', 'pd.read_csv', (['args.tables[i]'], {'sep': 'args.separator'}), '(args.tables[i], sep=args.separator)\n', (674, 710), True, 'import pandas as pd\n'), ((784, 858), 'pandas.merge', 'pd.merge', (['x', 'y'], {'on': '"""strain"""', 'suffixes': '(args.suffixes[0], args.suffixes[1])'}), "(x, y, on='strain', suffixes=(args.suffixes[0], args.suffixes[1]))\n", (792, 858), True, 'import pandas as pd\n'), ((913, 940), 'pandas.merge', 'pd.merge', (['x', 'y'], {'on': '"""strain"""'}), "(x, y, on='strain')\n", (921, 940), True, 'import pandas as pd\n')]
#// #// ------------------------------------------------------------- #// Copyright 2010 Synopsys, Inc. #// Copyright 2010 Mentor Graphics Corporation #// Copyright 2010 Cadence Design Systems, Inc. #// Copyright 2019-2020 <NAME> (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #// ------------------------------------------------------------- #// from uvm.base.uvm_object import UVMObject from uvm.base.uvm_pool import UVMObjectStringPool from uvm.base.uvm_queue import UVMQueue from uvm.macros import (uvm_error) #// #// CLASS: uvm_reg_file #// Register file abstraction base class #// #// A register file is a collection of register files and registers #// used to create regular repeated structures. #// #// Register files are usually instantiated as arrays. #// class UVMRegFile(UVMObject): # local uvm_reg_block parent # local uvm_reg_file m_rf # local string default_hdl_path = "RTL" # local uvm_object_string_pool #(uvm_queue #(string)) hdl_paths_pool # //---------------------- # // Group: Initialization # //---------------------- def __init__(self, name=""): """ Function: new Create a new instance Creates an instance of a register file abstraction class with the specified name. extern def new (self,string name=""): Args: name: """ super().__init__(name) self.hdl_paths_pool = UVMObjectStringPool("hdl_paths", UVMQueue) self.parent = None # uvm_reg_block self.m_rf = None # uvm_reg_file self.default_hdl_path = "RTL" # type: str # self.l = None # type: hdl_paths_poo def configure(self, blk_parent, regfile_parent, hdl_path=""): """ Function: configure Configure a register file instance Specify the parent block and register file of the register file instance. If the register file is instantiated in a block, `regfile_parent` is specified as `None`. If the register file is instantiated in a register file, `blk_parent` must be the block parent of that register file and `regfile_parent` is specified as that register file. If the register file corresponds to a hierarchical RTL structure, its contribution to the HDL path is specified as the `hdl_path`. Otherwise, the register file does not correspond to a hierarchical RTL structure (e.g. it is physically flattened) and does not contribute to the hierarchical HDL path of any contained registers. extern function void configure (uvm_reg_block blk_parent, uvm_reg_file regfile_parent, string hdl_path = "") Args: blk_parent: regfile_parent: hdl_path: """ if blk_parent is None: uvm_error("UVM/RFILE/CFG/NOBLK", ("UVMRegFile::configure() called without a parent block for instance '" + self.get_name() + "' of register file type '", self.get_type_name() + "'.")) return self.parent = blk_parent self.m_rf = regfile_parent self.add_hdl_path(hdl_path) def get_full_name(self): """ --------------------- Group: Introspection --------------------- Function: get_name Get the simple name Return the simple object name of self register file. Function: get_full_name Get the hierarchical name Return the hierarchal name of self register file. The base of the hierarchical name is the root block. extern virtual def string get_full_name(self): Returns: """ blk = None # uvm_reg_block get_full_name = self.get_name() # Is there a parent register file? if (self.m_rf is not None): return self.m_rf.get_full_name() + "." + get_full_name # No: then prepend the full name of the parent block (if any) if self.parent is None: return get_full_name get_full_name = self.parent.get_full_name() + "." + get_full_name return get_full_name #endfunction: get_full_name # # // # // Function: get_parent # // Get the parent block # // # extern virtual def uvm_reg_block get_parent (self): def get_block(self): """ extern virtual def uvm_reg_block get_block (self): Returns: """ return self.parent # // # // Function: get_regfile # // Get the parent register file # // # // Returns ~None~ if self register file is instantiated in a block. # // # extern virtual def uvm_reg_file get_regfile (self): # # # //---------------- # // Group: Backdoor # //---------------- # # // # // Function: clear_hdl_path # // Delete HDL paths # // # // Remove any previously specified HDL path to the register file instance # // for the specified design abstraction. # // # extern def void clear_hdl_path (self,string kind = "RTL"): # def add_hdl_path(self, path, kind="RTL"): """ Function: add_hdl_path Add an HDL path Add the specified HDL path to the register file instance for the specified design abstraction. This method may be called more than once for the same design abstraction if the register file is physically duplicated in the design abstraction extern def void add_hdl_path (self,string path, string kind = "RTL"): Args: path: kind: """ paths = self.hdl_paths_pool.get(kind) paths.push_back(path) # # // # // Function: has_hdl_path # // Check if a HDL path is specified # // # // Returns TRUE if the register file instance has a HDL path defined for the # // specified design abstraction. If no design abstraction is specified, # // uses the default design abstraction specified for the nearest # // enclosing register file or block # // # // If no design abstraction is specified, the default design abstraction # // for self register file is used. # // # extern def bit has_hdl_path (self,string kind = ""): # # // # // Function: get_hdl_path # // Get the incremental HDL path(s) # // # // Returns the HDL path(s) defined for the specified design abstraction # // in the register file instance. If no design abstraction is specified, uses # // the default design abstraction specified for the nearest enclosing # // register file or block. # // Returns only the component of the HDL paths that corresponds to # // the register file, not a full hierarchical path # // # // If no design abstraction is specified, the default design abstraction # // for self register file is used. # // # extern def void get_hdl_path (self,ref string paths[$], input string kind = ""): # # // # // Function: get_full_hdl_path # // Get the full hierarchical HDL path(s) # // # // Returns the full hierarchical HDL path(s) defined for the specified # // design abstraction in the register file instance. If no design abstraction # // is specified, uses the default design abstraction specified for the # // nearest enclosing register file or block. # // There may be more than one path returned even # // if only one path was defined for the register file instance, if any of the # // parent components have more than one path defined for the same design # // abstraction # // # // If no design abstraction is specified, the default design abstraction # // for each ancestor register file or block is used to get each # // incremental path. # // # extern function void get_full_hdl_path (ref string paths[$], # input string kind = "", # input string separator = ".") # # // # // Function: set_default_hdl_path # // Set the default design abstraction # // # // Set the default design abstraction for self register file instance. # // # extern def void set_default_hdl_path (self,string kind): # # // # // Function: get_default_hdl_path # // Get the default design abstraction # // # // Returns the default design abstraction for self register file instance. # // If a default design abstraction has not been explicitly set for self # // register file instance, returns the default design abstraction for the # // nearest register file or block ancestor. # // Returns "" if no default design abstraction has been specified. # // # extern def string get_default_hdl_path (self): # # # extern virtual def void do_print (self,uvm_printer printer): # extern virtual def string convert2string(self): # extern virtual def uvm_object clone (self): # extern virtual def void do_copy (self,uvm_object rhs): # extern virtual function bit do_compare (uvm_object rhs, # uvm_comparer comparer) # extern virtual def void do_pack (self,uvm_packer packer): # extern virtual def void do_unpack (self,uvm_packer packer): # #endclass: uvm_reg_file # # #//------------------------------------------------------------------------------ #// IMPLEMENTATION #//------------------------------------------------------------------------------ # # # # # # #// get_regfile # #def uvm_reg_file uvm_reg_file::get_regfile(self): # return m_rf #endfunction # # #// clear_hdl_path # #def void uvm_reg_file::clear_hdl_path(self,string kind = "RTL"): # if (kind == "ALL"): # hdl_paths_pool = new("hdl_paths") # return # end # # if (kind == ""): # if (m_rf is not None) # kind = m_rf.get_default_hdl_path() # else # kind = parent.get_default_hdl_path() # end # # if (!hdl_paths_pool.exists(kind)): # `uvm_warning("RegModel",{"Unknown HDL Abstraction '",kind,"'"}) # return # end # # hdl_paths_pool.delete(kind) #endfunction # # # # #// has_hdl_path # #def bit uvm_reg_file::has_hdl_path(self,string kind = ""): # if (kind == ""): # if (m_rf is not None) # kind = m_rf.get_default_hdl_path() # else # kind = parent.get_default_hdl_path() # end # # return hdl_paths_pool.exists(kind) #endfunction # # #// get_hdl_path # #def void uvm_reg_file::get_hdl_path(self,ref string paths[$], input string kind = ""): # # uvm_queue #(string) hdl_paths # # if (kind == ""): # if (m_rf is not None) # kind = m_rf.get_default_hdl_path() # else # kind = parent.get_default_hdl_path() # end # # if (!has_hdl_path(kind)): # `uvm_error("RegModel",{"Register does not have hdl path defined for abstraction '",kind,"'"}) # return # end # # hdl_paths = hdl_paths_pool.get(kind) # # for (int i=0; i<hdl_paths.size();i++) # paths.push_back(hdl_paths.get(i)) # #endfunction # # #// get_full_hdl_path # #function void uvm_reg_file::get_full_hdl_path(ref string paths[$], # input string kind = "", # input string separator = ".") # if (kind == "") # kind = get_default_hdl_path() # # if (!has_hdl_path(kind)): # `uvm_error("RegModel",{"Register file does not have hdl path defined for abstraction '",kind,"'"}) # return # end # # paths.delete() # # begin # uvm_queue #(string) hdl_paths = hdl_paths_pool.get(kind) # string parent_paths[$] # # if (m_rf is not None) # m_rf.get_full_hdl_path(parent_paths, kind, separator) # elif (parent is not None) # parent.get_full_hdl_path(parent_paths, kind, separator) # # for (int i=0; i<hdl_paths.size();i++): # string hdl_path = hdl_paths.get(i) # # if (parent_paths.size() == 0): # if (hdl_path != "") # paths.push_back(hdl_path) # # continue # end # # foreach (parent_paths[j]) begin # if (hdl_path == "") # paths.push_back(parent_paths[j]) # else # paths.push_back({ parent_paths[j], separator, hdl_path }) # end # end # end # #endfunction # # #// get_default_hdl_path # #def string uvm_reg_file::get_default_hdl_path(self): # if (default_hdl_path == ""): # if (m_rf is not None) # return m_rf.get_default_hdl_path() # else # return parent.get_default_hdl_path() # end # return default_hdl_path #endfunction # # #// set_default_hdl_path # #def void uvm_reg_file::set_default_hdl_path(self,string kind): # # if (kind == ""): # if (m_rf is not None) # kind = m_rf.get_default_hdl_path() # elif (parent is None) # kind = parent.get_default_hdl_path() # else begin # `uvm_error("RegModel",{"Register file has no parent. ", # "Must specify a valid HDL abstraction (kind)"}) # return # end # end # # default_hdl_path = kind # #endfunction # # #// get_parent # #def uvm_reg_block uvm_reg_file::get_parent(self): # return get_block() #endfunction # # # # #//------------- #// STANDARD OPS #//------------- # #// convert2string # #def string uvm_reg_file::convert2string(self): # `uvm_fatal("RegModel","RegModel register files cannot be converted to strings") # return "" #endfunction: convert2string # # #// do_print # #def void uvm_reg_file::do_print (self,uvm_printer printer): # super().do_print(printer) #endfunction # # # #// clone # #def uvm_object uvm_reg_file::clone(self): # `uvm_fatal("RegModel","RegModel register files cannot be cloned") # return None #endfunction # #// do_copy # #def void uvm_reg_file::do_copy(self,uvm_object rhs): # `uvm_fatal("RegModel","RegModel register files cannot be copied") #endfunction # # #// do_compare # #function bit uvm_reg_file::do_compare (uvm_object rhs, # uvm_comparer comparer) # `uvm_warning("RegModel","RegModel register files cannot be compared") # return 0 #endfunction # # #// do_pack # #def void uvm_reg_file::do_pack (self,uvm_packer packer): # `uvm_warning("RegModel","RegModel register files cannot be packed") #endfunction # # #// do_unpack # #def void uvm_reg_file::do_unpack (self,uvm_packer packer): # `uvm_warning("RegModel","RegModel register files cannot be unpacked") #endfunction
[ "uvm.base.uvm_pool.UVMObjectStringPool" ]
[((2169, 2211), 'uvm.base.uvm_pool.UVMObjectStringPool', 'UVMObjectStringPool', (['"""hdl_paths"""', 'UVMQueue'], {}), "('hdl_paths', UVMQueue)\n", (2188, 2211), False, 'from uvm.base.uvm_pool import UVMObjectStringPool\n')]
#!/usr/bin/python import ut from copy import copy from random import choice, randrange from tkinter import * # Python 2 compatability try: input = raw_input except NameError: pass STEP_SIZE = 7 STEP_GRID = ut.cp((-1*STEP_SIZE,0,STEP_SIZE),(-1*STEP_SIZE,0,STEP_SIZE)) STEP_GRID.remove((0,0)) class Nest: """An ant's nest: ants will leave the nest and bring food sources to the nest """ def __init__(self, canvas): """Gives a random position to the object and displays it in a tkinter canvas """ self.posx = randrange(50, 450) self.posy = randrange(50, 450) self.display = circle(self.posx, self.posy, 20, canvas, "#F27E1D") class Food: """Represents the source of food that ants will seek """ def __init__(self, canvas): """Gives a random position to the object and displays it in a tkinter canvas """ self.posx = randrange(50, 450) self.posy = randrange(50, 450) self.display = circle(self.posx, self.posy, 10, canvas, "#04C3D9") # a food source with a lifespan of 100 visits self.life = 100 def replace(self, canvas): """Relocates the food source to another location when its lifespan reaches 0 """ old_posx = self.posx old_posy = self.posy self.posx = randrange(50, 450) self.posy = randrange(50, 450) canvas.move(self.display, self.posx - old_posx, self.posy - old_posy) # Gives his life back to 100, it's like a new food source is being created self.life = 100 class Ant: """the ant object that will search for a food source in an environment """ def __init__(self, nest, canvas): """Birth of an ant in its nest """ self.posx = nest.posx self.posy = nest.posy self.display = circle(self.posx, self.posy, 2, canvas, "#AF0220") # at birth the ant is in a search mode self.scout_mode = True class Pheromone: """Pheromones are objects that help ants in their movement """ def __init__(self, ant, canvas): """The pheromones are placed in the current position of the ant """ self.posx = ant.posx self.posy = ant.posy self.life = 100 # Life expectancy of the pheromone which expires after a certain time self.display = circle(self.posx, self.posy, 0.1, canvas, "#050994") class Environment: """Create the entire environment or a number x of ants will move """ def __init__(self, ant_number): self.ant_number = ant_number self.root = Tk() self.root.title("Ant Colony Simulator") self.root.bind("<Escape>", lambda quit: self.root.destroy()) # Environment size global e_w, e_h e_w = 500 e_h = 500 self.environment = Canvas( self.root, width=e_w, height=e_h, background="#010326") self.environment.pack() # Initialization of the nest self.nest = Nest(self.environment) # Initialization of the food self.food = Food(self.environment) # Birth of ants self.ant_data = [] # List contains all ants object for i in range(self.ant_number): ant = Ant(self.nest, self.environment) self.ant_data.append(ant) # All possible combinations of movement for an ant are in this list global move_tab move_tab = STEP_GRID # Initiates the movement of ants in the environment after the creation of the environment self.environment.after( 1, f_move(self.environment, self.ant_data, self.food)) self.root.mainloop() def circle(x, y, radius, canvas, color): """Create a circle from the middle coordinates :param x: coordinated x :param y: coordinated y :param radius: circle radius :param color: circle color :param canvas: environment :return: a circle canvas object """ return canvas.create_oval(x - radius, y - radius, x + radius, y + radius, fill=color, outline='') def dont_out(ant): """prevent ants from leaving the environment """ new_move_tab = copy(move_tab) if not 0<= ant.posx <= e_w or 0 <= ant.posy <= e_h: abs_grid = [(pos[0] + ant.posx,pos[1] + ant.posy) for pos in new_move_tab] new_move_tab = [(pos[0] - ant.posx,pos[1] - ant.posy) for pos in abs_grid if (0<=pos[0]<=e_w and 0<=pos[1]<=e_h)] return new_move_tab def collide(canvas, ant): """Check if the ant is on an object or not Returns 0 if the ant is not on anything Returns 1 if the ant is on its nest Returns 2 if the ant is on a food source """ ant_coords = canvas.coords(ant.display) if canvas.find_overlapping(ant_coords[0], ant_coords[1], ant_coords[2], ant_coords[3])[0] == 1: return 1 elif canvas.find_overlapping(ant_coords[0], ant_coords[1], ant_coords[2], ant_coords[3])[0] == 2: return 2 else: return 0 def find_nest(ant, canvas): """Returns a new movement table for which there will be a high probability of approaching its nest """ ant_coords = (ant.posx, ant.posy) HGn = canvas.find_overlapping(0, 0, ant_coords[0], ant_coords[1])[0] HDn = canvas.find_overlapping(e_w, 0, ant_coords[0], ant_coords[1])[0] BGn = canvas.find_overlapping(0, e_h, ant_coords[0], ant_coords[1])[0] BDn = canvas.find_overlapping(e_w, e_h, ant_coords[0], ant_coords[1])[0] HG = len(canvas.find_overlapping( 0, 0, ant_coords[0], ant_coords[1])) - 2 - nb_ant HD = len(canvas.find_overlapping( e_w, 0, ant_coords[0], ant_coords[1])) - 2 - nb_ant BG = len(canvas.find_overlapping( 0, e_h, ant_coords[0], ant_coords[1])) - 2 - nb_ant BD = len(canvas.find_overlapping( e_w, e_h, ant_coords[0], ant_coords[1])) - 2 - nb_ant new_move_tab = [] if HGn == 1: if not HG > 1: new_move_tab += [(-1*STEP_SIZE, 0), (0, -STEP_SIZE), (-1*STEP_SIZE, -1*STEP_SIZE)] else: new_move_tab += [(-1*STEP_SIZE, 0), (0, -STEP_SIZE), (-1*STEP_SIZE, -1*STEP_SIZE)] * HG if HDn == 1: if not HD > 1: new_move_tab += [(STEP_SIZE, 0), (0, -1*STEP_SIZE), (STEP_SIZE, -1*STEP_SIZE)] else: new_move_tab += [(STEP_SIZE, 0), (0, -1*STEP_SIZE), (STEP_SIZE, -1*STEP_SIZE)] * HD if BGn == 1: if not BG > 1: new_move_tab += [(-1*STEP_SIZE, 0), (0, STEP_SIZE), (-1*STEP_SIZE, STEP_SIZE)] else: new_move_tab += [(-1*STEP_SIZE, 0), (0, STEP_SIZE), (-1*STEP_SIZE, STEP_SIZE)] * BG if BDn == 1: if not BD > 1: new_move_tab += [(STEP_SIZE, 0), (0, STEP_SIZE), (STEP_SIZE, STEP_SIZE)] else: new_move_tab += [(STEP_SIZE, 0), (0, STEP_SIZE), (STEP_SIZE, STEP_SIZE)] * BD if len(new_move_tab) > 0: return new_move_tab return move_tab def pheromones_affinity(ant, canvas): """Returns a new movement table for which there will be a high probability of approaching pheromones """ ant_coords = (ant.posx, ant.posy) HG = len(canvas.find_overlapping( 0, 0, ant_coords[0], ant_coords[1])) - (2 + nb_ant) HD = len(canvas.find_overlapping( e_w, 0, ant_coords[0], ant_coords[1])) - (2 + nb_ant) BG = len(canvas.find_overlapping( 0, e_h, ant_coords[0], ant_coords[1])) - (2 + nb_ant) BD = len(canvas.find_overlapping( e_w, e_h, ant_coords[0], ant_coords[1])) - (2 + nb_ant) new_move_tab = [] if HG > 1: new_move_tab += [(-1*STEP_SIZE, 0), (0, -1*STEP_SIZE), (-1*STEP_SIZE, -1*STEP_SIZE)] * HG if HD > 1: new_move_tab += [(STEP_SIZE, 0), (0, -1*STEP_SIZE), (STEP_SIZE, -1*STEP_SIZE)] * HD if BG > 1: new_move_tab += [(-1*STEP_SIZE, 0), (0, STEP_SIZE), (-1*STEP_SIZE, STEP_SIZE)] * BG if BD > 1: new_move_tab += [(STEP_SIZE, 0), (0, STEP_SIZE), (STEP_SIZE, STEP_SIZE)] * BD return new_move_tab def f_move(canvas, ant_data, food): """simulates the movement of an ant """ pheromones = [] # list that contains all pheromone objects in the environment while 1: for pheromone in pheromones: # At each loop the life expectancy of pheromones decreases by 1 pheromone.life -= 1 if pheromone.life <= 0: # If the life expectancy of a pheromone reaches 0 it is removed canvas.delete(pheromone.display) pheromones.remove(pheromone) for ant in ant_data: # Movement of ants if ant.scout_mode: # if the ant is looking for a food source # if the ant leaves the environment, we adapt its movements for which it stays there if ant.posx <= 0 or ant.posy <= 0 or ant.posx >= e_w - 1 or ant.posy >= e_h - 1: coord = choice(dont_out(ant)) else: # Movement of an ant is adjusted according to the pheromones present. If there is no pheromone, # there will be no modification on its movement. coord = pheromones_affinity(ant, canvas) if not coord: coord = move_tab coord = choice(coord) ant.posx += coord[0] ant.posy += coord[1] canvas.move(ant.display, coord[0], coord[1]) if collide(canvas, ant) == 2: # if there is a collision between a food source and an ant, the scout mode is removed # with each collision between an ant and a food source, its life expectancy decreases by 1 food.life -= 1 # If the food source has been consumed, a new food source is replaced if food.life < 1: food.replace(canvas) ant.scout_mode = False canvas.itemconfig(ant.display, fill='#3BC302') # the ant puts down its first pheromones when it touches food for i in range(30): pheromones.append(Pheromone(ant, canvas)) else: # If the ant found the food source # The position of the nest will influence the movements of the ant coord = choice(find_nest(ant, canvas)) proba = choice([0]*23+[1]) if proba: pheromones.append(Pheromone(ant, canvas)) ant.posx += coord[0] ant.posy += coord[1] canvas.move(ant.display, coord[0], coord[1]) # if there is a collision between a nest and an ant, the ant switches to scout mode if collide(canvas, ant) == 1: ant.scout_mode = True canvas.itemconfig(ant.display, fill='#AF0220') canvas.update() if __name__ == "__main__": try: nb_ant = int(input("Enter the number of ants you want for the simulation (recommended: 10-100) : ")) Environment(nb_ant) except KeyboardInterrupt: print("Exiting...") exit(0)
[ "copy.copy", "random.choice", "ut.cp", "random.randrange" ]
[((217, 286), 'ut.cp', 'ut.cp', (['(-1 * STEP_SIZE, 0, STEP_SIZE)', '(-1 * STEP_SIZE, 0, STEP_SIZE)'], {}), '((-1 * STEP_SIZE, 0, STEP_SIZE), (-1 * STEP_SIZE, 0, STEP_SIZE))\n', (222, 286), False, 'import ut\n'), ((4189, 4203), 'copy.copy', 'copy', (['move_tab'], {}), '(move_tab)\n', (4193, 4203), False, 'from copy import copy\n'), ((557, 575), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (566, 575), False, 'from random import choice, randrange\n'), ((596, 614), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (605, 614), False, 'from random import choice, randrange\n'), ((921, 939), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (930, 939), False, 'from random import choice, randrange\n'), ((960, 978), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (969, 978), False, 'from random import choice, randrange\n'), ((1340, 1358), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (1349, 1358), False, 'from random import choice, randrange\n'), ((1379, 1397), 'random.randrange', 'randrange', (['(50)', '(450)'], {}), '(50, 450)\n', (1388, 1397), False, 'from random import choice, randrange\n'), ((10431, 10453), 'random.choice', 'choice', (['([0] * 23 + [1])'], {}), '([0] * 23 + [1])\n', (10437, 10453), False, 'from random import choice, randrange\n'), ((9291, 9304), 'random.choice', 'choice', (['coord'], {}), '(coord)\n', (9297, 9304), False, 'from random import choice, randrange\n')]
from gpiozero import LED from signal import pause red = LED(17) red.blink() pause()
[ "signal.pause", "gpiozero.LED" ]
[((57, 64), 'gpiozero.LED', 'LED', (['(17)'], {}), '(17)\n', (60, 64), False, 'from gpiozero import LED\n'), ((79, 86), 'signal.pause', 'pause', ([], {}), '()\n', (84, 86), False, 'from signal import pause\n')]
# -*- coding: utf-8 -*- """ Created on Thu Nov 28 14:03:04 2019 @author: <NAME> """ import pandas as pd import numpy as np import tflearn import tensorflow import random df = pd.read_csv('s.csv') inp =df.to_numpy() final_inp =[] final_inp=inp[:,0:4] output=inp[:,4] final_output=[] for i in output: if i=="Cancer": final_output.append([1,0,0,0]) if i=="Diabeties": final_output.append([0,1,0,0]) if i=="Stomach": final_output.append([0,0,1,0]) if i=="Heart": final_output.append([0,0,0,1]) final_output = np.array(final_output) rbc=np.array(df['RBC']) sugar=np.array(df['Sugar']) acid=np.array(df['Acidity']) coles=np.array(df['Colestrol']) output=np.array(df['Disease']) tensorflow.reset_default_graph() net = tflearn.input_data(shape=[None, 4]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 4, activation="softmax") net = tflearn.regression(net) model = tflearn.DNN(net) try: model.load("model.tflearn") except: model = tflearn.DNN(net) model.fit(final_inp, final_output, n_epoch=250, batch_size=1, show_metric=True) model.save("model.tflearn") results = model.predict([[40,40,40,47]]) results_index = np.argmax(results) food={0:[["maidha","Coliflower","msdklsfngskl"]],1:[["maidha","Coliflower","msdklsfngskl"]],2:[["maidha","Coliflower","msdklsfngskl"]],3:[["maidha","Coliflower","msdklsfngskl"]]} if results_index==0: print("Cancer") print(food[0]) if results_index==1: print("Diabeties") print(food[1]) if results_index==2: print("Stomach") print(food[2]) if results_index==3: print("Heart") print(food[3])
[ "tensorflow.reset_default_graph", "pandas.read_csv", "tflearn.DNN", "numpy.argmax", "numpy.array", "tflearn.regression", "tflearn.fully_connected", "tflearn.input_data" ]
[((180, 200), 'pandas.read_csv', 'pd.read_csv', (['"""s.csv"""'], {}), "('s.csv')\n", (191, 200), True, 'import pandas as pd\n'), ((645, 667), 'numpy.array', 'np.array', (['final_output'], {}), '(final_output)\n', (653, 667), True, 'import numpy as np\n'), ((723, 742), 'numpy.array', 'np.array', (["df['RBC']"], {}), "(df['RBC'])\n", (731, 742), True, 'import numpy as np\n'), ((749, 770), 'numpy.array', 'np.array', (["df['Sugar']"], {}), "(df['Sugar'])\n", (757, 770), True, 'import numpy as np\n'), ((776, 799), 'numpy.array', 'np.array', (["df['Acidity']"], {}), "(df['Acidity'])\n", (784, 799), True, 'import numpy as np\n'), ((806, 831), 'numpy.array', 'np.array', (["df['Colestrol']"], {}), "(df['Colestrol'])\n", (814, 831), True, 'import numpy as np\n'), ((840, 863), 'numpy.array', 'np.array', (["df['Disease']"], {}), "(df['Disease'])\n", (848, 863), True, 'import numpy as np\n'), ((866, 898), 'tensorflow.reset_default_graph', 'tensorflow.reset_default_graph', ([], {}), '()\n', (896, 898), False, 'import tensorflow\n'), ((906, 941), 'tflearn.input_data', 'tflearn.input_data', ([], {'shape': '[None, 4]'}), '(shape=[None, 4])\n', (924, 941), False, 'import tflearn\n'), ((948, 979), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(8)'], {}), '(net, 8)\n', (971, 979), False, 'import tflearn\n'), ((986, 1017), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(8)'], {}), '(net, 8)\n', (1009, 1017), False, 'import tflearn\n'), ((1024, 1055), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(8)'], {}), '(net, 8)\n', (1047, 1055), False, 'import tflearn\n'), ((1062, 1115), 'tflearn.fully_connected', 'tflearn.fully_connected', (['net', '(4)'], {'activation': '"""softmax"""'}), "(net, 4, activation='softmax')\n", (1085, 1115), False, 'import tflearn\n'), ((1122, 1145), 'tflearn.regression', 'tflearn.regression', (['net'], {}), '(net)\n', (1140, 1145), False, 'import tflearn\n'), ((1155, 1171), 'tflearn.DNN', 'tflearn.DNN', (['net'], {}), '(net)\n', (1166, 1171), False, 'import tflearn\n'), ((1422, 1440), 'numpy.argmax', 'np.argmax', (['results'], {}), '(results)\n', (1431, 1440), True, 'import numpy as np\n'), ((1230, 1246), 'tflearn.DNN', 'tflearn.DNN', (['net'], {}), '(net)\n', (1241, 1246), False, 'import tflearn\n')]
from src.parser.text_extractor.docx import extract_text_from_doc from src.parser.text_extractor.pdf import extract_text_from_pdf import os def extract_text_from_document(document_path): text_file = os.path.join(os.path.dirname(document_path) , document_path.split("/")[-1].split(".")[0] + ".txt") if os.path.exists(text_file): with open(document_path.split(".")[0] + ".txt", "r") as infile: data = infile.read() return data text = "" if document_path.endswith(".pdf"): for page in extract_text_from_pdf(document_path): text += ' ' + page elif document_path.endswith(".docx"): text = extract_text_from_doc(document_path) text = text.lower() with open(text_file, "w") as outfile: outfile.write(text) return text
[ "os.path.dirname", "os.path.exists", "src.parser.text_extractor.pdf.extract_text_from_pdf", "src.parser.text_extractor.docx.extract_text_from_doc" ]
[((312, 337), 'os.path.exists', 'os.path.exists', (['text_file'], {}), '(text_file)\n', (326, 337), False, 'import os\n'), ((218, 248), 'os.path.dirname', 'os.path.dirname', (['document_path'], {}), '(document_path)\n', (233, 248), False, 'import os\n'), ((538, 574), 'src.parser.text_extractor.pdf.extract_text_from_pdf', 'extract_text_from_pdf', (['document_path'], {}), '(document_path)\n', (559, 574), False, 'from src.parser.text_extractor.pdf import extract_text_from_pdf\n'), ((664, 700), 'src.parser.text_extractor.docx.extract_text_from_doc', 'extract_text_from_doc', (['document_path'], {}), '(document_path)\n', (685, 700), False, 'from src.parser.text_extractor.docx import extract_text_from_doc\n')]
import os.path from setuptools import setup, find_packages PATH = os.path.realpath(os.path.dirname(__file__)) README = open(os.path.join(PATH, 'README.md')).read() LICENSE = open(os.path.join(PATH, 'LICENSE')).read() def _requirements(filename: str = 'requirements.txt'): with open(os.path.join(PATH, filename)) as f: return list(map(lambda r: r.replace('\n', ''), f.readlines())) setup( name='repomaker', use_scm_version=True, license=LICENSE, author='<NAME> (George)', author_email='<EMAIL>', maintainer='<NAME> (George)', maintainer_email='<EMAIL>', url='https://github.com/jfsanchez-gh/repomaker', description='APT mobile repository creator.', long_description=README, platforms='any', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Topic :: Internet', 'Topic :: System :: Management', 'Topic :: System :: Networking', ], packages=find_packages(), setup_requires=[ 'setuptools_scm', ], install_requires=_requirements('requirements.txt'), tests_require=_requirements('requirements-dev.txt'), test_suite='tests', entry_points={ 'console_scripts': [ 'repomaker=repomaker.main:main' ] }, zip_safe=False, )
[ "setuptools.find_packages" ]
[((1048, 1063), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (1061, 1063), False, 'from setuptools import setup, find_packages\n')]
from models import Session, User from models.types import SessionType from datetime import datetime, timedelta from secrets import token_urlsafe from core.controllers.utils.Base64 import encoder from fastapi.responses import JSONResponse def get_some_minutes_more(): now = datetime.now() result = timedelta(minutes=45) + now return result async def login_validate_bool(token, ip, id=0): token = encoder.decode(token) session = await Session.objects.get(token=token, ip=ip) if(session.id > 0): await session.update( expiration_date=get_some_minutes_more() ) await session.user.load() await session.user.load_data() return True, session.user return False, None async def login_validate(token, ip, id): token = encoder.decode(token) session = await Session.objects.get(token=token, ip=ip,) if(session.id > 0): await session.update( expiration_date=get_some_minutes_more() ) session.token = encoder.encode(session.token) return session return {'status': 'error'} async def login(ip, username, password=""): users = await User.objects.filter(user_name=username).all() if(len(users) == 0): return JSONResponse(content={'status': 'Revisa tu usuario.'}, status_code=403) u = users[0] u = await u.load_data() try: encoder.ph.verify(u.password, password) if(encoder.ph.check_needs_rehash(u.password)): await u.update(password=encoder.ph.hash(password)) token = token_urlsafe(16) s = await Session.objects.create( ip=ip, user=u, token=token, session_type= await SessionType.objects.get(id = 1), creation_date=datetime.now(), expiration_date=get_some_minutes_more() ) s.token = encoder.encode(token) return s except Exception as e: print(e) return JSONResponse(content={'status': 'Revisa la contraseña'}, status_code=403) async def logout(ip, token): token = encoder.decode(token) session = await Session.objects.get(token=token, ) if(session.id > 0): await session.update( user=session.user.id, expiration_date=datetime.now() ) return {'status': 'ok'} return {'status': 'error'}
[ "core.controllers.utils.Base64.encoder.ph.verify", "models.User.objects.filter", "core.controllers.utils.Base64.encoder.decode", "secrets.token_urlsafe", "core.controllers.utils.Base64.encoder.encode", "datetime.datetime.now", "fastapi.responses.JSONResponse", "core.controllers.utils.Base64.encoder.ph.hash", "models.types.SessionType.objects.get", "datetime.timedelta", "core.controllers.utils.Base64.encoder.ph.check_needs_rehash", "models.Session.objects.get" ]
[((279, 293), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (291, 293), False, 'from datetime import datetime, timedelta\n'), ((415, 436), 'core.controllers.utils.Base64.encoder.decode', 'encoder.decode', (['token'], {}), '(token)\n', (429, 436), False, 'from core.controllers.utils.Base64 import encoder\n'), ((798, 819), 'core.controllers.utils.Base64.encoder.decode', 'encoder.decode', (['token'], {}), '(token)\n', (812, 819), False, 'from core.controllers.utils.Base64 import encoder\n'), ((2091, 2112), 'core.controllers.utils.Base64.encoder.decode', 'encoder.decode', (['token'], {}), '(token)\n', (2105, 2112), False, 'from core.controllers.utils.Base64 import encoder\n'), ((307, 328), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(45)'}), '(minutes=45)\n', (316, 328), False, 'from datetime import datetime, timedelta\n'), ((457, 496), 'models.Session.objects.get', 'Session.objects.get', ([], {'token': 'token', 'ip': 'ip'}), '(token=token, ip=ip)\n', (476, 496), False, 'from models import Session, User\n'), ((840, 879), 'models.Session.objects.get', 'Session.objects.get', ([], {'token': 'token', 'ip': 'ip'}), '(token=token, ip=ip)\n', (859, 879), False, 'from models import Session, User\n'), ((1021, 1050), 'core.controllers.utils.Base64.encoder.encode', 'encoder.encode', (['session.token'], {}), '(session.token)\n', (1035, 1050), False, 'from core.controllers.utils.Base64 import encoder\n'), ((1255, 1326), 'fastapi.responses.JSONResponse', 'JSONResponse', ([], {'content': "{'status': 'Revisa tu usuario.'}", 'status_code': '(403)'}), "(content={'status': 'Revisa tu usuario.'}, status_code=403)\n", (1267, 1326), False, 'from fastapi.responses import JSONResponse\n'), ((1389, 1428), 'core.controllers.utils.Base64.encoder.ph.verify', 'encoder.ph.verify', (['u.password', 'password'], {}), '(u.password, password)\n', (1406, 1428), False, 'from core.controllers.utils.Base64 import encoder\n'), ((1440, 1481), 'core.controllers.utils.Base64.encoder.ph.check_needs_rehash', 'encoder.ph.check_needs_rehash', (['u.password'], {}), '(u.password)\n', (1469, 1481), False, 'from core.controllers.utils.Base64 import encoder\n'), ((1563, 1580), 'secrets.token_urlsafe', 'token_urlsafe', (['(16)'], {}), '(16)\n', (1576, 1580), False, 'from secrets import token_urlsafe\n'), ((1874, 1895), 'core.controllers.utils.Base64.encoder.encode', 'encoder.encode', (['token'], {}), '(token)\n', (1888, 1895), False, 'from core.controllers.utils.Base64 import encoder\n'), ((2133, 2165), 'models.Session.objects.get', 'Session.objects.get', ([], {'token': 'token'}), '(token=token)\n', (2152, 2165), False, 'from models import Session, User\n'), ((1972, 2045), 'fastapi.responses.JSONResponse', 'JSONResponse', ([], {'content': "{'status': 'Revisa la contraseña'}", 'status_code': '(403)'}), "(content={'status': 'Revisa la contraseña'}, status_code=403)\n", (1984, 2045), False, 'from fastapi.responses import JSONResponse\n'), ((1169, 1208), 'models.User.objects.filter', 'User.objects.filter', ([], {'user_name': 'username'}), '(user_name=username)\n', (1188, 1208), False, 'from models import Session, User\n'), ((1778, 1792), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1790, 1792), False, 'from datetime import datetime, timedelta\n'), ((2284, 2298), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2296, 2298), False, 'from datetime import datetime, timedelta\n'), ((1520, 1545), 'core.controllers.utils.Base64.encoder.ph.hash', 'encoder.ph.hash', (['password'], {}), '(password)\n', (1535, 1545), False, 'from core.controllers.utils.Base64 import encoder\n'), ((1719, 1748), 'models.types.SessionType.objects.get', 'SessionType.objects.get', ([], {'id': '(1)'}), '(id=1)\n', (1742, 1748), False, 'from models.types import SessionType\n')]
import pandas as pd import matplotlib.pyplot as plt from matplotlib import style style.use('fivethirtyeight') fig = plt.figure() ax1 = plt.subplot2grid((1, 1), (0, 0)) HPI_data = pd.read_pickle('fiddy_states3.pickle') TXT1yr = HPI_data['TX'].resample('A', how='ohlc') print(TXT1yr.head()) HPI_data['TX'].plot(ax=ax1, label='Monthly TX HPI') TXT1yr.plot(ax=ax1, label='Yearly TX HPI') # plt.legend().remove() plt.legend(loc=4) plt.show()
[ "pandas.read_pickle", "matplotlib.pyplot.figure", "matplotlib.style.use", "matplotlib.pyplot.subplot2grid", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((81, 109), 'matplotlib.style.use', 'style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (90, 109), False, 'from matplotlib import style\n'), ((117, 129), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (127, 129), True, 'import matplotlib.pyplot as plt\n'), ((136, 168), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(1, 1)', '(0, 0)'], {}), '((1, 1), (0, 0))\n', (152, 168), True, 'import matplotlib.pyplot as plt\n'), ((181, 219), 'pandas.read_pickle', 'pd.read_pickle', (['"""fiddy_states3.pickle"""'], {}), "('fiddy_states3.pickle')\n", (195, 219), True, 'import pandas as pd\n'), ((413, 430), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (423, 430), True, 'import matplotlib.pyplot as plt\n'), ((431, 441), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (439, 441), True, 'import matplotlib.pyplot as plt\n')]
# ====================================================================== # # Cosmograil: cosmograil.tools.sexcatalog # # sexcatalog module. # # Author: <NAME> <<EMAIL>> # # $Id: sexcatalog.py,v 1.1 2005/06/29 13:07:41 hack Exp $ # # ====================================================================== # # "sexcatalog": python module to read and parse SExtractor catalogs # A simple interface to read SExtractor text catalogs # # ====================================================================== # # $Log: sexcatalog.py,v $ # Revision 1.1 2005/06/29 13:07:41 hack # Added Python interface to SExtractor to STSDAS$Python for use with 'tweakshifts'. WJH # # Revision 1.9 2005/02/14 19:27:31 laurentl # Added write facilities to rdb module. # # Revision 1.8 2005/02/14 17:47:02 laurentl # Added iterator interface # # Revision 1.7 2005/02/14 17:16:30 laurentl # clean now removes the NNW config file too. # # Revision 1.2 2005/02/14 17:13:49 laurentl # *** empty log message *** # # Revision 1.1 2005/02/14 11:34:10 laurentl # quality monitor now uses SExtractor wrapper. # # Revision 1.5 2005/02/11 14:40:35 laurentl # minor changes # # Revision 1.4 2005/02/10 20:15:14 laurentl # Improved SExtractor wrapper. # # Revision 1.2 2005/02/09 23:32:50 laurentl # Implemented SExtractor wrapper # # Revision 1.1 2005/01/06 12:29:25 laurentl # Added a SExtractor wrapper module. Renamed sextractor.py sexcatalog.py. # # Revision 1.1 2004/12/09 03:06:23 laurentl # Changed tree structure # # Revision 1.5 2004/11/26 18:26:59 laurentl # Added a module to manage the data tree. # # Revision 1.4 2004/11/24 15:11:31 laurentl # Fixed a lot of bugs in sexcatalog module. # # Revision 1.2 2004/11/23 22:38:23 laurentl # Added sexcatalog module. # # # ====================================================================== """ A simple interface to manipulate SExtractor ASCII catalogs A simple interface to manipulate SExtractor ASCII catalogs through a file-like API (open, read, readline, etc.). For the moment only reading ('r' mode) is supported. by <NAME> version: 0.1.5 - last modified: 2005-02-14 Future: implement a 'w' mode to be able to save catalogs in SExtractor format. Examples: ----------------------------------------------------------------- # Through sexcatalog module import sexcatalog # Read a SExtractor ASCII catalog # First method: read the whole catalog at once catalog_f = sexcatalog.open(catalog_name) catalog = catalog_f.readlines() for star in catalog: print star['FLUX_BEST'], star['FLAGS'] if (star['FLAGS'] & sexcatalog.BLENDED): print "This star is BLENDED" catalog_f.close() # Second method: read the catalog star by star catalog_f = sexcatalog.open(catalog_name) for star in catalog_f: print star['FLUX_BEST'], star['FLAGS'] if (star['FLAGS'] & sexcatalog.BLENDED): print "This star is BLENDED" catalog_f.close() # ------------- # Through sextractor module import sextractor # Read a SExtractor ASCII catalog # First method: read the whole catalog at once catalog_f = sextractor.open(catalog_name) catalog = catalog_f.readlines() for star in catalog: print star['FLUX_BEST'], star['FLAGS'] if (star['FLAGS'] & sextractor.BLENDED): print "This star is BLENDED" catalog_f.close() # Second method: read the catalog star by star catalog_f = sextractor.open(catalog_name) star = catalog_f.readline() while star: print star['FLUX_BEST'], star['FLAGS'] if (star['FLAGS'] & sextractor.BLENDED): print "This star is BLENDED" star = catalog_f.readline() catalog_f.close() ----------------------------------------------------------------- """ # ====================================================================== from __future__ import division, print_function # confidence high import sys import exceptions PY3 = sys.version_info[0] >= 3 if PY3: import builtins else: import __builtin__ # ====================================================================== __version__ = "0.1.5 (2005-02-14)" # ====================================================================== # -- FLAGS meaning NEIGHBOURS = 1 BLENDED = 2 SATURATED = 4 TRUNCATED = 8 CORRUPTED_APER = 16 CORRUPTED_ISO = 32 OVERFLOW_DEBLEND = 64 OVERFLOW_EXTRACT = 128 class WrongSExtractorfileException(Exception): pass class SExtractorfile: """ A class to manipulate SExtractor ASCII catalogs. For the moment only reading ('r' mode) is supported. """ _SE_keys = \ {"NUMBER" : {"comment": "Running object number", "infunc": int, "format": "%10d", "unit": ""}, "FLAGS" : {"comment": "Extraction flags", "infunc": int, "format": "%3d", "unit": ""}, "FLUX_ISO" : {"comment": "Isophotal flux", "infunc": float, "format": "%12g", "unit": "count"}, "FLUXERR_ISO" : {"comment": "RMS error for isophotal flux", "infunc": float, "format": "%12g", "unit": "count"}, "MAG_ISO" : {"comment": "Isophotal magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "MAGERR_ISO" : {"comment": "RMS error for isophotal magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "FLUX_ISOCOR" : {"comment": "Corrected isophotal flux", "infunc": float, "format": "%12g", "unit": "count"}, "FLUXERR_ISOCOR" : {"comment": "RMS error for corrected isophotal flux", "infunc": float, "format": "%12g", "unit": "count"}, "MAG_ISOCOR" : {"comment": "Corrected isophotal magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "MAGERR_ISOCOR" : {"comment": "RMS error for corrected isophotal magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "FLUX_AUTO" : {"comment": "Flux within a Kron-like elliptical aperture", "infunc": float, "format": "%12g", "unit": "count"}, "FLUXERR_AUTO" : {"comment": "RMS error for AUTO flux", "infunc": float, "format": "%12g", "unit": "count"}, "MAG_AUTO" : {"comment": "Kron-like elliptical aperture magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "MAGERR_AUTO" : {"comment": "RMS error for AUTO magnitude", "infunc": float, "format": "%8.4f", "unit": "mag"}, "FLUX_BEST" : {"comment": "Best of FLUX_AUTO and FLUX_ISOCOR", "infunc": float, "format": "%12g", "unit": "count"}, "FLUXERR_BEST" : {"comment": "RMS error for BEST flux", "infunc": float, "format": "%12g", "unit": "count"}, "MAG_BEST" : {"comment": "Best of MAG_AUTO and MAG_ISOCOR", "infunc": float, "format": "%8.4f", "unit": "mag"}, "MAGERR_BEST" : {"comment": "RMS error for MAG_BEST", "infunc": float, "format": "%8.4f", "unit": "mag"}, "KRON_RADIUS" : {"comment": "Kron apertures in units of A or B", "infunc": float, "format": "%5.2f", "unit": ""}, "BACKGROUND" : {"comment": "Background at centroid position", "infunc": float, "format": "%12g", "unit": "count"}, "THRESHOLD" : {"comment": "Detection threshold above background", "infunc": float, "format": "%12g", "unit": "count"}, "MU_THRESHOLD" : {"comment": "Detection threshold above background", "infunc": float, "format": "%8.4f", "unit": "mag * arcsec**(-2)"}, "FLUX_MAX" : {"comment": "Peak flux above background", "infunc": float, "format": "%12g", "unit": "count"}, "MU_MAX" : {"comment": "Peak surface brightness above background", "infunc": float, "format": "%8.4f", "unit": "mag * arcsec**(-2)"}, "ISOAREA_WORLD" : {"comment": "Isophotal area above Analysis threshold", "infunc": float, "format": "%12g", "unit": "deg**2"}, "XMIN_IMAGE" : {"comment": "Minimum x-coordinate among detected pixels", "infunc": int, "format": "%10d", "unit": "pixel"}, "YMIN_IMAGE" : {"comment": "Minimum y-coordinate among detected pixels", "infunc": int, "format": "%10d", "unit": "pixel"}, "XMAX_IMAGE" : {"comment": "Maximum x-coordinate among detected pixels", "infunc": int, "format": "%10d", "unit": "pixel"}, "YMAX_IMAGE" : {"comment": "Maximum y-coordinate among detected pixels", "infunc": int, "format": "%10d", "unit": "pixel"}, "X_IMAGE" : {"comment": "Object position along x", "infunc": float, "format": "%10.3f", "unit": "pixel"}, "Y_IMAGE" : {"comment": "Object position along y", "infunc": float, "format": "%10.3f", "unit": "pixel"}, "X_WORLD" : {"comment": "Barycenter position along world x axis", "infunc": float, "format": "%15e", "unit": "deg"}, "Y_WORLD" : {"comment": "Barycenter position along world y axis", "infunc": float, "format": "%15e", "unit": "deg"}, "ALPHA_SKY" : {"comment": "Right ascension of barycenter (native)", "infunc": float, "format": "%11.7f", "unit": "deg"}, "DELTA_SKY" : {"comment": "Declination of barycenter (native)", "infunc": float, "format": "%+11.7f", "unit": "deg"}, "ALPHA_J2000" : {"comment": "Right ascension of barycenter (J2000)", "infunc": float, "format": "%11.7f", "unit": "deg"}, "DELTA_J2000" : {"comment": "Declination of barycenter (J2000)", "infunc": float, "format": "%+11.7f", "unit": "deg"}, "ALPHA_B1950" : {"comment": "Right ascension of barycenter (B1950)", "infunc": float, "format": "%11.7f", "unit": "deg"}, "DELTA_B1950" : {"comment": "Declination of barycenter (B1950)", "infunc": float, "format": "%+11.7f", "unit": "deg"}, "X2_IMAGE" : {"comment": "Variance along x", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "Y2_IMAGE" : {"comment": "Variance along y", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "XY_IMAGE" : {"comment": "Covariance between x and y", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "CXX_IMAGE" : {"comment": "Cxx object ellipse parameter", "infunc": float, "format": "%12e", "unit": "pixel**(-2)"}, "CYY_IMAGE" : {"comment": "Cyy object ellipse parameter", "infunc": float, "format": "%12e", "unit": "pixel**(-2)"}, "CXY_IMAGE" : {"comment": "Cxy object ellipse parameter", "infunc": float, "format": "%12e", "unit": "pixel**(-2)"}, "A_IMAGE" : {"comment": "Profile RMS along major axis", "infunc": float, "format": "%9.3f", "unit": "pixel"}, "B_IMAGE" : {"comment": "Profile RMS along minor axis", "infunc": float, "format": "%9.3f", "unit": "pixel"}, "THETA_IMAGE" : {"comment": "Position angle (CCW/x)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "ELONGATION" : {"comment": "A_IMAGE/B_IMAGE", "infunc": float, "format": "%8.3f", "unit": ""}, "ELLIPTICITY" : {"comment": "1 - B_IMAGE/A_IMAGE", "infunc": float, "format": "%8.3f", "unit": ""}, "ERRX2_IMAGE" : {"comment": "Variance of position along x", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "ERRY2_IMAGE" : {"comment": "Variance of position along y", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "ERRXY_IMAGE" : {"comment": "Covariance of position between x and y", "infunc": float, "format": "%15e", "unit": "pixel**2"}, "ERRCXX_IMAGE" : {"comment": "Cxx error ellipse parameter", "infunc": float, "format": "%12g", "unit": "pixel**(-2)"}, "ERRCYY_IMAGE" : {"comment": "Cyy error ellipse parameter", "infunc": float, "format": "%12g", "unit": "pixel**(-2)"}, "ERRCXY_IMAGE" : {"comment": "Cxy error ellipse parameter", "infunc": float, "format": "%12g", "unit": "pixel**(-2)"}, "ERRA_IMAGE" : {"comment": "RMS position error along major axis", "infunc": float, "format": "%8.4f", "unit": "pixel"}, "ERRB_IMAGE" : {"comment": "RMS position error along minor axis", "infunc": float, "format": "%8.4f", "unit": "pixel"}, "ERRTHETA_IMAGE" : {"comment": "Error ellipse position angle (CCW/x)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "FWHM_IMAGE" : {"comment": "FWHM assuming a gaussian core", "infunc": float, "format": "%8.2f", "unit": "pixel"}, "X2_WORLD" : {"comment": "Variance along X-WORLD (alpha)", "infunc": float, "format": "%15e", "unit": "deg**2"}, "Y2_WORLD" : {"comment": "Variance along Y-WORLD (delta)", "infunc": float, "format": "%15e", "unit": "deg**2"}, "XY_WORLD" : {"comment": "Covariance between X-WORLD and Y-WORLD", "infunc": float, "format": "%15e", "unit": "deg**2"}, "CXX_WORLD" : {"comment": "Cxx object ellipse parameter (WORLD units)", "infunc": float, "format": "%12e", "unit": "deg**(-2)"}, "CYY_WORLD" : {"comment": "Cyy object ellipse parameter (WORLD units)", "infunc": float, "format": "%12e", "unit": "deg**(-2)"}, "CXY_WORLD" : {"comment": "Cxy object ellipse parameter (WORLD units)", "infunc": float, "format": "%12e", "unit": "deg**(-2)"}, "A_WORLD" : {"comment": "Profile RMS along major axis (world units)", "infunc": float, "format": "%12g", "unit": "deg"}, "B_WORLD" : {"comment": "Profile RMS along minor axis (world units)", "infunc": float, "format": "%12g", "unit": "deg"}, "THETA_WORLD" : {"comment": "Position angle (CCW/world-x)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "THETA_SKY" : {"comment": "Position angle (east of north) (native)", "infunc": float, "format": "%+6.2f", "unit": "deg"}, "THETA_J2000" : {"comment": "Position angle (east of north) (J2000)", "infunc": float, "format": "%+6.2f", "unit": "deg"}, "THETA_B1950" : {"comment": "Position angle (east of north) (B1950)", "infunc": float, "format": "%+6.2f", "unit": "deg"}, "ERRX2_WORLD" : {"comment": "Variance of position along X-WORLD (alpha)", "infunc": float, "format": "%15e", "unit": "deg**2"}, "ERRY2_WORLD" : {"comment": "Variance of position along Y-WORLD (delta)", "infunc": float, "format": "%15e", "unit": "deg**2"}, "ERRXY_WORLD" : {"comment": "Covariance of position X-WORLD/Y-WORLD", "infunc": float, "format": "%15e", "unit": "deg**2"}, "ERRCXX_WORLD" : {"comment": "Cxx error ellipse parameter (WORLD units)", "infunc": float, "format": "%12g", "unit": "deg**(-2)"}, "ERRCYY_WORLD" : {"comment": "Cyy error ellipse parameter (WORLD units)", "infunc": float, "format": "%12g", "unit": "deg**(-2)"}, "ERRCXY_WORLD" : {"comment": "Cxy error ellipse parameter (WORLD units)", "infunc": float, "format": "%12g", "unit": "deg**(-2)"}, "ERRA_WORLD" : {"comment": "World RMS position error along major axis", "infunc": float, "format": "%12g", "unit": "pixel"}, "ERRB_WORLD" : {"comment": "World RMS position error along minor axis", "infunc": float, "format": "%12g", "unit": "pixel"}, "ERRTHETA_WORLD" : {"comment": "Error ellipse pos. angle (CCW/world-x)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "ERRTHETA_SKY" : {"comment": "Native error ellipse pos." + \ "angle (east of north)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "ERRTHETA_J2000" : {"comment": "J2000 error ellipse pos." + \ "angle (east of north)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "ERRTHETA_B1950" : {"comment": "B1950 error ellipse pos." + \ "angle (east of north)", "infunc": float, "format": "%5.1f", "unit": "deg"}, "FWHM_WORLD" : {"comment": "FWHM assuming a gaussian core", "infunc": float, "format": "%12g", "unit": "deg"}, "CLASS_STAR" : {"comment": "S/G classifier output", "infunc": float, "format": "%5.2f", "unit": ""} } def __init__(self, name, mode='r'): self.name = name self.mode = mode self.closed = True self._file = None self._keys = list() self._keys_positions = {} self._output = None self._firstline = True if self.mode != 'r': raise ValueError('only read-only access is now implemented.') if PY3: self._file = builtins.open(self.name, self.mode) else: self._file = __builtin__.open(self.name, self.mode) self.closed = False # Reading header self._line = self._file.readline() if not(self._line): raise WrongSExtractorfileException( 'not a SExtractor text catalog (empty file)') while (self._line): __ll = (self._line).replace('\n', '') if __ll[0] == '#': # Still in header columns = __ll.split() if len(columns) < 3: raise WrongSExtractorfileException( 'not a SExtractor text catalog (invalid header)') name=columns[2] if not(name in SExtractorfile._SE_keys.keys()): raise WrongSExtractorfileException( 'not a SExtractor text catalog (unknown keyword %s)' % name) self._keys_positions[name]=int(columns[1])-1 self._keys.append(name) else: break self._line = self._file.readline() if not(self._keys): raise WrongSExtractorfileException( \ 'not a SExtractor text catalog (empty header)') self._outdict = dict([(k, None) for k in self._keys]) self._firstline = True def __del__(self): self.close() def __iter__(self): return self def _iter(self): return self.__iter__() def __next__(self): rr = self.readline() if not(rr): raise StopIteration return rr def next(self): return self.__next__() def __bool__(self): return self._file def __nonzero__(self): return self.__bool__() def keys(self): "Return the list of available parameters." return self._keys def getcolumns(self): "Return the list of available parameters." return list(self.keys()) def readline(self): """ Read and analyse the next line of the SExtractor catalog and return a dictionary {'param1': value, 'param2': value, ...}. """ if not(self._firstline): self._line = self._file.readline() self._firstline = False if not(self._line): return None __ll = (self._line).replace('\n', '') __values = __ll.split() self._outdict.update(dict(list(zip(self._keys, __values)))) for i in self._keys: self._outdict[i] = ( SExtractorfile._SE_keys[i]["infunc"](self._outdict[i])) return self._outdict.copy() def read(self): """ Read the file until EOF and return a list of dictionaries. """ __result = [] __ll = self.readline() while __ll: __result.append(__ll) __ll = self.readline() return list(__result) def readlines(self): return self.read() def close(self): """ Close the SExtractor file. """ if self._file: if not(self._file.closed): self._file.close() self.closed = True # ====================================================================== def open(name, mode='r'): """ Factory function. Open a SExtractor file and return a SExtractor file object. """ return SExtractorfile(name, mode) # ======================================================================
[ "__builtin__.open", "builtins.open" ]
[((28190, 28225), 'builtins.open', 'builtins.open', (['self.name', 'self.mode'], {}), '(self.name, self.mode)\n', (28203, 28225), False, 'import builtins\n'), ((28265, 28303), '__builtin__.open', '__builtin__.open', (['self.name', 'self.mode'], {}), '(self.name, self.mode)\n', (28281, 28303), False, 'import __builtin__\n')]
import falcon import json from falcon import Request, Response from uuid import UUID from mmlp.manager import ResourceManager # TODO: Limit maximum items to 500 MAX_ITEMS = 500 SORT_ATTRIBUTES = ['id', 'name', 'description', 'license', 'origin', 'maintainer', 'storage_path', 'created'] class ResourceCollection: def __init__(self, resource_manager: ResourceManager): self._resource_manager: ResourceManager = resource_manager def on_get(self, req: Request, resp: Response): monitors = self._resource_manager.monitors() if isinstance(monitors, Exception): resp.body = json.dumps(dict(error=str(monitors))) resp.status = falcon.HTTP_500 else: resp.body = json.dumps(monitors) resp.status = falcon.HTTP_201 def on_post(self, req: Request, resp: Response, snap_id: UUID): result = self._resource_manager.create_monitor(req.media['id']) if isinstance(result, Exception): resp.body = json.dumps(dict(error=str(result))) resp.status = falcon.HTTP_500 else: resp.body = result.json() resp.status = falcon.HTTP_201 def on_delete(self, _: Request, resp: Response, snap_id: UUID): result = self._resource_manager.remove_monitor(snap_id) if isinstance(result, Exception): resp.body = json.dumps(dict(error=str(result))) resp.status = falcon.HTTP_404 else: resp.body = result.json() resp.status = falcon.HTTP_202 # @staticmethod # def get_payload(req): # try: # return req.context['doc'] # except Exception as ex: # throw_exception("get_payload", "ERROR: {}".format(repr(ex)))
[ "json.dumps" ]
[((735, 755), 'json.dumps', 'json.dumps', (['monitors'], {}), '(monitors)\n', (745, 755), False, 'import json\n')]
from django.conf.urls import patterns, include, url from django.contrib import admin from django.views.generic import TemplateView, RedirectView from rest_framework.urlpatterns import format_suffix_patterns urlpatterns = [ url(r'', include('devices.urls')), url(r'', include('captures.urls')), url(r'', include('device_captures.urls')), url(r'', include('accounts.urls')), # admin site url(r'^admin/', include(admin.site.urls)), # angular frontend url(r'^$', RedirectView.as_view(url='/web/', permanent=True)), url(r'^web/*', TemplateView.as_view(template_name='index.html')), # JSON Web Token authentication url(r'^api-token-auth/', 'rest_framework_jwt.views.obtain_jwt_token'), ] format_suffix_patterns(urlpatterns)
[ "django.conf.urls.url", "django.views.generic.TemplateView.as_view", "django.conf.urls.include", "django.views.generic.RedirectView.as_view", "rest_framework.urlpatterns.format_suffix_patterns" ]
