code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# def get_price(post_info, attributes): # if post_info.get_info('attr_price') is not None: # return normalize_price(post_info.get_info('attr_price')) # else: # price_min = 0 # price_max = 0 # price_m2 = 0 # area_tmp = 0 # price_str = "" # for tmp in attributes['attr_price']: # price = normalize_price(tmp) # if price_min == 0 and price[0]: # price_str = tmp # price_min = price[0] # if price_max == 0 and price[1]: # price_max = price[1] # if price_m2 == 0 and price[2]: # price_m2 = price[2] # if area_tmp == 0 and price[4]: # area_tmp = price[4] # # if reach here that means not any one extracted by NLP API is valueable # return price_min, price_max, price_m2, area_tmp, price_str import requests from get_addr import add_street_num_to_addr import re url = "http://35.240.240.251/api/v1/real-estate-extraction" re_addr = "Địa chỉ: (\S+ )*" def get_from_api(post_content): request = requests.Session() headers = {} addr = re.search(re_addr,post_content) data_list = [addr.group()] response = request.post( url=url, headers=headers, json=data_list ) addr = re.search(re_addr,post_content) print("\n===text:{}===\n".format(post_content)) print("\n===matches:{}===\n".format(addr.group())) # there are 2 attributes in this list are list rather than single value # the reason is for each attribute NPP API may recognise more than just single value, but we dont know which recognised values # are correct. So we must check every single one to find the one we need data_attrs = { "attr_addr_number": "", "attr_addr_street": "", "attr_addr_district": "", "attr_addr_ward": "", "attr_addr_city": "", # "attr_position": "", # "attr_surrounding": "", # "attr_surrounding_name": "", # "attr_surrounding_characteristics": "", # "attr_transaction_type": "", # "attr_realestate_type": "", # "attr_potential": "", # "attr_area": [], # "attr_price": [], # "attr_price_m2": "", # "attr_interior_floor": "", # "attr_interior_room": "", # "attr_orientation": "", # "attr_project": "", # "attr_legal": "", # "normal": "", # "phone": "", } json_response = response.json() print("\n\n\n === json_response:{} === \n\n\n".format(json_response)) for content, i in zip( json_response[0]["tags"], range(len( json_response[0]["tags"] )) ): if content["type"] == "addr_street" \ and data_attrs["attr_addr_number"] == "": if json_response[0]["tags"][i-1]["type"] == "normal": data_attrs["attr_addr_number"] = \ add_street_num_to_addr( json_response[0]["tags"][i-1]["content"] ) data_attrs["attr_addr_street"] = content["content"] # data_attrs["attr_addr_street"] = '' elif content['type'] == "addr_ward" and \ data_attrs["attr_addr_ward"]=="": data_attrs["attr_addr_ward"] = content["content"] elif content['type'] == "addr_district" and \ data_attrs["attr_addr_district"]=="": data_attrs["attr_addr_district"] = content["content"] elif content['type'] == "addr_city" and \ data_attrs["attr_addr_city"]=="": data_attrs["attr_addr_city"] = content["content"] return data_attrs get_from_api( """ 🌈 SỐNG TẠI BIỆT THỰ NỔI VINHOMES MARINA: LÀM GÌ CŨNG DỄ, ĐẾN ĐÂU CŨNG GẦN Bên cạnh hệ thống tiện ích nội khu đẳng cấp như bể bơi hướng hồ, sân tập yoga, đường chạy bộ, sân tennis, sân cầu lông, sân tập bóng rổ, khu BBQ, chòi vọng cảnh... Biệt thự nổi Vinhomes Marina còn kết nối thuận tiện với các công trình khác, đáp ứng mọi nhu cầu của cư dân như Bệnh viện Đa khoa Quốc tế Vinmec, Trường học Liên cấp Vinschool, Trung tâm thương mại Aeon Mall. Không những vậy, nơi đây còn thuộc trục Đại lộ Đông Tây, Đại lộ Võ Nguyên Giáp nên kết nối thuận tiện vào khu vực trung tâm Hải Phòng như Bến xe Cầu Rào, Sân vận động Lạch Tray, Nhà hát lớn, Sân bay Cát Bi, Ủy ban Nhân dân Thành phố, Cảng Hải Phòng… Nhờ đó, cư dân vừa được trải nghiệm không gian riêng an yên nhưng vẫn thuận tiện kết nối, di chuyển đến mọi nơi. Sống tại Biệt thự nổi Vinhomes Marina: Làm gì cũng dễ, đến đâu cũng gần! 🌈 Đặc biệt, cơ hội nhân đôi đẳng cấp đang chờ đợi các chủ nhân của Biệt thự nổi Vinhomes Marina. Vừa trải nghiệm cuộc sống thượng lưu đẳng cấp, vừa được nhận ngay những ưu đãi hấp dẫn: ✨ Quà tặng VinID Gift Card trị giá lên tới 150 triệu đồng/căn (áp dụng có điều kiện với từng loại căn) ✨ Tặng gói nội thất trị giá 300 triệu đồng/căn đối với các căn biệt thự song lập thuộc NT8,9,10,11 & SH.19 - SH.29 ✨ Hỗ trợ vay vốn đến 70% giá bán ✨ Hỗ trợ lãi suất 18 tháng hoặc nhận chiết khấu không vay lên tới 4% ✨ Chính sách thanh toán sớm từ Chủ đầu tư đối với khách hàng thanh toán trước hạn ✨ Hưởng mức lãi suất lên tới 8%/năm trên khoản tiền và số ngày thanh toán sớm * Các chương trình đi kèm điều kiện cụ thể #VinhomesMarina #CauRao2 #HaiPhong --- <NAME> - Dấu ấn Địa Trung Hải trên đất Cảng phồn vinh! Tìm hiểu thêm Dự án tại: https://marina.vinhomes.vn/ Hotline: 1800 1179 Email: <EMAIL> Địa chỉ: C<NAME> 2, P. <NAME>, Q. <NAME>, TP. <NAME>. *Thông tin, hình ảnh, các tiện ích trên nội dung này chỉ mang tính chất minh hoạ tương đối và có thể được điều chỉnh theo quyết định của Chủ đầu tư tại từng thời điểm đảm bảo phù hợp quy hoạch và thực tế thi công dự án. Các thông tin, cam kết chính thức sẽ được quy định cụ thể tại Hợp đồng mua bán. Việc quản lý, vận hành và kinh doanh của khu đô thị sẽ theo quy định của Ban quản lý. """ )
[ "requests.Session", "get_addr.add_street_num_to_addr", "re.search" ]
[((1117, 1135), 'requests.Session', 'requests.Session', ([], {}), '()\n', (1133, 1135), False, 'import requests\n'), ((1169, 1201), 're.search', 're.search', (['re_addr', 'post_content'], {}), '(re_addr, post_content)\n', (1178, 1201), False, 'import re\n'), ((1364, 1396), 're.search', 're.search', (['re_addr', 'post_content'], {}), '(re_addr, post_content)\n', (1373, 1396), False, 'import re\n'), ((3508, 3574), 'get_addr.add_street_num_to_addr', 'add_street_num_to_addr', (["json_response[0]['tags'][i - 1]['content']"], {}), "(json_response[0]['tags'][i - 1]['content'])\n", (3530, 3574), False, 'from get_addr import add_street_num_to_addr\n')]
from distutils.core import setup, Extension import numpy.distutils.misc_util import os import platform system_name= platform.system() desc = open("README.rst").read() extension_version = "0.1.0" extension_url = "https://github.com/bckelly80/carma_pack" BOOST_DIR = os.environ["BOOST_DIR"] ARMADILLO_DIR = os.environ["ARMADILLO_DIR"] NUMPY_DIR = os.environ["NUMPY_DIR"] include_dirs = [NUMPY_DIR + "/include", BOOST_DIR + "/include", ARMADILLO_DIR + "/include", "/usr/include/", "include"] # needed to add "include" in order to build for include_dir in numpy.distutils.misc_util.get_numpy_include_dirs(): include_dirs.append(include_dir) # on my systems (Linux and MAC) ARMADILLO_DIR includes libraries, no need for extra "lib" library_dirs = [NUMPY_DIR + "/lib", BOOST_DIR + "/lib", ARMADILLO_DIR + "/lib", ARMADILLO_DIR, "/usr/lib/"] if system_name != 'Darwin': # /usr/lib64 does not exist under Mac OS X library_dirs.append("/usr/lib64") compiler_args = ["-O3"] if system_name == 'Darwin': compiler_args.append("-std=c++11") # need to build against libc++ for Mac OS X compiler_args.append("-stdlib=libc++") else: compiler_args.append("-std=c++0x") if os.path.exists(os.path.join(BOOST_DIR, "lib", "libboost_filesystem-mt.dylib")): boost_suffix = "-mt" else: boost_suffix = "" def configuration(parent_package='', top_path=None): # http://docs.scipy.org/doc/numpy/reference/distutils.html#numpy.distutils.misc_util.Configuration from numpy.distutils.misc_util import Configuration config = Configuration("carmcmc", parent_package, top_path) config.version = extension_version config.add_data_dir((".", "carmcmc")) config.add_library( "carmcmc", sources=["carmcmc.cpp", "carpack.cpp", "kfilter.cpp", "proposals.cpp", "samplers.cpp", "random.cpp", "steps.cpp"], include_dirs=include_dirs, library_dirs=library_dirs, libraries=["boost_python%s"%boost_suffix, "boost_filesystem%s"%boost_suffix, "boost_system%s"%boost_suffix, "armadillo"], extra_compiler_args=compiler_args ) config.add_extension( "_carmcmc", sources=["boost_python_wrapper.cpp", "carmcmc.cpp"], include_dirs=include_dirs, library_dirs=library_dirs, libraries=["boost_python%s"%boost_suffix, "boost_filesystem%s"%boost_suffix, "boost_system%s"%boost_suffix, "armadillo", "carmcmc"], extra_compile_args=compiler_args ) config.add_data_dir(("../../../../include", "include")) config.add_data_dir(("../../../../examples", "examples")) config.test_suite = "cpp_tests/testCarmcmc" return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
[ "platform.system", "os.path.join", "numpy.distutils.misc_util.Configuration" ]
[((117, 134), 'platform.system', 'platform.system', ([], {}), '()\n', (132, 134), False, 'import platform\n'), ((1217, 1279), 'os.path.join', 'os.path.join', (['BOOST_DIR', '"""lib"""', '"""libboost_filesystem-mt.dylib"""'], {}), "(BOOST_DIR, 'lib', 'libboost_filesystem-mt.dylib')\n", (1229, 1279), False, 'import os\n'), ((1563, 1613), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['"""carmcmc"""', 'parent_package', 'top_path'], {}), "('carmcmc', parent_package, top_path)\n", (1576, 1613), False, 'from numpy.distutils.misc_util import Configuration\n')]
import paho.mqtt.client as mqtt import time import json import requests # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("rt_message") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): print("-"*10) # print(msg.topic+" "+str(msg.payload)) try: msg_dict = json.loads(msg.payload.decode()) # print(msg_dict) # for k, v in msg_dict.items(): # print(k, v) status = msg_dict.get("status") persons = msg_dict.get("persons") # person_id = msg_dict.get("person_id") # group_id = msg_dict.get("persons")[0].get("group_id") # print(status, person_id, group_id) if status == "known person": for person in persons: person_id = person.get("id") group_id = person.get("group_id") url = "http://workaihost.tiegushi.com/restapi/get_name_by_faceid?group_id={}&face_id={}".format(group_id, person_id) response = requests.get(url) name = json.loads(response.text).get("name") person["name"] = name person["status"] = "known person" from main import setValue sign = setValue(person_id) if sign: print("*****", name, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(person["current_ts"]/1000))) print(msg.topic+" "+json.dumps(person)) else: print(msg.topic+" "+json.dumps(msg_dict)) except Exception as e: print(e) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message if __name__ == "__main__": # ip修改为盒子的地址 client.connect("192.168.31.199", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever()
[ "time.localtime", "json.loads", "paho.mqtt.client.Client", "json.dumps", "requests.get", "main.setValue" ]
[((1885, 1898), 'paho.mqtt.client.Client', 'mqtt.Client', ([], {}), '()\n', (1896, 1898), True, 'import paho.mqtt.client as mqtt\n'), ((1305, 1322), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1317, 1322), False, 'import requests\n'), ((1538, 1557), 'main.setValue', 'setValue', (['person_id'], {}), '(person_id)\n', (1546, 1557), False, 'from main import setValue\n'), ((1809, 1829), 'json.dumps', 'json.dumps', (['msg_dict'], {}), '(msg_dict)\n', (1819, 1829), False, 'import json\n'), ((1346, 1371), 'json.loads', 'json.loads', (['response.text'], {}), '(response.text)\n', (1356, 1371), False, 'import json\n'), ((1659, 1702), 'time.localtime', 'time.localtime', (["(person['current_ts'] / 1000)"], {}), "(person['current_ts'] / 1000)\n", (1673, 1702), False, 'import time\n'), ((1743, 1761), 'json.dumps', 'json.dumps', (['person'], {}), '(person)\n', (1753, 1761), False, 'import json\n')]
import srt import random from datetime import timedelta, datetime from typing import List,Union from srt import Subtitle from .context import Context class Timestamp: def __init__(self, source_id: str, subtitle: srt.Subtitle, time: timedelta = None): self.source_id = source_id self.subtitle = subtitle self.time = time def get_text(self): return self.subtitle.content def get_time_seconds(self): # Gets the time of the timestamp in seconds. If the time is not set, it picks a random time from the subtitle. if self.time is None: return random.uniform( self.subtitle.start.total_seconds(), self.subtitle.end.total_seconds(), ) else: return self.time.total_seconds() def pick_timestamp(context: Context) -> Timestamp: source_id = random.choice(list(context.config['sources'].keys())) context.logger.debug(f"Picked source {source_id}, reading SRT") with open(context.config['sources'][source_id]['srt']) as f: srt_data = f.read() subs = list(srt.parse(srt_data)) context.logger.debug("SRT parsed successfully") subtitle = random.choice(subs) return Timestamp(source_id, subtitle) def get_timestamp_by_params(context: Context, timestamp: timedelta = None, id: str = None, tag: str = None): if id is not None: source_key = context.get_source_key_by_id(id) context.logger.debug(f"Picked source {source_key} by ID, reading SRT") elif tag is not None: source_keys = context.get_sources_by_tag(tag) if (len(source_keys) > 0): source_key = random.choice(source_keys) else: source_key = None context.logger.debug(f"Picked source {source_key} by TAG, reading SRT") else: source_key = random.choice(list(context.config['sources'].keys())) context.logger.debug(f"Picked source {source_key} at RANDOM, reading SRT") if source_key is None: return None with open(context.config['sources'][source_key]['srt']) as f: srt_data = f.read() subs = list(srt.parse(srt_data)) context.logger.debug("SRT parsed successfully") if timestamp is not None: sub = get_subtitle_by_timedelta(subs, timestamp) else: sub = random.choice(subs) if sub is not None: return Timestamp(source_key, sub, timestamp) else: return None def get_subtitle_by_timedelta(subs: List[Subtitle], timestamp: timedelta) -> Union[Subtitle, None]: for sub in subs: if sub.start <= timestamp <= sub.end: return sub return None
[ "random.choice", "srt.parse" ]
[((1197, 1216), 'random.choice', 'random.choice', (['subs'], {}), '(subs)\n', (1210, 1216), False, 'import random\n'), ((1109, 1128), 'srt.parse', 'srt.parse', (['srt_data'], {}), '(srt_data)\n', (1118, 1128), False, 'import srt\n'), ((2144, 2163), 'srt.parse', 'srt.parse', (['srt_data'], {}), '(srt_data)\n', (2153, 2163), False, 'import srt\n'), ((2328, 2347), 'random.choice', 'random.choice', (['subs'], {}), '(subs)\n', (2341, 2347), False, 'import random\n'), ((1666, 1692), 'random.choice', 'random.choice', (['source_keys'], {}), '(source_keys)\n', (1679, 1692), False, 'import random\n')]
from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from django.utils import timezone from .models import Article, Comment class IndexView(generic.ListView): template_name = "articles/index.html" context_object_name = "article_list" def get_queryset(self): """ Return all articles (not including those set to be published in the future) """ return Article.objects.filter( date_published__lte=timezone.now() ).order_by("-date_published") class ArticleView(generic.DetailView): model = Article template_name = "articles/article.html" class CommentsView(generic.ListView): template_name = "articles/comment_list.html" context_object_name = "comment_list" # Comment on article def comment(request, article_id): article = get_object_or_404(Article, pk=article_id) try: alias = request.POST["alias"] text = request.POST["text"] if len(alias) == 0 and len(text) == 0: raise ValueError("Name or comment text empty") except KeyError: # Post data not sent context = {"article": article, "danger_message": "There was a problem submitting your comment."} return render(request, "articles/article.html", context) except ValueError: # Comment form not filled in context = {"article": article, "warning_message": "Comment information not filled in."} return render(request, "articles/article.html", context) else: parent = None if "parent" in request.POST: parent = get_object_or_404(Comment, pk=request.POST["parent"]) comment = Comment.objects.create_comment( article, parent, alias, text ) comment.save() # Return to article after creating comment return HttpResponseRedirect(reverse("articles:article", args=(article.id,)))
[ "django.shortcuts.render", "django.utils.timezone.now", "django.shortcuts.get_object_or_404", "django.urls.reverse" ]
[((945, 986), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Article'], {'pk': 'article_id'}), '(Article, pk=article_id)\n', (962, 986), False, 'from django.shortcuts import get_object_or_404, render\n'), ((1348, 1397), 'django.shortcuts.render', 'render', (['request', '"""articles/article.html"""', 'context'], {}), "(request, 'articles/article.html', context)\n", (1354, 1397), False, 'from django.shortcuts import get_object_or_404, render\n'), ((1569, 1618), 'django.shortcuts.render', 'render', (['request', '"""articles/article.html"""', 'context'], {}), "(request, 'articles/article.html', context)\n", (1575, 1618), False, 'from django.shortcuts import get_object_or_404, render\n'), ((1709, 1762), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Comment'], {'pk': "request.POST['parent']"}), "(Comment, pk=request.POST['parent'])\n", (1726, 1762), False, 'from django.shortcuts import get_object_or_404, render\n'), ((2011, 2058), 'django.urls.reverse', 'reverse', (['"""articles:article"""'], {'args': '(article.id,)'}), "('articles:article', args=(article.id,))\n", (2018, 2058), False, 'from django.urls import reverse\n'), ((586, 600), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (598, 600), False, 'from django.utils import timezone\n')]
import numpy as np from copy import deepcopy class Optimizer: """ Parent class for optimizer objects """ def compute_gradients(self, layers, computations, y, y_hat): pass class MSEStochasticGradientDescent(Optimizer): """ Stochastic Gradient Descent Optimizer using Mean Squared Error """ def __init__(self): pass def compute_gradients(self, layers, computations, y, y_hat): """ Compute respective gradients at each layer """ gradients = list() _error = np.multiply(np.subtract(y_hat, y), layers[-1]._activation_function(y_hat, derivative=True)) # potentially have to swap for _layer in reversed(range(len(layers))): gradients.append(layers[_layer].gradient(_error, computations[_layer])) if _layer != 0: _error = np.multiply(np.matmul(_error, layers[_layer]._weights), layers[_layer-1]._activation_function(computations[_layer])) return deepcopy(gradients)
[ "numpy.matmul", "numpy.subtract", "copy.deepcopy" ]
[((959, 978), 'copy.deepcopy', 'deepcopy', (['gradients'], {}), '(gradients)\n', (967, 978), False, 'from copy import deepcopy\n'), ((531, 552), 'numpy.subtract', 'np.subtract', (['y_hat', 'y'], {}), '(y_hat, y)\n', (542, 552), True, 'import numpy as np\n'), ((839, 881), 'numpy.matmul', 'np.matmul', (['_error', 'layers[_layer]._weights'], {}), '(_error, layers[_layer]._weights)\n', (848, 881), True, 'import numpy as np\n')]
# MIT License # Copyright (c) 2020 <NAME>, <NAME>, <NAME>, <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Conversion from x-axis pointing up (in map img), 0 to pi c.c.w., and 0 to -pi c.w. convention to x-axis pointing right (im map img), 0 to 2pi c.c.w. convention. Use either on one csv file or all csv file in a directory Author: <NAME> """ import argparse import numpy as np import pandas as pd import glob import csv import os """ Script that convert coordinate system conventions Args: --pattern (str): pattern for glob, converts all matching file """ parser = argparse.ArgumentParser() parser.add_argument('--pattern', default='*/*raceline.csv') args = parser.parse_args() all_files = glob.glob(args.pattern) print('Converting following files:') for name in all_files: print(name) input('Press ENTER to proceed, CTRL+C to stop.') for file in all_files: # get file name and extension file_name, file_ext = os.path.splitext(file) # create new file name new_file = file_name + '_newconv' + file_ext print('Working on: ' + file) # keep original headers headers = list(csv.reader(open(file)))[0:3] # csv to dataframe df = pd.read_csv(file, sep=';', header=2) # converting the headings column heading_np = df[' psi_rad'].to_numpy() heading_np += np.pi/2 heading_np[heading_np > 2*np.pi] -= 2*np.pi heading_np[heading_np < 0] += 2*np.pi df[' psi_rad'].replace(heading_np) # save to new file f = open(new_file, 'w') csv_writer = csv.writer(f) csv_writer.writerows(headers) f.close() df.to_csv(new_file, sep=';', header=False, index=False, float_format='%.7f', mode='a') print('New convention saved to: ' + new_file) print('All files done.')