[((731, 766), 'rest_framework.urlpatterns.format_suffix_patterns', 'format_suffix_patterns', (['urlpatterns'], {}), '(urlpatterns)\n', (753, 766), False, 'from rest_framework.urlpatterns import format_suffix_patterns\n'), ((657, 725), 'django.conf.urls.url', 'url', (['"""^api-token-auth/"""', '"""rest_framework_jwt.views.obtain_jwt_token"""'], {}), "('^api-token-auth/', 'rest_framework_jwt.views.obtain_jwt_token')\n", (660, 725), False, 'from django.conf.urls import patterns, include, url\n'), ((237, 260), 'django.conf.urls.include', 'include', (['"""devices.urls"""'], {}), "('devices.urls')\n", (244, 260), False, 'from django.conf.urls import patterns, include, url\n'), ((276, 300), 'django.conf.urls.include', 'include', (['"""captures.urls"""'], {}), "('captures.urls')\n", (283, 300), False, 'from django.conf.urls import patterns, include, url\n'), ((316, 347), 'django.conf.urls.include', 'include', (['"""device_captures.urls"""'], {}), "('device_captures.urls')\n", (323, 347), False, 'from django.conf.urls import patterns, include, url\n'), ((363, 387), 'django.conf.urls.include', 'include', (['"""accounts.urls"""'], {}), "('accounts.urls')\n", (370, 387), False, 'from django.conf.urls import patterns, include, url\n'), ((428, 452), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (435, 452), False, 'from django.conf.urls import patterns, include, url\n'), ((494, 543), 'django.views.generic.RedirectView.as_view', 'RedirectView.as_view', ([], {'url': '"""/web/"""', 'permanent': '(True)'}), "(url='/web/', permanent=True)\n", (514, 543), False, 'from django.views.generic import TemplateView, RedirectView\n'), ((565, 613), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""index.html"""'}), "(template_name='index.html')\n", (585, 613), False, 'from django.views.generic import TemplateView, RedirectView\n')]
# Copyright (c) 2019 <NAME> import unittest import os import syms as syms class TestSyms(unittest.TestCase): filename = 'test_syms.ps' def setUp(self) -> None: if os.path.exists(self.filename): os.remove(self.filename) def tearDown(self) -> None: if os.path.exists(self.filename): os.remove(self.filename) def test__add_cv(self): f1 = 0.5 f2 = 0.5 p =[[-10, -2], [0, 15], [1, -11], [10, 2], [0, -15], [-1, 11], [-10, -2]] with open(self.filename, 'w') as fp: syms._add_cv(fp, f1, f2, p, 1, 2) with open(self.filename) as fp: lines = fp.readlines() self.assertEqual(" 5.00 8.50 5.50 -4.50 10.00 2.00 rcurveto", lines[0].rstrip()) self.assertEqual(' -5.00 -8.50 -5.50 4.50 -10.00 -2.00 rcurveto', lines[1].rstrip()) def test__add_sg(self): f1 = 0.5 f2 = 0.5 p = [[-15, 0], [-15, 23], [15, 23], [15, 0], [14.5, 0], [12, 18], [-12, 18], [-14.5, 0]] with open(self.filename, 'w') as fp: syms._add_sg(fp, f1, f2, p, 4, 1) with open(self.filename) as fp: lines = fp.readlines() self.assertEqual(' -0.25 0.00 rlineto', lines[0].rstrip()) def test__add_mv(self): f1 = 0.5 f2 = 0.5 p =[[-10, -2], [0, 15], [1, -11], [10, 2], [0, -15], [-1, 11], [-10, -2]] with open(self.filename, 'w') as fp: syms._add_mv(fp, f1, f2, p, 0) with open(self.filename) as fp: lines = fp.readlines() self.assertEqual(' -5.00 -1.00 rmoveto', lines[0].rstrip())
[ "os.path.exists", "syms._add_cv", "syms._add_sg", "syms._add_mv", "os.remove" ]
[((184, 213), 'os.path.exists', 'os.path.exists', (['self.filename'], {}), '(self.filename)\n', (198, 213), False, 'import os\n'), ((296, 325), 'os.path.exists', 'os.path.exists', (['self.filename'], {}), '(self.filename)\n', (310, 325), False, 'import os\n'), ((227, 251), 'os.remove', 'os.remove', (['self.filename'], {}), '(self.filename)\n', (236, 251), False, 'import os\n'), ((339, 363), 'os.remove', 'os.remove', (['self.filename'], {}), '(self.filename)\n', (348, 363), False, 'import os\n'), ((578, 611), 'syms._add_cv', 'syms._add_cv', (['fp', 'f1', 'f2', 'p', '(1)', '(2)'], {}), '(fp, f1, f2, p, 1, 2)\n', (590, 611), True, 'import syms as syms\n'), ((1125, 1158), 'syms._add_sg', 'syms._add_sg', (['fp', 'f1', 'f2', 'p', '(4)', '(1)'], {}), '(fp, f1, f2, p, 4, 1)\n', (1137, 1158), True, 'import syms as syms\n'), ((1504, 1534), 'syms._add_mv', 'syms._add_mv', (['fp', 'f1', 'f2', 'p', '(0)'], {}), '(fp, f1, f2, p, 0)\n', (1516, 1534), True, 'import syms as syms\n')]
from unittest import TestCase from collections import namedtuple import os import shutil import inspect from seqcluster.prepare_data import _read_fastq_files, _create_matrix_uniq_seq import seqcluster from nose.plugins.attrib import attr class TestPreparedata(TestCase): @attr(collapse=True) def test_preparedata(self): out_dir = "test/test_out_prepare" if os.path.exists(out_dir): shutil.rmtree(out_dir) os.mkdir(out_dir) arg = namedtuple('args', 'minl maxl minc out') args = arg(15, 40, 1, out_dir) seq_l, list_s = _read_fastq_files(open("data/examples/collapse/config"), args) ma_out = open(os.path.join(out_dir, "seqs.ma"), 'w') seq_out = open(os.path.join(out_dir, "seqs.fa"), 'w') _create_matrix_uniq_seq(list_s, seq_l, ma_out, seq_out, 1) self.assertTrue(os.path.exists(os.path.join(out_dir, "seqs.ma"))) self.assertTrue(os.path.exists(os.path.join(out_dir, "seqs.fa"))) if os.path.exists(out_dir): shutil.rmtree(out_dir) @attr(umis=True) def test_umis(self): from seqcluster.libs.fastq import collapse, write_output umis = collapse(os.path.abspath("data/examples/umis/sample.fastq")) if len(umis.keys()) != 2: raise ValueError("umis didn't detect two unique sequences") out_dir = "test/test_automated_output" if os.path.exists(out_dir): shutil.rmtree(out_dir) os.mkdir(out_dir) write_output(os.path.join(out_dir, "umis.fastq"), umis)
[ "os.path.exists", "collections.namedtuple", "nose.plugins.attrib.attr", "os.path.join", "os.mkdir", "shutil.rmtree", "os.path.abspath", "seqcluster.prepare_data._create_matrix_uniq_seq" ]
[((278, 297), 'nose.plugins.attrib.attr', 'attr', ([], {'collapse': '(True)'}), '(collapse=True)\n', (282, 297), False, 'from nose.plugins.attrib import attr\n'), ((1065, 1080), 'nose.plugins.attrib.attr', 'attr', ([], {'umis': '(True)'}), '(umis=True)\n', (1069, 1080), False, 'from nose.plugins.attrib import attr\n'), ((383, 406), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (397, 406), False, 'import os\n'), ((451, 468), 'os.mkdir', 'os.mkdir', (['out_dir'], {}), '(out_dir)\n', (459, 468), False, 'import os\n'), ((483, 523), 'collections.namedtuple', 'namedtuple', (['"""args"""', '"""minl maxl minc out"""'], {}), "('args', 'minl maxl minc out')\n", (493, 523), False, 'from collections import namedtuple\n'), ((781, 839), 'seqcluster.prepare_data._create_matrix_uniq_seq', '_create_matrix_uniq_seq', (['list_s', 'seq_l', 'ma_out', 'seq_out', '(1)'], {}), '(list_s, seq_l, ma_out, seq_out, 1)\n', (804, 839), False, 'from seqcluster.prepare_data import _read_fastq_files, _create_matrix_uniq_seq\n'), ((999, 1022), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (1013, 1022), False, 'import os\n'), ((1411, 1434), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (1425, 1434), False, 'import os\n'), ((1479, 1496), 'os.mkdir', 'os.mkdir', (['out_dir'], {}), '(out_dir)\n', (1487, 1496), False, 'import os\n'), ((420, 442), 'shutil.rmtree', 'shutil.rmtree', (['out_dir'], {}), '(out_dir)\n', (433, 442), False, 'import shutil\n'), ((672, 704), 'os.path.join', 'os.path.join', (['out_dir', '"""seqs.ma"""'], {}), "(out_dir, 'seqs.ma')\n", (684, 704), False, 'import os\n'), ((734, 766), 'os.path.join', 'os.path.join', (['out_dir', '"""seqs.fa"""'], {}), "(out_dir, 'seqs.fa')\n", (746, 766), False, 'import os\n'), ((1036, 1058), 'shutil.rmtree', 'shutil.rmtree', (['out_dir'], {}), '(out_dir)\n', (1049, 1058), False, 'import shutil\n'), ((1195, 1245), 'os.path.abspath', 'os.path.abspath', (['"""data/examples/umis/sample.fastq"""'], {}), "('data/examples/umis/sample.fastq')\n", (1210, 1245), False, 'import os\n'), ((1448, 1470), 'shutil.rmtree', 'shutil.rmtree', (['out_dir'], {}), '(out_dir)\n', (1461, 1470), False, 'import shutil\n'), ((1518, 1553), 'os.path.join', 'os.path.join', (['out_dir', '"""umis.fastq"""'], {}), "(out_dir, 'umis.fastq')\n", (1530, 1553), False, 'import os\n'), ((879, 911), 'os.path.join', 'os.path.join', (['out_dir', '"""seqs.ma"""'], {}), "(out_dir, 'seqs.ma')\n", (891, 911), False, 'import os\n'), ((953, 985), 'os.path.join', 'os.path.join', (['out_dir', '"""seqs.fa"""'], {}), "(out_dir, 'seqs.fa')\n", (965, 985), False, 'import os\n')]
# Crie um programa que leia o ano de nascimento de # sete pessoas. No final, mostre quantas pessoas # ainda nao atingiram a maioridade e quantas já sao maiores. from datetime import date maior = 0 menor = 0 for c in range(1, 8): nasc = int(input('Em que ano a {}a pessoa nasceu? ' .format(c))) idade = date.today().year - nasc if idade < 18: menor += 1 else: maior += 1 print('Ao todo tivemos {} pessoas maiores de idade' .format(maior)) print('E tambem tivemos {} pessoas menores de idade' .format(menor))
[ "datetime.date.today" ]
[((310, 322), 'datetime.date.today', 'date.today', ([], {}), '()\n', (320, 322), False, 'from datetime import date\n')]
import pytest def sum(a, b): if not isinstance(a, (float, int)): raise TypeError('Error de tipo') return a + b def test_mytest(): with pytest.raises(TypeError): sum('1', 2)
[ "pytest.raises" ]
[((168, 192), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (181, 192), False, 'import pytest\n')]
""" Copyright 2017 Globo.com Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest2 from globomap_api import exceptions as gmap_exceptions from globomap_api.app import create_app from globomap_api.models.db import DB from globomap_api.models.document import Document class TestDocument(unittest2.TestCase): def setUp(self): self.app = create_app('tests.config') self.db_inst = DB(self.app.config) self.conn_db() self.cleanup() self.db_inst.database.create_database('test') self.db_inst.conn_database('test') self.db_inst.database.create_collection('test_collection_db') self.db_inst.get_collection('test_collection_db') def tearDown(self): self.conn_db() self.cleanup() def conn_db(self): db_name = self.app.config['ARANGO_DB'] self.db_inst.conn_database(db_name) def cleanup(self): try: self.db_inst.database.delete_database('test') except: pass def test_search_document(self): """Test search document by property""" with self.app.app_context(): col_name = 'test_collection_db' self._import_bulk(col_name) search = [[{'field': 'value', 'operator': '==', 'value': 1}]] docs = self.db_inst.search_in_collection( 'test_collection_db', search) docs = (set(sorted([d['_key'] for d in docs]))) self.assertEqual(docs, {'doc04', 'doc05'}) def test_get_document(self): """Test get document""" with self.app.app_context(): self._import_bulk('test_collection_db') inst_doc = Document(self.db_inst.collection) doc = inst_doc.get_document('doc04') doc = {'_key': doc['_key'], 'value': doc['value'], } self.assertDictEqual(doc, {'_key': 'doc04', 'value': 1}) def test_create_document(self): """Test create document""" with self.app.app_context(): inst_doc = Document(self.db_inst.collection) doc = inst_doc.create_document({'_key': 'doc04', 'value': 1}) doc = {'_key': doc['_key'], '_id': doc['_id'], } self.assertDictEqual( doc, {'_key': 'doc04', '_id': 'test_collection_db/doc04', }) def test_get_document_not_exist(self): """Test get document not existing""" with self.app.app_context(): inst_doc = Document(self.db_inst.collection) with self.assertRaises(gmap_exceptions.DocumentNotExist): inst_doc.get_document('doc04') def test_delete_document(self): """Test delete document""" with self.app.app_context(): col_name = 'test_collection_db' self._import_bulk(col_name) inst_doc = Document(self.db_inst.collection) inst_doc.delete_document('doc04') with self.assertRaises(gmap_exceptions.DocumentNotExist): inst_doc.get_document('doc04') def test_delete_document_not_exist(self): """Test delee document not existing""" with self.app.app_context(): inst_doc = Document(self.db_inst.collection) with self.assertRaises(gmap_exceptions.DocumentNotExist): inst_doc.delete_document('doc04') def _import_bulk(self, col_name): collection = self.db_inst.database.collection(col_name) collection.import_bulk([ {'_key': 'doc04', 'value': 1}, {'_key': 'doc05', 'value': 1}, {'_key': 'doc06', 'value': 3}, ])
[ "globomap_api.models.db.DB", "globomap_api.models.document.Document", "globomap_api.app.create_app" ]
[((872, 898), 'globomap_api.app.create_app', 'create_app', (['"""tests.config"""'], {}), "('tests.config')\n", (882, 898), False, 'from globomap_api.app import create_app\n'), ((922, 941), 'globomap_api.models.db.DB', 'DB', (['self.app.config'], {}), '(self.app.config)\n', (924, 941), False, 'from globomap_api.models.db import DB\n'), ((2204, 2237), 'globomap_api.models.document.Document', 'Document', (['self.db_inst.collection'], {}), '(self.db_inst.collection)\n', (2212, 2237), False, 'from globomap_api.models.document import Document\n'), ((2555, 2588), 'globomap_api.models.document.Document', 'Document', (['self.db_inst.collection'], {}), '(self.db_inst.collection)\n', (2563, 2588), False, 'from globomap_api.models.document import Document\n'), ((2986, 3019), 'globomap_api.models.document.Document', 'Document', (['self.db_inst.collection'], {}), '(self.db_inst.collection)\n', (2994, 3019), False, 'from globomap_api.models.document import Document\n'), ((3356, 3389), 'globomap_api.models.document.Document', 'Document', (['self.db_inst.collection'], {}), '(self.db_inst.collection)\n', (3364, 3389), False, 'from globomap_api.models.document import Document\n'), ((3709, 3742), 'globomap_api.models.document.Document', 'Document', (['self.db_inst.collection'], {}), '(self.db_inst.collection)\n', (3717, 3742), False, 'from globomap_api.models.document import Document\n')]
from flask import current_app, render_template from . import main @main.route('/') def index(): return render_template('index.html') @main.route('/use_method') def use_method(): content = "" with open('use_method.md', 'r') as f: content = f.read() return render_template('use_method.html', text=content)
[ "flask.render_template" ]
[((109, 138), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (124, 138), False, 'from flask import current_app, render_template\n'), ((285, 333), 'flask.render_template', 'render_template', (['"""use_method.html"""'], {'text': 'content'}), "('use_method.html', text=content)\n", (300, 333), False, 'from flask import current_app, render_template\n')]
"""Contains numerical solver routines for the schroedinger equation""" import numpy as np from scipy.linalg import eigh_tridiagonal from qmpy._interpolation import _interpolate def schroedinger(vals, select_range=None, interpol=False, interpoltype='linear'): """ Solves the 1-dimensional schroedinger equation for given numerical values of x-coordinates and the corresponding value of the potential. It also supports interpolation of the given data points aswell as settings for higher accuracy. Args: vals (dict): Needed values for computation. Necessary keys are: - **mass** (*float*) - The mass of the system - **xcords** (*1darray*) - The xcoordinates corresponding to the potential values - **potential** (*1darray*) - The values of the potential. Optional keys are: - **xopt** (*tuple*) - Options for the x-range of the output of form ``(xmin, xmax, npoints)``. If vals does not have a key named \'xopt\' he range of the xcords-array and 1999 points will be used for the interpolation (if interpol is set to True). select_range (tuple, optional): Indices of the desired eigenvalues as tuple ``(ev_min, ev_max)``. Defaults to None meaning all eigenvalues are calculated. interpol (bool): Interpolate the given data points. Defaults to False. interpoltype (str, optional): The kind of interpolation to use. Accepted options are 'linear', 'cspline' or 'polynomial'. Defaults to 'linear'. Returns: touple: ``(energies, wfuncs, pot)`` - **energies** (*1darray*) - The energy levels of each wavefunction. The entries correspond to the rows in wfuncs. - **wfuncs** (*ndarray*) - Array where each row contains the numerical value of a computed normalized wavefunction. Each column corresponds to one x-coordinate of the input array. - **pot** (*2darray or None*) - The interpolated values of x- and y-coordinates. If interpol is set to False None will be returned instead. """ if interpol: if 'xopt' in vals.keys(): xopt = vals['xopt'] else: with vals['xcords'] as xx: xopt = (xx[0], xx[-1], 1999) xint, yint = _interpolate(vals['xcords'], vals['potential'], xopt, kind=interpoltype) pot = np.vstack((xint, yint)).T else: xint, yint = vals['xcords'], vals['potential'] pot = None energies, wfuncs = _basic_schroedinger(vals['mass'], xint, yint, select_range=select_range) return energies, wfuncs, pot def calculate_expval(xcoords, wfuncs): """ Calculates the expected values :math:`<x>` for the x-coordinate by numerically calculating the integral .. math:: \\int_{x_{min}}^{x_{max}} | \\psi (x) |^2 x dx Args: xcoords (1darray): Array containing the x-coordinates wfuncs (ndarray): Array containing the wave functions that correspond to the x-coordinates Returns: 1darray: The expected values of the x-coordinate """ delta = np.abs(xcoords[0] - xcoords[-1]) / (len(xcoords) + 1) expval = np.empty((len(wfuncs), )) for index, wfunc in enumerate(wfuncs): expval[index] = np.sum((wfunc ** 2) * xcoords) * delta return expval def calculate_uncertainty(xcoords, wfuncs): """ Calculates the uncertainity :math:`\\Delta x` defined as .. math:: \\Delta x = \\sqrt{<x^2> - <x>^2} for each wavefunction. Args: xcoords (1darray): Array containing the x-coordinates wfuncs (ndarray): Array containing the wave functions that correspond to the x-coordinates Returns: 1darray: The uncertainity of the x-coordinate. """ delta = np.abs(xcoords[0] - xcoords[-1]) / (len(xcoords) + 1) expval = calculate_expval(xcoords, wfuncs) uncertainty = np.empty((len(wfuncs), )) index = 0 for wfunc, expv in zip(wfuncs, expval): expvalsq = np.sum((wfunc ** 2) * (xcoords ** 2)) * delta uncertainty[index] = np.sqrt(expvalsq - expv ** 2) index += 1 return uncertainty def _basic_schroedinger(mass, xcords, potential, select_range=None): """ Solves the 1-dimensional schroedinger equation for given numerical values of x-coordinates and the corresponding value of the potential. Args: mass (float): The mass of the system in atomic units. xcords (1darray): X-coordinates corresponding to the potential values. potential (1darray): Numerical values of the potential. select_range (touple): Indices of the desired eigenvalues. Defaults to None meaning all eigenvalues are calculated. Returns: touple: ``(energies, wfuncs)`` - **energies** (*1darray*) - The energy levels of each wavefunction. The entries correspond to the rows in wfuncs. - **wfuncs** (*ndarray*) - Array where each row contains the numerical value of a computed normalized wavefunction. Each column corresponds to one x-coordinate of the input array. """ delta = np.abs(xcords[0] - xcords[-1]) / (len(xcords) + 1) diag = potential + 1 / (mass * delta ** 2) offdiag = -1 / (2 * mass * delta ** 2) * np.ones((len(potential) - 1)) if select_range: energies, wfuncs = eigh_tridiagonal(diag, offdiag, select='i', select_range=select_range) else: energies, wfuncs = eigh_tridiagonal(diag, offdiag) wfuncs = wfuncs.copy().T for index, wfunc in enumerate(wfuncs): norm = 1 / np.sqrt(np.sum(wfunc ** 2) * delta) wfuncs[index, :] = wfunc * norm return energies, wfuncs
[ "numpy.abs", "scipy.linalg.eigh_tridiagonal", "numpy.sqrt", "numpy.sum", "numpy.vstack", "qmpy._interpolation._interpolate" ]
[((2474, 2546), 'qmpy._interpolation._interpolate', '_interpolate', (["vals['xcords']", "vals['potential']", 'xopt'], {'kind': 'interpoltype'}), "(vals['xcords'], vals['potential'], xopt, kind=interpoltype)\n", (2486, 2546), False, 'from qmpy._interpolation import _interpolate\n'), ((3386, 3418), 'numpy.abs', 'np.abs', (['(xcoords[0] - xcoords[-1])'], {}), '(xcoords[0] - xcoords[-1])\n', (3392, 3418), True, 'import numpy as np\n'), ((4078, 4110), 'numpy.abs', 'np.abs', (['(xcoords[0] - xcoords[-1])'], {}), '(xcoords[0] - xcoords[-1])\n', (4084, 4110), True, 'import numpy as np\n'), ((4375, 4404), 'numpy.sqrt', 'np.sqrt', (['(expvalsq - expv ** 2)'], {}), '(expvalsq - expv ** 2)\n', (4382, 4404), True, 'import numpy as np\n'), ((5474, 5504), 'numpy.abs', 'np.abs', (['(xcords[0] - xcords[-1])'], {}), '(xcords[0] - xcords[-1])\n', (5480, 5504), True, 'import numpy as np\n'), ((5696, 5766), 'scipy.linalg.eigh_tridiagonal', 'eigh_tridiagonal', (['diag', 'offdiag'], {'select': '"""i"""', 'select_range': 'select_range'}), "(diag, offdiag, select='i', select_range=select_range)\n", (5712, 5766), False, 'from scipy.linalg import eigh_tridiagonal\n'), ((5848, 5879), 'scipy.linalg.eigh_tridiagonal', 'eigh_tridiagonal', (['diag', 'offdiag'], {}), '(diag, offdiag)\n', (5864, 5879), False, 'from scipy.linalg import eigh_tridiagonal\n'), ((2595, 2618), 'numpy.vstack', 'np.vstack', (['(xint, yint)'], {}), '((xint, yint))\n', (2604, 2618), True, 'import numpy as np\n'), ((3546, 3574), 'numpy.sum', 'np.sum', (['(wfunc ** 2 * xcoords)'], {}), '(wfunc ** 2 * xcoords)\n', (3552, 3574), True, 'import numpy as np\n'), ((4300, 4333), 'numpy.sum', 'np.sum', (['(wfunc ** 2 * xcoords ** 2)'], {}), '(wfunc ** 2 * xcoords ** 2)\n', (4306, 4333), True, 'import numpy as np\n'), ((5981, 5999), 'numpy.sum', 'np.sum', (['(wfunc ** 2)'], {}), '(wfunc ** 2)\n', (5987, 5999), True, 'import numpy as np\n')]
"""setup-services.py Script to help bring up docker services for testing. """ import argparse import logging import shutil import subprocess import sys from pathlib import Path from typing import Dict, List logger = logging.getLogger("setup-services") streamHandler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter("%(message)s") streamHandler.setFormatter(formatter) logger.addHandler(streamHandler) logger.setLevel(level=logging.INFO) HERE = Path(".").absolute() BASE = Path(__file__).parent.absolute() COMPOSE_FILE = BASE / "docker-compose.yaml" TEST_DATA_PATH = HERE / "echopype" / "test_data" def parse_args(): parser = argparse.ArgumentParser(description="Setup services for testing") parser.add_argument("--deploy", action="store_true", help="Flag to setup docker services") parser.add_argument( "--no-pull", action="store_true", help="Optional flag to skip pulling the latest images from dockerhub", ) parser.add_argument( "--tear-down", action="store_true", help="Flag to tear down docker services", ) parser.add_argument( "--images", action="store_true", help="Optional flag to remove images also during tear down", ) return parser.parse_args() def run_commands(commands: List[Dict]) -> None: for idx, command in enumerate(commands, start=1): msg = command.get("msg") cmd = command.get("cmd") args = command.get("args", None) logger.info(f"{idx}) {msg}") if cmd is None: continue elif isinstance(cmd, list): subprocess.run(cmd) elif callable(cmd): cmd(args) else: raise ValueError(f"command of {type(cmd)} is invalid.") if __name__ == "__main__": args = parse_args() commands = [] if all([args.deploy, args.tear_down]): print("Cannot have both --deploy and --tear-down. Exiting.") sys.exit(1) if not any([args.deploy, args.tear_down]): print("Please provide either --deploy or --tear-down flags. For more help use --help flag.") sys.exit(0) if args.deploy: commands.append({"msg": "Starting test services deployment ...", "cmd": None}) if not args.no_pull: commands.append( { "msg": "Pulling latest images ...", "cmd": ["docker-compose", "-f", COMPOSE_FILE, "pull"], } ) commands.append( { "msg": "Bringing up services ...", "cmd": [ "docker-compose", "-f", COMPOSE_FILE, "up", "-d", "--remove-orphans", "--force-recreate", ], } ) if TEST_DATA_PATH.exists(): commands.append( { "msg": f"Deleting old test folder at {TEST_DATA_PATH} ...", "cmd": shutil.rmtree, "args": TEST_DATA_PATH, } ) commands.append( { "msg": "Copying new test folder from http service ...", "cmd": [ "docker", "cp", "-L", "docker_httpserver_1:/usr/local/apache2/htdocs/data", TEST_DATA_PATH, ], } ) if args.tear_down: command = ["docker-compose", "-f", COMPOSE_FILE, "down", "--remove-orphans", "--volumes"] if args.images: command = command + ["--rmi", "all"] commands.append({"msg": "Stopping test services deployment ...", "cmd": command}) commands.append({"msg": "Done.", "cmd": ["docker", "ps", "--last", "2"]}) run_commands(commands)
[ "logging.getLogger", "logging.StreamHandler", "argparse.ArgumentParser", "pathlib.Path", "logging.Formatter", "subprocess.run", "sys.exit" ]
[((219, 254), 'logging.getLogger', 'logging.getLogger', (['"""setup-services"""'], {}), "('setup-services')\n", (236, 254), False, 'import logging\n'), ((271, 304), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (292, 304), False, 'import logging\n'), ((317, 349), 'logging.Formatter', 'logging.Formatter', (['"""%(message)s"""'], {}), "('%(message)s')\n", (334, 349), False, 'import logging\n'), ((652, 717), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Setup services for testing"""'}), "(description='Setup services for testing')\n", (675, 717), False, 'import argparse\n'), ((465, 474), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (469, 474), False, 'from pathlib import Path\n'), ((1971, 1982), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1979, 1982), False, 'import sys\n'), ((2140, 2151), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2148, 2151), False, 'import sys\n'), ((493, 507), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (497, 507), False, 'from pathlib import Path\n'), ((1628, 1647), 'subprocess.run', 'subprocess.run', (['cmd'], {}), '(cmd)\n', (1642, 1647), False, 'import subprocess\n')]
from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd import matplotlib.pyplot as plt def getData(data): # data = pd.read_csv(location) x = np.arange(0, len(data)).reshape(-1, 1) y = data.iloc[:, 5].values.reshape(-1, 1) return x, y def createModel(): lr = LinearRegression() return lr def predict(model, forecast, x, y): forecast = 30 for day in range(1, forecast+1): model.fit(x, y) x_pred = np.arange(len(x), len(x) + 1).reshape(-1, 1) y_pred = model.predict(x_pred) x = np.append(x, x_pred) y = np.append(y, y_pred) y_pred = np.delete(y_pred, 0) x = x.reshape(-1, 1) return x, y def normalizeLRpredict(y, forecast, data_len): diffy = y[len(y)-forecast-1] - y[len(y)-forecast] for i in range(data_len, data_len + forecast): y[i] = y[i] + diffy return y def plotPred(x, y, data_len): y_pred = y[data_len:data_len + forecast] x_pred = x[data_len:data_len + forecast] x = x[0:data_len] y = y[0:data_len] plt.plot(x, y) plt.plot(x_pred, y_pred) plt.show() if __name__ == '__main__': dataloc = "../data/VTI.csv" forecast = 30 x, y = getData(dataloc) data_len = len(x) model = createModel() x, y = predict(model, forecast, x, y) y = normalizeLRpredict(y, forecast, data_len) # plotPred(x, y, data_len)
[ "numpy.delete", "matplotlib.pyplot.plot", "numpy.append", "sklearn.linear_model.LinearRegression", "matplotlib.pyplot.show" ]
[((315, 333), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (331, 333), False, 'from sklearn.linear_model import LinearRegression\n'), ((1093, 1107), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (1101, 1107), True, 'import matplotlib.pyplot as plt\n'), ((1112, 1136), 'matplotlib.pyplot.plot', 'plt.plot', (['x_pred', 'y_pred'], {}), '(x_pred, y_pred)\n', (1120, 1136), True, 'import matplotlib.pyplot as plt\n'), ((1141, 1151), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1149, 1151), True, 'import matplotlib.pyplot as plt\n'), ((586, 606), 'numpy.append', 'np.append', (['x', 'x_pred'], {}), '(x, x_pred)\n', (595, 606), True, 'import numpy as np\n'), ((619, 639), 'numpy.append', 'np.append', (['y', 'y_pred'], {}), '(y, y_pred)\n', (628, 639), True, 'import numpy as np\n'), ((657, 677), 'numpy.delete', 'np.delete', (['y_pred', '(0)'], {}), '(y_pred, 0)\n', (666, 677), True, 'import numpy as np\n')]
"""A checker for application health. When configured with a Sanic application, this checker provides a means for the application to specify whether or not it is operating in a healthy state. By identifying broken/unhealthy states, a management system could restart the application, potentially allowing it to recover. This checker can be used to set up liveness probes for Kubernetes deployments: https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#define-a-liveness-command It may also be used to define container health checks in docker-compose: https://docs.docker.com/compose/compose-file/#healthcheck This checker exposes the ``/health`` endpoint by default. """ import logging import time from typing import Callable, Mapping, Optional from sanic import Sanic, response from .checker import MSG_FAIL, MSG_OK, BaseChecker log = logging.getLogger(__name__) class HealthCheck(BaseChecker): """A checker allowing a Sanic application to describe the health of the application at runtime. The results of registered check functions are cached by this checker by default. To disable result caching, initialize the checker with ``no_cache=True``. Since the health endpoint may be polled frequently (and potentially by multiple systems), the cache allows the check function results to be valid for a window of time, reducing the execution cost. This may be particularly helpful if a given health check is more expensive. Args: app: The Sanic application instance to register the checker to. If not specified on initialization, the user must pass it to the ``init`` method to register the checker route with the application. If specified on initialization, ``init`` will be called automatically. uri: The route URI to expose for the checker. checks: A collection of checks to register with the checker on init. A check is a function which takes no arguments and returns (``bool``, ``str``), where the boolean signifies whether the check passed or not, and the string is a message associated with the success/failure. no_cache: Disable the checker from caching check results. If this is set to ``True``, the ``success_ttl`` and ``failure_ttl`` do nothing. success_handler: A handler function which takes the check results (a list[dict]) and returns a message string. This is called when all checks pass. success_headers: Headers to include in the checker response on success. By default, no additional headers are sent. This can be useful if, for example, a success handler is specified which returns a JSON message. The Content-Type: application/json header could be included here. success_status: The HTTP status code to use when the checker passes its checks. success_ttl: The TTL for a successful check result to live in the cache before it is updated. failure_handler: A handler function which takes the check results (a list[dict]) and returns a message string. This is called when any check fails. failure_headers: Headers to include in the checker response on failure. By default, no additional headers are sent. This can be useful if, for example, a failure handler is specified which returns a JSON message. The Content-Type: application/json header could be included here. failure_status: The HTTP status code to use when the checker fails its checks. failure_ttl: The TTL for a failed check result to live in the cache before it is updated. exception_handler: A function which would get called when a registered check raises an exception. This handler must take two arguments: the check function which raised the exception, and the tuple returned by ``sys.exc_info``. It must return a tuple of (bool, string), where the boolean is whether or not it passed and the string is the message to use for the check response. By default, no exception handler is registered, so an exception will lead to a check failure. options: Any additional options to pass to the ``Sanic.add_route`` method on ``init``. """ default_uri = '/health' def __init__( self, app: Optional[Sanic] = None, uri: Optional[str] = None, checks=None, no_cache: bool = False, success_handler: Optional[Callable] = None, success_headers: Optional[Mapping] = None, success_status: Optional[int] = 200, success_ttl: Optional[int] = 25, failure_handler: Optional[Callable] = None, failure_headers: Optional[Mapping] = None, failure_status: Optional[int] = 500, failure_ttl: Optional[int] = 5, exception_handler: Optional[Callable] = None, **options, ) -> None: self.cache = {} self.no_cache = no_cache self.success_ttl = success_ttl self.failure_ttl = failure_ttl super(HealthCheck, self).__init__( app=app, uri=uri, checks=checks, success_handler=success_handler, success_headers=success_headers, success_status=success_status, failure_handler=failure_handler, failure_headers=failure_headers, failure_status=failure_status, exception_handler=exception_handler, **options, ) async def run(self, request) -> response.HTTPResponse: """Run all checks and generate an HTTP response for the results.""" results = [] for check in self.checks: # See if the check already has a cached health state. If so, use it; # otherwise, re-run the check. if not self.no_cache and check in self.cache and self.cache[check].get('expires') >= time.time(): results.append(self.cache[check]) else: result = await self.exec_check(check) if not self.no_cache: if result.get('passed'): ttl = self.success_ttl else: ttl = self.failure_ttl result['expires'] = result['timestamp'] + ttl self.cache[check] = result results.append(result) passed = all((r['passed'] for r in results)) if passed: msg = MSG_OK if self.success_handler: msg = self.success_handler(results) return response.text( body=msg, status=self.success_status, headers=self.success_headers, ) else: msg = MSG_FAIL if self.failure_handler: msg = self.failure_handler(results) return response.text( body=msg, status=self.failure_status, headers=self.failure_headers, )
[ "logging.getLogger", "time.time", "sanic.response.text" ]
[((891, 918), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (908, 918), False, 'import logging\n'), ((6796, 6882), 'sanic.response.text', 'response.text', ([], {'body': 'msg', 'status': 'self.success_status', 'headers': 'self.success_headers'}), '(body=msg, status=self.success_status, headers=self.\n success_headers)\n', (6809, 6882), False, 'from sanic import Sanic, response\n'), ((7092, 7178), 'sanic.response.text', 'response.text', ([], {'body': 'msg', 'status': 'self.failure_status', 'headers': 'self.failure_headers'}), '(body=msg, status=self.failure_status, headers=self.\n failure_headers)\n', (7105, 7178), False, 'from sanic import Sanic, response\n'), ((6097, 6108), 'time.time', 'time.time', ([], {}), '()\n', (6106, 6108), False, 'import time\n')]
import re # Declare a dictionary dict = {} # Method to check whether the word # exists in dictionary or not def uniqueWord(Word): if Word in dict: # If the word exists in dictionary then # simply increase its count dict[words] += 1 else: # If the word does not exists in # dictionary update the dictionary # and make its count 1 dict.update({words: 1}) # Driver code if __name__ == '__main__': string = "one, two, three, one, four, five, Kamila , flower, cactis, flower" # re.split() method is used to split # all the words in a string seperated # by non-alphanumeric characters (\W) ListOfWords = re.split("[\W]+", string) # Extract each word from ListOfWords # and pass it to the method uniqueWord() for words in ListOfWords: uniqueWord(words) # Iterate over dictionary if the value # of the key is 1, then print the element for elements in dict: if dict[elements] == 1: print(elements)
[ "re.split" ]
[((769, 795), 're.split', 're.split', (['"""[\\\\W]+"""', 'string'], {}), "('[\\\\W]+', string)\n", (777, 795), False, 'import re\n')]
""" File: word_guess.py ------------------- My project is an improved version of the Word Guessing Game. It allows a multiplayer mode (up to 4 players) """ import random LEXICON_FILE = "Lexicon.txt" # File to read word list from INITIAL_GUESSES = 8 # Initial number of guesses player starts with NUM_OF_PLAYERS = 3 DEFAULT_FILE = 'word-guessing-banner.jpg' def play_game(secret_word): secret_word_length = len(secret_word) hidden_string = "" new_list = [] guesses = INITIAL_GUESSES correct_guesses = 0 score = 100 for i in range(secret_word_length): new_list.append("-") new_string = "" for elem in new_list: new_string += str(elem) print("The word now looks like this: " + new_string) print("You have " + str(INITIAL_GUESSES) + " guesses left") while guesses != 0 and str(new_list) != secret_word: # do not allow user to enter more than one character user_guess = input("Type a single letter here, then press enter: ") new_string = "" found = False for i in range(secret_word_length): if secret_word[i] == user_guess.upper(): new_list[i] = user_guess.upper() found = True if found: print("That guess is correct.") correct_guesses += 1 for elem in new_list: new_string += str(elem) if secret_word.find(user_guess.upper()) == -1: guesses -= 1 print("There are no "+ user_guess.upper() + "'s in the word") score = score - (score * 0.2) #with each incorrect guess, we remove 20% of the score if new_string == secret_word: print("Congratulations, the word is: " + new_string) break; else: if guesses == 0: print("Sorry, you lost. The secret word was: " + secret_word) else: print("The word now looks like this: " + new_string) print("You have " + str(guesses) + " guesses left") return score def open_lexicon_file(filename): cs_words = [] with open(filename) as f: for line in f: cs_words.append(line.strip()) return cs_words def get_word(): """ This function returns a secret word that the player is trying to guess in the game. This function initially has a very small list of words that it can select from to make it easier for you to write and debug the main game playing program. In Part II of writing this program, you will re-implement this function to select a word from a much larger list by reading a list of words from the file specified by the constant LEXICON_FILE. """ cs_words = open_lexicon_file(LEXICON_FILE) random_choice = random.choice(cs_words) return random_choice def return_highest_scoring_player(score_list): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v = list(score_list.values()) max_val = max(v) min_val = min(v) k = list(score_list.keys()) if max_val != min_val: return k[v.index(max(v))] + " wins!" else: return "It's a tie!" def output_game_intro(): print("WELCOME TO MY WORD GUESSING GAME!") print("-----------------------------------") print("-------- -------") print("------------ -----------") print("-------------- -------------") print("-------- -------") print("-----------------------------------") print("Rules are simple: the computer will generate a random word for you to guess. Enter one character at a time, until you guess the final word. The player who guesses more words, or in less steps wins the round.") print("Each player has a maximum of " + str(INITIAL_GUESSES) + " guesses.") print("Ready?? Let's get started!!") print("-----------------------------------") def main(): """ To play the game, we first select the secret word for the player to guess and then play the game using that secret word. """ output_game_intro() score_list = {} for i in range(NUM_OF_PLAYERS): print("This is Player " + str(i+1) + "'s turn.") secret_word = get_word() current_player = "Player " + str(i+1) score_list[current_player] = play_game(secret_word) print(str(current_player) + " scored: " + str(score_list[current_player])) print("-----------------------------------") print("At the end of this round, here are the results: ") print(return_highest_scoring_player(score_list)) # This provided line is required at the end of a Python file # to call the main() function. if __name__ == "__main__": main()
[ "random.choice" ]
[((2820, 2843), 'random.choice', 'random.choice', (['cs_words'], {}), '(cs_words)\n', (2833, 2843), False, 'import random\n')]
from maya import cmds, mel # load hik mel.eval("HIKCharacterControlsTool") # ---------------------------------------------------------------------------- LEG_HIERARCHY = ["hip", "knee", "ankle"] ARM_HIERARCHY = ["shoulder", "elbow", "wrist"] BODY_HIERARCHY = ["hip", "spine", "neck", "head"] # ---------------------------------------------------------------------------- HIK_MAPPER = { "Reference": "reference", "Hips": "hip", "Spine": "spine", "Neck": "neck", "Head": "head", "LeftUpLeg": "l_hip", "LeftLeg": "l_knee", "LeftFoot": "l_ankle", "RightUpLeg": "r_hip", "RightLeg": "r_knee", "RightFoot": "r_ankle", "LeftArm": "l_shoulder", "LeftForeArm": "l_elbow", "LeftHand": "l_wrist", "RightArm": "r_shoulder", "RightForeArm": "r_elbow", "RightHand": "r_wrist" } HIK_ID_MAPPER = { cmds.hikGetNodeIdFromName(node): node for node in HIK_MAPPER.keys() }
[ "maya.mel.eval", "maya.cmds.hikGetNodeIdFromName" ]
[((39, 75), 'maya.mel.eval', 'mel.eval', (['"""HIKCharacterControlsTool"""'], {}), "('HIKCharacterControlsTool')\n", (47, 75), False, 'from maya import cmds, mel\n'), ((863, 894), 'maya.cmds.hikGetNodeIdFromName', 'cmds.hikGetNodeIdFromName', (['node'], {}), '(node)\n', (888, 894), False, 'from maya import cmds, mel\n')]
import torch import numpy as np from CNN import * from Training import * from Testing import * from Data_maker_loader import * use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") import time server = "/rdsgpfs/general/user/kpp15/home/Hansen" # from where to load tensors for data wherepath = server + "/data/raster/tensors" # Where to get and save tif map sourcepath = server + "/data/raster/MadreTiff" # Where to get model checkpoint modelpath = server + "/deforestation_forecasting/models" checkpoint = modelpath + "/CNN.CNNmodel/CNN.CNNmodel_3.7.19_23.47_315834[9].pbs.pt" modelname = checkpoint.split("/", -1)[-1] # Where to save Test_Roc picspath = server + "/deforestation_forecasting/models/pics" file = server + "/deforestation_forecasting/models/grid_summary/CNN.CNNmodel.txt" if __name__ == "__main__": start = time.time() # Set all parameters # Set training time period start_year = 17 end_year = 17 # set CNN model parameeters size = 45 DSM = True input_dim = 11 hidden_dim = [128, 64, 64, 32] kernel_size = [(5, 5), (5, 5), (3, 3), (3, 3)] stride = [(2, 2), (1, 1), (1, 1), (1, 1)] padding = [0, 0, 0, 0] dropout = 0.2 levels = [13] # set ratios of 0:1 labels in Train and Validation data sets train_times = 4 test_times = 4 # set criteria for Early stopping AUC = False BCE_Wloss = False FNcond = True # set parameters for the cost of the confussion matrix w = 10 # weights on the False Negative Rate perc = (100 * train_times) / ( train_times + 1 ) # the percentile to for treshhold selection. Advisable to be 100*times/(times+1) # Weight parameter for the weighted BCE loss pos_weight = 3 # Adam optimiser parameters: lr = 0.0001 weight_decay = 0 # Early Stopping parameters n_splits = 5 n_epochs = 10 patience = 3 # train_model parameters for debbuging and time regulations training_time = 60 stop_batch = None print_batch = 200 batch_size = 32 model = CNNmodel( input_dim=input_dim, hidden_dim=hidden_dim, kernel_size=kernel_size, stride=stride, padding=padding, dropout=dropout, levels=levels, ) criterion = torch.nn.BCEWithLogitsLoss( reduction="mean", pos_weight=torch.tensor(pos_weight) ) optimiser = torch.optim.Adam( params=model.parameters(), lr=0.0001, weight_decay=weight_decay ) checkpoint = torch.load(checkpoint) model.load_state_dict(checkpoint["model_state_dict"]) optimiser.load_state_dict(checkpoint["optimiser_state_dict"]) Data = with_DSM( size=int(size / 2), start_year=start_year, end_year=end_year, wherepath=wherepath, DSM=DSM, ) if not ( os.path.isfile(wherepath + "/" + "Train_idx%d.npy" % (end_year)) & os.path.isfile(wherepath + "/" + "Test_idx%d.npy" % (end_year)) ): print("Creating indexes split") train_idx, test_idx = train_test_split( np.arange(len(Data.labels)), test_size=0.2, random_state=42, shuffle=True, stratify=Data.labels, ) np.save(wherepath + "Train_idx%d.npy" % (end_year), train_idx) np.save(wherepath + "Test_idx%d.npy" % (end_year), test_idx) else: train_idx = np.load(wherepath + "/" + "Train_idx%d.npy" % (end_year)) test_idx = np.load(wherepath + "/" + "Test_idx%d.npy" % (end_year)) train_sampler = ImbalancedDatasetUnderSampler( labels=Data.labels, indices=train_idx, times=train_times ) test_sampler = ImbalancedDatasetUnderSampler( labels=Data.labels, indices=test_idx, times=test_times ) job_id = modelname + f".transfer_learning_20{end_year+1:d}" # Print Summary of the training parameters # ========================================================================= print( "Model:", modelname, "\nPeriod 20%d-20%d -> 20%d" % (start_year, end_year, end_year + 1), ) print("New model:", job_id) print( "\t% deforested pixels in train:", train_sampler.count[1] / sum(train_sampler.count), ) print( "\t% deforested pixels in val:", test_sampler.count[1] / sum(test_sampler.count) ) print("\nHyperparameters: ") print("\tImage size: %d" % (size)) print("\tHidden dim: ", hidden_dim) print( "\tTrain and Val ratios of 0:1 labels: 1:%d ; 1:%d " % (train_times, test_times) ) print( "\tADAM optimizer parameters: lr=%.7f, weight decay=%.2f, batch size=%d" % (lr, weight_decay, batch_size) ) print("\tBCEWithLogitsLoss pos_weights = %.2f" % (pos_weight)) print("\tn_epochs = %d with patience of %d epochs" % (n_epochs, patience)) print("\tCross Validation with n_splits = %d " % (n_splits)) print( "\tIf to use BCEWithLogitsLoss as an early stop criterion :", ((not AUC) & (not FNcond)), ) print("\tIf to use AUC as an early stop criterion :", AUC) print("\tIf to use cost = FP+w*FN / TP+FP+w*FN+TN as an early stop criterion") print( "\twith w = %d and treshhold = the %d percentile of the output" % (w, perc), FNcond, ) print("\nModel: \n", model) print("\nCriterion: \n", criterion) print("\nOptimiser: \n", optimiser) ( model, train_loss, valid_loss, AUCs_train, AUCs_val, costs_train, costs_val, name, ) = train_model( Data=Data, model=model, sampler=train_sampler, criterion=criterion, optimiser=optimiser, patience=patience, n_epochs=n_epochs, n_splits=n_splits, batch_size=batch_size, stop_batch=stop_batch, print_batch=print_batch, training_time=training_time, w=w, perc=perc, FNcond=FNcond, AUC=AUC, job=job_id, path=modelpath, ) visualize( train=train_loss, valid=valid_loss, name="BCEloss", modelname=name, best="min", path=picspath, ) visualize( train=AUCs_train, valid=AUCs_val, name="AUC", modelname=name, best="max", path=picspath, ) visualize( train=costs_train, valid=costs_val, name="Cost", modelname=name, best="min", path=picspath, ) test_loss, test_AUC, test_cost = test_model( model=model, Data=Data, criterion=criterion, w=w, perc=perc, test_sampler=test_sampler, batch_size=batch_size, stop_batch=stop_batch, name=name, path=picspath, ) write_report( name=name, job_id=job_id, train_loss=train_loss, valid_loss=valid_loss, test_loss=test_loss, AUCs_train=AUCs_train, AUCs_val=AUCs_val, test_AUC=test_AUC, costs_train=costs_train, costs_val=costs_val, test_cost=test_cost, file=file, FNcond=FNcond, AUC=AUC, ) print("\n\nEND!Total time (in h):", (time.time() - start) / 3600)
[ "torch.load", "torch.tensor", "torch.cuda.is_available", "numpy.load", "time.time", "numpy.save", "torch.device" ]
[((139, 164), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (162, 164), False, 'import torch\n'), ((174, 219), 'torch.device', 'torch.device', (["('cuda:0' if use_cuda else 'cpu')"], {}), "('cuda:0' if use_cuda else 'cpu')\n", (186, 219), False, 'import torch\n'), ((869, 880), 'time.time', 'time.time', ([], {}), '()\n', (878, 880), False, 'import time\n'), ((2546, 2568), 'torch.load', 'torch.load', (['checkpoint'], {}), '(checkpoint)\n', (2556, 2568), False, 'import torch\n'), ((3284, 3344), 'numpy.save', 'np.save', (["(wherepath + 'Train_idx%d.npy' % end_year)", 'train_idx'], {}), "(wherepath + 'Train_idx%d.npy' % end_year, train_idx)\n", (3291, 3344), True, 'import numpy as np\n'), ((3355, 3413), 'numpy.save', 'np.save', (["(wherepath + 'Test_idx%d.npy' % end_year)", 'test_idx'], {}), "(wherepath + 'Test_idx%d.npy' % end_year, test_idx)\n", (3362, 3413), True, 'import numpy as np\n'), ((3446, 3501), 'numpy.load', 'np.load', (["(wherepath + '/' + 'Train_idx%d.npy' % end_year)"], {}), "(wherepath + '/' + 'Train_idx%d.npy' % end_year)\n", (3453, 3501), True, 'import numpy as np\n'), ((3523, 3577), 'numpy.load', 'np.load', (["(wherepath + '/' + 'Test_idx%d.npy' % end_year)"], {}), "(wherepath + '/' + 'Test_idx%d.npy' % end_year)\n", (3530, 3577), True, 'import numpy as np\n'), ((2385, 2409), 'torch.tensor', 'torch.tensor', (['pos_weight'], {}), '(pos_weight)\n', (2397, 2409), False, 'import torch\n'), ((7323, 7334), 'time.time', 'time.time', ([], {}), '()\n', (7332, 7334), False, 'import time\n')]
from functools import reduce with open('input.txt', "r+") as file: contents = file.read() def restructure(first, second): # Separator line if first.endswith(' ') and second == '\n': return first.rstrip(' ') + '|' # Simple line if second == '\n': return first + ' ' return first + second restructured = reduce(restructure, contents, '').rstrip() split = restructured.split('|') def addProps(details, char): if char == ' ': return details details.update({char: True}) return details def buildAnswers(entry): return reduce(addProps, entry, {}) listOfAnswers = list(map(buildAnswers, split)) answersCount = list(map(lambda x: len(x.values()), listOfAnswers)) sumOfCounts = reduce(lambda f, s: f + s, answersCount) print(sumOfCounts)
[ "functools.reduce" ]
[((746, 786), 'functools.reduce', 'reduce', (['(lambda f, s: f + s)', 'answersCount'], {}), '(lambda f, s: f + s, answersCount)\n', (752, 786), False, 'from functools import reduce\n'), ((588, 615), 'functools.reduce', 'reduce', (['addProps', 'entry', '{}'], {}), '(addProps, entry, {})\n', (594, 615), False, 'from functools import reduce\n'), ((349, 382), 'functools.reduce', 'reduce', (['restructure', 'contents', '""""""'], {}), "(restructure, contents, '')\n", (355, 382), False, 'from functools import reduce\n')]
from flask import Flask from werkzeug.local import Local from threading import Thread app = Flask(__name__) local = Local() local.request = '123' class myThread(Thread): def run(self): local.request = 'abc' print('子线程:', local.request) @app.route('/') def hello_world(): mythead = myThread() mythead.start() mythead.join() # print('主线程:', local.request) # print(local.request) return 'Hello World!' if __name__ == '__main__': app.run(debug=True)
[ "werkzeug.local.Local", "flask.Flask" ]
[((93, 108), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (98, 108), False, 'from flask import Flask\n'), ((118, 125), 'werkzeug.local.Local', 'Local', ([], {}), '()\n', (123, 125), False, 'from werkzeug.local import Local\n')]
from types import SimpleNamespace from jina.executors import BaseExecutor def test_exec_from_python(): be = BaseExecutor(metas={'name': 'hello', 'random_name': 'random_value'}) assert be.metas.name == 'hello' assert be.metas.random_name == 'random_value' def test_runtime_args(): b = BaseExecutor.load_config( 'BaseExecutor', metas={'name': 'b123'}, runtime_args={'hello': 'world'} ) assert b.runtime_args.hello == 'world' assert b.metas.name == 'b123' def test_default_args_from_load_config(): b = BaseExecutor.load_config('!BaseExecutor {}') assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name def test_runtime_args_from_load_config(): y = ''' !BaseExecutor metas: name: my-mwu-encoder workspace: ./ ''' b = BaseExecutor.load_config(y) assert b.metas.workspace == './' assert b.metas.name == 'my-mwu-encoder' def test_default_args_from_python(): b = BaseExecutor() assert isinstance(b.runtime_args, SimpleNamespace) assert isinstance(b.metas, SimpleNamespace) # name is always auto-assigned assert b.metas.name
[ "jina.executors.BaseExecutor", "jina.executors.BaseExecutor.load_config" ]
[((115, 183), 'jina.executors.BaseExecutor', 'BaseExecutor', ([], {'metas': "{'name': 'hello', 'random_name': 'random_value'}"}), "(metas={'name': 'hello', 'random_name': 'random_value'})\n", (127, 183), False, 'from jina.executors import BaseExecutor\n'), ((305, 406), 'jina.executors.BaseExecutor.load_config', 'BaseExecutor.load_config', (['"""BaseExecutor"""'], {'metas': "{'name': 'b123'}", 'runtime_args': "{'hello': 'world'}"}), "('BaseExecutor', metas={'name': 'b123'},\n runtime_args={'hello': 'world'})\n", (329, 406), False, 'from jina.executors import BaseExecutor\n'), ((547, 591), 'jina.executors.BaseExecutor.load_config', 'BaseExecutor.load_config', (['"""!BaseExecutor {}"""'], {}), "('!BaseExecutor {}')\n", (571, 591), False, 'from jina.executors import BaseExecutor\n'), ((888, 915), 'jina.executors.BaseExecutor.load_config', 'BaseExecutor.load_config', (['y'], {}), '(y)\n', (912, 915), False, 'from jina.executors import BaseExecutor\n'), ((1045, 1059), 'jina.executors.BaseExecutor', 'BaseExecutor', ([], {}), '()\n', (1057, 1059), False, 'from jina.executors import BaseExecutor\n')]
import os from pprint import pprint from docx import Document startpath = 'session15/Tageshoroskope 2020' doclist = [] yearlist =[] for i in os.walk(startpath): for d in i[2]: if d.endswith(".docx"): n = i[0].replace('./', '') + '/' + d doclist.append(n) print(n) for wordfile in doclist: horolist = {"Widder": "", "Stier": "", "Zwilling": "", "Krebs": "", "Löwe": "", "Jungfrau": "", "Waage": "", "Skorpion": "", "Schütze": "", "Steinbock": "", "Wassermann": "", "Fische": ""} doc = Document(wordfile) start = False text = "" for paragraph in doc.paragraphs: if paragraph.text.startswith("Tageshoroskop für"): datum = paragraph.text.replace("Tageshoroskop für", '').strip() weiter = False for tierkreiszeichen in horolist.keys(): if paragraph.text.startswith(tierkreiszeichen) and start: start = False horolist[actualZodiac] = datum, text.strip() text = "" if paragraph.text.startswith(tierkreiszeichen) and not start: actualZodiac = tierkreiszeichen start = True weiter = True break if weiter: continue if start: text += paragraph.text + " " text.replace(" ", " ") horolist[actualZodiac]=datum, text.strip() yearlist.append(horolist) for tierkreiszeichen in horolist.keys(): f = open(tierkreiszeichen + ".csv", "w") for day in yearlist: # print(day[tierkreiszeichen]) # if len(day[tierkreiszeichen]) > 1: # f.write(f"{{{day[tierkreiszeichen][0]}|{day[tierkreiszeichen][1]}}}\n") # else: # f.write(f"{{{day[tierkreiszeichen][0]}| }}\n") # if len(day[tierkreiszeichen]) <= 1: # print("-------\n") # print(day[tierkreiszeichen]) # print("\n" + tierkreiszeichen + "\n-------\n") f.write(f"{day[tierkreiszeichen]}\n") f.close()
[ "os.walk", "docx.Document" ]
[((143, 161), 'os.walk', 'os.walk', (['startpath'], {}), '(startpath)\n', (150, 161), False, 'import os\n'), ((545, 563), 'docx.Document', 'Document', (['wordfile'], {}), '(wordfile)\n', (553, 563), False, 'from docx import Document\n')]
import scipy.io as sio import numpy as np import pandas as pd import sys import os import shutil class ADEIndex: def __init__(self, refreshCSVs=False): self.image_index = None self.object_name_list = None self.object_image_matrix = None self._CSVsExist = False self._csv_folderpath = os.path.join(sys.path[0], 'csvIndexes') self.num_images_total = None if os.path.exists(self._csv_folderpath)\ and os.path.exists(os.path.join(self._csv_folderpath, 'image_index.csv'))\ and os.path.exists(os.path.join(self._csv_folderpath, 'object_name_list.csv'))\ and os.path.exists(os.path.join(self._csv_folderpath,'object_image_matrix.csv')): print("Now loading data from CSV files") self.image_index = pd.read_csv(os.path.join(self._csv_folderpath, 'image_index.csv')) self.object_name_list = pd.read_csv(os.path.join(self._csv_folderpath, 'object_name_list.csv')) self.object_image_matrix = pd.read_csv(os.path.join(self._csv_folderpath, 'object_image_matrix.csv')) self._CSVsExist = True self.num_images_total = self.image_index.shape[0] else: _mat_filename = os.path.join(sys.path[0], 'ADE20K_2016_07_26', 'index_ade20k.mat') try: _mat_contents = sio.loadmat(_mat_filename) except FileNotFoundError: print("index_ade20k.mat was not found, likely due to a problem during package setup.") print('You can resolve this error by manually placing index_ade20k.mat' + ' (available from https://groups.csail.mit.edu/vision/datasets/ADE20K/)' + ' into ./ADE20K_2016_07_26/') return # exit() print("No CSVs found - will save CSVs after loading MATLAB data") _matindex = _mat_contents['index'][0,0] # When read with scipy, the MATLAB index does NOT have a consistent row # or column structure. # The columns are transposed occasionally because otherwise they don't fit # together - they're imported from MATLAB with a bunch of inconsistent # dimensions. self.num_images_total = _matindex[_matindex.dtype.names[1]].size # putting image attributes in a DataFrame _filename_col_nested = pd.DataFrame(_matindex['filename'].T, columns=['filename']) _filename_col = pd.DataFrame(columns=['filename']) for index, row in _filename_col_nested.iterrows(): _filename_col.loc[index] = _filename_col_nested['filename'][index][0] _folder_col_nested = pd.DataFrame(_matindex['folder'].T, columns=['folder']) _folder_col = pd.DataFrame(columns=['folder']) for index, row in _folder_col_nested.iterrows(): _folder_col.loc[index] = _folder_col_nested['folder'][index][0] # I don't know what this column is for (it's not documented on the dataset site) _typeset_col = pd.DataFrame(_matindex['typeset'], columns=['typeset']) # scene type of each image _scene_col = pd.DataFrame(_matindex['scene'].T, columns=['scene']) # putting the columns together _int_indexed_image_index = pd.concat([_filename_col, _folder_col, _typeset_col, _scene_col], axis=1) self.image_index = _int_indexed_image_index.set_index('filename') # Need filename col to be the index AND a query-able column # (because conversion to csv makes the index just an int) # self.image_index = pd.concat([self.image_index, filename_col], axis=1) # print(image_index.index) # print(image_index) # print(image_index['ADE_train_00011093.jpg']) # image_index.to_csv("csvIndexes/image_index.csv") # print(image_index['ADE_train_00011093.jpg']) # ------- # Putting object attributes in a DataFrame object_name_list_nested = pd.DataFrame(_matindex['objectnames'].T, columns=['objectnames']) self.object_name_list = pd.DataFrame(columns=['objectnames']) for index, row in object_name_list_nested.iterrows(): self.object_name_list.loc[index] = object_name_list_nested['objectnames'][index][0] # ---- # Extracting object frequency matrix (gives number of times each object # in the list of objects occurs in each image) # We could have gotten this ourselves from the text files in each # image-segmap directory if we wanted, but the parsing format is not fun, # so I decided to stick with converting the MATLAB code # image filenames are rows, and words (object names) are columns self.object_image_matrix = pd.DataFrame(_matindex['objectPresence'].T, columns=self.object_name_list['objectnames'], index=_filename_col['filename']) # object_cols_that_match = object_image_matrix.loc[:,[x for x in object_image_matrix.columns if 'vcr' in x]] # for (colName, colData) in object_cols_that_match.iteritems(): # image_rows_to_add = object_image_matrix.loc[object_image_matrix[colName] != 0] # print(image_rows_to_add) if refreshCSVs or (not self._CSVsExist): if os.path.exists(self._csv_folderpath): shutil.rmtree(self._csv_folderpath) os.mkdir(self._csv_folderpath) print("Now saving CSV files") self.save_all_CSVs() print("Your CSV files are now toasty and warm") # Function to produce all 3 CSV files # THE LAST ONE IS KINDA BIG (for a CSV) - around 300 MB def save_all_CSVs(self): self.image_index.to_csv(os.path.join(self._csv_folderpath,"image_index.csv")) self.object_name_list.to_csv(os.path.join(self._csv_folderpath, 'object_name_list.csv')) self.object_image_matrix.to_csv(os.path.join(self._csv_folderpath,"object_image_matrix.csv"))
[ "os.path.exists", "scipy.io.loadmat", "os.path.join", "os.mkdir", "shutil.rmtree", "pandas.DataFrame", "pandas.concat" ]
[((311, 350), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""csvIndexes"""'], {}), "(sys.path[0], 'csvIndexes')\n", (323, 350), False, 'import os\n'), ((392, 428), 'os.path.exists', 'os.path.exists', (['self._csv_folderpath'], {}), '(self._csv_folderpath)\n', (406, 428), False, 'import os\n'), ((1155, 1221), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""ADE20K_2016_07_26"""', '"""index_ade20k.mat"""'], {}), "(sys.path[0], 'ADE20K_2016_07_26', 'index_ade20k.mat')\n", (1167, 1221), False, 'import os\n'), ((2207, 2266), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['filename'].T"], {'columns': "['filename']"}), "(_matindex['filename'].T, columns=['filename'])\n", (2219, 2266), True, 'import pandas as pd\n'), ((2296, 2330), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['filename']"}), "(columns=['filename'])\n", (2308, 2330), True, 'import pandas as pd\n'), ((2495, 2550), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['folder'].T"], {'columns': "['folder']"}), "(_matindex['folder'].T, columns=['folder'])\n", (2507, 2550), True, 'import pandas as pd\n'), ((2572, 2604), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['folder']"}), "(columns=['folder'])\n", (2584, 2604), True, 'import pandas as pd\n'), ((2841, 2896), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['typeset']"], {'columns': "['typeset']"}), "(_matindex['typeset'], columns=['typeset'])\n", (2853, 2896), True, 'import pandas as pd\n'), ((2950, 3003), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['scene'].T"], {'columns': "['scene']"}), "(_matindex['scene'].T, columns=['scene'])\n", (2962, 3003), True, 'import pandas as pd\n'), ((3075, 3148), 'pandas.concat', 'pd.concat', (['[_filename_col, _folder_col, _typeset_col, _scene_col]'], {'axis': '(1)'}), '([_filename_col, _folder_col, _typeset_col, _scene_col], axis=1)\n', (3084, 3148), True, 'import pandas as pd\n'), ((3757, 3822), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['objectnames'].T"], {'columns': "['objectnames']"}), "(_matindex['objectnames'].T, columns=['objectnames'])\n", (3769, 3822), True, 'import pandas as pd\n'), ((3854, 3891), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['objectnames']"}), "(columns=['objectnames'])\n", (3866, 3891), True, 'import pandas as pd\n'), ((4511, 4638), 'pandas.DataFrame', 'pd.DataFrame', (["_matindex['objectPresence'].T"], {'columns': "self.object_name_list['objectnames']", 'index': "_filename_col['filename']"}), "(_matindex['objectPresence'].T, columns=self.object_name_list[\n 'objectnames'], index=_filename_col['filename'])\n", (4523, 4638), True, 'import pandas as pd\n'), ((5080, 5116), 'os.path.exists', 'os.path.exists', (['self._csv_folderpath'], {}), '(self._csv_folderpath)\n', (5094, 5116), False, 'import os\n'), ((5168, 5198), 'os.mkdir', 'os.mkdir', (['self._csv_folderpath'], {}), '(self._csv_folderpath)\n', (5176, 5198), False, 'import os\n'), ((5470, 5523), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""image_index.csv"""'], {}), "(self._csv_folderpath, 'image_index.csv')\n", (5482, 5523), False, 'import os\n'), ((5557, 5615), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_name_list.csv"""'], {}), "(self._csv_folderpath, 'object_name_list.csv')\n", (5569, 5615), False, 'import os\n'), ((5653, 5714), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_image_matrix.csv"""'], {}), "(self._csv_folderpath, 'object_image_matrix.csv')\n", (5665, 5714), False, 'import os\n'), ((455, 508), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""image_index.csv"""'], {}), "(self._csv_folderpath, 'image_index.csv')\n", (467, 508), False, 'import os\n'), ((536, 594), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_name_list.csv"""'], {}), "(self._csv_folderpath, 'object_name_list.csv')\n", (548, 594), False, 'import os\n'), ((622, 683), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_image_matrix.csv"""'], {}), "(self._csv_folderpath, 'object_image_matrix.csv')\n", (634, 683), False, 'import os\n'), ((770, 823), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""image_index.csv"""'], {}), "(self._csv_folderpath, 'image_index.csv')\n", (782, 823), False, 'import os\n'), ((867, 925), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_name_list.csv"""'], {}), "(self._csv_folderpath, 'object_name_list.csv')\n", (879, 925), False, 'import os\n'), ((972, 1033), 'os.path.join', 'os.path.join', (['self._csv_folderpath', '"""object_image_matrix.csv"""'], {}), "(self._csv_folderpath, 'object_image_matrix.csv')\n", (984, 1033), False, 'import os\n'), ((1258, 1284), 'scipy.io.loadmat', 'sio.loadmat', (['_mat_filename'], {}), '(_mat_filename)\n', (1269, 1284), True, 'import scipy.io as sio\n'), ((5126, 5161), 'shutil.rmtree', 'shutil.rmtree', (['self._csv_folderpath'], {}), '(self._csv_folderpath)\n', (5139, 5161), False, 'import shutil\n')]
from Homework_6.Exercise_1 import book_dict, base_url_book, add_new_item, delete_item_finally import random import pytest #Fixture with parameters for TestAddItemIdFunc roles_list = [({"name": "Mtsiri", "type": "classic", "book": "http://pulse-rest-testing.herokuapp.com/books/6631", "level": 1212 }, 22), ({"name": "Mtsiri", "type": "classic", "book": "http://pulse-rest-testing.herokuapp.com/books/6631", "level": 1212, "id": 22 }, 1)] @pytest.fixture(scope="function", params=roles_list, ids=["id_addition", "id_replace"]) def param_test(request): return request.param #Fixture with parameters for TestAddNewRoleExept @pytest.fixture() def book_create(): return add_new_item(base_url_book, book_dict) book_id = book_create # looks weird, but my fixture doesn't work without this var declaration wrong_roles_list = [({"name": None, "type":"detective", "book": "{}{}".format(base_url_book, book_id), "level": 100500 }, "Item hasn't been added"), ({"name": "Mtsiri", "type": None, "book": "{}{}".format(base_url_book, book_id), "level": 100500 }, "Item hasn't been added"), ({"name": "Mtsiri", "type": "classic", "book": "{}{}".format(base_url_book, book_id), "level": "level" }, "Item hasn't been added"), ({"name": "Mtsiri", "type": "classic", "book": "{}{}".format(base_url_book, str(random.randint(4000000000, 9120000001))), "level": 1212}, "Item hasn't been added")] @pytest.fixture(scope="function", params=wrong_roles_list, ids=["without_name", "without_type", "str_level", "wrong_book"]) def wrong_roles_test(book_create, request): book_id = book_create yield request.param delete_item_finally(base_url_book, book_id)
[ "pytest.fixture", "Homework_6.Exercise_1.add_new_item", "random.randint", "Homework_6.Exercise_1.delete_item_finally" ]
[((602, 692), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""', 'params': 'roles_list', 'ids': "['id_addition', 'id_replace']"}), "(scope='function', params=roles_list, ids=['id_addition',\n 'id_replace'])\n", (616, 692), False, 'import pytest\n'), ((793, 809), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (807, 809), False, 'import pytest\n'), ((1911, 2038), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""', 'params': 'wrong_roles_list', 'ids': "['without_name', 'without_type', 'str_level', 'wrong_book']"}), "(scope='function', params=wrong_roles_list, ids=[\n 'without_name', 'without_type', 'str_level', 'wrong_book'])\n", (1925, 2038), False, 'import pytest\n'), ((840, 878), 'Homework_6.Exercise_1.add_new_item', 'add_new_item', (['base_url_book', 'book_dict'], {}), '(base_url_book, book_dict)\n', (852, 878), False, 'from Homework_6.Exercise_1 import book_dict, base_url_book, add_new_item, delete_item_finally\n'), ((2132, 2175), 'Homework_6.Exercise_1.delete_item_finally', 'delete_item_finally', (['base_url_book', 'book_id'], {}), '(base_url_book, book_id)\n', (2151, 2175), False, 'from Homework_6.Exercise_1 import book_dict, base_url_book, add_new_item, delete_item_finally\n'), ((1804, 1842), 'random.randint', 'random.randint', (['(4000000000)', '(9120000001)'], {}), '(4000000000, 9120000001)\n', (1818, 1842), False, 'import random\n')]
# coding: utf-8 ### # @file dist_run.py # @author <NAME> <<EMAIL>> # # @section LICENSE # # Copyright (c) 2019 <NAME>. # # @section DESCRIPTION # # Distributed setup code. Just for trying basic constructs of distributed learning in PyTorch. Based on: https://pytorch.org/tutorials/intermediate/dist_tuto.html ### #!/usr/bin/env python import os import torch import torch.distributed as dist from torch.multiprocessing import Process """ All-Reduce example.""" def run(rank, size): """ Simple point-to-point communication. """ group = dist.new_group([0, 1]) tensor = torch.ones(1) dist.all_reduce(tensor, op=dist.ReduceOp.SUM, group=group) print('Rank ', rank, ' has data ', tensor[0]) def init_processes(rank, size, fn, backend='gloo'): """ Initialize the distributed environment. """ os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '10001' dist.init_process_group(backend, rank=rank, world_size=size) fn(rank, size) if __name__ == "__main__": size = 2 processes = [] for rank in range(size): p = Process(target=init_processes, args=(rank, size, run)) p.start() processes.append(p) for p in processes: p.join()
[ "torch.multiprocessing.Process", "torch.distributed.new_group", "torch.distributed.all_reduce", "torch.distributed.init_process_group", "torch.ones" ]
[((557, 579), 'torch.distributed.new_group', 'dist.new_group', (['[0, 1]'], {}), '([0, 1])\n', (571, 579), True, 'import torch.distributed as dist\n'), ((593, 606), 'torch.ones', 'torch.ones', (['(1)'], {}), '(1)\n', (603, 606), False, 'import torch\n'), ((611, 669), 'torch.distributed.all_reduce', 'dist.all_reduce', (['tensor'], {'op': 'dist.ReduceOp.SUM', 'group': 'group'}), '(tensor, op=dist.ReduceOp.SUM, group=group)\n', (626, 669), True, 'import torch.distributed as dist\n'), ((913, 973), 'torch.distributed.init_process_group', 'dist.init_process_group', (['backend'], {'rank': 'rank', 'world_size': 'size'}), '(backend, rank=rank, world_size=size)\n', (936, 973), True, 'import torch.distributed as dist\n'), ((1095, 1149), 'torch.multiprocessing.Process', 'Process', ([], {'target': 'init_processes', 'args': '(rank, size, run)'}), '(target=init_processes, args=(rank, size, run))\n', (1102, 1149), False, 'from torch.multiprocessing import Process\n')]
#!/usr/bin/env python import rasterio import fiona import numpy as np import os import time from rasterio.plot import show import matplotlib.pyplot as plt from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.r2py.modelr as modelr # Open the mask shape file shp_file = os.path.join(os.environ['DATA_ROOT'], 'from-adriana/tropicalforests.shp') shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load(os.path.join(os.environ['MODEL_DIR'], 'ab-model.rds')) predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('luh5', 'historical', 1990, True) rs = RasterSet(rasters, shapes = shapes, all_touched = True) what = mod.output rs[mod.output] = mod stime = time.time() data1, meta_data1 = rs.eval(what) etime = time.time() print("executed in %6.2fs" % (etime - stime)) show(data1) ## ## Compare with good raster ## out = rasterio.open('adrid-good.tif') good = out.read(1, masked=True) diff = np.fabs(data1 - good) print("max diff: %f" % diff.max()) assert np.allclose(data1, good, atol=1e-05, equal_nan=True) del out ## ## Redo the projection using iterative API ## mod = modelr.load('../models/ab-corrected.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters2 = predicts.rasterset('rcp', 'aim', 2020, 'medium') rs2 = RasterSet(rasters2, shapes = shapes, all_touched = True) rs2[mod.output] = mod stime = time.time() rs2.write(what, 'adrid.tif') etime = time.time() print("executed in %6.2fs" % (etime - stime)) out = rasterio.open('adrid.tif') data2 = out.read(1, masked=True) diff = np.fabs(data1 - data2) print("max diff: %f" % diff.max()) plot = None if plot: fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5)) show(data1, ax=ax1, cmap='Greens', title='Non-incremental') show(data2, ax=ax2, cmap='Greens', title='Incremental') show(diff, ax=ax3, cmap='viridis', title='Difference') plt.show() # Verify the data matches assert np.allclose(data1, data2, atol=1e-05, equal_nan=True)
[ "numpy.fabs", "numpy.allclose", "projections.rasterset.RasterSet", "rasterio.open", "projections.predicts.rasterset", "os.path.join", "rasterio.plot.show", "projections.predicts.predictify", "fiona.open", "projections.r2py.modelr.load", "time.time", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((330, 403), 'os.path.join', 'os.path.join', (["os.environ['DATA_ROOT']", '"""from-adriana/tropicalforests.shp"""'], {}), "(os.environ['DATA_ROOT'], 'from-adriana/tropicalforests.shp')\n", (342, 403), False, 'import os\n'), ((437, 457), 'fiona.open', 'fiona.open', (['shp_file'], {}), '(shp_file)\n', (447, 457), False, 'import fiona\n'), ((607, 631), 'projections.predicts.predictify', 'predicts.predictify', (['mod'], {}), '(mod)\n', (626, 631), True, 'import projections.predicts as predicts\n'), ((678, 730), 'projections.predicts.rasterset', 'predicts.rasterset', (['"""luh5"""', '"""historical"""', '(1990)', '(True)'], {}), "('luh5', 'historical', 1990, True)\n", (696, 730), True, 'import projections.predicts as predicts\n'), ((736, 787), 'projections.rasterset.RasterSet', 'RasterSet', (['rasters'], {'shapes': 'shapes', 'all_touched': '(True)'}), '(rasters, shapes=shapes, all_touched=True)\n', (745, 787), False, 'from projections.rasterset import RasterSet, Raster\n'), ((840, 851), 'time.time', 'time.time', ([], {}), '()\n', (849, 851), False, 'import time\n'), ((894, 905), 'time.time', 'time.time', ([], {}), '()\n', (903, 905), False, 'import time\n'), ((952, 963), 'rasterio.plot.show', 'show', (['data1'], {}), '(data1)\n', (956, 963), False, 'from rasterio.plot import show\n'), ((1005, 1036), 'rasterio.open', 'rasterio.open', (['"""adrid-good.tif"""'], {}), "('adrid-good.tif')\n", (1018, 1036), False, 'import rasterio\n'), ((1076, 1097), 'numpy.fabs', 'np.fabs', (['(data1 - good)'], {}), '(data1 - good)\n', (1083, 1097), True, 'import numpy as np\n'), ((1140, 1192), 'numpy.allclose', 'np.allclose', (['data1', 'good'], {'atol': '(1e-05)', 'equal_nan': '(True)'}), '(data1, good, atol=1e-05, equal_nan=True)\n', (1151, 1192), True, 'import numpy as np\n'), ((1257, 1298), 'projections.r2py.modelr.load', 'modelr.load', (['"""../models/ab-corrected.rds"""'], {}), "('../models/ab-corrected.rds')\n", (1268, 1298), True, 'import projections.r2py.modelr as modelr\n'), ((1299, 1323), 'projections.predicts.predictify', 'predicts.predictify', (['mod'], {}), '(mod)\n', (1318, 1323), True, 'import projections.predicts as predicts\n'), ((1371, 1419), 'projections.predicts.rasterset', 'predicts.rasterset', (['"""rcp"""', '"""aim"""', '(2020)', '"""medium"""'], {}), "('rcp', 'aim', 2020, 'medium')\n", (1389, 1419), True, 'import projections.predicts as predicts\n'), ((1426, 1478), 'projections.rasterset.RasterSet', 'RasterSet', (['rasters2'], {'shapes': 'shapes', 'all_touched': '(True)'}), '(rasters2, shapes=shapes, all_touched=True)\n', (1435, 1478), False, 'from projections.rasterset import RasterSet, Raster\n'), ((1514, 1525), 'time.time', 'time.time', ([], {}), '()\n', (1523, 1525), False, 'import time\n'), ((1563, 1574), 'time.time', 'time.time', ([], {}), '()\n', (1572, 1574), False, 'import time\n'), ((1628, 1654), 'rasterio.open', 'rasterio.open', (['"""adrid.tif"""'], {}), "('adrid.tif')\n", (1641, 1654), False, 'import rasterio\n'), ((1695, 1717), 'numpy.fabs', 'np.fabs', (['(data1 - data2)'], {}), '(data1 - data2)\n', (1702, 1717), True, 'import numpy as np\n'), ((2062, 2115), 'numpy.allclose', 'np.allclose', (['data1', 'data2'], {'atol': '(1e-05)', 'equal_nan': '(True)'}), '(data1, data2, atol=1e-05, equal_nan=True)\n', (2073, 2115), True, 'import numpy as np\n'), ((521, 574), 'os.path.join', 'os.path.join', (["os.environ['MODEL_DIR']", '"""ab-model.rds"""'], {}), "(os.environ['MODEL_DIR'], 'ab-model.rds')\n", (533, 574), False, 'import os\n'), ((1800, 1835), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(10, 5)'}), '(1, 3, figsize=(10, 5))\n', (1812, 1835), True, 'import matplotlib.pyplot as plt\n'), ((1838, 1897), 'rasterio.plot.show', 'show', (['data1'], {'ax': 'ax1', 'cmap': '"""Greens"""', 'title': '"""Non-incremental"""'}), "(data1, ax=ax1, cmap='Greens', title='Non-incremental')\n", (1842, 1897), False, 'from rasterio.plot import show\n'), ((1900, 1955), 'rasterio.plot.show', 'show', (['data2'], {'ax': 'ax2', 'cmap': '"""Greens"""', 'title': '"""Incremental"""'}), "(data2, ax=ax2, cmap='Greens', title='Incremental')\n", (1904, 1955), False, 'from rasterio.plot import show\n'), ((1958, 2012), 'rasterio.plot.show', 'show', (['diff'], {'ax': 'ax3', 'cmap': '"""viridis"""', 'title': '"""Difference"""'}), "(diff, ax=ax3, cmap='viridis', title='Difference')\n", (1962, 2012), False, 'from rasterio.plot import show\n'), ((2015, 2025), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2023, 2025), True, 'import matplotlib.pyplot as plt\n')]
# Generated by Django 3.1.6 on 2021-03-16 17:03 from django.db import migrations, models import django_countries.fields class Migration(migrations.Migration): dependencies = [ ("gym", "0002_auto_20210316_1535"), ] operations = [ migrations.RenameField( model_name="gym", old_name="photo_3", new_name="gym_photo_main", ), migrations.RemoveField( model_name="gym", name="photo_4", ), migrations.RemoveField( model_name="gym", name="photo_5", ), migrations.RemoveField( model_name="gym", name="photo_6", ), migrations.RemoveField( model_name="gym", name="profile_photo_main", ), migrations.AddField( model_name="gym", name="country", field=django_countries.fields.CountryField( default="DEFAULT", max_length=50 ), preserve_default=False, ), migrations.AddField( model_name="gym", name="postcode", field=models.CharField(blank=True, max_length=20, null=True), ), migrations.AddField( model_name="gym", name="street_address1", field=models.CharField(default="DEFAULT ADDRESS", max_length=80), preserve_default=False, ), migrations.AddField( model_name="gym", name="street_address2", field=models.CharField(blank=True, max_length=80, null=True), ), migrations.AddField( model_name="gym", name="town_or_city", field=models.CharField(default="DEFAULT", max_length=40), preserve_default=False, ), ]
[ "django.db.migrations.RemoveField", "django.db.migrations.RenameField", "django.db.models.CharField" ]
[((262, 354), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""gym"""', 'old_name': '"""photo_3"""', 'new_name': '"""gym_photo_main"""'}), "(model_name='gym', old_name='photo_3', new_name=\n 'gym_photo_main')\n", (284, 354), False, 'from django.db import migrations, models\n'), ((406, 462), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""gym"""', 'name': '"""photo_4"""'}), "(model_name='gym', name='photo_4')\n", (428, 462), False, 'from django.db import migrations, models\n'), ((507, 563), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""gym"""', 'name': '"""photo_5"""'}), "(model_name='gym', name='photo_5')\n", (529, 563), False, 'from django.db import migrations, models\n'), ((608, 664), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""gym"""', 'name': '"""photo_6"""'}), "(model_name='gym', name='photo_6')\n", (630, 664), False, 'from django.db import migrations, models\n'), ((709, 776), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""gym"""', 'name': '"""profile_photo_main"""'}), "(model_name='gym', name='profile_photo_main')\n", (731, 776), False, 'from django.db import migrations, models\n'), ((1173, 1227), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)', 'null': '(True)'}), '(blank=True, max_length=20, null=True)\n', (1189, 1227), False, 'from django.db import migrations, models\n'), ((1353, 1411), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""DEFAULT ADDRESS"""', 'max_length': '(80)'}), "(default='DEFAULT ADDRESS', max_length=80)\n", (1369, 1411), False, 'from django.db import migrations, models\n'), ((1573, 1627), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(80)', 'null': '(True)'}), '(blank=True, max_length=80, null=True)\n', (1589, 1627), False, 'from django.db import migrations, models\n'), ((1750, 1800), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""DEFAULT"""', 'max_length': '(40)'}), "(default='DEFAULT', max_length=40)\n", (1766, 1800), False, 'from django.db import migrations, models\n')]
# gdb -n -q -x solve.py ./esrever import gdb import re gdb.execute("set disassembly intel") gdb.execute("set pagination off") gdb.execute("break *0x555555554ba0") gdb.execute("run << /dev/null") flag = "" while True: gdb.execute("nexti") line = gdb.execute("x/1i $rip", to_string=True) r = re.findall("\t([a-z]+) ", line) if r == [] or r[0] != 'cmp': continue r = re.findall("QWORD PTR \[rbp(.+)\]", line) if r == []: continue ofs = int(r[0], 16) line = gdb.execute("x/1bx $rbp+({})".format(ofs), to_string=True) c = line.split(":\t")[1] flag += chr(int(c, 16)) print(flag) gdb.execute("set $rax={}".format(c))
[ "re.findall", "gdb.execute" ]
[((56, 92), 'gdb.execute', 'gdb.execute', (['"""set disassembly intel"""'], {}), "('set disassembly intel')\n", (67, 92), False, 'import gdb\n'), ((93, 126), 'gdb.execute', 'gdb.execute', (['"""set pagination off"""'], {}), "('set pagination off')\n", (104, 126), False, 'import gdb\n'), ((127, 163), 'gdb.execute', 'gdb.execute', (['"""break *0x555555554ba0"""'], {}), "('break *0x555555554ba0')\n", (138, 163), False, 'import gdb\n'), ((164, 195), 'gdb.execute', 'gdb.execute', (['"""run << /dev/null"""'], {}), "('run << /dev/null')\n", (175, 195), False, 'import gdb\n'), ((223, 243), 'gdb.execute', 'gdb.execute', (['"""nexti"""'], {}), "('nexti')\n", (234, 243), False, 'import gdb\n'), ((255, 295), 'gdb.execute', 'gdb.execute', (['"""x/1i $rip"""'], {'to_string': '(True)'}), "('x/1i $rip', to_string=True)\n", (266, 295), False, 'import gdb\n'), ((304, 335), 're.findall', 're.findall', (['"""\t([a-z]+) """', 'line'], {}), "('\\t([a-z]+) ', line)\n", (314, 335), False, 'import re\n'), ((394, 437), 're.findall', 're.findall', (['"""QWORD PTR \\\\[rbp(.+)\\\\]"""', 'line'], {}), "('QWORD PTR \\\\[rbp(.+)\\\\]', line)\n", (404, 437), False, 'import re\n')]
#!/usr/bin/env python import os.path import subprocess release = True __version__ = '1.3.0' __version_name__ = "Xenia" _repository_path = os.path.split(__file__)[0] _git_file_path = os.path.join(_repository_path, '__git_version__.py') def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out def get_git_branch(): ''' Gets the current Git branch. ''' try: out = _minimal_ext_cmd(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) branch = out.strip().decode('ascii') except: branch = '' return branch def get_git_hash(): ''' Gets the last GIT commit hash and date for the repository, using the path to this file. ''' try: out = _minimal_ext_cmd(['git', 'rev-parse', '--short', 'HEAD']) revision = out.strip().decode('ascii') except: revision = '' return revision def get_git_date(git_hash): ''' Gets the date of the last commit. ''' try: out = _minimal_ext_cmd(['git', 'show', git_hash, '--date=short', '--format="%ad"']) date = out.strip().decode('ascii').split('"')[1] except: date = '' return date def get_git_revision(): git_branch = get_git_branch() git_hash = get_git_hash() git_date = get_git_date(git_hash) if git_branch: rev = '.dev0+%s-%s(%s)' % (git_branch, git_hash, git_date) else: rev = '' return rev def write_git_version(): ''' Write the GIT revision to a file. ''' rev = get_git_revision() if rev == "": if os.path.isfile(_git_file_path): return gitfile = open(_git_file_path, 'w') gitfile.write('rev = "%s"\n' % rev) gitfile.close() def get_version(): ''' Get the version of the package, including the GIT revision if this is an actual release. ''' version = __version__ if not release: try: import __git_version__ version += __git_version__.rev except ImportError: version += get_git_revision() return version if __name__ == "__main__": write_git_version()
[ "subprocess.Popen" ]
[((544, 598), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdout': 'subprocess.PIPE', 'env': 'env'}), '(cmd, stdout=subprocess.PIPE, env=env)\n', (560, 598), False, 'import subprocess\n')]
# Copyright (c) 2011-2013 <NAME>. All rights reserved. # Use of this source code is governed by a BSD License found in README.md. from django.http import HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from django.utils import simplejson from itertools import izip_longest def render_template(request, template, context=None): '''Wrap render_to_response with the context_instance argument set.''' return render_to_response(template, context, context_instance=RequestContext(request)) def render_json(data): '''Return an HttpResponse object containing json-encoded data.''' return HttpResponse(simplejson.dumps(data), mimetype='application/json') def pairwise(iterable): '''Group the elements of the given interable into 2-tuples.''' i = iter(iterable) return izip_longest(i, i)
[ "itertools.izip_longest", "django.template.RequestContext", "django.utils.simplejson.dumps" ]
[((879, 897), 'itertools.izip_longest', 'izip_longest', (['i', 'i'], {}), '(i, i)\n', (891, 897), False, 'from itertools import izip_longest\n'), ((700, 722), 'django.utils.simplejson.dumps', 'simplejson.dumps', (['data'], {}), '(data)\n', (716, 722), False, 'from django.utils import simplejson\n'), ((557, 580), 'django.template.RequestContext', 'RequestContext', (['request'], {}), '(request)\n', (571, 580), False, 'from django.template import RequestContext\n')]
# -*- encoding: utf-8 -*- from collections import defaultdict import networkx as nx import numpy as np import pandas as pd import seaborn as sns from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics.pairwise import euclidean_distances from model import MultiHSD from tools import dataloader, visualize, rw import tools from tools import evaluate from tools.rw import read_vectors def scatterplot(graphName, vectors, labels, nodes=None): vectors = np.asarray(vectors) # pca = PCA(n_components=2, whiten=False, random_state=42) # results = np.asarray(pca.fit_transform(vectors), dtype=np.float) tsne = TSNE(init="pca", n_components=2, perplexity=2, n_iter=5000, learning_rate=0.05, random_state=42) results = np.asarray(tsne.fit_transform(vectors), dtype=np.float) # df = pd.DataFrame(data={"node": nodes, # "x": results[:, 0], # "y": results[:, 1], # }) # df.to_csv(f"output/node2vec/{graphName}_tsne.csv", columns=["node", "x", "y"], index=None) #visualize.plot_2D_points(nodes, results, labels) visualize.plot_node_str(nodes, results) def visualize_from_csv(): graph = "barbell" vector_dict = rw.read_vectors(f"output/node2vec/{graph}.csv") nodes = list(vector_dict.keys()) vectors = list(vector_dict.values()) scatterplot(graph, vectors, [], nodes=nodes) if __name__ == '__main__': visualize_from_csv()
[ "numpy.asarray", "tools.rw.read_vectors", "sklearn.manifold.TSNE", "tools.visualize.plot_node_str" ]
[((495, 514), 'numpy.asarray', 'np.asarray', (['vectors'], {}), '(vectors)\n', (505, 514), True, 'import numpy as np\n'), ((658, 759), 'sklearn.manifold.TSNE', 'TSNE', ([], {'init': '"""pca"""', 'n_components': '(2)', 'perplexity': '(2)', 'n_iter': '(5000)', 'learning_rate': '(0.05)', 'random_state': '(42)'}), "(init='pca', n_components=2, perplexity=2, n_iter=5000, learning_rate=\n 0.05, random_state=42)\n", (662, 759), False, 'from sklearn.manifold import TSNE\n'), ((1160, 1199), 'tools.visualize.plot_node_str', 'visualize.plot_node_str', (['nodes', 'results'], {}), '(nodes, results)\n', (1183, 1199), False, 'from tools import dataloader, visualize, rw\n'), ((1268, 1315), 'tools.rw.read_vectors', 'rw.read_vectors', (['f"""output/node2vec/{graph}.csv"""'], {}), "(f'output/node2vec/{graph}.csv')\n", (1283, 1315), False, 'from tools import dataloader, visualize, rw\n')]
"""Main module.""" import asyncio import logging import socket import select from asyncio import IncompleteReadError from enum import Enum _LOGGER = logging.getLogger(__name__) UDP_IP_ADDRESS = "127.0.0.1" UDP_PORT_NO = 6789 DEFAULT_TIMEOUT = 10 DEFAULT_BUFFER_SIZE = 1024 class ConnectionState(Enum): DISCONNECTED = 0 CONNECTED = 1 def checksum(command): """Function to calculate checksum.""" crc = 0x147A # for b in command: # # rotate (crc 1 bit left) # crc = ((crc << 1) & 0xFFFF) | (crc & 0x8000) >> 15 # crc = crc ^ 0xFFFF # crc = (crc + (crc >> 8) + b) & 0xFFFF return crc def verify_and_strip(resp): """Verify checksum and strip header and footer of received frame.""" return resp def generate_query(command): """Add header, checksum and footer to command data.""" data = bytearray(command) # c = checksum(data) # data.append(c >> 8) # data.append(c & 0xFF) # data.replace(b'\xFE', b'\xFE\xF0') data = bytearray.fromhex("FEFE") + data + bytearray.fromhex("FE0D") return data def print_hex(data): """Debugging method to print out frames in hex.""" hex_msg = "" for c in data: hex_msg += "\\x" + format(c, "02x") print(hex_msg) class Buspro: """Asynchronous interface to talk to Buspro bus.""" def __init__(self, host, port, loop): """Init the Buspro object.""" self._host = host self._port = port self._loop = loop self._callback_a = None self._callback_b = None self._callback_c = None self._state = ConnectionState.DISCONNECTED self._socket = None self._message_handlers = {} # Assign handler self._message_handlers[b'\x00'] = self._message_handler_a self._message_handlers[b'\x17'] = self._message_handler_b self._message_handlers[b'\x0A'] = lambda msg: self._message_handler_c(ConnectionState.CONNECTED, msg) print("__init__ done") def _message_handler_a(self, msg): print("Returning status: %s", msg) if self._callback_a: self._callback_a(msg) return msg def _message_handler_b(self, msg): print("Returning status: %s", msg) if self._callback_b: self._callback_b(msg) return msg def _message_handler_c(self, mode, msg): print("Alarm update, mode: %s", mode) print("Returning status: %s", msg) if self._state in [mode, ConnectionState.DISCONNECTED]: self._state = ConnectionState.CONNECTED else: self._state = ConnectionState.DISCONNECTED if self._callback_c: self._callback_c(self._state) return self._state async def async_connect(self): """Make a TCP connection to the alarm system.""" self._socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._socket.settimeout(DEFAULT_TIMEOUT) try: self._socket.connect((UDP_IP_ADDRESS, UDP_PORT_NO)) except socket.error as err: print("Unable to bind on port %s: %s", UDP_PORT_NO, err) return False #self._socket.listen(10) #conn, addr = s.accept() print("connect done") return True def close(self): """Stop monitoring and close connection.""" if self._socket: # self._activeConnection.Close() self._socket = None self._state = ConnectionState.DISCONNECTED print("Closing...") async def async_custom_action(self, code): """Send command to disarm.""" print("Alarm disarm, code: %s") while len(code) < 16: code += 'F' code_bytes = bytearray.fromhex(code) data = generate_query(b'\x84' + code_bytes + self._partition_bytes) await self._send_data(data) async def async_start_listen(self, callback_a=None, callback_b=None, callback_c=None): """Start monitoring of the alarm status. Send command to Buspro to start sending updates. Read in a loop and call respective callbacks when received messages. """ print("starting async_start_listen") self._callback_a = callback_a self._callback_b = callback_b self._callback_c = callback_c print("Starting async_start_listen loop") print("Iteration... ") while True: status = await self._listen_to_bus() print("Got status!") print("Closed, quit monitoring.") def _listen_to_bus(self): print("Wait...") self._state = ConnectionState.CONNECTED try: resp = self._read_data() except IncompleteReadError as e: print("Got exception: %s. Most likely the other side has disconnected!", e) self._socket = None self._state = ConnectionState.DISCONNECTED return self._state if not resp: print("Got empty response. We think it's disconnect.") self._socket = None self._state = ConnectionState.DISCONNECTED return self._state msg_id = resp[0:1] if msg_id in self._message_handlers: print("Calling handler for id: %s", msg_id) return self._message_handlers[msg_id](resp) else: print("Ignoring message: %s", msg_id) return None def _read_data(self): # listen for incoming udp packet print("starting _read_data") # readable, _, _ = select.select([self._socket], [], [], DEFAULT_TIMEOUT) # if not readable: # print("Timeout (%s second(s)) waiting for data on port %s.", DEFAULT_TIMEOUT, UDP_PORT_NO) # return #data, _ = self._socket.recvfrom(DEFAULT_BUFFER_SIZE) data = self._socket.recv(DEFAULT_BUFFER_SIZE) print("-- Receiving data --") print_hex(data) print("-- ------------- --") return verify_and_strip(data) def _send_data(self, data): print("-- Sending data --") print_hex(data) print("-- ------------- --") print("Sent %d bytes", len(data)) #await self._writer.write(data) #clientSock.sendto(data, (UDP_IP_ADDRESS, UDP_PORT_NO)) try: self._socket.send(data.encode()) except socket.error as err: print("Unable to send payload %r to %s on port %s: %s", data, UDP_IP_ADDRESS, UDP_PORT_NO, err) return def demo(host, port): """Basic demo.""" print("starting demo") loop = asyncio.get_event_loop() client = Buspro(host, port, loop) loop.run_until_complete(client.async_connect()) ## loop.create_task(client.async_custom_action("3333")) loop.create_task(client.async_start_listen()) loop.run_forever() loop.close() demo("127.0.0.1", 1000)
[ "logging.getLogger", "asyncio.get_event_loop", "socket.socket" ]
[((152, 179), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (169, 179), False, 'import logging\n'), ((6887, 6911), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (6909, 6911), False, 'import asyncio\n'), ((2945, 2993), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (2958, 2993), False, 'import socket\n')]
#coding=UTF-8 from BuildArchetypes import archetypes, getDeploymentContext from BuildDemos import demos import argparse, cgi parser = argparse.ArgumentParser(description="Build report generator") parser.add_argument("version", type=str, help="Vaadin version that was just built") parser.add_argument("deployUrl", type=str, help="Base url of the deployment server") parser.add_argument("buildResultUrl", type=str, help="URL for the build result page") parser.add_argument("stagingRepo", type=str, help="URL for the staging repository") parser.add_argument("tbapiUrl", type=str, help="URL for the TestBench API build") args = parser.parse_args() content = """<html> <head></head> <body> <table> """ content += "<tr><td>Try demos<ul>" for demo in demos: content += "<li><a href='{url}/{demoName}-{version}'>{demoName}</a></li>\n".format(url=args.deployUrl, demoName=demo, version=args.version) content += "</ul></td></tr>\n<tr><td>Try archetype demos<ul>" for archetype in archetypes: content += "<li><a href='{url}/{context}'>{demo}</a></li>\n".format(url=args.deployUrl, demo=archetype, context=getDeploymentContext(archetype, args.version)) content += """</ul></td></tr> <tr><td><a href="{repoUrl}">Staging repository</a></td></tr> <tr><td>Eclipse Ivy Settings:<br><pre>""".format(repoUrl=args.stagingRepo) content += cgi.escape(""" <ibiblio name="vaadin-staging" usepoms="true" m2compatible="true" root="{repoUrl}" />""".format(repoUrl=args.stagingRepo)) content += """</pre> </td></tr> <tr><td><a href="https://dev.vaadin.com/milestone/Vaadin {version}">Close Trac Milestone</a></td></tr> <tr><td><a href="https://dev.vaadin.com/query?status=pending-release&component=Core+Framework&resolution=fixed&col=id&col=summary&col=component&col=milestone&col=status&col=type">Verify pending release tickets still have milestone {version}</a></td></tr> <tr><td><a href="https://dev.vaadin.com/admin/ticket/versions">Add version {version} to Trac</td></tr> <tr><td><a href="{url}">Staging result page (See test results, pin and tag build and dependencies)</a></td></tr> <tr><td>Commands to tag all repositories (warning: do not run as a single script but set variables and check before any push commands - this has not been tested yet and the change IDs are missing)</td></tr> <tr><td><pre> VERSION={version} GERRIT_USER=[fill in your gerrit username] FRAMEWORK_REVISION=[fill in framework revision] SCREENSHOTS_REVISION=[fill in screenshot repository revision] ARCHETYPES_REVISION=[fill in maven-integration repository revision] PLUGIN_REVISION=[fill in maven plug-in repository revision] git clone ssh://[email protected]:29418/vaadin cd vaadin git tag -a -m"$VERSION" $VERSION $FRAMEWORK_REVISION git push --tags cd .. git clone ssh://[email protected]:29418/vaadin-screenshots cd vaadin-screenshots git tag -a -m"$VERSION" $VERSION $SCREENSHOTS_REVISION git push --tags cd .. git clone ssh://[email protected]:29418/maven-integration cd maven-integration git tag -a -m"$VERSION" $VERSION $ARCHETYPES_REVISION git push --tags cd .. git clone ssh://$GERRIT_USER@dev.<EMAIL>.com:29418/maven-plugin cd maven-plugin git tag -a -m"$VERSION" $VERSION $PLUGIN_REVISION git push --tags cd .. </pre></td></tr> <tr><td><a href="{tbapi}">Build and publish TestBench API for version {version} if proceeding</a></td></tr> </table> </body> </html>""".format(url=args.buildResultUrl, repoUrl=args.stagingRepo, version=args.version, tbapi=args.tbapiUrl) f = open("result/report.html", 'w') f.write(content)
[ "BuildArchetypes.getDeploymentContext", "argparse.ArgumentParser" ]
[((136, 197), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Build report generator"""'}), "(description='Build report generator')\n", (159, 197), False, 'import argparse, cgi\n'), ((1104, 1149), 'BuildArchetypes.getDeploymentContext', 'getDeploymentContext', (['archetype', 'args.version'], {}), '(archetype, args.version)\n', (1124, 1149), False, 'from BuildArchetypes import archetypes, getDeploymentContext\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Galarius' __copyright__ = 'Copyright 2020, Galarius' import os import sys import argparse import platform from core import IBooksWorker def main(args): worker = IBooksWorker() # print titles if args.list: titles = worker.titles() print('\n'.join(titles)) sys.exit(0) # export if not (os.path.exists(args.out) and os.path.isdir(args.out)): os.makedirs(args.out) if args.title: worker.export(args) else: worker.export_all(args) if __name__ == "__main__": if platform.python_version().startswith("2."): print('Python3 is required') sys.exit(1) ap = argparse.ArgumentParser(description="Export iBooks highlights", epilog="Run `pinotate.py` to export all highlights to the current directory") ap.add_argument('-o', '--out', default='./', help='output directory') ap.add_argument('-l', '--list', action="store_true", help='print books titles') ap.add_argument('--headings', default=False, action="store_true", help='add headings to markdown') ap.add_argument('-s', '--sort', default=False, action="store_true", help='sort by location instead of time') ap.add_argument('title', metavar='title', nargs='?', help="export only this book's highlights") args = ap.parse_args() main(args)
[ "os.path.exists", "os.makedirs", "argparse.ArgumentParser", "os.path.isdir", "sys.exit", "platform.python_version", "core.IBooksWorker" ]
[((235, 249), 'core.IBooksWorker', 'IBooksWorker', ([], {}), '()\n', (247, 249), False, 'from core import IBooksWorker\n'), ((732, 878), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Export iBooks highlights"""', 'epilog': '"""Run `pinotate.py` to export all highlights to the current directory"""'}), "(description='Export iBooks highlights', epilog=\n 'Run `pinotate.py` to export all highlights to the current directory')\n", (755, 878), False, 'import argparse\n'), ((366, 377), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (374, 377), False, 'import sys\n'), ((475, 496), 'os.makedirs', 'os.makedirs', (['args.out'], {}), '(args.out)\n', (486, 496), False, 'import os\n'), ((710, 721), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (718, 721), False, 'import sys\n'), ((412, 436), 'os.path.exists', 'os.path.exists', (['args.out'], {}), '(args.out)\n', (426, 436), False, 'import os\n'), ((441, 464), 'os.path.isdir', 'os.path.isdir', (['args.out'], {}), '(args.out)\n', (454, 464), False, 'import os\n'), ((621, 646), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (644, 646), False, 'import platform\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """collect.py Collect data for testing 'perceived' audio quality References - https://www.quora.com/Is-there-an-objective-way-to-measure-sound-quality-Audio-community-often-cite-uneven-frequency-in-highs-mids-and-lows-as-poor-audio-quality-but-how-is-that-perceptually-negative-to-someone-who-listens-to-music?share=1 - http://www.bnoack.com/index.html?http&&&www.bnoack.com/audio/speech-level.html Testing Standards - PESQ: https://en.wikipedia.org/wiki/Perceptual_Evaluation_of_Speech_Quality - POLQA: https://en.wikipedia.org/wiki/Perceptual_Objective_Listening_Quality_Analysis Python Playing and Recording Sound - https://realpython.com/playing-and-recording-sound-python/#recording-audio """ import simpleaudio as sa import sounddevice as sd import wave from scipy.io.wavfile import write def get_duration(filename): """Get wav file playback duration """ with wave.open(filename, 'r') as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) return duration if __name__ == '__main__': import os import argparse PARSER = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) PARSER.add_argument("dir_in", help="Directory of input WAV files") PARSER.add_argument("dir_out", help="Directory of output WAV files") ARGS = PARSER.parse_args() # collect all absolute filenames from path filename_list = [] for filename in os.listdir(ARGS.dir_in): path = os.path.join(ARGS.dir_in, filename) # filter-out non-functional files if not os.path.isfile(path): continue # filter-out undesired file-types if os.path.splitext(path)[1].lower() in (".wav"): filename_list.append(path) if not filename_list: sys.exit("[Error] Files not found: {}".format(ARGS.dir_in)) # step through each file for file_speaker in filename_list: # construct output filename head, tail = os.path.split(file_speaker) file_listener = ARGS.dir_out + tail # play WAV file (speaker) print("Playing...") print(file_speaker) wave_obj = sa.WaveObject.from_wave_file(file_speaker) play_obj = wave_obj.play() # record WAV file (listener) print("Recording...") print(file_listener) fs = 44100 # sampling rate seconds = get_duration(file_speaker) + 1 # recording duration [sec] recording = sd.rec(int(round(seconds * fs)), samplerate=fs, channels=1) play_obj.wait_done() # wait until sound has finished playing sd.wait() # wait until recording is finished write(file_listener, fs, recording) # save as WAV file
[ "simpleaudio.WaveObject.from_wave_file", "wave.open", "os.listdir", "argparse.ArgumentParser", "sounddevice.wait", "os.path.join", "os.path.splitext", "os.path.split", "os.path.isfile", "scipy.io.wavfile.write" ]
[((1175, 1278), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (1198, 1278), False, 'import argparse\n'), ((1541, 1564), 'os.listdir', 'os.listdir', (['ARGS.dir_in'], {}), '(ARGS.dir_in)\n', (1551, 1564), False, 'import os\n'), ((938, 962), 'wave.open', 'wave.open', (['filename', '"""r"""'], {}), "(filename, 'r')\n", (947, 962), False, 'import wave\n'), ((1581, 1616), 'os.path.join', 'os.path.join', (['ARGS.dir_in', 'filename'], {}), '(ARGS.dir_in, filename)\n', (1593, 1616), False, 'import os\n'), ((2080, 2107), 'os.path.split', 'os.path.split', (['file_speaker'], {}), '(file_speaker)\n', (2093, 2107), False, 'import os\n'), ((2264, 2306), 'simpleaudio.WaveObject.from_wave_file', 'sa.WaveObject.from_wave_file', (['file_speaker'], {}), '(file_speaker)\n', (2292, 2306), True, 'import simpleaudio as sa\n'), ((2710, 2719), 'sounddevice.wait', 'sd.wait', ([], {}), '()\n', (2717, 2719), True, 'import sounddevice as sd\n'), ((2764, 2799), 'scipy.io.wavfile.write', 'write', (['file_listener', 'fs', 'recording'], {}), '(file_listener, fs, recording)\n', (2769, 2799), False, 'from scipy.io.wavfile import write\n'), ((1675, 1695), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (1689, 1695), False, 'import os\n'), ((1772, 1794), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (1788, 1794), False, 'import os\n')]
from django.http import HttpResponse#, JsonResponse from django.db.models import Q from django.utils.translation import gettext as _ from .models import Providers from users.models import Users import json def my_providers_autocomplete(request): if request.is_ajax(): query = request.GET.get('term', '') user = Users.objects.get(pk=request.user) query = \ Q(created_by_user=user) & Q(dropped=False) & \ (Q(name__icontains=query) | \ Q(rfc__icontains=query)) providers = Providers.objects.filter(query) results = [] for provider in providers: lbl=provider.name+' [' + _('RFC') + '='+provider.rfc+']' results.append(lbl) data = json.dumps(results) mimetype = "application/json" return HttpResponse(data, mimetype)
[ "django.utils.translation.gettext", "users.models.Users.objects.get", "django.http.HttpResponse", "json.dumps", "django.db.models.Q" ]
[((762, 790), 'django.http.HttpResponse', 'HttpResponse', (['data', 'mimetype'], {}), '(data, mimetype)\n', (774, 790), False, 'from django.http import HttpResponse\n'), ((339, 373), 'users.models.Users.objects.get', 'Users.objects.get', ([], {'pk': 'request.user'}), '(pk=request.user)\n', (356, 373), False, 'from users.models import Users\n'), ((697, 716), 'json.dumps', 'json.dumps', (['results'], {}), '(results)\n', (707, 716), False, 'import json\n'), ((391, 414), 'django.db.models.Q', 'Q', ([], {'created_by_user': 'user'}), '(created_by_user=user)\n', (392, 414), False, 'from django.db.models import Q\n'), ((417, 433), 'django.db.models.Q', 'Q', ([], {'dropped': '(False)'}), '(dropped=False)\n', (418, 433), False, 'from django.db.models import Q\n'), ((443, 467), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'query'}), '(name__icontains=query)\n', (444, 467), False, 'from django.db.models import Q\n'), ((476, 499), 'django.db.models.Q', 'Q', ([], {'rfc__icontains': 'query'}), '(rfc__icontains=query)\n', (477, 499), False, 'from django.db.models import Q\n'), ((629, 637), 'django.utils.translation.gettext', '_', (['"""RFC"""'], {}), "('RFC')\n", (630, 637), True, 'from django.utils.translation import gettext as _\n')]
from setuptools import setup, find_packages setup( name='rss-checker', version='0.2.3', author='<NAME>', author_email='<EMAIL>', install_requires=[ 'requests>2,<3', 'click>6,<7', 'dateparser>0.5,<1', 'pyaml', ], packages=find_packages(), entry_points={ 'console_scripts': ['rss-checker=rss_checker.main:check', 'rss-checkd=rss_checker.main:checkd'], } )
[ "setuptools.find_packages" ]
[((282, 297), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (295, 297), False, 'from setuptools import setup, find_packages\n')]
import sys import rospy from tm_api_msgs.srv import record,move_to_record,delete_point,start_work,get_record from tm_api_msgs.msg import robot_status from threading import Thread import time import os sys.path.insert (0,os.path.dirname(os.path.abspath(__file__))) from utilites import Utilites class SendRecieveFromService: @staticmethod def ros_pytho_client(aqqestName,srvMsgName): rospy.wait_for_service(aqqestName) returnFunction = rospy.ServiceProxy(aqqestName,srvMsgName) return returnFunction @staticmethod def send_record_service(aqqestName,positionName,jointPositionRad,jointPositionDeg,cartesianPosition): py_fun = SendRecieveFromService.ros_pytho_client(aqqestName,record) res = py_fun(positionName,jointPositionRad,jointPositionDeg,cartesianPosition) return res.success @staticmethod def send_move_to_record_service(aqqestName,positionName, isPlan): py_fun = SendRecieveFromService.ros_pytho_client(aqqestName,move_to_record) res = py_fun(positionName,isPlan) return res.success @staticmethod def send_delete_to_record_service(positionName,aqqestName): py_fun = SendRecieveFromService.ros_pytho_client(aqqestName,delete_point) res = py_fun(positionName) return res.success class TmMoveApiPython: def __init__(self,isTest): self.isTest = isTest def __enter__(self): self.currentCartesianPosition = None self.currentJointPositionRad = None self.currentJointPositionDeg = None start_work_py_function = SendRecieveFromService.ros_pytho_client("start_work",start_work) rospy.wait_for_service("start_work") if(self.isTest): start_work_py_function(True) else: start_work_py_function(False) self.create_listener() def __exit__(self, exc_type, exc_val, exc_tb): print("TmMoveApiPython __exit__ is called ") self.cartesianSub.unregister() self.jointDegSub.unregister() self.jointRadSub.unregister() end_work_py_function = SendRecieveFromService.ros_pytho_client("end_work",start_work) end_work_py_function() def check_data_correct(self,data): if(len(set(data))==1 and data[0] == -999): print("it seems not initial before!") return None return data def get_current_cartesian_position(self): while(self.currentCartesianPosition == None): time.sleep(0.1) return self.check_data_correct(self.currentCartesianPosition) def get_current_joint_position_rad(self): while(self.currentCartesianPosition == None): time.sleep(0.1) return self.check_data_correct(self.currentJointPositionRad) def get_current_joint_position_deg(self): while(self.currentCartesianPosition == None): time.sleep(0.1) return self.check_data_correct(self.currentJointPositionDeg) def cartesian_position_callback(self,data): self.currentCartesianPosition = data.currentCartesianPosition def joint_position_deg_callback(self,data): self.currentJointPositionDeg = data.currentJointPositionDeg def joint_position_rad_callback(self,data): self.currentJointPositionRad = data.currentJointPositionRad def create_listener(self): rospy.init_node('tm_move_python', anonymous=True) self.cartesianSub = rospy.Subscriber("currentCartesianPosition", robot_status, self.cartesian_position_callback) self.jointDegSub = rospy.Subscriber("currentJointPositionDeg", robot_status, self.joint_position_deg_callback) self.jointRadSub = rospy.Subscriber("currentJointPositionRad", robot_status, self.joint_position_rad_callback) #print("before spin") #rospy.spin() #print("after spin") def except_reaction(self,e): print("Service call failed: %s",e) return False def record_position_joint(self,positionName,jointPosition): try: print("send record_position_joint to service") return SendRecieveFromService.send_record_service("record_position_joint",positionName,jointPosition,None,None) except rospy.ServiceException as e: return self.except_reaction(e) def record_postion_joint_degree(self,positionName,jointPosition): try: print("send record_postion_joint_degree to service") return SendRecieveFromService.send_record_service("record_postion_joint_degree",positionName,None,jointPosition,None) except rospy.ServiceException as e: return self.except_reaction(e) def record_position_cartesian(self,positionName,cartesianPosition): try: print("send record_position_cartesian to service") return SendRecieveFromService.send_record_service("record_position_cartesian",positionName,None,None,cartesianPosition) except rospy.ServiceException as e: return self.except_reaction(e) def move_recorded_poisiton(self,positionName,isPlan): try: print("send move_recorded_poisiton to service") return SendRecieveFromService.send_move_to_record_service("move_recorded_poisiton",positionName,isPlan) except rospy.ServiceException as e: return self.except_reaction(e) def move_recorded_joint_poisiton(self,positionName,isPlan): try: print("send move_recorded_joint_poisiton to service") return SendRecieveFromService.send_move_to_record_service("move_recorded_joint_poisiton",positionName,isPlan) except rospy.ServiceException as e: return self.except_reaction(e) def move_recorded_cartesian_poisiton(self,positionName,isPlan): try: print("send move_recorded_cartesian_poisiton to service") return SendRecieveFromService.send_move_to_record_service("move_recorded_cartesian_poisiton",positionName,isPlan) except rospy.ServiceException as e: return self.except_reaction(e) def checkAllLengthIsCorrect(self,compareVariable,*args): length = len(compareVariable) for var in args: if(length == len(var)): continue else: return False return True def get_all_recorded_position(self): isSuccess,allJointPosition = self.get_recorded_joint_position_deg() if(isSuccess): isSuccess,allCartesianPosition = self.get_recorded_cartesian_position() return isSuccess,allJointPosition,allCartesianPosition else: return False,None,None def get_recorded_joint_position_deg(self): try: print("send get_recorded_joint_position_deg to service") py_fun = SendRecieveFromService.ros_pytho_client("get_recorded_joint_position",get_record) res = py_fun() allJointPosition = {} if(self.checkAllLengthIsCorrect(res.recorded_joint_positions_name,res.j1,res.j2,res.j3,res.j4,res.j5,res.j6)): for i in range(len(res.recorded_joint_positions_name)): joints = [res.j1[i],res.j2[i],res.j3[i],res.j4[i],res.j5[i],res.j6[i]] jointsDeg = [ Utilites.rad_to_deg(rad) for rad in joints] allJointPosition[res.recorded_joint_positions_name[i]] = jointsDeg return True,allJointPosition else: print("the lenghth of all joint and joint name is not the same") return False,allJointPosition except rospy.ServiceException as e: return self.except_reaction(e) def get_recorded_cartesian_position(self): try: print("send get_recorded_cartesian_position to service") py_fun = SendRecieveFromService.ros_pytho_client("get_recorded_cartesian_position",get_record) res = py_fun() allCartesianPosition = {} if(self.checkAllLengthIsCorrect(res.recorded_cartesian_positions_name,res.c1,res.c2,res.c3,res.c4,res.c5,res.c6,res.c7)): for i in range(len(res.recorded_cartesian_positions_name)): cartesianPoint = [res.c1[i],res.c2[i],res.c3[i],res.c4[i],res.c5[i],res.c6[i],res.c7[i]] allCartesianPosition[res.recorded_cartesian_positions_name[i]] = cartesianPoint return True,allCartesianPosition else: print("the lenghth of all joint and joint name is not the same") return False,allCartesianPosition except rospy.ServiceException as e: return self.except_reaction(e) def delete_recorded_poisiton(self,positionName): try: print("send delete_recorded_poisiton to service") return SendRecieveFromService.send_delete_to_record_service(positionName,"delete_recorded_poisiton") except rospy.ServiceException as e: return self.except_reaction(e) def delete_recorded_joint_poisiton(self,positionName): try: print("send delete_recorded_joint_poisiton to service") return SendRecieveFromService.send_delete_to_record_service(positionName,"delete_recorded_joint_poisiton") except rospy.ServiceException as e: return self.except_reaction(e) def delete_recorded_cartesian_poisiton(self,positionName): try: print("send delete_recorded_cartesian_poisiton to service") return SendRecieveFromService.send_delete_to_record_service(positionName,"delete_recorded_cartesian_poisiton") except rospy.ServiceException as e: return self.except_reaction(e) def delete_all_recorded_position(self): try: print("send delete_all_recorded_position to service") SendRecieveFromService.send_delete_to_record_service(None,"delete_all_recorded_position") return True except rospy.ServiceException as e: return self.except_reaction(e) def delete_all_recorded_joint_poisiton(self): try: print("send delete_all_recorded_joint_poisiton to service") SendRecieveFromService.send_delete_to_record_service(None,"delete_all_recorded_joint_poisiton") return True except rospy.ServiceException as e: return self.except_reaction(e) def delete_all_recorded_cartesian_poisiton(self): try: print("send delete_all_recorded_cartesian_poisiton to service") SendRecieveFromService.send_delete_to_record_service(None,"delete_all_recorded_cartesian_poisiton") except rospy.ServiceException as e: return self.except_reaction(e)
[ "utilites.Utilites.rad_to_deg", "rospy.init_node", "rospy.ServiceProxy", "time.sleep", "os.path.abspath", "rospy.Subscriber", "rospy.wait_for_service" ]
[((236, 261), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (251, 261), False, 'import os\n'), ((401, 435), 'rospy.wait_for_service', 'rospy.wait_for_service', (['aqqestName'], {}), '(aqqestName)\n', (423, 435), False, 'import rospy\n'), ((461, 503), 'rospy.ServiceProxy', 'rospy.ServiceProxy', (['aqqestName', 'srvMsgName'], {}), '(aqqestName, srvMsgName)\n', (479, 503), False, 'import rospy\n'), ((1687, 1723), 'rospy.wait_for_service', 'rospy.wait_for_service', (['"""start_work"""'], {}), "('start_work')\n", (1709, 1723), False, 'import rospy\n'), ((3420, 3469), 'rospy.init_node', 'rospy.init_node', (['"""tm_move_python"""'], {'anonymous': '(True)'}), "('tm_move_python', anonymous=True)\n", (3435, 3469), False, 'import rospy\n'), ((3498, 3595), 'rospy.Subscriber', 'rospy.Subscriber', (['"""currentCartesianPosition"""', 'robot_status', 'self.cartesian_position_callback'], {}), "('currentCartesianPosition', robot_status, self.\n cartesian_position_callback)\n", (3514, 3595), False, 'import rospy\n'), ((3618, 3714), 'rospy.Subscriber', 'rospy.Subscriber', (['"""currentJointPositionDeg"""', 'robot_status', 'self.joint_position_deg_callback'], {}), "('currentJointPositionDeg', robot_status, self.\n joint_position_deg_callback)\n", (3634, 3714), False, 'import rospy\n'), ((3737, 3833), 'rospy.Subscriber', 'rospy.Subscriber', (['"""currentJointPositionRad"""', 'robot_status', 'self.joint_position_rad_callback'], {}), "('currentJointPositionRad', robot_status, self.\n joint_position_rad_callback)\n", (3753, 3833), False, 'import rospy\n'), ((2536, 2551), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (2546, 2551), False, 'import time\n'), ((2735, 2750), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (2745, 2750), False, 'import time\n'), ((2933, 2948), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (2943, 2948), False, 'import time\n'), ((7355, 7379), 'utilites.Utilites.rad_to_deg', 'Utilites.rad_to_deg', (['rad'], {}), '(rad)\n', (7374, 7379), False, 'from utilites import Utilites\n')]
from functools import update_wrapper # Django REST framework @classmethod def as_view(cls, **initkwargs): if isinstance(getattr(cls, 'queryset', None), models.query.QuerySet): def force_evaluation(): raise RuntimeError( 'Do not evaluate the `.queryset` attribute directly, ' 'as the result will be cached and reused between requests. ' 'Use `.all()` or call `.get_queryset()` instead.' ) cls.queryset._fetch_all = force_evaluation view = super(APIView, cls).as_view(**initkwargs) view.cls = cls view.initkwargs = initkwargs # Note: session based authentication is explicitly CSRF validated, # all other authentication is CSRF exempt. return csrf_exempt(view) # Django @classonlymethod def as_view(cls, **initkwargs): for key in initkwargs: if key in cls.http_method_names: raise TypeError("You tried to pass in the %s method name as a " "keyword argument to %s(). Don't do that." % (key, cls.__name__)) if not hasattr(cls, key): raise TypeError("%s() received an invalid keyword %r. as_view " "only accepts arguments that are already " "attributes of the class." % (cls.__name__, key)) def view(request, *args, **kwargs): self = cls(**initkwargs) if hasattr(self, 'get') and not hasattr(self, 'head'): self.head = self.get self.request = request self.args = args self.kwargs = kwargs return self.dispatch(request, *args, **kwargs) view.view_class = cls view.view_initkwargs = initkwargs # take name and docstring from class update_wrapper(view, cls, updated=()) # and possible attributes set by decorators # like csrf_exempt from dispatch update_wrapper(view, cls.dispatch, assigned=()) return view """ 所以这里的update_wrapper并不是实现功能所必须的,而是为了兼容。 django中的一些方法实现中通过内省动态的的处理。而通过decorator/partial对原函数进行处理会覆盖wrapped函数的内省状态。 django应该有一些地方对as_view,和dispatch的内省信有依赖。在django rest framework中会override 或者 overwrite, as_view和dispatch方法 view = super(APIView, cls).as_view(**initkwargs) 继续使用父类的构造方法 # take name and docstring from class update_wrapper(view, cls, updated=()) # and possible attributes set by decorators # like csrf_exempt from dispatch update_wrapper(view, cls.dispatch, assigned=()) 在子类中重写了父类的方法,却使用父类的函数签名。 """
[ "functools.update_wrapper" ]
[((1786, 1823), 'functools.update_wrapper', 'update_wrapper', (['view', 'cls'], {'updated': '()'}), '(view, cls, updated=())\n', (1800, 1823), False, 'from functools import update_wrapper\n'), ((1914, 1961), 'functools.update_wrapper', 'update_wrapper', (['view', 'cls.dispatch'], {'assigned': '()'}), '(view, cls.dispatch, assigned=())\n', (1928, 1961), False, 'from functools import update_wrapper\n')]
def timestamp2datestring(timestamp,format="%a %b %d %X %Z %Y"): import time return time.strftime(format, time.gmtime(timestamp/1000.))