[ "argparse.ArgumentParser", "pandas.read_csv", "csv.writer", "os.path.splitext", "glob.glob" ]
[((1641, 1666), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1664, 1666), False, 'import argparse\n'), ((1771, 1794), 'glob.glob', 'glob.glob', (['args.pattern'], {}), '(args.pattern)\n', (1780, 1794), False, 'import glob\n'), ((2012, 2034), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (2028, 2034), False, 'import os\n'), ((2275, 2311), 'pandas.read_csv', 'pd.read_csv', (['file'], {'sep': '""";"""', 'header': '(2)'}), "(file, sep=';', header=2)\n", (2286, 2311), True, 'import pandas as pd\n'), ((2632, 2645), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (2642, 2645), False, 'import csv\n')]
#!/usr/bin/env python import copy import json from os import path BASE = '../particle-clicker/json/' def json_from_file(filename): """ Load a JSON object from a file. """ with open(filename) as f: return json.load(f) def format_number(num, digits=0): """ Give long numbers an SI prefix. """ formatstring = '{{:.{}f}}{{}}'.format(digits) prefixes = [(1e24, 'Y'), (1e21, 'Z'), (1e18, 'E'), (1e15, 'P'), (1e12, 'T'), (1e9, 'G'), (1e6, 'M'), (1e3, 'k'), (1, '')] for magnitude, label in prefixes: if num >= magnitude: return formatstring.format(num / magnitude, label) def map_out(prototype, items, levels): """ Magic! """ return [{k: v.format(level=level, levelstring=format_number(level), **item) for k, v in prototype.items()} for item in items for level in levels] objects = { k: json_from_file(path.join(BASE, v)) for k, v in { 'workers': 'workers.json', 'upgrades': 'upgrades.json', 'research': 'research.json' }.items() } researchPrototype = { 'key': 'achievement-{key}-{level}', 'description': '{name} research level {level}!', 'icon': 'fa-cogs', 'targetKey': '{key}', 'targetProperty': 'level', 'threshold': '{level}' } discoveryPrototype = copy.copy(researchPrototype) discoveryPrototype['description'] = '{name} discovery!' workersPrototype = { 'key': 'achievement-{key}-{level}', 'description': '{level} {name} working for you!', 'icon': 'fa-users', 'targetKey': '{key}', 'targetProperty': 'hired', 'threshold': '{level}' } firstWorkerPrototype = copy.copy(workersPrototype) firstWorkerPrototype['description'] = 'The first {name} hired!' firstWorkerPrototype['icon'] = 'fa-user' clicksPrototype = { 'key': 'achievement-clicks-{levelstring}', 'description': '{levelstring} clicks!', 'icon': 'fa-hand-o-up', 'targetKey': 'lab', 'targetProperty': 'clicks', 'threshold': '{level}' } firstClickPrototype = copy.copy(clicksPrototype) firstClickPrototype['description'] = 'Your first click!' dataCollectedPrototype = { 'key': 'achievement-data-collected-{levelstring}', 'description': '{levelstring} data collected!', 'icon': 'fa-database', 'targetKey': 'lab', 'targetProperty': 'dataCollected', 'threshold': '{level}' } fundingCollectedPrototype = { 'key': 'achievement-funding-collected-{levelstring}', 'description': 'JTN {levelstring} funding gathered!', 'icon': 'fa-money', 'targetKey': 'lab', 'targetProperty': 'moneyCollected', 'threshold': '{level}' } dataProcessedPrototype = { 'key': 'achievement-data-processed-{levelstring}', 'description': '{levelstring} data processed!', 'icon': 'fa-hdd', 'targetKey': 'lab', 'targetProperty': 'dataSpent', 'threshold': '{level}' } fundingSpentPrototype = { 'key': 'achievement-funding-spent-{levelstring}', 'description': 'JTN {levelstring} funding spent!', 'icon': 'fa-money', 'targetKey': 'lab', 'targetProperty': 'moneySpent', 'threshold': '{level}' } achievements = [] achievements += map_out(discoveryPrototype, objects['research'], [1]) achievements += map_out(researchPrototype, objects['research'], [5, 25, 50, 100]) achievements += map_out(firstWorkerPrototype, objects['workers'], [1]) achievements += map_out(workersPrototype, objects['workers'], [5, 25, 50, 100]) achievements += map_out(firstClickPrototype, [{}], [1]) achievements += map_out(clicksPrototype, [{}], [100, 1000, 10000, 100000, 1000000]) achievements += map_out(dataCollectedPrototype, [{}], [100, 10000, int(1e6), int(1e8), int(1e10)]) achievements += map_out(fundingCollectedPrototype, [{}], [100, 10000, int(1e6), int(1e8), int(1e10)]) achievements += map_out(dataProcessedPrototype, [{}], [100, 10000, int(1e6), int(1e8), int(1e10)]) achievements += map_out(fundingSpentPrototype, [{}], [100, 10000, int(1e6), int(1e8), int(1e10)]) # fix thresholds for achievement in achievements: achievement['threshold'] = int(achievement['threshold']) print(json.dumps(achievements, indent=' '))
[ "json.load", "copy.copy", "json.dumps", "os.path.join" ]
[((1314, 1342), 'copy.copy', 'copy.copy', (['researchPrototype'], {}), '(researchPrototype)\n', (1323, 1342), False, 'import copy\n'), ((1648, 1675), 'copy.copy', 'copy.copy', (['workersPrototype'], {}), '(workersPrototype)\n', (1657, 1675), False, 'import copy\n'), ((2028, 2054), 'copy.copy', 'copy.copy', (['clicksPrototype'], {}), '(clicksPrototype)\n', (2037, 2054), False, 'import copy\n'), ((4247, 4284), 'json.dumps', 'json.dumps', (['achievements'], {'indent': '""" """'}), "(achievements, indent=' ')\n", (4257, 4284), False, 'import json\n'), ((225, 237), 'json.load', 'json.load', (['f'], {}), '(f)\n', (234, 237), False, 'import json\n'), ((910, 928), 'os.path.join', 'path.join', (['BASE', 'v'], {}), '(BASE, v)\n', (919, 928), False, 'from os import path\n')]
import numpy as np import cv2 import matplotlib.pyplot as plt PASS_COUNT = 8 FILE_NAME = './Passes/Checkerboard64_' EXTENSION = '.jpg' shift = 3 mask = 1 << shift crop = 3 def runPass(canvas,p): sizeX = canvas.shape[0] sizeY = canvas.shape[1] shape = [[1 if (i + j) % 2 == 0 else 0 for j in range(8)] for i in range(8)] shape = np.array(shape) shape *= mask #print(shape) def fillBlock(img,x,y,c): for i in range(x,x+8,1): for j in range(y,y+8,1): img[i,j] &= (255 - mask) img[i,j] |= c for i in range(8): for j in range(8): fillBlock(canvas,i*8,j*8,shape[i,j]) #cv2.imwrite('Checkerboard64.png',canvas) cv2.imwrite(FILE_NAME+str(p)+EXTENSION,canvas) #lossy = cv2.imread('./Blank64.png') lossy = cv2.imread('./Image64.png') lossy = cv2.cvtColor(lossy,cv2.COLOR_BGR2GRAY) sizeX = lossy.shape[0] sizeY = lossy.shape[1] for i in range(PASS_COUNT): runPass(lossy,i) lossy = cv2.imread(FILE_NAME+str(i)+EXTENSION) lossy = cv2.cvtColor(lossy,cv2.COLOR_BGR2GRAY) plane = (lossy & mask) << 7 - shift #plane = cv2.medianBlur(plane,3) cv2.imwrite(FILE_NAME+str(i)+'_extract'+EXTENSION,plane) '''print(lossy[0,8+crop:24+crop] & mask) cv2.imwrite('Checkerboard64_Cropped.jpg',canvas[crop:-crop,crop:-crop]) lossy = cv2.imread('Checkerboard64_Cropped.jpg') lossy = cv2.cvtColor(lossy,cv2.COLOR_BGR2GRAY) print(lossy[0,8:24] & mask)''' ''' x = [i for i in range(sizeX-8)] y = [] dy = [0] ddy = [0] for i in x: window = lossy[0,i:i+8] & mask y.append(np.mean(window)) if i > 0: dy.append(y[-1] - y [-2]) if i > 1: ddy.append(dy[-1] - dy [-2]) #print(i,window,np.mean(window)) ddy.append(0) plt.plot(x,y) #plt.plot(x,dy) plt.plot(x,ddy) plt.show() '''
[ "numpy.array", "cv2.imread", "cv2.cvtColor" ]
[((827, 854), 'cv2.imread', 'cv2.imread', (['"""./Image64.png"""'], {}), "('./Image64.png')\n", (837, 854), False, 'import cv2\n'), ((863, 902), 'cv2.cvtColor', 'cv2.cvtColor', (['lossy', 'cv2.COLOR_BGR2GRAY'], {}), '(lossy, cv2.COLOR_BGR2GRAY)\n', (875, 902), False, 'import cv2\n'), ((351, 366), 'numpy.array', 'np.array', (['shape'], {}), '(shape)\n', (359, 366), True, 'import numpy as np\n'), ((1062, 1101), 'cv2.cvtColor', 'cv2.cvtColor', (['lossy', 'cv2.COLOR_BGR2GRAY'], {}), '(lossy, cv2.COLOR_BGR2GRAY)\n', (1074, 1101), False, 'import cv2\n')]
from PyQt5 import QtGui from PyQt5 import QtWidgets from PyQt5 import Qt from PyQt5 import QtCore from matplotlib.backends.backend_qt5agg \ import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar class MplCanvas(FigureCanvas): def __init__(self): self.fig = Figure() self.ax = self.fig.add_subplot(111) FigureCanvas.__init__(self, self.fig) FigureCanvas.setSizePolicy(self, Qt.QSizePolicy.Expanding, Qt.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) class MplWidget(QtWidgets.QWidget): def __init__(self, parent = None): QtWidgets.QWidget.__init__(self, parent) self.canvas = MplCanvas() self.toolbar = NavigationToolbar(self.canvas, parent) self.vbl = QtWidgets.QVBoxLayout() self.vbl.addWidget(self.canvas) self.vbl.addWidget(self.toolbar) self.setLayout(self.vbl)
[ "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT", "matplotlib.figure.Figure", "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.__init__", "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.setSizePolicy", "PyQt5.QtWidgets.QWidget.__init__", "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.updateGeometry", "PyQt5.QtWidgets.QVBoxLayout" ]
[((374, 382), 'matplotlib.figure.Figure', 'Figure', ([], {}), '()\n', (380, 382), False, 'from matplotlib.figure import Figure\n'), ((423, 460), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.__init__', 'FigureCanvas.__init__', (['self', 'self.fig'], {}), '(self, self.fig)\n', (444, 460), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\n'), ((463, 552), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.setSizePolicy', 'FigureCanvas.setSizePolicy', (['self', 'Qt.QSizePolicy.Expanding', 'Qt.QSizePolicy.Expanding'], {}), '(self, Qt.QSizePolicy.Expanding, Qt.QSizePolicy.\n Expanding)\n', (489, 552), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\n'), ((550, 583), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.updateGeometry', 'FigureCanvas.updateGeometry', (['self'], {}), '(self)\n', (577, 583), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\n'), ((659, 699), 'PyQt5.QtWidgets.QWidget.__init__', 'QtWidgets.QWidget.__init__', (['self', 'parent'], {}), '(self, parent)\n', (685, 699), False, 'from PyQt5 import QtWidgets\n'), ((745, 783), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['self.canvas', 'parent'], {}), '(self.canvas, parent)\n', (762, 783), True, 'from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar\n'), ((797, 820), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', ([], {}), '()\n', (818, 820), False, 'from PyQt5 import QtWidgets\n')]
import sqlite3 import io import json import os import shutil import textwrap from packaging import version from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly def get_Turbo_Battery(files_found, report_folder, seeker, wrap_text): source_file_bluetooth = '' source_file_turbo = '' bluetooth_db = '' turbo_db = '' for file_found in files_found: file_name = str(file_found) if file_name.lower().endswith('turbo.db'): turbo_db = str(file_found) source_file_bluetooth = file_found.replace(seeker.directory, '') if file_name.lower().endswith('bluetooth.db'): bluetooth_db = str(file_found) source_file_turbo = file_found.replace(seeker.directory, '') db = open_sqlite_db_readonly(turbo_db) cursor = db.cursor() cursor.execute(''' select case timestamp_millis when 0 then '' else datetime(timestamp_millis/1000,'unixepoch') End as D_T, battery_level, case charge_type when 0 then '' when 1 then 'Charging Rapidly' when 2 then 'Charging Slowly' when 3 then 'Charging Wirelessly' End as C_Type, case battery_saver when 2 then '' when 1 then 'Enabled' End as B_Saver, timezone from battery_event ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: report = ArtifactHtmlReport('Turbo - Phone Battery') report.start_artifact_report(report_folder, 'Turbo - Phone Battery') report.add_script() data_headers = ('Timestamp','Battery Level','Charge Type','Battery Saver','Timezone') # Don't remove the comma, that is required to make this a tuple as there is only 1 element data_list = [] for row in all_rows: data_list.append((row[0],row[1],row[2],row[3],row[4])) report.write_artifact_data_table(data_headers, data_list, source_file_turbo) report.end_artifact_report() tsvname = f'Turbo - Phone Battery' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = f'Turbo - Phone Battery' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc('No Turbo - Phone Battery data available') db.close() db = open_sqlite_db_readonly(bluetooth_db) cursor = db.cursor() cursor.execute(''' select datetime(timestamp_millis/1000,'unixepoch'), bd_addr, device_identifier, battery_level, volume_level, time_zone from battery_event join device_address on battery_event.device_idx = device_address.device_idx ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: report = ArtifactHtmlReport('Turbo - Bluetooth Device Info') report.start_artifact_report(report_folder, 'Turbo - Bluetooth Device Info') report.add_script() data_headers = ('Timestamp','BT Device MAC Address','BT Device ID','Battery Level','Volume Level','Timezone') # Don't remove the comma, that is required to make this a tuple as there is only 1 element data_list = [] for row in all_rows: data_list.append((row[0],row[1],row[2],row[3],row[4],row[5])) report.write_artifact_data_table(data_headers, data_list, source_file_bluetooth) report.end_artifact_report() tsvname = f'Turbo - Bluetooth Device Info' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = f'Turbo - Bluetooth Device Info' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc('No Turbo - Bluetooth Device Info data available') db.close() return
[ "scripts.ilapfuncs.timeline", "scripts.ilapfuncs.logfunc", "scripts.ilapfuncs.tsv", "scripts.ilapfuncs.open_sqlite_db_readonly", "scripts.artifact_report.ArtifactHtmlReport" ]
[((866, 899), 'scripts.ilapfuncs.open_sqlite_db_readonly', 'open_sqlite_db_readonly', (['turbo_db'], {}), '(turbo_db)\n', (889, 899), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((2389, 2426), 'scripts.ilapfuncs.open_sqlite_db_readonly', 'open_sqlite_db_readonly', (['bluetooth_db'], {}), '(bluetooth_db)\n', (2412, 2426), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((1473, 1516), 'scripts.artifact_report.ArtifactHtmlReport', 'ArtifactHtmlReport', (['"""Turbo - Phone Battery"""'], {}), "('Turbo - Phone Battery')\n", (1491, 1516), False, 'from scripts.artifact_report import ArtifactHtmlReport\n'), ((2109, 2161), 'scripts.ilapfuncs.tsv', 'tsv', (['report_folder', 'data_headers', 'data_list', 'tsvname'], {}), '(report_folder, data_headers, data_list, tsvname)\n', (2112, 2161), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((2225, 2285), 'scripts.ilapfuncs.timeline', 'timeline', (['report_folder', 'tlactivity', 'data_list', 'data_headers'], {}), '(report_folder, tlactivity, data_list, data_headers)\n', (2233, 2285), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((2304, 2354), 'scripts.ilapfuncs.logfunc', 'logfunc', (['"""No Turbo - Phone Battery data available"""'], {}), "('No Turbo - Phone Battery data available')\n", (2311, 2354), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((2843, 2894), 'scripts.artifact_report.ArtifactHtmlReport', 'ArtifactHtmlReport', (['"""Turbo - Bluetooth Device Info"""'], {}), "('Turbo - Bluetooth Device Info')\n", (2861, 2894), False, 'from scripts.artifact_report import ArtifactHtmlReport\n'), ((3538, 3590), 'scripts.ilapfuncs.tsv', 'tsv', (['report_folder', 'data_headers', 'data_list', 'tsvname'], {}), '(report_folder, data_headers, data_list, tsvname)\n', (3541, 3590), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((3662, 3722), 'scripts.ilapfuncs.timeline', 'timeline', (['report_folder', 'tlactivity', 'data_list', 'data_headers'], {}), '(report_folder, tlactivity, data_list, data_headers)\n', (3670, 3722), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n'), ((3741, 3799), 'scripts.ilapfuncs.logfunc', 'logfunc', (['"""No Turbo - Bluetooth Device Info data available"""'], {}), "('No Turbo - Bluetooth Device Info data available')\n", (3748, 3799), False, 'from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly\n')]
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import time import tensorflow as tf from sklearn.preprocessing import StandardScaler #用于归一化 from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from tensorflow import keras from pprint import pprint print(tf.__version__) print(sys.version_info) for module in mpl, np, pd, sklearn, tf, keras: print(module.__name__, module.__version__) housing = fetch_california_housing() #print the description of the california housing dataset print(housing.DESCR) print(housing.data.shape) print(housing.target.shape) pprint(housing.data[:5]) pprint(housing.target[:5]) x_train_all, x_test, y_train_all, y_test = train_test_split(housing.data, housing.target, random_state = 7, test_size = 0.1) x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all, random_state = 11) print(x_train.shape, y_train.shape) print(x_valid.shape, y_valid.shape) print(x_test.shape, y_test.shape) #nomalization scalar = StandardScaler() x_train_scaled = scalar.fit_transform(x_train) x_valid_scaled = scalar.transform(x_valid) x_test_scaled = scalar.transform(x_test) print("x_train.shapep[1:]: ", x_train.shape[1:]) #函数式API实现 input= keras.layers.Input(shape = x_train.shape[1:]) hidden1 = keras.layers.Dense(30, activation = 'relu')(input) hidden2 = keras.layers.Dense(30, activation = 'relu')(hidden1) concat = keras.layers.concatenate([input, hidden2]) output = keras.layers.Dense(1)(concat) model = keras.models.Model(inputs = [input], outputs = [output]) """ #子类API实现 class WideDeepModel(keras.models.Model): def __init__(self): super(WideDeepModel, self).__init__() #定义模型的层次 self.hidden1_layer = keras.layers.Dense(30, activation = 'relu') self.hidden2_layer = keras.layers.Dense(30, activation = 'relu') self.output_layer = keras.layers.Dense(1) def call(self, input): #完成模型正向计算 hidden1 = self.hidden1_layer(input) hidden2 = self.hidden2_layer(hidden1) concat = keras.layers.concatenate([input, hidden2]) output = self.output_layer(concat) return output model = WideDeepModel() model.build(input_shape = (None, 8)) """ model.summary() model.compile(loss = "mean_squared_error", optimizer = "sgd") callbacks = [keras.callbacks.EarlyStopping(patience = 5, min_delta = 1e-2)] history = model.fit(x_train_scaled, y_train, validation_data = (x_valid_scaled, y_valid), epochs = 100, callbacks = callbacks) def plot_learning_curves(history): pd.DataFrame(history.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) plt.show() plot_learning_curves(history) model.evaluate(x_test_scaled, y_test)
[ "tensorflow.keras.layers.Input", "matplotlib.pyplot.grid", "pandas.DataFrame", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.gca", "sklearn.preprocessing.StandardScaler", "tensorflow.keras.layers.concatenate", "tensorflow.keras.callbacks.EarlyStopping", "tensorflow.keras.layers.Dense", "sklearn.datasets.fetch_california_housing", "tensorflow.keras.models.Model", "pprint.pprint", "matplotlib.pyplot.show" ]
[((540, 566), 'sklearn.datasets.fetch_california_housing', 'fetch_california_housing', ([], {}), '()\n', (564, 566), False, 'from sklearn.datasets import fetch_california_housing\n'), ((700, 724), 'pprint.pprint', 'pprint', (['housing.data[:5]'], {}), '(housing.data[:5])\n', (706, 724), False, 'from pprint import pprint\n'), ((725, 751), 'pprint.pprint', 'pprint', (['housing.target[:5]'], {}), '(housing.target[:5])\n', (731, 751), False, 'from pprint import pprint\n'), ((795, 872), 'sklearn.model_selection.train_test_split', 'train_test_split', (['housing.data', 'housing.target'], {'random_state': '(7)', 'test_size': '(0.1)'}), '(housing.data, housing.target, random_state=7, test_size=0.1)\n', (811, 872), False, 'from sklearn.model_selection import train_test_split\n'), ((914, 973), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_train_all', 'y_train_all'], {'random_state': '(11)'}), '(x_train_all, y_train_all, random_state=11)\n', (930, 973), False, 'from sklearn.model_selection import train_test_split\n'), ((1106, 1122), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1120, 1122), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1321, 1364), 'tensorflow.keras.layers.Input', 'keras.layers.Input', ([], {'shape': 'x_train.shape[1:]'}), '(shape=x_train.shape[1:])\n', (1339, 1364), False, 'from tensorflow import keras\n'), ((1500, 1542), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[input, hidden2]'], {}), '([input, hidden2])\n', (1524, 1542), False, 'from tensorflow import keras\n'), ((1590, 1642), 'tensorflow.keras.models.Model', 'keras.models.Model', ([], {'inputs': '[input]', 'outputs': '[output]'}), '(inputs=[input], outputs=[output])\n', (1608, 1642), False, 'from tensorflow import keras\n'), ((1377, 1418), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(30)'], {'activation': '"""relu"""'}), "(30, activation='relu')\n", (1395, 1418), False, 'from tensorflow import keras\n'), ((1438, 1479), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(30)'], {'activation': '"""relu"""'}), "(30, activation='relu')\n", (1456, 1479), False, 'from tensorflow import keras\n'), ((1552, 1573), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {}), '(1)\n', (1570, 1573), False, 'from tensorflow import keras\n'), ((2405, 2462), 'tensorflow.keras.callbacks.EarlyStopping', 'keras.callbacks.EarlyStopping', ([], {'patience': '(5)', 'min_delta': '(0.01)'}), '(patience=5, min_delta=0.01)\n', (2434, 2462), False, 'from tensorflow import keras\n'), ((2690, 2704), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2698, 2704), True, 'import matplotlib.pyplot as plt\n'), ((2737, 2747), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2745, 2747), True, 'import matplotlib.pyplot as plt\n'), ((2636, 2665), 'pandas.DataFrame', 'pd.DataFrame', (['history.history'], {}), '(history.history)\n', (2648, 2665), True, 'import pandas as pd\n'), ((2709, 2718), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2716, 2718), True, 'import matplotlib.pyplot as plt\n')]
from pathlib import Path from mock import Mock, patch from pytest import mark from wordgoal.directory import Directory @patch("wordgoal.directory.markdown_goal", return_value=600) @patch("wordgoal.directory.words_in_markdown", return_value=3) @patch("wordgoal.directory.words_in_text", return_value=7) def test_analyse_file__markdown( words_in_text: Mock, words_in_markdown: Mock, markdown_goal: Mock, ) -> None: root = Path(".") file = root.joinpath("foo.md") append = Mock() rows = Mock() rows.append = append directory = Directory(root) with patch.object(directory, "rows", rows): directory.analyse_file(file) append.assert_called_with(name="foo.md", current=3, maximum=600) markdown_goal.assert_called_with(file) words_in_markdown.assert_called_with(file) words_in_text.assert_not_called() @patch("wordgoal.directory.words_in_markdown", return_value=3) @patch("wordgoal.directory.words_in_text", return_value=7) def test_analyse_file__text( words_in_text: Mock, words_in_markdown: Mock, ) -> None: root = Path(".") file = root.joinpath("foo.txt") append = Mock() rows = Mock() rows.append = append directory = Directory(root) with patch.object(directory, "rows", rows): directory.analyse_file(file) append.assert_called_with(name="foo.txt", current=7, maximum=1000) words_in_markdown.assert_not_called() words_in_text.assert_called_with(file) @patch("wordgoal.directory.words_in_markdown", return_value=3) @patch("wordgoal.directory.words_in_text", return_value=7) def test_analyse_file__unhandled( words_in_text: Mock, words_in_markdown: Mock, ) -> None: root = Path(".") file = root.joinpath("foo.bar") append = Mock() rows = Mock() rows.append = append directory = Directory(root) with patch.object(directory, "rows", rows): directory.analyse_file(file) append.assert_not_called() words_in_markdown.assert_not_called() words_in_text.assert_not_called() @mark.parametrize( "directory, name, expect", [ (Path("."), ".git", True), (Path("."), "foo", False), # The "wordgoal" directory has no configuration file, so no objects # should be ignored. (Path(".").joinpath("wordgoal"), ".git", False), ], ) def test_ignore(directory: Path, name: str, expect: bool) -> None: assert Directory(directory).ignore(name) == expect def test_root__child() -> None: root = Directory(Path(__file__).parent.parent) assert Directory(root.directory.joinpath("wordgoal"), root).root == root.directory def test_root__root() -> None: root_path = Path(__file__).parent.parent root_dir = Directory(root_path) assert root_dir.root == root_path assert Directory(root_path.joinpath("wordgoal"), root_dir).root == root_path @patch("wordgoal.directory.Directory.analyse_file") def test_walk(analyse_file: Mock) -> None: root = Path(".") directory = Directory(root) with patch("wordgoal.directory.Directory") as directory_maker: directory.walk() directory_maker.assert_any_call( path=root.joinpath("wordgoal"), parent=directory, ) analyse_file.assert_any_call(root.joinpath("Pipfile"))
[ "mock.patch", "pathlib.Path", "mock.Mock", "wordgoal.directory.Directory", "mock.patch.object" ]
[((124, 183), 'mock.patch', 'patch', (['"""wordgoal.directory.markdown_goal"""'], {'return_value': '(600)'}), "('wordgoal.directory.markdown_goal', return_value=600)\n", (129, 183), False, 'from mock import Mock, patch\n'), ((185, 246), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_markdown"""'], {'return_value': '(3)'}), "('wordgoal.directory.words_in_markdown', return_value=3)\n", (190, 246), False, 'from mock import Mock, patch\n'), ((248, 305), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_text"""'], {'return_value': '(7)'}), "('wordgoal.directory.words_in_text', return_value=7)\n", (253, 305), False, 'from mock import Mock, patch\n'), ((868, 929), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_markdown"""'], {'return_value': '(3)'}), "('wordgoal.directory.words_in_markdown', return_value=3)\n", (873, 929), False, 'from mock import Mock, patch\n'), ((931, 988), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_text"""'], {'return_value': '(7)'}), "('wordgoal.directory.words_in_text', return_value=7)\n", (936, 988), False, 'from mock import Mock, patch\n'), ((1482, 1543), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_markdown"""'], {'return_value': '(3)'}), "('wordgoal.directory.words_in_markdown', return_value=3)\n", (1487, 1543), False, 'from mock import Mock, patch\n'), ((1545, 1602), 'mock.patch', 'patch', (['"""wordgoal.directory.words_in_text"""'], {'return_value': '(7)'}), "('wordgoal.directory.words_in_text', return_value=7)\n", (1550, 1602), False, 'from mock import Mock, patch\n'), ((2882, 2932), 'mock.patch', 'patch', (['"""wordgoal.directory.Directory.analyse_file"""'], {}), "('wordgoal.directory.Directory.analyse_file')\n", (2887, 2932), False, 'from mock import Mock, patch\n'), ((440, 449), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (444, 449), False, 'from pathlib import Path\n'), ((499, 505), 'mock.Mock', 'Mock', ([], {}), '()\n', (503, 505), False, 'from mock import Mock, patch\n'), ((517, 523), 'mock.Mock', 'Mock', ([], {}), '()\n', (521, 523), False, 'from mock import Mock, patch\n'), ((566, 581), 'wordgoal.directory.Directory', 'Directory', (['root'], {}), '(root)\n', (575, 581), False, 'from wordgoal.directory import Directory\n'), ((1094, 1103), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (1098, 1103), False, 'from pathlib import Path\n'), ((1154, 1160), 'mock.Mock', 'Mock', ([], {}), '()\n', (1158, 1160), False, 'from mock import Mock, patch\n'), ((1172, 1178), 'mock.Mock', 'Mock', ([], {}), '()\n', (1176, 1178), False, 'from mock import Mock, patch\n'), ((1221, 1236), 'wordgoal.directory.Directory', 'Directory', (['root'], {}), '(root)\n', (1230, 1236), False, 'from wordgoal.directory import Directory\n'), ((1713, 1722), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (1717, 1722), False, 'from pathlib import Path\n'), ((1773, 1779), 'mock.Mock', 'Mock', ([], {}), '()\n', (1777, 1779), False, 'from mock import Mock, patch\n'), ((1791, 1797), 'mock.Mock', 'Mock', ([], {}), '()\n', (1795, 1797), False, 'from mock import Mock, patch\n'), ((1840, 1855), 'wordgoal.directory.Directory', 'Directory', (['root'], {}), '(root)\n', (1849, 1855), False, 'from wordgoal.directory import Directory\n'), ((2739, 2759), 'wordgoal.directory.Directory', 'Directory', (['root_path'], {}), '(root_path)\n', (2748, 2759), False, 'from wordgoal.directory import Directory\n'), ((2987, 2996), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (2991, 2996), False, 'from pathlib import Path\n'), ((3013, 3028), 'wordgoal.directory.Directory', 'Directory', (['root'], {}), '(root)\n', (3022, 3028), False, 'from wordgoal.directory import Directory\n'), ((591, 628), 'mock.patch.object', 'patch.object', (['directory', '"""rows"""', 'rows'], {}), "(directory, 'rows', rows)\n", (603, 628), False, 'from mock import Mock, patch\n'), ((1246, 1283), 'mock.patch.object', 'patch.object', (['directory', '"""rows"""', 'rows'], {}), "(directory, 'rows', rows)\n", (1258, 1283), False, 'from mock import Mock, patch\n'), ((1865, 1902), 'mock.patch.object', 'patch.object', (['directory', '"""rows"""', 'rows'], {}), "(directory, 'rows', rows)\n", (1877, 1902), False, 'from mock import Mock, patch\n'), ((3039, 3076), 'mock.patch', 'patch', (['"""wordgoal.directory.Directory"""'], {}), "('wordgoal.directory.Directory')\n", (3044, 3076), False, 'from mock import Mock, patch\n'), ((2120, 2129), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (2124, 2129), False, 'from pathlib import Path\n'), ((2155, 2164), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (2159, 2164), False, 'from pathlib import Path\n'), ((2695, 2709), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (2699, 2709), False, 'from pathlib import Path\n'), ((2430, 2450), 'wordgoal.directory.Directory', 'Directory', (['directory'], {}), '(directory)\n', (2439, 2450), False, 'from wordgoal.directory import Directory\n'), ((2529, 2543), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (2533, 2543), False, 'from pathlib import Path\n'), ((2295, 2304), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (2299, 2304), False, 'from pathlib import Path\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-05-10 20:23 from __future__ import unicode_literals import datetime import django.contrib.postgres.fields from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('meetings_management', '0008_auto_20170510_1640'), ] operations = [ migrations.AddField( model_name='meetingroomrequest', name='amount', field=models.IntegerField(default=0, verbose_name='amount of people'), preserve_default=False, ), migrations.AddField( model_name='meetingroomrequest', name='supplies', field=django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=64), blank=True, default=[], size=None, verbose_name='supplies to use'), preserve_default=False, ), migrations.AlterField( model_name='meetingroom', name='available_from', field=models.DateTimeField(default=datetime.datetime(2017, 5, 10, 6, 0, 0, 645211, tzinfo=utc), verbose_name='available from'), ), migrations.AlterField( model_name='meetingroom', name='available_until', field=models.DateTimeField(default=datetime.datetime(2017, 5, 10, 21, 0, 0, 645331, tzinfo=utc), verbose_name='available until'), ), ]
[ "datetime.datetime", "django.db.models.CharField", "django.db.models.IntegerField" ]
[((515, 578), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)', 'verbose_name': '"""amount of people"""'}), "(default=0, verbose_name='amount of people')\n", (534, 578), False, 'from django.db import migrations, models\n'), ((801, 832), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)'}), '(max_length=64)\n', (817, 832), False, 'from django.db import migrations, models\n'), ((1100, 1159), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(5)', '(10)', '(6)', '(0)', '(0)', '(645211)'], {'tzinfo': 'utc'}), '(2017, 5, 10, 6, 0, 0, 645211, tzinfo=utc)\n', (1117, 1159), False, 'import datetime\n'), ((1356, 1416), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(5)', '(10)', '(21)', '(0)', '(0)', '(645331)'], {'tzinfo': 'utc'}), '(2017, 5, 10, 21, 0, 0, 645331, tzinfo=utc)\n', (1373, 1416), False, 'import datetime\n')]
# coding: utf-8 """ [AHOI cookbook](/ahoi/docs/cookbook/index.html) [Data Privacy](/sandboxmanager/#/privacy) [Terms of Service](/sandboxmanager/#/terms) [Imprint](https://sparkassen-hub.com/impressum/) &copy; 2016&dash;2017 Starfinanz - Ein Unternehmen der Finanz Informatik # noqa: E501 OpenAPI spec version: 2.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.balance import Balance # noqa: F401,E501 class Forecast(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'forecast_balance': 'Balance', 'account_id': 'int' } attribute_map = { 'forecast_balance': 'forecastBalance', 'account_id': 'accountId' } def __init__(self, forecast_balance=None, account_id=None): # noqa: E501 """Forecast - a model defined in Swagger""" # noqa: E501 self._forecast_balance = None self._account_id = None self.discriminator = None self.forecast_balance = forecast_balance self.account_id = account_id @property def forecast_balance(self): """Gets the forecast_balance of this Forecast. # noqa: E501 Balance forecast # noqa: E501 :return: The forecast_balance of this Forecast. # noqa: E501 :rtype: Balance """ return self._forecast_balance @forecast_balance.setter def forecast_balance(self, forecast_balance): """Sets the forecast_balance of this Forecast. Balance forecast # noqa: E501 :param forecast_balance: The forecast_balance of this Forecast. # noqa: E501 :type: Balance """ if forecast_balance is None: raise ValueError("Invalid value for `forecast_balance`, must not be `None`") # noqa: E501 self._forecast_balance = forecast_balance @property def account_id(self): """Gets the account_id of this Forecast. # noqa: E501 ID of account to which this entry belongs # noqa: E501 :return: The account_id of this Forecast. # noqa: E501 :rtype: int """ return self._account_id @account_id.setter def account_id(self, account_id): """Sets the account_id of this Forecast. ID of account to which this entry belongs # noqa: E501 :param account_id: The account_id of this Forecast. # noqa: E501 :type: int """ if account_id is None: raise ValueError("Invalid value for `account_id`, must not be `None`") # noqa: E501 self._account_id = account_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Forecast): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "six.iteritems" ]
[((3160, 3193), 'six.iteritems', 'six.iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (3173, 3193), False, 'import six\n')]
# -*- coding: utf-8 -*- from .context import in2dp from .mock_shellproxy import MockShellProxy import unittest class StdoutParserTestSuite(unittest.TestCase): def setUp(self): self.mockshell = MockShellProxy() self.parser = in2dp.StdoutParser() def test_parse_free_memory(self): '''Test parsing the stdout obtained from invoking the "free" shell command''' # stdout string returned from invoking the "free" shell command stdout = self.mockshell.free_memory() # parse the stdout into a json object stats_json = self.parser.parse_free_memory(stdout) # assert equality with expected values self.assertEqual(stats_json['total'], 1026800) self.assertEqual(stats_json['used'], 198248) self.assertEqual(stats_json['free'], 828552) self.assertEqual(stats_json['shared'], 1068) self.assertEqual(stats_json['buffers'], 6952) self.assertEqual(stats_json['cached'], 71672) self.assertEqual(stats_json['used_minus_bufferscache'], 119624) self.assertEqual(stats_json['free_plus_bufferscache'], 907176) def test_cpu_usage(self): '''Test parsing the stdout obtained from invoking the "free" shell command''' # stdout string returned from invoking the "top" shell command stdout = self.mockshell.cpu_usage() # parse the stdout into a json object stats_json = self.parser.parse_cpu_usage(stdout) # assert equality with expected values self.assertEqual(stats_json['usr'], 1) self.assertEqual(stats_json['sys'], 4) self.assertEqual(stats_json['nic'], 0) self.assertEqual(stats_json['idle'], 94) self.assertEqual(stats_json['io'], 0) self.assertEqual(stats_json['irq'], 0) self.assertEqual(stats_json['sirq'], 0) def test_parse_disk_usage(self): '''Test parsing the stdout obtained from invoking the "df" shell command''' # stdout string returned from invoking the "df" shell command stdout = self.mockshell.disk_usage() # parse the stdout into a json object stats_json = self.parser.parse_disk_usage(stdout) # assert equality with expected values self.assertEqual(stats_json['size'], 3936) self.assertEqual(stats_json['used'], 2300) self.assertEqual(stats_json['available'], 1415) self.assertEqual(stats_json['available_percentage'], 62) if __name__ == '__main__': unittest.main()
[ "unittest.main" ]