[ "time.gmtime" ]
[((114, 145), 'time.gmtime', 'time.gmtime', (['(timestamp / 1000.0)'], {}), '(timestamp / 1000.0)\n', (125, 145), False, 'import time\n')]
import numpy as np import random from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt import queue training_files = ["bisecting.txt","blobs.txt","moons.txt"] INPUT_FILE="blobs.txt" ITERATIONS=50 #Define label for differnt point group UNASSIGNED = 0 CORE_PT = -1 BORDER_PT = -2 dataset = [] noOfClusters = 0 def read_dataset(INPUT_FILE): """ Reading dataset """ global dataset f = open(INPUT_FILE, "r") lines = f.readlines() for i in range(len(lines)): data = lines[i].split() dataset.append(list(map(float, data))) print("Total dataset = {} points".format(len(dataset))) f.close() pass def find_nearest_neighbour(k): """ Nearest neighbour """ global dataset nearest_neighbors = NearestNeighbors(n_neighbors=k) nearest_neighbors.fit(dataset) distances, indices = nearest_neighbors.kneighbors(dataset) distances = np.sort(distances, axis=0)[:, 1] # print(distances, indices) plt.grid() plt.plot(distances) # plt.savefig(INPUT_FILE+'_Nearest_Neighbour.png') plt.show() def plotClusters(dataset, labels, noOfClusters, file): total_points = len(dataset) print("Plotting for {} points".format(total_points)) plt.figure() # Color array for clusters scatterColors = ["blue","green","red","cyan","brown","indigo", "pink", "royalblue", "orange","yellow","black","olive", "gold", "orangered", "skyblue", "teal" ] for i in range(noOfClusters): if (i==0): #Plot all noise point as blue color='blue' else: color = scatterColors[i % len(scatterColors)] x = []; y = [] for j in range(total_points): if labels[j] == i: x.append(dataset[j][0]) y.append(dataset[j][1]) plt.scatter(x, y, c=color, alpha=1, marker='.') plt.grid() plt.savefig(file) # plt.show() def euclidean_dist(point1, point2): """ Euclid distance function """ x1 = point1[0] x2 = point2[0] y1 = point1[1] y2 = point2[1] # create the points p1 = (x1 - x2)**2 p2 = (y1 - y2)**2 return np.sqrt(p1 + p2) def neighbor_points(dataset, pointIdx, radius): ''' find all neigbor points in radius from a given point. ''' points = [] for i in range(len(dataset)): # Calculating distance btn points if euclidean_dist(dataset[i], dataset[pointIdx]) <= radius: points.append(i) return points def dbscan(data, Eps, MinPt): ''' DBSCAN Algorithm ''' global dataset, noOfClusters #initilize all pointlable to unassign pointlabel = [UNASSIGNED] * len(data) neighbourhood_arr = [] #initilize list for core/noncore point core_pts=[] non_core_pts=[] #Find all neigbor for all point for i in range(len(data)): neighbourhood_arr.append(neighbor_points(dataset,i,Eps)) #Find all core point, edgepoint and noise for i in range(len(neighbourhood_arr)): # A point is a core point if it has more than a specified number of points (MinPts) within Eps if (len(neighbourhood_arr[i]) >= MinPt): pointlabel[i] = CORE_PT core_pts.append(i) else: non_core_pts.append(i) for i in non_core_pts: for j in neighbourhood_arr[i]: if j in core_pts: pointlabel[i] = BORDER_PT break #start assigning point to cluster cluster_no = 1 # Put all neigbor core point in queue and find neigboir's neigbor for i in range(len(pointlabel)): q = queue.Queue() if (pointlabel[i] == CORE_PT): pointlabel[i] = cluster_no for j in neighbourhood_arr[i]: if(pointlabel[j] == CORE_PT): q.put(j) pointlabel[j]= cluster_no elif(pointlabel[j] == BORDER_PT): pointlabel[j] = cluster_no # checking queue while not q.empty(): neighbors = neighbourhood_arr[q.get()] for n in neighbors: if (pointlabel[n] == CORE_PT): pointlabel[n]=cluster_no q.put(n) if (pointlabel[n] == BORDER_PT): pointlabel[n]=cluster_no cluster_no = cluster_no + 1 noOfClusters = cluster_no return pointlabel def DBSCAN_start(eps, minpts): """ docstring """ global dataset, noOfClusters print("Starting DBSCAN for EPS: {} | Minpts: {}".format(eps, minpts)) labels = dbscan(dataset,eps,minpts) plotClusters(dataset, labels, noOfClusters, INPUT_FILE+'_DBSCAN.png') outliers = labels.count(0) print("No. of Clusters: {}".format(noOfClusters-1)) print("Outliers: {}".format(outliers)) return noOfClusters - 1 def calc_distance(X1, X2): return (sum((X1 - X2)**2))**0.5 def assign_clusters(centroids, X): assigned_cluster = [] for i in X: distance=[] for j in centroids: distance.append(calc_distance(i, j)) # print(distance) # print(np.argmin(distance)) # print("--------------------------------") assigned_cluster.append(np.argmin(distance)) # idx of minimum element # print(assigned_cluster) return assigned_cluster def calc_centroids(clusters_lables, k): global dataset points_per_cluster = [[] for _ in range(k)] for i in range(len(clusters_lables)): points_per_cluster[clusters_lables[i]].append(dataset[i]) centroids = [] for i in range(k): centroids.append(np.mean(points_per_cluster[i], axis=0)) return centroids def match_centroids(c_new, c_old): return (np.array(c_new) == np.array(c_old)).all() def k_means(k): """ K-Means clustering algorithm """ global dataset print("Running k-Means for {} clusters..".format(k)) X = np.array(dataset) init_centroids = random.sample(range(0, len(dataset)), k) centroids, cluster_labels = [], [] for i in init_centroids: centroids.append(dataset[i]) # converting to 2D - array # centroids = np.array(centroids) # get_centroids = assign_clusters(centroids, X) prev_centroids = centroids.copy() for i in range(ITERATIONS): print("For iteration {}: ".format(i)) prev_centroids = np.array(prev_centroids) cluster_labels = assign_clusters(prev_centroids, X) centroids = calc_centroids(cluster_labels, k) # print(prev_centroids) print(centroids) if match_centroids(centroids,prev_centroids): print("Converged ...") break else: prev_centroids = centroids.copy() plotClusters(dataset, cluster_labels, k, INPUT_FILE+'_k_means.png') if __name__ == "__main__": print("Choose Training file...") for i, item in enumerate(training_files, start=1): print(i,item) choice = int(input()) INPUT_FILE=training_files[choice-1] read_dataset(INPUT_FILE) print("1. Plot k Nearest Neighbours\n2. Run Clustering Algorithms") choice = int(input()) if choice == 1: print("Enter the value of k:") k = int(input()) find_nearest_neighbour(k) else: print("Enter EPS value:") eps = float(input()) print("Enter Minpts value:") minpts = int(input()) k = DBSCAN_start(eps, minpts) k_means(k)
[ "numpy.mean", "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "numpy.sqrt", "numpy.sort", "matplotlib.pyplot.plot", "numpy.array", "matplotlib.pyplot.figure", "sklearn.neighbors.NearestNeighbors", "matplotlib.pyplot.scatter", "numpy.argmin", "queue.Queue", "matplotlib.pyplot.show" ]
[((730, 761), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': 'k'}), '(n_neighbors=k)\n', (746, 761), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((930, 940), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (938, 940), True, 'import matplotlib.pyplot as plt\n'), ((942, 961), 'matplotlib.pyplot.plot', 'plt.plot', (['distances'], {}), '(distances)\n', (950, 961), True, 'import matplotlib.pyplot as plt\n'), ((1015, 1025), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1023, 1025), True, 'import matplotlib.pyplot as plt\n'), ((1166, 1178), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1176, 1178), True, 'import matplotlib.pyplot as plt\n'), ((1713, 1723), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1721, 1723), True, 'import matplotlib.pyplot as plt\n'), ((1725, 1742), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {}), '(file)\n', (1736, 1742), True, 'import matplotlib.pyplot as plt\n'), ((1962, 1978), 'numpy.sqrt', 'np.sqrt', (['(p1 + p2)'], {}), '(p1 + p2)\n', (1969, 1978), True, 'import numpy as np\n'), ((5253, 5270), 'numpy.array', 'np.array', (['dataset'], {}), '(dataset)\n', (5261, 5270), True, 'import numpy as np\n'), ((867, 893), 'numpy.sort', 'np.sort', (['distances'], {'axis': '(0)'}), '(distances, axis=0)\n', (874, 893), True, 'import numpy as np\n'), ((1662, 1709), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': 'color', 'alpha': '(1)', 'marker': '"""."""'}), "(x, y, c=color, alpha=1, marker='.')\n", (1673, 1709), True, 'import matplotlib.pyplot as plt\n'), ((3246, 3259), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (3257, 3259), False, 'import queue\n'), ((5663, 5687), 'numpy.array', 'np.array', (['prev_centroids'], {}), '(prev_centroids)\n', (5671, 5687), True, 'import numpy as np\n'), ((4615, 4634), 'numpy.argmin', 'np.argmin', (['distance'], {}), '(distance)\n', (4624, 4634), True, 'import numpy as np\n'), ((4973, 5011), 'numpy.mean', 'np.mean', (['points_per_cluster[i]'], {'axis': '(0)'}), '(points_per_cluster[i], axis=0)\n', (4980, 5011), True, 'import numpy as np\n'), ((5077, 5092), 'numpy.array', 'np.array', (['c_new'], {}), '(c_new)\n', (5085, 5092), True, 'import numpy as np\n'), ((5096, 5111), 'numpy.array', 'np.array', (['c_old'], {}), '(c_old)\n', (5104, 5111), True, 'import numpy as np\n')]
import os import tempfile from time import time import pydicom import datetime from pydicom.dataset import Dataset, FileDataset import numpy as np class dcm_loader(object): """ """ def __init__(self): pass def load_vol(self, path): """ path : patient data path returns numpy array of patient data """ self.patient = pydicom.dcmread(path) return self.patient.pixel_array def write_vol(self, path, vol): """ path : path to write the data vol : modifient volume return: True or False based on saving of volume """ suffix = '.dcm' filename_little_endian = tempfile.NamedTemporaryFile(suffix=suffix).name filename_big_endian = tempfile.NamedTemporaryFile(suffix=suffix).name file_meta = Dataset() ds = FileDataset(filename_little_endian, {}, file_meta=file_meta, preamble=b"\0" * 128) ds.PatientName = self.patient.PatientName ds.PatientID = self.patient.PatientID ds.is_little_endian = self.patient.is_little_endian ds.is_implicit_VR = self.patient.is_implicit_VR # Set creation date/time dt = datetime.datetime.now() ds.ContentDate = dt.strftime('%Y%m%d') timeStr = dt.strftime('%H%M%S.%f') # long format with micro seconds ds.ContentTime = timeStr ds.PixelData = vol.tostring() try: ds.save_as(filename_little_endian) return True except: return False
[ "pydicom.dataset.FileDataset", "pydicom.dcmread", "datetime.datetime.now", "tempfile.NamedTemporaryFile", "pydicom.dataset.Dataset" ]
[((392, 413), 'pydicom.dcmread', 'pydicom.dcmread', (['path'], {}), '(path)\n', (407, 413), False, 'import pydicom\n'), ((857, 866), 'pydicom.dataset.Dataset', 'Dataset', ([], {}), '()\n', (864, 866), False, 'from pydicom.dataset import Dataset, FileDataset\n'), ((880, 969), 'pydicom.dataset.FileDataset', 'FileDataset', (['filename_little_endian', '{}'], {'file_meta': 'file_meta', 'preamble': "(b'\\x00' * 128)"}), "(filename_little_endian, {}, file_meta=file_meta, preamble=\n b'\\x00' * 128)\n", (891, 969), False, 'from pydicom.dataset import Dataset, FileDataset\n'), ((1239, 1262), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1260, 1262), False, 'import datetime\n'), ((711, 753), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'suffix': 'suffix'}), '(suffix=suffix)\n', (738, 753), False, 'import tempfile\n'), ((789, 831), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'suffix': 'suffix'}), '(suffix=suffix)\n', (816, 831), False, 'import tempfile\n')]
import os import re import string punc = str() def fileInspector(parent_directory, isTrain=False, isSpam=False): ''' Retrieves the name of files in the directory e.g. if path of the <parent_directory> directory is: - ~/Desktop/<parent_directory>, then it checks ~/Desktop ''' if isTrain: if isSpam: flist = sorted([ f for f in os.listdir( f"{parent_directory}/dataset/training/spam" ) if "msg" in f], key=str.lower) else: flist = sorted([ f for f in os.listdir( f"{parent_directory}/dataset/training/legitimate" ) if "msg" in f], key=str.lower) else: if isSpam: flist = sorted([ f for f in os.listdir( f"{parent_directory}/dataset/test/spam" ) if "msg" in f], key=str.lower) else: flist = sorted([ f for f in os.listdir( f"{parent_directory}/dataset/test/legitimate" ) if "msg" in f], key=str.lower) return flist def fileRead(location, fname): ''' Retrieves the content of the given file name in the given directory ''' with open("{}/{}".format(location, fname), "r", encoding="latin-1") as f: return f.read() def setPunc(isReset=False): ''' - Creates punctuations to be removed in the string clearing operations, except it holds dollar sign since dollar sign seems to be exist very much in spam messages. ''' global punc if isReset: punc = string.punctuation else: punc = string.punctuation dollar_sign_pos = punc.index("$") punc = punc[0:dollar_sign_pos] + punc[(dollar_sign_pos+1):] def clearPunc(_string): ''' - Clears any punctuation if necessary. ''' global punc setPunc() non_punc_string = str(_string).translate(str.maketrans(punc, " "*len(punc))) setPunc(isReset=True) return non_punc_string def processed_string(_string): ''' - Splits the given string with respect to whitespace and make them lowercase while stripping any remaining whitespaces. ''' current_form = clearPunc(_string) tokens = str(current_form).split() trimmed_tokens = [] for token in tokens: trimmed_tokens.append(str(token).strip().lower()) return trimmed_tokens
[ "os.listdir" ]
[((373, 428), 'os.listdir', 'os.listdir', (['f"""{parent_directory}/dataset/training/spam"""'], {}), "(f'{parent_directory}/dataset/training/spam')\n", (383, 428), False, 'import os\n'), ((516, 577), 'os.listdir', 'os.listdir', (['f"""{parent_directory}/dataset/training/legitimate"""'], {}), "(f'{parent_directory}/dataset/training/legitimate')\n", (526, 577), False, 'import os\n'), ((680, 731), 'os.listdir', 'os.listdir', (['f"""{parent_directory}/dataset/test/spam"""'], {}), "(f'{parent_directory}/dataset/test/spam')\n", (690, 731), False, 'import os\n'), ((819, 876), 'os.listdir', 'os.listdir', (['f"""{parent_directory}/dataset/test/legitimate"""'], {}), "(f'{parent_directory}/dataset/test/legitimate')\n", (829, 876), False, 'import os\n')]
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ TODO: get this to work with python3 """ import logging, copy log = logging.getLogger(__name__) import numpy as np, math try: import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, Circle, Ellipse, PathPatch import matplotlib.lines as mlines import matplotlib.path as mpath except ImportError: plt = None pass def ellipse_closest_approach_to_point( ex, ez, _c ): """ Ellipse natural frame, semi axes ex, ez. _c coordinates of point :param ex: semi-major axis :param ez: semi-major axis :param c: xz coordinates of point :return p: point on ellipse of closest approach to center of torus circle Closest approach on the bulb ellipse to the center of torus "circle" is a good point to target for hype/cone/whatever neck, as are aiming to eliminate the cylinder neck anyhow equation of RHS torus circle, in ellipse frame (x - R)^2 + (z - z0)^2 - r^2 = 0 equation of ellipse (x/ex)^2 + (z/ez)^2 - 1 = 0 """ c = np.asarray( _c ) # center of RHS torus circle assert c.shape == (2,) t = np.linspace( 0, 2*np.pi, 1000000 ) e = np.zeros( [len(t), 2] ) e[:,0] = ex*np.cos(t) e[:,1] = ez*np.sin(t) # 1M parametric points on the ellipse p = e[np.sum(np.square(e-c), 1).argmin()] # point on ellipse closest to c return p def ellipse_points( xy=[0,-5.], ex=254., ez=190., n=1000 ): """ :param ec: center of ellipse :param ex: xy radius of ellipse :param ez: z radius of ellipse :param n: number of points :return e: array of shape (n,2) of points on the ellipse """ t = np.linspace( 0, 2*np.pi, n ) e = np.zeros([len(t), 2]) e[:,0] = ex*np.cos(t) + xy[0] e[:,1] = ez*np.sin(t) + xy[1] return e def circle_points( xy=[0,0], tr=80, n=1000 ): """ :param tc: center of circle :param tr: radius of circle :param n: number of points :return c: array of shape (n,2) of points on the circle """ t = np.linspace( 0, 2*np.pi, n ) c = np.zeros([len(t), 2]) c[:,0] = tr*np.cos(t) + xy[0] c[:,1] = tr*np.sin(t) + xy[1] return c def points_inside_circle(points, center, radius): """ :param points: (n,2) array of points :param center: (2,) coordinates of circle center :param radius: :return mask: boolean array of dimension (n,2) indicating if points are within the circle """ return np.sqrt(np.sum(np.square(points-center),1)) - radius < 0. def ellipse_points_inside_circle(): tc = np.array([torus_x,torus_z]) tr = m4_torus_r e = ellipse_points( xy=[0,-5.], ex=254., ez=190., n=1000000 ) class X(object): def __init__(self, root): self.root = root def __repr__(self): return "\n".join( map(repr, self.constituents())) def find(self, shape): return self.root.find(shape) def find_one(self, shape): ff = self.root.find(shape) assert len(ff) == 1 return ff[0] def constituents(self): return self.root.constituents() def replacement_cons(self): """ """ i = self.find_one("STorus") r = i.param[0] R = i.param[1] d = self.find_one("SEllipsoid") ex = d.param[0] ez = d.param[1] print("r %s R %s ex %s ez %s " % (r,R,ex,ez)) print(" SEllipsoid d.xy %s " % repr(d.xy) ) print(" STorus i.xy %s " % repr(i.xy) ) z0 = i.xy[1] # torus z-plane in ellipsoid frame p = ellipse_closest_approach_to_point( ex, ez, [R,z0] ) # [R,z0] is center of torus circle pr, pz = p # at torus/ellipse closest point : no guarantee of intersection print(" ellipse closest approach to torus %s " % repr(p) ) r2 = pr r1 = R - r mz = (z0 + pz)/2. # mid-z cone coordinate (ellipsoid frame) hz = (pz - z0)/2. # cons half height f = SCons( "f", [r1,r2,hz] ) B = np.array( [0, mz] ) print(" replacment SCons %s offset %s " % (repr(f),repr(B))) return f, B def spawn_rationalized(self): """ :: UnionSolid / \ Ellipsoid Subtraction / \ Tubs Torus UnionSolid / \ Ellipsoid Cons """ name = self.__class__.__name__ x = copy.deepcopy(self) # establish expectations for tree e = x.find_one("SEllipsoid") t = x.find_one("STorus") ss = t.parent assert ss is not None and ss.shape == "SSubtractionSolid" us = ss.parent assert us is not None and us.shape == "SUnionSolid" assert us.left is not None and us.left == e and us.right == ss and ss.right == t assert us.right is not None and us.right == ss if name == "x018": # cathode vacuum cap assert x.root.shape == "SIntersectionSolid" x.root = e e.parent = None elif name == "x019": # remainder vacuum assert x.root.shape == "SSubtractionSolid" left = x.root.left assert left.shape == "SUnionSolid" left.parent = None x.root = left else: pass pass if name in ["x019","x020","x021"]: # calculate the parameters of the replacement cons cons, offset = x.replacement_cons() # tree surgery : replacing the right child of UnionSolid us.right = cons cons.parent = us cons.ltransform = offset pass return x class Shape(object): """ matplotlib patches do not support deferred placement it seems, so do that here """ KWA = dict(fill=False) dtype = np.float64 PRIMITIVE = ["SEllipsoid","STubs","STorus", "SCons", "SHype", "SBox", "SPolycone"] PRIMITIVE2 = ["Box", "Cylinder", "Tubs" ] ALL_PRIMITIVE = PRIMITIVE + PRIMITIVE2 COMPOSITE = ["SUnionSolid", "SSubtractionSolid", "SIntersectionSolid"] ALL = ALL_PRIMITIVE + COMPOSITE def __repr__(self): return "%s : %20s : %s : %s " % ( self.name, self.shape, repr(self.ltransform), repr(self.param) ) def __init__(self, name, param, **kwa ): shape = self.__class__.__name__ if not shape in self.ALL: log.error("shape class name %s is not in the list %s " % ( shape, str(self.ALL))) pass assert shape in self.ALL primitive = shape in self.ALL_PRIMITIVE composite = shape in self.COMPOSITE d = self.KWA.copy() d.update(kwa) self.kwa = d self.name = name self.shape = shape self.param = param self.parent = None self.ltransform = None self.left = None self.right = None if composite: left = self.param[0] right = self.param[1] right.ltransform = self.param[2] left.parent = self right.parent = self self.left = left self.right = right pass is_primitive = property(lambda self:self.left is None and self.right is None) is_composite = property(lambda self:self.left is not None and self.right is not None) def _get_xy(self): """ Assumes only translations, adds the node.ltransform obtained by following parent links up the tree of shapes. a Intersection / \ b m(D) Union m:Tubs / \ c k(C) Union Tubs / \ d f(B) Ellipsoid Subtraction / \ g(B) i(B+A) Tubs Torus """ xy = np.array([0,0], dtype=self.dtype ) node = self while node is not None: if node.ltransform is not None: log.debug("adding ltransform %s " % node.ltransform) xy += node.ltransform pass node = node.parent pass return xy xy = property(_get_xy) def constituents(self): if self.is_primitive: return [self] else: assert self.is_composite cts = [] cts.extend( self.left.constituents() ) cts.extend( self.right.constituents() ) return cts pass def find(self, shape): cts = self.constituents() return filter( lambda ct:ct.shape == shape, cts ) def patches(self): """ Positioning is relying on self.xy of the primitives with nothing being passed into composites. For composites self.param[2] is the local right transform """ if self.shape == "SEllipsoid": return self.make_ellipse( self.xy, self.param, **self.kwa ) elif self.shape == "STubs" or self.shape == "Tubs": return self.make_rect( self.xy, self.param, **self.kwa) elif self.shape == "STorus": return self.make_torus( self.xy, self.param, **self.kwa) elif self.shape == "SCons": return self.make_cons( self.xy, self.param, **self.kwa) elif self.shape == "SHype": return self.make_hype( self.xy, self.param, **self.kwa) elif self.shape == "SBox" or self.shape == "Box": return self.make_rect( self.xy, self.param, **self.kwa) elif self.shape == "SPolycone": return self.make_polycone( self.xy, self.param, **self.kwa) else: if not self.is_composite: log.error("shape :%s: not handled in patches()" % self.shape ) pass assert self.is_composite pts = [] pts.extend( self.left.patches() ) pts.extend( self.right.patches() ) return pts pass @classmethod def create(cls, pt ): pass @classmethod def make_rect(cls, xy , wh, **kwa ): """ :param xy: center of rectangle :param wh: halfwidth, halfheight """ ll = ( xy[0] - wh[0], xy[1] - wh[1] ) return [Rectangle( ll, 2.*wh[0], 2.*wh[1], **kwa )] @classmethod def make_ellipse(cls, xy , param, **kwa ): return [Ellipse( xy, width=2.*param[0], height=2.*param[1], **kwa )] @classmethod def make_circle(cls, xy , radius, **kwa ): return [Circle( xy, radius=radius, **kwa )] @classmethod def make_torus(cls, xy, param, **kwa ): r = param[0] R = param[1] pts = [] lhs = cls.make_circle( xy + [-R,0], r, **kwa) rhs = cls.make_circle( xy + [+R,0], r, **kwa) pts.extend(lhs) pts.extend(rhs) return pts @classmethod def make_pathpatch(cls, xy, vtxs, **kwa ): """see analytic/pathpatch.py""" Path = mpath.Path path_data = [] for i, vtx in enumerate(vtxs): act = Path.MOVETO if i == 0 else Path.LINETO path_data.append( (act, (vtx[0]+xy[0], vtx[1]+xy[1])) ) pass path_data.append( (Path.CLOSEPOLY, (vtxs[0,0]+xy[0], vtxs[0,1]+xy[1])) ) pass codes, verts = zip(*path_data) path = Path(verts, codes) patch = PathPatch(path, **kwa) return [patch] @classmethod def make_cons(cls, xy , param, **kwa ): """ (-r2,z2) (r2,z2) 1---------2 \ / 0 ... 3 (-r1,z1) (r1,z1) """ r1 = param[0] r2 = param[1] hz = param[2] z2 = hz + xy[1] z1 = -hz + xy[1] vtxs = np.zeros( (4,2) ) vtxs[0] = ( -r1, z1) vtxs[1] = ( -r2, z2) vtxs[2] = ( r2, z2) vtxs[3] = ( r1, z1) return cls.make_pathpatch( xy, vtxs, **kwa ) @classmethod def make_polycone(cls, xy , param, **kwa ): """ """ zp = param nz = len(zp) assert zp.shape == (nz, 3), zp assert nz > 1 , zp rmin = zp[:,0] rmax = zp[:,1] z = zp[:,2] vtxs = np.zeros( (2*nz,2) ) for i in range(nz): vtxs[i] = ( -rmax[i], z[i] ) vtxs[2*nz-i-1] = ( rmax[i], z[i] ) pass log.debug(" xy : %r " % xy ) return cls.make_pathpatch( xy, vtxs, **kwa ) @classmethod def make_hype(cls, xy , param, **kwa ): """ 4----------- 5 3 6 2 7 1 8 0 ---------- 9 sqrt(x^2+y^2) = r0 * np.sqrt( (z/zf)^2 + 1 ) """ r0 = param[0] stereo = param[1] hz = param[2] zf = r0/np.tan(stereo) r_ = lambda z:r0*np.sqrt( np.square(z/zf) + 1. ) nz = 20 zlhs = np.linspace( -hz, hz, nz ) zrhs = np.linspace( hz, -hz, nz ) vtxs = np.zeros( (nz*2,2) ) vtxs[:nz,0] = -r_(zlhs) + xy[0] vtxs[:nz,1] = zlhs + xy[1] vtxs[nz:,0] = r_(zrhs) + xy[0] vtxs[nz:,1] = zrhs + xy[1] return cls.make_pathpatch( xy, vtxs, **kwa ) class SEllipsoid(Shape):pass class STubs(Shape):pass class STorus(Shape):pass class SCons(Shape):pass class SHype(Shape):pass class SPolycone(Shape):pass class SUnionSolid(Shape):pass class SSubtractionSolid(Shape):pass class SIntersectionSolid(Shape):pass if __name__ == '__main__': pass
[ "logging.getLogger", "matplotlib.patches.Rectangle", "numpy.tan", "numpy.asarray", "numpy.square", "numpy.array", "numpy.linspace", "numpy.zeros", "matplotlib.patches.PathPatch", "numpy.cos", "copy.deepcopy", "numpy.sin", "matplotlib.patches.Ellipse", "matplotlib.patches.Circle" ]
[((792, 819), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (809, 819), False, 'import logging, copy\n'), ((1760, 1774), 'numpy.asarray', 'np.asarray', (['_c'], {}), '(_c)\n', (1770, 1774), True, 'import numpy as np, math\n'), ((1844, 1878), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1000000)'], {}), '(0, 2 * np.pi, 1000000)\n', (1855, 1878), True, 'import numpy as np, math\n'), ((2385, 2413), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', 'n'], {}), '(0, 2 * np.pi, n)\n', (2396, 2413), True, 'import numpy as np, math\n'), ((2757, 2785), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', 'n'], {}), '(0, 2 * np.pi, n)\n', (2768, 2785), True, 'import numpy as np, math\n'), ((3297, 3325), 'numpy.array', 'np.array', (['[torus_x, torus_z]'], {}), '([torus_x, torus_z])\n', (3305, 3325), True, 'import numpy as np, math\n'), ((1927, 1936), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (1933, 1936), True, 'import numpy as np, math\n'), ((1954, 1963), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (1960, 1963), True, 'import numpy as np, math\n'), ((4756, 4773), 'numpy.array', 'np.array', (['[0, mz]'], {}), '([0, mz])\n', (4764, 4773), True, 'import numpy as np, math\n'), ((5299, 5318), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (5312, 5318), False, 'import logging, copy\n'), ((9257, 9291), 'numpy.array', 'np.array', (['[0, 0]'], {'dtype': 'self.dtype'}), '([0, 0], dtype=self.dtype)\n', (9265, 9291), True, 'import numpy as np, math\n'), ((12799, 12821), 'matplotlib.patches.PathPatch', 'PathPatch', (['path'], {}), '(path, **kwa)\n', (12808, 12821), False, 'from matplotlib.patches import Rectangle, Circle, Ellipse, PathPatch\n'), ((13211, 13227), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {}), '((4, 2))\n', (13219, 13227), True, 'import numpy as np, math\n'), ((13682, 13703), 'numpy.zeros', 'np.zeros', (['(2 * nz, 2)'], {}), '((2 * nz, 2))\n', (13690, 13703), True, 'import numpy as np, math\n'), ((14403, 14427), 'numpy.linspace', 'np.linspace', (['(-hz)', 'hz', 'nz'], {}), '(-hz, hz, nz)\n', (14414, 14427), True, 'import numpy as np, math\n'), ((14445, 14469), 'numpy.linspace', 'np.linspace', (['hz', '(-hz)', 'nz'], {}), '(hz, -hz, nz)\n', (14456, 14469), True, 'import numpy as np, math\n'), ((14489, 14510), 'numpy.zeros', 'np.zeros', (['(nz * 2, 2)'], {}), '((nz * 2, 2))\n', (14497, 14510), True, 'import numpy as np, math\n'), ((2460, 2469), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (2466, 2469), True, 'import numpy as np, math\n'), ((2494, 2503), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (2500, 2503), True, 'import numpy as np, math\n'), ((2832, 2841), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (2838, 2841), True, 'import numpy as np, math\n'), ((2866, 2875), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (2872, 2875), True, 'import numpy as np, math\n'), ((11667, 11713), 'matplotlib.patches.Rectangle', 'Rectangle', (['ll', '(2.0 * wh[0])', '(2.0 * wh[1])'], {}), '(ll, 2.0 * wh[0], 2.0 * wh[1], **kwa)\n', (11676, 11713), False, 'from matplotlib.patches import Rectangle, Circle, Ellipse, PathPatch\n'), ((11794, 11857), 'matplotlib.patches.Ellipse', 'Ellipse', (['xy'], {'width': '(2.0 * param[0])', 'height': '(2.0 * param[1])'}), '(xy, width=2.0 * param[0], height=2.0 * param[1], **kwa)\n', (11801, 11857), False, 'from matplotlib.patches import Rectangle, Circle, Ellipse, PathPatch\n'), ((11938, 11970), 'matplotlib.patches.Circle', 'Circle', (['xy'], {'radius': 'radius'}), '(xy, radius=radius, **kwa)\n', (11944, 11970), False, 'from matplotlib.patches import Rectangle, Circle, Ellipse, PathPatch\n'), ((14297, 14311), 'numpy.tan', 'np.tan', (['stereo'], {}), '(stereo)\n', (14303, 14311), True, 'import numpy as np, math\n'), ((2023, 2039), 'numpy.square', 'np.square', (['(e - c)'], {}), '(e - c)\n', (2032, 2039), True, 'import numpy as np, math\n'), ((3205, 3231), 'numpy.square', 'np.square', (['(points - center)'], {}), '(points - center)\n', (3214, 3231), True, 'import numpy as np, math\n'), ((14347, 14364), 'numpy.square', 'np.square', (['(z / zf)'], {}), '(z / zf)\n', (14356, 14364), True, 'import numpy as np, math\n')]
# -*- coding: utf-8 -*- import scrapy from spider.Utils import TimeHelper, CarDBHelper class WangyicarSpider(scrapy.Spider): name = 'wangyicar' allowed_domains = ['163.com'] start_urls = ['http://product.auto.163.com'] def parse(self, response): item = dict() item['app_id'] = '4' # 品牌id brand_id = response.xpath('//*[@id="brandCont"]/*/h2/a/@id').extract() # 品牌名字 brand_name = response.xpath('//*[@id="brandCont"]/*/h2/a/@title').extract() # 品牌页url brand_url_list = response.xpath('//*[@id="brandCont"]/*/h2/a/@href').extract() if len(brand_name) > 0: for i in range(len(brand_name)): item['brand_id'] = brand_id[i] item['brand_name'] = brand_name[i] table = 'datau_crawler_brand' item['create_time'] = TimeHelper.TimeHelper.getTime() item['update_time'] = TimeHelper.TimeHelper.getTime() CarDBHelper.DataDBHelper.save(table=table, item=item) brand_url = 'http://product.auto.163.com'+brand_url_list[i] yield scrapy.Request(brand_url, meta={'item': item}, dont_filter=True, callback=self.brand_page) def brand_page(self, response): itembrand = response.meta['item'] brand_id = itembrand['brand_id'] item = dict() item['app_id'] = '4' # 车系id series_id = response.xpath('//*/div[@class="item-cont cur"]//*/p[@class="title"]/a/@data-series-id').extract() # 车系名字 series_name = response.xpath('//*/div[@class="item-cont cur"]//*/p[@class="title"]/a/text()').extract() # 车系url series_url_list = self.get_series_url(response) if len(series_name) > 0: for i in range(len(series_name)): item['brand_id'] = brand_id item['series_id'] = series_id[i] item['series_name'] = series_name[i] item['series_url'] = series_url_list[i] table = 'datau_crawler_carseries' item['create_time'] = TimeHelper.TimeHelper.getTime() item['update_time'] = TimeHelper.TimeHelper.getTime() CarDBHelper.DataDBHelper.save(table=table, item=item) series_url = series_url_list[i] yield scrapy.Request(series_url, meta={'item': item}, dont_filter=True, callback=self.series_page) def series_page(self, response): itemseries = response.meta['item'] series_id = itemseries['series_id'] item = dict() item['app_id'] = '4' # 车型id vm_id = self.get_vm_id(response) # 车型名字 vm_name = response.xpath('//*/div[@class="table_car_sells"]/div/div/div[1]/a/text()').extract() # 车型url vm_url_list = self.get_vm_url(response) if len(vm_name) > 0: for i in range(len(vm_name)): item['series_id'] = series_id item['vm_id'] = vm_id[i] item['vm_name'] = vm_name[i] item['vm_url'] = vm_url_list[i] table = 'datau_crawler_vehiclemodel' item['create_time'] = TimeHelper.TimeHelper.getTime() item['update_time'] = TimeHelper.TimeHelper.getTime() CarDBHelper.DataDBHelper.save(table=table, item=item) @staticmethod def get_series_url(response): series_url_list = response.xpath('//*/div[@class="item-cont cur"]//*/p[@class="title"]/a/@href').extract() for i in range(len(series_url_list)): series_url_list[i] = 'http://product.auto.163.com'+series_url_list[i] return series_url_list @staticmethod def get_vm_id(response): vm_id = response.xpath('//*/div[@class="table_car_sells"]/div/div/div[1]/a/@href').extract() for i in range(len(vm_id)): vm_id[i] = vm_id[i].replace('/product/', '') vm_id[i] = vm_id[i].replace('.html#ncx00020', '') return vm_id @staticmethod def get_vm_url(response): vm_url_list = response.xpath('//*/div[@class="table_car_sells"]/div/div/div[1]/a/@href').extract() for i in range(len(vm_url_list)): vm_url_list[i] = 'http://product.auto.163.com'+vm_url_list[i] return vm_url_list
[ "spider.Utils.TimeHelper.TimeHelper.getTime", "spider.Utils.CarDBHelper.DataDBHelper.save", "scrapy.Request" ]
[((873, 904), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (902, 904), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((943, 974), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (972, 974), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((991, 1044), 'spider.Utils.CarDBHelper.DataDBHelper.save', 'CarDBHelper.DataDBHelper.save', ([], {'table': 'table', 'item': 'item'}), '(table=table, item=item)\n', (1020, 1044), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((2109, 2140), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (2138, 2140), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((2179, 2210), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (2208, 2210), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((2227, 2280), 'spider.Utils.CarDBHelper.DataDBHelper.save', 'CarDBHelper.DataDBHelper.save', ([], {'table': 'table', 'item': 'item'}), '(table=table, item=item)\n', (2256, 2280), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((3203, 3234), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (3232, 3234), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((3273, 3304), 'spider.Utils.TimeHelper.TimeHelper.getTime', 'TimeHelper.TimeHelper.getTime', ([], {}), '()\n', (3302, 3304), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((3321, 3374), 'spider.Utils.CarDBHelper.DataDBHelper.save', 'CarDBHelper.DataDBHelper.save', ([], {'table': 'table', 'item': 'item'}), '(table=table, item=item)\n', (3350, 3374), False, 'from spider.Utils import TimeHelper, CarDBHelper\n'), ((1144, 1239), 'scrapy.Request', 'scrapy.Request', (['brand_url'], {'meta': "{'item': item}", 'dont_filter': '(True)', 'callback': 'self.brand_page'}), "(brand_url, meta={'item': item}, dont_filter=True, callback=\n self.brand_page)\n", (1158, 1239), False, 'import scrapy\n'), ((2352, 2449), 'scrapy.Request', 'scrapy.Request', (['series_url'], {'meta': "{'item': item}", 'dont_filter': '(True)', 'callback': 'self.series_page'}), "(series_url, meta={'item': item}, dont_filter=True, callback=\n self.series_page)\n", (2366, 2449), False, 'import scrapy\n')]
import requests import pyquery url = 'https://github.com/A1014280203/show-me-the-code' url_list = list() resp = requests.get(url) doc = pyquery.PyQuery(resp.content.decode()) a_tags = doc.find('a') for a in a_tags.items(): if a.attr('href').startswith('http'): url_list.append(a.attr('href')) elif a.attr('href').startswith('/'): url_list.append('https://github.com' + a.attr('href')) print(url_list)
[ "requests.get" ]
[((118, 135), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (130, 135), False, 'import requests\n')]
# standard imports import os import glob import inspect from pprint import pprint import pickle as pkl import copy import pandas as pd import numpy as np from tqdm import tqdm import logging import subprocess import warnings import itertools import matplotlib.pyplot as plt from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord, match_coordinates_sky from astropy.visualization import ZScaleInterval from astropy import units as u from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', AstropyWarning) try: from p_tqdm import p_map _parallel = True except ModuleNotFoundError: print('package "p_tqdm" not installed, cannot do parallel processing') _parallel = False # internal imports import LOSSPhotPypeline import LOSSPhotPypeline.utils as LPPu from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames # setup tqdm for pandas tqdm.pandas() class LPP(object): '''Lick Observatory Supernova Search Photometry Reduction Pipeline''' def __init__(self, targetname, interactive = True, parallel = True, cal_diff_tol = 0.05, force_color_term = False, max_display_phase = 120, wdir = '.', cal_use_common_ref_stars = False, sep_tol = 8, pct_increment = 0.05, in_pct_floor = 0.8, autoloadsave = False): '''Instantiation instructions''' # basics from instantiation self.targetname = targetname.replace(' ', '') self.config_file = targetname + '.conf' self.interactive = interactive self.wdir = os.path.abspath(wdir) # working directory for running (particularly idl code) if (parallel is True) and (_parallel) is True: self.parallel = True else: self.parallel = False self.cal_diff_tol = cal_diff_tol # starting calibration difference tolerance self.abs_cal_tol = 0.2 # do not proceed with the pipeline if in non-interactive mode and cal tol exceeds this self.min_ref_num = 2 # minimum number of ref stars self.pct_increment = pct_increment # amount to increment percentage requirement down by if doing ref check self.in_pct_floor = in_pct_floor # minimum percentage of images ref stars must be in if doing ref check self.checks = ['filter', 'date'] # default checks to perform on image list self.phase_limits = (-60, 2*365) # phase bounds in days relative to disc. date to keep if "date" check performed self.cal_use_common_ref_stars = cal_use_common_ref_stars # override requirement that each image have all ref stars self.sep_tol = sep_tol # radius around target in arcseconds to exclude candidate reference stars from # log file self.logfile = self.targetname.replace(' ', '') + '.log' self.build_log() # sourced from configuration file self.targetra = None self.targetdec = None self.photsub = False self.photmethod = 'all' self.refname = 'TBD' self.photlistfile = 'TBD' # discovery date (mjd) self.disc_date_mjd = None # check if config file exists -- if not then generate template if not os.path.exists(self.config_file): self.log.warn('No configuration file detected, complete template ({}) before proceeding.'.format(self.config_file + '.template')) LPPu.genconf(targetname = self.targetname, config_file = self.config_file + '.template') return # general variables self.filter_set_ref = ['B', 'V', 'R', 'I', 'CLEAR'] self.first_obs = None self.phot_cols = {'3.5p': 3, '5p': 5, '7p': 7, '9p': 9, '1fh': 11, '1.5fh': 13, '2fh': 15, 'psf': 17} self.calmethod = 'psf' # can be set to any key in phot_cols, but recommended is 'psf' self.image_list = [] # list of image file names self.phot_instances = [] # Phot instance for each image self.aIndex = [] # indices of all images in phot_instances self.wIndex = [] # subset of aIndex to work on self.bfIndex = [] # indices of images with unsupported filters self.ucIndex = [] # indices of WCS fail images, even though _c self.bdIndex = [] # indices of images with dates outside of phase boundaries self.pfIndex = [] # indices of photometry failures self.psfIndex = [] # indices of photometry (sub) failures self.cfIndex = [] # indices of calibration failures self.csfIndex = [] # indices of calibration (sub) failures self.noIndex = [] self.nosIndex = [] self.mrIndex = pd.Index([]) # keep track of indices to remove manually self.run_success = False # track run success # calibration variables self.cal_source = 'auto' self.calfile = 'TBD' self.calfile_use = 'TBD' self.force_color_term = force_color_term self.calibration_dir = 'calibration' if not os.path.isdir(self.calibration_dir): os.makedirs(self.calibration_dir) self.radecfile = os.path.join(self.calibration_dir, self.targetname + '_radec.txt') self.radec = None self.cal_IDs = 'all' self.cal_arrays = None self.cal_force_clear = False self.max_display_phase = max_display_phase # num days to show rel to disc for interactive calibration # keep track of counts of color terms self.color_terms = {'kait1': 0, 'kait2': 0, 'kait3': 0, 'kait4': 0, 'nickel1': 0, 'nickel2': 0, 'Landolt': 0} self.color_terms_used = None # load configuration file loaded = False while not loaded: try: self.loadconf() loaded = True except FileNotFoundError: LPPu.genconf(targetname = self.targetname, config_file = self.config_file + '.template') print('Configuration could not be loaded. Template generated: {}'.format(self.config_file + '.template')) response = input('Specify configuration file (*****.conf) or q to quit > ') if 'q' == response.lower(): return else: self.config_file = response # lightcurve variables self.lc_dir = 'lightcurve' self.lc_base = os.path.join(self.lc_dir, 'lightcurve_{}_'.format(self.targetname)) self.lc_ext = {'raw': '_natural_raw.dat', 'bin': '_natural_bin.dat', 'group': '_natural_group.dat', 'standard': '_standard.dat', 'ul': '_natural_ul.dat'} # galaxy subtraction variables self.template_images = None self.templates_dir = 'templates' # data directories self.data_dir = os.path.dirname(self.refname) self.error_dir = self.data_dir + '_sim' # steps in standard reduction procedure self.current_step = 0 self.steps = [self.load_images, self.check_images, self.find_ref_stars, self.match_refcal_stars, self.do_galaxy_subtraction_all_image, self.do_photometry_all_image, self.get_sky_all_image, self.do_calibration, self.get_zeromag_all_image, self.get_limmag_all_image, self.generate_lc, self.write_summary] # save file self.savefile = self.targetname.replace(' ', '') + '.sav' if os.path.exists(self.savefile): if self.interactive: load = input('Load saved state from {}? ([y]/n) > '.format(self.savefile)) else: load = 'n' # run fresh if in non-interactive mode if autoloadsave : load = 'y' # run fresh if in non-interactive mode, unless this keyword is set if 'n' not in load.lower(): self.load() # make sure that the selected calmethod is one of the photmethods if self.calmethod not in self.photmethod: self.log.warn('Calibration method must be one of the photometry methods. Exiting.') return ################################################################################################### # Configuration File Methods ################################################################################################### def loadconf(self): ''' reads config file and sets class attributes accordingly the most accurate accounting of system state is stored in the binary savefile ''' # load config file and try to standardize keys conf = pd.read_csv(self.config_file, header = None, delim_whitespace = True, comment = '#', index_col = 0, squeeze = True).replace(np.nan, '') conf.index = conf.index.str.lower() # read and set values (including the type) self.targetra = float(conf['targetra']) self.targetdec = float(conf['targetdec']) if conf['photsub'].lower() == 'yes': # defaults to False in all other cases self.photsub = True if conf['calsource'].lower() in ['psf','sdss','apass']: # only set if a known source is specified self.cal_source = conf['calsource'].lower() if conf['photmethod'].lower() == 'all': self.photmethod = list(self.phot_cols.keys()) elif ',' not in conf['photmethod'].lower(): if conf['photmethod'].lower().strip() in self.phot_cols.keys(): self.photmethod = [conf['photmethod'].lower().strip()] else: print('{} is not a valid photometry method. Available options are:'.format(conf['photmethod'].strip())) print(', '.join(self.phot_col.keys())) self.photmethod = input('Enter selection(s) > ').strip().replace(' ', '').split(',') else: proposed = conf['photmethod'].strip().split(',') if set(proposed).issubset(set(self.phot_cols.keys())): self.photmethod = proposed else: print('At least one of {} is not a valid photometry method. Available options are:'.format(conf['photmethod'].strip())) print(', '.join(self.phot_cols.keys())) self.photmethod = input('Enter selection(s) > ').strip().replace(' ', '').split(',') self.refname = conf['refname'] self.photlistfile = conf['photlistfile'] if conf['forcecolorterm'].strip() in self.color_terms.keys(): self.force_color_term = conf['forcecolorterm'].strip() self.log.info('{} loaded'.format(self.config_file)) ################################################################################################### # Logging ################################################################################################### def build_log(self): '''starts and sets up log''' self.log = logging.getLogger('LOSSPhotPypeline') self.log.setLevel(logging.DEBUG) # don't duplicate entries if self.log.hasHandlers(): self.log.handlers.clear() # internal logging fh = logging.FileHandler(self.logfile) fh.setFormatter(logging.Formatter('%(asctime)s in %(funcName)s with level %(levelname)s ::: %(message)s')) self.log.addHandler(fh) # if in interactive mode, print log at or above INFO on screen if self.interactive: sh = logging.StreamHandler() sh.setLevel(logging.INFO) sh.setFormatter(logging.Formatter('\n'+'*'*60+'\n%(message)s\n'+'*'*60)) self.log.addHandler(sh) # used by contextlib to log all idl and bash outputs, while hiding from screen self.log.write = lambda msg: self.log.debug('[external] ' + msg) if msg != '\n' else None self.log.info('Welcome to the LOSS Photometry Pypeline (LPP)') ################################################################################################### # UI / Automation Methods ################################################################################################### def __iter__(self): return self def next(self, *args, **kwargs): '''performs next reduction step (arguments for that step can be passed through)''' if self.current_step < len(self.steps): self.steps[self.current_step](*args, **kwargs) self.current_step += 1 self.save() self.summary() else: raise StopIteration def skip(self): '''skip current step''' self.log.info('skipping step: {}'.format(self.steps[self.current_step].__name__)) self.go_to(self.current_step + 1) self.summary() def go_to(self, step = None): '''go to specified step, or choose interactively''' if type(step) == int: self.current_step = step self.summary() else: self.summary() print('\nChoose an option:\n') print('primary reduction steps:') for i, step in enumerate(self.steps): if i == self.current_step: print('{} --- {} (current step)'.format(i, step.__name__)) else: print('{} --- {}'.format(i, step.__name__)) print('\nadditional options:') print('n --- add new image(s) by filename(s)') print('nf --- add new images from file of names') print('p --- plot light curve from file') print('c --- cut points from specific light curve') print('cr --- cut points from specific raw light curve and regenerate subsequent light curves') print('q --- quit\n') resp = input('selection > ').lower() if 'n' == resp: new_images = input('enter name(s) or new images (comma separated) > ') if ',' not in new_images: new_image_list = [new_images] else: new_image_list = [fl.strip() for fl in new_images.split(',')] self.process_new_images(new_image_list = new_image_list) elif 'nf' == resp: new_image_file = input('enter name of new image file > ') self.process_new_images(new_image_file = new_image_file) elif 'p' == resp: lc_file = input('enter light curve file (including relative path) to plot > ') self.plot_lc([lc_file]) elif (resp == 'c') or (resp == 'cr'): lc_file = input('enter light curve file (including relative path) to cut points from > ') regenerate = False if resp == 'cr': regenerate = True self.cut_lc_points(lc_file, regenerate = True) else: try: self.current_step = int(resp) except ValueError: return self.summary() def save(self): '''saves current state of pipeline''' vs = vars(self).copy() vs.pop('steps') vs.pop('log') with open(self.savefile, 'wb') as f: pkl.dump(vs, f) self.log.info('{} written'.format(self.savefile)) def load(self, savefile = None, summary = True): '''re-initializes pipeline from saved state in file''' if savefile is None: savefile = self.savefile with open(savefile, 'rb') as f: vs = pkl.load(f) for v in vs.keys(): s = 'self.{} = vs["{}"]'.format(v, v) exec(s) self.log.info('{} loaded'.format(savefile)) if summary: self.summary() def summary(self): '''print summary of pipeline status''' print('\n' + '*'*60) print('Reduction status for {}'.format(self.targetname)) print('Interactive: {}'.format(self.interactive)) print('Photsub Mode: {}'.format(self.photsub)) print('*'*60 + '\n') if self.current_step == 0: print('Beginning of reduction pipeline.\n') else: print('Previous step: {}'.format(self.steps[self.current_step - 1].__name__)) print(self.steps[self.current_step - 1].__doc__ + '\n') try: print('--> Next step: {}'.format(self.steps[self.current_step].__name__)) print(self.steps[self.current_step].__doc__ + '\n') except IndexError: print('End of reduction pipeline.') self.save() return try: print('----> Subsequent step: {}'.format(self.steps[self.current_step + 1].__name__)) print(self.steps[self.current_step + 1].__doc__ + '\n') except IndexError: print('End of reduction pipeline.') def run(self, skips = []): '''run through reduction steps''' while True: if self.current_step in skips: self.skip() else: try: self.next() except StopIteration: break def show_variables(self): '''prints instance variables''' pprint(vars(self)) def show_methods(self): '''show available methods''' print('method: docstring') for name in LPP.__dict__.keys(): if name[:2] != '__' and name != 'show_methods': print('{}: {}'.format(name, LPP.__dict__[name].__doc__)) ################################################################################################### # Reduction Pipeline Methods ################################################################################################### def load_images(self): '''reads image list file to generate lists of image names and Phot instances''' self.image_list = pd.read_csv(self.photlistfile, header = None, delim_whitespace = True, comment = '#', squeeze = True) if self.interactive: print('\nSelected image files') print('*'*60 + '\n') print(self.image_list) print('\n') self.log.info('image list loaded from {}'.format(self.photlistfile)) self.log.info('generating list of Phot instances from image list') self.phot_instances = self._im2inst(self.image_list) # radec is None if running in order # set indices self.aIndex = self.image_list.index self.wIndex = self.aIndex def check_images(self): '''only keep images that are in a supported filter and without file format issues''' # filter check if 'filter' in self.checks: filter_check = lambda img: True if img.filter.upper() in self.filter_set_ref else False self.log.info('checking filters') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(filter_check) self.bfIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images due to unsupported filter'.format(len(self.bfIndex))) self.wIndex = self.wIndex.drop(self.bfIndex) # uncal check if 'uncal' in self.checks: cal_check = lambda img: True if ('RADECSYS' not in img.header) else (False if (img.header['RADECSYS'] == '-999') else True) self.log.info('checking images for WCS') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(cal_check) self.ucIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images for failed WCS'.format(len(self.ucIndex))) self.wIndex = self.wIndex.drop(self.ucIndex) if 'date' in self.checks: if self.disc_date_mjd is None: self.log.warn('discovery date not set, cannot do date check') return date_check = lambda img: True if ((img.mjd >= (self.disc_date_mjd + self.phase_limits[0])) and (img.mjd <= (self.disc_date_mjd + self.phase_limits[1]))) else False self.log.info('checking phases') bool_idx = self.phot_instances.loc[self.wIndex].progress_apply(date_check) self.bdIndex = self.wIndex[~pd.Series(bool_idx)] self.log.info('dropping {} images that are outside of phase bounds'.format(len(self.bdIndex))) self.wIndex = self.wIndex.drop(self.bdIndex) # if there are none left, end pipeline if len(self.wIndex) == 0: self.log.warn('all images removed by checks --- cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return def find_ref_stars(self): '''identify all suitable stars in ref image, compute ra & dec, write radecfile, store in instance''' # if radecfile already exists, no need to do it if os.path.exists(self.radecfile): self.log.info('radecfile already exists, loading only') self.radec = pd.read_csv(self.radecfile, delim_whitespace=True, skiprows = (0,1,3,4,5), names = ['RA','DEC']) # set radec in Phot instances for img in self.phot_instances.loc[self.wIndex]: img.radec = self.radec return if self.refname == '' : self.log.warn('refname has not been assigned, please do it first!') return # instantiate object to manage names ref = Phot(self.refname, calmethod = self.calmethod) # use sextractor to extract all stars to be used as refstars sxcp = os.path.join(os.path.dirname(inspect.getfile(LOSSPhotPypeline)), 'conf', 'sextractor_config') config = os.path.join(sxcp, 'kait.sex') filt = os.path.join(sxcp, 'gauss_2.0_5x5.conv') par = os.path.join(sxcp, 'kait.par') star = os.path.join(sxcp, 'default.nnw') cmd_list = ['sex', self.refname, '-c', config, '-PARAMETERS_NAME', par, '-FILTER_NAME', filt, '-STARNNW_NAME', star, '-CATALOG_NAME', ref.sobj, '-CHECKIMAGE_NAME', ref.skyfit] p = subprocess.Popen(cmd_list, stdout = subprocess.PIPE, stderr = subprocess.PIPE, universal_newlines = True) stdout, stderr = p.communicate() self.log.debug(stdout) self.log.debug(stderr) # make sure process succeeded if not os.path.exists(ref.sobj): self.log.warn('SExtractor failed --- no sobj file generated, check!') return # read sobj file of X_IMAGE and Y_IMAGE columns, as well as MAG_APER for sort with fits.open(ref.sobj) as hdul: data = hdul[1].data # sort according to magnitude, from small/bright to hight/faint data.sort(order = 'MAG_APER') imagex = data.X_IMAGE imagey = data.Y_IMAGE # transform to RA and DEC using ref image header information cs = WCS(header = ref.header) imagera, imagedec = cs.all_pix2world(imagex, imagey, 0) # remove any identified "stars" that are too close to target coords = SkyCoord(imagera, imagedec, unit = (u.deg, u.deg)) target_coords = SkyCoord(self.targetra, self.targetdec, unit = (u.deg, u.deg)) offsets = coords.separation(target_coords).arcsecond imagera = imagera[offsets > self.sep_tol] imagedec = imagedec[offsets > self.sep_tol] # write radec file with open(self.radecfile, 'w') as f: f.write('TARGET\n') f.write(' RA DEC\n') f.write(' {:.7f} {:.7f}\n'.format(self.targetra, self.targetdec)) f.write('\nREFSTARS\n') f.write(' RA DEC\n') for i in range(len(imagera)): f.write(' {:.7f} {:.7f}\n'.format(imagera[i], imagedec[i])) self.log.info('{} written'.format(self.radecfile)) self.radec = pd.read_csv(self.radecfile, delim_whitespace=True, skiprows = (0,1,3,4,5), names = ['RA','DEC']) # set radec in Phot instances for img in self.phot_instances.loc[self.wIndex]: img.radec = self.radec def match_refcal_stars(self): '''get calibration catalog, and match stars to ref stars -- only do if needed''' if os.path.exists(os.path.join(self.calibration_dir, self.calfile)) is False: # get calibration catalog catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.get_cal(method = self.cal_source) self.calfile = catalog.cal_filename self.cal_source = catalog.cal_source self.log.info('calibration data sourced') self.log.info('matching ref stars to catalog stars and selecting 40 brightest') self.get_cal_info() radec = SkyCoord(self.radec.loc[1:, 'RA'], self.radec.loc[1:, 'DEC'], unit = (u.deg, u.deg)) cal_cat = pd.read_csv(os.path.join(self.calibration_dir, self.calfile), delim_whitespace = True) cal = SkyCoord(cal_cat.loc[:, 'ra'], cal_cat.loc[:, 'dec'], unit = (u.deg, u.deg)) idx, d2d, d3d = match_coordinates_sky(cal, radec) cal_use = cal_cat.iloc[d2d.arcsecond < 5] # calibration stars that match within 5" cal_use.index = self.radec.loc[1:].iloc[idx[d2d.arcsecond < 5]].index - 1 # don't count sn and align indices with radecfile cal_use.insert(0, 'starID', cal_use.index) cal_use = cal_use.sort_values(by = 'r').drop_duplicates(subset = 'starID', keep = 'first') self.cal_use = cal_use.iloc[:40] # select top 40 brightest # write "use" files with open(os.path.join(self.calibration_dir, self.calfile_use), 'w') as outfile: outfile.write(self.cal_use.to_string(index = False)) catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.cal_filename = self.calfile_use catalog.cal_source = self.cal_source catalog.to_natural() self.cal_arrays = catalog.get_cal_arrays(index_order = self.cal_use.index) # show ref stars (and cut if interactive mode) if self.interactive: self._display_refstars(icut = True) else: self._display_refstars() def do_galaxy_subtraction_all_image(self, subreg = 0.9): '''performs galaxy subtraction on all selected image files''' if not self.photsub: self.log.warn('not in photsub mode, skipping galaxy subtraction') return self.log.info('starting galaxy subtraction') if self.template_images is None: self.load_templates() if self.template_images is None: self.log.warn('could not get suitable template images, running without galaxy subtraction') self.photsub = False return # set up for parallelization ti = self.template_images fn = lambda img: img.galaxy_subtract(ti, subreg = subreg) # do galaxy subtraction in the appropriate mode if self.parallel is True: res = p_map(fn, self.phot_instances.loc[self.wIndex].tolist()) else: res = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): res.append(fn(img)) # extract results, log, and determine if successful res = pd.DataFrame(res, columns = ['success', 'log']) res['log'].apply(lambda log_entry: self._log_idl(*log_entry)) if not res['success'].all(): self.log.warn('photsub failed (probably b/c of missing templates), running without galaxy subtraction') self._get_template_candidates() self.photsub = False self.log.info('galaxy subtraction done') def do_photometry_all_image(self, forcesky = False): '''performs photometry on all selected image files''' self.log.info('starting photometry (galsub: {})'.format(self.photsub)) # set up for parallelization ps = self.photsub fn = lambda img: img.do_photometry(photsub = ps, forcesky = forcesky) # do photometry in the appropriate mode if self.parallel is True: res = p_map(fn, self.phot_instances.loc[self.wIndex].tolist()) else: res = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): res.append(fn(img)) # extract results, log, and remove failures res = pd.DataFrame(res, columns = ['unsub', 'sub', 'log']) res['log'].apply(lambda log_entry: self._log_idl(*log_entry)) self.pfIndex = self.wIndex[~res['unsub']] self.log.warn('photometry failed on {} out of {} images'.format(len(self.pfIndex), len(self.wIndex))) if self.photsub is False: self.wIndex = self.wIndex.drop(self.pfIndex) else: self.psfIndex = self.wIndex[~res['sub']] self.log.warn('photometry (sub) failed on {} out of {} images'.format(len(self.psfIndex), len(self.wIndex))) self.wIndex = self.wIndex.drop(self.pfIndex.intersection(self.psfIndex)) if len(self.wIndex) == 0: self.log.warn('all images failed, cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return self.log.info('photometry done') def get_sky_all_image(self): '''get and set sky value for every phot instance''' self.log.info('getting sky value for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.get_sky()) def calibrate(self, final_pass = False): '''performs calibration on all images included in photlistfile, using outputs from do_photometry_all_image''' if not final_pass: self.log.info('performing calibration') else: self.log.info('doing final calibration') # reset trackers self.cfIndex = [] self.csfIndex = [] # calibration list cal_list = [] # iterate through image list and execute calibration script on each for idx, img in tqdm(self.phot_instances.loc[self.wIndex].iteritems(), total = len(self.wIndex)): # set photsub mode appropriately if self.photsub is False: ps = False elif (self.photsub is True) and (idx in self.psfIndex): ps = False else: ps = True # do calibration phot = img.calibrate(self.cal_IDs, self.cal_arrays[img.color_term].loc[:, img.filter.upper()], self.cal_arrays[img.color_term].loc[:, 'E'+img.filter.upper()], sub = ps, write_dat = final_pass) phot.rename(columns = {self.calmethod: 'Mag_obs'}, inplace = True) # add comparison information phot.insert(0, 'Filter', img.filter.upper()) phot.loc[self.cal_IDs, 'RA_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, 'RA'] phot.loc[self.cal_IDs, 'DEC_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, 'DEC'] phot.loc[self.cal_IDs, 'Mag_cal'] = self.cal_arrays[img.color_term].loc[self.cal_IDs, img.filter.upper()] phot.loc[self.cal_IDs, 'RA_diff'] = np.abs(phot.loc[self.cal_IDs, 'RA_obs'] - phot.loc[self.cal_IDs, 'RA_cal']) phot.loc[self.cal_IDs, 'DEC_diff'] = np.abs(phot.loc[self.cal_IDs, 'DEC_obs'] - phot.loc[self.cal_IDs, 'DEC_cal']) cal_list.append(phot.loc[self.cal_IDs, ['Filter', 'RA_diff', 'DEC_diff', 'Mag_obs', 'Mag_cal', 'ref_in', 'system']]) # check for success if in final pass mode if final_pass: if (os.path.exists(img.psfdat) is False): self.cfIndex.append(idx) if (self.photsub is True) and (os.path.exists(img.psfsubdat) is False): self.csfIndex.append(idx) # organize calibrators and compute globabl metrics self.calibrators = pd.concat([df.loc[self.cal_IDs, :] for df in cal_list], keys = self.wIndex) self.calibrators['Mag_diff'] = self.calibrators['Mag_obs'] - self.calibrators['Mag_cal'] # remove failures if in final pass mode if final_pass: self.cfIndex = pd.Index(self.cfIndex) self.csfIndex = pd.Index(self.csfIndex) self.log.warn('calibration failed on {} out of {} images'.format(len(self.cfIndex), len(self.wIndex))) self.wIndex = self.wIndex.drop(self.cfIndex) # processing based only on non-subtracted images if self.photsub is True: self.log.warn('calibration (sub) failed on {} out of {} images'.format(len(self.csfIndex), len(self.wIndex))) if len(self.wIndex) == 0: self.log.warn('all images failed, cannot proceed') self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return def do_calibration(self, use_filts = 'all', sig = 3, min_cut_diff = 0.5, quality_cuts = True): '''check calibration and make cuts as needed''' self.log.info('performing calibration') # get filters used self.filters = set(self.phot_instances.loc[self.wIndex].apply(lambda img: img.filter.upper())) if use_filts == 'all': use_filts = self.filters if self.cal_IDs == 'all': self.cal_IDs = self.cal_arrays['kait4'].index # choice of color term here is arbitrary # iterate until acceptable tolerance is reached accept_tol = False skip_calibrate = False iter_cnt = -1 while not accept_tol: iter_cnt += 1 # run calibration if not skip_calibrate: self.calibrate() skip_calibrate = False # find indices (img, cal_ID) where Mag_obs failed to measure locs = self.calibrators.loc[self.calibrators['Mag_obs'].isnull(), :].index # pct of succ meas as a function of img img_succ = (1 - locs.levels[0][locs.labels[0]].value_counts() / len(self.cal_IDs)) # pct of succ meas as a function of cal_ID cal_succ = (1 - locs.levels[1][locs.labels[1]].value_counts() / len(self.wIndex)) # run minimal quality cuts if requested --- these are the first and second iterations if (quality_cuts is True) and (iter_cnt < 2): # remove any cal IDs or images with a very low success rate ID_cut = cal_succ.index[cal_succ < 0.4] if (len(ID_cut) > 0) and (iter_cnt == 0): self.cal_IDs = self.cal_IDs.drop(ID_cut) self.log.info('cut ID(s): {} from minimal quality cut'.format(ID_cut)) continue elif iter_cnt == 0: self.log.info('all IDs passed minimal quality cut') iter_cnt = 1 img_cut = img_succ.index[img_succ < 0.4] if (len(img_cut) > 0) and (iter_cnt == 1): self.manual_remove(img_cut) self.log.info('cut image(s): {} from minimal quality cut'.format(img_cut)) continue elif iter_cnt == 1: self.log.info('all images passed minimal quality cut') iter_cnt = 2 elif iter_cnt < 2: iter_cnt = 2 # cut to use common ref stars if requested --- these is the fourth iteration # iteration 3 is used to remove outlier images before applying this cut if (self.cal_use_common_ref_stars is True) and (iter_cnt == 3): self.log.info('finding common ref stars') accept = False cnt = 0 while not accept: current_pct = 1 - cnt * self.pct_increment tmp = cal_succ[cal_succ >= current_pct] if len(tmp) > self.min_ref_num: self.log.info('{} ref stars are in at least {} pct of images, using these'.format(len(tmp), 100*current_pct)) accept = True elif current_pct < self.in_pct_floor: self.log.warn('reached minimum tolerance for pct image including ref stars, quitting') self.run_succss = False self.current_step = self.steps.index(self.write_summary) - 1 return cnt += 1 if len(tmp) < len(self.cal_IDs): self.cal_IDs = tmp.index continue # instantiate trackers