[((2510, 2525), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2523, 2525), False, 'import unittest\n')]
import pipinstall __version__ = pipinstall.__version__ def main(): pipinstall.main(True) if __name__ == '__main__': main()
[ "pipinstall.main" ]
[((73, 94), 'pipinstall.main', 'pipinstall.main', (['(True)'], {}), '(True)\n', (88, 94), False, 'import pipinstall\n')]
import config from pathlib import Path def test_carpeta_ssh(monkeypatch): def mock_return(*args, **kwargs): return Path("/abc") monkeypatch.setattr(Path, "home", mock_return) x = config.carpeta_ssh() assert x == Path("/abc/.ssh")
[ "config.carpeta_ssh", "pathlib.Path" ]
[((194, 214), 'config.carpeta_ssh', 'config.carpeta_ssh', ([], {}), '()\n', (212, 214), False, 'import config\n'), ((124, 136), 'pathlib.Path', 'Path', (['"""/abc"""'], {}), "('/abc')\n", (128, 136), False, 'from pathlib import Path\n'), ((230, 247), 'pathlib.Path', 'Path', (['"""/abc/.ssh"""'], {}), "('/abc/.ssh')\n", (234, 247), False, 'from pathlib import Path\n')]
import logging logger = logging.getLogger('pro.log') """ settings的示例: # 日志 LOGGING = { 'version': 1, 'disable_existing_loggers': False, # 是否禁用logger,建议设置为False 'formatters': { # 日志格式,提供给handler使用,非必须,如果不设置格式,默认只会打印消息体 'verbose': { # 格式名称 # INFO 2018-04-25 15:43:27,586 views 8756 123145350217728 这是一个日志 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { # INFO 这是一个日志 'format': '%(levelname)s %(message)s' }, 'standard': { # 2018-04-25 16:40:00,195 [Thread-7:123145575223296] [myapp.log:282] [views:user_query_json_get] [INFO]- # 这是一个日志 'format': '%(asctime)s [%(threadName)s:%(thread)d] [%(name)s:%(lineno)d] [%(module)s:%(funcName)s] [%(levelname)s]- %(message)s' }, }, 'filters': { # 过滤器,提供给handler使用,非必须 'require_debug_true': { # 要求DEBUG=True时才打印日志 '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { # 处理器,设置日志记录方式,必须 'console': { # 处理器名称 'level': 'DEBUG', # 设置级别 'filters': ['require_debug_true'], # 设置过滤器,多个用逗号分割 'class': 'logging.StreamHandler', # 处理器,这里是控制台打印 'formatter': 'verbose' # 设置日志格式 }, 'timedRotatingFile': { 'level': 'DEBUG', 'class': 'logging.handlers.TimedRotatingFileHandler', # 按时间切割日志 'filename': 'logs/pro.log', # 日志输出文件 'when': 'D', # 按天分割 'backupCount': 0, # 保留日志份数,只保留最后5份,如果都保留,设置为0,默认就是0 'formatter': 'standard', # 使用哪种formatters日志格式 }, }, 'loggers': { # 日志记录器 'django.request': { 'handlers': ['timedRotatingFile'], 'level': 'ERROR', 'propagate': False, # 设置为False,表示不像其父级别传递日志内容 }, 'pro.log': { # 也可以这样创建logger对象,logging.getLogger('myapp.log') 'handlers': ['timedRotatingFile'], 'level': 'DEBUG', # 这里的日志级别不能低于处理器中设置的日志级别 }, }, } """
[ "logging.getLogger" ]
[((25, 53), 'logging.getLogger', 'logging.getLogger', (['"""pro.log"""'], {}), "('pro.log')\n", (42, 53), False, 'import logging\n')]
# -*- coding: utf-8 -*- import requests, re, os from openpyxl import Workbook import optparse def getID(url): for match in re.finditer(r"deal_id=[0-9]{4,}", requests.get(url).text):return match.group().split('=')[1] def crawl(shopID,pages): comments = [] page = 1 while page <= pages: print("[+] Page %d saved"%page) data = requests.get("https://www.nuomi.com/pcindex/main/comment", params = {"dealId" : shopID, "page" : page}).json() for item in data["data"]["list"]: comment = {} comment['name'] = item['nickname'].encode('utf8') comment['score'] = item['score'] comment['create_time'] = item['create_time'] comment['update_time'] = item['update_time'] comment['content'] = item['content'].encode('utf8') comment['reply'] = "" if len(item['reply']) != 0: for reply in item['reply']: comment['reply'] = reply['content'].encode('utf8') break comments.append(comment) page += 1 return comments def save(comments,shopID): filename = os.getcwd() + os.sep + "NuomiShop%s.xlsx"%shopID wb = Workbook() ws = wb.active ws.cell(row=1, column=1).value = u"create_time" ws.cell(row=1, column=2).value = u"update_time" ws.cell(row=1, column=3).value = u"name" ws.cell(row=1, column=4).value = u"score" ws.cell(row=1, column=5).value = u"content" ws.cell(row=1, column=6).value = u"reply" for i in range(0, len(comments)): ws.cell(row=i+2, column=1).value = comments[i]['create_time'] ws.cell(row=i+2, column=2).value = comments[i]['update_time'] ws.cell(row=i+2, column=3).value = comments[i]['name'] ws.cell(row=i+2, column=4).value = comments[i]['score'] ws.cell(row=i+2, column=5).value = comments[i]['content'] ws.cell(row=i+2, column=6).value = comments[i]['reply'] if os.path.exists(filename): os.remove(filename) wb.save(filename) print("[:)] All Done!") print("[!] Saved to %s"%filename) def main(): parser = optparse.OptionParser('usage %prog -u'+\ '<shop url> -p <pages>') parser.add_option('-u',dest='shopURL',type='string',\ help='specify shop url') parser.add_option('-p',dest='pages',type='int',\ help='specify pages to crawl') (options,args) = parser.parse_args() shopURL = options.shopURL pages = options.pages if (pages ==None) | (shopURL == None): print('[-] You must specify a shopURL and pages to crawl.') exit(0) shopID = getID(shopURL) comments = crawl(shopID,pages) save(comments,shopID) if __name__ =="__main__": main()
[ "os.path.exists", "optparse.OptionParser", "requests.get", "os.getcwd", "openpyxl.Workbook", "os.remove" ]
[((1212, 1222), 'openpyxl.Workbook', 'Workbook', ([], {}), '()\n', (1220, 1222), False, 'from openpyxl import Workbook\n'), ((1983, 2007), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (1997, 2007), False, 'import requests, re, os\n'), ((2161, 2226), 'optparse.OptionParser', 'optparse.OptionParser', (["('usage %prog -u' + '<shop url> -p <pages>')"], {}), "('usage %prog -u' + '<shop url> -p <pages>')\n", (2182, 2226), False, 'import optparse\n'), ((2017, 2036), 'os.remove', 'os.remove', (['filename'], {}), '(filename)\n', (2026, 2036), False, 'import requests, re, os\n'), ((162, 179), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (174, 179), False, 'import requests, re, os\n'), ((1154, 1165), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1163, 1165), False, 'import requests, re, os\n'), ((358, 461), 'requests.get', 'requests.get', (['"""https://www.nuomi.com/pcindex/main/comment"""'], {'params': "{'dealId': shopID, 'page': page}"}), "('https://www.nuomi.com/pcindex/main/comment', params={'dealId':\n shopID, 'page': page})\n", (370, 461), False, 'import requests, re, os\n')]
from __future__ import print_function from newrelic.admin import command, usage @command('generate-config', 'license_key [output_file]', """Generates a sample agent configuration file for <license_key>.""") def generate_config(args): import os import sys if len(args) == 0: usage('generate-config') sys.exit(1) from newrelic import __file__ as package_root package_root = os.path.dirname(package_root) config_file = os.path.join(package_root, 'newrelic.ini') content = open(config_file, 'r').read() if len(args) >= 1: content = content.replace('*** REPLACE ME ***', args[0]) if len(args) >= 2 and args[1] != '-': output_file = open(args[1], 'w') output_file.write(content) output_file.close() else: print(content)
[ "os.path.join", "os.path.dirname", "newrelic.admin.usage", "sys.exit", "newrelic.admin.command" ]
[((83, 208), 'newrelic.admin.command', 'command', (['"""generate-config"""', '"""license_key [output_file]"""', '"""Generates a sample agent configuration file for <license_key>."""'], {}), "('generate-config', 'license_key [output_file]',\n 'Generates a sample agent configuration file for <license_key>.')\n", (90, 208), False, 'from newrelic.admin import command, usage\n'), ((412, 441), 'os.path.dirname', 'os.path.dirname', (['package_root'], {}), '(package_root)\n', (427, 441), False, 'import os\n'), ((461, 503), 'os.path.join', 'os.path.join', (['package_root', '"""newrelic.ini"""'], {}), "(package_root, 'newrelic.ini')\n", (473, 503), False, 'import os\n'), ((297, 321), 'newrelic.admin.usage', 'usage', (['"""generate-config"""'], {}), "('generate-config')\n", (302, 321), False, 'from newrelic.admin import command, usage\n'), ((330, 341), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (338, 341), False, 'import sys\n')]
from datetime import date dados = dict() dados['nome'] = str(input('Nome: ')).capitalize() dados['idade'] = date.today().year - int(input('Ano de Nascimento: ')) dados['ctps'] = int(input('Carteira de Trabalho (0 caso não tenha): ')) if dados['ctps'] != 0: dados['contratação'] = int(input('Ano de contratação: ')) dados['salário'] = float(input('Salário: R$')) dados['aposentadoria'] = dados['idade'] + (dados['contratação'] + 35) - date.today().year print('=-' * 30) for k, v in dados.items(): print(f' - {k} tem o valor {v}') # krl esse foi foda man...
[ "datetime.date.today" ]
[((109, 121), 'datetime.date.today', 'date.today', ([], {}), '()\n', (119, 121), False, 'from datetime import date\n'), ((449, 461), 'datetime.date.today', 'date.today', ([], {}), '()\n', (459, 461), False, 'from datetime import date\n')]
''' Copyright (c) 2018, UChicago Argonne, LLC See LICENSE file. ''' from PyQt5.QtWidgets import QMainWindow, QAction class MenuWidget(QMainWindow.menuBar): def __init__(self): super(MenuWidget,self).__init__() file_menu = self.addMenu('File') newAct = QAction('Load spec file', self) file_menu.addAction(newAct)
[ "PyQt5.QtWidgets.QAction" ]
[((287, 318), 'PyQt5.QtWidgets.QAction', 'QAction', (['"""Load spec file"""', 'self'], {}), "('Load spec file', self)\n", (294, 318), False, 'from PyQt5.QtWidgets import QMainWindow, QAction\n')]
from flask import current_app, jsonify from flask_cors import cross_origin from . import auth @auth.route('/auth/logout', methods=['OPTIONS', 'GET', 'POST']) @cross_origin(supports_credentials=True) def logout(): if not current_app.config['OIDC_LOGOUT_URL']: return jsonify(status='ok', message='OIDC end_session_endpoint not configured') return jsonify(status='ok', logoutUrl=current_app.config['OIDC_LOGOUT_URL'])
[ "flask_cors.cross_origin", "flask.jsonify" ]
[((162, 201), 'flask_cors.cross_origin', 'cross_origin', ([], {'supports_credentials': '(True)'}), '(supports_credentials=True)\n', (174, 201), False, 'from flask_cors import cross_origin\n'), ((367, 436), 'flask.jsonify', 'jsonify', ([], {'status': '"""ok"""', 'logoutUrl': "current_app.config['OIDC_LOGOUT_URL']"}), "(status='ok', logoutUrl=current_app.config['OIDC_LOGOUT_URL'])\n", (374, 436), False, 'from flask import current_app, jsonify\n'), ((282, 354), 'flask.jsonify', 'jsonify', ([], {'status': '"""ok"""', 'message': '"""OIDC end_session_endpoint not configured"""'}), "(status='ok', message='OIDC end_session_endpoint not configured')\n", (289, 354), False, 'from flask import current_app, jsonify\n')]
from lib.topology import Master, OVS, Netns, Link m = Master() ovs1 = OVS().add_to(m) ovs2 = OVS().add_to(m) ovs3 = OVS().add_to(m) ovs4 = OVS().add_to(m) Link.declare(ovs1, ovs2, link_type='patch') Link.declare(ovs2, ovs3, link_type='veth') Link.declare(ovs3, ovs4, link_type='veth', disable_offloading=True) ns1 = Netns().add_to(m) Link.declare((ns1, '10.113.1.1'), ovs1, link_type='port') ns2 = Netns('wonderful-ns2').add_to(m) Link.declare((ns2,'10.113.1.2'), ovs3, link_type='veth') ns3 = Netns('notoffld-ns3').add_to(m) Link.declare((ns3,'10.113.1.3'), ovs4, link_type='port', disable_offloading=True) Link.declare((ns3,'10.113.1.4'), ovs3, link_type='veth', disable_offloading=True) Link.declare(ns1, ns2) Link.declare(ns1, ns3, disable_offloading=True) print(m.get_script())
[ "lib.topology.Master", "lib.topology.Link.declare", "lib.topology.OVS", "lib.topology.Netns" ]
[((55, 63), 'lib.topology.Master', 'Master', ([], {}), '()\n', (61, 63), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((161, 204), 'lib.topology.Link.declare', 'Link.declare', (['ovs1', 'ovs2'], {'link_type': '"""patch"""'}), "(ovs1, ovs2, link_type='patch')\n", (173, 204), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((205, 247), 'lib.topology.Link.declare', 'Link.declare', (['ovs2', 'ovs3'], {'link_type': '"""veth"""'}), "(ovs2, ovs3, link_type='veth')\n", (217, 247), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((248, 315), 'lib.topology.Link.declare', 'Link.declare', (['ovs3', 'ovs4'], {'link_type': '"""veth"""', 'disable_offloading': '(True)'}), "(ovs3, ovs4, link_type='veth', disable_offloading=True)\n", (260, 315), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((341, 398), 'lib.topology.Link.declare', 'Link.declare', (["(ns1, '10.113.1.1')", 'ovs1'], {'link_type': '"""port"""'}), "((ns1, '10.113.1.1'), ovs1, link_type='port')\n", (353, 398), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((439, 496), 'lib.topology.Link.declare', 'Link.declare', (["(ns2, '10.113.1.2')", 'ovs3'], {'link_type': '"""veth"""'}), "((ns2, '10.113.1.2'), ovs3, link_type='veth')\n", (451, 496), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((535, 621), 'lib.topology.Link.declare', 'Link.declare', (["(ns3, '10.113.1.3')", 'ovs4'], {'link_type': '"""port"""', 'disable_offloading': '(True)'}), "((ns3, '10.113.1.3'), ovs4, link_type='port',\n disable_offloading=True)\n", (547, 621), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((617, 703), 'lib.topology.Link.declare', 'Link.declare', (["(ns3, '10.113.1.4')", 'ovs3'], {'link_type': '"""veth"""', 'disable_offloading': '(True)'}), "((ns3, '10.113.1.4'), ovs3, link_type='veth',\n disable_offloading=True)\n", (629, 703), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((700, 722), 'lib.topology.Link.declare', 'Link.declare', (['ns1', 'ns2'], {}), '(ns1, ns2)\n', (712, 722), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((723, 770), 'lib.topology.Link.declare', 'Link.declare', (['ns1', 'ns3'], {'disable_offloading': '(True)'}), '(ns1, ns3, disable_offloading=True)\n', (735, 770), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((72, 77), 'lib.topology.OVS', 'OVS', ([], {}), '()\n', (75, 77), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((96, 101), 'lib.topology.OVS', 'OVS', ([], {}), '()\n', (99, 101), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((120, 125), 'lib.topology.OVS', 'OVS', ([], {}), '()\n', (123, 125), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((144, 149), 'lib.topology.OVS', 'OVS', ([], {}), '()\n', (147, 149), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((323, 330), 'lib.topology.Netns', 'Netns', ([], {}), '()\n', (328, 330), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((406, 428), 'lib.topology.Netns', 'Netns', (['"""wonderful-ns2"""'], {}), "('wonderful-ns2')\n", (411, 428), False, 'from lib.topology import Master, OVS, Netns, Link\n'), ((503, 524), 'lib.topology.Netns', 'Netns', (['"""notoffld-ns3"""'], {}), "('notoffld-ns3')\n", (508, 524), False, 'from lib.topology import Master, OVS, Netns, Link\n')]
from pathlib import Path from fhir.resources.codesystem import CodeSystem from oops_fhir.utils import CodeSystemConcept __all__ = ["medicationRequestIntent"] _resource = CodeSystem.parse_file(Path(__file__).with_suffix(".json")) class medicationRequestIntent: """ Medication request intent MedicationRequest Intent Codes Status: draft - Version: 4.0.1 Copyright None http://hl7.org/fhir/CodeSystem/medicationrequest-intent """ proposal = CodeSystemConcept( { "code": "proposal", "definition": "The request is a suggestion made by someone/something that doesn't have an intention to ensure it occurs and without providing an authorization to act", "display": "Proposal", } ) """ Proposal The request is a suggestion made by someone/something that doesn't have an intention to ensure it occurs and without providing an authorization to act """ plan = CodeSystemConcept( { "code": "plan", "definition": "The request represents an intention to ensure something occurs without providing an authorization for others to act.", "display": "Plan", } ) """ Plan The request represents an intention to ensure something occurs without providing an authorization for others to act. """ order = CodeSystemConcept( { "code": "order", "definition": "The request represents a request/demand and authorization for action", "display": "Order", } ) """ Order The request represents a request/demand and authorization for action """ original_order = CodeSystemConcept( { "code": "original-order", "definition": "The request represents the original authorization for the medication request.", "display": "Original Order", } ) """ Original Order The request represents the original authorization for the medication request. """ reflex_order = CodeSystemConcept( { "code": "reflex-order", "definition": "The request represents an automatically generated supplemental authorization for action based on a parent authorization together with initial results of the action taken against that parent authorization..", "display": "Reflex Order", } ) """ Reflex Order The request represents an automatically generated supplemental authorization for action based on a parent authorization together with initial results of the action taken against that parent authorization.. """ filler_order = CodeSystemConcept( { "code": "filler-order", "definition": "The request represents the view of an authorization instantiated by a fulfilling system representing the details of the fulfiller's intention to act upon a submitted order.", "display": "Filler Order", } ) """ Filler Order The request represents the view of an authorization instantiated by a fulfilling system representing the details of the fulfiller's intention to act upon a submitted order. """ instance_order = CodeSystemConcept( { "code": "instance-order", "definition": "The request represents an instance for the particular order, for example a medication administration record.", "display": "Instance Order", } ) """ Instance Order The request represents an instance for the particular order, for example a medication administration record. """ option = CodeSystemConcept( { "code": "option", "definition": "The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests.", "display": "Option", } ) """ Option The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests. """ class Meta: resource = _resource