cut_list = [] # store IDs that will be cut nan_list = [] # IDs of NaN to be cut immediately full_list = [] bad_img_list = [] # indices of images that are <sig> outliers single_cut_idx = None tmp_max = self.cal_diff_tol df_list = [] # group by filter and perform comparison for filt, group in self.calibrators.groupby('Filter', sort = False): # use specific filters if specified if filt not in use_filts: continue # if clear is not the only filter, skip it in comparison unless forced to use if (len(self.filters) > 1) and ('CLEAR' in self.filters) and (filt == 'CLEAR') and (not self.cal_force_clear): continue # compute metrics df = group.median(level = 1) df.loc[:, 'pct_im'] = group['Mag_obs'].notnull().sum(level=1) / len(group['Mag_obs'].groupby(level=0)) df.loc[:, 'std_obs'] = group.std(level = 1).loc[:, 'Mag_obs'] df = df.sort_index() df.loc[:, 'Diff'] = np.abs(df.loc[:, 'Mag_diff']) # identify possible exclusions cut_list.extend(list(df.index[df.loc[:, 'Diff'] > self.cal_diff_tol])) nan_list.extend(list(df.index[df.loc[:, 'Diff'].isnull()])) if len(nan_list) > 0: break full_list = list(df.index) # ok to overwrite b/c same each time ## exclude outlier images by iterating through all cal IDs and finding images of <sig> outliers for id in self.cal_IDs: selection = self.calibrators.loc[self.calibrators['Filter'] == filt, :].loc[(self.wIndex, id),['Mag_obs', 'system']] for sys, grp in selection.groupby('system', sort = False): grp = grp.loc[grp['Mag_obs'].notnull(), :] mags = grp.loc[:, 'Mag_obs'].values index = grp.index.levels[0][grp.index.labels[0]] # image indices if len(mags) > 0: bad_img_list.extend(index[np.abs(mags - mags.mean()) > np.max([min_cut_diff, sig * mags.std()])]) if self.interactive: print('\nFilter: {}'.format(filt)) print('*'*60) rnd = pd.Series([2,4,4,3,3,3,3], index = ['pct_im', 'RA_diff', 'DEC_diff', 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff']) print(df.loc[:, ['pct_im', 'RA_diff', 'DEC_diff', 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff']].round(rnd)) else: # find index and value of maximum diff maxi = df.loc[:, 'Diff'].idxmax() maxd = df.loc[maxi, 'Diff'] if maxd > tmp_max: single_cut_idx = maxi tmp_max = maxd df.insert(0, 'Filter', filt) df_list.append(df) cut_list = list(set(cut_list)) bad_img_list = list(set(bad_img_list)) # remove NaN if len(nan_list) > 0: self.log.info('cutting ID(s) {} for NaN'.format(', '.join([str(i) for i in nan_list]))) self.cal_IDs = self.cal_IDs.drop(nan_list) continue # make cuts to refstars as needed if self.interactive: # show ref stars and calibrated light curves fig, ax = plt.subplots(1, 2, figsize = (12, 6)) self._display_refstars(ax = ax[0], display = True) if self.photsub: r = self.phot_instances.loc[self.wIndex].apply(lambda img: pd.Series([img.mjd, img.filter, img.phot_sub.loc[-1, self.calmethod], img.phot_sub.loc[-1, self.calmethod + '_err'], img.color_term])) else: r = self.phot_instances.loc[self.wIndex].apply(lambda img: pd.Series([img.mjd, img.filter, img.phot.loc[-1, 'Mag_obs'], img.phot.loc[-1, self.calmethod + '_err'], img.color_term])) r.columns = ('mjd', 'filter', 'mag', 'emag', 'system') p = LPPu.plotLC(offset_scale = 2) for idx, ct in enumerate(set(r['system'])): fs = 'full' if 'nickel' in ct: fs = 'none' for filt in set(r['filter']): selector = (r['filter'] == filt) & r['mag'].notnull() & (r['system'] == ct) if (self.max_display_phase != 0) and (self.max_display_phase != 'all'): selector = selector & (r['mjd'] - r['mjd'].min() < self.max_display_phase) line, = ax[1].plot(r.loc[selector, 'mjd'], r.loc[selector, 'mag'] + p._offset(filt), c = p._color(filt), marker = ['o', 'D', 's', 'v', '^'][idx], linestyle = 'None', picker = 3, label = '{},{}'.format(filt, ct), fillstyle = fs) ax[1].invert_yaxis() ax[1].set_xticks(()) ax[1].set_yticks(()) x0, x1 = ax[1].get_xlim() y0, y1 = ax[1].get_ylim() ax[1].set_aspect(np.abs((x1-x0)/(y1-y0))) plt.tight_layout() def onpick(event): ind = event.ind[0] filt, sys = event.artist._label.split(',') row = r.loc[(r['filter'] == filt) & (r['system'] == sys) & (r['mjd'] == event.artist._x[ind]), :] id = row.index[0] cal = self.phot_instances.loc[id].phot.loc[self.cal_IDs, 'Mag_obs'] print('\nClicked Point Information:') print('\tImage ID: {}'.format(id)) print('\tImage Name: {}'.format(self.image_list.loc[id])) print('\tMJD: {:.1f}'.format(row['mjd'].item())) print('\tMag: {:.1f} pm {:.1f}'.format(row['mag'].item(), row['emag'].item())) print('\tFilter: {}'.format(filt)) print('\tSystem: {}'.format(sys)) print('\tcal IDs used: {}/{}'.format(len(cal.loc[cal.notnull()]), len(cal))) print('\tfailed cal IDs: {}'.format(', '.join([str(i) for i in sorted(cal.loc[cal.isnull()].index)]))) print('\nChoice >') cid = fig.canvas.mpl_connect('pick_event', lambda event: onpick(event)) print('*'*60) nshow = np.min([len(cal_succ), len(img_succ), 10]) if nshow > 0: print('\nSuccess Rate Per (worst {})'.format(nshow)) print('{:<12} {:<12}'.format('cal ID', 'image')) for c, i in itertools.zip_longest(cal_succ.iloc[:nshow].index, img_succ.iloc[:nshow].index): print('{:<4} {:<7} {:<4} {:<7}'.format(c, round(cal_succ.loc[c], 3), i, round(img_succ.loc[i], 3))) # warn if any individual images have too few ref stars ref_counts = self.calibrators['Mag_obs'].notnull().sum(level = 0) if (ref_counts < self.min_ref_num).sum() > 0: print('\nWarning - the following image(s) have below the minimum number of ref stars ({}):'.format(self.min_ref_num)) print(ref_counts.index[ref_counts < self.min_ref_num]) if (ref_counts == self.min_ref_num).sum() > 0: print('\nWarning - the following image(s) have the minimum number of ref stars ({}):'.format(self.min_ref_num)) print(ref_counts.index[ref_counts == self.min_ref_num]) print('\nDo not cut the following ID(s) to avoid falling below the minimum:') idx_selector = (ref_counts.index[ref_counts == self.min_ref_num], self.cal_IDs) num_affected = self.calibrators.loc[idx_selector, 'Mag_obs'].notnull().sum(level=1) print(num_affected.index[num_affected > 0].sort_values()) if len(bad_img_list) > 0: print('\nWarning - the following image(s) are outliers:') print(bad_img_list) print('\nAt tolerance {}, {} ID(s) (out of {}) will be cut'.format(self.cal_diff_tol, len(cut_list), len(full_list))) print(sorted(cut_list)) print('\nSelect an option below (or click on light curve points to get info):') print('\tAccept cuts with tolerance of {} mag ([y])'.format(self.cal_diff_tol)) print('\tAdjust tolerance [enter float between 0 and 1]') print('\tCut calibration star(s) by ID(s) [comma separated list of IDs to cut]') print('\tDisplay image ["d" followed by index (e.g. d162)]') print('\tCut image(s) ["c" followed by comma separated indexes (e.g. c162,163)]') print('\tView measured mags for specific cal star ["<passband>" followed by cal ID (e.g. B5)]') response = input('\nChoice > '.format(self.cal_diff_tol)) fig.canvas.mpl_disconnect(cid) plt.ioff() plt.close() if (response == '') or ('y' in response.lower()): self.cal_IDs = self.cal_IDs.drop(cut_list) accept_tol = True elif '.' in response: self.cal_diff_tol = float(response) skip_calibrate = True elif response.lower()[0] == 'd': self.compare_image2ref(int(response[1:])) skip_calibrate = True elif (response.lower()[0] == 'c') and (response.lower()[1] != 'l'): self.manual_remove([int(i) for i in response[1:].split(',')]) elif response[0] in self.filters: self._display_obs_cal_mags(response[0], int(response[1:])) skip_calibrate = True elif response[:5].lower() == 'clear': self._display_obs_cal_mags(response[:5], int(response[5:])) else: self.cal_IDs = self.cal_IDs.drop([int(i) for i in response.split(',')]) elif (len(bad_img_list) > 0): self.log.info('removing {} outlier image(s): {}'.format(len(bad_img_list), bad_img_list)) self.manual_remove(bad_img_list) elif single_cut_idx is None: accept_tol = True elif len(full_list) > self.min_ref_num: self.log.info('cutting ID {} for exceeding tolerance and re-running calibration'.format(single_cut_idx)) self.cal_IDs = self.cal_IDs.drop([single_cut_idx]) elif self.cal_diff_tol <= self.abs_cal_tol: self.log.info('increasing tolerance to {} and re-running calibration'.format(self.cal_diff_tol)) self.cal_diff_tol += 0.05 else: self.log.warn('calibration tolerance exceeds {}, cannot proceed'.format(self.abs_cal_tol)) self.run_success = False self.current_step = self.steps.index(self.write_summary) - 1 return with open(os.path.join(self.calibration_dir, 'final_ref_stars.dat'), 'w') as outfile: outfile.write(pd.concat([df.loc[self.cal_IDs, :] for df in df_list], sort = False).to_string()) # make final pass on calibration to track failures and write .dat files self.calibrate(final_pass = True) # write final "use" files with open(os.path.join(self.calibration_dir, self.calfile_use), 'w') as outfile: outfile.write(self.cal_use.loc[self.cal_IDs, :].to_string(index = False)) catalog = LPPu.astroCatalog(self.targetname, self.targetra, self.targetdec, relative_path = self.calibration_dir) catalog.cal_filename = self.calfile_use catalog.cal_source = self.cal_source catalog.to_natural() # show new ref stars plt.ioff() self._display_refstars() def get_zeromag_all_image(self): '''get and set zeromag for every phot instance''' self.log.info('getting zeromag for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.get_zeromag()) def get_limmag_all_image(self): '''get and set limiting mag for every phot instance''' self.log.info('getting limiting mag for each image') self.phot_instances.loc[self.wIndex].progress_apply(lambda img: img.calc_limmag()) def generate_raw_lcs(self, color_term, photsub_mode = False): '''builds raw light curve files from calibrated results''' # light curve containers columns = (';; MJD','etburst', 'mag', '-emag', '+emag', 'limmag', 'filter', 'imagename') lc = {name: [] for name in columns} lcs = {m: copy.deepcopy(lc) for m in self.photmethod} # limiting mag containers lm = {name: [] for name in columns} lms = {m: copy.deepcopy(lm) for m in self.photmethod} # iterate through files and extract LC information for idx, img in self.phot_instances.loc[self.wIndex].iteritems(): # immediately skip if not the appropriate color term unless being forced if (color_term != img.color_term) and (self.force_color_term is False): continue # skip failed images if (idx in self.cfIndex) and (photsub_mode is False): continue elif ((idx in self.psfIndex) or (idx in self.csfIndex)) and (photsub_mode is True): continue # read photometry results cols = (0,) + sum(((self.phot_cols[m], self.phot_cols[m] + 1) for m in self.photmethod), ()) col_names = ('ID',) + sum(((m + '_mag', m + '_err') for m in self.photmethod), ()) if photsub_mode is False: dat = img.psfdat else: dat = img.psfsubdat d = pd.read_csv(dat, header = None, delim_whitespace = True, comment = ';', usecols=cols, names = col_names) # detect if no target in file if 1 not in d['ID'].values: self.log.warn('no object in calibrated photometry file: {}'.format(dat)) if photsub_mode is False: self.noIndex.append(idx) else: self.nosIndex.append(idx) # setup columns for each raw file for m in self.photmethod: if 1 not in d['ID'].values: continue # skip these ones mag = d[d['ID'] == 1][m + '_mag'].item() err = d[d['ID'] == 1][m + '_err'].item() if np.isnan(mag): record = lms[m] else: record = lcs[m] record['mag'].append(round(mag,5)) record['-emag'].append(round(mag - err,5)) record['+emag'].append(round(mag + err,5)) record[';; MJD'].append(round(img.mjd, 6)) record['etburst'].append(round(img.exptime / (60 * 24), 5)) # exposure time in days record['filter'].append(img.filter.upper()) record['imagename'].append(img.cimg) record['limmag'].append(round(img.limmag, 5)) # write raw lc files for m in self.photmethod: lc_raw_name = self._lc_fname(color_term, m, 'raw', sub = photsub_mode) lc_raw = pd.DataFrame(lcs[m]) lc_raw.to_csv(lc_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') lm_raw_name = self._lc_fname(color_term, m, 'ul', sub = photsub_mode) lm_raw = pd.DataFrame(lms[m]) lm_raw.to_csv(lm_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') p = LPPu.plotLC(lc_file = lc_raw_name, lm_file = lm_raw_name, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) def generate_bin_lc(self, infile, outfile): '''wraps IDL lightcurve binning routine''' idl_cmd = '''idl -e "lpp_dat_res_bin, '{}', '{}', OUTFILE='{}', /OUTPUT"'''.format(infile, outfile, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) def generate_group_lc(self, infile, outfile): '''wraps IDL lightcurve grouping routine''' idl_cmd = '''idl -e "lpp_dat_res_group, '{}', '{}', OUTFILE='{}'"'''.format(infile, outfile, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) if (', not doing group' in stdout) or (os.path.exists(outfile) is False): return False else: return True def generate_final_lc(self, color_term, infile, outfile): '''wraps IDL routine to convert from natural system''' idl_cmd = '''idl -e "lpp_invert_natural_stand_objonly, '{}', '{}', OUTFILE='{}', /OUTPUT"'''.format(infile, color_term, outfile) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) if not os.path.exists(outfile): return False else: return True def raw2standard_lc(self, infile): '''wrap intermediate steps that transform light curves from "raw" to "standard"''' # assign convenience variables tmp = infile.split('_') ct = tmp[tmp.index('natural') - 2] # get color term m = tmp[tmp.index('natural') - 1] # get phot aperture binfile = infile.replace('raw', 'bin') groupfile = binfile.replace('bin', 'group') lc = groupfile.replace('natural_group', 'standard') # do intermediate light curve steps self.generate_bin_lc(infile, binfile) grp_result = self.generate_group_lc(binfile, groupfile) if grp_result is False: self.log.warn('no groupfile generated, skipping') return False, False std_result = self.generate_final_lc(ct, groupfile, lc) if std_result is False: self.log.warn('no standard lc generated, skipping') return True, False # plot p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) return True, True def get_color_term_used(self): '''get dictionary counting use of each color term''' ct = self.phot_instances.loc[self.wIndex].apply(lambda img: img.color_term) self.color_terms_used = dict(ct.value_counts()) def generate_lc(self, sub = False): '''performs all functions to transform image photometry into calibrated light curve of target''' self.log.info('generating and plotting light curves (sub mode: {})'.format(sub)) # set up file system if not os.path.isdir(self.lc_dir): os.makedirs(self.lc_dir) self.get_color_term_used() # generate raw light curves self.log.info('generating raw light curves for the following color terms: {}'.format(', '.join(self.color_terms_used.keys()))) for ct in tqdm(self.color_terms_used.keys()): self.generate_raw_lcs(ct, photsub_mode = sub) # generate intermediate and final light curves self.log.info('generating "standard" light curves') for m in tqdm(self.photmethod): all_nat = [] all_std = [] for ct in self.color_terms_used.keys(): group_succ, standard_succ = self.raw2standard_lc(self._lc_fname(ct, m, 'raw', sub = sub)) # only add group and standard if group has been updated if group_succ is True: all_nat.append((ct, self._lc_fname(ct, m, 'group', sub = sub))) if standard_succ is True: all_std.append(self._lc_fname(ct, m, 'standard', sub = sub)) # make "all" light curves lc_nat = self._lc_fname('all', m, 'group', sub = sub) concat_list = [] for row in all_nat: tmp = pd.read_csv(row[1], delim_whitespace = True) tmp.insert(3, 'SYSTEM', row[0]) concat_list.append(tmp) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc_nat, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc_nat, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) lc = self._lc_fname('all', m, 'standard', sub = sub) concat_list = [] for fl in all_std: concat_list.append(pd.read_csv(fl, delim_whitespace = True)) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) self.log.info('done with light curves') self.run_success = True # use recursion to handle sub if needed if (self.photsub is True) and (sub is False): self.generate_lc(sub = True) def get_errors(self, method = 'sn6', kpix_rad = 20, skip_photsub = False, photsub = 'auto', ps = 0.7965, host_ra = None, host_dec = None, rseed = None): '''inject artificial stars of same mag as SN at each epoch and compute mags''' self.log.info('doing artificial star simulation to determine errors') # set seed if rseed is not None: np.random.seed(rseed) # make directory for new generated data if not os.path.exists(self.error_dir): os.makedirs(self.error_dir) if (photsub == 'auto') or (type(photsub) != type(True)): photsub = self.photsub # hard coded n_stars = 30 # compute coords of n_stars around host def handle_img(img, ret_xy = False, method = method): cs = WCS(header = img.header) # get pix coords of sn sn_x, sn_y = cs.all_world2pix(self.targetra, self.targetdec, 0) # select appropriate method if method == 'snhost': # ring of radius equal to distance between sn and nucleus n_stars = 10 host_x, host_y = cs.all_world2pix(host_ra, host_dec, 0) theta_sn = np.arctan2(sn_y - host_y, sn_x - host_x) # angle relative to hose # coordinates of artificial stars dtheta = np.linspace(2*np.pi/n_stars, 2*np.pi - 2*np.pi/n_stars, n_stars) x = host_x + np.sqrt((sn_y - host_y)**2 + (sn_x - host_x)**2) * np.cos(theta_sn + dtheta) y = host_y + np.sqrt((sn_y - host_y)**2 + (sn_x - host_x)**2) * np.sin(theta_sn + dtheta) elif method == 'squares': # square distribution as discussed w/ zwk and TdG x_comp = np.cos(np.linspace(np.pi/4, 2*np.pi - np.pi / 4, 4)) x = sn_x + (kpix_rad * ps / img.pixscale) * np.concatenate([x_comp, 2 * x_comp, 2 * np.cos(np.pi/4) * np.array([1,0,-1,0])]) y_comp = np.sin(np.linspace(np.pi/4, 2*np.pi - np.pi / 4, 4)) y = sn_y + (kpix_rad * ps / img.pixscale) * np.concatenate([y_comp, 2 * y_comp, 2 * np.sin(np.pi/4) * np.array([0,1,0,-1])]) n_stars = len(x) else: # preferred method of concentric hexagons with radius increments of 20 KAIT pixels dtheta = np.linspace(0, 2*np.pi, 7)[:-1] x = sn_x + (kpix_rad * ps / img.pixscale) * np.concatenate((np.cos(dtheta), 2 * np.cos(dtheta + np.pi/6), 3 * np.cos(dtheta), 4 * np.cos(dtheta + np.pi/6), 5 * np.cos(dtheta))) y = sn_y + (kpix_rad * ps / img.pixscale) * np.concatenate((np.sin(dtheta), 2 * np.sin(dtheta + np.pi/6), 3 * np.sin(dtheta), 4 * np.sin(dtheta + np.pi/6), 5 * np.sin(dtheta))) n_stars = len(x) # if just want pixel coords, return them along with WCS instance if ret_xy is True: return cs, x, y # get magnitude of sn at this epoch mag = np.nan try: if photsub is False: mag = img.phot_raw.loc[-1, self.calmethod] emag = img.phot_raw.loc[-1, self.calmethod + '_err'] else: mag = img.phot_sub_raw.loc[-1, self.calmethod] emag = img.phot_sub_raw.loc[-1, self.calmethod + '_err'] except AttributeError: pass if (np.isnan(mag)) or (np.isinf(mag)): return False, None # if random seed given, injected mags drawn from a gaussian of width set by uncertainty if rseed is None: inj_mags = [mag]*n_stars else: inj_mags = np.random.normal(mag, emag, n_stars).tolist() assert n_stars == len(x) # IDL call leads to new images in new directory idl_cmd = '''idl -e "lpp_sim_fake_star, '{}', {}, {}, {}, OUTFILE='{}', PSFFITARRFILE='{}', /USENATURALMAG"'''.format(img.cimg, x.tolist(), y.tolist(), inj_mags, os.path.join(self.error_dir, os.path.basename(img.cimg)), img.psffitarr) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) # do checks on success then return if os.path.exists(os.path.join(self.error_dir, os.path.basename(img.cimg))): return True, inj_mags else: return False, None self.log.info('creating images with artificial stars') succ = [] mags = [] for img in tqdm(self.phot_instances.loc[self.wIndex].tolist()): s, m = handle_img(img) succ.append(s) if m is not None: mags.append(m) # drop images with no mag self.wIndex = self.wIndex[pd.Series(succ)] # instantiate pipeline instance and inherit many parent attributes sn = LPP(self.targetname, interactive = False, parallel = self.parallel, cal_diff_tol = self.cal_diff_tol, force_color_term = self.force_color_term, wdir = self.wdir, cal_use_common_ref_stars = self.cal_use_common_ref_stars, autoloadsave = False, sep_tol = self.sep_tol) vs = vars(self).copy() vs.pop('steps') vs.pop('log') vs.pop('phot_instances') for v in vs.keys(): s = 'sn.{} = vs["{}"]'.format(v, v) exec(s) sn.interactive = False self.log.info('running pipeline steps on images with artificial stars') # change image paths and load instances sn.image_list = sn.image_list.apply(lambda fl: os.path.join(self.error_dir, os.path.basename(fl))) sn.phot_instances = sn._im2inst(sn.image_list.loc[sn.wIndex], mode = 'quiet') # include artificial stars in radec cs, x, y = handle_img(Phot(self.refname, calmethod = self.calmethod), ret_xy = True) fake_ra, fake_dec = cs.all_pix2world(x, y, 0) for img in sn.phot_instances.loc[sn.wIndex]: img.radec = self.radec.append(pd.DataFrame({'RA': fake_ra, 'DEC': fake_dec}), ignore_index = True) # run needed pipeline steps on those new images if (skip_photsub is False) and (photsub is True): sn.do_galaxy_subtraction_all_image() sn.do_photometry_all_image() sn.get_sky_all_image() sn.calibrate(final_pass = True) # don't really care about calibration, but need to do to read results # gather, organize and write sn.lc_dir = self.lc_dir + '_sim' sn.lc_base = os.path.join(sn.lc_dir, 'lightcurve_{}_'.format(self.targetname)) if not os.path.exists(sn.lc_dir): os.makedirs(sn.lc_dir) def get_res(idx, ps): img = sn.phot_instances.loc[idx] if ps is False: #tmp = img.phot.iloc[-n_stars:].loc[:, 'Mag_obs'] tmp = img.phot_raw.iloc[-n_stars:].loc[:, sn.calmethod] else: #tmp = img.phot_sub.iloc[-n_stars:].loc[:, sn.calmethod] tmp = img.phot_sub_raw.iloc[-n_stars:].loc[:, sn.calmethod] self.phot_instances.loc[idx].sim_err = tmp.std() return tmp res = [] for idx in sn.wIndex: res.append(get_res(idx, photsub)) res = pd.DataFrame(res, index = sn.wIndex) res.columns = sn.phot_instances.loc[sn.wIndex[0]].phot.index[-n_stars:] # put mags into DataFrame mags = pd.DataFrame(mags, index = self.wIndex) mags.columns = sn.phot_instances.loc[sn.wIndex[0]].phot.index[-n_stars:] # write results with open(os.path.join(sn.lc_dir, 'sim_{}_injmags.dat'.format(sn.calmethod)), 'w') as f: f.write(mags.to_string()) with open(os.path.join(sn.lc_dir, 'sim_{}_recmags.dat'.format(sn.calmethod)), 'w') as f: f.write(res.to_string()) # write updated errors to lc self.write_sim_lc(sn = sn, mags = mags, res = res, photsub = photsub) # save image with inj stars labeled sn._display_refstars(x = x, y = y, labels = res.columns, save_fig = os.path.join(sn.lc_dir, 'inj_stars.png')) sn.savefile = sn.savefile.replace('.sav', '_sim.sav') sn.save() self.save() def write_sim_lc(self, sn = None, mags = None, res = None, photsub = 'auto', drop_inj = []): '''write sim errs to light curves''' if (photsub == 'auto') or (type(photsub) != type(True)): photsub = self.photsub # instantiate if needed if sn is None: sn = LPP(self.targetname, interactive = False) sn.savefile = sn.savefile.replace('.sav', '_sim.sav') sn.load() # read mags and sim results if needed if mags is None: mags = pd.read_csv(os.path.join(sn.lc_dir, 'sim_{}_injmags.dat'.format(sn.calmethod)), delim_whitespace = True, index_col = 0) mags.columns = mags.columns.astype('int') if res is None: res = pd.read_csv(os.path.join(sn.lc_dir, 'sim_{}_recmags.dat'.format(sn.calmethod)), delim_whitespace = True, index_col = 0) res.columns = res.columns.astype('int') # drop any specied injected stars mags = mags.drop(drop_inj, axis = 1) res = res.drop(drop_inj, axis = 1) # compute result metrics residuals = mags.loc[sn.wIndex] - res.loc[sn.wIndex] r = pd.concat([sn.image_list.loc[sn.wIndex], res.mean(axis = 1), res.median(axis = 1), res.std(axis = 1), residuals.mean(axis = 1)], axis = 1) r.columns = ('imagename', 'sim_mean_mag', 'sim_med_mag', 'sim_std_mag', 'mean_residual') with open(os.path.join(sn.lc_dir, 'sim_{}_results.dat'.format(sn.calmethod)), 'w') as f: f.write(r.to_string(index = False)) with open(os.path.join(sn.lc_dir, 'sim_{}_summary.dat'.format(sn.calmethod)), 'w') as f: f.write(r.describe().round(3).to_string()) with open(os.path.join(sn.lc_dir, 'sim_{}_rec_mean_mags.dat'.format(sn.calmethod)), 'w') as f: f.write(res.mean(axis = 0).round(3).to_string()) r['imagename'] = r['imagename'].str.replace(self.error_dir, self.data_dir) # do all light curves (with full uncertainty as quadrature sum of three sources) all_nat = [] all_std = [] columns = (';; MJD', 'etburst', 'mag', '-emag', '+emag', 'limmag', 'filter', 'imagename') ps_choice = photsub self.log.info('updating LC errors') for ct in tqdm(self.color_terms_used.keys()): # generate raw light curves lc = pd.read_csv(self._lc_fname(ct, sn.calmethod, 'raw', sub = ps_choice), delim_whitespace = True, comment = ';', names = columns) tmp = pd.merge(lc, r, on = 'imagename', how = 'left') orig_stat_err = (tmp['+emag'] - tmp['-emag'])/2 new_err = np.sqrt(orig_stat_err**2 + tmp['sim_std_mag']**2) tmp['-emag'] = round(tmp['mag'] - new_err, 5) tmp['+emag'] = round(tmp['mag'] + new_err, 5) lc_raw_name = sn._lc_fname(ct, sn.calmethod, 'raw', sub = ps_choice) tmp.drop(['sim_mean_mag', 'sim_med_mag', 'sim_std_mag', 'mean_residual'], axis = 'columns').to_csv(lc_raw_name, sep = '\t', columns = columns, index = False, na_rep = 'NaN') p = LPPu.plotLC(lc_file = lc_raw_name, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) # generate remaining light curves group_succ, standard_succ = self.raw2standard_lc(lc_raw_name) if group_succ is True: all_nat.append((ct, sn._lc_fname(ct, sn.calmethod, 'group', sub = ps_choice))) if standard_succ is True: all_std.append(sn._lc_fname(ct, sn.calmethod, 'standard', sub = ps_choice)) # make "all" light curves lc_nat = sn._lc_fname('all', sn.calmethod, 'group', sub = ps_choice) concat_list = [] for row in all_nat: tmp = pd.read_csv(row[1], delim_whitespace = True) tmp.insert(3, 'SYSTEM', row[0]) concat_list.append(tmp) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc_nat, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc_nat, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) lc = sn._lc_fname('all', self.calmethod, 'standard', sub = ps_choice) concat_list = [] for fl in all_std: concat_list.append(pd.read_csv(fl, delim_whitespace = True)) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = self.calmethod) p.plot_lc(extensions = ['.ps', '.png']) def write_summary(self): '''write summary file''' # get filters used self.filters = set(self.phot_instances.loc[self.wIndex].apply(lambda img: img.filter.upper())) ctu = self.color_terms_used if ctu is not None: ctu = ', '.join(ctu.keys()) stars = self.cal_IDs if stars != 'all': stars = ', '.join(self.cal_IDs.astype(str)) self.summary_file = self.targetname + '.summary' with open(self.summary_file, 'w') as f: f.write('{:<25}{}\n'.format('targetname', self.targetname)) f.write('{:<25}{}\n'.format('photsub', self.photsub)) f.write('{:<25}{}\n'.format('filters', ', '.join(self.filters))) f.write('{:<25}{}\n'.format('apertures', ', '.join(self.photmethod))) f.write('{:<25}{}\n'.format('calmethod', self.calmethod)) f.write('{:<25}{}\n'.format('color_terms', ctu)) f.write('{:<25}{}\n'.format('num images', len(self.phot_instances))) f.write('{:<25}{}\n'.format('num failures', len(self.aIndex) - len(self.wIndex))) f.write('{:<25}{}\n'.format('num non-sup. filt.', len(self.bfIndex))) f.write('{:<25}{}\n'.format('num excl. by date', len(self.bdIndex))) f.write('{:<25}{}\n'.format('num phot failures', len(self.pfIndex))) f.write('{:<25}{}\n'.format('num cal failures', len(self.cfIndex))) f.write('{:<25}{}\n'.format('num no obj', len(self.noIndex))) f.write('{:<25}{}\n'.format('num manually removed', len(self.mrIndex))) f.write('{:<25}{}\n'.format('cal source', self.cal_source)) f.write('{:<25}{}\n'.format('cal stars', stars)) f.write('{:<25}{}\n'.format('cal tolerance', round(self.cal_diff_tol, 2))) f.write('{:<25}{}\n'.format('run successful', self.run_success)) self.log.info('pipeline complete, summary file written') self.save() def get_host_photometry(self, tel = 'nickel'): '''do photometry of the host galaxy''' # instantiate pipeline instance and inherit many parent attributes sn = LPP(self.targetname, interactive = False, parallel = False, cal_diff_tol = self.cal_diff_tol, force_color_term = self.force_color_term, wdir = self.wdir, cal_use_common_ref_stars = self.cal_use_common_ref_stars, autoloadsave = False, sep_tol = self.sep_tol) # setup sn.radec = self.radec sn.image_list = pd.Series([self.template_images['{}_{}'.format(filt, tel)] for filt in 'B V R I'.split(' ')]) sn.phot_instances = sn._im2inst(sn.image_list, mode = 'quiet') sn.wIndex = sn.image_list.index sn.cal_arrays = self.cal_arrays sn.cal_IDs = self.cal_IDs # do photometry sn.photsub = False sn.do_photometry_all_image(forcesky = True) sn.get_sky_all_image() sn.calibrate(final_pass = True) sn.get_zeromag_all_image() sn.get_limmag_all_image() sn.lc_dir = 'host_photometry' sn.lc_base = os.path.join(sn.lc_dir, 'lightcurve_{}_host_'.format(sn.targetname)) sn.lc_ext = {'raw': '_natural_raw.dat', 'bin': '_natural_bin.dat', 'group': '_natural_group.dat', 'standard': '_standard.dat', 'ul': '_natural_ul.dat'} sn.generate_lc() ################################################################################################### # Utility Methods ################################################################################################### def manual_remove(self, id, save_img = True): '''manually remove an index (or list of indices) from consideration''' if type(id) is int: id = [id] id = pd.Index(id) self.mrIndex = self.mrIndex.append(id) self.wIndex = self.wIndex.drop(id) if save_img: for img_id in id: self._display_refstars(imname = self.image_list.loc[img_id], imidx = img_id) def process_new_images(self, new_image_file = None, new_image_list = []): '''processes images obtained after initial processing''' self.log.info('processing new images') # read in new images to list if (new_image_file is not None) and (new_image_list == []): new_image_list = pd.read_csv(new_image_file, header = None, delim_whitespace = True, comment = '#', squeeze = True) elif new_image_list != []: new_image_list = pd.Series(new_image_list) # remove any images from new list that have already been processed new_image_list = new_image_list[~new_image_list.isin(self.image_list)] offset = self.aIndex[-1] + 1 tmp = self.wIndex self.wIndex = pd.RangeIndex(start = offset, stop = offset + len(new_image_list)) # only proceed if any images remain if len(new_image_list) == 0: self.log.warn('all images in new image list have already been processed, exiting') return # update image list to include everything, and update phot_instances self.log.info('loading new images') self.image_list = self.image_list.append(new_image_list, ignore_index = True) self.phot_instances = self.phot_instances.append(self._im2inst(new_image_list), ignore_index = True) # perform galaxy_subtraction and photometry on new images self.do_galaxy_subtraction_all_image() self.do_photometry_all_image() self.get_sky_all_image() # perform calibration full_cal = False if self.interactive: resp = input('\nperform full re-calibration? (y/[n]) > ') if 'y' in resp.lower(): full_cal = True if full_cal: self.current_step = self.steps.index(self.do_calibration) else: self.calibrate(final_pass = True) self.get_zeromag_all_image() self.get_limmag_all_image() self.current_step = self.steps.index(self.generate_lc) # run program after calibration has been completed (on all images) self.aIndex = self.aIndex.append(self.wIndex) self.wIndex = tmp.append(self.wIndex) self.run() # add to original image file and remove new file if new_image_file is not None: ow = True if self.interactive: resp = input('\nadd {} to {} and then remove {}? (y/[n]) > '.format(new_image_file, self.photlistfile, new_image_file)) if 'y' not in resp.lower(): ow = False if ow: os.system('cat {} >> {}'.format(new_image_file, self.photlistfile)) os.system('rm {}'.format(new_image_file)) self.log.info('new images processed') def load_templates(self): '''search templates dir, setup, and convert formats as needed''' succ = True self.template_images = {'{}_{}'.format(f, tel): None for f in ['B', 'V', 'R', 'I'] for tel in ['kait', 'nickel']} self.template_images['CLEAR_kait'] = None # no clear for Nickel if os.path.exists(self.templates_dir) is False: succ = False msg = 'no templates directory, cannot do photsub' else: templates = glob.glob('{}/*c.fit'.format(self.templates_dir)) if len(templates) == 0: msg = 'no templates available' succ = False if succ is True: if len(templates) < 5: # 5 passbands # warn if not enough templates found (but may be ok if not all needed) msg = 'warning: did not find templates for every passband' for templ in templates: ti = FitsInfo(templ) filt = ti.filter.upper() if (ti.telescope.lower() == 'nickel') and (filt != 'CLEAR') and ('n2k_c.fit' not in templ): self.template_images['{}_nickel'.format(filt)] = ti.cimg # also rebin for kait self.template_images['{}_kait'.format(filt)] = ti.cimg.replace('c.fit', 'n2k_c.fit') idl_cmd = '''idl -e "lpp_rebin_nickel2kait, '{}', SAVEFILE='{}'"'''.format(ti.cimg, self.template_images['{}_kait'.format(filt)]) stdout, stderr = LPPu.idl(idl_cmd) self._log_idl(idl_cmd, stdout, stderr) if not os.path.exists(self.template_images['{}_kait'.format(filt)]): succ = False msg = 'rebinning of templates from nickel to kait failed, cannot do photsub' elif (ti.telescope.lower() == 'kait') and (filt == 'CLEAR') and ('n2k_c.fit' not in templ): self.template_images['CLEAR_kait'] = ti.cimg elif 'n2k_c.fit' in templ: pass else: succ = False msg = 'either BVRI templates are not from Nickel or CLEAR template is not from KAIT, cannnot do photsub' break if succ is True: self.log.info('templates loaded') return # otherwise process is not a success, search for candidates but proceed without photsub self.log.warning(msg) self.log.warning('switching to non-subtraction mode, but searching for template candidates') self.template_images = None self.photsub = False self._get_template_candidates() def get_cal_info(self): '''checks for existence of calibration files and writes them if found''' calfile = 'cal_{}_PS1.dat'.format(self.targetname) if os.path.exists(os.path.join(self.calibration_dir, calfile)): self.calfile = calfile self.cal_source = 'PS1' elif os.path.exists(os.path.join(self.calibration_dir, calfile.replace('PS1', 'SDSS'))): self.calfile = calfile.replace('PS1', 'SDSS') self.cal_source = 'SDSS' elif os.path.exists(os.path.join(self.calibration_dir, calfile.replace('PS1', 'APASS'))): self.calfile = calfile.replace('PS1', 'APASS') self.cal_source = 'APASS' self.calfile_use = self.calfile.replace('.dat', '_use.dat') def cut_lc_points(self, lc_file, regenerate = False): '''interactively cut points from each band in input lc file''' if ('_all_' in lc_file) and ('_raw' in lc_file): self.cut_raw_all_lc_points(lc_file) return self.log.info('interactively cutting points from light curve file') self.log.info('working on {}'.format(lc_file)) p = LPPu.plotLC(lc_file = lc_file) cut_images = p.plot_lc(icut = True) if cut_images is not None: self.manual_remove(self.aIndex[self.image_list.isin(cut_images)]) del p p = LPPu.plotLC(lc_file = lc_file) p.plot_lc(extensions = ['.ps', '.png']) if regenerate is True: return self.raw2standard_lc(lc_file) def cut_raw_all_lc_points(self, infile): '''given "all" raw filename (need not exist), do cutting on relevant raw files and regenerate "all" files''' # assign convenience variables tmp = infile.split('_') m = tmp[tmp.index('natural') - 1] # get phot aperture groupfile = infile.replace('raw', 'group')#.replace('.dat', '_cut.dat') lc = groupfile.replace('natural_group', 'standard') all_nat = [] all_std = [] for ct in self.color_terms.keys(): raw = infile.replace('all', ct) if os.path.exists(raw): group_succ, std_succ = self.cut_lc_points(raw, regenerate = True) if group_succ: all_nat.append((ct, groupfile.replace('all', ct))) if std_succ: all_std.append(lc.replace('all', ct)) concat_list = [] for row in all_nat: tmp = pd.read_csv(row[1], delim_whitespace = True) tmp.insert(3, 'SYSTEM', row[0]) concat_list.append(tmp) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(groupfile, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = groupfile, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) concat_list = [] for fl in all_std: if os.path.exists(fl): concat_list.append(pd.read_csv(fl, delim_whitespace = True)) if len(concat_list) > 0: pd.concat(concat_list, sort = False).to_csv(lc, sep = '\t', na_rep = 'NaN', index = False, float_format = '%6.3f') p = LPPu.plotLC(lc_file = lc, name = self.targetname, photmethod = m) p.plot_lc(extensions = ['.ps', '.png']) def plot_lc(self, lc_list): '''plots each light curve from the input list''' for fl in lc_list: self.log.info('plotting {}'.format(fl)) p = LPPu.plotLC(lc_file = fl) p.plot_lc(extensions = ['.ps', '.png']) def _ct2cf(self, color_term, use = False): '''return "calfit" filename associated with input color term''' base = self.calfile.split('.')[0] if color_term != 'Landolt': cal_nat_fit = base + '_{}_natural.fit'.format(color_term) else: cal_nat_fit = base + '_Landolt_standard.fit' if use is False: return cal_nat_fit else: return cal_nat_fit.replace('_{}_'.format(self.cal_source), '_{}_use_'.format(self.cal_source)) def _im2inst(self, image_list, mode = 'progress'): '''create a series of Phot instances from input image list (also a series)''' # hide astropy warnings with warnings.catch_warnings(): warnings.simplefilter('ignore', AstropyWarning) if mode != 'quiet': return image_list.progress_apply(Phot, radec = self.radec, wdir = self.wdir, calmethod = self.calmethod) else: return image_list.apply(Phot, radec = self.radec, wdir = self.wdir, calmethod = self.calmethod) def _lc_fname(self, cterm, pmethod, lc_type, sub = False): '''return light curve filename''' if self.lc_base is None: print('set lc_base first') return full_base = self.lc_base + cterm + '_' + pmethod lc_fname = full_base + self.lc_ext[lc_type] if sub is True: lc_fname = lc_fname.replace('.dat', '_sub.dat') return lc_fname def _get_template_candidates(self): '''wrap LPPu function to get template candidates''' self.log.info('searching for galaxy subtraction template images') # fall back on first obs date if don't know discovery date if self.disc_date_mjd is None: if self.first_obs is None: self.first_obs = LPPu.get_first_obs_date(self) dt = self.first_obs else: dt = self.disc_date_mjd result = LPPu.get_template_candidates(self.targetra, self.targetdec, dt, self.templates_dir) self.log.info(result) def _reset_cal(self, reusecal_IDs = False): '''resets calibration to initial state, makes copy to revert''' self.cal_IDs_bak = self.cal_IDs.copy() self.mrIndex_bak = self.mrIndex.copy() self.wIndex_bak = self.wIndex.copy() if not reusecal_IDs: self.cal_IDs = 'all' self.wIndex = self.wIndex.append(self.mrIndex) self.mrIndex = pd.Index([]) def _revert_cal(self): '''undoes effects of _reset_cal''' self.cal_IDs = self.cal_IDs_bak.copy() self.wIndex = self.wIndex_bak.copy() self.mrIndex = self.mrIndex_bak.copy() def _log_idl(self, idl_cmd, stdout, stderr): '''log info regarding external idl calls''' self.log.debug('output of IDL command: {}'.format(idl_cmd)) self.log.debug('STDOUT----\n{}'.format(stdout)) self.log.debug('STDERR----\n{}'.format(stderr)) def _display_refstars(self, imname = None, imidx = None, icut = False, display = False, save_fig = None, ax = None, x = None, y = None, labels = None): '''show (reference) image and plot selected reference stars''' def onpick(event, cut_list, ref, refp, fig): '''get index, append appropriate index to cut_list and remove star''' ind = event.ind[0] cut_list.append(ref.index.drop(cut_list)[ind]) refp.set_data(ref.loc[ref.index.drop(cut_list), 'x'], ref.loc[ref.index.drop(cut_list), 'y']) fig.canvas.draw() # set calibration IDs if necessary if self.cal_IDs == 'all': self.cal_IDs = self.cal_use.index # read needed information from image if imname is None: imname = self.refname with fits.open(imname) as f: im = f[0].data head = f[0].header # find pixel locations of sn, reference stars, and radec stars cs = WCS(header = head) sn_x, sn_y = cs.all_world2pix(self.targetra, self.targetdec, 0) ref_x, ref_y = cs.all_world2pix(self.cal_use.loc[self.cal_IDs, 'ra'], self.cal_use.loc[self.cal_IDs, 'dec'], 0) ref = pd.DataFrame({'x': ref_x, 'y': ref_y}, index = self.cal_IDs) rd_x, rd_y = cs.all_world2pix(self.radec.loc[1:, 'RA'], self.radec.loc[1:, 'DEC'], 0) # plot (including interactive step if requested) if ax is None: fig, ax = plt.subplots(figsize = (8, 8)) z = ZScaleInterval() zlim = z.get_limits(im.data) ax.imshow(-1*im, cmap = 'gray', vmin = -1*zlim[1], vmax = -1*zlim[0]) ax.plot(sn_x, sn_y, 'mD', markersize = 15, mfc = 'none', mew = 2) if (x is not None) and (y is not None): ax.plot(x, y, 'bs', markersize = 15, mfc = 'none', mew = 2) if labels is not None: for ii in range(len(x)): ax.annotate(labels[ii], (x[ii] + 20, y[ii]), color = 'b', size = 12) else: ax.plot(rd_x, rd_y, 'bs', markersize = 15, mfc = 'none', mew = 2) refp, = ax.plot(ref['x'], ref['y'], 'ro', markersize = 15, mfc = 'none', picker = 14, mew = 2) for idx, row in ref.iterrows(): ax.annotate(idx, (row['x'] + 20*head['NAXIS1']/1024, row['y']), color = 'r', size = 12) ax.set_xticks(()) ax.set_yticks(()) if icut == True: cut_list = [] plt.ion() cid = fig.canvas.mpl_connect('pick_event', lambda event: onpick(event, cut_list, ref, refp, fig)) fig.show() input('click on circled reference stars to be removed [hit "enter" when done]') fig.canvas.mpl_disconnect(cid) plt.ioff() self.cal_IDs = self.cal_IDs.drop(cut_list) if display is True: plt.ion() plt.show() elif save_fig is not None: plt.savefig(save_fig) else: if imidx is None: plt.savefig(os.path.join(self.calibration_dir, 'ref_stars.png')) else: plt.savefig(os.path.join(self.calibration_dir, 'cut_img_{}.png'.format(imidx))) plt.close() def _display_obs_cal_mags(self, filt, id, sig = 3): '''show all observed mags of a given calibration star in a given passband''' # select relevant data selection = self.calibrators.loc[self.calibrators['Filter'] == filt, :].loc[(self.wIndex, id),['Mag_obs', 'system']] fig, ax = plt.subplots(1, 1, figsize = (7, 3)) def onpick(event): '''get index, append appropriate index to cut_list and remove star''' ind = event.ind[0] ids = event.artist._x mags = event.artist._y print('\nIndex of clicked image mag: {}'.format(int(ids[ind]))) sub = mags[ids != ids[ind]] print('Without this image: {:.2f} pm {:.2f}'.format(np.median(sub), np.std(sub))) colors = ('b','r','g','k','m') cnt = 0 for sys, group in selection.groupby('system', sort = False): group = group.loc[group['Mag_obs'].notnull(), :] mags = group.loc[:, 'Mag_obs'].values ids = group.index.levels[0][group.index.labels[0]] line, = ax.plot(ids, mags, '{}.'.format(colors[cnt]), label = sys, picker = 5) ax.plot([ids.min(), ids.max()], [np.mean(mags)]*2, '{}--'.format(colors[cnt]), label = '${:.2f} \pm {:.2f}$'.format(np.mean(mags), np.std(mags))) ax.plot([ids.min(), ids.max()], [np.mean(mags) + sig * np.std(mags)]*2, '{}:'.format(colors[cnt]), label = '${}\sigma$ boundary'.format(sig)) ax.plot([ids.min(), ids.max()], [np.mean(mags) - sig * np.std(mags)]*2, '{}:'.format(colors[cnt])) cnt += 1 ax.set_title('Filter: {} Cal ID: {}'.format(filt, id)) ax.legend(bbox_to_anchor = (1.01, 0.5), loc = 'center left') plt.tight_layout() cid = fig.canvas.mpl_connect('pick_event', lambda event: onpick(event)) plt.show() fig.canvas.mpl_disconnect(cid) def compare_image2ref(self, idx): '''plot ref image and selected image side by side''' fig = plt.figure(figsize = (12, 6)) ref = Phot(self.refname) wcs1 = WCS(header = ref.header) ax1 = fig.add_subplot(1, 2, 1, projection = wcs1) self._display_refstars(ax = ax1) wcs2 = WCS(header = self.phot_instances.loc[idx].header) ax2 = fig.add_subplot(1, 2, 2, projection = wcs2) self.phot_instances.loc[idx].display_image(ax = ax2, display = False) fig.show() # provide script functionality via # python LPP.py name if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('name', type = str, help = 'name of the object') parser.add_argument('-a', '--add-images(s)', dest = 'new', type = str, default = False, help = 'new image(s) or photlist to process') parser.add_argument('-i', '--interactive', dest = 'interactive', action = 'store_const', const = True, default = False, help = 'run in interactive mode') parser.add_argument('-ct', '--force-color-term', dest = 'force_color_term', type = str, default = False, help = 'force to use specified color term') parser.add_argument('-dd', '--disc-date-mjd', dest = 'disc_date_mjd', type = float, default = None, help = 'mjd of discovery') parser.add_argument('-c', '--cut-lc-points', dest = 'lc_file', type = str, default = None, help = 'light curve file to cut points from') parser.add_argument('-cr', '--cut-raw-lc-points-and-regenerate', dest = 'raw_lc_file', type = str, default = None, help = 'light curve file to cut points from') args = parser.parse_args() pipeline = LPP(args.name, interactive = args.interactive, force_color_term = args.force_color_term) pipeline.disc_date_mjd = args.disc_date_mjd if (args.new is False) and (args.lc_file is None) and (args.raw_lc_file is None): pipeline.run() elif (args.new is False) and (args.lc_file is not None): pipeline.cut_lc_points(args.lc_file) elif (args.new is False) and (args.raw_lc_file is not None): pipeline.load() pipeline.cut_lc_points(args.raw_lc_file, regenerate = True) pipeline.save() pipeline.write_summary() else: pipeline.load() # load from sav file if '_c.fit' in args.new: new_images = [fl.strip() for fl in args.new.replace(',', ' ').split(' ')] pipeline.process_new_images(new_image_list = new_images) else: # otherwise it is a photlist pipeline.process_new_images(new_image_file = args.new)
[ "logging.getLogger", "logging.StreamHandler", "numpy.sqrt", "pandas.read_csv", "pandas.Index", "numpy.array", "numpy.arctan2", "astropy.io.fits.open", "copy.deepcopy", "numpy.sin", "astropy.coordinates.match_coordinates_sky", "LOSSPhotPypeline.utils.astroCatalog", "LOSSPhotPypeline.utils.idl", "os.path.exists", "numpy.mean", "LOSSPhotPypeline.image.FitsInfo", "argparse.ArgumentParser", "subprocess.Popen", "inspect.getfile", "matplotlib.pyplot.close", "numpy.linspace", "os.path.isdir", "logging.FileHandler", "matplotlib.pyplot.subplots", "LOSSPhotPypeline.utils.genconf", "numpy.random.seed", "pandas.DataFrame", "warnings.simplefilter", "numpy.isinf", "LOSSPhotPypeline.utils.get_first_obs_date", "numpy.random.normal", "numpy.abs", "matplotlib.pyplot.savefig", "pandas.merge", "pickle.load", "matplotlib.pyplot.ioff", "itertools.zip_longest", "os.path.dirname", "LOSSPhotPypeline.image.Phot", "numpy.isnan", "numpy.cos", "numpy.std", "matplotlib.pyplot.ion", "tqdm.tqdm.pandas", "astropy.visualization.ZScaleInterval", "matplotlib.pyplot.show", "pandas.Series", "numpy.median", "pickle.dump", "os.makedirs", "logging.Formatter", "tqdm.tqdm", "os.path.join", "astropy.coordinates.SkyCoord", "warnings.catch_warnings", "matplotlib.pyplot.figure", "LOSSPhotPypeline.utils.plotLC", "os.path.basename", "LOSSPhotPypeline.utils.get_template_candidates", "matplotlib.pyplot.tight_layout", "os.path.abspath", "pandas.concat", "astropy.wcs.WCS" ]
[((526, 573), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'AstropyWarning'], {}), "('ignore', AstropyWarning)\n", (547, 573), False, 'import warnings\n'), ((923, 936), 'tqdm.tqdm.pandas', 'tqdm.pandas', ([], {}), '()\n', (934, 936), False, 'from tqdm import tqdm\n'), ((94550, 94575), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (94573, 94575), False, 'import argparse\n'), ((1556, 1577), 'os.path.abspath', 'os.path.abspath', (['wdir'], {}), '(wdir)\n', (1571, 1577), False, 'import os\n'), ((4601, 4613), 'pandas.Index', 'pd.Index', (['[]'], {}), '([])\n', (4609, 4613), True, 'import pandas as pd\n'), ((5055, 5121), 'os.path.join', 'os.path.join', (['self.calibration_dir', "(self.targetname + '_radec.txt')"], {}), "(self.calibration_dir, self.targetname + '_radec.txt')\n", (5067, 5121), False, 'import os\n'), ((6855, 6884), 'os.path.dirname', 'os.path.dirname', (['self.refname'], {}), '(self.refname)\n', (6870, 6884), False, 'import os\n'), ((7663, 7692), 'os.path.exists', 'os.path.exists', (['self.savefile'], {}), '(self.savefile)\n', (7677, 7692), False, 'import os\n'), ((11202, 11239), 'logging.getLogger', 'logging.getLogger', (['"""LOSSPhotPypeline"""'], {}), "('LOSSPhotPypeline')\n", (11219, 11239), False, 'import logging\n'), ((11430, 11463), 'logging.FileHandler', 'logging.FileHandler', (['self.logfile'], {}), '(self.logfile)\n', (11449, 11463), False, 'import logging\n'), ((18223, 18321), 'pandas.read_csv', 'pd.read_csv', (['self.photlistfile'], {'header': 'None', 'delim_whitespace': '(True)', 'comment': '"""#"""', 'squeeze': '(True)'}), "(self.photlistfile, header=None, delim_whitespace=True, comment=\n '#', squeeze=True)\n", (18234, 18321), True, 'import pandas as pd\n'), ((21290, 21320), 'os.path.exists', 'os.path.exists', (['self.radecfile'], {}), '(self.radecfile)\n', (21304, 21320), False, 'import os\n'), ((21864, 21908), 'LOSSPhotPypeline.image.Phot', 'Phot', (['self.refname'], {'calmethod': 'self.calmethod'}), '(self.refname, calmethod=self.calmethod)\n', (21868, 21908), False, 'from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames\n'), ((22107, 22137), 'os.path.join', 'os.path.join', (['sxcp', '"""kait.sex"""'], {}), "(sxcp, 'kait.sex')\n", (22119, 22137), False, 'import os\n'), ((22153, 22193), 'os.path.join', 'os.path.join', (['sxcp', '"""gauss_2.0_5x5.conv"""'], {}), "(sxcp, 'gauss_2.0_5x5.conv')\n", (22165, 22193), False, 'import os\n'), ((22208, 22238), 'os.path.join', 'os.path.join', (['sxcp', '"""kait.par"""'], {}), "(sxcp, 'kait.par')\n", (22220, 22238), False, 'import os\n'), ((22254, 22287), 'os.path.join', 'os.path.join', (['sxcp', '"""default.nnw"""'], {}), "(sxcp, 'default.nnw')\n", (22266, 22287), False, 'import os\n'), ((22604, 22707), 'subprocess.Popen', 'subprocess.Popen', (['cmd_list'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'universal_newlines': '(True)'}), '(cmd_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE,\n universal_newlines=True)\n', (22620, 22707), False, 'import subprocess\n'), ((23408, 23430), 'astropy.wcs.WCS', 'WCS', ([], {'header': 'ref.header'}), '(header=ref.header)\n', (23411, 23430), False, 'from astropy.wcs import WCS\n'), ((23584, 23632), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['imagera', 'imagedec'], {'unit': '(u.deg, u.deg)'}), '(imagera, imagedec, unit=(u.deg, u.deg))\n', (23592, 23632), False, 'from astropy.coordinates import SkyCoord, match_coordinates_sky\n'), ((23659, 23719), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['self.targetra', 'self.targetdec'], {'unit': '(u.deg, u.deg)'}), '(self.targetra, self.targetdec, unit=(u.deg, u.deg))\n', (23667, 23719), False, 'from astropy.coordinates import SkyCoord, match_coordinates_sky\n'), ((24411, 24512), 'pandas.read_csv', 'pd.read_csv', (['self.radecfile'], {'delim_whitespace': '(True)', 'skiprows': '(0, 1, 3, 4, 5)', 'names': "['RA', 'DEC']"}), "(self.radecfile, delim_whitespace=True, skiprows=(0, 1, 3, 4, 5),\n names=['RA', 'DEC'])\n", (24422, 24512), True, 'import pandas as pd\n'), ((25353, 25439), 'astropy.coordinates.SkyCoord', 'SkyCoord', (["self.radec.loc[1:, 'RA']", "self.radec.loc[1:, 'DEC']"], {'unit': '(u.deg, u.deg)'}), "(self.radec.loc[1:, 'RA'], self.radec.loc[1:, 'DEC'], unit=(u.deg,\n u.deg))\n", (25361, 25439), False, 'from astropy.coordinates import SkyCoord, match_coordinates_sky\n'), ((25557, 25631), 'astropy.coordinates.SkyCoord', 'SkyCoord', (["cal_cat.loc[:, 'ra']", "cal_cat.loc[:, 'dec']"], {'unit': '(u.deg, u.deg)'}), "(cal_cat.loc[:, 'ra'], cal_cat.loc[:, 'dec'], unit=(u.deg, u.deg))\n", (25565, 25631), False, 'from astropy.coordinates import SkyCoord, match_coordinates_sky\n'), ((25658, 25691), 'astropy.coordinates.match_coordinates_sky', 'match_coordinates_sky', (['cal', 'radec'], {}), '(cal, radec)\n', (25679, 25691), False, 'from astropy.coordinates import SkyCoord, match_coordinates_sky\n'), ((26333, 26438), 'LOSSPhotPypeline.utils.astroCatalog', 'LPPu.astroCatalog', (['self.targetname', 'self.targetra', 'self.targetdec'], {'relative_path': 'self.calibration_dir'}), '(self.targetname, self.targetra, self.targetdec,\n relative_path=self.calibration_dir)\n', (26350, 26438), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((27954, 27999), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'columns': "['success', 'log']"}), "(res, columns=['success', 'log'])\n", (27966, 27999), True, 'import pandas as pd\n'), ((29066, 29116), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'columns': "['unsub', 'sub', 'log']"}), "(res, columns=['unsub', 'sub', 'log'])\n", (29078, 29116), True, 'import pandas as pd\n'), ((32653, 32726), 'pandas.concat', 'pd.concat', (['[df.loc[self.cal_IDs, :] for df in cal_list]'], {'keys': 'self.wIndex'}), '([df.loc[self.cal_IDs, :] for df in cal_list], keys=self.wIndex)\n', (32662, 32726), True, 'import pandas as pd\n'), ((49450, 49555), 'LOSSPhotPypeline.utils.astroCatalog', 'LPPu.astroCatalog', (['self.targetname', 'self.targetra', 'self.targetdec'], {'relative_path': 'self.calibration_dir'}), '(self.targetname, self.targetra, self.targetdec,\n relative_path=self.calibration_dir)\n', (49467, 49555), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((49714, 49724), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (49722, 49724), True, 'import matplotlib.pyplot as plt\n'), ((53999, 54016), 'LOSSPhotPypeline.utils.idl', 'LPPu.idl', (['idl_cmd'], {}), '(idl_cmd)\n', (54007, 54016), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((54303, 54320), 'LOSSPhotPypeline.utils.idl', 'LPPu.idl', (['idl_cmd'], {}), '(idl_cmd)\n', (54311, 54320), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((54802, 54819), 'LOSSPhotPypeline.utils.idl', 'LPPu.idl', (['idl_cmd'], {}), '(idl_cmd)\n', (54810, 54819), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((55953, 56012), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=lc, name=self.targetname, photmethod=m)\n', (55964, 56012), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((57131, 57152), 'tqdm.tqdm', 'tqdm', (['self.photmethod'], {}), '(self.photmethod)\n', (57135, 57152), False, 'from tqdm import tqdm\n'), ((66553, 66587), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'index': 'sn.wIndex'}), '(res, index=sn.wIndex)\n', (66565, 66587), True, 'import pandas as pd\n'), ((66720, 66757), 'pandas.DataFrame', 'pd.DataFrame', (['mags'], {'index': 'self.wIndex'}), '(mags, index=self.wIndex)\n', (66732, 66757), True, 'import pandas as pd\n'), ((76236, 76248), 'pandas.Index', 'pd.Index', (['id'], {}), '(id)\n', (76244, 76248), True, 'import pandas as pd\n'), ((83212, 83240), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_file'}), '(lc_file=lc_file)\n', (83223, 83240), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((83426, 83454), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_file'}), '(lc_file=lc_file)\n', (83437, 83454), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((87663, 87751), 'LOSSPhotPypeline.utils.get_template_candidates', 'LPPu.get_template_candidates', (['self.targetra', 'self.targetdec', 'dt', 'self.templates_dir'], {}), '(self.targetra, self.targetdec, dt, self.\n templates_dir)\n', (87691, 87751), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((88177, 88189), 'pandas.Index', 'pd.Index', (['[]'], {}), '([])\n', (88185, 88189), True, 'import pandas as pd\n'), ((89706, 89722), 'astropy.wcs.WCS', 'WCS', ([], {'header': 'head'}), '(header=head)\n', (89709, 89722), False, 'from astropy.wcs import WCS\n'), ((89931, 89989), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': ref_x, 'y': ref_y}"], {'index': 'self.cal_IDs'}), "({'x': ref_x, 'y': ref_y}, index=self.cal_IDs)\n", (89943, 89989), True, 'import pandas as pd\n'), ((90232, 90248), 'astropy.visualization.ZScaleInterval', 'ZScaleInterval', ([], {}), '()\n', (90246, 90248), False, 'from astropy.visualization import ZScaleInterval\n'), ((92264, 92298), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(7, 3)'}), '(1, 1, figsize=(7, 3))\n', (92276, 92298), True, 'import matplotlib.pyplot as plt\n'), ((93739, 93757), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (93755, 93757), True, 'import matplotlib.pyplot as plt\n'), ((93846, 93856), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (93854, 93856), True, 'import matplotlib.pyplot as plt\n'), ((94011, 94038), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (94021, 94038), True, 'import matplotlib.pyplot as plt\n'), ((94055, 94073), 'LOSSPhotPypeline.image.Phot', 'Phot', (['self.refname'], {}), '(self.refname)\n', (94059, 94073), False, 'from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames\n'), ((94089, 94111), 'astropy.wcs.WCS', 'WCS', ([], {'header': 'ref.header'}), '(header=ref.header)\n', (94092, 94111), False, 'from astropy.wcs import WCS\n'), ((94228, 94275), 'astropy.wcs.WCS', 'WCS', ([], {'header': 'self.phot_instances.loc[idx].header'}), '(header=self.phot_instances.loc[idx].header)\n', (94231, 94275), False, 'from astropy.wcs import WCS\n'), ((3185, 3217), 'os.path.exists', 'os.path.exists', (['self.config_file'], {}), '(self.config_file)\n', (3199, 3217), False, 'import os\n'), ((3373, 3461), 'LOSSPhotPypeline.utils.genconf', 'LPPu.genconf', ([], {'targetname': 'self.targetname', 'config_file': "(self.config_file + '.template')"}), "(targetname=self.targetname, config_file=self.config_file +\n '.template')\n", (3385, 3461), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((4947, 4982), 'os.path.isdir', 'os.path.isdir', (['self.calibration_dir'], {}), '(self.calibration_dir)\n', (4960, 4982), False, 'import os\n'), ((4996, 5029), 'os.makedirs', 'os.makedirs', (['self.calibration_dir'], {}), '(self.calibration_dir)\n', (5007, 5029), False, 'import os\n'), ((11488, 11582), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s in %(funcName)s with level %(levelname)s ::: %(message)s"""'], {}), "(\n '%(asctime)s in %(funcName)s with level %(levelname)s ::: %(message)s')\n", (11505, 11582), False, 'import logging\n'), ((11730, 11753), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (11751, 11753), False, 'import logging\n'), ((15528, 15543), 'pickle.dump', 'pkl.dump', (['vs', 'f'], {}), '(vs, f)\n', (15536, 15543), True, 'import pickle as pkl\n'), ((15842, 15853), 'pickle.load', 'pkl.load', (['f'], {}), '(f)\n', (15850, 15853), True, 'import pickle as pkl\n'), ((21415, 21516), 'pandas.read_csv', 'pd.read_csv', (['self.radecfile'], {'delim_whitespace': '(True)', 'skiprows': '(0, 1, 3, 4, 5)', 'names': "['RA', 'DEC']"}), "(self.radecfile, delim_whitespace=True, skiprows=(0, 1, 3, 4, 5),\n names=['RA', 'DEC'])\n", (21426, 21516), True, 'import pandas as pd\n'), ((22867, 22891), 'os.path.exists', 'os.path.exists', (['ref.sobj'], {}), '(ref.sobj)\n', (22881, 22891), False, 'import os\n'), ((23094, 23113), 'astropy.io.fits.open', 'fits.open', (['ref.sobj'], {}), '(ref.sobj)\n', (23103, 23113), False, 'from astropy.io import fits\n'), ((24911, 25016), 'LOSSPhotPypeline.utils.astroCatalog', 'LPPu.astroCatalog', (['self.targetname', 'self.targetra', 'self.targetdec'], {'relative_path': 'self.calibration_dir'}), '(self.targetname, self.targetra, self.targetdec,\n relative_path=self.calibration_dir)\n', (24928, 25016), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((25468, 25516), 'os.path.join', 'os.path.join', (['self.calibration_dir', 'self.calfile'], {}), '(self.calibration_dir, self.calfile)\n', (25480, 25516), False, 'import os\n'), ((31915, 31990), 'numpy.abs', 'np.abs', (["(phot.loc[self.cal_IDs, 'RA_obs'] - phot.loc[self.cal_IDs, 'RA_cal'])"], {}), "(phot.loc[self.cal_IDs, 'RA_obs'] - phot.loc[self.cal_IDs, 'RA_cal'])\n", (31921, 31990), True, 'import numpy as np\n'), ((32040, 32117), 'numpy.abs', 'np.abs', (["(phot.loc[self.cal_IDs, 'DEC_obs'] - phot.loc[self.cal_IDs, 'DEC_cal'])"], {}), "(phot.loc[self.cal_IDs, 'DEC_obs'] - phot.loc[self.cal_IDs, 'DEC_cal'])\n", (32046, 32117), True, 'import numpy as np\n'), ((32925, 32947), 'pandas.Index', 'pd.Index', (['self.cfIndex'], {}), '(self.cfIndex)\n', (32933, 32947), True, 'import pandas as pd\n'), ((32976, 32999), 'pandas.Index', 'pd.Index', (['self.csfIndex'], {}), '(self.csfIndex)\n', (32984, 32999), True, 'import pandas as pd\n'), ((50582, 50599), 'copy.deepcopy', 'copy.deepcopy', (['lc'], {}), '(lc)\n', (50595, 50599), False, 'import copy\n'), ((50723, 50740), 'copy.deepcopy', 'copy.deepcopy', (['lm'], {}), '(lm)\n', (50736, 50740), False, 'import copy\n'), ((51722, 51823), 'pandas.read_csv', 'pd.read_csv', (['dat'], {'header': 'None', 'delim_whitespace': '(True)', 'comment': '""";"""', 'usecols': 'cols', 'names': 'col_names'}), "(dat, header=None, delim_whitespace=True, comment=';', usecols=\n cols, names=col_names)\n", (51733, 51823), True, 'import pandas as pd\n'), ((53243, 53263), 'pandas.DataFrame', 'pd.DataFrame', (['lcs[m]'], {}), '(lcs[m])\n', (53255, 53263), True, 'import pandas as pd\n'), ((53468, 53488), 'pandas.DataFrame', 'pd.DataFrame', (['lms[m]'], {}), '(lms[m])\n', (53480, 53488), True, 'import pandas as pd\n'), ((53606, 53699), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_raw_name', 'lm_file': 'lm_raw_name', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=lc_raw_name, lm_file=lm_raw_name, name=self.targetname,\n photmethod=m)\n', (53617, 53699), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((54882, 54905), 'os.path.exists', 'os.path.exists', (['outfile'], {}), '(outfile)\n', (54896, 54905), False, 'import os\n'), ((56613, 56639), 'os.path.isdir', 'os.path.isdir', (['self.lc_dir'], {}), '(self.lc_dir)\n', (56626, 56639), False, 'import os\n'), ((56653, 56677), 'os.makedirs', 'os.makedirs', (['self.lc_dir'], {}), '(self.lc_dir)\n', (56664, 56677), False, 'import os\n'), ((59460, 59481), 'numpy.random.seed', 'np.random.seed', (['rseed'], {}), '(rseed)\n', (59474, 59481), True, 'import numpy as np\n'), ((59546, 59576), 'os.path.exists', 'os.path.exists', (['self.error_dir'], {}), '(self.error_dir)\n', (59560, 59576), False, 'import os\n'), ((59590, 59617), 'os.makedirs', 'os.makedirs', (['self.error_dir'], {}), '(self.error_dir)\n', (59601, 59617), False, 'import os\n'), ((59890, 59912), 'astropy.wcs.WCS', 'WCS', ([], {'header': 'img.header'}), '(header=img.header)\n', (59893, 59912), False, 'from astropy.wcs import WCS\n'), ((63405, 63422), 'LOSSPhotPypeline.utils.idl', 'LPPu.idl', (['idl_cmd'], {}), '(idl_cmd)\n', (63413, 63422), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((64065, 64080), 'pandas.Series', 'pd.Series', (['succ'], {}), '(succ)\n', (64074, 64080), True, 'import pandas as pd\n'), ((65088, 65132), 'LOSSPhotPypeline.image.Phot', 'Phot', (['self.refname'], {'calmethod': 'self.calmethod'}), '(self.refname, calmethod=self.calmethod)\n', (65092, 65132), False, 'from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames\n'), ((65892, 65917), 'os.path.exists', 'os.path.exists', (['sn.lc_dir'], {}), '(sn.lc_dir)\n', (65906, 65917), False, 'import os\n'), ((65931, 65953), 'os.makedirs', 'os.makedirs', (['sn.lc_dir'], {}), '(sn.lc_dir)\n', (65942, 65953), False, 'import os\n'), ((70017, 70060), 'pandas.merge', 'pd.merge', (['lc', 'r'], {'on': '"""imagename"""', 'how': '"""left"""'}), "(lc, r, on='imagename', how='left')\n", (70025, 70060), True, 'import pandas as pd\n'), ((70147, 70200), 'numpy.sqrt', 'np.sqrt', (["(orig_stat_err ** 2 + tmp['sim_std_mag'] ** 2)"], {}), "(orig_stat_err ** 2 + tmp['sim_std_mag'] ** 2)\n", (70154, 70200), True, 'import numpy as np\n'), ((70702, 70788), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_raw_name', 'name': 'self.targetname', 'photmethod': 'self.calmethod'}), '(lc_file=lc_raw_name, name=self.targetname, photmethod=self.\n calmethod)\n', (70713, 70788), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((71405, 71447), 'pandas.read_csv', 'pd.read_csv', (['row[1]'], {'delim_whitespace': '(True)'}), '(row[1], delim_whitespace=True)\n', (71416, 71447), True, 'import pandas as pd\n'), ((71710, 71786), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_nat', 'name': 'self.targetname', 'photmethod': 'self.calmethod'}), '(lc_file=lc_nat, name=self.targetname, photmethod=self.calmethod)\n', (71721, 71786), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((72224, 72296), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc', 'name': 'self.targetname', 'photmethod': 'self.calmethod'}), '(lc_file=lc, name=self.targetname, photmethod=self.calmethod)\n', (72235, 72296), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((76810, 76904), 'pandas.read_csv', 'pd.read_csv', (['new_image_file'], {'header': 'None', 'delim_whitespace': '(True)', 'comment': '"""#"""', 'squeeze': '(True)'}), "(new_image_file, header=None, delim_whitespace=True, comment='#',\n squeeze=True)\n", (76821, 76904), True, 'import pandas as pd\n'), ((79666, 79700), 'os.path.exists', 'os.path.exists', (['self.templates_dir'], {}), '(self.templates_dir)\n', (79680, 79700), False, 'import os\n'), ((82240, 82283), 'os.path.join', 'os.path.join', (['self.calibration_dir', 'calfile'], {}), '(self.calibration_dir, calfile)\n', (82252, 82283), False, 'import os\n'), ((84168, 84187), 'os.path.exists', 'os.path.exists', (['raw'], {}), '(raw)\n', (84182, 84187), False, 'import os\n'), ((84531, 84573), 'pandas.read_csv', 'pd.read_csv', (['row[1]'], {'delim_whitespace': '(True)'}), '(row[1], delim_whitespace=True)\n', (84542, 84573), True, 'import pandas as pd\n'), ((84839, 84905), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'groupfile', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=groupfile, name=self.targetname, photmethod=m)\n', (84850, 84905), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((85031, 85049), 'os.path.exists', 'os.path.exists', (['fl'], {}), '(fl)\n', (85045, 85049), False, 'import os\n'), ((85304, 85363), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=lc, name=self.targetname, photmethod=m)\n', (85315, 85363), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((85608, 85631), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'fl'}), '(lc_file=fl)\n', (85619, 85631), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((86391, 86416), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (86414, 86416), False, 'import warnings\n'), ((86430, 86477), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'AstropyWarning'], {}), "('ignore', AstropyWarning)\n", (86451, 86477), False, 'import warnings\n'), ((89539, 89556), 'astropy.io.fits.open', 'fits.open', (['imname'], {}), '(imname)\n', (89548, 89556), False, 'from astropy.io import fits\n'), ((90189, 90217), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (90201, 90217), True, 'import matplotlib.pyplot as plt\n'), ((91185, 91194), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (91192, 91194), True, 'import matplotlib.pyplot as plt\n'), ((91475, 91485), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (91483, 91485), True, 'import matplotlib.pyplot as plt\n'), ((91581, 91590), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (91588, 91590), True, 'import matplotlib.pyplot as plt\n'), ((91603, 91613), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (91611, 91613), True, 'import matplotlib.pyplot as plt\n'), ((8867, 8977), 'pandas.read_csv', 'pd.read_csv', (['self.config_file'], {'header': 'None', 'delim_whitespace': '(True)', 'comment': '"""#"""', 'index_col': '(0)', 'squeeze': '(True)'}), "(self.config_file, header=None, delim_whitespace=True, comment=\n '#', index_col=0, squeeze=True)\n", (8878, 8977), True, 'import pandas as pd\n'), ((11822, 11887), 'logging.Formatter', 'logging.Formatter', (["('\\n' + '*' * 60 + '\\n%(message)s\\n' + '*' * 60)"], {}), "('\\n' + '*' * 60 + '\\n%(message)s\\n' + '*' * 60)\n", (11839, 11887), False, 'import logging\n'), ((22025, 22058), 'inspect.getfile', 'inspect.getfile', (['LOSSPhotPypeline'], {}), '(LOSSPhotPypeline)\n', (22040, 22058), False, 'import inspect\n'), ((24790, 24838), 'os.path.join', 'os.path.join', (['self.calibration_dir', 'self.calfile'], {}), '(self.calibration_dir, self.calfile)\n', (24802, 24838), False, 'import os\n'), ((26179, 26231), 'os.path.join', 'os.path.join', (['self.calibration_dir', 'self.calfile_use'], {}), '(self.calibration_dir, self.calfile_use)\n', (26191, 26231), False, 'import os\n'), ((38524, 38553), 'numpy.abs', 'np.abs', (["df.loc[:, 'Mag_diff']"], {}), "(df.loc[:, 'Mag_diff'])\n", (38530, 38553), True, 'import numpy as np\n'), ((40952, 40987), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(12, 6)'}), '(1, 2, figsize=(12, 6))\n', (40964, 40987), True, 'import matplotlib.pyplot as plt\n'), ((41752, 41779), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'offset_scale': '(2)'}), '(offset_scale=2)\n', (41763, 41779), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((42905, 42923), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (42921, 42923), True, 'import matplotlib.pyplot as plt\n'), ((46827, 46837), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (46835, 46837), True, 'import matplotlib.pyplot as plt\n'), ((46854, 46865), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (46863, 46865), True, 'import matplotlib.pyplot as plt\n'), ((48915, 48972), 'os.path.join', 'os.path.join', (['self.calibration_dir', '"""final_ref_stars.dat"""'], {}), "(self.calibration_dir, 'final_ref_stars.dat')\n", (48927, 48972), False, 'import os\n'), ((49275, 49327), 'os.path.join', 'os.path.join', (['self.calibration_dir', 'self.calfile_use'], {}), '(self.calibration_dir, self.calfile_use)\n', (49287, 49327), False, 'import os\n'), ((52463, 52476), 'numpy.isnan', 'np.isnan', (['mag'], {}), '(mag)\n', (52471, 52476), True, 'import numpy as np\n'), ((54415, 54438), 'os.path.exists', 'os.path.exists', (['outfile'], {}), '(outfile)\n', (54429, 54438), False, 'import os\n'), ((57867, 57909), 'pandas.read_csv', 'pd.read_csv', (['row[1]'], {'delim_whitespace': '(True)'}), '(row[1], delim_whitespace=True)\n', (57878, 57909), True, 'import pandas as pd\n'), ((58192, 58255), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc_nat', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=lc_nat, name=self.targetname, photmethod=m)\n', (58203, 58255), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((58708, 58767), 'LOSSPhotPypeline.utils.plotLC', 'LPPu.plotLC', ([], {'lc_file': 'lc', 'name': 'self.targetname', 'photmethod': 'm'}), '(lc_file=lc, name=self.targetname, photmethod=m)\n', (58719, 58767), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((60305, 60345), 'numpy.arctan2', 'np.arctan2', (['(sn_y - host_y)', '(sn_x - host_x)'], {}), '(sn_y - host_y, sn_x - host_x)\n', (60315, 60345), True, 'import numpy as np\n'), ((60446, 60520), 'numpy.linspace', 'np.linspace', (['(2 * np.pi / n_stars)', '(2 * np.pi - 2 * np.pi / n_stars)', 'n_stars'], {}), '(2 * np.pi / n_stars, 2 * np.pi - 2 * np.pi / n_stars, n_stars)\n', (60457, 60520), True, 'import numpy as np\n'), ((62674, 62687), 'numpy.isnan', 'np.isnan', (['mag'], {}), '(mag)\n', (62682, 62687), True, 'import numpy as np\n'), ((62693, 62706), 'numpy.isinf', 'np.isinf', (['mag'], {}), '(mag)\n', (62701, 62706), True, 'import numpy as np\n'), ((65300, 65346), 'pandas.DataFrame', 'pd.DataFrame', (["{'RA': fake_ra, 'DEC': fake_dec}"], {}), "({'RA': fake_ra, 'DEC': fake_dec})\n", (65312, 65346), True, 'import pandas as pd\n'), ((67372, 67412), 'os.path.join', 'os.path.join', (['sn.lc_dir', '"""inj_stars.png"""'], {}), "(sn.lc_dir, 'inj_stars.png')\n", (67384, 67412), False, 'import os\n'), ((72006, 72044), 'pandas.read_csv', 'pd.read_csv', (['fl'], {'delim_whitespace': '(True)'}), '(fl, delim_whitespace=True)\n', (72017, 72044), True, 'import pandas as pd\n'), ((77015, 77040), 'pandas.Series', 'pd.Series', (['new_image_list'], {}), '(new_image_list)\n', (77024, 77040), True, 'import pandas as pd\n'), ((80293, 80308), 'LOSSPhotPypeline.image.FitsInfo', 'FitsInfo', (['templ'], {}), '(templ)\n', (80301, 80308), False, 'from LOSSPhotPypeline.image import Phot, FitsInfo, FileNames\n'), ((87533, 87562), 'LOSSPhotPypeline.utils.get_first_obs_date', 'LPPu.get_first_obs_date', (['self'], {}), '(self)\n', (87556, 87562), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((91661, 91682), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_fig'], {}), '(save_fig)\n', (91672, 91682), True, 'import matplotlib.pyplot as plt\n'), ((91934, 91945), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (91943, 91945), True, 'import matplotlib.pyplot as plt\n'), ((5830, 5918), 'LOSSPhotPypeline.utils.genconf', 'LPPu.genconf', ([], {'targetname': 'self.targetname', 'config_file': "(self.config_file + '.template')"}), "(targetname=self.targetname, config_file=self.config_file +\n '.template')\n", (5842, 5918), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((19338, 19357), 'pandas.Series', 'pd.Series', (['bool_idx'], {}), '(bool_idx)\n', (19347, 19357), True, 'import pandas as pd\n'), ((19889, 19908), 'pandas.Series', 'pd.Series', (['bool_idx'], {}), '(bool_idx)\n', (19898, 19908), True, 'import pandas as pd\n'), ((20609, 20628), 'pandas.Series', 'pd.Series', (['bool_idx'], {}), '(bool_idx)\n', (20618, 20628), True, 'import pandas as pd\n'), ((32349, 32375), 'os.path.exists', 'os.path.exists', (['img.psfdat'], {}), '(img.psfdat)\n', (32363, 32375), False, 'import os\n'), ((39813, 39935), 'pandas.Series', 'pd.Series', (['[2, 4, 4, 3, 3, 3, 3]'], {'index': "['pct_im', 'RA_diff', 'DEC_diff', 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff']"}), "([2, 4, 4, 3, 3, 3, 3], index=['pct_im', 'RA_diff', 'DEC_diff',\n 'Mag_cal', 'Mag_obs', 'std_obs', 'Mag_diff'])\n", (39822, 39935), True, 'import pandas as pd\n'), ((42864, 42893), 'numpy.abs', 'np.abs', (['((x1 - x0) / (y1 - y0))'], {}), '((x1 - x0) / (y1 - y0))\n', (42870, 42893), True, 'import numpy as np\n'), ((44422, 44501), 'itertools.zip_longest', 'itertools.zip_longest', (['cal_succ.iloc[:nshow].index', 'img_succ.iloc[:nshow].index'], {}), '(cal_succ.iloc[:nshow].index, img_succ.iloc[:nshow].index)\n', (44443, 44501), False, 'import itertools\n'), ((58478, 58516), 'pandas.read_csv', 'pd.read_csv', (['fl'], {'delim_whitespace': '(True)'}), '(fl, delim_whitespace=True)\n', (58489, 58516), True, 'import pandas as pd\n'), ((63332, 63358), 'os.path.basename', 'os.path.basename', (['img.cimg'], {}), '(img.cimg)\n', (63348, 63358), False, 'import os\n'), ((63581, 63607), 'os.path.basename', 'os.path.basename', (['img.cimg'], {}), '(img.cimg)\n', (63597, 63607), False, 'import os\n'), ((64904, 64924), 'os.path.basename', 'os.path.basename', (['fl'], {}), '(fl)\n', (64920, 64924), False, 'import os\n'), ((71575, 71609), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (71584, 71609), True, 'import pandas as pd\n'), ((72093, 72127), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (72102, 72127), True, 'import pandas as pd\n'), ((80869, 80886), 'LOSSPhotPypeline.utils.idl', 'LPPu.idl', (['idl_cmd'], {}), '(idl_cmd)\n', (80877, 80886), True, 'import LOSSPhotPypeline.utils as LPPu\n'), ((84701, 84735), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (84710, 84735), True, 'import pandas as pd\n'), ((85086, 85124), 'pandas.read_csv', 'pd.read_csv', (['fl'], {'delim_whitespace': '(True)'}), '(fl, delim_whitespace=True)\n', (85097, 85124), True, 'import pandas as pd\n'), ((85173, 85207), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (85182, 85207), True, 'import pandas as pd\n'), ((92691, 92705), 'numpy.median', 'np.median', (['sub'], {}), '(sub)\n', (92700, 92705), True, 'import numpy as np\n'), ((92707, 92718), 'numpy.std', 'np.std', (['sub'], {}), '(sub)\n', (92713, 92718), True, 'import numpy as np\n'), ((32479, 32508), 'os.path.exists', 'os.path.exists', (['img.psfsubdat'], {}), '(img.psfsubdat)\n', (32493, 32508), False, 'import os\n'), ((49017, 49083), 'pandas.concat', 'pd.concat', (['[df.loc[self.cal_IDs, :] for df in df_list]'], {'sort': '(False)'}), '([df.loc[self.cal_IDs, :] for df in df_list], sort=False)\n', (49026, 49083), True, 'import pandas as pd\n'), ((58053, 58087), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (58062, 58087), True, 'import pandas as pd\n'), ((58573, 58607), 'pandas.concat', 'pd.concat', (['concat_list'], {'sort': '(False)'}), '(concat_list, sort=False)\n', (58582, 58607), True, 'import pandas as pd\n'), ((60540, 60592), 'numpy.sqrt', 'np.sqrt', (['((sn_y - host_y) ** 2 + (sn_x - host_x) ** 2)'], {}), '((sn_y - host_y) ** 2 + (sn_x - host_x) ** 2)\n', (60547, 60592), True, 'import numpy as np\n'), ((60591, 60616), 'numpy.cos', 'np.cos', (['(theta_sn + dtheta)'], {}), '(theta_sn + dtheta)\n', (60597, 60616), True, 'import numpy as np\n'), ((60646, 60698), 'numpy.sqrt', 'np.sqrt', (['((sn_y - host_y) ** 2 + (sn_x - host_x) ** 2)'], {}), '((sn_y - host_y) ** 2 + (sn_x - host_x) ** 2)\n', (60653, 60698), True, 'import numpy as np\n'), ((60697, 60722), 'numpy.sin', 'np.sin', (['(theta_sn + dtheta)'], {}), '(theta_sn + dtheta)\n', (60703, 60722), True, 'import numpy as np\n'), ((60859, 60907), 'numpy.linspace', 'np.linspace', (['(np.pi / 4)', '(2 * np.pi - np.pi / 4)', '(4)'], {}), '(np.pi / 4, 2 * np.pi - np.pi / 4, 4)\n', (60870, 60907), True, 'import numpy as np\n'), ((61078, 61126), 'numpy.linspace', 'np.linspace', (['(np.pi / 4)', '(2 * np.pi - np.pi / 4)', '(4)'], {}), '(np.pi / 4, 2 * np.pi - np.pi / 4, 4)\n', (61089, 61126), True, 'import numpy as np\n'), ((61440, 61468), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(7)'], {}), '(0, 2 * np.pi, 7)\n', (61451, 61468), True, 'import numpy as np\n'), ((62961, 62997), 'numpy.random.normal', 'np.random.normal', (['mag', 'emag', 'n_stars'], {}), '(mag, emag, n_stars)\n', (62977, 62997), True, 'import numpy as np\n'), ((91755, 91806), 'os.path.join', 'os.path.join', (['self.calibration_dir', '"""ref_stars.png"""'], {}), "(self.calibration_dir, 'ref_stars.png')\n", (91767, 91806), False, 'import os\n'), ((93156, 93169), 'numpy.mean', 'np.mean', (['mags'], {}), '(mags)\n', (93163, 93169), True, 'import numpy as np\n'), ((93262, 93275), 'numpy.mean', 'np.mean', (['mags'], {}), '(mags)\n', (93269, 93275), True, 'import numpy as np\n'), ((93277, 93289), 'numpy.std', 'np.std', (['mags'], {}), '(mags)\n', (93283, 93289), True, 'import numpy as np\n'), ((41169, 41307), 'pandas.Series', 'pd.Series', (["[img.mjd, img.filter, img.phot_sub.loc[-1, self.calmethod], img.phot_sub.\n loc[-1, self.calmethod + '_err'], img.color_term]"], {}), "([img.mjd, img.filter, img.phot_sub.loc[-1, self.calmethod], img.\n phot_sub.loc[-1, self.calmethod + '_err'], img.color_term])\n", (41178, 41307), True, 'import pandas as pd\n'), ((41472, 41597), 'pandas.Series', 'pd.Series', (["[img.mjd, img.filter, img.phot.loc[-1, 'Mag_obs'], img.phot.loc[-1, self.\n calmethod + '_err'], img.color_term]"], {}), "([img.mjd, img.filter, img.phot.loc[-1, 'Mag_obs'], img.phot.loc[-\n 1, self.calmethod + '_err'], img.color_term])\n", (41481, 41597), True, 'import pandas as pd\n'), ((93337, 93350), 'numpy.mean', 'np.mean', (['mags'], {}), '(mags)\n', (93344, 93350), True, 'import numpy as np\n'), ((93511, 93524), 'numpy.mean', 'np.mean', (['mags'], {}), '(mags)\n', (93518, 93524), True, 'import numpy as np\n'), ((93359, 93371), 'numpy.std', 'np.std', (['mags'], {}), '(mags)\n', (93365, 93371), True, 'import numpy as np\n'), ((93533, 93545), 'numpy.std', 'np.std', (['mags'], {}), '(mags)\n', (93539, 93545), True, 'import numpy as np\n'), ((61548, 61562), 'numpy.cos', 'np.cos', (['dtheta'], {}), '(dtheta)\n', (61554, 61562), True, 'import numpy as np\n'), ((61811, 61825), 'numpy.sin', 'np.sin', (['dtheta'], {}), '(dtheta)\n', (61817, 61825), True, 'import numpy as np\n'), ((61023, 61046), 'numpy.array', 'np.array', (['[1, 0, -1, 0]'], {}), '([1, 0, -1, 0])\n', (61031, 61046), True, 'import numpy as np\n'), ((61242, 61265), 'numpy.array', 'np.array', (['[0, 1, 0, -1]'], {}), '([0, 1, 0, -1])\n', (61250, 61265), True, 'import numpy as np\n'), ((61568, 61594), 'numpy.cos', 'np.cos', (['(dtheta + np.pi / 6)'], {}), '(dtheta + np.pi / 6)\n', (61574, 61594), True, 'import numpy as np\n'), ((61598, 61612), 'numpy.cos', 'np.cos', (['dtheta'], {}), '(dtheta)\n', (61604, 61612), True, 'import numpy as np\n'), ((61688, 61714), 'numpy.cos', 'np.cos', (['(dtheta + np.pi / 6)'], {}), '(dtheta + np.pi / 6)\n', (61694, 61714), True, 'import numpy as np\n'), ((61718, 61732), 'numpy.cos', 'np.cos', (['dtheta'], {}), '(dtheta)\n', (61724, 61732), True, 'import numpy as np\n'), ((61831, 61857), 'numpy.sin', 'np.sin', (['(dtheta + np.pi / 6)'], {}), '(dtheta + np.pi / 6)\n', (61837, 61857), True, 'import numpy as np\n'), ((61861, 61875), 'numpy.sin', 'np.sin', (['dtheta'], {}), '(dtheta)\n', (61867, 61875), True, 'import numpy as np\n'), ((61951, 61977), 'numpy.sin', 'np.sin', (['(dtheta + np.pi / 6)'], {}), '(dtheta + np.pi / 6)\n', (61957, 61977), True, 'import numpy as np\n'), ((61981, 61995), 'numpy.sin', 'np.sin', (['dtheta'], {}), '(dtheta)\n', (61987, 61995), True, 'import numpy as np\n'), ((61005, 61022), 'numpy.cos', 'np.cos', (['(np.pi / 4)'], {}), '(np.pi / 4)\n', (61011, 61022), True, 'import numpy as np\n'), ((61224, 61241), 'numpy.sin', 'np.sin', (['(np.pi / 4)'], {}), '(np.pi / 4)\n', (61230, 61241), True, 'import numpy as np\n')]
from argparse import ArgumentParser import os import sys from . import solver, utils from pprint import pprint if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-f", "--filename", nargs="*", default=[], help="puzzle filenames. See data/puzzles for examples") parser.add_argument("-d", "--dirname", help="Solve all .txt puzzle files in directory") parser.add_argument("-s", "--strategy", choices=[strat.name for strat in solver.Strategies], default=solver.Strategies.MIN_HEAP.name, help="Strategy for state expansion") parser.add_argument("-v", "--verbose", action="store_true", help="If set will also print stats about search") args = parser.parse_args() print(f"Using strategy {args.strategy}") filenames = list(args.filename) if args.dirname: try: for fname in sorted(os.listdir(args.dirname)): if fname.endswith(".txt"): filenames.append(os.path.join(args.dirname, fname)) except FileNotFoundError: print(f"error: no such directory: {args.dirname}", file=sys.stderr) sys.exit(1) for filename in filenames: if not os.path.exists(filename): print(f"file {filename} does not exist", file=sys.stderr) sys.exit(1) for filename in filenames: print(filename) board = utils.read_board_from_file(filename) print("unsolved board:") utils.print_unsolved_board(board) print("solving...") stats = {} solver.solve_search_naive( board, strategy=solver.Strategies[args.strategy], stats=stats ) print("solved board:") utils.print_solved_board(board) if args.verbose: pprint(stats)
[ "os.path.exists", "os.listdir", "argparse.ArgumentParser", "os.path.join", "sys.exit", "pprint.pprint" ]
[((153, 169), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (167, 169), False, 'from argparse import ArgumentParser\n'), ((1349, 1373), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (1363, 1373), False, 'import os\n'), ((1457, 1468), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1465, 1468), False, 'import sys\n'), ((1951, 1964), 'pprint.pprint', 'pprint', (['stats'], {}), '(stats)\n', (1957, 1964), False, 'from pprint import pprint\n'), ((1022, 1046), 'os.listdir', 'os.listdir', (['args.dirname'], {}), '(args.dirname)\n', (1032, 1046), False, 'import os\n'), ((1290, 1301), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1298, 1301), False, 'import sys\n'), ((1129, 1162), 'os.path.join', 'os.path.join', (['args.dirname', 'fname'], {}), '(args.dirname, fname)\n', (1141, 1162), False, 'import os\n')]
import math import snap from src.preprocessing import data_manager def degree_frac(graph, budget, seed): """Selects each vertex fractionally proportional to its degree.""" # Store incentive assignments in a dictionary indexed on nodes id incentives = dict() # Compute the fractional budget based on the number of edges and keep track of the amount spent budget_fraction = budget / graph.GetEdges() spent = 0 # Set initial incentives to be proportional to the out-degree of each node for node in graph.Nodes(): node_budget = math.floor(budget_fraction * node.GetOutDeg()) incentives[node.GetId()] = node_budget spent += node_budget # Set snap random seed to be able to reproduce results snap.TRnd(seed) # Get the remainder unassigned budget and add it randomly remainder = budget - spent for i in range(0, remainder): incentives[graph.GetRndNId()] += 1 return incentives def discount_frac(graph, thresholds, budget): """Selects the vertex having the highest degree at each step and assigns to it a budged equal to the minimum amount that allows to activate it. """ # Initialize the set of unexplored nodes in a dictionary with their current number of unexplored nodes pointed unexplored = {node.GetId(): node.GetOutDeg() for node in graph.Nodes()} # Store the current number of explored nodes pointing to each node neighbors_explored = {node.GetId(): 0 for node in graph.Nodes()} # Store incentive assignments in a dictionary indexed on nodes id incentives = {node.GetId(): 0 for node in graph.Nodes()} while budget > 0 and len(unexplored) > 0: # Get the identifier of the node with most unexplored neighbors max_id = max(unexplored, key=unexplored.get) candidate = graph.GetNI(max_id) # Compute node index threshold = thresholds[candidate.GetId()] index = max(0, threshold - neighbors_explored[max_id]) # Compute node incentive and update the budget incentive = min(budget, index) incentives[candidate.GetId()] = incentive budget -= incentive # Lower the number of unexplored neighbors for each node that points to the candidate for node_id in set(candidate.GetInEdges()).intersection(unexplored.keys()): unexplored[node_id] -= 1 # Increase the number of explored neighbors for each node pointed by the candidate for node_id in candidate.GetOutEdges(): neighbors_explored[node_id] += 1 # Add the node to the target set unexplored.pop(candidate.GetId()) return incentives def tpi(graph, thresholds): # Make a temporary copy of the graph to make direct changes temp_graph = data_manager.copy_graph(graph) temp_thresholds = thresholds.copy() # Store incentive assignments in a dictionary indexed on nodes id incentives = {node.GetId(): 0 for node in graph.Nodes()} # Keep track of nodes not examined yet unexplored = {} for node in temp_graph.Nodes(): # Get current threshold and in-degree threshold = temp_thresholds[node.GetId()] in_degree = node.GetInDeg() if in_degree == 0: index = threshold else: index = (threshold * (threshold + 1)) / (in_degree * (in_degree + 1)) unexplored[node.GetId()] = index # Perform operations until all nodes have been examined while len(unexplored) > 0: explored = set() for node_id in unexplored: # Get the node iterator from its identifier node = temp_graph.GetNI(node_id) # Get current threshold and in-degree to see if condition holds threshold = temp_thresholds[node.GetId()] in_degree = node.GetInDeg() if threshold > in_degree: # Get the current incentive for the node incentive = incentives[node.GetId()] # Update both incentive and threshold for the node incentives[node.GetId()] = incentive + threshold - in_degree temp_thresholds[node.GetId()] = in_degree # Remove the node if it has no more in-edges if in_degree == 0: explored.add(node_id) # Remove all nodes with 0 in-degree for node_id in explored: unexplored.pop(node_id) if len(unexplored) == 0: # Exit the loop if all nodes have been explored break else: # Choose a vertex to remove from the graph max_id = max(unexplored, key=unexplored.get) candidate = graph.GetNI(max_id) # Mark the edges going out from the candidate to be removed for destination in candidate.GetOutEdges(): temp_graph.DelEdge(candidate.GetId(), destination) # Remove the candidate node from the set of those to be examined unexplored.pop(candidate.GetId()) return incentives
[ "src.preprocessing.data_manager.copy_graph", "snap.TRnd" ]
[((758, 773), 'snap.TRnd', 'snap.TRnd', (['seed'], {}), '(seed)\n', (767, 773), False, 'import snap\n'), ((2794, 2824), 'src.preprocessing.data_manager.copy_graph', 'data_manager.copy_graph', (['graph'], {}), '(graph)\n', (2817, 2824), False, 'from src.preprocessing import data_manager\n')]
import time import traceback import cv2 as cv from picamera.array import PiRGBArray from picamera import PiCamera # Min matches to look for homography #MIN_MATCH_COUNT = 10 from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np model = ResNet50(weights='imagenet') # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (224, 224) camera.framerate = 32 rawCapture = PiRGBArray(camera, size=(224, 224)) time.sleep(0.1) def main(): #img1 = cv.imread('banana.jpg') #img1 = cv.resize(img1, (0,0), fx=0.5, fy=0.5) #orb = cv.ORB_create( # nfeatures=5000, edgeThreshold=20, patchSize=20, scaleFactor=1.3, nlevels=20) #kp1, des1 = orb.detectAndCompute(img1, None) frame_count = 0 for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text image = frame.array #cv.imshow("Frame", image) key = cv.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if key == ord("q"): break get_match_image(image) # When everything done, release the capture cap.release() cv.destroyAllWindows() def get_match_image(img): #img_path = 'banana.jpg' #img = image.load_img(img_path, target_size=(224, 224)) #x = image.img_to_array(img) x = np.expand_dims(img, axis=0) x = preprocess_input(x) preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', decode_predictions(preds, top=3)[0]) if __name__ == "__main__": main()
[ "keras.applications.resnet50.decode_predictions", "keras.applications.resnet50.preprocess_input", "picamera.PiCamera", "time.sleep", "cv2.destroyAllWindows", "keras.applications.resnet50.ResNet50", "picamera.array.PiRGBArray", "numpy.expand_dims", "cv2.waitKey" ]
[((368, 396), 'keras.applications.resnet50.ResNet50', 'ResNet50', ([], {'weights': '"""imagenet"""'}), "(weights='imagenet')\n", (376, 396), False, 'from keras.applications.resnet50 import ResNet50\n'), ((478, 488), 'picamera.PiCamera', 'PiCamera', ([], {}), '()\n', (486, 488), False, 'from picamera import PiCamera\n'), ((555, 590), 'picamera.array.PiRGBArray', 'PiRGBArray', (['camera'], {'size': '(224, 224)'}), '(camera, size=(224, 224))\n', (565, 590), False, 'from picamera.array import PiRGBArray\n'), ((591, 606), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (601, 606), False, 'import time\n'), ((1466, 1488), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (1486, 1488), True, 'import cv2 as cv\n'), ((1646, 1673), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (1660, 1673), True, 'import numpy as np\n'), ((1682, 1701), 'keras.applications.resnet50.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (1698, 1701), False, 'from keras.applications.resnet50 import preprocess_input, decode_predictions\n'), ((1162, 1175), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (1172, 1175), True, 'import cv2 as cv\n'), ((1888, 1920), 'keras.applications.resnet50.decode_predictions', 'decode_predictions', (['preds'], {'top': '(3)'}), '(preds, top=3)\n', (1906, 1920), False, 'from keras.applications.resnet50 import preprocess_input, decode_predictions\n')]
# -------------------------- # UFSC - CTC - INE - INE5603 # Exercício calculos # -------------------------- # Classe responsável por determinar se dois números inteiros são amigos. from view.paineis.painel_abstrato import PainelAbstrato from model.calculos import amigos class PainelAmigos(PainelAbstrato): def __init__(self): super().__init__('Números Amigos') def interaja(self): (n1, n2) = self._leia2int() if amigos(n1,n2): msg = 'Os números {} e {} são amigos.'.format(n1,n2) else: msg = 'Os números {} e {} não são amigos.'.format(n1,n2) print(msg)
[ "model.calculos.amigos" ]
[((448, 462), 'model.calculos.amigos', 'amigos', (['n1', 'n2'], {}), '(n1, n2)\n', (454, 462), False, 'from model.calculos import amigos\n')]
from pyecharts import options as opts from pyecharts.charts import Grid, Line, Scatter from pyecharts.faker import Faker scatter = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="Grid-Scatter"), legend_opts=opts.LegendOpts(pos_left="20%"), ) ) line = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="Grid-Line", pos_right="5%"), legend_opts=opts.LegendOpts(pos_right="20%"), ) ) grid = ( Grid() .add(scatter, grid_opts=opts.GridOpts(pos_left="55%")) .add(line, grid_opts=opts.GridOpts(pos_right="55%")) .render("grid_horizontal.html") )
[ "pyecharts.faker.Faker.values", "pyecharts.options.TitleOpts", "pyecharts.options.LegendOpts", "pyecharts.charts.Scatter", "pyecharts.charts.Line", "pyecharts.charts.Grid", "pyecharts.options.GridOpts", "pyecharts.faker.Faker.choose" ]
[((296, 332), 'pyecharts.options.TitleOpts', 'opts.TitleOpts', ([], {'title': '"""Grid-Scatter"""'}), "(title='Grid-Scatter')\n", (310, 332), True, 'from pyecharts import options as opts\n'), ((354, 385), 'pyecharts.options.LegendOpts', 'opts.LegendOpts', ([], {'pos_left': '"""20%"""'}), "(pos_left='20%')\n", (369, 385), True, 'from pyecharts import options as opts\n'), ((563, 612), 'pyecharts.options.TitleOpts', 'opts.TitleOpts', ([], {'title': '"""Grid-Line"""', 'pos_right': '"""5%"""'}), "(title='Grid-Line', pos_right='5%')\n", (577, 612), True, 'from pyecharts import options as opts\n'), ((634, 666), 'pyecharts.options.LegendOpts', 'opts.LegendOpts', ([], {'pos_right': '"""20%"""'}), "(pos_right='20%')\n", (649, 666), True, 'from pyecharts import options as opts\n'), ((243, 257), 'pyecharts.faker.Faker.values', 'Faker.values', ([], {}), '()\n', (255, 257), False, 'from pyecharts.faker import Faker\n'), ((510, 524), 'pyecharts.faker.Faker.values', 'Faker.values', ([], {}), '()\n', (522, 524), False, 'from pyecharts.faker import Faker\n'), ((781, 811), 'pyecharts.options.GridOpts', 'opts.GridOpts', ([], {'pos_right': '"""55%"""'}), "(pos_right='55%')\n", (794, 811), True, 'from pyecharts import options as opts\n'), ((205, 219), 'pyecharts.faker.Faker.values', 'Faker.values', ([], {}), '()\n', (217, 219), False, 'from pyecharts.faker import Faker\n'), ((472, 486), 'pyecharts.faker.Faker.values', 'Faker.values', ([], {}), '()\n', (484, 486), False, 'from pyecharts.faker import Faker\n'), ((690, 696), 'pyecharts.charts.Grid', 'Grid', ([], {}), '()\n', (694, 696), False, 'from pyecharts.charts import Grid, Line, Scatter\n'), ((725, 754), 'pyecharts.options.GridOpts', 'opts.GridOpts', ([], {'pos_left': '"""55%"""'}), "(pos_left='55%')\n", (738, 754), True, 'from pyecharts import options as opts\n'), ((163, 177), 'pyecharts.faker.Faker.choose', 'Faker.choose', ([], {}), '()\n', (175, 177), False, 'from pyecharts.faker import Faker\n'), ((430, 444), 'pyecharts.faker.Faker.choose', 'Faker.choose', ([], {}), '()\n', (442, 444), False, 'from pyecharts.faker import Faker\n'), ((138, 147), 'pyecharts.charts.Scatter', 'Scatter', ([], {}), '()\n', (145, 147), False, 'from pyecharts.charts import Grid, Line, Scatter\n'), ((408, 414), 'pyecharts.charts.Line', 'Line', ([], {}), '()\n', (412, 414), False, 'from pyecharts.charts import Grid, Line, Scatter\n')]
# Generated by Django 3.0.5 on 2020-04-23 22:16 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('basta', '0010_auto_20200423_2310'), ] operations = [ migrations.AlterField( model_name='round', name='created_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='round', name='modified_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='session', name='created_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='session', name='modified_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=settings.AUTH_USER_MODEL), ), ]
[ "django.db.migrations.swappable_dependency", "django.db.models.ForeignKey" ]
[((227, 284), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (258, 284), False, 'from django.db import migrations, models\n'), ((470, 595), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'related_name': '"""+"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='+', to=settings.AUTH_USER_MODEL)\n", (487, 595), False, 'from django.db import migrations, models\n'), ((717, 842), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'related_name': '"""+"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='+', to=settings.AUTH_USER_MODEL)\n", (734, 842), False, 'from django.db import migrations, models\n'), ((965, 1090), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'related_name': '"""+"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='+', to=settings.AUTH_USER_MODEL)\n", (982, 1090), False, 'from django.db import migrations, models\n'), ((1214, 1339), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'related_name': '"""+"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.SET_NULL,\n related_name='+', to=settings.AUTH_USER_MODEL)\n", (1231, 1339), False, 'from django.db import migrations, models\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import datetime as dt fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(15,5)) # Get time axes set up x_major_lct = mpl.dates.AutoDateLocator(minticks=2,maxticks=10, interval_multiples=True) x_fmt = mpl.dates.AutoDateFormatter(x_major_lct) plt.xlabel("Timestamp") ax[0,0].set_title("Average Degree") ax[0,1].set_title('Maximum Degree') ax[0,2].set_title('Average Clustering Coefficient') ax[0,3].set_title('Mean squared degree') ax[1,0].set_title('Degree Assortativity') ax[1,1].set_title('Singleton Nodes') ax[1,2].set_title('Doubleton Nodes') ax[1,3].set_title('Number of Triangles') # File with all the time series of measurements files = ["tutorial/CitationsTS.dat", "tutorial/CitationsTSArtificial.dat"] labels = ["Real Data", "Model"] for i in range(2): # Read stats from datafile with open(files[i],'r') as f: f.readline() rawdata = f.read().splitlines() times = [dt.datetime.fromtimestamp(int(l.split()[0])) for l in rawdata] times = times[:39] matrix = np.array([[int(row.split()[0])]+[float(num) for num in row.split()[1:]] for row in rawdata]) matrix = matrix[:39] df = pd.DataFrame(matrix) f.close() df.columns = ['timestamp', 'nodes', 'links', 'avgdeg', 'maxdeg', 'singletons', 'doubletons', 'meandegsq', 'assortativity', 'clustercoeff', 'triangles'] if i == 1: start, end = df.iloc[0]['timestamp'], df.iloc[-1]['timestamp'] ax[0,0].plot(times, df['avgdeg']) ax[0,1].plot(times, df['maxdeg'], label = labels[i]) ax[0,2].plot(times, df['clustercoeff'], label = labels[i]) ax[0,3].plot(times, df['meandegsq'], label = labels[i]) ax[1,0].plot(times, df['assortativity'], label = labels[i]) ax[1,1].plot(times, df['singletons'], label = labels[i]) ax[1,2].plot(times, df['doubletons'], label = labels[i]) ax[1,3].plot(times, df['triangles'], label = labels[i]) for row in range(2): for col in range(4): ax[row,col].xaxis.set_major_locator(x_major_lct) ax[row,col].xaxis.set_major_formatter(x_fmt) for label in ax[row,col].get_xmajorticklabels(): label.set_rotation(30) for label in ax[row,col].get_ymajorticklabels(): label.set_rotation(30) plt.legend(loc = 'upper left') plt.tight_layout() fig.savefig("tutorial/plots/CitationsVsArtificial.png") plt.show()
[ "matplotlib.dates.AutoDateFormatter", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "pandas.DataFrame", "matplotlib.dates.AutoDateLocator", "matplotlib.pyplot.subplots", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((129, 176), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(4)', 'figsize': '(15, 5)'}), '(nrows=2, ncols=4, figsize=(15, 5))\n', (141, 176), True, 'import matplotlib.pyplot as plt\n'), ((214, 289), 'matplotlib.dates.AutoDateLocator', 'mpl.dates.AutoDateLocator', ([], {'minticks': '(2)', 'maxticks': '(10)', 'interval_multiples': '(True)'}), '(minticks=2, maxticks=10, interval_multiples=True)\n', (239, 289), True, 'import matplotlib as mpl\n'), ((297, 337), 'matplotlib.dates.AutoDateFormatter', 'mpl.dates.AutoDateFormatter', (['x_major_lct'], {}), '(x_major_lct)\n', (324, 337), True, 'import matplotlib as mpl\n'), ((339, 362), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Timestamp"""'], {}), "('Timestamp')\n", (349, 362), True, 'import matplotlib.pyplot as plt\n'), ((2354, 2382), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (2364, 2382), True, 'import matplotlib.pyplot as plt\n'), ((2385, 2403), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2401, 2403), True, 'import matplotlib.pyplot as plt\n'), ((2460, 2470), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2468, 2470), True, 'import matplotlib.pyplot as plt\n'), ((1246, 1266), 'pandas.DataFrame', 'pd.DataFrame', (['matrix'], {}), '(matrix)\n', (1258, 1266), True, 'import pandas as pd\n')]
# -*- coding: iso-8859-1 -*- from __future__ import print_function, division import sys if( sys.version_info[0] == 2 ): range = xrange import os sys.path.insert( 0, os.getenv( "QM3_OPENMM" ) ) try: import simtk.openmm import simtk.openmm.app import simtk.unit class py_openmm( object ): def __simulation( self ): self.sim = simtk.openmm.app.Simulation( self.top, self.sys, simtk.openmm.CustomIntegrator( 0.001 ), simtk.openmm.Platform.getPlatformByName( self.knd ) ) def __init__( self, omm_system, topology, qm_excl = [], platform = "CPU" ): self.sys = omm_system self.top = topology self.knd = platform self.nbn = None self.sim = None for i in range( self.sys.getNumForces() ): if( type( self.sys.getForce( i ) ) == simtk.openmm.NonbondedForce ): self.nbn = self.sys.getForce( i ) try: n = len( qm_excl ) for i in range( 0, n - 1 ): for j in range( i + 1, n ): self.nbn.addException( qm_excl[i], qm_excl[j], 0.0, 0.0, 0.0 ) except: pass self.__simulation() def update_chrg( self, mol ): for i in range( mol.natm ): t = self.nbn.getParticleParameters( i ) self.nbn.setParticleParameters( i, mol.chrg[i], t[1], t[2] ) self.__simulation() self.update_coor( mol ) def update_coor( self, mol ): tmp = [] for i in range( mol.natm ): i3 = i * 3 tmp.append( simtk.openmm.Vec3( mol.coor[i3], mol.coor[i3+1], mol.coor[i3+2] ) * simtk.unit.angstrom ) self.sim.context.setPositions( tmp ) def get_func( self, mol ): self.update_coor( mol ) stt = self.sim.context.getState( getEnergy = True, getForces = False ) mol.func += stt.getPotentialEnergy().value_in_unit( simtk.unit.kilojoule/simtk.unit.mole ) def get_grad( self, mol ): self.update_coor( mol ) stt = self.sim.context.getState( getEnergy = True, getForces = True ) mol.func += stt.getPotentialEnergy().value_in_unit( simtk.unit.kilojoule/simtk.unit.mole ) frc = stt.getForces() for i in range( mol.natm ): i3 = i * 3 for j in [0, 1, 2]: mol.grad[i3+j] -= frc[i][j].value_in_unit( simtk.unit.kilojoule/(simtk.unit.angstrom*simtk.unit.mole) ) except: pass
[ "os.getenv" ]
[((172, 195), 'os.getenv', 'os.getenv', (['"""QM3_OPENMM"""'], {}), "('QM3_OPENMM')\n", (181, 195), False, 'import os\n')]
#!/usr/bin/env python3 import pandas as pd import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import accuracy_score from sklearn.metrics import pairwise_distances from matplotlib import pyplot as plt import seaborn as sns sns.set(color_codes=True) import scipy.spatial as sp import scipy.cluster.hierarchy as hc def toint(x): d=dict(zip("ACGT", range(4))) return d[x] def get_features_and_labels(filename): df = pd.read_csv(filename, sep='\t') y = df.y A = np.array(df.X.map(list).values.tolist()) toint2 = np.vectorize(toint) A = toint2(A) return A, y def plot(distances, method='average', affinity='euclidean'): mylinkage = hc.linkage(sp.distance.squareform(distances), method=method) g=sns.clustermap(distances, row_linkage=mylinkage, col_linkage=mylinkage ) g.fig.suptitle(f"Hierarchical clustering using {method} linkage and {affinity} affinity") plt.show() def cluster_euclidean(filename): A, y = get_features_and_labels(filename) model = AgglomerativeClustering(2, linkage="average", affinity='euclidean') yfitted = model.fit_predict(A) acc = accuracy_score(y, yfitted) return acc def cluster_hamming(filename): A, y = get_features_and_labels(filename) distances = pairwise_distances(A, metric="hamming") model = AgglomerativeClustering(2, linkage="average", affinity='precomputed') yfitted = 1 - model.fit_predict(distances) acc = accuracy_score(y, yfitted) # plot commented out from model solution, due to tests returning MemoryError sometimes # plot(distances, "average", "hamming") return acc def main(): print("Accuracy score with Euclidean affinity is", cluster_euclidean("src/data.seq")) print("Accuracy score with Hamming affinity is", cluster_hamming("src/data.seq")) if __name__ == "__main__": main()
[ "seaborn.set", "sklearn.cluster.AgglomerativeClustering", "scipy.spatial.distance.squareform", "pandas.read_csv", "seaborn.clustermap", "sklearn.metrics.pairwise_distances", "numpy.vectorize", "sklearn.metrics.accuracy_score", "matplotlib.pyplot.show" ]
[((269, 294), 'seaborn.set', 'sns.set', ([], {'color_codes': '(True)'}), '(color_codes=True)\n', (276, 294), True, 'import seaborn as sns\n'), ((475, 506), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""'}), "(filename, sep='\\t')\n", (486, 506), True, 'import pandas as pd\n'), ((582, 601), 'numpy.vectorize', 'np.vectorize', (['toint'], {}), '(toint)\n', (594, 601), True, 'import numpy as np\n'), ((782, 853), 'seaborn.clustermap', 'sns.clustermap', (['distances'], {'row_linkage': 'mylinkage', 'col_linkage': 'mylinkage'}), '(distances, row_linkage=mylinkage, col_linkage=mylinkage)\n', (796, 853), True, 'import seaborn as sns\n'), ((953, 963), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (961, 963), True, 'from matplotlib import pyplot as plt\n'), ((1056, 1123), 'sklearn.cluster.AgglomerativeClustering', 'AgglomerativeClustering', (['(2)'], {'linkage': '"""average"""', 'affinity': '"""euclidean"""'}), "(2, linkage='average', affinity='euclidean')\n", (1079, 1123), False, 'from sklearn.cluster import AgglomerativeClustering\n'), ((1169, 1195), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y', 'yfitted'], {}), '(y, yfitted)\n', (1183, 1195), False, 'from sklearn.metrics import accuracy_score\n'), ((1305, 1344), 'sklearn.metrics.pairwise_distances', 'pairwise_distances', (['A'], {'metric': '"""hamming"""'}), "(A, metric='hamming')\n", (1323, 1344), False, 'from sklearn.metrics import pairwise_distances\n'), ((1359, 1428), 'sklearn.cluster.AgglomerativeClustering', 'AgglomerativeClustering', (['(2)'], {'linkage': '"""average"""', 'affinity': '"""precomputed"""'}), "(2, linkage='average', affinity='precomputed')\n", (1382, 1428), False, 'from sklearn.cluster import AgglomerativeClustering\n'), ((1486, 1512), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y', 'yfitted'], {}), '(y, yfitted)\n', (1500, 1512), False, 'from sklearn.metrics import accuracy_score\n'), ((726, 759), 'scipy.spatial.distance.squareform', 'sp.distance.squareform', (['distances'], {}), '(distances)\n', (748, 759), True, 'import scipy.spatial as sp\n')]
# coding:utf8 # run: python fout.py './file_pattern*' cmds # --------------------------------------------------------------------------------------- # # limit:cmd,offset:int,size:int|a(all) # --------------------------------------------------------------------------------------- # # grep:cmd,extract_ex:bool,regexp:string[,regexp]... # --------------------------------------------------------------------------------------- # # sort:cmd[,a|n:cmd[,sep:string[,col:int]]] # --------------------------------------------------------------------------------------- # # unique:cmd[,show_count:bool[,sep:string[,col:int]]] # --------------------------------------------------------------------------------------- # # cut:cmd,sep:string,joiner:string,field:int[,field]... # --------------------------------------------------------------------------------------- # # cmd_sep[*]:cmd # --------------------------------------------------------------------------------------- # # reverse:cmd # --------------------------------------------------------------------------------------- # # count:cmd # --------------------------------------------------------------------------------------- # # copy:cmd # --------------------------------------------------------------------------------------- # import sys import glob import re import pyperclip if len(sys.argv) < 2: print('missing file pattern') exit() file_pattern = sys.argv[1] cmd_sep = ',' def parse_by_limit(args: list, lines: list): """ 支持倒着取行数 """ offset = int(args[0]) size = args[1] if size == 'a' or size == 'all': if offset < 0: return lines[:len(lines)+offset+1] return lines[offset:] if offset < 0: end = len(lines)+offset+1 return lines[end-int(size):end] return lines[offset:offset+int(size)] def parse_by_regexp(args: list, lines: list): extract_ex = 't' == args[0] or 'true' == args[0] regexp = '.*'.join(args[1:]) match_lines = [] can_extract = False for line in lines: if can_extract: if re.match(r'\d{4}(-\d{2}){2}.*', line): can_extract = False else: # 提取异常数据 match_lines.append(line) if re.search(regexp, line, re.I): match_lines.append(line) can_extract = extract_ex return match_lines def parse_by_sort(args: list, lines: list): args = parse_unique_and_sort_args(args) sort_by_number = 'n' == args[0] col = int(args[2]) def get_sort_token(line: str): if len(args[1]) > 0: fields = str.split(line, args[1]) line = '' if len(fields) > col: line = fields[col] if sort_by_number and len(line) < 1: line = '0' return int(line) if sort_by_number else line lines.sort(key=get_sort_token) return lines def parse_by_unique(args: list, lines: list): args = parse_unique_and_sort_args(args) show_count = 't' == args[0] or 'true' == args[0] col = int(args[2]) unique_lines = [] line_col_map = {} unique_map = {} # 去重 for line in lines: fileds = [line] if len(args[1]) < 1 else str.split(line, args[1]) key = fileds[col] count = unique_map.get(key, 0) if count == 0: unique_lines.insert unique_lines.append(line) line_col_map[line] = key unique_map[key] = count+1 if not show_count: return unique_lines for i in range(0, len(unique_lines)): unique_lines = [ ' '.join([str(unique_map[line_col_map[line]]), line]) for line in unique_lines] return unique_lines def parse_unique_and_sort_args(args: list): parsed_args = ['a', '', '0'] if len(args) > 2: parsed_args[2] = args[2] if len(args) > 1: parsed_args[1] = args[1] if len(args) > 0: parsed_args[0] = args[0] return parsed_args def parse_by_cut(args: list, lines: list): """ 重组字符串 """ if len(args) < 1: return lines sep = args[0] cols = [int(arg) for arg in args[2:]] joiner = args[1] if len(args) > 1 else '' # 拼接指定列 joinned_lines = [] for line in lines: fields = str.split(line, sep) if len(cols) > 0: fields = [fields[col] for col in cols] joinned_lines.append(joiner.join(fields)) return joinned_lines def parse_by_cmd(cmd: str, lines: list): """ 按命令解析字符 """ args = str.split(cmd, cmd_sep)[1:] if str.startswith(cmd, 'limit'): return parse_by_limit(args, lines) if str.startswith(cmd, 'grep'): return parse_by_regexp(args, lines) if str.startswith(cmd, 'cut'): return parse_by_cut(args, lines) if str.startswith(cmd, 'unique'): return parse_by_unique(args, lines) if str.startswith(cmd, 'sort'): return parse_by_sort(args, lines) if str.startswith(cmd, 'count'): return [str(len(lines))] if str.startswith(cmd, 'reverse'): lines.reverse() if str.startswith(cmd, 'copy'): pyperclip.copy('\n'.join(lines)) return [] return lines # 读取文件内容 lines = [] for filename in glob.glob(file_pattern): with open(filename, 'r', encoding='utf8') as fr: lines.extend(str.strip(line, '\n') for line in fr.readlines() if len(line) > 0) # 依次解析命令 # print(sys.argv) # lines = [line for line in lines if len(line) > 0] for arg in sys.argv[2:]: if str.startswith(arg, 'cmd_sep'): cmd_sep = ''.join(arg[7:]) continue lines = parse_by_cmd(str.lower(arg), lines) print('\n'.join(lines))
[ "re.match", "glob.glob", "re.search" ]
[((5230, 5253), 'glob.glob', 'glob.glob', (['file_pattern'], {}), '(file_pattern)\n', (5239, 5253), False, 'import glob\n'), ((2249, 2278), 're.search', 're.search', (['regexp', 'line', 're.I'], {}), '(regexp, line, re.I)\n', (2258, 2278), False, 'import re\n'), ((2079, 2117), 're.match', 're.match', (['"""\\\\d{4}(-\\\\d{2}){2}.*"""', 'line'], {}), "('\\\\d{4}(-\\\\d{2}){2}.*', line)\n", (2087, 2117), False, 'import re\n')]
from __future__ import absolute_import, division, print_function, unicode_literals from amaasutils.random_utils import random_string import datetime import random from amaascore.monitor.item import Item def generate_item(client_id=None, asset_manager_id=None, item_id=None, item_class=None, item_type=None, item_level=None, item_source=None, item_date=None, message=None): item = Item( client_id=client_id or random.randint(1, 2**31-1), asset_manager_id=asset_manager_id or random.randint(1, 1000), item_id=item_id or random_string(10), item_class=item_class or random.choice(['Exception', 'Notification']), item_type=item_type or random_string(15), item_level=item_level or random.choice(['Info', 'Warning', 'Error', 'Critical']), item_source=item_source or random.choice(['Transactions', 'Assets', random_string(20)]), item_date=item_date or datetime.date.today(), message=message or random_string(200) ) return item def generate_items(asset_manager_ids=[], number=5): items = [] for i in range(number): item = generate_item(asset_manager_id=random.choice(asset_manager_ids)) items.append(item) return items
[ "amaasutils.random_utils.random_string", "datetime.date.today", "random.choice", "random.randint" ]
[((444, 474), 'random.randint', 'random.randint', (['(1)', '(2 ** 31 - 1)'], {}), '(1, 2 ** 31 - 1)\n', (458, 474), False, 'import random\n'), ((517, 540), 'random.randint', 'random.randint', (['(1)', '(1000)'], {}), '(1, 1000)\n', (531, 540), False, 'import random\n'), ((569, 586), 'amaasutils.random_utils.random_string', 'random_string', (['(10)'], {}), '(10)\n', (582, 586), False, 'from amaasutils.random_utils import random_string\n'), ((621, 665), 'random.choice', 'random.choice', (["['Exception', 'Notification']"], {}), "(['Exception', 'Notification'])\n", (634, 665), False, 'import random\n'), ((698, 715), 'amaasutils.random_utils.random_string', 'random_string', (['(15)'], {}), '(15)\n', (711, 715), False, 'from amaasutils.random_utils import random_string\n'), ((750, 805), 'random.choice', 'random.choice', (["['Info', 'Warning', 'Error', 'Critical']"], {}), "(['Info', 'Warning', 'Error', 'Critical'])\n", (763, 805), False, 'import random\n'), ((935, 956), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (954, 956), False, 'import datetime\n'), ((985, 1003), 'amaasutils.random_utils.random_string', 'random_string', (['(200)'], {}), '(200)\n', (998, 1003), False, 'from amaasutils.random_utils import random_string\n'), ((1169, 1201), 'random.choice', 'random.choice', (['asset_manager_ids'], {}), '(asset_manager_ids)\n', (1182, 1201), False, 'import random\n'), ((883, 900), 'amaasutils.random_utils.random_string', 'random_string', (['(20)'], {}), '(20)\n', (896, 900), False, 'from amaasutils.random_utils import random_string\n')]
import sys x, y = map(int, sys.stdin.readline().split()) def main(x): cnt = 0 while x <= y: cnt += 1 x *= 2 print(cnt) if __name__ == "__main__": main(x)
[ "sys.stdin.readline" ]
[((30, 50), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (48, 50), False, 'import sys\n')]
# Tests for the natural order sorting package. # # Author: <NAME> <<EMAIL>> # Last Change: November 2, 2015 # URL: https://github.com/xolox/python-naturalsort """Tests for the natural order sorting package.""" # Standard library modules. import random import unittest # The module we're testing. from natsort import NaturalOrderKey, natsort class NaturalSortTestCase(unittest.TestCase): """Container for the `naturalsort` tests.""" def test_plain_old_sorting(self): """Test plain old sorting (what we don't want :-).""" assert sorted(['1', '5', '10', '50']) == ['1', '10', '5', '50'] def test_version_sorting(self): """Test version sorting (what we're after).""" assert natsort(['1', '5', '10', '50']) == ['1', '5', '10', '50'] def test_reversed_version_sorting(self): """Test reversed version sorting.""" assert natsort(['1', '5', '10', '50'], reverse=True) == ['50', '10', '5', '1'] def test_zero_padding(self): """Test that zero padding semantics are respected.""" assert natsort(['1.5.1', '1.5']) == ['1.5', '1.5.1'] def test_dotted_sorting(self): """ Test a previously fixed bug to prevent regressions. I've purposefully shuffled the order on the left side to avoid false positives caused by stable sorting. """ assert natsort(['1.5', '1.0']) == ['1.0', '1.5'] def test_python_3_compatibility(self): """ Test the Python 3 incompatibility reported in `issue 2`_. .. _issue 2: https://github.com/xolox/python-naturalsort/issues/2 """ assert natsort(['1', 'a']) == ['1', 'a'] def test_more_complex_versions(self): """ Test the implementation of the ``NaturalOrderKey`` class. This test uses some more complex version strings that were sorted incorrectly by the initial (way too naive) implementation in 1.4. """ sorted_versions = ['1532-44349', '1534-44658', '1536-44582', '1536-44935', '1538-44874', '1538-44920'] random_versions = ['1534-44658', '1536-44935', '1532-44349', '1538-44920', '1536-44582', '1538-44874'] assert sorted_versions == natsort(random_versions) def test_input_order_irrelevant(self): """ Test that order of input does not adversely affect order of output. Works by shuffling the input and checking that all 10.000 iterations result in the same output. """ sorted_strings = ['1532-44349', '1534-44658', '1536-44582', '1536-44935', '1538-44874', '1538-44920'] mutable_copy = list(sorted_strings) for i in range(10000): random.shuffle(mutable_copy) assert natsort(mutable_copy) == sorted_strings def test_eq(self): """Test :func:`.NaturalOrderKey.__eq__()`.""" # Equality comparison between objects of same type. assert NaturalOrderKey('1.0') == NaturalOrderKey('1.0') # Equality comparison between objects of different types. assert NaturalOrderKey('1.0').__eq__(object) is NotImplemented def test_ne(self): """Test :func:`.NaturalOrderKey.__ne__()`.""" # Non-equality comparison between objects of same type. assert NaturalOrderKey('1.0') != NaturalOrderKey('1.1') # Non-equality comparison between objects of different types. assert NaturalOrderKey('1.0').__ne__(object()) is NotImplemented def test_lt(self): """Test :func:`.NaturalOrderKey.__lt__()`.""" # Less than comparison between objects of same type. assert NaturalOrderKey('1') < NaturalOrderKey('1.1') # Less than comparison between objects of different types. assert NaturalOrderKey('1').__lt__(object()) is NotImplemented def test_le(self): """Test :func:`.NaturalOrderKey.__le__()`.""" # Less than or equal comparison between objects of same type. assert NaturalOrderKey('1') <= NaturalOrderKey('1.1') assert NaturalOrderKey('1') <= NaturalOrderKey('1') assert not (NaturalOrderKey('1.1') <= NaturalOrderKey('1')) # Less than or equal comparison between objects of different types. assert NaturalOrderKey('1').__le__(object()) is NotImplemented def test_gt(self): """Test :func:`.NaturalOrderKey.__gt__()`.""" # Greater than comparison between objects of same type. assert NaturalOrderKey('1.1') > NaturalOrderKey('1') # Greater than comparison between objects of different types. assert NaturalOrderKey('1').__gt__(object()) is NotImplemented def test_ge(self): """Test :func:`.NaturalOrderKey.__ge__()`.""" # Greater than or equal comparison between objects of same type. assert NaturalOrderKey('1.1') >= NaturalOrderKey('1') assert NaturalOrderKey('1') >= NaturalOrderKey('1') assert not (NaturalOrderKey('1') >= NaturalOrderKey('1.1')) # Greater than or equal comparison between objects of different types. assert NaturalOrderKey('1').__ge__(object()) is NotImplemented if __name__ == '__main__': unittest.main()
[ "unittest.main", "natsort.natsort", "random.shuffle", "natsort.NaturalOrderKey" ]
[((5156, 5171), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5169, 5171), False, 'import unittest\n'), ((722, 753), 'natsort.natsort', 'natsort', (["['1', '5', '10', '50']"], {}), "(['1', '5', '10', '50'])\n", (729, 753), False, 'from natsort import NaturalOrderKey, natsort\n'), ((886, 931), 'natsort.natsort', 'natsort', (["['1', '5', '10', '50']"], {'reverse': '(True)'}), "(['1', '5', '10', '50'], reverse=True)\n", (893, 931), False, 'from natsort import NaturalOrderKey, natsort\n'), ((1069, 1094), 'natsort.natsort', 'natsort', (["['1.5.1', '1.5']"], {}), "(['1.5.1', '1.5'])\n", (1076, 1094), False, 'from natsort import NaturalOrderKey, natsort\n'), ((1372, 1395), 'natsort.natsort', 'natsort', (["['1.5', '1.0']"], {}), "(['1.5', '1.0'])\n", (1379, 1395), False, 'from natsort import NaturalOrderKey, natsort\n'), ((1638, 1657), 'natsort.natsort', 'natsort', (["['1', 'a']"], {}), "(['1', 'a'])\n", (1645, 1657), False, 'from natsort import NaturalOrderKey, natsort\n'), ((2210, 2234), 'natsort.natsort', 'natsort', (['random_versions'], {}), '(random_versions)\n', (2217, 2234), False, 'from natsort import NaturalOrderKey, natsort\n'), ((2689, 2717), 'random.shuffle', 'random.shuffle', (['mutable_copy'], {}), '(mutable_copy)\n', (2703, 2717), False, 'import random\n'), ((2930, 2952), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.0"""'], {}), "('1.0')\n", (2945, 2952), False, 'from natsort import NaturalOrderKey, natsort\n'), ((2956, 2978), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.0"""'], {}), "('1.0')\n", (2971, 2978), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3273, 3295), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.0"""'], {}), "('1.0')\n", (3288, 3295), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3299, 3321), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (3314, 3321), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3619, 3639), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (3634, 3639), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3642, 3664), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (3657, 3664), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3966, 3986), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (3981, 3986), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3990, 4012), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (4005, 4012), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4028, 4048), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4043, 4048), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4052, 4072), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4067, 4072), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4445, 4467), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (4460, 4467), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4470, 4490), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4485, 4490), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4798, 4820), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (4813, 4820), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4824, 4844), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4839, 4844), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4860, 4880), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4875, 4880), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4884, 4904), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4899, 4904), False, 'from natsort import NaturalOrderKey, natsort\n'), ((2737, 2758), 'natsort.natsort', 'natsort', (['mutable_copy'], {}), '(mutable_copy)\n', (2744, 2758), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4093, 4115), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (4108, 4115), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4119, 4139), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4134, 4139), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4925, 4945), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4940, 4945), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4949, 4971), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.1"""'], {}), "('1.1')\n", (4964, 4971), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3060, 3082), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.0"""'], {}), "('1.0')\n", (3075, 3082), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3407, 3429), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1.0"""'], {}), "('1.0')\n", (3422, 3429), False, 'from natsort import NaturalOrderKey, natsort\n'), ((3747, 3767), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (3762, 3767), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4232, 4252), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4247, 4252), False, 'from natsort import NaturalOrderKey, natsort\n'), ((4576, 4596), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (4591, 4596), False, 'from natsort import NaturalOrderKey, natsort\n'), ((5067, 5087), 'natsort.NaturalOrderKey', 'NaturalOrderKey', (['"""1"""'], {}), "('1')\n", (5082, 5087), False, 'from natsort import NaturalOrderKey, natsort\n')]