[ "oops_fhir.utils.CodeSystemConcept", "pathlib.Path" ]
[((483, 722), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (['{\'code\': \'proposal\', \'definition\':\n "The request is a suggestion made by someone/something that doesn\'t have an intention to ensure it occurs and without providing an authorization to act"\n , \'display\': \'Proposal\'}'], {}), '({\'code\': \'proposal\', \'definition\':\n "The request is a suggestion made by someone/something that doesn\'t have an intention to ensure it occurs and without providing an authorization to act"\n , \'display\': \'Proposal\'})\n', (500, 722), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((972, 1169), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'plan', 'definition':\n 'The request represents an intention to ensure something occurs without providing an authorization for others to act.'\n , 'display': 'Plan'}"], {}), "({'code': 'plan', 'definition':\n 'The request represents an intention to ensure something occurs without providing an authorization for others to act.'\n , 'display': 'Plan'})\n", (989, 1169), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((1382, 1532), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'order', 'definition':\n 'The request represents a request/demand and authorization for action',\n 'display': 'Order'}"], {}), "({'code': 'order', 'definition':\n 'The request represents a request/demand and authorization for action',\n 'display': 'Order'})\n", (1399, 1532), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((1708, 1886), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'original-order', 'definition':\n 'The request represents the original authorization for the medication request.'\n , 'display': 'Original Order'}"], {}), "({'code': 'original-order', 'definition':\n 'The request represents the original authorization for the medication request.'\n , 'display': 'Original Order'})\n", (1725, 1886), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((2077, 2379), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'reflex-order', 'definition':\n 'The request represents an automatically generated supplemental authorization for action based on a parent authorization together with initial results of the action taken against that parent authorization..'\n , 'display': 'Reflex Order'}"], {}), "({'code': 'reflex-order', 'definition':\n 'The request represents an automatically generated supplemental authorization for action based on a parent authorization together with initial results of the action taken against that parent authorization..'\n , 'display': 'Reflex Order'})\n", (2094, 2379), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((2696, 2965), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (['{\'code\': \'filler-order\', \'definition\':\n "The request represents the view of an authorization instantiated by a fulfilling system representing the details of the fulfiller\'s intention to act upon a submitted order."\n , \'display\': \'Filler Order\'}'], {}), '({\'code\': \'filler-order\', \'definition\':\n "The request represents the view of an authorization instantiated by a fulfilling system representing the details of the fulfiller\'s intention to act upon a submitted order."\n , \'display\': \'Filler Order\'})\n', (2713, 2965), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((3251, 3460), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'instance-order', 'definition':\n 'The request represents an instance for the particular order, for example a medication administration record.'\n , 'display': 'Instance Order'}"], {}), "({'code': 'instance-order', 'definition':\n 'The request represents an instance for the particular order, for example a medication administration record.'\n , 'display': 'Instance Order'})\n", (3268, 3460), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((3676, 3915), 'oops_fhir.utils.CodeSystemConcept', 'CodeSystemConcept', (["{'code': 'option', 'definition':\n 'The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests.'\n , 'display': 'Option'}"], {}), "({'code': 'option', 'definition':\n 'The request represents a component or option for a RequestGroup that establishes timing, conditionality and/or other constraints among a set of requests.'\n , 'display': 'Option'})\n", (3693, 3915), False, 'from oops_fhir.utils import CodeSystemConcept\n'), ((197, 211), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (201, 211), False, 'from pathlib import Path\n')]
# -*- coding: utf-8 -*- import os admins = ['Tyranic-Moron', 'T-M|Work', 'Tyranic_Moron', 'T-M|Asleep', 'GarrusVakarian', 'LordCustardSmingleigh', 'XelaReko', 'XelaReco', 'Xel|Work', 'dave_random', 'ElementalAlchemist', 'Homoglyph', 'Heufy|Work', 'Heufneutje', 'HeufyDroid', 'HeufyCloud', 'HeufyTrain', 'HeufyBus', 'HubbeKing', 'HubbeWork', 'HubbeTrain', 'Mara', 'Didero', 'ekimekim'] finger = 'GET YOUR FINGER OUT OF THERE' version = '1.0.0' source = 'https://github.com/MatthewCox/PyMoronBot/' abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) logPath = os.path.join(dname, 'logs')
[ "os.path.abspath", "os.path.dirname", "os.chdir", "os.path.join" ]
[((509, 534), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (524, 534), False, 'import os\n'), ((543, 567), 'os.path.dirname', 'os.path.dirname', (['abspath'], {}), '(abspath)\n', (558, 567), False, 'import os\n'), ((568, 583), 'os.chdir', 'os.chdir', (['dname'], {}), '(dname)\n', (576, 583), False, 'import os\n'), ((594, 621), 'os.path.join', 'os.path.join', (['dname', '"""logs"""'], {}), "(dname, 'logs')\n", (606, 621), False, 'import os\n')]
import pytest from config_file import parse_dialog_from_json def test_empty_invalid(): with pytest.raises(ValueError) as excinfo: parse_dialog_from_json({}) assert "Invalid configuration file!" in str(excinfo.value) def test_load_simple_sequence(): dialog_json = { "sequence": [ ["text 1", "image 1"], ["text 2", "image 2"] ] } dialog_graph = parse_dialog_from_json(dialog_json) assert dialog_graph.current_node().text == "text 1" assert dialog_graph.current_node().graphics.image_ids == ["image 1"] assert dialog_graph.current_node().choices[0].text == "Next" dialog_graph.make_choice(0) assert dialog_graph.current_node().text == "text 2" assert dialog_graph.current_node().graphics.image_ids == ["image 2"] assert dialog_graph.current_node().choices[0].text == "Play from beginning" def test_load_graph(): dialog_json = { "graph": { "root": "1", "nodes": [ { "id": "1", "text": "text 1", "graphics": { "image": "image 1" }, "choices": [ [ "stay here", "1" ], [ "go next", "2" ] ] }, { "id": "2", "text": "text 2", "graphics": { "image": "image 2" }, "choices": [ [ "go back", "1" ] ] } ] } } dialog_graph = parse_dialog_from_json(dialog_json) assert dialog_graph.current_node().text == "text 1" assert dialog_graph.current_node().graphics.image_ids == ["image 1"] assert [c.text for c in dialog_graph.current_node().choices] == ["stay here", "go next"] dialog_graph.make_choice(1) assert dialog_graph.current_node().text == "text 2" assert dialog_graph.current_node().graphics.image_ids == ["image 2"] assert [c.text for c in dialog_graph.current_node().choices] == ["go back"] def test_load_graph_with_animation(): dialog_json = { "graph": { "root": "1", "nodes": [ { "id": "1", "text": "text 1", "graphics": { "animation": "animation 1", }, "choices": [] } ] } } dialog_graph = parse_dialog_from_json(dialog_json) assert dialog_graph.current_node().text == "text 1" assert dialog_graph.current_node().graphics.animation_id == "animation 1" assert dialog_graph.current_node().choices == []
[ "pytest.raises", "config_file.parse_dialog_from_json" ]
[((442, 477), 'config_file.parse_dialog_from_json', 'parse_dialog_from_json', (['dialog_json'], {}), '(dialog_json)\n', (464, 477), False, 'from config_file import parse_dialog_from_json\n'), ((1968, 2003), 'config_file.parse_dialog_from_json', 'parse_dialog_from_json', (['dialog_json'], {}), '(dialog_json)\n', (1990, 2003), False, 'from config_file import parse_dialog_from_json\n'), ((2892, 2927), 'config_file.parse_dialog_from_json', 'parse_dialog_from_json', (['dialog_json'], {}), '(dialog_json)\n', (2914, 2927), False, 'from config_file import parse_dialog_from_json\n'), ((99, 124), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (112, 124), False, 'import pytest\n'), ((145, 171), 'config_file.parse_dialog_from_json', 'parse_dialog_from_json', (['{}'], {}), '({})\n', (167, 171), False, 'from config_file import parse_dialog_from_json\n')]
# from pong import Pong import matplotlib matplotlib.use('Agg') # import matplotlib.pyplot as plt # from random import randint # import pickle import numpy as np # from simple_ai import PongAi, MyAi # # import argparse import torch import torch.optim as optim from torch import nn from torch.nn import functional as F # from PIL import Image # from skimage.transform import resize np.set_printoptions(threshold=np.nan) import collections import gym torch.set_default_tensor_type('torch.cuda.DoubleTensor') # CUDA use_cuda = torch.cuda.is_available() print("Using cuda:", use_cuda) class CriticNN(nn.Module): def __init__(self, in_channels=3): super(CriticNN, self).__init__() self.fc1 = nn.Linear(4, 64) self.fc2 = nn.Linear(64, 1) self.optimizer = optim.Adam(self.parameters(), lr=1e-4) print('self params', self.parameters) def forward(self, x): # x = torch.from_numpy(x) x = F.layer_norm(x, x.size()) x = F.leaky_relu(self.fc1(x)) x = F.layer_norm(x, x.size()) x = self.fc2(x) return x def init_weights(self, m): if type(m) == nn.Linear: print('HERE ---') # torch.nn.init.xavier_uniform(m.weight) m.weight.data.fill_(0) m.bias.data.fill_(0) class ActorNN(nn.Module): def __init__(self): super(ActorNN, self).__init__() self.fc1 = nn.Linear(4, 64) self.fc2 = nn.Linear(64, 1) self.optimizer = optim.Adam(self.parameters(), lr=1e-4) def forward(self, x): # print(x.size()) # print('x', x) x = F.layer_norm(x, x.size()) x = F.leaky_relu(self.fc1(x)) x = F.layer_norm(x, x.size()) x = torch.sigmoid(self.fc2(x)) return x def train(self, loss): self.optimizer.zero_grad() loss.backward() self.optimizer.step() # class ReplayMemory(object): # # def __init__(self, capacity): # self.capacity = capacity # self.memory = [] # self.position = 0 # # def push(self, *args): # """Saves a transition.""" # if len(self.memory) < self.capacity: # self.memory.append(None) # self.memory[self.position] = Transition(*args) # self.position = (self.position + 1) % self.capacity # # def sample(self, batch_size): # return random.sample(self.memory, batch_size) # # def __len__(self): # return len(self.memory) actor = ActorNN() critic = CriticNN() critic.apply(critic.init_weights) # props to karpathy def discount_rewards(r, gamma=0.99): """ take 1D float array of rewards and compute discounted reward """ discounted_r = np.zeros_like(r) running_add = 0 for t in reversed(xrange(0, r.size)): if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!) running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r render = False env = gym.make('CartPole-v0') actor_update_freq = 10 critic_update_freq = 1 gamma = 0.99 log_freq = 100 running_rewards = collections.deque(maxlen=log_freq) rewards, probs, actions, value_approx = [], [], [], [] for i_episode in range(1, 100000000): done = False losses_actor, losses_critic = [], [] observation_prev = torch.tensor(env.reset()).cuda ep_reward = 0 while not done: # env.render() left_prob = actor.forward(torch.from_numpy(observation_prev).cuda()) action = 0 if np.random.uniform() < left_prob else 1 lprob = torch.log(left_prob) if action == 0 else torch.log(1 - left_prob) observation, reward, done, info = env.step(action) # s_t + 1 value_approx.append(torch.tensor(observation).cuda) # R(s_t, a_t) rewards.append(reward) # logp(a_t | s_t) probs.append(lprob) # a_t actions.append(action) # for t in range(t-1 , ... t_start): for t in reversed(xrange(0, len(rewards))): is_terminal = t == 0 observation_t R = critic.forward() if i_episode % log_freq == 0: print(f"Episode: {i_episode}, last {log_freq} episodes mean reward: { np.mean(running_rewards)}") running_rewards.append(ep_reward)
[ "numpy.mean", "collections.deque", "torch.log", "matplotlib.use", "torch.set_default_tensor_type", "torch.from_numpy", "torch.tensor", "torch.cuda.is_available", "torch.nn.Linear", "numpy.random.uniform", "numpy.zeros_like", "gym.make", "numpy.set_printoptions" ]
[((43, 64), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (57, 64), False, 'import matplotlib\n'), ((383, 420), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.nan'}), '(threshold=np.nan)\n', (402, 420), True, 'import numpy as np\n'), ((452, 508), 'torch.set_default_tensor_type', 'torch.set_default_tensor_type', (['"""torch.cuda.DoubleTensor"""'], {}), "('torch.cuda.DoubleTensor')\n", (481, 508), False, 'import torch\n'), ((527, 552), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (550, 552), False, 'import torch\n'), ((3008, 3031), 'gym.make', 'gym.make', (['"""CartPole-v0"""'], {}), "('CartPole-v0')\n", (3016, 3031), False, 'import gym\n'), ((3124, 3158), 'collections.deque', 'collections.deque', ([], {'maxlen': 'log_freq'}), '(maxlen=log_freq)\n', (3141, 3158), False, 'import collections\n'), ((2710, 2726), 'numpy.zeros_like', 'np.zeros_like', (['r'], {}), '(r)\n', (2723, 2726), True, 'import numpy as np\n'), ((712, 728), 'torch.nn.Linear', 'nn.Linear', (['(4)', '(64)'], {}), '(4, 64)\n', (721, 728), False, 'from torch import nn\n'), ((748, 764), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(1)'], {}), '(64, 1)\n', (757, 764), False, 'from torch import nn\n'), ((1420, 1436), 'torch.nn.Linear', 'nn.Linear', (['(4)', '(64)'], {}), '(4, 64)\n', (1429, 1436), False, 'from torch import nn\n'), ((1456, 1472), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(1)'], {}), '(64, 1)\n', (1465, 1472), False, 'from torch import nn\n'), ((3579, 3599), 'torch.log', 'torch.log', (['left_prob'], {}), '(left_prob)\n', (3588, 3599), False, 'import torch\n'), ((3620, 3644), 'torch.log', 'torch.log', (['(1 - left_prob)'], {}), '(1 - left_prob)\n', (3629, 3644), False, 'import torch\n'), ((3524, 3543), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (3541, 3543), True, 'import numpy as np\n'), ((3751, 3776), 'torch.tensor', 'torch.tensor', (['observation'], {}), '(observation)\n', (3763, 3776), False, 'import torch\n'), ((3459, 3493), 'torch.from_numpy', 'torch.from_numpy', (['observation_prev'], {}), '(observation_prev)\n', (3475, 3493), False, 'import torch\n'), ((4222, 4246), 'numpy.mean', 'np.mean', (['running_rewards'], {}), '(running_rewards)\n', (4229, 4246), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ """ from dubbo.common.util import num_2_byte_list # 服务端的响应码 response_status_message = { 20: 'OK', 30: 'CLIENT_TIMEOUT', 31: 'SERVER_TIMEOUT', 40: 'BAD_REQUEST', 50: 'BAD_RESPONSE', 60: 'SERVICE_NOT_FOUND', 70: 'SERVICE_ERROR', 80: 'SERVER_ERROR', 90: 'CLIENT_ERROR' } # 32位整型的最大值 MAX_INT_32 = 2147483647 # 32位整型的最小值 MIN_INT_32 = -2147483648 # MAGIC_NUM(2) + FLAG(1) + STATUS(1) DEFAULT_REQUEST_META = num_2_byte_list(0xdabbc200) # 客户端对服务端发送的心跳的请求的头部 CLI_HEARTBEAT_REQ_HEAD = num_2_byte_list(0xdabbe2) + [0] # 客户端对服务端发送的心跳的响应的头部 CLI_HEARTBEAT_RES_HEAD = num_2_byte_list(0xdabb2214) # 心跳尾部 CLI_HEARTBEAT_TAIL = [0, 0, 0, 1] + num_2_byte_list(0x4e) DUBBO_ZK_PROVIDERS = '/dubbo/{}/providers' DUBBO_ZK_CONSUMERS = '/dubbo/{}/consumers' DUBBO_ZK_CONFIGURATORS = '/dubbo/{}/configurators' # 客户端检测与远程主机的连接是否超时的间隔 TIMEOUT_CHECK_INTERVAL = 0.03 # 30ms # 连接最长允许的空闲时间 TIMEOUT_IDLE = 60 # 连接允许的最多的超时次数 TIMEOUT_MAX_TIMES = 3 # 数据的头部大小为16个字节 # 读取的数据类型:1 head; 2 error_body; 3 common_body; # 头部信息不存在invoke_id,所以为None DEFAULT_READ_PARAMS = 16, 1, None
[ "dubbo.common.util.num_2_byte_list" ]
[((1271, 1298), 'dubbo.common.util.num_2_byte_list', 'num_2_byte_list', (['(3669737984)'], {}), '(3669737984)\n', (1286, 1298), False, 'from dubbo.common.util import num_2_byte_list\n'), ((1424, 1451), 'dubbo.common.util.num_2_byte_list', 'num_2_byte_list', (['(3669697044)'], {}), '(3669697044)\n', (1439, 1451), False, 'from dubbo.common.util import num_2_byte_list\n'), ((1346, 1371), 'dubbo.common.util.num_2_byte_list', 'num_2_byte_list', (['(14334946)'], {}), '(14334946)\n', (1361, 1371), False, 'from dubbo.common.util import num_2_byte_list\n'), ((1495, 1514), 'dubbo.common.util.num_2_byte_list', 'num_2_byte_list', (['(78)'], {}), '(78)\n', (1510, 1514), False, 'from dubbo.common.util import num_2_byte_list\n')]
from resotolib.args import get_arg_parser, ArgumentParser from resoto_plugin_tagvalidator import TagValidatorPlugin def test_args(): arg_parser = get_arg_parser() TagValidatorPlugin.add_args(arg_parser) arg_parser.parse_args() assert ArgumentParser.args.tagvalidator_config is None assert ArgumentParser.args.tagvalidator_dry_run is False
[ "resoto_plugin_tagvalidator.TagValidatorPlugin.add_args", "resotolib.args.get_arg_parser" ]
[((152, 168), 'resotolib.args.get_arg_parser', 'get_arg_parser', ([], {}), '()\n', (166, 168), False, 'from resotolib.args import get_arg_parser, ArgumentParser\n'), ((173, 212), 'resoto_plugin_tagvalidator.TagValidatorPlugin.add_args', 'TagValidatorPlugin.add_args', (['arg_parser'], {}), '(arg_parser)\n', (200, 212), False, 'from resoto_plugin_tagvalidator import TagValidatorPlugin\n')]
from executor import Executor class ExecutorBuilder: def __init__(self, sim, simulator, spinnVersion, fsa, neal, neuronRepository, connectionsRepository, activationsRepository, logger): self.__simulator = simulator self.__fsa = fsa self.__neal = neal self.__sim = sim self.__spinnVersion = spinnVersion self.__neuronRepository = neuronRepository self.__connectionsRepository = connectionsRepository self.__activationsRepository = activationsRepository self.__logger = logger self.__associationTopology = None def useAssociationTopology(self, topology): if(topology): self.__associationTopology = topology return self def build(self): return Executor(self.__sim, self.__simulator, self.__fsa, self.__neal, self.__spinnVersion, self.__neuronRepository, self.__connectionsRepository, self.__activationsRepository, self.__associationTopology, self.__logger)