# --------------- AND Perceptron --------------- import pandas as pd # TODO: Set weight1, weight2, and bias weight1 = 0.2 weight2 = 0.8 bias = -1.0 # DON'T CHANGE ANYTHING BELOW # Inputs and outputs test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)] correct_outputs = [False, False, False, True] outputs = [] # Generate and check output for test_input, correct_output in zip(test_inputs, correct_outputs): linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias output = int(linear_combination >= 0) is_correct_string = 'Yes' if output == correct_output else 'No' outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string]) # Print output num_wrong = len([output[4] for output in outputs if output[4] == 'No']) output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct']) if not num_wrong: print('Nice! You got it all correct.\n') else: print('You got {} wrong. Keep trying!\n'.format(num_wrong)) print(output_frame.to_string(index=False)) # --------------- NOT Perceptron -------------------- import pandas as pd # TODO: Set weight1, weight2, and bias weight1 = 0.0 weight2 = -1.0 bias = -0.0 # DON'T CHANGE ANYTHING BELOW # Inputs and outputs test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)] correct_outputs = [True, False, True, False] outputs = [] # Generate and check output for test_input, correct_output in zip(test_inputs, correct_outputs): linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias output = int(linear_combination >= 0) is_correct_string = 'Yes' if output == correct_output else 'No' outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string]) # Print output num_wrong = len([output[4] for output in outputs if output[4] == 'No']) output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct']) if not num_wrong: print('Nice! You got it all correct.\n') else: print('You got {} wrong. Keep trying!\n'.format(num_wrong)) print(output_frame.to_string(index=False)) # --------------- Perceptron Step -------------------- import numpy as np # Setting the random seed, feel free to change it and see different solutions. np.random.seed(42) def stepFunction(t): if t >= 0: return 1 return 0 def prediction(X, W, b): return stepFunction((np.matmul(X,W)+b)[0]) # TODO: Fill in the code below to implement the perceptron trick. # The function should receive as inputs the data X, the labels y, # the weights W (as an array), and the bias b, # update the weights and bias W, b, according to the perceptron algorithm, # and return W and b. def perceptronStep(X, y, W, b, learn_rate = 0.01): for i in range(len(X)): y_hat = prediction(X[i],W,b) if y[i]-y_hat == 1: W[0] += X[i][0]*learn_rate W[1] += X[i][1]*learn_rate b += learn_rate elif y[i]-y_hat == -1: W[0] -= X[i][0]*learn_rate W[1] -= X[i][1]*learn_rate b -= learn_rate return W, b # This function runs the perceptron algorithm repeatedly on the dataset, # and returns a few of the boundary lines obtained in the iterations, # for plotting purposes. # Feel free to play with the learning rate and the num_epochs, # and see your results plotted below. def trainPerceptronAlgorithm(X, y, learn_rate = 0.01, num_epochs = 25): x_min, x_max = min(X.T[0]), max(X.T[0]) y_min, y_max = min(X.T[1]), max(X.T[1]) W = np.array(np.random.rand(2,1)) b = np.random.rand(1)[0] + x_max # These are the solution lines that get plotted below. boundary_lines = [] for i in range(num_epochs): # In each epoch, we apply the perceptron step. W, b = perceptronStep(X, y, W, b, learn_rate) boundary_lines.append((-W[0]/W[1], -b/W[1])) return boundary_lines # --------------- Softmax -------------------- import numpy as np def softmax(L): expL = np.exp(L) sumExpL = sum(expL) result = [] for i in expL: result.append(i*1.0/sumExpL) return result # Note: The function np.divide can also be used here, as follows: # def softmax(L): # expL = np.exp(L) # return np.divide (expL, expL.sum()) # --------------- Cross Entropy -------------------- import numpy as np def cross_entropy(Y, P): Y = np.float_(Y) P = np.float_(P) return -np.sum(Y * np.log(P) + (1 - Y) * np.log(1 - P)) # -------------------- Gradient Descent -------------------- # Sigmoid Activation Function ( Integral of log(e^x + 1) + C ) def sigmoid(x): return 1 / (1 + np.exp(-x)) # Output (prediction) formula def output_formula(features, weights, bias): linear_combination=np.dot(features, weights) return sigmoid(linear_combination + bias) # Error Formula (Binary Cross-Entropy / Log Loss) # y = probability def error_formula(y, output): porbability_of_1 = - y * np.log(output) probability_of_0 = - (1 - y) * np.log(1-output) binary_cross_entropy = porbability_of_1 + probability_of_0 return binary_cross_entropy # Gradient descent step def update_weights(x, y, weights, bias, learnrate): output = output_formula(x, weights, bias) d_error = -(y - output) weights -= learnrate * d_error * x bias -= learnrate * d_error return weights, bias # -------------------- Gradient Descent 2 -------------------- import numpy as np def sigmoid(x): """ Calculate sigmoid """ return 1/(1+np.exp(-x)) def sigmoid_prime(x): """ # Derivative of the sigmoid function """ return sigmoid(x) * (1 - sigmoid(x)) learnrate = 0.5 x = np.array([1, 2, 3, 4]) y = np.array(0.5) # Initial weights w = np.array([0.5, -0.5, 0.3, 0.1]) ### Calculate one gradient descent step for each weight ### Note: Some steps have been consolidated, so there are ### fewer variable names than in the above sample code # TODO: Calculate the node's linear combination of inputs and weights h = np.dot(x, w) # TODO: Calculate output of neural network nn_output = sigmoid(h) # TODO: Calculate error of neural network error = y - nn_output # TODO: Calculate the error term # Remember, this requires the output gradient, which we haven't # specifically added a variable for. error_term = error * sigmoid_prime(h) # Note: The sigmoid_prime function calculates sigmoid(h) twice, # but you've already calculated it once. You can make this # code more efficient by calculating the derivative directly # rather than calling sigmoid_prime, like this: # error_term = error * nn_output * (1 - nn_output) # TODO: Calculate change in weights del_w = learnrate * error_term * x print('Neural Network output:') print(nn_output) print('Amount of Error:') print(error) print('Change in Weights:') print(del_w) # --------------- Gradient Descent 3 -------------------- import numpy as np from data_prep import features, targets, features_test, targets_test def sigmoid(x): """ Calculate sigmoid """ return 1 / (1 + np.exp(-x)) # TODO: We haven't provided the sigmoid_prime function like we did in # the previous lesson to encourage you to come up with a more # efficient solution. If you need a hint, check out the comments # in solution.py from the previous lecture. # Use to same seed to make debugging easier np.random.seed(42) n_records, n_features = features.shape last_loss = None # Initialize weights weights = np.random.normal(scale=1 / n_features**.5, size=n_features) # Neural Network hyperparameters epochs = 1000 learnrate = 0.5 for e in range(epochs): del_w = np.zeros(weights.shape) for x, y in zip(features.values, targets): # Loop through all records, x is the input, y is the target # Activation of the output unit # Notice we multiply the inputs and the weights here # rather than storing h as a separate variable output = sigmoid(np.dot(x, weights)) # The error, the target minus the network output error = y - output # The error term # Notice we calulate f'(h) here instead of defining a separate # sigmoid_prime function. This just makes it faster because we # can re-use the result of the sigmoid function stored in # the output variable error_term = error * output * (1 - output) # The gradient descent step, the error times the gradient times the inputs del_w += error_term * x # Update the weights here. The learning rate times the # change in weights, divided by the number of records to average weights += learnrate * del_w / n_records # Printing out the mean square error on the training set if e % (epochs / 10) == 0: out = sigmoid(np.dot(features, weights)) loss = np.mean((out - targets) ** 2) if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss # Calculate accuracy on test data tes_out = sigmoid(np.dot(features_test, weights)) predictions = tes_out > 0.5 accuracy = np.mean(predictions == targets_test) print("Prediction accuracy: {:.3f}".format(accuracy)) # --------------- Multiplayer Perceptrons (Hidden Layers) -------------------- import numpy as np def sigmoid(x): """ Calculate sigmoid """ return 1/(1+np.exp(-x)) # Network size N_input = 4 N_hidden = 3 N_output = 2 np.random.seed(42) # Make some fake data X = np.random.randn(4) weights_input_to_hidden = np.random.normal(0, scale=0.1, size=(N_input, N_hidden)) weights_hidden_to_output = np.random.normal(0, scale=0.1, size=(N_hidden, N_output)) # TODO: Make a forward pass through the network hidden_layer_in = np.dot(X, weights_input_to_hidden) hidden_layer_out = sigmoid(hidden_layer_in) print('Hidden-layer Output:') print(hidden_layer_out) output_layer_in = np.dot(hidden_layer_out, weights_hidden_to_output) output_layer_out = sigmoid(output_layer_in) print('Output-layer Output:') print(output_layer_out) # -------------------- Backpropagation -------------------- import numpy as np def sigmoid(x): """ Calculate sigmoid """ return 1 / (1 + np.exp(-x)) x = np.array([0.5, 0.1, -0.2]) target = 0.6 learnrate = 0.5 weights_input_hidden = np.array([[0.5, -0.6], [0.1, -0.2], [0.1, 0.7]]) weights_hidden_output = np.array([0.1, -0.3]) ## Forward pass hidden_layer_input = np.dot(x, weights_input_hidden) hidden_layer_output = sigmoid(hidden_layer_input) output_layer_in = np.dot(hidden_layer_output, weights_hidden_output) output = sigmoid(output_layer_in) ## Backwards pass ## TODO: Calculate output error error = target - output # TODO: Calculate error term for output layer output_error_term = error * output * (1 - output) # TODO: Calculate error term for hidden layer hidden_error_term = np.dot(output_error_term, weights_hidden_output) * \ hidden_layer_output * (1 - hidden_layer_output) # TODO: Calculate change in weights for hidden layer to output layer delta_w_h_o = learnrate * output_error_term * hidden_layer_output # TODO: Calculate change in weights for input layer to hidden layer delta_w_i_h = learnrate * hidden_error_term * x[:, None] print('Change in weights for hidden layer to output layer:') print(delta_w_h_o) print('Change in weights for input layer to hidden layer:') print(delta_w_i_h) # -------------------- Backpropagation 2 -------------------- import numpy as np from data_prep import features, targets, features_test, targets_test np.random.seed(21) def sigmoid(x): """ Calculate sigmoid """ return 1 / (1 + np.exp(-x)) # Hyperparameters n_hidden = 2 # number of hidden units epochs = 900 learnrate = 0.005 n_records, n_features = features.shape last_loss = None # Initialize weights weights_input_hidden = np.random.normal(scale=1 / n_features ** .5, size=(n_features, n_hidden)) weights_hidden_output = np.random.normal(scale=1 / n_features ** .5, size=n_hidden) for e in range(epochs): del_w_input_hidden = np.zeros(weights_input_hidden.shape) del_w_hidden_output = np.zeros(weights_hidden_output.shape) for x, y in zip(features.values, targets): ## Forward pass ## # TODO: Calculate the output hidden_input = np.dot(x, weights_input_hidden) hidden_output = sigmoid(hidden_input) output = sigmoid(np.dot(hidden_output, weights_hidden_output)) ## Backward pass ## # TODO: Calculate the network's prediction error error = y - output # TODO: Calculate error term for the output unit output_error_term = error * output * (1 - output) ## propagate errors to hidden layer # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(output_error_term, weights_hidden_output) # TODO: Calculate the error term for the hidden layer hidden_error_term = hidden_error * hidden_output * (1 - hidden_output) # TODO: Update the change in weights del_w_hidden_output += output_error_term * hidden_output del_w_input_hidden += hidden_error_term * x[:, None] # TODO: Update weights weights_input_hidden += learnrate * del_w_input_hidden / n_records weights_hidden_output += learnrate * del_w_hidden_output / n_records # Printing out the mean square error on the training set if e % (epochs / 10) == 0: hidden_output = sigmoid(np.dot(x, weights_input_hidden)) out = sigmoid(np.dot(hidden_output, weights_hidden_output)) loss = np.mean((out - targets) ** 2) if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss # Calculate accuracy on test data hidden = sigmoid(np.dot(features_test, weights_input_hidden)) out = sigmoid(np.dot(hidden, weights_hidden_output)) predictions = out > 0.5 accuracy = np.mean(predictions == targets_test) print("Prediction accuracy: {:.3f}".format(accuracy))
[ "numpy.random.normal", "numpy.mean", "numpy.random.rand", "numpy.float_", "numpy.log", "numpy.exp", "numpy.array", "numpy.dot", "numpy.zeros", "numpy.matmul", "numpy.random.seed", "pandas.DataFrame", "numpy.random.randn" ]
[((799, 921), 'pandas.DataFrame', 'pd.DataFrame', (['outputs'], {'columns': "['Input 1', ' Input 2', ' Linear Combination', ' Activation Output',\n ' Is Correct']"}), "(outputs, columns=['Input 1', ' Input 2',\n ' Linear Combination', ' Activation Output', ' Is Correct'])\n", (811, 921), True, 'import pandas as pd\n'), ((1903, 2025), 'pandas.DataFrame', 'pd.DataFrame', (['outputs'], {'columns': "['Input 1', ' Input 2', ' Linear Combination', ' Activation Output',\n ' Is Correct']"}), "(outputs, columns=['Input 1', ' Input 2',\n ' Linear Combination', ' Activation Output', ' Is Correct'])\n", (1915, 2025), True, 'import pandas as pd\n'), ((2355, 2373), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (2369, 2373), True, 'import numpy as np\n'), ((5802, 5824), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (5810, 5824), True, 'import numpy as np\n'), ((5829, 5842), 'numpy.array', 'np.array', (['(0.5)'], {}), '(0.5)\n', (5837, 5842), True, 'import numpy as np\n'), ((5866, 5897), 'numpy.array', 'np.array', (['[0.5, -0.5, 0.3, 0.1]'], {}), '([0.5, -0.5, 0.3, 0.1])\n', (5874, 5897), True, 'import numpy as np\n'), ((6149, 6161), 'numpy.dot', 'np.dot', (['x', 'w'], {}), '(x, w)\n', (6155, 6161), True, 'import numpy as np\n'), ((7528, 7546), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (7542, 7546), True, 'import numpy as np\n'), ((7636, 7698), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(1 / n_features ** 0.5)', 'size': 'n_features'}), '(scale=1 / n_features ** 0.5, size=n_features)\n', (7652, 7698), True, 'import numpy as np\n'), ((9345, 9381), 'numpy.mean', 'np.mean', (['(predictions == targets_test)'], {}), '(predictions == targets_test)\n', (9352, 9381), True, 'import numpy as np\n'), ((9675, 9693), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (9689, 9693), True, 'import numpy as np\n'), ((9720, 9738), 'numpy.random.randn', 'np.random.randn', (['(4)'], {}), '(4)\n', (9735, 9738), True, 'import numpy as np\n'), ((9766, 9822), 'numpy.random.normal', 'np.random.normal', (['(0)'], {'scale': '(0.1)', 'size': '(N_input, N_hidden)'}), '(0, scale=0.1, size=(N_input, N_hidden))\n', (9782, 9822), True, 'import numpy as np\n'), ((9850, 9907), 'numpy.random.normal', 'np.random.normal', (['(0)'], {'scale': '(0.1)', 'size': '(N_hidden, N_output)'}), '(0, scale=0.1, size=(N_hidden, N_output))\n', (9866, 9907), True, 'import numpy as np\n'), ((9977, 10011), 'numpy.dot', 'np.dot', (['X', 'weights_input_to_hidden'], {}), '(X, weights_input_to_hidden)\n', (9983, 10011), True, 'import numpy as np\n'), ((10130, 10180), 'numpy.dot', 'np.dot', (['hidden_layer_out', 'weights_hidden_to_output'], {}), '(hidden_layer_out, weights_hidden_to_output)\n', (10136, 10180), True, 'import numpy as np\n'), ((10455, 10481), 'numpy.array', 'np.array', (['[0.5, 0.1, -0.2]'], {}), '([0.5, 0.1, -0.2])\n', (10463, 10481), True, 'import numpy as np\n'), ((10535, 10583), 'numpy.array', 'np.array', (['[[0.5, -0.6], [0.1, -0.2], [0.1, 0.7]]'], {}), '([[0.5, -0.6], [0.1, -0.2], [0.1, 0.7]])\n', (10543, 10583), True, 'import numpy as np\n'), ((10675, 10696), 'numpy.array', 'np.array', (['[0.1, -0.3]'], {}), '([0.1, -0.3])\n', (10683, 10696), True, 'import numpy as np\n'), ((10735, 10766), 'numpy.dot', 'np.dot', (['x', 'weights_input_hidden'], {}), '(x, weights_input_hidden)\n', (10741, 10766), True, 'import numpy as np\n'), ((10836, 10886), 'numpy.dot', 'np.dot', (['hidden_layer_output', 'weights_hidden_output'], {}), '(hidden_layer_output, weights_hidden_output)\n', (10842, 10886), True, 'import numpy as np\n'), ((11856, 11874), 'numpy.random.seed', 'np.random.seed', (['(21)'], {}), '(21)\n', (11870, 11874), True, 'import numpy as np\n'), ((12153, 12227), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(1 / n_features ** 0.5)', 'size': '(n_features, n_hidden)'}), '(scale=1 / n_features ** 0.5, size=(n_features, n_hidden))\n', (12169, 12227), True, 'import numpy as np\n'), ((12291, 12351), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(1 / n_features ** 0.5)', 'size': 'n_hidden'}), '(scale=1 / n_features ** 0.5, size=n_hidden)\n', (12307, 12351), True, 'import numpy as np\n'), ((14442, 14478), 'numpy.mean', 'np.mean', (['(predictions == targets_test)'], {}), '(predictions == targets_test)\n', (14449, 14478), True, 'import numpy as np\n'), ((4102, 4111), 'numpy.exp', 'np.exp', (['L'], {}), '(L)\n', (4108, 4111), True, 'import numpy as np\n'), ((4504, 4516), 'numpy.float_', 'np.float_', (['Y'], {}), '(Y)\n', (4513, 4516), True, 'import numpy as np\n'), ((4525, 4537), 'numpy.float_', 'np.float_', (['P'], {}), '(P)\n', (4534, 4537), True, 'import numpy as np\n'), ((4880, 4905), 'numpy.dot', 'np.dot', (['features', 'weights'], {}), '(features, weights)\n', (4886, 4905), True, 'import numpy as np\n'), ((7797, 7820), 'numpy.zeros', 'np.zeros', (['weights.shape'], {}), '(weights.shape)\n', (7805, 7820), True, 'import numpy as np\n'), ((9274, 9304), 'numpy.dot', 'np.dot', (['features_test', 'weights'], {}), '(features_test, weights)\n', (9280, 9304), True, 'import numpy as np\n'), ((12442, 12478), 'numpy.zeros', 'np.zeros', (['weights_input_hidden.shape'], {}), '(weights_input_hidden.shape)\n', (12450, 12478), True, 'import numpy as np\n'), ((12505, 12542), 'numpy.zeros', 'np.zeros', (['weights_hidden_output.shape'], {}), '(weights_hidden_output.shape)\n', (12513, 12542), True, 'import numpy as np\n'), ((14309, 14352), 'numpy.dot', 'np.dot', (['features_test', 'weights_input_hidden'], {}), '(features_test, weights_input_hidden)\n', (14315, 14352), True, 'import numpy as np\n'), ((14368, 14405), 'numpy.dot', 'np.dot', (['hidden', 'weights_hidden_output'], {}), '(hidden, weights_hidden_output)\n', (14374, 14405), True, 'import numpy as np\n'), ((3645, 3665), 'numpy.random.rand', 'np.random.rand', (['(2)', '(1)'], {}), '(2, 1)\n', (3659, 3665), True, 'import numpy as np\n'), ((5080, 5094), 'numpy.log', 'np.log', (['output'], {}), '(output)\n', (5086, 5094), True, 'import numpy as np\n'), ((5130, 5148), 'numpy.log', 'np.log', (['(1 - output)'], {}), '(1 - output)\n', (5136, 5148), True, 'import numpy as np\n'), ((8997, 9026), 'numpy.mean', 'np.mean', (['((out - targets) ** 2)'], {}), '((out - targets) ** 2)\n', (9004, 9026), True, 'import numpy as np\n'), ((11160, 11208), 'numpy.dot', 'np.dot', (['output_error_term', 'weights_hidden_output'], {}), '(output_error_term, weights_hidden_output)\n', (11166, 11208), True, 'import numpy as np\n'), ((12677, 12708), 'numpy.dot', 'np.dot', (['x', 'weights_input_hidden'], {}), '(x, weights_input_hidden)\n', (12683, 12708), True, 'import numpy as np\n'), ((13228, 13276), 'numpy.dot', 'np.dot', (['output_error_term', 'weights_hidden_output'], {}), '(output_error_term, weights_hidden_output)\n', (13234, 13276), True, 'import numpy as np\n'), ((14033, 14062), 'numpy.mean', 'np.mean', (['((out - targets) ** 2)'], {}), '((out - targets) ** 2)\n', (14040, 14062), True, 'import numpy as np\n'), ((3674, 3691), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (3688, 3691), True, 'import numpy as np\n'), ((4769, 4779), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (4775, 4779), True, 'import numpy as np\n'), ((5648, 5658), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (5654, 5658), True, 'import numpy as np\n'), ((7211, 7221), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (7217, 7221), True, 'import numpy as np\n'), ((8122, 8140), 'numpy.dot', 'np.dot', (['x', 'weights'], {}), '(x, weights)\n', (8128, 8140), True, 'import numpy as np\n'), ((8955, 8980), 'numpy.dot', 'np.dot', (['features', 'weights'], {}), '(features, weights)\n', (8961, 8980), True, 'import numpy as np\n'), ((9608, 9618), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (9614, 9618), True, 'import numpy as np\n'), ((10437, 10447), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (10443, 10447), True, 'import numpy as np\n'), ((11950, 11960), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (11956, 11960), True, 'import numpy as np\n'), ((12781, 12825), 'numpy.dot', 'np.dot', (['hidden_output', 'weights_hidden_output'], {}), '(hidden_output, weights_hidden_output)\n', (12787, 12825), True, 'import numpy as np\n'), ((13888, 13919), 'numpy.dot', 'np.dot', (['x', 'weights_input_hidden'], {}), '(x, weights_input_hidden)\n', (13894, 13919), True, 'import numpy as np\n'), ((13943, 13987), 'numpy.dot', 'np.dot', (['hidden_output', 'weights_hidden_output'], {}), '(hidden_output, weights_hidden_output)\n', (13949, 13987), True, 'import numpy as np\n'), ((2492, 2507), 'numpy.matmul', 'np.matmul', (['X', 'W'], {}), '(X, W)\n', (2501, 2507), True, 'import numpy as np\n'), ((4561, 4570), 'numpy.log', 'np.log', (['P'], {}), '(P)\n', (4567, 4570), True, 'import numpy as np\n'), ((4583, 4596), 'numpy.log', 'np.log', (['(1 - P)'], {}), '(1 - P)\n', (4589, 4596), True, 'import numpy as np\n')]
from twisted.internet import abstract, fdesc class TwistedRawSocket(abstract.FileDescriptor): def __init__(self, reactor, protocol, fd): super().__init__(reactor) self.__protocol = protocol self.__protocol.makeConnection(self) self.__fd = fd self.startReading() def fileno(self): return self.__fd def doRead(self): return fdesc.readFromFD(self.fileno(), self.__protocol.dataReceived) def writeSomeData(self, data): return fdesc.writeToFD(self.fileno(), data) def connectionLost(self, reason): abstract.FileDescriptor.connectionLost(self, reason) self.__protocol.connectionLost(reason)
[ "twisted.internet.abstract.FileDescriptor.connectionLost" ]
[((590, 642), 'twisted.internet.abstract.FileDescriptor.connectionLost', 'abstract.FileDescriptor.connectionLost', (['self', 'reason'], {}), '(self, reason)\n', (628, 642), False, 'from twisted.internet import abstract, fdesc\n')]
import pwd import os from django.core.checks import register, Warning from django.conf import settings # # Internal checks # W001 = Warning( 'No DEPLOY_TARGET_USER set, define it to check write permissions on storages.', id='preflight.W001' ) W002 = Warning( 'You are not running as DEPLOY_TARGET_USER, writeable-checks can not be trusted.', id='preflight.W002' ) # noinspection PyUnusedLocal @register('preflight', deploy=True) def check_user(app_configs, **kwargs): errors = [] current_user = pwd.getpwuid(os.getuid()).pw_name target_user = getattr(settings, 'DEPLOY_TARGET_USER', None) if target_user is None: errors.append(W001) if target_user and target_user != current_user: errors.append(W002) return errors
[ "django.core.checks.register", "os.getuid", "django.core.checks.Warning" ]
[((135, 253), 'django.core.checks.Warning', 'Warning', (['"""No DEPLOY_TARGET_USER set, define it to check write permissions on storages."""'], {'id': '"""preflight.W001"""'}), "(\n 'No DEPLOY_TARGET_USER set, define it to check write permissions on storages.'\n , id='preflight.W001')\n", (142, 253), False, 'from django.core.checks import register, Warning\n'), ((262, 383), 'django.core.checks.Warning', 'Warning', (['"""You are not running as DEPLOY_TARGET_USER, writeable-checks can not be trusted."""'], {'id': '"""preflight.W002"""'}), "(\n 'You are not running as DEPLOY_TARGET_USER, writeable-checks can not be trusted.'\n , id='preflight.W002')\n", (269, 383), False, 'from django.core.checks import register, Warning\n'), ((416, 450), 'django.core.checks.register', 'register', (['"""preflight"""'], {'deploy': '(True)'}), "('preflight', deploy=True)\n", (424, 450), False, 'from django.core.checks import register, Warning\n'), ((539, 550), 'os.getuid', 'os.getuid', ([], {}), '()\n', (548, 550), False, 'import os\n')]
import authorize, requests, config def send_trade_list( pair, side, first_trade_size, size_increase, first_trade_price, price_increase, trade_count, auth=None): """function takes in intial info trading pair (BTC-USD), side (buy or sell), first trade price, minimum trade value, increase in price per trade, increase in value per trade, the number of trades and an authorization token and lists a corrosponding sequence of trades on GDAX through there API To do's : write function to accept class object instead of each item """ auth = authorize.run_GdaxAuth() # Initiate trading index, trade dictionary to be sent in while-loop, and # neg_pos variable to help manage buy vs sell sequence direction in loop. n = 0 listed_trades = [] trade = { "size": "", "price": "", "side": side, "product_id": pair } api_url = config.url if side == "buy": neg_pos = -1 else: neg_pos = 1 print("\n-- Listing New {}s --".format(trade["side"].title())) # While loop to list each trade in sequence while n < trade_count: trade["size"] = str( round(first_trade_size + size_increase * n, 10) ) trade["price"] = str( round( first_trade_price + neg_pos * price_increase * n, 10 ) ) t = requests.post(api_url + 'orders', json=trade, auth=auth) #Check for error if t.status_code != 200: print(("Response: {}, Message {}, Price: {}, Size: {}").format( str(t.status_code), t.json()["message"], trade["price"], trade["size"], ) ) # Try to enter data into ts else: try: print(("{}, Size: {}, Price: {}").format( t.json()["product_id"], t.json()["size"], t.json()["price"], ) ) listed_trades.append( t.json() ) except: print( t.json() ) n += 1 # Return trades return listed_trades def cancel_id(trade): auth = authorize.run_GdaxAuth() api_url = 'https://api.gdax.com/' response = requests.delete(api_url + 'orders/' + trade["id"], auth=auth) print( "response: {}, id: {}, side: {}, size: {}, price: {}".format( response.status_code, trade["id"], trade["side"], trade["size"], trade["price"] ) )
[ "authorize.run_GdaxAuth", "requests.post", "requests.delete" ]
[((581, 605), 'authorize.run_GdaxAuth', 'authorize.run_GdaxAuth', ([], {}), '()\n', (603, 605), False, 'import authorize, requests, config\n'), ((2023, 2047), 'authorize.run_GdaxAuth', 'authorize.run_GdaxAuth', ([], {}), '()\n', (2045, 2047), False, 'import authorize, requests, config\n'), ((2097, 2158), 'requests.delete', 'requests.delete', (["(api_url + 'orders/' + trade['id'])"], {'auth': 'auth'}), "(api_url + 'orders/' + trade['id'], auth=auth)\n", (2112, 2158), False, 'import authorize, requests, config\n'), ((1319, 1375), 'requests.post', 'requests.post', (["(api_url + 'orders')"], {'json': 'trade', 'auth': 'auth'}), "(api_url + 'orders', json=trade, auth=auth)\n", (1332, 1375), False, 'import authorize, requests, config\n')]
from socket import socket from zlib import decompress import cv2 import numpy from PIL import Image WIDTH = int(1366 / 1) HEIGHT = int(768 / 1) def recvall(conn, length): buf = b'' while len(buf) < length: data = conn.recv(length - len(buf)) if not data: return data buf += data return buf def main(host='127.0.0.1', port=5000): watching = True sock = socket() sock.connect((host, port)) try: while watching: size_len = int.from_bytes(sock.recv(1), byteorder='big') size = int.from_bytes(sock.recv(size_len), byteorder='big') bgra = decompress(recvall(sock, size)) img = Image.frombytes("RGB", (WIDTH, HEIGHT), bgra, "raw", "BGRX") np_ar = numpy.array(img, dtype=numpy.uint8) np_ar = numpy.flip(np_ar[:, :, :3], 2) cv2.imshow("OpenCV show", np_ar) if cv2.waitKey(25) & 0xFF == ord("q"): ##escape key cv2.destroyAllWindows()#to jump out of window break finally: sock.close() if __name__ == '__main__': main()
[ "numpy.flip", "socket.socket", "cv2.imshow", "numpy.array", "cv2.destroyAllWindows", "PIL.Image.frombytes", "cv2.waitKey" ]
[((416, 424), 'socket.socket', 'socket', ([], {}), '()\n', (422, 424), False, 'from socket import socket\n'), ((711, 771), 'PIL.Image.frombytes', 'Image.frombytes', (['"""RGB"""', '(WIDTH, HEIGHT)', 'bgra', '"""raw"""', '"""BGRX"""'], {}), "('RGB', (WIDTH, HEIGHT), bgra, 'raw', 'BGRX')\n", (726, 771), False, 'from PIL import Image\n'), ((792, 827), 'numpy.array', 'numpy.array', (['img'], {'dtype': 'numpy.uint8'}), '(img, dtype=numpy.uint8)\n', (803, 827), False, 'import numpy\n'), ((861, 891), 'numpy.flip', 'numpy.flip', (['np_ar[:, :, :3]', '(2)'], {}), '(np_ar[:, :, :3], 2)\n', (871, 891), False, 'import numpy\n'), ((904, 936), 'cv2.imshow', 'cv2.imshow', (['"""OpenCV show"""', 'np_ar'], {}), "('OpenCV show', np_ar)\n", (914, 936), False, 'import cv2\n'), ((1018, 1041), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1039, 1041), False, 'import cv2\n'), ((953, 968), 'cv2.waitKey', 'cv2.waitKey', (['(25)'], {}), '(25)\n', (964, 968), False, 'import cv2\n')]
from typing import Tuple from time import localtime def to_one_decimal(value: float) -> str: return "%.1f" % value def get_bytes_per_sample(bits: int) -> int: if bits <= 8: return 1 if bits <= 16: return 2 if bits <= 24: return 3 return 4 def get_frequency_readable(frequency: int) -> Tuple[int, str]: frequency_unit = "Hz" if frequency > 1000: frequency /= 1000 frequency_unit = "kHz" if frequency > 1000: frequency /= 1000 frequency_unit = "MHz" if frequency > 1000: frequency /= 1000 frequency_unit = "GHz" return frequency, frequency_unit def get_timestamp_readable(time: float) -> str: local_time = localtime(time) return str(local_time.tm_hour) + ":" + str(local_time.tm_min) + ":" + str(local_time.tm_sec) def get_timesteps_readable(time: float) -> Tuple[float, str]: time_unit = "sec" if time < 1.0: time *= 1000 time_unit = "ms" if time < 1.0: time *= 1000 time_unit = "µs" if time < 1.0: time *= 1000 time_unit = "ns" return time, time_unit
[ "time.localtime" ]
[((728, 743), 'time.localtime', 'localtime', (['time'], {}), '(time)\n', (737, 743), False, 'from time import localtime\n')]
from datetime import date, datetime, timedelta from django.conf import settings from django.utils.timezone import localdate from dateutil import rrule from django.utils.dateparse import parse_date from collections import defaultdict def get_date_interval_from_get(request): """ Parses a request and returns the start and end date from it. Parameters ---------- request: The GET Request Object Returns ------- Return a tuple in the form of (start_date, end_date). If either the start date or the end date is not present in the request None is returned in the tuple """ start_identifier = getattr(settings, "BRIDGER_START_IDENTIFIERS", ["start", "start_date", "from", "date_gte"],) end_identifier = getattr(settings, "BRIDGER_END_IDENTIFIERS", ["end", "end_date", "to", "date_lte"]) date_format = getattr(settings, "BRIDGER_DATE_FORMAT", "%Y-%m-%d") assert isinstance(start_identifier, list) assert isinstance(end_identifier, list) assert isinstance(date_format, str) start = next((identifier for identifier in start_identifier if identifier in request.GET), None,) end = next((identifier for identifier in end_identifier if identifier in request.GET), None) if start: try: start = datetime.strptime(request.GET.get(start), date_format).date() except ValueError: start = None if end: try: end = datetime.strptime(request.GET.get(end), date_format).date() except ValueError: end = None return start, end def get_quarter_from_date(d): return ((d.month - 1) // 3) + 1 def get_start_date_from_date(d): quarter = get_quarter_from_date(d) return date(d.year, quarter * 3 - 2, 1) def get_end_date_from_date(d): quarter = get_quarter_from_date(d) return date(d.year + ((quarter * 3 + 1) // 12), (quarter * 3 + 1) % 12, 1) - timedelta(days=1) def get_start_and_end_date_from_date(d): return get_start_date_from_date(d), get_end_date_from_date(d) def current_quarter_date_start(field=None, request=None, view=None): return get_start_date_from_date(localdate()) def current_quarter_date_end(field=None, request=None, view=None): return get_end_date_from_date(localdate()) def current_quarter_date_interval(field, request, view): return ( current_quarter_date_start(field, request, view), current_quarter_date_end(field, request, view), ) def current_year_date_start(field, request, view): d = localdate() return date(d.year,1,1) def current_year_date_end(field, request, view): d = localdate() return date(d.year + 1,1,1) - timedelta(days=1) def current_year_date_interval(field, request, view): return ( current_year_date_start(field, request, view), current_year_date_end(field, request, view), ) def current_month_date_start(field, request, view): d = localdate() return date(d.year,d.month,1) def current_month_date_end(field=None, request=None, view=None): d = localdate() if d.month == 12: return date(d.year, 12, 31) return date(d.year, d.month + 1, 1) - timedelta(days=1) def current_month_date_interval(field, request, view): return ( current_month_date_start(field, request, view), current_month_date_end(field, request, view), ) def get_date_interval_from_request(request, request_type="GET"): """ Parses a request and returns the start and end date from it. Parameters ---------- request: The GET Request Object Returns ------- Return a tuple in the form of (start_date, end_date). If either the start date or the end date is not present in the request None is returned in the tuple """ start_identifier = ["start", "start_date", "from", "date_gte"] end_identifier = ["end", "end_date", "to", "date_lte"] params = request.GET if request_type == "GET" else request.POST start = None end = None if "date" in params: if len(params.get("date").split(",")) == 2: start, end = params.get("date").split(",") else: start = next( (params.get(identifier) for identifier in start_identifier if identifier in params), None, ) end = next( (params.get(identifier) for identifier in end_identifier if identifier in params), None ) if start: start = parse_date(start) if end: end = parse_date(end) return start, end def get_number_of_hours_between_dates( d1, d2, skip_weekends=True, list_public_holidays=False, hours_range=range(0,23), granularity=12 ): def convert_days_from_hours(hours, granularity, hours_per_day): return int(hours/granularity)*granularity/hours_per_day rules = rrule.rruleset() byweekday_list = [rrule.MO, rrule.TU, rrule.WE, rrule.TH, rrule.FR] if not skip_weekends: byweekday_list.extend([rrule.SA, rrule.SU]) rules.rrule( rrule.rrule( freq=rrule.HOURLY, byweekday=byweekday_list, byhour=hours_range, dtstart=d1, until=d2, ) ) if list_public_holidays: for holiday in list_public_holidays: s1 = datetime(holiday.year, holiday.month, holiday.day, 0, 0, 0) s2 = datetime(holiday.year, holiday.month, holiday.day, 23, 59, 59) rules.exrule( rrule.rrule( rrule.HOURLY, dtstart=s1, until=s2 ) ) dates = defaultdict(int) for r in list(rules): dates[r.date()] += 1 return {k: convert_days_from_hours(v, granularity, len(hours_range)) for k, v in dates.items()}
[ "datetime.datetime", "dateutil.rrule.rruleset", "dateutil.rrule.rrule", "collections.defaultdict", "datetime.date", "django.utils.dateparse.parse_date", "django.utils.timezone.localdate", "datetime.timedelta" ]
[((1721, 1753), 'datetime.date', 'date', (['d.year', '(quarter * 3 - 2)', '(1)'], {}), '(d.year, quarter * 3 - 2, 1)\n', (1725, 1753), False, 'from datetime import date, datetime, timedelta\n'), ((2522, 2533), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (2531, 2533), False, 'from django.utils.timezone import localdate\n'), ((2545, 2563), 'datetime.date', 'date', (['d.year', '(1)', '(1)'], {}), '(d.year, 1, 1)\n', (2549, 2563), False, 'from datetime import date, datetime, timedelta\n'), ((2620, 2631), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (2629, 2631), False, 'from django.utils.timezone import localdate\n'), ((2927, 2938), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (2936, 2938), False, 'from django.utils.timezone import localdate\n'), ((2950, 2974), 'datetime.date', 'date', (['d.year', 'd.month', '(1)'], {}), '(d.year, d.month, 1)\n', (2954, 2974), False, 'from datetime import date, datetime, timedelta\n'), ((3047, 3058), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (3056, 3058), False, 'from django.utils.timezone import localdate\n'), ((4815, 4831), 'dateutil.rrule.rruleset', 'rrule.rruleset', ([], {}), '()\n', (4829, 4831), False, 'from dateutil import rrule\n'), ((5618, 5634), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (5629, 5634), False, 'from collections import defaultdict\n'), ((1837, 1902), 'datetime.date', 'date', (['(d.year + (quarter * 3 + 1) // 12)', '((quarter * 3 + 1) % 12)', '(1)'], {}), '(d.year + (quarter * 3 + 1) // 12, (quarter * 3 + 1) % 12, 1)\n', (1841, 1902), False, 'from datetime import date, datetime, timedelta\n'), ((1907, 1924), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (1916, 1924), False, 'from datetime import date, datetime, timedelta\n'), ((2142, 2153), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (2151, 2153), False, 'from django.utils.timezone import localdate\n'), ((2258, 2269), 'django.utils.timezone.localdate', 'localdate', ([], {}), '()\n', (2267, 2269), False, 'from django.utils.timezone import localdate\n'), ((2643, 2665), 'datetime.date', 'date', (['(d.year + 1)', '(1)', '(1)'], {}), '(d.year + 1, 1, 1)\n', (2647, 2665), False, 'from datetime import date, datetime, timedelta\n'), ((2666, 2683), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2675, 2683), False, 'from datetime import date, datetime, timedelta\n'), ((3096, 3116), 'datetime.date', 'date', (['d.year', '(12)', '(31)'], {}), '(d.year, 12, 31)\n', (3100, 3116), False, 'from datetime import date, datetime, timedelta\n'), ((3128, 3156), 'datetime.date', 'date', (['d.year', '(d.month + 1)', '(1)'], {}), '(d.year, d.month + 1, 1)\n', (3132, 3156), False, 'from datetime import date, datetime, timedelta\n'), ((3159, 3176), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (3168, 3176), False, 'from datetime import date, datetime, timedelta\n'), ((4442, 4459), 'django.utils.dateparse.parse_date', 'parse_date', (['start'], {}), '(start)\n', (4452, 4459), False, 'from django.utils.dateparse import parse_date\n'), ((4486, 4501), 'django.utils.dateparse.parse_date', 'parse_date', (['end'], {}), '(end)\n', (4496, 4501), False, 'from django.utils.dateparse import parse_date\n'), ((5017, 5119), 'dateutil.rrule.rrule', 'rrule.rrule', ([], {'freq': 'rrule.HOURLY', 'byweekday': 'byweekday_list', 'byhour': 'hours_range', 'dtstart': 'd1', 'until': 'd2'}), '(freq=rrule.HOURLY, byweekday=byweekday_list, byhour=hours_range,\n dtstart=d1, until=d2)\n', (5028, 5119), False, 'from dateutil import rrule\n'), ((5284, 5343), 'datetime.datetime', 'datetime', (['holiday.year', 'holiday.month', 'holiday.day', '(0)', '(0)', '(0)'], {}), '(holiday.year, holiday.month, holiday.day, 0, 0, 0)\n', (5292, 5343), False, 'from datetime import date, datetime, timedelta\n'), ((5361, 5423), 'datetime.datetime', 'datetime', (['holiday.year', 'holiday.month', 'holiday.day', '(23)', '(59)', '(59)'], {}), '(holiday.year, holiday.month, holiday.day, 23, 59, 59)\n', (5369, 5423), False, 'from datetime import date, datetime, timedelta\n'), ((5466, 5513), 'dateutil.rrule.rrule', 'rrule.rrule', (['rrule.HOURLY'], {'dtstart': 's1', 'until': 's2'}), '(rrule.HOURLY, dtstart=s1, until=s2)\n', (5477, 5513), False, 'from dateutil import rrule\n')]
# -*-coding:utf-8-*- # 애너그램은 일종의 언어유희 # 문자를 재배열하여 다른 뜻을 가진 단어로 바꾸는 것 def solution(strs): d = {} for s in strs: _s = ''.join(sorted(s)) #print(_s) if _s not in d: d[_s] = [s] else: d[_s].append(s) return list(d.values()) import collections def solution_2(strs): a = collections.defaultdict(list) for word in strs: # sort and added in dictionary a[''.join(sorted(word))].append(word) return a.values() strs = ["eat","tea","tan","ate","nat","bat"] print(solution(strs)) print(solution_2(strs))
[ "collections.defaultdict" ]
[((342, 371), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (365, 371), False, 'import collections\n')]
# -*- coding: utf-8 -*- import os from honeybee_radiance_folder import ModelFolder as Folder from honeybee_radiance_folder.folderutil import add_output_spec_to_receiver from honeybee_radiance_folder.folderutil import _nukedir def test_static_aperture(): radiance_folder = r'./tests/assets/project_folder' folder = Folder(radiance_folder) files = folder.aperture_files(black_out=False, rel_path=True) assert 'model/aperture/aperture.mat' in files assert 'model/aperture/aperture.rad' in files def test_aperture_group(): radiance_folder = r'./tests/assets/project_folder' folder = Folder(radiance_folder) apertures = folder.aperture_groups(interior=False) assert len(apertures) == 1 ap = apertures[0] assert ap.states[0].identifier == '0_clear' assert ap.states[0].default == 'south_window..default..000.rad' assert ap.states[1].identifier == '1_diffuse' assert ap.states[1].default == 'south_window..default..001.rad' def test_add_output_spec(): re_file = r'./tests/assets/project_folder/model/aperture_group/south_window..mtx.rad' out_file = r'./tests/assets/temp/south_window..mtx.rad' output_folder = r'./tests/assets/temp' if not os.path.isdir(output_folder): os.mkdir(output_folder) _nukedir(output_folder, False) add_output_spec_to_receiver(re_file, 'cubical.vmx', out_file) assert os.path.isfile(out_file) with open(out_file) as outf: content = outf.read() assert '#@rfluxmtx h=kf u=0,0,1.0 o=cubical.vmx' in content _nukedir(output_folder, False)
[ "honeybee_radiance_folder.ModelFolder", "honeybee_radiance_folder.folderutil.add_output_spec_to_receiver", "os.path.isfile", "os.path.isdir", "os.mkdir", "honeybee_radiance_folder.folderutil._nukedir" ]
[((325, 348), 'honeybee_radiance_folder.ModelFolder', 'Folder', (['radiance_folder'], {}), '(radiance_folder)\n', (331, 348), True, 'from honeybee_radiance_folder import ModelFolder as Folder\n'), ((612, 635), 'honeybee_radiance_folder.ModelFolder', 'Folder', (['radiance_folder'], {}), '(radiance_folder)\n', (618, 635), True, 'from honeybee_radiance_folder import ModelFolder as Folder\n'), ((1278, 1308), 'honeybee_radiance_folder.folderutil._nukedir', '_nukedir', (['output_folder', '(False)'], {}), '(output_folder, False)\n', (1286, 1308), False, 'from honeybee_radiance_folder.folderutil import _nukedir\n'), ((1313, 1374), 'honeybee_radiance_folder.folderutil.add_output_spec_to_receiver', 'add_output_spec_to_receiver', (['re_file', '"""cubical.vmx"""', 'out_file'], {}), "(re_file, 'cubical.vmx', out_file)\n", (1340, 1374), False, 'from honeybee_radiance_folder.folderutil import add_output_spec_to_receiver\n'), ((1386, 1410), 'os.path.isfile', 'os.path.isfile', (['out_file'], {}), '(out_file)\n', (1400, 1410), False, 'import os\n'), ((1542, 1572), 'honeybee_radiance_folder.folderutil._nukedir', '_nukedir', (['output_folder', '(False)'], {}), '(output_folder, False)\n', (1550, 1572), False, 'from honeybee_radiance_folder.folderutil import _nukedir\n'), ((1212, 1240), 'os.path.isdir', 'os.path.isdir', (['output_folder'], {}), '(output_folder)\n', (1225, 1240), False, 'import os\n'), ((1250, 1273), 'os.mkdir', 'os.mkdir', (['output_folder'], {}), '(output_folder)\n', (1258, 1273), False, 'import os\n')]
# Released under the MIT License. See LICENSE for details. # """UI functionality related to accounts.""" from __future__ import annotations import _ba import ba def show_sign_in_prompt(account_type: str = None) -> None: """Bring up a prompt telling the user they must sign in.""" from bastd.ui import confirm from bastd.ui.account import settings if account_type == 'Google Play': confirm.ConfirmWindow( ba.Lstr(resource='notSignedInGooglePlayErrorText'), lambda: _ba.sign_in('Google Play'), ok_text=ba.Lstr(resource='accountSettingsWindow.signInText'), width=460, height=130) else: confirm.ConfirmWindow( ba.Lstr(resource='notSignedInErrorText'), lambda: settings.AccountSettingsWindow(modal=True, close_once_signed_in=True), ok_text=ba.Lstr(resource='accountSettingsWindow.signInText'), width=460, height=130)
[ "_ba.sign_in", "ba.Lstr", "bastd.ui.account.settings.AccountSettingsWindow" ]
[((444, 494), 'ba.Lstr', 'ba.Lstr', ([], {'resource': '"""notSignedInGooglePlayErrorText"""'}), "(resource='notSignedInGooglePlayErrorText')\n", (451, 494), False, 'import ba\n'), ((718, 758), 'ba.Lstr', 'ba.Lstr', ([], {'resource': '"""notSignedInErrorText"""'}), "(resource='notSignedInErrorText')\n", (725, 758), False, 'import ba\n'), ((516, 542), '_ba.sign_in', '_ba.sign_in', (['"""Google Play"""'], {}), "('Google Play')\n", (527, 542), False, 'import _ba\n'), ((564, 616), 'ba.Lstr', 'ba.Lstr', ([], {'resource': '"""accountSettingsWindow.signInText"""'}), "(resource='accountSettingsWindow.signInText')\n", (571, 616), False, 'import ba\n'), ((780, 849), 'bastd.ui.account.settings.AccountSettingsWindow', 'settings.AccountSettingsWindow', ([], {'modal': '(True)', 'close_once_signed_in': '(True)'}), '(modal=True, close_once_signed_in=True)\n', (810, 849), False, 'from bastd.ui.account import settings\n'), ((922, 974), 'ba.Lstr', 'ba.Lstr', ([], {'resource': '"""accountSettingsWindow.signInText"""'}), "(resource='accountSettingsWindow.signInText')\n", (929, 974), False, 'import ba\n')]
import os opj = os.path.join import numpy as np import pandas as pd import glob import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable color_cycle = ['dimgrey', 'firebrick', 'darkorange', 'olivedrab', 'dodgerblue', 'magenta'] plt.ioff() plt.rcParams.update({'font.family': 'serif', 'font.size': 16, 'axes.labelsize': 20, 'mathtext.fontset': 'stix', 'axes.prop_cycle': plt.cycler('color', color_cycle)}) plt.rcParams["font.serif"] = ["Times New Roman"] + plt.rcParams["font.serif"] import pffit fit = pffit.phase_function_models.inversion() m = pffit.phase_function_models.models() dir = pffit.__path__[0] dirdata = opj(dir, 'data') trunc = False if trunc: dirfig = opj(dir, 'fig', 'truncated') angular_range_t = [3, 150] else: dirfig = opj(dir, 'fig','article' ) angular_range = [3, 173] # ------------------- # fitting section # ------------------- theta_ = np.linspace(0, 180, 1000) # remove 0deg to comply with FF model (not defined at 0) theta_ = theta_[1:] theta_ = np.logspace(-2, np.log10(180), 1000) # load petzold file = opj(dirdata, 'petzold_data.txt') df_petzold = pd.read_csv(file, skiprows=3, sep='\s+', index_col=0, skipinitialspace=True, na_values='inf') models = (fit.FF_fit, fit.RM_fit, fit.TTFF_fit, fit.TTRM_fit) def process(wl, data, model, angular_range=[0, 180], x_only=False, theta_=theta_): ''' Execute non-linear fitting for the given model and phase function data :param wl: :param data: :param model: :param angular_range: :param x_only: :param theta_: :return: ''' model_ = model.__name__ N_ang = len(theta_) back_ang = theta_[theta_ > 90] group_ = data.dropna() group_ = group_[ (group_.index >= angular_range[0]) & (group_.index <= angular_range[1])] # [group_.index<140] theta, vsf = group_.index.values, group_.values min1, func = model(theta, vsf) out1 = min1.least_squares() # max_nfev=30, xtol=1e-7, ftol=1e-4) x = out1.x if x_only: return x res_ = pd.DataFrame(data={'model': [model_],'sample': [sample], 'name': [names[irow]], 'wavelength': [wl]}) df_ = pd.DataFrame(data={'model': model_, 'sample': [sample] * N_ang, 'name': [names[irow]] * N_ang, 'wavelength': [wl] * N_ang, 'theta': theta_}) res_['cost'] = out1.residual.__abs__().mean() for c in ('redchi', 'bic', 'aic'): res_[c] = out1.__getattribute__(c) for name, param in out1.params.items(): res_[name] = param.value res_[name + '_std'] = param.stderr pf = func(theta_, *x) raw = np.interp(theta_, theta, vsf, left=np.nan, right=np.nan) df_['pf_raw'] = raw df_['pf_fit'] = pf norm = np.trapz(func(theta_[1:], *x) * np.sin(np.radians(theta_[1:])), np.radians(theta_[1:])) * np.pi * 2 bb_tilde = np.trapz(func(back_ang, *x) * np.sin(np.radians(back_ang)), np.radians(back_ang)) * np.pi * 2 / norm cos_ave = np.trapz(func(theta_[1:], *x) * np.sin(np.radians(theta_[1:]) * np.cos(np.radians(theta_[1:]))), np.radians(theta_[1:])) * np.pi * 2 res_['norm'] = norm res_['bb_ratio'] = bb_tilde res_['asymmetry_factor'] = cos_ave return res_, df_ files = glob.glob(opj(dirdata, 'normalized_vsf*txt')) samples = ['PF_clear', 'PF_coast', 'PF_turbid', 'PF_avg-part', 'Arizona', 'Chlorella', 'Cylindrotheca', 'Dunaliella', 'Karenia', 'Skeletonema'] names = ['Petzold clear', 'Petzold coast', 'Petzold turbid', 'Petzold average', 'Arizona dust', r'$\it{C. autotrophica}$', r'$\it{C. closterium}$', r'$\it{D. salina}$', r'$\it{K. mikimotoi}$', r'$\it{S. cf. costatum}$'] file_pattern = opj(dirdata, 'normalized_vsf_lov_experiment2015_xxx.txt') fitdf = [] res = [] for icol, model in enumerate(models): model_ = model.__name__ for irow, sample in enumerate(samples): if 'PF' in sample: # =============== # Petzold data # =============== print(model_, sample) group = df_petzold[sample] wl = 514 # set range to removce extrapolated values and uncertain forward scatt data angular_range = [10, 170] res_, df_ = process(wl, group, model, angular_range=angular_range) res.append(res_) fitdf.append(df_) else: # =============== # Harmel et al 2016 data # =============== file = file_pattern.replace('xxx', sample) df = pd.read_csv(file, skiprows=8, sep='\t', index_col=0, skipinitialspace=True, na_values='inf') angular_range = [3, 173] if trunc: angular_range = angular_range_t # if trunc: # to truncate phase function and verify consistency over different scatt. angle range # dirfig = opj(dir, 'fig', 'truncated') # angular_range = [3, 150] for i, (label, group) in enumerate(df.iteritems()): print(model_, sample, label) wl = int(label.split('.')[-1]) res_, df_ = process(wl, group, model, angular_range=angular_range) res.append(res_) fitdf.append(df_) res = pd.concat(res) res.to_csv(opj(dirdata, 'fit_res_all.csv'), index=False) fitdf = pd.concat(fitdf) fitdf.to_csv(opj(dirdata, 'fitted_data_all.csv'), index=False) # ------------------- # plotting section # ------------------- # =============== # Performances # =============== for param in ('redchi', 'bic', 'aic', 'bb_ratio', 'asymmetry_factor'): fig, axs = plt.subplots(2, 2, figsize=(10, 9), sharex=True) fig.subplots_adjust(bottom=0.175, top=0.96, left=0.1, right=0.98, hspace=0.25, wspace=0.27) axs = axs.ravel() for icol, model in enumerate(models): model_ = model.__name__ #res = pd.read_csv(opj(dirdata, 'fit_res_' + model_ + '.csv')).sort_values(['sample', 'wavelength']) res_=res[res['model']==model_] ax = axs[icol] ax.set_title(model_) icolor=0 for sample, group in res_.groupby('sample'): name = group.name.values[0] print(name) if 'Petzold' in name: continue if icol == 3: ax.plot(group.wavelength, group[param], label=name, linestyle='dashed', lw=2, marker='o', c=color_cycle[icolor], mec='grey', ms=12, alpha=0.6) else: ax.plot(group.wavelength, group[param], linestyle='dashed', lw=2, marker='o', c=color_cycle[icolor], mec='grey', ms=12, alpha=0.6) if param == "redchi": ax.set_ylabel(r'${\chi_\nu^2}$') else: ax.set_ylabel(param) icolor+=1 axs[-1].set_xlabel('Wavelength (nm)') axs[-2].set_xlabel('Wavelength (nm)') fig.legend(loc='upper center', bbox_to_anchor=(0.535, .115), fancybox=True, shadow=True, ncol=3, handletextpad=0.5, fontsize=20) # fig.tight_layout() plt.savefig(opj(dirfig, param + '_fitting_performances.png'), dpi=300) # =============== # TTRM parameters # =============== fig, axs = plt.subplots(4, 2, figsize=(10, 12), sharex=True) res_TTRM = res[res['model']=='TTRM_fit'] axs = axs.ravel() labels = ['$\gamma$', '$g_1$', '$g_2$', r'$\alpha _1$', r'$\alpha_2$', '$\~b_b$', r'$<cos\theta >$'] for i, param in enumerate(['gamma', 'g1', 'g2', 'alpha1', 'alpha2', 'bb_ratio', 'asymmetry_factor']): ax = axs[i] ax.set_ylabel(labels[i]) icolor=0 for sample, group in res_TTRM.groupby('sample'): name = group.name.values[0] if 'Petzold' in name: continue print(name,icolor,color_cycle[icolor]) # ax.errorbar(group.wavelength,group[param],yerr=group[param+'_std'],label=name,linestyle='dashed',lw=2, marker='o',mec='grey',ms=12,alpha=0.6) ax.errorbar(group.wavelength, group[param], linestyle='dashed', lw=2, marker='o',c=color_cycle[icolor], mec='grey', ms=12, alpha=0.6) icolor+=1 icolor=0 for sample, group in res_TTRM.groupby('sample'): name = group.name.values[0] if 'Petzold' in name: continue print(name,icolor,color_cycle[icolor]) axs[-1].errorbar(group.wavelength, group[param], label=name, linestyle='dashed', lw=2, marker='o', c=color_cycle[icolor], mec='grey', ms=12, alpha=0.6) icolor+=1 axs[-1].set_visible(False) axs[-2].set_xlabel('Wavelength (nm)') axs[-3].set_xlabel('Wavelength (nm)') axs[-3].tick_params(axis='x', labelbottom='on') fig.legend(loc='lower left', bbox_to_anchor=(0.57, 0.04), fancybox=True, shadow=True, ncol=1, handletextpad=0.5, fontsize=17) plt.tight_layout() fig.subplots_adjust(hspace=0.065) # , wspace=0.065) plt.savefig(opj(dirfig, 'TTRM_fitting_parameters.png'), dpi=300) # =============== # PF Fitting per sample # =============== def semilog(ax, size=4): ax.set_xlim((0.01, 10)) divider = make_axes_locatable(ax) axlin = divider.append_axes("right", size=size, pad=0, sharey=ax) ax.spines['right'].set_visible(False) axlin.spines['left'].set_linestyle('--') # axlin.spines['left'].set_linewidth(1.8) axlin.spines['left'].set_color('grey') axlin.yaxis.set_ticks_position('right') axlin.yaxis.set_visible(False) axlin.xaxis.set_visible(False) axlin.set_xscale('linear') axlin.set_xlim((10, 190)) ax.semilogy() ax.xaxis.set_major_locator(mpl.ticker.LogLocator(base=10.0, numticks=4)) ax.yaxis.set_major_locator(mpl.ticker.LogLocator(base=10.0, numticks=10)) ax.xaxis.set_minor_locator(mpl.ticker.LogLocator(base=10.0, numticks=10, subs=np.arange(10) * 0.1)) ax.yaxis.set_minor_locator(mpl.ticker.LogLocator(base=10.0, numticks=10, subs=np.arange(10) * 0.1)) return ax, axlin color = ['black', 'blue', 'green', 'red'] samples = ['PF', 'Arizona', 'Chlorella', 'Cylindrotheca', 'Dunaliella', 'Karenia', 'Skeletonema'] for sample in samples: print(sample) basename = sample df = fitdf[fitdf['sample'].str.contains(sample)] by_ = 'wavelength' title = df.name.values[0] if sample == 'PF': by_ = 'name' title = "Petzold measurements" # if not '3µm' in basename: # continue fig, axs_ = plt.subplots(2, 2, figsize=(15, 12), sharex=True, sharey=True) axslin = [0 for x in range(4)] axs = axs_.ravel() for im, (model, group) in enumerate(df.groupby('model')): print(model) ax = axs[im] ax.loglog() ax, axlin = semilog(ax) axslin[im] = axlin for i, (label, g_) in enumerate(group.groupby(by_)): res_ = res[res['sample'].str.contains(sample) & (res['model'] == model) & (res[by_] == label)] if by_ == 'wavelength': label = str(label) + ' nm' print(label) for ax_ in (ax, axlin): ax_.plot(g_.theta, g_.pf_raw, color=color[i], label=label) ax_.plot(g_.theta, g_.pf_fit, '--', color=color[i]) bp_tilde = res_.bb_ratio.values[0] asym = res_.asymmetry_factor.values[0] axlin.text(0.95, 0.95-(i*0.08), r'$\~b_b=${:6.4f}, $<cos \theta > =${:6.3f}'.format(bp_tilde,asym), size=20, color=color[i],transform=axlin.transAxes, ha="right", va="top", ) ax.set_title(model) ax.set_ylim(ymin=0.0003, ymax=30 ** 2) plt.legend(loc='upper center', bbox_to_anchor=(-0.5, -0.14), fancybox=True, shadow=True, ncol=4, handletextpad=0.5, fontsize=17) for irow in range(2): axs_[irow, 0].set_ylabel(r'Phase function $(sr^{-1})$') for icol in range(-2, 0): axslin[icol].xaxis.set_visible(True) axslin[icol].set_xlabel('Scattering angle (deg)') fig.subplots_adjust(hspace=0.085, wspace=0.085) plt.suptitle(title, fontsize=24) plt.savefig(opj(dirfig, basename + '.png'), dpi=300) # =============== # PF Fitting summary # =============== color_cycle = ['white','dimgrey', 'firebrick', 'olivedrab', ] samples = ['PF', 'Arizona', 'Chlorella', 'Dunaliella'] rows, cols = 4, 4 axslin = [[0 for x in range(cols)] for x in range(rows)] names=[] fig, axs = plt.subplots(rows, cols, figsize=(22, 17), sharex=True, sharey=True) for irow, sample in enumerate(samples): print(sample) basename = sample df = fitdf[fitdf['sample'].str.contains(sample)] by_ = 'wavelength' name = df.name.values[0] if sample == 'PF': by_ = 'name' name = "Petzold meas." names.append(name) for im, (model, group) in enumerate(df.groupby('model')): print(model) axs[0, im].set_title(model) ax = axs[irow,im] ax.loglog() ax, axlin = semilog(ax,size=3.1) axslin[irow][im] = axlin for i, (label, g_) in enumerate(group.groupby(by_)): res_ = res[res['sample'].str.contains(sample) & (res['model'] == model) & (res[by_] == label)] if by_ == 'wavelength': label = str(label) + ' nm' print(label) for ax_ in (ax, axlin): ax_.plot(g_.theta, g_.pf_raw, color=color[i], label=label) ax_.plot(g_.theta, g_.pf_fit, '--', color=color[i]) ax.set_ylim(ymin=0.0003, ymax=30 ** 2) plt.legend(loc='upper right', bbox_to_anchor=(0.975, 0.97), fancybox=True, shadow=True, ncol=1, handletextpad=0.5, fontsize=16) for irow, sample in enumerate(samples): axslin[irow][0].text(0.95, 0.95, names[irow], size=20, transform=axslin[irow][0].transAxes, ha="right", va="top", bbox=dict(boxstyle="round", ec=(0.1, 0.1, 0.1), fc=plt.matplotlib.colors.to_rgba(color_cycle[irow], 0.3), )) axs[irow, 0].set_ylabel(r'Phase function $(sr^{-1})$') for icol, model in enumerate(models): axslin[-1][icol].xaxis.set_visible(True) axslin[-1][icol].set_xlabel('Scattering angle (deg)') plt.tight_layout() fig.subplots_adjust(hspace=0.065, wspace=0.065) plt.suptitle('') plt.savefig(opj(dirfig, 'Figure_1.png'), dpi=300)
[ "numpy.radians", "numpy.log10", "matplotlib.ticker.LogLocator", "pandas.read_csv", "numpy.arange", "numpy.linspace", "mpl_toolkits.axes_grid1.make_axes_locatable", "pandas.DataFrame", "pffit.phase_function_models.inversion", "pffit.phase_function_models.models", "matplotlib.pyplot.ioff", "numpy.interp", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.legend", "matplotlib.pyplot.cycler", "matplotlib.pyplot.tight_layout", "pandas.concat", "matplotlib.pyplot.subplots", "matplotlib.pyplot.matplotlib.colors.to_rgba" ]
[((302, 312), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (310, 312), True, 'import matplotlib.pyplot as plt\n'), ((641, 680), 'pffit.phase_function_models.inversion', 'pffit.phase_function_models.inversion', ([], {}), '()\n', (678, 680), False, 'import pffit\n'), ((685, 721), 'pffit.phase_function_models.models', 'pffit.phase_function_models.models', ([], {}), '()\n', (719, 721), False, 'import pffit\n'), ((1020, 1045), 'numpy.linspace', 'np.linspace', (['(0)', '(180)', '(1000)'], {}), '(0, 180, 1000)\n', (1031, 1045), True, 'import numpy as np\n'), ((1238, 1337), 'pandas.read_csv', 'pd.read_csv', (['file'], {'skiprows': '(3)', 'sep': '"""\\\\s+"""', 'index_col': '(0)', 'skipinitialspace': '(True)', 'na_values': '"""inf"""'}), "(file, skiprows=3, sep='\\\\s+', index_col=0, skipinitialspace=\n True, na_values='inf')\n", (1249, 1337), True, 'import pandas as pd\n'), ((5400, 5414), 'pandas.concat', 'pd.concat', (['res'], {}), '(res)\n', (5409, 5414), True, 'import pandas as pd\n'), ((5481, 5497), 'pandas.concat', 'pd.concat', (['fitdf'], {}), '(fitdf)\n', (5490, 5497), True, 'import pandas as pd\n'), ((7382, 7431), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(2)'], {'figsize': '(10, 12)', 'sharex': '(True)'}), '(4, 2, figsize=(10, 12), sharex=True)\n', (7394, 7431), True, 'import matplotlib.pyplot as plt\n'), ((8909, 8927), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8925, 8927), True, 'import matplotlib.pyplot as plt\n'), ((12455, 12523), 'matplotlib.pyplot.subplots', 'plt.subplots', (['rows', 'cols'], {'figsize': '(22, 17)', 'sharex': '(True)', 'sharey': '(True)'}), '(rows, cols, figsize=(22, 17), sharex=True, sharey=True)\n', (12467, 12523), True, 'import matplotlib.pyplot as plt\n'), ((14315, 14333), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14331, 14333), True, 'import matplotlib.pyplot as plt\n'), ((14382, 14398), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['""""""'], {}), "('')\n", (14394, 14398), True, 'import matplotlib.pyplot as plt\n'), ((1148, 1161), 'numpy.log10', 'np.log10', (['(180)'], {}), '(180)\n', (1156, 1161), True, 'import numpy as np\n'), ((2154, 2260), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'model': [model_], 'sample': [sample], 'name': [names[irow]], 'wavelength':\n [wl]}"}), "(data={'model': [model_], 'sample': [sample], 'name': [names[\n irow]], 'wavelength': [wl]})\n", (2166, 2260), True, 'import pandas as pd\n'), ((2266, 2411), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'model': model_, 'sample': [sample] * N_ang, 'name': [names[irow]] * N_ang,\n 'wavelength': [wl] * N_ang, 'theta': theta_}"}), "(data={'model': model_, 'sample': [sample] * N_ang, 'name': [\n names[irow]] * N_ang, 'wavelength': [wl] * N_ang, 'theta': theta_})\n", (2278, 2411), True, 'import pandas as pd\n'), ((2726, 2782), 'numpy.interp', 'np.interp', (['theta_', 'theta', 'vsf'], {'left': 'np.nan', 'right': 'np.nan'}), '(theta_, theta, vsf, left=np.nan, right=np.nan)\n', (2735, 2782), True, 'import numpy as np\n'), ((5764, 5812), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(10, 9)', 'sharex': '(True)'}), '(2, 2, figsize=(10, 9), sharex=True)\n', (5776, 5812), True, 'import matplotlib.pyplot as plt\n'), ((9175, 9198), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (9194, 9198), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((10498, 10560), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(15, 12)', 'sharex': '(True)', 'sharey': '(True)'}), '(2, 2, figsize=(15, 12), sharex=True, sharey=True)\n', (10510, 10560), True, 'import matplotlib.pyplot as plt\n'), ((11647, 11779), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""', 'bbox_to_anchor': '(-0.5, -0.14)', 'fancybox': '(True)', 'shadow': '(True)', 'ncol': '(4)', 'handletextpad': '(0.5)', 'fontsize': '(17)'}), "(loc='upper center', bbox_to_anchor=(-0.5, -0.14), fancybox=True,\n shadow=True, ncol=4, handletextpad=0.5, fontsize=17)\n", (11657, 11779), True, 'import matplotlib.pyplot as plt\n'), ((12067, 12099), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['title'], {'fontsize': '(24)'}), '(title, fontsize=24)\n', (12079, 12099), True, 'import matplotlib.pyplot as plt\n'), ((13554, 13685), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'bbox_to_anchor': '(0.975, 0.97)', 'fancybox': '(True)', 'shadow': '(True)', 'ncol': '(1)', 'handletextpad': '(0.5)', 'fontsize': '(16)'}), "(loc='upper right', bbox_to_anchor=(0.975, 0.97), fancybox=True,\n shadow=True, ncol=1, handletextpad=0.5, fontsize=16)\n", (13564, 13685), True, 'import matplotlib.pyplot as plt\n'), ((507, 539), 'matplotlib.pyplot.cycler', 'plt.cycler', (['"""color"""', 'color_cycle'], {}), "('color', color_cycle)\n", (517, 539), True, 'import matplotlib.pyplot as plt\n'), ((9669, 9713), 'matplotlib.ticker.LogLocator', 'mpl.ticker.LogLocator', ([], {'base': '(10.0)', 'numticks': '(4)'}), '(base=10.0, numticks=4)\n', (9690, 9713), True, 'import matplotlib as mpl\n'), ((9746, 9791), 'matplotlib.ticker.LogLocator', 'mpl.ticker.LogLocator', ([], {'base': '(10.0)', 'numticks': '(10)'}), '(base=10.0, numticks=10)\n', (9767, 9791), True, 'import matplotlib as mpl\n'), ((4678, 4774), 'pandas.read_csv', 'pd.read_csv', (['file'], {'skiprows': '(8)', 'sep': '"""\t"""', 'index_col': '(0)', 'skipinitialspace': '(True)', 'na_values': '"""inf"""'}), "(file, skiprows=8, sep='\\t', index_col=0, skipinitialspace=True,\n na_values='inf')\n", (4689, 4774), True, 'import pandas as pd\n'), ((2905, 2927), 'numpy.radians', 'np.radians', (['theta_[1:]'], {}), '(theta_[1:])\n', (2915, 2927), True, 'import numpy as np\n'), ((3215, 3237), 'numpy.radians', 'np.radians', (['theta_[1:]'], {}), '(theta_[1:])\n', (3225, 3237), True, 'import numpy as np\n'), ((3040, 3060), 'numpy.radians', 'np.radians', (['back_ang'], {}), '(back_ang)\n', (3050, 3060), True, 'import numpy as np\n'), ((9875, 9888), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (9884, 9888), True, 'import numpy as np\n'), ((9979, 9992), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (9988, 9992), True, 'import numpy as np\n'), ((14022, 14075), 'matplotlib.pyplot.matplotlib.colors.to_rgba', 'plt.matplotlib.colors.to_rgba', (['color_cycle[irow]', '(0.3)'], {}), '(color_cycle[irow], 0.3)\n', (14051, 14075), True, 'import matplotlib.pyplot as plt\n'), ((2880, 2902), 'numpy.radians', 'np.radians', (['theta_[1:]'], {}), '(theta_[1:])\n', (2890, 2902), True, 'import numpy as np\n'), ((2993, 3013), 'numpy.radians', 'np.radians', (['back_ang'], {}), '(back_ang)\n', (3003, 3013), True, 'import numpy as np\n'), ((3134, 3156), 'numpy.radians', 'np.radians', (['theta_[1:]'], {}), '(theta_[1:])\n', (3144, 3156), True, 'import numpy as np\n'), ((3166, 3188), 'numpy.radians', 'np.radians', (['theta_[1:]'], {}), '(theta_[1:])\n', (3176, 3188), True, 'import numpy as np\n')]
#!env/bin/python # -*- coding:utf-8 -*- # author: <EMAIL> import requests import json from utils.get_configure import env_file_conf from utils.apollo_handler import ApolloQuery def prometh_hosts(): """ 从apollo查询prome地址 :return: list """ external = env_file_conf('EXTERNAL', conf_type='bool') if not external: conf_name = 'prome_host' else: conf_name = 'prome_external_host' if external: print('Conneting to apollo from external net!') apollo_query = ApolloQuery() prome_hosts = None try: prome_hosts = apollo_query.apo_config(conf_name).split(',') except Exception as e: print('Getting prometheus addr from apollo failed!{}'.format(e.__str__())) exit(1) print('Debug prometheus hosts: {}'.format(prome_hosts)) return prome_hosts def prome_query(prome_sql): """ 查询prome :param prome_sql: promesql :return: """ res = None res_data = None prome_host = prometh_hosts() time_out = 60 * 3 if not prome_host: exit(1) try: res = requests.request(method="get", url='http://' + prome_host[0] + prome_sql, timeout=time_out) except requests.RequestException as e: try: res = requests.request(method="get", url='http://' + prome_host[1] + prome_sql, timeout=time_out) except Exception as e1: print("Query prometheus failed!{}".format(e1.__str__())) exit(1) except TypeError as e: print("Gettting prometheus addr from apollo failed!{}".format(e.__str__())) print('Prometheus returned: {} {}'.format(res.status_code, res.raw)) if 400 <= res.status_code < 600: print('Error query prome {} {}'.format(res.status_code, res.content)) exit(1) else: try: res_content = json.loads(res.content) print("prome returned:{} {}".format(res.status_code, res_content)) except Exception as e: res_content = res.content res_status = res_content["status"] res_data = res_content["data"] if not res_status == "success": print("prome returned:{} {}".format(res.status_code, res_status)) exit(1) return res_data
[ "utils.get_configure.env_file_conf", "json.loads", "utils.apollo_handler.ApolloQuery", "requests.request" ]
[((288, 331), 'utils.get_configure.env_file_conf', 'env_file_conf', (['"""EXTERNAL"""'], {'conf_type': '"""bool"""'}), "('EXTERNAL', conf_type='bool')\n", (301, 331), False, 'from utils.get_configure import env_file_conf\n'), ((530, 543), 'utils.apollo_handler.ApolloQuery', 'ApolloQuery', ([], {}), '()\n', (541, 543), False, 'from utils.apollo_handler import ApolloQuery\n'), ((1127, 1222), 'requests.request', 'requests.request', ([], {'method': '"""get"""', 'url': "('http://' + prome_host[0] + prome_sql)", 'timeout': 'time_out'}), "(method='get', url='http://' + prome_host[0] + prome_sql,\n timeout=time_out)\n", (1143, 1222), False, 'import requests\n'), ((1872, 1895), 'json.loads', 'json.loads', (['res.content'], {}), '(res.content)\n', (1882, 1895), False, 'import json\n'), ((1293, 1388), 'requests.request', 'requests.request', ([], {'method': '"""get"""', 'url': "('http://' + prome_host[1] + prome_sql)", 'timeout': 'time_out'}), "(method='get', url='http://' + prome_host[1] + prome_sql,\n timeout=time_out)\n", (1309, 1388), False, 'import requests\n')]
from kafka.protocol.admin import Request from kafka.protocol.admin import Response from kafka.protocol.types import Schema from kafka.protocol.types import Array from kafka.protocol.types import Int16 from kafka.protocol.types import String import pytest @pytest.mark.parametrize('superclass', (Request, Response)) class TestObjectConversion: def test_get_item(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myobject', Int16)) tc = TestClass(myobject=0) assert tc.get_item('myobject') == 0 with pytest.raises(KeyError): tc.get_item('does-not-exist') def test_with_empty_schema(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema() tc = TestClass() tc.encode() assert tc.to_object() == {} def test_with_basic_schema(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myobject', Int16)) tc = TestClass(myobject=0) tc.encode() assert tc.to_object() == {'myobject': 0} def test_with_basic_array_schema(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myarray', Array(Int16))) tc = TestClass(myarray=[1,2,3]) tc.encode() assert tc.to_object()['myarray'] == [1, 2, 3] def test_with_complex_array_schema(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myarray', Array( ('subobject', Int16), ('othersubobject', String('utf-8'))))) tc = TestClass( myarray=[[10, 'hello']] ) tc.encode() obj = tc.to_object() assert len(obj['myarray']) == 1 assert obj['myarray'][0]['subobject'] == 10 assert obj['myarray'][0]['othersubobject'] == 'hello' def test_with_array_and_other(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myarray', Array( ('subobject', Int16), ('othersubobject', String('utf-8')))), ('notarray', Int16)) tc = TestClass( myarray=[[10, 'hello']], notarray=42 ) obj = tc.to_object() assert len(obj['myarray']) == 1 assert obj['myarray'][0]['subobject'] == 10 assert obj['myarray'][0]['othersubobject'] == 'hello' assert obj['notarray'] == 42 def test_with_nested_array(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myarray', Array( ('subarray', Array(Int16)), ('otherobject', Int16)))) tc = TestClass( myarray=[ [[1, 2], 2], [[2, 3], 4], ] ) print(tc.encode()) obj = tc.to_object() assert len(obj['myarray']) == 2 assert obj['myarray'][0]['subarray'] == [1, 2] assert obj['myarray'][0]['otherobject'] == 2 assert obj['myarray'][1]['subarray'] == [2, 3] assert obj['myarray'][1]['otherobject'] == 4 def test_with_complex_nested_array(self, superclass): class TestClass(superclass): API_KEY = 0 API_VERSION = 0 RESPONSE_TYPE = None # To satisfy the Request ABC SCHEMA = Schema( ('myarray', Array( ('subarray', Array( ('innertest', String('utf-8')), ('otherinnertest', String('utf-8')))), ('othersubarray', Array(Int16)))), ('notarray', String('utf-8'))) tc = TestClass( myarray=[ [[['hello', 'hello'], ['hello again', 'hello again']], [0]], [[['hello', 'hello again']], [1]], ], notarray='notarray' ) tc.encode() obj = tc.to_object() assert obj['notarray'] == 'notarray' myarray = obj['myarray'] assert len(myarray) == 2 assert myarray[0]['othersubarray'] == [0] assert len(myarray[0]['subarray']) == 2 assert myarray[0]['subarray'][0]['innertest'] == 'hello' assert myarray[0]['subarray'][0]['otherinnertest'] == 'hello' assert myarray[0]['subarray'][1]['innertest'] == 'hello again' assert myarray[0]['subarray'][1]['otherinnertest'] == 'hello again' assert myarray[1]['othersubarray'] == [1] assert len(myarray[1]['subarray']) == 1 assert myarray[1]['subarray'][0]['innertest'] == 'hello' assert myarray[1]['subarray'][0]['otherinnertest'] == 'hello again' def test_with_metadata_response(): from kafka.protocol.metadata import MetadataResponse_v5 tc = MetadataResponse_v5( throttle_time_ms=0, brokers=[ [0, 'testhost0', 9092, 'testrack0'], [1, 'testhost1', 9092, 'testrack1'], ], cluster_id='abcd', controller_id=0, topics=[ [0, 'testtopic1', False, [ [0, 0, 0, [0, 1], [0, 1], []], [0, 1, 1, [1, 0], [1, 0], []], ], ], [0, 'other-test-topic', True, [ [0, 0, 0, [0, 1], [0, 1], []], ] ]] ) tc.encode() # Make sure this object encodes successfully obj = tc.to_object() assert obj['throttle_time_ms'] == 0 assert len(obj['brokers']) == 2 assert obj['brokers'][0]['node_id'] == 0 assert obj['brokers'][0]['host'] == 'testhost0' assert obj['brokers'][0]['port'] == 9092 assert obj['brokers'][0]['rack'] == 'testrack0' assert obj['brokers'][1]['node_id'] == 1 assert obj['brokers'][1]['host'] == 'testhost1' assert obj['brokers'][1]['port'] == 9092 assert obj['brokers'][1]['rack'] == 'testrack1' assert obj['cluster_id'] == 'abcd' assert obj['controller_id'] == 0 assert len(obj['topics']) == 2 assert obj['topics'][0]['error_code'] == 0 assert obj['topics'][0]['topic'] == 'testtopic1' assert obj['topics'][0]['is_internal'] == False assert len(obj['topics'][0]['partitions']) == 2 assert obj['topics'][0]['partitions'][0]['error_code'] == 0 assert obj['topics'][0]['partitions'][0]['partition'] == 0 assert obj['topics'][0]['partitions'][0]['leader'] == 0 assert obj['topics'][0]['partitions'][0]['replicas'] == [0, 1] assert obj['topics'][0]['partitions'][0]['isr'] == [0, 1] assert obj['topics'][0]['partitions'][0]['offline_replicas'] == [] assert obj['topics'][0]['partitions'][1]['error_code'] == 0 assert obj['topics'][0]['partitions'][1]['partition'] == 1 assert obj['topics'][0]['partitions'][1]['leader'] == 1 assert obj['topics'][0]['partitions'][1]['replicas'] == [1, 0] assert obj['topics'][0]['partitions'][1]['isr'] == [1, 0] assert obj['topics'][0]['partitions'][1]['offline_replicas'] == [] assert obj['topics'][1]['error_code'] == 0 assert obj['topics'][1]['topic'] == 'other-test-topic' assert obj['topics'][1]['is_internal'] == True assert len(obj['topics'][1]['partitions']) == 1 assert obj['topics'][1]['partitions'][0]['error_code'] == 0 assert obj['topics'][1]['partitions'][0]['partition'] == 0 assert obj['topics'][1]['partitions'][0]['leader'] == 0 assert obj['topics'][1]['partitions'][0]['replicas'] == [0, 1] assert obj['topics'][1]['partitions'][0]['isr'] == [0, 1] assert obj['topics'][1]['partitions'][0]['offline_replicas'] == [] tc.encode()
[ "kafka.protocol.metadata.MetadataResponse_v5", "kafka.protocol.types.Schema", "kafka.protocol.types.Array", "pytest.mark.parametrize", "pytest.raises", "kafka.protocol.types.String" ]
[((258, 316), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""superclass"""', '(Request, Response)'], {}), "('superclass', (Request, Response))\n", (281, 316), False, 'import pytest\n'), ((5700, 6038), 'kafka.protocol.metadata.MetadataResponse_v5', 'MetadataResponse_v5', ([], {'throttle_time_ms': '(0)', 'brokers': "[[0, 'testhost0', 9092, 'testrack0'], [1, 'testhost1', 9092, 'testrack1']]", 'cluster_id': '"""abcd"""', 'controller_id': '(0)', 'topics': "[[0, 'testtopic1', False, [[0, 0, 0, [0, 1], [0, 1], []], [0, 1, 1, [1, 0],\n [1, 0], []]]], [0, 'other-test-topic', True, [[0, 0, 0, [0, 1], [0, 1],\n []]]]]"}), "(throttle_time_ms=0, brokers=[[0, 'testhost0', 9092,\n 'testrack0'], [1, 'testhost1', 9092, 'testrack1']], cluster_id='abcd',\n controller_id=0, topics=[[0, 'testtopic1', False, [[0, 0, 0, [0, 1], [0,\n 1], []], [0, 1, 1, [1, 0], [1, 0], []]]], [0, 'other-test-topic', True,\n [[0, 0, 0, [0, 1], [0, 1], []]]]])\n", (5719, 6038), False, 'from kafka.protocol.metadata import MetadataResponse_v5\n'), ((559, 586), 'kafka.protocol.types.Schema', 'Schema', (["('myobject', Int16)"], {}), "(('myobject', Int16))\n", (565, 586), False, 'from kafka.protocol.types import Schema\n'), ((697, 720), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (710, 720), False, 'import pytest\n'), ((996, 1004), 'kafka.protocol.types.Schema', 'Schema', ([], {}), '()\n', (1002, 1004), False, 'from kafka.protocol.types import Schema\n'), ((1311, 1338), 'kafka.protocol.types.Schema', 'Schema', (["('myobject', Int16)"], {}), "(('myobject', Int16))\n", (1317, 1338), False, 'from kafka.protocol.types import Schema\n'), ((1727, 1739), 'kafka.protocol.types.Array', 'Array', (['Int16'], {}), '(Int16)\n', (1732, 1739), False, 'from kafka.protocol.types import Array\n'), ((4562, 4577), 'kafka.protocol.types.String', 'String', (['"""utf-8"""'], {}), "('utf-8')\n", (4568, 4577), False, 'from kafka.protocol.types import String\n'), ((2213, 2228), 'kafka.protocol.types.String', 'String', (['"""utf-8"""'], {}), "('utf-8')\n", (2219, 2228), False, 'from kafka.protocol.types import String\n'), ((2858, 2873), 'kafka.protocol.types.String', 'String', (['"""utf-8"""'], {}), "('utf-8')\n", (2864, 2873), False, 'from kafka.protocol.types import String\n'), ((3540, 3552), 'kafka.protocol.types.Array', 'Array', (['Int16'], {}), '(Int16)\n', (3545, 3552), False, 'from kafka.protocol.types import Array\n'), ((4516, 4528), 'kafka.protocol.types.Array', 'Array', (['Int16'], {}), '(Int16)\n', (4521, 4528), False, 'from kafka.protocol.types import Array\n'), ((4397, 4412), 'kafka.protocol.types.String', 'String', (['"""utf-8"""'], {}), "('utf-8')\n", (4403, 4412), False, 'from kafka.protocol.types import String\n'), ((4458, 4473), 'kafka.protocol.types.String', 'String', (['"""utf-8"""'], {}), "('utf-8')\n", (4464, 4473), False, 'from kafka.protocol.types import String\n')]
"""View for about.""" from componentstore.const import VERSION, DEMO import componentstore.resources.html as load async def view(): """View for about.""" installed_version = VERSION if not installed_version: installed_version = 'dev' if DEMO: installed_version = installed_version + '(DEMO)' #------------------------------------------------------------------------------ about = load.TEXT.format( "This tool can help you manage your 'custom_components' for Home Assistant.") about += load.BREAK about += load.TEXT.format( "This will only manage the '.py' files for you under 'custom_components/', " "you still need to manually add/remove entries in 'configuration.yaml'.") about += load.BREAK about += load.TEXT.format( "All components that are trackable with this has a 'REPOSITORY' button, " "use that to verify the content before installing/upgrading.") about += load.BREAK about += load.TEXT.format( "Do not install/upgrade something with this that you do not trust.") about += load.HR lines = load.LINE.format( type='installed_version', text='installed version: '+installed_version) text = load.LINK.format( url='https://github.com/ludeeus/custom-component-store', target='_blank', style='', id='', htmlclass='', extra='', text='Project @ GitHub') lines += load.LINE.format(type='github_link', text=text) text = load.LINK.format( url='https://hub.docker.com/r/ludeeus/custom-component-store', target='_blank', style='', id='', htmlclass='', extra='', text='Project @ Docker hub') lines += load.LINE.format(type='docker_hub_link', text=text) about += load.LIST.format(title='', lines=lines) content = load.BASE_CARD.format( title='About', content=about) #------------------------------------------------------------------------------ customjson = load.LINK.format( url='https://github.com/ludeeus/customjson', target='_blank', style='', id='', htmlclass='', extra='', text='customjson') org = load.LINK.format( url='https://github.com/custom-components', target='_blank', style='', id='', htmlclass='', extra='', text='custom-component org. on GitHub') text = """ All the components/platforms that you can manage with this needs to be added to {customjson}, by default all components/platforms that folow the standard in the {org} are managable, other components/platforms would need to be added to {customjson} before they can show up here. """.format(customjson=customjson, org=org) components = load.TEXT.format(text) components += load.TEXT.format( "The platform structure needs to be as embedded platforms to be managed here.") content += load.BASE_CARD.format( title='Custom Components', content=components) #------------------------------------------------------------------------------ notice = load.TEXT.format("This project uses many recources to work:") links = [ { 'link': 'https://github.com/ludeeus/customjson', 'text': 'customjson' }, { 'link': 'https://fontawesome.com/', 'text': 'Font Awesome' }, { 'link': 'http://fonts.googleapis.com/css?family=Roboto', 'text': 'fonts.googleapis.com' }, { 'link': 'https://materializecss.com', 'text': 'materialize' }, { 'link': 'https://aiohttp.readthedocs.io/en/stable/', 'text': 'aiohttp' }, { 'link': 'https://github.com/just-containers/s6-overlay', 'text': 's6-overlay' }, { 'link': 'https://redis.io/', 'text': 'redis' } ] for link in links: notice += load.LINK.format( url=link['link'], target='_blank', style='', id='', htmlclass='', extra='', text=link['text']) notice += load.BREAK content += load.BASE_CARD.format( title='Notice', content=notice) #------------------------------------------------------------------------------ text = load.TEXT.format( "This is in the footer of every page here, but I think that it belongs here to.") text += load.BREAK text += load.TEXT.format( "This site and the items here is not created, developed, affiliated, " "supported, maintained or endorsed by Home Assistant.") content += load.NO_TITLE_CARD.format(text) #------------------------------------------------------------------------------ text = load.LINK.format( url='https://www.buymeacoffee.com/ludeeus', target='_blank', style='', id='', htmlclass='', extra='', text=load.COFFEEICON+'Buy me a coffee? :D') content += load.NO_TITLE_CARD.format(text) #------------------------------------------------------------------------------ html = load.TOP html += load.BASE.format(content) html += load.END return html
[ "componentstore.resources.html.NO_TITLE_CARD.format", "componentstore.resources.html.TEXT.format", "componentstore.resources.html.BASE_CARD.format", "componentstore.resources.html.LINK.format", "componentstore.resources.html.LIST.format", "componentstore.resources.html.LINE.format", "componentstore.resources.html.BASE.format" ]
[((421, 525), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""This tool can help you manage your \'custom_components\' for Home Assistant."""'], {}), '(\n "This tool can help you manage your \'custom_components\' for Home Assistant."\n )\n', (437, 525), True, 'import componentstore.resources.html as load\n'), ((562, 736), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""This will only manage the \'.py\' files for you under \'custom_components/\', you still need to manually add/remove entries in \'configuration.yaml\'."""'], {}), '(\n "This will only manage the \'.py\' files for you under \'custom_components/\', you still need to manually add/remove entries in \'configuration.yaml\'."\n )\n', (578, 736), True, 'import componentstore.resources.html as load\n'), ((784, 944), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""All components that are trackable with this has a \'REPOSITORY\' button, use that to verify the content before installing/upgrading."""'], {}), '(\n "All components that are trackable with this has a \'REPOSITORY\' button, use that to verify the content before installing/upgrading."\n )\n', (800, 944), True, 'import componentstore.resources.html as load\n'), ((992, 1082), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""Do not install/upgrade something with this that you do not trust."""'], {}), "(\n 'Do not install/upgrade something with this that you do not trust.')\n", (1008, 1082), True, 'import componentstore.resources.html as load\n'), ((1121, 1215), 'componentstore.resources.html.LINE.format', 'load.LINE.format', ([], {'type': '"""installed_version"""', 'text': "('installed version: ' + installed_version)"}), "(type='installed_version', text='installed version: ' +\n installed_version)\n", (1137, 1215), True, 'import componentstore.resources.html as load\n'), ((1231, 1396), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': '"""https://github.com/ludeeus/custom-component-store"""', 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': '"""Project @ GitHub"""'}), "(url='https://github.com/ludeeus/custom-component-store',\n target='_blank', style='', id='', htmlclass='', extra='', text=\n 'Project @ GitHub')\n", (1247, 1396), True, 'import componentstore.resources.html as load\n'), ((1426, 1473), 'componentstore.resources.html.LINE.format', 'load.LINE.format', ([], {'type': '"""github_link"""', 'text': 'text'}), "(type='github_link', text=text)\n", (1442, 1473), True, 'import componentstore.resources.html as load\n'), ((1486, 1667), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': '"""https://hub.docker.com/r/ludeeus/custom-component-store"""', 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': '"""Project @ Docker hub"""'}), "(url=\n 'https://hub.docker.com/r/ludeeus/custom-component-store', target=\n '_blank', style='', id='', htmlclass='', extra='', text=\n 'Project @ Docker hub')\n", (1502, 1667), True, 'import componentstore.resources.html as load\n'), ((1691, 1742), 'componentstore.resources.html.LINE.format', 'load.LINE.format', ([], {'type': '"""docker_hub_link"""', 'text': 'text'}), "(type='docker_hub_link', text=text)\n", (1707, 1742), True, 'import componentstore.resources.html as load\n'), ((1757, 1796), 'componentstore.resources.html.LIST.format', 'load.LIST.format', ([], {'title': '""""""', 'lines': 'lines'}), "(title='', lines=lines)\n", (1773, 1796), True, 'import componentstore.resources.html as load\n'), ((1812, 1863), 'componentstore.resources.html.BASE_CARD.format', 'load.BASE_CARD.format', ([], {'title': '"""About"""', 'content': 'about'}), "(title='About', content=about)\n", (1833, 1863), True, 'import componentstore.resources.html as load\n'), ((1972, 2115), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': '"""https://github.com/ludeeus/customjson"""', 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': '"""customjson"""'}), "(url='https://github.com/ludeeus/customjson', target=\n '_blank', style='', id='', htmlclass='', extra='', text='customjson')\n", (1988, 2115), True, 'import componentstore.resources.html as load\n'), ((2147, 2315), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': '"""https://github.com/custom-components"""', 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': '"""custom-component org. on GitHub"""'}), "(url='https://github.com/custom-components', target=\n '_blank', style='', id='', htmlclass='', extra='', text=\n 'custom-component org. on GitHub')\n", (2163, 2315), True, 'import componentstore.resources.html as load\n'), ((2708, 2730), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['text'], {}), '(text)\n', (2724, 2730), True, 'import componentstore.resources.html as load\n'), ((2749, 2855), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""The platform structure needs to be as embedded platforms to be managed here."""'], {}), "(\n 'The platform structure needs to be as embedded platforms to be managed here.'\n )\n", (2765, 2855), True, 'import componentstore.resources.html as load\n'), ((2871, 2939), 'componentstore.resources.html.BASE_CARD.format', 'load.BASE_CARD.format', ([], {'title': '"""Custom Components"""', 'content': 'components'}), "(title='Custom Components', content=components)\n", (2892, 2939), True, 'import componentstore.resources.html as load\n'), ((3044, 3105), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""This project uses many recources to work:"""'], {}), "('This project uses many recources to work:')\n", (3060, 3105), True, 'import componentstore.resources.html as load\n'), ((4135, 4188), 'componentstore.resources.html.BASE_CARD.format', 'load.BASE_CARD.format', ([], {'title': '"""Notice"""', 'content': 'notice'}), "(title='Notice', content=notice)\n", (4156, 4188), True, 'import componentstore.resources.html as load\n'), ((4291, 4399), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""This is in the footer of every page here, but I think that it belongs here to."""'], {}), "(\n 'This is in the footer of every page here, but I think that it belongs here to.'\n )\n", (4307, 4399), True, 'import componentstore.resources.html as load\n'), ((4434, 4584), 'componentstore.resources.html.TEXT.format', 'load.TEXT.format', (['"""This site and the items here is not created, developed, affiliated, supported, maintained or endorsed by Home Assistant."""'], {}), "(\n 'This site and the items here is not created, developed, affiliated, supported, maintained or endorsed by Home Assistant.'\n )\n", (4450, 4584), True, 'import componentstore.resources.html as load\n'), ((4611, 4642), 'componentstore.resources.html.NO_TITLE_CARD.format', 'load.NO_TITLE_CARD.format', (['text'], {}), '(text)\n', (4636, 4642), True, 'import componentstore.resources.html as load\n'), ((4736, 4909), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': '"""https://www.buymeacoffee.com/ludeeus"""', 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': "(load.COFFEEICON + 'Buy me a coffee? :D')"}), "(url='https://www.buymeacoffee.com/ludeeus', target=\n '_blank', style='', id='', htmlclass='', extra='', text=load.COFFEEICON +\n 'Buy me a coffee? :D')\n", (4752, 4909), True, 'import componentstore.resources.html as load\n'), ((4932, 4963), 'componentstore.resources.html.NO_TITLE_CARD.format', 'load.NO_TITLE_CARD.format', (['text'], {}), '(text)\n', (4957, 4963), True, 'import componentstore.resources.html as load\n'), ((5078, 5103), 'componentstore.resources.html.BASE.format', 'load.BASE.format', (['content'], {}), '(content)\n', (5094, 5103), True, 'import componentstore.resources.html as load\n'), ((3953, 4068), 'componentstore.resources.html.LINK.format', 'load.LINK.format', ([], {'url': "link['link']", 'target': '"""_blank"""', 'style': '""""""', 'id': '""""""', 'htmlclass': '""""""', 'extra': '""""""', 'text': "link['text']"}), "(url=link['link'], target='_blank', style='', id='',\n htmlclass='', extra='', text=link['text'])\n", (3969, 4068), True, 'import componentstore.resources.html as load\n')]
import numpy from act.act_jugador.pase import Pase from config import Config config = Config() class Saque_porteria(Pase): def __init__(self, agente) -> None: super().__init__(agente) self.__descripcion = f"El portero {self.agente.nombre} saca de porteria a " self.tipo = config.ACCIONES.JUGADOR.ACT_SAQUE_PORTERIA self.tiempo = 0.17 def descripcion(self): return self.__descripcion def precondicion(self, partido) -> bool: return ((partido.ultima_accion.tipo == config.ACCIONES.JUGADOR.ACT_RECIBIR_BALON and partido.ultima_accion.estado == config.ACCIONES.ESTADO.RECIBIR_BALON.NO_RECIBE_BALON and partido.ultima_accion.sub_estado == config.ACCIONES.ESTADO.RECIBIR_BALON.LINEA_FINAL) or \ (partido.ultima_accion.tipo == config.ACCIONES.JUGADOR.ACT_TIRO_PORTERIA and partido.ultima_accion.estado == config.ACCIONES.ESTADO.TIRO_PORTERIA.POR_FUERA)) and \ partido.ultima_accion.agente.equipo != self.agente.equipo def poscondicion(self, partido): partido.pos_balon = None partido.estado = config.PARTIDO.ESTADO.EN_JUEGO partido.ultima_accion = self
[ "config.Config" ]
[((87, 95), 'config.Config', 'Config', ([], {}), '()\n', (93, 95), False, 'from config import Config\n')]
#!/usr/bin/python3 # # Copyright (c) 2012 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from __future__ import annotations import atexit import os import shlex import signal import sys from subprocess import Popen, TimeoutExpired from typing import IO, Any, Iterable, List, Optional # List of running processes; can be terminated with `terminate_all_processes` _RUNNING_PROCS: List[Any] = [] def quote_args(args) -> str: if isinstance(args, (str, bytes, os.PathLike)): args = [args] values = [] for arg in args: if isinstance(arg, os.PathLike): arg = os.fspath(arg) elif isinstance(arg, bytes): arg = arg.decode("utf-8", errors="replace") values.append(shlex.quote(arg)) return " ".join(values) def join_procs(procs: Iterable[Popen[Any]], out: IO[str] = sys.stderr): """Joins a set of Popen processes. If a processes fail, the remaining processes are terminated. The function returns a list of return-code, containing the result of each call. Status messages are written to STDERR by default. """ sleep_time = 0.05 commands = list(enumerate(procs)) return_codes = [None] * len(commands) # type: List[Optional[int]] assert all(hasattr(cmd, "args") for (_, cmd) in commands) print("Joinining subprocesses:", file=out) while commands and not any(return_codes): try: # Wait for arbitrary command commands[0][1].wait(sleep_time if len(commands) > 1 else None) except TimeoutExpired: sleep_time = min(1, sleep_time * 2) for (index, command) in list(commands): if command.poll() is not None: return_code = command.wait() return_codes[index] = return_code commands.remove((index, command)) sleep_time = 0.05 if return_code < 0: return_code = signal.Signals(-return_code).name print(f" - Command finished: {quote_args(command.args)}", file=out) print(f" Return-code: {return_code}", file=out) if any(return_codes): for index, command in commands: print(f" - Terminating command: {quote_args(command.args)}", file=out) command.terminate() return_codes[index] = command.wait() print("Errors occured during processing!", file=out) return return_codes def register_process(proc): """Register a process for automatic/forced termination.""" _RUNNING_PROCS.append(proc) def unregister_process(proc): """Unregister a process for automatic/forced termination.""" if proc in _RUNNING_PROCS: _RUNNING_PROCS.remove(proc) @atexit.register def terminate_all_processes(): """Terminate all registered proceses. Must be called in signal handlers.""" while _RUNNING_PROCS: proc = _RUNNING_PROCS.pop() try: proc.terminate() except OSError: # Ignore already closed processes, etc. pass
[ "signal.Signals", "os.fspath", "shlex.quote" ]
[((1626, 1640), 'os.fspath', 'os.fspath', (['arg'], {}), '(arg)\n', (1635, 1640), False, 'import os\n'), ((1757, 1773), 'shlex.quote', 'shlex.quote', (['arg'], {}), '(arg)\n', (1768, 1773), False, 'import shlex\n'), ((2966, 2994), 'signal.Signals', 'signal.Signals', (['(-return_code)'], {}), '(-return_code)\n', (2980, 2994), False, 'import signal\n')]
import sys import traceback from django.core.management.base import BaseCommand, CommandError from books.run_queries import run class Command(BaseCommand): help = "run tests" def add_arguments(self, parser): parser.add_argument( "--funcname", default=None, action="store", dest="funcname", type=str ) parser.add_argument("--v", action="store", dest="verbose", default=0, type=int) parser.add_argument("--sql", default=False, action="store_true", dest="sql") def handle(self, *args, **options): run(options)
[ "books.run_queries.run" ]
[((568, 580), 'books.run_queries.run', 'run', (['options'], {}), '(options)\n', (571, 580), False, 'from books.run_queries import run\n')]
#!/bin/python3 import requests import mimetypes import sys from pathlib import Path from datetime import datetime import time import socket from util import * from headers import * # SYNPOSIS: # To download posts from an artist: # python3 grab-artist.py mixppl # 2 minute timeout in case something gets stuck. socket.setdefaulttimeout(120) artist_name = str.lower(sys.argv[1]) # Create artist directory if it doesn't exist artist_directory = "./downloads/" + slugify(artist_name) + "/" Path(artist_directory).mkdir(parents=True, exist_ok=True) # Create directory for already saved posts, and generate filename Path("./already_saved/").mkdir(parents=True, exist_ok=True) # Create directory for logging, and generate filename Path("./logs/").mkdir(parents=True, exist_ok=True) # Request project info for artist lastPageReached = False pageCounter = 1 try: while not lastPageReached: logMsg(f"Fetching page {pageCounter} of {artist_name}...", "okndl", artist_name) projects_data = requests.get(f"https://www.artstation.com/users/{artist_name}/projects.json?page={pageCounter}", headers=project_fetch_headers) projects = projects_data.json()["data"] page_num_projects = len(projects) lastPageReached = page_num_projects < 50 # Each full page contains 50 projects. If it has less than 50, it is the last page if not lastPageReached: pageCounter = pageCounter + 1 logMsg(f"Page contains {page_num_projects} projects...", "okndl", artist_name) else: logMsg(f"Page contains {page_num_projects} projects... That's the last page!", "okndl", artist_name) # For each project in all of the artists projects for project in projects: project_name = project["title"] project_hash_id = project["hash_id"] logMsg(f"Found project '{project_name}' with id {project_hash_id}. Fetching more info about it...", "okndl", artist_name) # Have we already downloaded this post? if not isPostAlreadySaved(project_hash_id, artist_name): # Fetch information about the project project_info = requests.get(f"https://www.artstation.com/projects/{project_hash_id}.json", headers=project_fetch_headers) assets = project_info.json()["assets"] # For each asset in the project (might be multiple images) for asset in assets: asset_type = asset["asset_type"] asset_position = asset["position"] # If the asset is an image if asset_type == "image": asset_image_url = asset["image_url"] # Generate a download filename filename = artist_directory + slugify(project_name[:60] + "_" + project_hash_id + "_" + str(asset_position)) + "." + extensionFromUrl(asset_image_url) logMsg(f"Found image-asset for project '{project_name}' [{project_hash_id}] at position {asset_position}. Downloading to '{filename}'...", "okdl", artist_name) # Download it downloadMedia(asset_image_url, filename) else: logMsg(f"Found non-image-asset for project '{project_name}' [{project_hash_id}] at position {asset_position}. Skipping...", "okdl", artist_name) # After downloading all assets, mark the project as downloaded. markPostAsSaved(project_hash_id, artist_name) # Project is already downloaded else: logMsg(f"Skipping project '{project_name}' [{project_hash_id}] because it is already downloaded.", "okndl", artist_name) logMsg(f"Finished all pages of {artist_name}... Total pages of this artist scanned: {pageCounter}", "okndl", artist_name) except socket.timeout as exc: logMsg("Socket timeout of two minutes reached! We'll get 'em next time, boys!", "err", artist_name) except BaseException as exc: logMsg("Failed for some reason!: " + repr(exc), "err", artist_name)
[ "requests.get", "socket.setdefaulttimeout", "pathlib.Path" ]
[((313, 342), 'socket.setdefaulttimeout', 'socket.setdefaulttimeout', (['(120)'], {}), '(120)\n', (337, 342), False, 'import socket\n'), ((491, 513), 'pathlib.Path', 'Path', (['artist_directory'], {}), '(artist_directory)\n', (495, 513), False, 'from pathlib import Path\n'), ((616, 640), 'pathlib.Path', 'Path', (['"""./already_saved/"""'], {}), "('./already_saved/')\n", (620, 640), False, 'from pathlib import Path\n'), ((731, 746), 'pathlib.Path', 'Path', (['"""./logs/"""'], {}), "('./logs/')\n", (735, 746), False, 'from pathlib import Path\n'), ((1007, 1144), 'requests.get', 'requests.get', (['f"""https://www.artstation.com/users/{artist_name}/projects.json?page={pageCounter}"""'], {'headers': 'project_fetch_headers'}), "(\n f'https://www.artstation.com/users/{artist_name}/projects.json?page={pageCounter}'\n , headers=project_fetch_headers)\n", (1019, 1144), False, 'import requests\n'), ((2184, 2294), 'requests.get', 'requests.get', (['f"""https://www.artstation.com/projects/{project_hash_id}.json"""'], {'headers': 'project_fetch_headers'}), "(f'https://www.artstation.com/projects/{project_hash_id}.json',\n headers=project_fetch_headers)\n", (2196, 2294), False, 'import requests\n')]
from abc import ABC import cv2 class StainingColor: def __init__(self, hsv_min, hsv_max): self.hsv_min = hsv_min self.hsv_max = hsv_max @property def min(self): return self.hsv_min @property def max(self): return self.hsv_max BLACK = StainingColor((0, 0, 0), (180, 255, 100)) ORANGE = StainingColor((15, 120, 100), (40, 255, 255)) PURPLE = StainingColor((110, 60, 70), (160, 255, 255)) BLUE = StainingColor((85, 80, 120), (110, 255, 255)) BROWN = StainingColor((0, 100, 0), (15, 255, 255)) class StainingABC(ABC): def __init__(self, name: str): self.name = name class StainingIHC(StainingABC): def __init__(self, name: str, hsv_min, hsv_max): super().__init__(name) self.hsv_min = hsv_min self.hsv_max = hsv_max def get_mask(self, image): return cv2.inRange(image, self.hsv_min, self.hsv_max) CD107A = StainingIHC('CD107a', BLACK.min, BLACK.max) SOX10 = StainingIHC('Sox10', ORANGE.min, ORANGE.max) CD8 = StainingIHC('CD8', PURPLE.min, PURPLE.max) DAPI = StainingIHC('BLUE', BLUE.min, BLUE.max) class ConfocalStaining(StainingABC): def __init__(self, name: str, channel: int, threshold=0): super().__init__(name) self.channel = channel self.threshold = threshold class StainingIntensityRange(object): def __init__(self, min_range: tuple, max_range: tuple): self._min = min_range self._max = max_range def get_min(self): return self._min def get_max(self): return self._max class ConfigurableStainingIntensityRange(StainingIntensityRange): def __init__(self, min_range: tuple, max_range: tuple): super().__init__(min_range, max_range) def set_min(self, min_range: tuple): self._min = min_range def set_max(self, max_range: tuple): self._max = max_range # FM4_64 = ConfocalStaining('FM4-64') # PKH_67 = ConfocalStaining('PKH-67') # TUBULIN = ConfocalStaining('Tubulin') # CASPASE_3 = ConfocalStaining('Caspase-3')
[ "cv2.inRange" ]
[((874, 920), 'cv2.inRange', 'cv2.inRange', (['image', 'self.hsv_min', 'self.hsv_max'], {}), '(image, self.hsv_min, self.hsv_max)\n', (885, 920), False, 'import cv2\n')]
import turtle import random import time # sets background bg = turtle.Screen() bg.bgcolor("black") # Bottom Line 1 turtle.penup() turtle.goto(-170, -180) turtle.color("white") turtle.pendown() turtle.forward(350) # Mid Line 2 turtle.penup() turtle.goto(-160, -150) turtle.color("white") turtle.pendown() turtle.forward(300) # First Line 3 turtle.penup() turtle.goto(-150, -120) turtle.color("white") turtle.pendown() turtle.forward(250) # Cake turtle.penup() turtle.goto(-100, -100) turtle.color("white") turtle.begin_fill() turtle.pendown() turtle.forward(140) turtle.left(90) turtle.forward(95) turtle.left(90) turtle.forward(140) turtle.left(90) turtle.forward(95) turtle.end_fill() # Candles turtle.penup() turtle.goto(-90, 0) turtle.color("red") turtle.left(180) turtle.pendown() turtle.forward(20) turtle.penup() turtle.goto(-60, 0) turtle.color("white") turtle.pendown() turtle.forward(20) turtle.penup() turtle.goto(-30, 0) turtle.color("yellow") turtle.pendown() turtle.forward(20) turtle.penup() turtle.goto(0, 0) turtle.color("green") turtle.pendown() turtle.forward(20) turtle.penup() turtle.goto(30, 0) turtle.color("purple") turtle.pendown() turtle.forward(20) # Decoration colors = ["red", "orange", "black", "green", "blue", "purple", "black"] turtle.penup() turtle.goto(-40, -50) turtle.pendown() for each_color in colors: angle = 360 / len(colors) turtle.color(each_color) turtle.circle(10) turtle.right(angle) turtle.forward(10) time.sleep(2) turtle.clear() turtle.bgpic("<your image name>.gif") time.sleep(3) turtle.clear() bg.bgcolor("black") # Happy Birthday message turtle.clear() turtle.penup() turtle.goto(-150, 50) turtle.color("red") turtle.pendown() turtle.write("Happy Birthday <birthday boy/girl name>!!", move=False, align="center", font=("Arial", 40, "normal")) time.sleep(5) turtle.clear() turtle.write("May God bless You!!", move=False, align="center", font=("Arial", 40, "normal")) time.sleep(5) turtle.color("black")
[ "turtle.begin_fill", "turtle.pendown", "turtle.penup", "turtle.circle", "turtle.color", "time.sleep", "turtle.forward", "turtle.bgpic", "turtle.right", "turtle.end_fill", "turtle.goto", "turtle.write", "turtle.left", "turtle.clear", "turtle.Screen" ]
[((64, 79), 'turtle.Screen', 'turtle.Screen', ([], {}), '()\n', (77, 79), False, 'import turtle\n'), ((116, 130), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (128, 130), False, 'import turtle\n'), ((131, 154), 'turtle.goto', 'turtle.goto', (['(-170)', '(-180)'], {}), '(-170, -180)\n', (142, 154), False, 'import turtle\n'), ((155, 176), 'turtle.color', 'turtle.color', (['"""white"""'], {}), "('white')\n", (167, 176), False, 'import turtle\n'), ((177, 193), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (191, 193), False, 'import turtle\n'), ((194, 213), 'turtle.forward', 'turtle.forward', (['(350)'], {}), '(350)\n', (208, 213), False, 'import turtle\n'), ((228, 242), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (240, 242), False, 'import turtle\n'), ((243, 266), 'turtle.goto', 'turtle.goto', (['(-160)', '(-150)'], {}), '(-160, -150)\n', (254, 266), False, 'import turtle\n'), ((267, 288), 'turtle.color', 'turtle.color', (['"""white"""'], {}), "('white')\n", (279, 288), False, 'import turtle\n'), ((289, 305), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (303, 305), False, 'import turtle\n'), ((306, 325), 'turtle.forward', 'turtle.forward', (['(300)'], {}), '(300)\n', (320, 325), False, 'import turtle\n'), ((342, 356), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (354, 356), False, 'import turtle\n'), ((357, 380), 'turtle.goto', 'turtle.goto', (['(-150)', '(-120)'], {}), '(-150, -120)\n', (368, 380), False, 'import turtle\n'), ((381, 402), 'turtle.color', 'turtle.color', (['"""white"""'], {}), "('white')\n", (393, 402), False, 'import turtle\n'), ((403, 419), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (417, 419), False, 'import turtle\n'), ((420, 439), 'turtle.forward', 'turtle.forward', (['(250)'], {}), '(250)\n', (434, 439), False, 'import turtle\n'), ((448, 462), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (460, 462), False, 'import turtle\n'), ((463, 486), 'turtle.goto', 'turtle.goto', (['(-100)', '(-100)'], {}), '(-100, -100)\n', (474, 486), False, 'import turtle\n'), ((487, 508), 'turtle.color', 'turtle.color', (['"""white"""'], {}), "('white')\n", (499, 508), False, 'import turtle\n'), ((509, 528), 'turtle.begin_fill', 'turtle.begin_fill', ([], {}), '()\n', (526, 528), False, 'import turtle\n'), ((529, 545), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (543, 545), False, 'import turtle\n'), ((546, 565), 'turtle.forward', 'turtle.forward', (['(140)'], {}), '(140)\n', (560, 565), False, 'import turtle\n'), ((566, 581), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (577, 581), False, 'import turtle\n'), ((582, 600), 'turtle.forward', 'turtle.forward', (['(95)'], {}), '(95)\n', (596, 600), False, 'import turtle\n'), ((601, 616), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (612, 616), False, 'import turtle\n'), ((617, 636), 'turtle.forward', 'turtle.forward', (['(140)'], {}), '(140)\n', (631, 636), False, 'import turtle\n'), ((637, 652), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (648, 652), False, 'import turtle\n'), ((653, 671), 'turtle.forward', 'turtle.forward', (['(95)'], {}), '(95)\n', (667, 671), False, 'import turtle\n'), ((672, 689), 'turtle.end_fill', 'turtle.end_fill', ([], {}), '()\n', (687, 689), False, 'import turtle\n'), ((701, 715), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (713, 715), False, 'import turtle\n'), ((716, 735), 'turtle.goto', 'turtle.goto', (['(-90)', '(0)'], {}), '(-90, 0)\n', (727, 735), False, 'import turtle\n'), ((736, 755), 'turtle.color', 'turtle.color', (['"""red"""'], {}), "('red')\n", (748, 755), False, 'import turtle\n'), ((756, 772), 'turtle.left', 'turtle.left', (['(180)'], {}), '(180)\n', (767, 772), False, 'import turtle\n'), ((773, 789), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (787, 789), False, 'import turtle\n'), ((790, 808), 'turtle.forward', 'turtle.forward', (['(20)'], {}), '(20)\n', (804, 808), False, 'import turtle\n'), ((810, 824), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (822, 824), False, 'import turtle\n'), ((825, 844), 'turtle.goto', 'turtle.goto', (['(-60)', '(0)'], {}), '(-60, 0)\n', (836, 844), False, 'import turtle\n'), ((845, 866), 'turtle.color', 'turtle.color', (['"""white"""'], {}), "('white')\n", (857, 866), False, 'import turtle\n'), ((867, 883), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (881, 883), False, 'import turtle\n'), ((884, 902), 'turtle.forward', 'turtle.forward', (['(20)'], {}), '(20)\n', (898, 902), False, 'import turtle\n'), ((904, 918), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (916, 918), False, 'import turtle\n'), ((919, 938), 'turtle.goto', 'turtle.goto', (['(-30)', '(0)'], {}), '(-30, 0)\n', (930, 938), False, 'import turtle\n'), ((939, 961), 'turtle.color', 'turtle.color', (['"""yellow"""'], {}), "('yellow')\n", (951, 961), False, 'import turtle\n'), ((962, 978), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (976, 978), False, 'import turtle\n'), ((979, 997), 'turtle.forward', 'turtle.forward', (['(20)'], {}), '(20)\n', (993, 997), False, 'import turtle\n'), ((999, 1013), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (1011, 1013), False, 'import turtle\n'), ((1014, 1031), 'turtle.goto', 'turtle.goto', (['(0)', '(0)'], {}), '(0, 0)\n', (1025, 1031), False, 'import turtle\n'), ((1032, 1053), 'turtle.color', 'turtle.color', (['"""green"""'], {}), "('green')\n", (1044, 1053), False, 'import turtle\n'), ((1054, 1070), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (1068, 1070), False, 'import turtle\n'), ((1071, 1089), 'turtle.forward', 'turtle.forward', (['(20)'], {}), '(20)\n', (1085, 1089), False, 'import turtle\n'), ((1091, 1105), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (1103, 1105), False, 'import turtle\n'), ((1106, 1124), 'turtle.goto', 'turtle.goto', (['(30)', '(0)'], {}), '(30, 0)\n', (1117, 1124), False, 'import turtle\n'), ((1125, 1147), 'turtle.color', 'turtle.color', (['"""purple"""'], {}), "('purple')\n", (1137, 1147), False, 'import turtle\n'), ((1148, 1164), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (1162, 1164), False, 'import turtle\n'), ((1165, 1183), 'turtle.forward', 'turtle.forward', (['(20)'], {}), '(20)\n', (1179, 1183), False, 'import turtle\n'), ((1270, 1284), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (1282, 1284), False, 'import turtle\n'), ((1285, 1306), 'turtle.goto', 'turtle.goto', (['(-40)', '(-50)'], {}), '(-40, -50)\n', (1296, 1306), False, 'import turtle\n'), ((1307, 1323), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (1321, 1323), False, 'import turtle\n'), ((1480, 1493), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (1490, 1493), False, 'import time\n'), ((1494, 1508), 'turtle.clear', 'turtle.clear', ([], {}), '()\n', (1506, 1508), False, 'import turtle\n'), ((1509, 1546), 'turtle.bgpic', 'turtle.bgpic', (['"""<your image name>.gif"""'], {}), "('<your image name>.gif')\n", (1521, 1546), False, 'import turtle\n'), ((1547, 1560), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (1557, 1560), False, 'import time\n'), ((1561, 1575), 'turtle.clear', 'turtle.clear', ([], {}), '()\n', (1573, 1575), False, 'import turtle\n'), ((1623, 1637), 'turtle.clear', 'turtle.clear', ([], {}), '()\n', (1635, 1637), False, 'import turtle\n'), ((1638, 1652), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (1650, 1652), False, 'import turtle\n'), ((1653, 1674), 'turtle.goto', 'turtle.goto', (['(-150)', '(50)'], {}), '(-150, 50)\n', (1664, 1674), False, 'import turtle\n'), ((1675, 1694), 'turtle.color', 'turtle.color', (['"""red"""'], {}), "('red')\n", (1687, 1694), False, 'import turtle\n'), ((1695, 1711), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (1709, 1711), False, 'import turtle\n'), ((1712, 1832), 'turtle.write', 'turtle.write', (['"""Happy Birthday <birthday boy/girl name>!!"""'], {'move': '(False)', 'align': '"""center"""', 'font': "('Arial', 40, 'normal')"}), "('Happy Birthday <birthday boy/girl name>!!', move=False, align\n ='center', font=('Arial', 40, 'normal'))\n", (1724, 1832), False, 'import turtle\n'), ((1828, 1841), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1838, 1841), False, 'import time\n'), ((1842, 1856), 'turtle.clear', 'turtle.clear', ([], {}), '()\n', (1854, 1856), False, 'import turtle\n'), ((1857, 1955), 'turtle.write', 'turtle.write', (['"""May God bless You!!"""'], {'move': '(False)', 'align': '"""center"""', 'font': "('Arial', 40, 'normal')"}), "('May God bless You!!', move=False, align='center', font=(\n 'Arial', 40, 'normal'))\n", (1869, 1955), False, 'import turtle\n'), ((1951, 1964), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1961, 1964), False, 'import time\n'), ((1965, 1986), 'turtle.color', 'turtle.color', (['"""black"""'], {}), "('black')\n", (1977, 1986), False, 'import turtle\n'), ((1385, 1409), 'turtle.color', 'turtle.color', (['each_color'], {}), '(each_color)\n', (1397, 1409), False, 'import turtle\n'), ((1414, 1431), 'turtle.circle', 'turtle.circle', (['(10)'], {}), '(10)\n', (1427, 1431), False, 'import turtle\n'), ((1436, 1455), 'turtle.right', 'turtle.right', (['angle'], {}), '(angle)\n', (1448, 1455), False, 'import turtle\n'), ((1460, 1478), 'turtle.forward', 'turtle.forward', (['(10)'], {}), '(10)\n', (1474, 1478), False, 'import turtle\n')]
import os from collections import OrderedDict from coverage_checker.utils import get_all_path_combinations def test_get_all_path_combinations(): facets = OrderedDict([('a', ['1', '2']), ('b', ['3', '4']), ('c', ['5', '6'])]) all_paths = get_all_path_combinations(facets) expected_result = ['1/3/5', '1/3/6', '1/4/5', '1/4/6', '2/3/5', '2/3/6', '2/4/5', '2/4/6'] assert(all_paths == expected_result)
[ "collections.OrderedDict", "coverage_checker.utils.get_all_path_combinations" ]
[((161, 231), 'collections.OrderedDict', 'OrderedDict', (["[('a', ['1', '2']), ('b', ['3', '4']), ('c', ['5', '6'])]"], {}), "([('a', ['1', '2']), ('b', ['3', '4']), ('c', ['5', '6'])])\n", (172, 231), False, 'from collections import OrderedDict\n'), ((248, 281), 'coverage_checker.utils.get_all_path_combinations', 'get_all_path_combinations', (['facets'], {}), '(facets)\n', (273, 281), False, 'from coverage_checker.utils import get_all_path_combinations\n')]
# -*- coding: utf-8 -*- """ Neural network - nsp """ import numpy as np def nn_forward(Wi, Wo, train_inputs): """ Propagate exaples forward through network calculating all hidden- and output unit outputs. Args: Wi: Matrix with input-to-hidden weights.\n Wo: Matrix with hidden-to-outputs weights.\n train_inputs: Matrix with example inputs as rows. Yields: Vj: Matrix with hidden unit outputs as rows.\n yj: Vector with output unit outputs as rows. """ # Determine the size of the problem examples, inp = train_inputs.shape # Calculate hidden unit outputs for every exaple Vj = np.concatenate((train_inputs, np.ones((examples, 1))), 1) Vj = Vj.dot(Wi.T) Vj = np.tanh(Vj) # Caluculate (linear) output unit outputs for every exaple yj = np.concatenate((Vj, np.ones((examples, 1))), 1) yj = yj.dot(Wo.T) return (Vj, yj)
[ "numpy.ones", "numpy.tanh" ]
[((776, 787), 'numpy.tanh', 'np.tanh', (['Vj'], {}), '(Vj)\n', (783, 787), True, 'import numpy as np\n'), ((715, 737), 'numpy.ones', 'np.ones', (['(examples, 1)'], {}), '((examples, 1))\n', (722, 737), True, 'import numpy as np\n'), ((884, 906), 'numpy.ones', 'np.ones', (['(examples, 1)'], {}), '((examples, 1))\n', (891, 906), True, 'import numpy as np\n')]
import argparse import json import multiprocessing as mp import os import random import time from typing import Dict, List, Optional, Union import lmdb import msgpack import tokenizers from whitespace_repair.model import tokenizer as toklib from whitespace_repair.utils import common, data, io from whitespace_repair.utils.config import DataPreprocessingConfig os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, required=True, help="Path to config file") return parser.parse_args() logger = common.get_logger("DATA_PREPROCESSING") def process_line(tokenizer: tokenizers.Tokenizer, target_tokenizer: tokenizers.Tokenizer, line: str, pretokenize: bool, ensure_equal_length: bool, preprocessing_fn: Optional[data.PREPROCESSING_FN] = None) -> Optional[Dict[str, List[int]]]: json_obj: Dict[str, str] = json.loads(line) if preprocessing_fn is not None: preprocessed_json_obj = preprocessing_fn(json_obj) assert isinstance(preprocessed_json_obj, dict) json_obj.update(preprocessed_json_obj) sequence: Union[str, List[str]] = json_obj["sequence"] if pretokenize: sequence = tokenizer.pre_tokenizer.pre_tokenize_str(sequence) sequence = [item[0] for item in sequence] enc = tokenizer.encode(sequence, is_pretokenized=pretokenize, pair=None) enc_dict = {"input_ids": enc.ids} if "labels" in json_obj: enc_dict["labels"] = json_obj["labels"] if ensure_equal_length and len(enc_dict["labels"]) != len(enc_dict["input_ids"]): lengths = {k: len(v) for k, v in enc_dict.items()} logger.info(f"Skipping sample because lengths of input ids and labels are not equal: {lengths}\n" f"{sequence} --> {enc_dict['labels']}") return None if "target_sequence" in json_obj: target_sequence: Union[str, List[str]] = json_obj["target_sequence"] if pretokenize: target_sequence = target_tokenizer.pre_tokenizer.pre_tokenize_str(target_sequence) target_sequence = [item[0] for item in target_sequence] enc = target_tokenizer.encode(target_sequence, is_pretokenized=pretokenize, pair=None) enc_dict["target_input_ids"] = enc.ids if ensure_equal_length and len(enc_dict["target_input_ids"]) != len(enc_dict["input_ids"]): lengths = {k: len(v) for k, v in enc_dict.items()} logger.info(f"Skipping sample because lengths of input ids and target ids are not equal: {lengths}\n" f"{sequence} --> {target_sequence}") return None return enc_dict def process_files(queue: mp.Queue, files: List[str], tokenizer_path: tokenizers.Tokenizer, target_tokenizer_path: tokenizers.Tokenizer, pretokenize: bool, ensure_equal_length: bool, preprocessing_fn: data.PREPROCESSING_FN, max_sequence_length: int, cut_overflowing: bool) -> None: tokenizer = toklib.load_tokenizer(tokenizer_path) target_tokenizer = toklib.load_tokenizer(target_tokenizer_path) for filepath in files: samples = [] with open(filepath, "r", encoding="utf8") as f: for line in f: enc_dict = process_line(tokenizer, target_tokenizer, line, pretokenize=pretokenize, ensure_equal_length=ensure_equal_length, preprocessing_fn=preprocessing_fn) if enc_dict is None: continue enc_length = max( len(enc_dict["input_ids"]), len(enc_dict.get("target_input_ids", [])), len(enc_dict.get("labels", [])) ) if enc_length > max_sequence_length: # if a sequence overflows we still can cut it instead of skipping it # if the corresponding config is set # should only be used when cutting off all sequences at some specific position is a sensible thing # to do if cut_overflowing: enc_dict = {k: v[:max_sequence_length] for k, v in enc_dict.items()} enc_length = max_sequence_length else: continue samples.append((enc_dict, enc_length)) queue.put(samples) # signal to main process that this process is finished queue.put(None) def write_lmdb(output_dir: str, lmdb_name: str, files: List[str], tokenizer_path: str, target_tokenizer_path: str, pretokenize: bool, ensure_equal_length: bool, preprocessing_fn: data.PREPROCESSING_FN, max_sequence_length: int, cut_overflowing: bool, max_sequences: int) -> None: env = lmdb.open(os.path.join(output_dir, lmdb_name), subdir=False, map_size=int(10e11), # approx. 100 GB readonly=False, meminit=False, map_async=True, lock=False) start = time.monotonic() # overwrite / drop existing database db_handle = env.open_db() with env.begin(write=True) as txn: txn.drop(db_handle) # give each process a subset of the files queue: mp.Queue = mp.Queue() processes = [] num_finished = 0 num_processes = int(os.environ.get("NUM_PROCESSES", min(len(os.sched_getaffinity(0)), 8, len(files)))) batch_size = len(files) // num_processes for i in range(num_processes): lower_idx = i * batch_size # last process gets all remaining files which could be more than batch size if i == (num_processes - 1): file_batch = files[lower_idx:] else: file_batch = files[lower_idx:lower_idx + batch_size] p = mp.Process(target=process_files, args=(queue, file_batch, tokenizer_path, target_tokenizer_path, pretokenize, ensure_equal_length, preprocessing_fn, max_sequence_length, cut_overflowing)) p.start() processes.append(p) logger.info(f"Started worker process {p.pid} on {len(file_batch)} files") lengths_keys = [] lengths = [] keys_keys = [] keys = [] num_sequences = 0 txn = env.begin(write=True) txn.put(b"__files__", msgpack.dumps(files)) while True: if num_sequences >= max_sequences: logger.info(f"Reached maximum sequences {max_sequences}") break if num_finished >= num_processes: logger.info(f"All processes are finished, processed {num_sequences} sequences") break samples = queue.get() if samples is None: num_finished += 1 continue for enc_dict, enc_length in samples: key = f"{num_sequences}".encode("ascii") txn.put(key, msgpack.dumps(enc_dict)) keys.append(key) lengths.append(enc_length) num_sequences += 1 # commit every 1000000 samples if preprocessing is aborted if num_sequences % 1000000 == 0: _lengths_key = f"__lengths_upto_{num_sequences}__".encode("ascii") _keys_key = f"__keys_upto_{num_sequences}__".encode("ascii") txn.put(_keys_key, msgpack.dumps(keys)) txn.put(_lengths_key, msgpack.dumps(lengths)) keys_keys.append(_keys_key) lengths_keys.append(_lengths_key) txn.put(b"__len__", msgpack.dumps(num_sequences)) txn.put(b"__keys__", msgpack.dumps(keys_keys)) txn.put(b"__lengths__", msgpack.dumps(lengths_keys)) txn.commit() txn = env.begin(write=True) lengths = [] keys = [] # log progress 100 times if num_sequences % max(max_sequences // 100, 1) == 0: end = time.monotonic() logger.info( f"[{num_sequences}/{max_sequences}] Processed {num_sequences * 100 / max_sequences:.2f}% of" f" all sequences, {common.eta_minutes((end - start) / 60, num_sequences, max_sequences)}") if num_sequences >= max_sequences: break for p in processes: logger.info(f"Stopping process {p.pid}") p.terminate() p.join() logger.info(f"Successfully stopped process {p.pid}") if len(keys) > 0 and len(lengths) > 0: _lengths_key = f"__lengths_upto_{num_sequences}__".encode("ascii") _keys_key = f"__keys_upto_{num_sequences}__".encode("ascii") txn.put(_keys_key, msgpack.dumps(keys)) txn.put(_lengths_key, msgpack.dumps(lengths)) keys_keys.append(_keys_key) lengths_keys.append(_lengths_key) txn.put(b"__len__", msgpack.dumps(num_sequences)) txn.put(b"__keys__", msgpack.dumps(keys_keys)) txn.put(b"__lengths__", msgpack.dumps(lengths_keys)) txn.commit() if __name__ == "__main__": args = parse_args() # disable parallelism for tokenizers explicitly os.environ["TOKENIZERS_PARALLELISM"] = "false" CONFIG = DataPreprocessingConfig.from_yaml(args.config) assert isinstance(CONFIG, DataPreprocessingConfig) logger.info(f"Using data preprocessing config:\n" f"{CONFIG}") os.makedirs(CONFIG.output_dir, exist_ok=True) # save copy of config file to output directory with open(os.path.join(CONFIG.output_dir, "config.yaml"), "w", encoding="utf8") as f: f.write(str(CONFIG)) common.add_file_log(logger, os.path.join(CONFIG.output_dir, "logs.txt")) tokenizer = toklib.load_tokenizer(CONFIG.tokenizer) tokenizer_path = CONFIG.tokenizer if CONFIG.target_tokenizer is None: logger.info(f"No target tokenizer specified, reusing the tokenizer '{CONFIG.tokenizer}' " f"for the target sequences if necessary") target_tokenizer = tokenizer target_tokenizer_path = tokenizer_path else: target_tokenizer = toklib.load_tokenizer(CONFIG.target_tokenizer) target_tokenizer_path = CONFIG.target_tokenizer test_sentence = "This is a sentence to test the preprocessing functions before the data preprocessing starts." logger.info(f"Testing tokenizer: {tokenizer.encode(test_sentence, pair=None).tokens}\n" f"Testing target tokenizer: {target_tokenizer.encode(test_sentence, pair=None).tokens}") if CONFIG.pretokenize: assert tokenizer.pre_tokenizer is not None and target_tokenizer.pre_tokenizer is not None, \ "Expected that both the tokenizer and target tokenizer have pre tokenizers if pretokenize is set to true," \ " but got None." logger.info("Pretokenize is set to True.\n" f"Testing pre tokenizer: {tokenizer.pre_tokenizer.pre_tokenize_str(test_sentence)}\n" f"Testing target pre tokenizer: {target_tokenizer.pre_tokenizer.pre_tokenize_str(test_sentence)}") if CONFIG.preprocessing is None: preprocessing_fn = None else: test_item = {"sequence": test_sentence, "target_sequence": test_sentence} corruption_fns = [] for cfg in CONFIG.preprocessing: preprocessing_fn = data.get_preprocessing_fn(cfg.type, **cfg.arguments) logger.info(f"Testing '{cfg.type}' preprocessing function: {test_item} \u2192 " f"{preprocessing_fn(test_item.copy())}") corruption_fns.append(preprocessing_fn) preprocessing_fn = data.chain_preprocessing_fns(corruption_fns) logger.info(f"Testing chained preprocessing function: {test_item} \u2192 {preprocessing_fn(test_item.copy())}") files = [file for g in CONFIG.data for file in io.glob_safe(g)] if CONFIG.seed is not None: rand = random.Random(CONFIG.seed) rand.shuffle(files) max_sequences = sum(io.line_count(file) for file in files) if CONFIG.max_sequences is not None: max_sequences = min(max_sequences, CONFIG.max_sequences) max_sequence_length = CONFIG.max_sequence_length if CONFIG.max_sequence_length is not None else float("inf") logger.info(f"Number of sequences limited to {max_sequences:,} " f"with a maximum sequence length of {max_sequence_length}") start = time.monotonic() write_lmdb(output_dir=CONFIG.output_dir, lmdb_name=CONFIG.lmdb_name, files=files, tokenizer_path=tokenizer_path, target_tokenizer_path=target_tokenizer_path, pretokenize=CONFIG.pretokenize, ensure_equal_length=CONFIG.ensure_equal_length, preprocessing_fn=preprocessing_fn, max_sequence_length=max_sequence_length, cut_overflowing=CONFIG.cut_overflowing, max_sequences=max_sequences) end = time.monotonic() logger.info(f"Finished preprocessing in {(end - start) / 60:.2f} minutes")
[ "json.loads", "whitespace_repair.utils.data.get_preprocessing_fn", "argparse.ArgumentParser", "os.makedirs", "whitespace_repair.utils.data.chain_preprocessing_fns", "whitespace_repair.model.tokenizer.load_tokenizer", "time.monotonic", "multiprocessing.Process", "os.path.join", "random.Random", "whitespace_repair.utils.io.glob_safe", "whitespace_repair.utils.common.get_logger", "whitespace_repair.utils.io.line_count", "os.sched_getaffinity", "msgpack.dumps", "multiprocessing.Queue", "whitespace_repair.utils.common.eta_minutes", "whitespace_repair.utils.config.DataPreprocessingConfig.from_yaml" ]
[((649, 688), 'whitespace_repair.utils.common.get_logger', 'common.get_logger', (['"""DATA_PREPROCESSING"""'], {}), "('DATA_PREPROCESSING')\n", (666, 688), False, 'from whitespace_repair.utils import common, data, io\n'), ((462, 487), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (485, 487), False, 'import argparse\n'), ((1047, 1063), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (1057, 1063), False, 'import json\n'), ((3281, 3318), 'whitespace_repair.model.tokenizer.load_tokenizer', 'toklib.load_tokenizer', (['tokenizer_path'], {}), '(tokenizer_path)\n', (3302, 3318), True, 'from whitespace_repair.model import tokenizer as toklib\n'), ((3342, 3386), 'whitespace_repair.model.tokenizer.load_tokenizer', 'toklib.load_tokenizer', (['target_tokenizer_path'], {}), '(target_tokenizer_path)\n', (3363, 3386), True, 'from whitespace_repair.model import tokenizer as toklib\n'), ((5664, 5680), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (5678, 5680), False, 'import time\n'), ((5888, 5898), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (5896, 5898), True, 'import multiprocessing as mp\n'), ((10020, 10066), 'whitespace_repair.utils.config.DataPreprocessingConfig.from_yaml', 'DataPreprocessingConfig.from_yaml', (['args.config'], {}), '(args.config)\n', (10053, 10066), False, 'from whitespace_repair.utils.config import DataPreprocessingConfig\n'), ((10211, 10256), 'os.makedirs', 'os.makedirs', (['CONFIG.output_dir'], {'exist_ok': '(True)'}), '(CONFIG.output_dir, exist_ok=True)\n', (10222, 10256), False, 'import os\n'), ((10523, 10562), 'whitespace_repair.model.tokenizer.load_tokenizer', 'toklib.load_tokenizer', (['CONFIG.tokenizer'], {}), '(CONFIG.tokenizer)\n', (10544, 10562), True, 'from whitespace_repair.model import tokenizer as toklib\n'), ((13250, 13266), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (13264, 13266), False, 'import time\n'), ((13814, 13830), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (13828, 13830), False, 'import time\n'), ((5383, 5418), 'os.path.join', 'os.path.join', (['output_dir', 'lmdb_name'], {}), '(output_dir, lmdb_name)\n', (5395, 5418), False, 'import os\n'), ((6416, 6611), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'process_files', 'args': '(queue, file_batch, tokenizer_path, target_tokenizer_path, pretokenize,\n ensure_equal_length, preprocessing_fn, max_sequence_length, cut_overflowing\n )'}), '(target=process_files, args=(queue, file_batch, tokenizer_path,\n target_tokenizer_path, pretokenize, ensure_equal_length,\n preprocessing_fn, max_sequence_length, cut_overflowing))\n', (6426, 6611), True, 'import multiprocessing as mp\n'), ((7142, 7162), 'msgpack.dumps', 'msgpack.dumps', (['files'], {}), '(files)\n', (7155, 7162), False, 'import msgpack\n'), ((10461, 10504), 'os.path.join', 'os.path.join', (['CONFIG.output_dir', '"""logs.txt"""'], {}), "(CONFIG.output_dir, 'logs.txt')\n", (10473, 10504), False, 'import os\n'), ((10923, 10969), 'whitespace_repair.model.tokenizer.load_tokenizer', 'toklib.load_tokenizer', (['CONFIG.target_tokenizer'], {}), '(CONFIG.target_tokenizer)\n', (10944, 10969), True, 'from whitespace_repair.model import tokenizer as toklib\n'), ((12446, 12490), 'whitespace_repair.utils.data.chain_preprocessing_fns', 'data.chain_preprocessing_fns', (['corruption_fns'], {}), '(corruption_fns)\n', (12474, 12490), False, 'from whitespace_repair.utils import common, data, io\n'), ((12753, 12779), 'random.Random', 'random.Random', (['CONFIG.seed'], {}), '(CONFIG.seed)\n', (12766, 12779), False, 'import random\n'), ((9498, 9517), 'msgpack.dumps', 'msgpack.dumps', (['keys'], {}), '(keys)\n', (9511, 9517), False, 'import msgpack\n'), ((9549, 9571), 'msgpack.dumps', 'msgpack.dumps', (['lengths'], {}), '(lengths)\n', (9562, 9571), False, 'import msgpack\n'), ((9681, 9709), 'msgpack.dumps', 'msgpack.dumps', (['num_sequences'], {}), '(num_sequences)\n', (9694, 9709), False, 'import msgpack\n'), ((9740, 9764), 'msgpack.dumps', 'msgpack.dumps', (['keys_keys'], {}), '(keys_keys)\n', (9753, 9764), False, 'import msgpack\n'), ((9798, 9825), 'msgpack.dumps', 'msgpack.dumps', (['lengths_keys'], {}), '(lengths_keys)\n', (9811, 9825), False, 'import msgpack\n'), ((10323, 10369), 'os.path.join', 'os.path.join', (['CONFIG.output_dir', '"""config.yaml"""'], {}), "(CONFIG.output_dir, 'config.yaml')\n", (10335, 10369), False, 'import os\n'), ((12157, 12209), 'whitespace_repair.utils.data.get_preprocessing_fn', 'data.get_preprocessing_fn', (['cfg.type'], {}), '(cfg.type, **cfg.arguments)\n', (12182, 12209), False, 'from whitespace_repair.utils import common, data, io\n'), ((12689, 12704), 'whitespace_repair.utils.io.glob_safe', 'io.glob_safe', (['g'], {}), '(g)\n', (12701, 12704), False, 'from whitespace_repair.utils import common, data, io\n'), ((12833, 12852), 'whitespace_repair.utils.io.line_count', 'io.line_count', (['file'], {}), '(file)\n', (12846, 12852), False, 'from whitespace_repair.utils import common, data, io\n'), ((7698, 7721), 'msgpack.dumps', 'msgpack.dumps', (['enc_dict'], {}), '(enc_dict)\n', (7711, 7721), False, 'import msgpack\n'), ((8768, 8784), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (8782, 8784), False, 'import time\n'), ((6003, 6026), 'os.sched_getaffinity', 'os.sched_getaffinity', (['(0)'], {}), '(0)\n', (6023, 6026), False, 'import os\n'), ((8135, 8154), 'msgpack.dumps', 'msgpack.dumps', (['keys'], {}), '(keys)\n', (8148, 8154), False, 'import msgpack\n'), ((8194, 8216), 'msgpack.dumps', 'msgpack.dumps', (['lengths'], {}), '(lengths)\n', (8207, 8216), False, 'import msgpack\n'), ((8350, 8378), 'msgpack.dumps', 'msgpack.dumps', (['num_sequences'], {}), '(num_sequences)\n', (8363, 8378), False, 'import msgpack\n'), ((8417, 8441), 'msgpack.dumps', 'msgpack.dumps', (['keys_keys'], {}), '(keys_keys)\n', (8430, 8441), False, 'import msgpack\n'), ((8483, 8510), 'msgpack.dumps', 'msgpack.dumps', (['lengths_keys'], {}), '(lengths_keys)\n', (8496, 8510), False, 'import msgpack\n'), ((8966, 9034), 'whitespace_repair.utils.common.eta_minutes', 'common.eta_minutes', (['((end - start) / 60)', 'num_sequences', 'max_sequences'], {}), '((end - start) / 60, num_sequences, max_sequences)\n', (8984, 9034), False, 'from whitespace_repair.utils import common, data, io\n')]