[ "executor.Executor" ]
[((849, 1070), 'executor.Executor', 'Executor', (['self.__sim', 'self.__simulator', 'self.__fsa', 'self.__neal', 'self.__spinnVersion', 'self.__neuronRepository', 'self.__connectionsRepository', 'self.__activationsRepository', 'self.__associationTopology', 'self.__logger'], {}), '(self.__sim, self.__simulator, self.__fsa, self.__neal, self.\n __spinnVersion, self.__neuronRepository, self.__connectionsRepository,\n self.__activationsRepository, self.__associationTopology, self.__logger)\n', (857, 1070), False, 'from executor import Executor\n')]
from itertools import permutations from functools import reduce, partial import re from typing import Collection, Tuple from pynagram.util import WordList, log _word_list = None def find_valid_words(dictionary: Collection[str], candidates: Collection[str]) -> Collection[str]: """Finds valid words from 'candidates' as found in the given words list. dictionary: the list to be used as a dictionary. Only strings in the dictionary are considered valid words candidates: strings to be tested for validity """ dictionary, perms = set(dictionary), set(candidates) return dictionary & perms def _remove_chars(string, chars): for k in chars: string = string.replace(k, '', 1) return string # @log def _const_sentences(string: str, words_list: Collection[str]) -> Tuple[bool, Collection[str]]: if not string: return True, [] words = sorted(get_anagrams(string, words_list, 1, len(string)), key=lambda s: (len(s), s)) # click.secho(f"words = {words}", fg='green') if len(words) == 0: return False, [] acc = [] for w in words: flag, tails = _const_sentences(_remove_chars(string, w), words_list) if flag: acc += [f"{w} {tail}" for tail in tails] if tails else [w] return len(acc) > 0, acc # @log # @timed def construct_sentences(string: str, words_list: Collection[str]) -> Collection[str]: if not words_list: raise ValueError('Word list required for creating sentences') _, sentences = _const_sentences(string, words_list) return sentences def get_anagrams(string: str, dictionary: Collection[str], mn: int, mx: int) -> Collection[str]: """Generates all anagrams of the string s using the provided dictionary, whose lengths are >= mn and <= mx. Thus the function returns all w such that w is in dictionary and mn <= len(w) <= mx. If no dictionary is given, then a list of permuted strings will be returned s: the string to be used to generate anagrams dictionary: the dictionary to be used to determine valid words mn: the minimum length of words to be returned mx: the maximum length of words to be returned """ if not string: return set() if not mx: mx = len(string) if not mn: mn = mx string = re.sub(r'\s+', '', string.lower()) strings = {''.join(e) for e in reduce(lambda acc, xs: acc | set(xs), map(partial(permutations, string), range(mn, mx + 1)), set())} if not dictionary: return strings return find_valid_words(dictionary, strings) # @log def load_dict(filename, mn=None, mx=None): """ Loads words from a dictionary (word list) filename: the path to the word list - mandatory mn: minimum length of words to be imported mx: the maximum length of imported words """ global _word_list if not _word_list: if mn is None: mn = 1 words = [] with open(filename) as f: words += f.read().split('\n') words_list = [s for s in words if (not mx and mn <= len(s) or mn <= len(s) <= mx)] # click.echo(f'[debug] <load_dict> Word list size = {len(words_list)}') _word_list = WordList(words_list) return _word_list def is_word(string: str, words: Collection[str]) -> bool: return string in words
[ "pynagram.util.WordList", "functools.partial" ]
[((3306, 3326), 'pynagram.util.WordList', 'WordList', (['words_list'], {}), '(words_list)\n', (3314, 3326), False, 'from pynagram.util import WordList, log\n'), ((2477, 2506), 'functools.partial', 'partial', (['permutations', 'string'], {}), '(permutations, string)\n', (2484, 2506), False, 'from functools import reduce, partial\n')]
''' ms1 experiment (:mod:`calour.ms1_experiment`) ============================================= .. currentmodule:: calour.ms1_experiment Classes ^^^^^^^ .. autosummary:: :toctree: generated MS1Experiment ''' # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Calour development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from logging import getLogger import matplotlib as mpl import numpy as np from .experiment import Experiment from .util import _to_list logger = getLogger(__name__) class MS1Experiment(Experiment): '''This class contains the data of Mass-Spec ms1 spectra experiment. Parameters ---------- data : numpy.ndarray or scipy.sparse.csr_matrix The abundance table for OTUs, metabolites, genes, etc. Samples are in row and features in column sample_metadata : pandas.DataFrame The metadata on the samples feature_metadata : pandas.DataFrame The metadata on the features description : str name of experiment sparse : bool store the data array in :class:`scipy.sparse.csr_matrix` or :class:`numpy.ndarray` Attributes ---------- data : numpy.ndarray or scipy.sparse.csr_matrix The abundance table for OTUs, metabolites, genes, etc. Samples are in row and features in column sample_metadata : pandas.DataFrame The metadata on the samples feature_metadata : pandas.DataFrame The metadata on the features shape : tuple of (int, int) the dimension of data sparse : bool store the data as sparse matrix (scipy.sparse.csr_matrix) or numpy array. info : dict information about the experiment (data md5, filenames, etc.) description : str name of the experiment See Also -------- Experiment ''' def __init__(self, *args, databases=('gnps',), **kwargs): super().__init__(*args, databases=('gnps',), **kwargs) def heatmap(self, *args, **kwargs): '''Plot a heatmap for the ms1 experiment. This method accepts exactly the same parameters as input with its parent class method and does exactly the sample plotting. The only difference is that by default, its color scale is **in log** as its `norm` parameter is set to `matplotlib.colors.LogNorm()`. You can always set it to other scale as explained in :meth:`.Experiment.heatmap`. See Also -------- Experiment.heatmap ''' if 'norm' not in kwargs: kwargs['norm'] = mpl.colors.LogNorm() if 'mz_rt' in self.feature_metadata.columns: if 'yticklabel_len' not in kwargs: kwargs['yticklabel_len'] = None if 'feature_field' not in kwargs: kwargs['feature_field'] = 'mz_rt' if 'yticklabel_kwargs' not in kwargs: kwargs['yticklabel_kwargs'] = {'size': 6, 'rotation': 0} super().heatmap(*args, **kwargs) def __repr__(self): '''Return a string representation of this object.''' return 'MS1Experiment %s with %d samples, %d features' % ( self.description, self.data.shape[0], self.data.shape[1]) def get_spurious_duplicates(self, mz_tolerance=0.001, rt_tolerance=2, corr_thresh=0.8, inplace=False, negate=False): '''Get subgroups of metabolites that are suspected ms1 alignment artifacts. The function returns a calour.MS1Experiment with groups of metabolites that (within each group) have similar m/z and rt, and are highly correlated/anti-correlated. These are usually due to incorrect feature detection/alignment and can be used to optimize the feature selection parameters. correlation could be due to incomplete removal of isotopes or same metabolite in multiple RTs anti-correlation could be due to RT drift (splitting of one true metabolite) Metabolites in the new experiment are ordered by correlation clusters Parameters ---------- mz_tolerance: float, optional the M/Z tolerance. Metabolites are similar if abs(metabolite_mz - mz) <= mz_tolerance rt_tolerance: float, optional the retention time tolerance. Metabolites are similar if abs(metabolite_rt - rt) <= rt_tolerance corr_threshold: float, optional the minimal (abs) correlation/anti-correlation value in order to call features correlated inplace: bool, optional True to replace current experiment, False to create new experiment with results negate: bool, optional If False, keep only metabolites that show a correlation with another metabolite If True, remove metabolites showing correlation Returns ------- MS1Experiment features filtered and ordered basen on m/z and rt similarity and correlation ''' features = self.feature_metadata.copy() keep_features = [] data = self.get_data(sparse=False) while len(features) > 0: # get the first feature cfeature = features.iloc[0] features.drop(index=cfeature.name, inplace=True) # find all mz/rt neighbors of the feature mzdist = np.abs(features['MZ'] - cfeature['MZ']) rtdist = np.abs(features['RT'] - cfeature['RT']) okf = features[np.logical_and(mzdist <= mz_tolerance, rtdist <= rt_tolerance)] if len(okf) == 0: continue # test the correlation of each neighbor odat = data[:, self.feature_metadata.index.get_loc(cfeature.name)] ckeep = [] for cf, *_ in okf.iterrows(): cdat = data[:, self.feature_metadata.index.get_loc(cf)] corrcf = np.corrcoef(odat, cdat)[0, 1] if np.abs(corrcf) >= corr_thresh: ckeep.append(cf) # store the result and remove all the correlated features from the features left to process if len(ckeep) > 0: keep_features.append(cfeature.name) keep_features.extend(ckeep) features.drop(index=ckeep, inplace=True) return self.filter_ids(keep_features, negate=negate, inplace=inplace) def merge_similar_features(self, mz_tolerance=0.001, rt_tolerance=0.5): '''Merge metabolites with similar mz/rt to a single metabolite Metabolites are initially sorted by frequency and a greedy clustering algorithm (starting from the highest freq.) is used to join together metabolites that are close in m/z and r/t, combining them to a signle metabolite with freq=sum(freq) of all metabolites in the cluster. Parameters ---------- mz_tolerance: float, optional metabolites with abs(metabolite_mz - mz) <= mz_tolerance are joined rt_tolerance: float, optional metabolites with abs(metabolite_rt - rt) <= rt_tolerance are joined Returns ------- MS1Experiment With close metabolites joined to a single metabolite. The m/z and rt of the new metabolite are the m/z and rt of the highest freq. metabolite. Frequency of the new metabolite is the sum of frequencies of all joined metabolites. New feature_metadata fields: _calour_merge_number, _calour_merge_ids are added listing the number and ids of the metabolites joined for each new metabolite ''' exp = self.sort_abundance(reverse=False) features = exp.feature_metadata features['_metabolite_group'] = np.zeros(len(features)) - 1 gpos = list(features.columns).index('_metabolite_group') cgroup = 0 for cgroup, cfeature in features.iterrows(): mzdist = np.abs(features['MZ'] - cfeature['MZ']) rtdist = np.abs(features['RT'] - cfeature['RT']) ok = (mzdist <= mz_tolerance) & (rtdist <= rt_tolerance) & (features['_metabolite_group'] == -1) okpos = np.where(ok)[0] for cpos in okpos: features.iat[cpos, gpos] = cgroup exp = exp.aggregate_by_metadata('_metabolite_group', agg='sum', axis='f') exp.feature_metadata.drop('_metabolite_group', axis='columns', inplace=True) logger.info('%d metabolites remaining after merge' % len(exp.feature_metadata)) return exp def filter_mz_rt(self, mz=None, rt=None, mz_tolerance=0.05, rt_tolerance=0.2, inplace=False, negate=False): '''Filter metabolites based on m/z and/or retention time Keep (or remove if negate=True) metabolites that have an m/z and/or retention time close (up to tolerance) to the requested mz and/or rt (or list of mz and/or rt). If both mz and rt are provided, they should be matched (i.e. filtering is performed using each mz and rt pair with same index) Parameters ---------- mz: float or list of float or None, optional the M/Z to filter if None, do not filter based on M/Z rt: float or list of float or None, optional the retention time to filter if None, do not filter based on rt mz_tolerance: float, optional the M/Z tolerance. filter metabolites with abs(metabolite_mz - mz) <= mz_tolerance rt_tolerance: float, optional the rt tolerance. filter metabolites with abs(metabolite_rt - rt) <= rt_tolerance inplace: bool, optional True to replace current experiment, False to create new experiment with results negate: bool, optional If False, keep only metabolites matching mz If True, remove metabolites matching mz Returns ------- MS1Experiment features filtered based on mz ''' if mz is None and rt is None: raise ValueError('at least one of "mz" and "rt" must not be None') if mz is not None: if 'MZ' not in self.feature_metadata.columns: raise ValueError('The Experiment does not contain the column "MZ". cannot filter by mz') else: mz = _to_list(mz) if rt is not None: if 'RT' not in self.feature_metadata.columns: raise ValueError('The Experiment does not contain the column "RT". cannot filter by rt') else: rt = _to_list(rt) select = np.zeros(len(self.feature_metadata), dtype='?') notfound = 0 if mz is None: mz = [None] * len(rt) if rt is None: rt = [None] * len(mz) if len(mz) != len(rt): raise ValueError('mz and rt must have same length') for cmz, crt in zip(mz, rt): if cmz is not None: mzdiff = np.abs(self.feature_metadata['MZ'] - cmz) keepmz = mzdiff <= mz_tolerance else: keepmz = np.full([len(self.feature_metadata)], True) if crt is not None: rtdiff = np.abs(self.feature_metadata['RT'] - crt) keeprt = rtdiff <= rt_tolerance else: keeprt = np.full([len(self.feature_metadata)], True) bothok = np.logical_and(keepmz, keeprt) if bothok.sum() == 0: notfound += 1 select = np.logical_or(select, bothok) logger.info('Total from mz/rt list with no match: %d' % notfound) logger.info('found %d matching features' % np.sum(select)) if negate: select = np.logical_not(select) return self.reorder(select, axis='f', inplace=inplace) def sort_mz_rt(self, inplace=False): '''Sort features according to m/z and retention time. This is a convenience function wrapping calour.sort_by_metadata() Parameters ---------- inplace: bool, optional True to replace current experiment, False to create new experiment with results Returns ------- MS1Experiment Sorted according to m/z and retention time ''' return self.sort_by_metadata('mz_rt', axis='f', inplace=inplace)
[ "logging.getLogger", "numpy.abs", "numpy.logical_and", "numpy.corrcoef", "numpy.where", "numpy.logical_not", "numpy.logical_or", "numpy.sum", "matplotlib.colors.LogNorm" ]
[((717, 736), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (726, 736), False, 'from logging import getLogger\n'), ((2801, 2821), 'matplotlib.colors.LogNorm', 'mpl.colors.LogNorm', ([], {}), '()\n', (2819, 2821), True, 'import matplotlib as mpl\n'), ((5520, 5559), 'numpy.abs', 'np.abs', (["(features['MZ'] - cfeature['MZ'])"], {}), "(features['MZ'] - cfeature['MZ'])\n", (5526, 5559), True, 'import numpy as np\n'), ((5581, 5620), 'numpy.abs', 'np.abs', (["(features['RT'] - cfeature['RT'])"], {}), "(features['RT'] - cfeature['RT'])\n", (5587, 5620), True, 'import numpy as np\n'), ((8073, 8112), 'numpy.abs', 'np.abs', (["(features['MZ'] - cfeature['MZ'])"], {}), "(features['MZ'] - cfeature['MZ'])\n", (8079, 8112), True, 'import numpy as np\n'), ((8134, 8173), 'numpy.abs', 'np.abs', (["(features['RT'] - cfeature['RT'])"], {}), "(features['RT'] - cfeature['RT'])\n", (8140, 8173), True, 'import numpy as np\n'), ((11540, 11570), 'numpy.logical_and', 'np.logical_and', (['keepmz', 'keeprt'], {}), '(keepmz, keeprt)\n', (11554, 11570), True, 'import numpy as np\n'), ((11656, 11685), 'numpy.logical_or', 'np.logical_or', (['select', 'bothok'], {}), '(select, bothok)\n', (11669, 11685), True, 'import numpy as np\n'), ((11868, 11890), 'numpy.logical_not', 'np.logical_not', (['select'], {}), '(select)\n', (11882, 11890), True, 'import numpy as np\n'), ((5648, 5710), 'numpy.logical_and', 'np.logical_and', (['(mzdist <= mz_tolerance)', '(rtdist <= rt_tolerance)'], {}), '(mzdist <= mz_tolerance, rtdist <= rt_tolerance)\n', (5662, 5710), True, 'import numpy as np\n'), ((8303, 8315), 'numpy.where', 'np.where', (['ok'], {}), '(ok)\n', (8311, 8315), True, 'import numpy as np\n'), ((11108, 11149), 'numpy.abs', 'np.abs', (["(self.feature_metadata['MZ'] - cmz)"], {}), "(self.feature_metadata['MZ'] - cmz)\n", (11114, 11149), True, 'import numpy as np\n'), ((11342, 11383), 'numpy.abs', 'np.abs', (["(self.feature_metadata['RT'] - crt)"], {}), "(self.feature_metadata['RT'] - crt)\n", (11348, 11383), True, 'import numpy as np\n'), ((11812, 11826), 'numpy.sum', 'np.sum', (['select'], {}), '(select)\n', (11818, 11826), True, 'import numpy as np\n'), ((6060, 6083), 'numpy.corrcoef', 'np.corrcoef', (['odat', 'cdat'], {}), '(odat, cdat)\n', (6071, 6083), True, 'import numpy as np\n'), ((6109, 6123), 'numpy.abs', 'np.abs', (['corrcf'], {}), '(corrcf)\n', (6115, 6123), True, 'import numpy as np\n')]
import sys import os sys.path.append(os.path.abspath(".")) sys.dont_write_bytecode = True __author__ = "COSAL" from utils.lib import O class ASTDistanceNode(O): DELIMITER = "-" def __init__(self, **kwargs): O.__init__(self, **kwargs) self.uid1 = None self.uid2 = None self.distance = None def get_key(self): return ASTDistanceNode.DELIMITER.join(sorted([self.uid1, self.uid2])) def to_bson(self): return { "uid1": self.uid1, "uid2": self.uid2, "key": self.get_key(), "distance": self.distance } @staticmethod def from_bson(bson): node = ASTDistanceNode() splits = bson["key"].split(ASTDistanceNode.DELIMITER) node.uid1 = splits[0] node.uid2 = splits[1] node.distance = bson["distance"] return node
[ "os.path.abspath", "utils.lib.O.__init__" ]
[((38, 58), 'os.path.abspath', 'os.path.abspath', (['"""."""'], {}), "('.')\n", (53, 58), False, 'import os\n'), ((221, 247), 'utils.lib.O.__init__', 'O.__init__', (['self'], {}), '(self, **kwargs)\n', (231, 247), False, 'from utils.lib import O\n')]
from typing import Optional import pytest from fractional_indexing import FIError, generate_key_between, generate_n_keys_between @pytest.mark.parametrize(['a', 'b', 'expected'], [ (None, None, 'a0'), (None, 'a0', 'Zz'), (None, 'Zz', 'Zy'), ('a0', None, 'a1'), ('a1', None, 'a2'), ('a0', 'a1', 'a0V'), ('a1', 'a2', 'a1V'), ('a0V', 'a1', 'a0l'), ('Zz', 'a0', 'ZzV'), ('Zz', 'a1', 'a0'), (None, 'Y00', 'Xzzz'), ('bzz', None, 'c000'), ('a0', 'a0V', 'a0G'), ('a0', 'a0G', 'a08'), ('b125', 'b129', 'b127'), ('a0', 'a1V', 'a1'), ('Zz', 'a01', 'a0'), (None, 'a0V', 'a0'), (None, 'b999', 'b99'), (None, 'A00000000000000000000000000', FIError('invalid order key: A00000000000000000000000000')), (None, 'A000000000000000000000000001', 'A000000000000000000000000000V'), ('zzzzzzzzzzzzzzzzzzzzzzzzzzy', None, 'zzzzzzzzzzzzzzzzzzzzzzzzzzz'), ('zzzzzzzzzzzzzzzzzzzzzzzzzzz', None, 'zzzzzzzzzzzzzzzzzzzzzzzzzzzV'), ('a00', None, FIError('invalid order key: a00')), ('a00', 'a1', FIError('invalid order key: a00')), ('0', '1', FIError('invalid order key head: 0')), ('a1', 'a0', FIError('a1 >= a0')), ]) def test_generate_key_between(a: Optional[str], b: Optional[str], expected: str) -> None: if isinstance(expected, FIError): with pytest.raises(FIError) as e: generate_key_between(a, b) assert e.value.args[0] == expected.args[0] return else: act = generate_key_between(a, b) print(f'exp: {expected}') print(f'act: {act}') print(act == expected) assert act == expected @pytest.mark.parametrize(['a', 'b', 'n', 'expected'], [ (None, None, 5, 'a0 a1 a2 a3 a4'), ('a4', None, 10, 'a5 a6 a7 a8 a9 b00 b01 b02 b03 b04'), (None, 'a0', 5, 'Z5 Z6 Z7 Z8 Z9'), ('a0', 'a2', 20, 'a01 a02 a03 a035 a04 a05 a06 a07 a08 a09 a1 a11 a12 a13 a14 a15 a16 a17 a18 a19'), ]) def test_generate_n_keys_between(a: Optional[str], b: Optional[str], n: int, expected: str) -> None: base_10_digits = '0123456789' act = ' '.join(generate_n_keys_between(a, b, n, base_10_digits)) print() print(f'exp: {expected}') print(f'act: {act}') print(act == expected) assert act == expected def test_readme_example(): first = generate_key_between(None, None) assert first == 'a0' # Insert after 1st second = generate_key_between(first, None) assert second == 'a1' # Insert after 2nd third = generate_key_between(second, None) assert third == 'a2' # Insert before 1st zeroth = generate_key_between(None, first) assert zeroth == 'Zz' # Insert in between 2nd and 3rd. Midpoint second_and_half = generate_key_between(second, third) assert second_and_half == 'a1V'
[ "fractional_indexing.FIError", "pytest.mark.parametrize", "pytest.raises", "fractional_indexing.generate_key_between", "fractional_indexing.generate_n_keys_between" ]
[((1637, 1940), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["['a', 'b', 'n', 'expected']", "[(None, None, 5, 'a0 a1 a2 a3 a4'), ('a4', None, 10,\n 'a5 a6 a7 a8 a9 b00 b01 b02 b03 b04'), (None, 'a0', 5, 'Z5 Z6 Z7 Z8 Z9'\n ), ('a0', 'a2', 20,\n 'a01 a02 a03 a035 a04 a05 a06 a07 a08 a09 a1 a11 a12 a13 a14 a15 a16 a17 a18 a19'\n )]"], {}), "(['a', 'b', 'n', 'expected'], [(None, None, 5,\n 'a0 a1 a2 a3 a4'), ('a4', None, 10,\n 'a5 a6 a7 a8 a9 b00 b01 b02 b03 b04'), (None, 'a0', 5, 'Z5 Z6 Z7 Z8 Z9'\n ), ('a0', 'a2', 20,\n 'a01 a02 a03 a035 a04 a05 a06 a07 a08 a09 a1 a11 a12 a13 a14 a15 a16 a17 a18 a19'\n )])\n", (1660, 1940), False, 'import pytest\n'), ((2304, 2336), 'fractional_indexing.generate_key_between', 'generate_key_between', (['None', 'None'], {}), '(None, None)\n', (2324, 2336), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((2399, 2432), 'fractional_indexing.generate_key_between', 'generate_key_between', (['first', 'None'], {}), '(first, None)\n', (2419, 2432), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((2495, 2529), 'fractional_indexing.generate_key_between', 'generate_key_between', (['second', 'None'], {}), '(second, None)\n', (2515, 2529), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((2593, 2626), 'fractional_indexing.generate_key_between', 'generate_key_between', (['None', 'first'], {}), '(None, first)\n', (2613, 2626), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((2722, 2757), 'fractional_indexing.generate_key_between', 'generate_key_between', (['second', 'third'], {}), '(second, third)\n', (2742, 2757), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1498, 1524), 'fractional_indexing.generate_key_between', 'generate_key_between', (['a', 'b'], {}), '(a, b)\n', (1518, 1524), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((2092, 2140), 'fractional_indexing.generate_n_keys_between', 'generate_n_keys_between', (['a', 'b', 'n', 'base_10_digits'], {}), '(a, b, n, base_10_digits)\n', (2115, 2140), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1340, 1362), 'pytest.raises', 'pytest.raises', (['FIError'], {}), '(FIError)\n', (1353, 1362), False, 'import pytest\n'), ((1381, 1407), 'fractional_indexing.generate_key_between', 'generate_key_between', (['a', 'b'], {}), '(a, b)\n', (1401, 1407), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((709, 766), 'fractional_indexing.FIError', 'FIError', (['"""invalid order key: A00000000000000000000000000"""'], {}), "('invalid order key: A00000000000000000000000000')\n", (716, 766), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1013, 1046), 'fractional_indexing.FIError', 'FIError', (['"""invalid order key: a00"""'], {}), "('invalid order key: a00')\n", (1020, 1046), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1067, 1100), 'fractional_indexing.FIError', 'FIError', (['"""invalid order key: a00"""'], {}), "('invalid order key: a00')\n", (1074, 1100), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1118, 1154), 'fractional_indexing.FIError', 'FIError', (['"""invalid order key head: 0"""'], {}), "('invalid order key head: 0')\n", (1125, 1154), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n'), ((1174, 1193), 'fractional_indexing.FIError', 'FIError', (['"""a1 >= a0"""'], {}), "('a1 >= a0')\n", (1181, 1193), False, 'from fractional_indexing import FIError, generate_key_between, generate_n_keys_between\n')]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from pathlib import Path import soundfile as sf from acoustic import SpeedySpeechAcoustic from frontend.zh_frontend import Frontend from utils import mkdir, read_txt from vocoder import PWGANVocoder print('初始化前处理部分') phones_dict = 'resources/speedyspeech_nosil_baker_ckpt_0.5/phone_id_map.txt' tones_dict = 'resources/speedyspeech_nosil_baker_ckpt_0.5/tone_id_map.txt' frontend = Frontend(phone_vocab_path=phones_dict, tone_vocab_path=tones_dict) print("frontend done!") print('初始化提取特征模型') speedyspeech_dir = Path('resources/models/speedyspeech_csmsc') pdmodel_path = str(speedyspeech_dir / 'speedyspeech_csmsc.pdmodel') pdiparam_path = str(speedyspeech_dir / 'speedyspeech_csmsc.pdiparams') am_predictor = SpeedySpeechAcoustic(pdmodel_path, pdiparam_path) print('am_predictor done!') print('初始化合成wav模型') pwgan_model_path = 'resources/models/pwgan_csmsc/pwgan_csmsc.onnx' voc_predictor = PWGANVocoder(pwgan_model_path) save_wav_dir = 'infer_result' mkdir(save_wav_dir) print('合成指定句子') sentences_path = 'sentences.txt' sentences = read_txt(sentences_path) for sentence_info in sentences: start = time.time() uuid, sentence = sentence_info.split(' ') input_ids = frontend.get_input_ids(sentence, merge_sentences=True, get_tone_ids=True) am_output_data = am_predictor(input_ids) wav = voc_predictor(am_output_data) elapse = time.time() - start save_wav_path = f'{save_wav_dir}/{uuid}.wav' sf.write(save_wav_path, wav, samplerate=24000) print(f'{save_wav_path} done!\tcost: {elapse}s')
[ "pathlib.Path", "utils.read_txt", "acoustic.SpeedySpeechAcoustic", "soundfile.write", "utils.mkdir", "frontend.zh_frontend.Frontend", "time.time", "vocoder.PWGANVocoder" ]
[((1005, 1071), 'frontend.zh_frontend.Frontend', 'Frontend', ([], {'phone_vocab_path': 'phones_dict', 'tone_vocab_path': 'tones_dict'}), '(phone_vocab_path=phones_dict, tone_vocab_path=tones_dict)\n', (1013, 1071), False, 'from frontend.zh_frontend import Frontend\n'), ((1155, 1198), 'pathlib.Path', 'Path', (['"""resources/models/speedyspeech_csmsc"""'], {}), "('resources/models/speedyspeech_csmsc')\n", (1159, 1198), False, 'from pathlib import Path\n'), ((1354, 1403), 'acoustic.SpeedySpeechAcoustic', 'SpeedySpeechAcoustic', (['pdmodel_path', 'pdiparam_path'], {}), '(pdmodel_path, pdiparam_path)\n', (1374, 1403), False, 'from acoustic import SpeedySpeechAcoustic\n'), ((1536, 1566), 'vocoder.PWGANVocoder', 'PWGANVocoder', (['pwgan_model_path'], {}), '(pwgan_model_path)\n', (1548, 1566), False, 'from vocoder import PWGANVocoder\n'), ((1598, 1617), 'utils.mkdir', 'mkdir', (['save_wav_dir'], {}), '(save_wav_dir)\n', (1603, 1617), False, 'from utils import mkdir, read_txt\n'), ((1680, 1704), 'utils.read_txt', 'read_txt', (['sentences_path'], {}), '(sentences_path)\n', (1688, 1704), False, 'from utils import mkdir, read_txt\n'), ((1750, 1761), 'time.time', 'time.time', ([], {}), '()\n', (1759, 1761), False, 'import time\n'), ((2153, 2199), 'soundfile.write', 'sf.write', (['save_wav_path', 'wav'], {'samplerate': '(24000)'}), '(save_wav_path, wav, samplerate=24000)\n', (2161, 2199), True, 'import soundfile as sf\n'), ((2079, 2090), 'time.time', 'time.time', ([], {}), '()\n', (2088, 2090), False, 'import time\n')]
import numpy as np import random from finetuna.ml_potentials.bootstrap import non_bootstrap_ensemble import torch import uuid from finetuna.ml_potentials.ml_potential_calc import MLPCalc from ocpmodels.trainers.amp_xfer_trainer import OCPXTrainer torch.multiprocessing.set_sharing_strategy("file_system") __author__ = "<NAME>" __email__ = "<EMAIL>" class OCPEnsembleCalc(MLPCalc): """Atomistics Machine-Learning Potential (AMP) ASE calculator Parameters ---------- model : object Class representing the regression model. Input arguments include training images, descriptor type, and force_coefficient. Model structure and training schemes can be modified directly within the class. label : str Location to save the trained model. """ implemented_properties = ["energy", "forces", "max_force_stds", "energy_stds"] executor = None def __init__(self, amptorch_trainer, n_ensembles): MLPCalc.__init__(self, mlp_params=amptorch_trainer.config) self.amptorch_trainer = amptorch_trainer self.n_ensembles = n_ensembles def calculate_stats(self, energies, forces): median_idx = np.argsort(energies)[len(energies) // 2] energy_median = energies[median_idx] forces_median = forces[median_idx] max_forces_var = np.nanmax(np.nanvar(forces, axis=0)) energy_var = np.nanvar(energies) return ( energy_median, forces_median, max_forces_var, energy_var, ) def calculate(self, atoms, properties, system_changes): MLPCalc.calculate( self, atoms=atoms, properties=properties, system_changes=system_changes ) energies = [] forces = [] for predictor in self.trained_trainers: prediction = predictor.predict(atoms) energies.append(prediction["energy"].data.numpy()[0]) forces.append(prediction["forces"].data.numpy()) energies = np.array(energies) forces = np.array(forces) energy_pred, force_pred, max_forces_var, energy_var = self.calculate_stats( energies, forces ) self.results["energy"] = energy_pred self.results["forces"] = force_pred atoms.info["energy_stds"] = energy_var**0.2 atoms.info["max_force_stds"] = max_forces_var**0.5 def train(self, parent_dataset, new_dataset=None): """ Uses Dask to parallelize, must have previously set up cluster, image to use, and pool of workers """ ensemble_sets, parent_dataset = non_bootstrap_ensemble( parent_dataset, n_ensembles=self.n_ensembles ) def train_and_combine(args_list): """ method for training trainer on ensemble sets, then create neural net calc, returns trained calc """ training_dataset = args_list[0] trainer = args_list[1] seed = args_list[2] uniqueid = args_list[3] trainer.model = OCPXTrainer.get_pretrained( training_dataset, seed, uniqueid, trainer.a2g_train ) trainer.train(raw_data=training_dataset) # check_path = trainer.cp_dir # trainer = AtomsTrainer() # trainer.load_pretrained(checkpoint_path=check_path) # trainer_calc = trainer.get_calc() # return trainer_calc return trainer # split ensemble sets into separate args_lists, clone: trainer, # base calc and add to args_lists, add: refs to args_lists args_lists = [] random.seed(self.amptorch_trainer.config["cmd"]["seed"]) randomlist = [random.randint(0, 4294967295) for set in ensemble_sets] for i in range(len(ensemble_sets)): ensemble_set = ensemble_sets[i] random.seed(randomlist[i]) random.shuffle(ensemble_set) trainer_copy = self.amptorch_trainer.copy() trainer_copy.config["cmd"]["seed"] = randomlist[i] trainer_copy.config["cmd"]["identifier"] = trainer_copy.config["cmd"][ "identifier" ] + str(uuid.uuid4()) args_lists.append( ( ensemble_set, trainer_copy, randomlist[i], trainer_copy.model.config["cmd"]["identifier"] + str(uuid.uuid4()), ) ) # map training method, returns array of delta calcs trained_trainers = [] if self.executor is not None: futures = [] for args_list in args_lists: big_future = self.executor.scatter(args_list) futures.append(self.executor.submit(train_and_combine, big_future)) trained_trainers = [future.result() for future in futures] else: for args_list in args_lists: trained_trainers.append(train_and_combine(args_list)) # call init to construct ensemble calc from array of delta calcs self.trained_trainers = trained_trainers @classmethod def set_executor(cls, executor): cls.executor = executor
[ "finetuna.ml_potentials.ml_potential_calc.MLPCalc.__init__", "random.shuffle", "numpy.nanvar", "random.seed", "uuid.uuid4", "finetuna.ml_potentials.ml_potential_calc.MLPCalc.calculate", "numpy.array", "numpy.argsort", "ocpmodels.trainers.amp_xfer_trainer.OCPXTrainer.get_pretrained", "torch.multiprocessing.set_sharing_strategy", "random.randint", "finetuna.ml_potentials.bootstrap.non_bootstrap_ensemble" ]
[((249, 306), 'torch.multiprocessing.set_sharing_strategy', 'torch.multiprocessing.set_sharing_strategy', (['"""file_system"""'], {}), "('file_system')\n", (291, 306), False, 'import torch\n'), ((969, 1027), 'finetuna.ml_potentials.ml_potential_calc.MLPCalc.__init__', 'MLPCalc.__init__', (['self'], {'mlp_params': 'amptorch_trainer.config'}), '(self, mlp_params=amptorch_trainer.config)\n', (985, 1027), False, 'from finetuna.ml_potentials.ml_potential_calc import MLPCalc\n'), ((1399, 1418), 'numpy.nanvar', 'np.nanvar', (['energies'], {}), '(energies)\n', (1408, 1418), True, 'import numpy as np\n'), ((1621, 1716), 'finetuna.ml_potentials.ml_potential_calc.MLPCalc.calculate', 'MLPCalc.calculate', (['self'], {'atoms': 'atoms', 'properties': 'properties', 'system_changes': 'system_changes'}), '(self, atoms=atoms, properties=properties, system_changes=\n system_changes)\n', (1638, 1716), False, 'from finetuna.ml_potentials.ml_potential_calc import MLPCalc\n'), ((2021, 2039), 'numpy.array', 'np.array', (['energies'], {}), '(energies)\n', (2029, 2039), True, 'import numpy as np\n'), ((2057, 2073), 'numpy.array', 'np.array', (['forces'], {}), '(forces)\n', (2065, 2073), True, 'import numpy as np\n'), ((2632, 2700), 'finetuna.ml_potentials.bootstrap.non_bootstrap_ensemble', 'non_bootstrap_ensemble', (['parent_dataset'], {'n_ensembles': 'self.n_ensembles'}), '(parent_dataset, n_ensembles=self.n_ensembles)\n', (2654, 2700), False, 'from finetuna.ml_potentials.bootstrap import non_bootstrap_ensemble\n'), ((3686, 3742), 'random.seed', 'random.seed', (["self.amptorch_trainer.config['cmd']['seed']"], {}), "(self.amptorch_trainer.config['cmd']['seed'])\n", (3697, 3742), False, 'import random\n'), ((1187, 1207), 'numpy.argsort', 'np.argsort', (['energies'], {}), '(energies)\n', (1197, 1207), True, 'import numpy as np\n'), ((1351, 1376), 'numpy.nanvar', 'np.nanvar', (['forces'], {'axis': '(0)'}), '(forces, axis=0)\n', (1360, 1376), True, 'import numpy as np\n'), ((3094, 3173), 'ocpmodels.trainers.amp_xfer_trainer.OCPXTrainer.get_pretrained', 'OCPXTrainer.get_pretrained', (['training_dataset', 'seed', 'uniqueid', 'trainer.a2g_train'], {}), '(training_dataset, seed, uniqueid, trainer.a2g_train)\n', (3120, 3173), False, 'from ocpmodels.trainers.amp_xfer_trainer import OCPXTrainer\n'), ((3765, 3794), 'random.randint', 'random.randint', (['(0)', '(4294967295)'], {}), '(0, 4294967295)\n', (3779, 3794), False, 'import random\n'), ((3921, 3947), 'random.seed', 'random.seed', (['randomlist[i]'], {}), '(randomlist[i])\n', (3932, 3947), False, 'import random\n'), ((3960, 3988), 'random.shuffle', 'random.shuffle', (['ensemble_set'], {}), '(ensemble_set)\n', (3974, 3988), False, 'import random\n'), ((4241, 4253), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (4251, 4253), False, 'import uuid\n'), ((4481, 4493), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (4491, 4493), False, 'import uuid\n')]
################## # coding =utf-8 # author: <NAME> # 载入数据集,计算数据熵和熵亏 ################## import numpy as np import ComputeDifferenceEntropy d1 = [1.0, 2.0, 2.23606798] d2 = [1.0, 2.06155281] d1 = np.array(d1) d2 = np.array(d2) h1 = [1.0, 0.9602297178607612, 0.9821410328348751, 1.0] h2 = [1.0, 0.9602297178607612, 1.0] ComputeDifferenceEntropy.ComputeDifferEntopy(d1, d2, h1, h2)
[ "numpy.array", "ComputeDifferenceEntropy.ComputeDifferEntopy" ]
[((214, 226), 'numpy.array', 'np.array', (['d1'], {}), '(d1)\n', (222, 226), True, 'import numpy as np\n'), ((233, 245), 'numpy.array', 'np.array', (['d2'], {}), '(d2)\n', (241, 245), True, 'import numpy as np\n'), ((343, 403), 'ComputeDifferenceEntropy.ComputeDifferEntopy', 'ComputeDifferenceEntropy.ComputeDifferEntopy', (['d1', 'd2', 'h1', 'h2'], {}), '(d1, d2, h1, h2)\n', (387, 403), False, 'import ComputeDifferenceEntropy\n')]
# -*- coding: utf-8 -*- """----------------------------------------------------------------------------- -- MIT License -- -- Copyright (c) 2020 <NAME> -- -- Permission is hereby granted, free of charge, to any person obtaining a copy -- of this software and associated documentation files (the "Software"), to deal -- in the Software without restriction, including without limitation the rights -- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the Software is -- furnished to do so, subject to the following conditions: -- -- The above copyright notice and this permission notice shall be included in -- all copies or substantial portions of the Software. -- -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -- SOFTWARE. -------------------------------------------------------------------------------- -- @file display_pmod_parse_from_spi_spy.py -- -- @brief A script to parse specific SPI bus control of the Pmod CLS and Pmod -- SF3 as capturerd with digital logic analyzer. Parsing and testing specific -- to both the Pmod interfaces as well as project fpga-serial-mem-tester-1 . -----------------------------------------------------------------------------""" import io import sys import re import copy class N25QCommand: def __init__(self, copi, cipo): self._copi = copi self._cipo = cipo self.lineFormat = 1 self._copiFormatted = self._copi self._cipoFormatted = self._cipo def insertDashes(self, dashPos): self._copiFormatted = copy.copy(self._copi) self._cipoFormatted = copy.copy(self._cipo) for i in reversed(dashPos): self._copiFormatted.insert(i, '--') self._cipoFormatted.insert(i, '--') def __str__(self): if self.lineFormat == 2: return "N25Q 0x{1} {0:<30}\t(\nout: {2};\nin : {3})".format( self.CommandName, self.CommandByte, " ".join(self._copiFormatted), " ".join(self._cipoFormatted)) else: return "N25Q 0x{1} {0:<30}\t(out: {2}; in: {3})".format( self.CommandName, self.CommandByte, " ".join(self._copiFormatted), " ".join(self._cipoFormatted)) def _getAddrAsInt(self, first, length, arr): try: s = "" for i in range(first,first+length): s += arr[i] v = int(s, 16) return v except ValueError: return -1 def _getFlashSequence(self, first, length, arr): try: v0 = int(arr[first + 0], 16) v1 = int(arr[first + 1], 16) diff = (v1 - v0) & 0xff total = 1 for i in range(first+1, first+length): v0 = int(arr[i - 1], 16) v1 = int(arr[i], 16) if ((v1 - v0) & 0xff == diff): total += 1 return total except ValueError: return -1 except IndexError: return -2 class N25QUnknown(N25QCommand): CommandByte = "xx" CommandName = "Unknown Command / Spy Fail" def __init__(self, copi, cipo): super().__init__(copi, cipo) class N25QWriteEnable(N25QCommand): CommandByte = "06" CommandName = "WriteEnable" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, )) class N25QReadStatusRegister(N25QCommand): CommandByte = "05" CommandName = "ReadStatusRegister" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 2)) class N25QReadFlagStatusRegister(N25QCommand): CommandByte = "70" CommandName = "ReadFlagStatusRegister" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 2)) class N25QSectorErase(N25QCommand): CommandByte = "D8" CommandName = "SectorErase" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 4)) def getEraseAddrAsInt(self): return self._getAddrAsInt(1, 3, self._copi) class N25Q4ByteSubsectorErase(N25QCommand): CommandByte = "21" CommandName = "4ByteSubsectorErase" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 5)) def getEraseAddrAsInt(self): return self._getAddrAsInt(1, 4, self._copi) class N25QPageProgram(N25QCommand): CommandByte = "02" CommandName = "PageProgram" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 4, 4+256)) self.lineFormat = 2 def getProgAddrAsInt(self): return self._getAddrAsInt(1, 3, self._copi) def getProgSequence(self): return self._getFlashSequence(4, 256, self._copi) class N25Q4BytePageProgram(N25QCommand): CommandByte = "12" CommandName = "4BytePageProgram" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 5, 5+256)) self.lineFormat = 2 def getProgAddrAsInt(self): return self._getAddrAsInt(1, 4, self._copi) def getProgSequence(self): return self._getFlashSequence(5, 256, self._copi) class N25QRead(N25QCommand): CommandByte = "03" CommandName = "Read" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 4, 4+256)) self.lineFormat = 2 def getReadAddrAsInt(self): return self._getAddrAsInt(1, 3, self._copi) def getReadSequence(self): return self._getFlashSequence(4, 256, self._cipo) class N25Q4ByteFastRead(N25QCommand): CommandByte = "0C" CommandName = "4ByteFastRead" def __init__(self, copi, cipo): super().__init__(copi, cipo) self.insertDashes((1, 5, 6, 6+256)) self.lineFormat = 2 def getReadAddrAsInt(self): return self._getAddrAsInt(1, 4, self._copi) def getReadSequence(self): return self._getFlashSequence(6, 256, self._cipo) class N25QCommandFactory: def __init__(self): pass def getCmd(self, bCopi, bCipo): if (len(bCopi) > 0): b = bCopi[0] print(b) if (b == N25QWriteEnable.CommandByte): cmd = N25QWriteEnable(bCopi, bCipo) elif (b == N25QReadStatusRegister.CommandByte): cmd = N25QReadStatusRegister(bCopi, bCipo) elif (b == N25QSectorErase.CommandByte): cmd = N25QSectorErase(bCopi, bCipo) elif (b == N25QPageProgram.CommandByte): cmd = N25QPageProgram(bCopi, bCipo) elif (b == N25QRead.CommandByte): cmd = N25QRead(bCopi, bCipo) elif (b == N25QReadFlagStatusRegister.CommandByte): cmd = N25QReadFlagStatusRegister(bCopi, bCipo) elif (b == N25Q4ByteSubsectorErase.CommandByte): cmd = N25Q4ByteSubsectorErase(bCopi, bCipo) elif (b == N25Q4BytePageProgram.CommandByte): cmd = N25Q4BytePageProgram(bCopi, bCipo) elif (b == N25Q4ByteFastRead.CommandByte): cmd = N25Q4ByteFastRead(bCopi, bCipo) else: cmd = N25QUnknown(bCopi, bCipo) else: print(None) cmd = N25QUnknown(bCopi, bCipo) return cmd class AnalogDiscoverySpiSpyParser: EscCharacters = ["1B",] PartsCopi = ["c", "cp"] PartsCipo = ["p", "cp"] rexData = re.compile(r"^Data[:][ ]") def __init__(self, fileName): self._currentLine = None self._ioParts = None self._fh = io.open(fileName, "r") self._strCopi = None self._strCipo = None self._asciiCopi = None self._asciiCipo = None self._flashCmds = [] self._cmdFactory = N25QCommandFactory() def readCurrentLine(self): self._currentLine = self._fh.readline() if self._currentLine: return True else: return False def parseDataParts(self): if self._currentLine: if self.rexData.match(self._currentLine): dataParts = self._currentLine.split(":") lineParts = dataParts[1].split(",") self._ioParts = [] for linePart in lineParts: partRep = linePart.replace('h', '') self._ioParts.append(partRep.split("|")) return True else: return False else: return False def close(self): self._fh.close() def getIoParts(self): return self._ioParts def getFlashCmds(self): return self._flashCmds def getIoPartsAsN25Q(self): bCopi = [] bCipo = [] for ioPart in self.getIoParts(): if (len(ioPart) == 2): bCopi.append(ioPart[0].strip()) bCipo.append(ioPart[1].strip()) cmd = self._cmdFactory.getCmd(bCopi, bCipo) self._flashCmds.append(cmd) return str(cmd) def _genHexStrAndEsc(self, arr): strArr = "" escArr = [] for a in arr: if (a not in self.EscCharacters): strArr += a else: escArr.append(len(strArr)) return (strArr, escArr) def _genAsciiEsc(self, arr): (strArr, escArr) = self._genHexStrAndEsc(arr) asciiArr = "" ba = str(bytearray.fromhex(strArr).decode()) for b in range(len(ba)): if (len(escArr) > 0): l = escArr[0] while(b == l): escArr.pop(0) asciiArr += r"\x" if (len(escArr) > 0): l = escArr[0] else: l = -1 asciiArr += ba[b] return (strArr, asciiArr) def getIoPartsAsEscAscii(self): bCopi = [] bCipo = [] for ioPart in self.getIoParts(): if (len(ioPart) == 2): bCopi.append(ioPart[0].strip()) bCipo.append(ioPart[1].strip()) (self._strCopi, self._asciiCopi) = self._genAsciiEsc(bCopi) (self._strCipo, self._asciiCipo) = self._genAsciiEsc(bCipo) def getCurrentLine(self): return self._currentLine def getStrCopi(self): return self._strCopi def getStrCipo(self): return self._strCipo def getAsciiCopi(self): return self._asciiCopi def getAsciiCipo(self): return self._asciiCipo class PmodCLSTranslator: def __init__(self, partFlag, filename): self._partFlag = partFlag self._adssp = AnalogDiscoverySpiSpyParser(filename) self._fhParse = io.open(filename + "_parse.txt", "w") def parseWithAdssp(self): i = 0 while(self._adssp.readCurrentLine()): i = i + 1 if self._adssp.parseDataParts(): self._adssp.getIoPartsAsEscAscii() if (self._partFlag in self._adssp.PartsCopi): self._fhParse.write(self._adssp.getStrCopi()) self._fhParse.write("\n") self._fhParse.write(self._adssp.getAsciiCopi()) self._fhParse.write("\n") if (self._partFlag in self._adssp.PartsCipo): self._fhParse.write(self._adssp.getStrCipo()) self._fhParse.write("\n") self._fhParse.write(self._adssp.getAsciiCipo()) self._fhParse.write("\n") self._fhParse.write("\n") self._adssp.close() self._fhParse.close() class PmodSF3TesterValidator: def __init__(self, filename): self._adssp = AnalogDiscoverySpiSpyParser(filename) self._fhParse = io.open(filename + "_parse.txt", "w") self._fhCheck = io.open(filename + "_check.txt", "w") self._thisAddr = 0 self._prevAddr = 0 self._eraseIncr = 4096 self._readIncr = 256 self._progIncr = 256 self._ssEraseIncr = self._progIncr * 16 self._sEraseIncr = self._ssEraseIncr * 16 def parseWithAdssp(self): i = 0 while(self._adssp.readCurrentLine()): i = i + 1 if self._adssp.parseDataParts(): s = self._adssp.getIoPartsAsN25Q() if s: self._fhParse.write(s) self._fhParse.write("\n") self._fhParse.write("\n") self._adssp.close() self._fhParse.close() def _checkEraseAddr(self, cmd): if (hasattr(cmd, 'getEraseAddrAsInt')): self._prevAddr = self._thisAddr self._thisAddr = cmd.getEraseAddrAsInt() self._diffAddr = self._thisAddr - self._prevAddr if (isinstance(cmd, N25QSectorErase)): self._eraseIncr = self._sEraseIncr else: self._eraseIncr = self._ssEraseIncr if (self._diffAddr == self._eraseIncr): print(f"N25Q{cmd.CommandName} Check: valid erase address" f" increment by {self._diffAddr}", file=self._fhCheck) else: print(f"N25Q{cmd.CommandName} Check: invalid erase address" f" increment by {self._diffAddr}", file=self._fhCheck) else: pass def _checkReadAddr(self, cmd): if (hasattr(cmd, 'getReadAddrAsInt')): self._prevAddr = self._thisAddr self._thisAddr = cmd.getReadAddrAsInt() self._diffAddr = self._thisAddr - self._prevAddr if (self._diffAddr == self._readIncr): print(f"N25Q{cmd.CommandName} Check: valid read address" f" increment by {self._diffAddr}", file=self._fhCheck) else: print(f"N25Q{cmd.CommandName} Check: invalid read address" f" increment by {self._diffAddr}", file=self._fhCheck) else: pass def _checkProgAddr(self, cmd): if (hasattr(cmd, 'getProgAddrAsInt')): self._prevAddr = self._thisAddr self._thisAddr = cmd.getProgAddrAsInt() self._diffAddr = self._thisAddr - self._prevAddr if (self._diffAddr == self._progIncr): print(f"N25Q{cmd.CommandName} Check: valid prog address" f" increment by {self._diffAddr}", file=self._fhCheck) else: print(f"N25Q{cmd.CommandName} Check: invalid prog address" f" increment by {self._diffAddr}", file=self._fhCheck) else: pass def _checkReadSeq(self, cmd): if (hasattr(cmd, 'getReadSequence')): self._seqCnt = cmd.getReadSequence() if (self._seqCnt == self._readIncr): print(f"N25Q{cmd.CommandName} Check: valid read data" f" increment for {self._seqCnt} bytes\n", file=self._fhCheck) else: print(f"N25Q{cmd.CommandName} Check: invalid read data" f" increment for {self._seqCnt} bytes\n", file=self._fhCheck) else: pass def _checkProgSeq(self, cmd): if (hasattr(cmd, 'getProgSequence')): self._seqCnt = cmd.getProgSequence() if (self._seqCnt == self._progIncr): print(f"N25Q{cmd.CommandName} Check: valid prog data" f" increment for {self._seqCnt} bytes\n", file=self._fhCheck) else: print(f"N25Q{cmd.CommandName} Check: invalid prog data" f" increment for {self._seqCnt} bytes\n", file=self._fhCheck) else: pass def checkValidateCommandBytes(self): for cmd in self._adssp.getFlashCmds(): print(cmd, file=self._fhCheck) self._checkEraseAddr(cmd) self._checkReadAddr(cmd) self._checkProgAddr(cmd) self._checkReadSeq(cmd) self._checkProgSeq(cmd) print(file=self._fhCheck) self._fhCheck.close() def mainPmodCLS(filename, partFlag): parser = PmodCLSTranslator(partFlag, filename) parser.parseWithAdssp() def mainPmodSF3(filename, partFlag): validator = PmodSF3TesterValidator(filename) validator.parseWithAdssp() validator.checkValidateCommandBytes() def usage(): print("{} : <c | p | cp> <filename.txt>" .formatt(sys.argv[0])) print("{}".format(sys.argv[0])) sys.exit(1) if __name__ == "__main__": if (len(sys.argv) == 1): partFlag = "c" pmodCLSfileNames = [\ "SF-Tester-Design-AXI/CLS SPI Spy Capture of Boot-Time Display at ext_spi_clk SCK.txt", "SF-Tester-Design-AXI/CLS SPI Spy Capture of First-Iteration Display at ext_spi_clk SCK.txt", "SF-Tester-Design-VHDL/CLS SPI Spy Capture of Boot-Time Display at 50 KHz SCK.txt", "SF-Tester-Design-VHDL/CLS SPI Spy Capture of First-Iteration Display at 50 KHz SCK.txt"] for fileName in pmodCLSfileNames: mainPmodCLS(fileName, partFlag) partFlag = "cp" pmodSF3fileNames = [\ "SF-Tester-Design-VHDL/t.txt", "SF-Tester-Design-AXI/SF3 SPI Spy Capture of Erase Subsector at ext_spi_clk SCK.txt", "SF-Tester-Design-AXI/SF3 SPI Spy Capture of Page Program at ext_spi_clk SCK.txt", "SF-Tester-Design-AXI/SF3 SPI Spy Capture of Random Read at ext_spi_clk SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Erase Subsector at 50 KHz SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Erase Subsector at 500 KHz SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Page Program at 50 KHz SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Page Program at 500 KHz SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Random Read at 50 KHz SCK.txt", "SF-Tester-Design-VHDL/SF3 SPI Spy Capture of Random Read at 500 KHz SCK.txt"] for fileName in pmodSF3fileNames: mainPmodSF3(fileName, partFlag) else: usage()
[ "copy.copy", "sys.exit", "io.open", "re.compile" ]
[((8146, 8171), 're.compile', 're.compile', (['"""^Data[:][ ]"""'], {}), "('^Data[:][ ]')\n", (8156, 8171), False, 'import re\n'), ((17606, 17617), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (17614, 17617), False, 'import sys\n'), ((1999, 2020), 'copy.copy', 'copy.copy', (['self._copi'], {}), '(self._copi)\n', (2008, 2020), False, 'import copy\n'), ((2051, 2072), 'copy.copy', 'copy.copy', (['self._cipo'], {}), '(self._cipo)\n', (2060, 2072), False, 'import copy\n'), ((8289, 8311), 'io.open', 'io.open', (['fileName', '"""r"""'], {}), "(fileName, 'r')\n", (8296, 8311), False, 'import io\n'), ((11566, 11603), 'io.open', 'io.open', (["(filename + '_parse.txt')", '"""w"""'], {}), "(filename + '_parse.txt', 'w')\n", (11573, 11603), False, 'import io\n'), ((12731, 12768), 'io.open', 'io.open', (["(filename + '_parse.txt')", '"""w"""'], {}), "(filename + '_parse.txt', 'w')\n", (12738, 12768), False, 'import io\n'), ((12793, 12830), 'io.open', 'io.open', (["(filename + '_check.txt')", '"""w"""'], {}), "(filename + '_check.txt', 'w')\n", (12800, 12830), False, 'import io\n')]
# Generated by Django 4.0.1 on 2022-02-22 20:51 import ckeditor_uploader.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('projects', '0017_project_body'), ] operations = [ migrations.RemoveField( model_name='project', name='body', ), migrations.AlterField( model_name='project', name='content', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True), ), ]
[ "django.db.migrations.RemoveField" ]
[((254, 311), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""project"""', 'name': '"""body"""'}), "(model_name='project', name='body')\n", (276, 311), False, 'from django.db import migrations\n')]
"""Test the /admin/user blueprint routes.""" import json from . import tmp_app_with_users # NOQA from . import ( snowwhite_token, grumpy_token, noone_token, ) def test_register_user_route(tmp_app_with_users): # NOQA from dtool_lookup_server.utils import user_exists assert not user_exists("evil-witch") assert not user_exists("dopey") users = [ {"username": "evil-witch", "is_admin": True}, {"username": "dopey"} ] headers = dict(Authorization="Bearer " + snowwhite_token) r = tmp_app_with_users.post( "/admin/user/register", headers=headers, data=json.dumps(users), content_type="application/json" ) assert r.status_code == 201 assert user_exists("evil-witch") assert user_exists("dopey") # Ensure idempotent. r = tmp_app_with_users.post( "/admin/user/register", headers=headers, data=json.dumps(users), content_type="application/json" ) assert r.status_code == 201 assert user_exists("evil-witch") assert user_exists("dopey") # Only admins allowed. However, don't give away that URL exists to # non-admins. headers = dict(Authorization="Bearer " + grumpy_token) r = tmp_app_with_users.post( "/admin/user/register", headers=headers, data=json.dumps(users), content_type="application/json" ) assert r.status_code == 404 headers = dict(Authorization="Bearer " + noone_token) r = tmp_app_with_users.post( "/admin/user/register", headers=headers, data=json.dumps(users), content_type="application/json" ) assert r.status_code == 404 def test_list_user_route(tmp_app_with_users): # NOQA headers = dict(Authorization="Bearer " + snowwhite_token) r = tmp_app_with_users.get( "/admin/user/list", headers=headers, ) assert r.status_code == 200 # Only admins allowed. However, don't give away that URL exists to # non-admins. headers = dict(Authorization="Bearer " + grumpy_token) r = tmp_app_with_users.get( "/admin/user/list", headers=headers ) assert r.status_code == 404 headers = dict(Authorization="Bearer " + noone_token) r = tmp_app_with_users.get( "/admin/user/list", headers=headers ) assert r.status_code == 404
[ "dtool_lookup_server.utils.user_exists", "json.dumps" ]
[((746, 771), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""evil-witch"""'], {}), "('evil-witch')\n", (757, 771), False, 'from dtool_lookup_server.utils import user_exists\n'), ((783, 803), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""dopey"""'], {}), "('dopey')\n", (794, 803), False, 'from dtool_lookup_server.utils import user_exists\n'), ((1041, 1066), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""evil-witch"""'], {}), "('evil-witch')\n", (1052, 1066), False, 'from dtool_lookup_server.utils import user_exists\n'), ((1078, 1098), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""dopey"""'], {}), "('dopey')\n", (1089, 1098), False, 'from dtool_lookup_server.utils import user_exists\n'), ((306, 331), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""evil-witch"""'], {}), "('evil-witch')\n", (317, 331), False, 'from dtool_lookup_server.utils import user_exists\n'), ((347, 367), 'dtool_lookup_server.utils.user_exists', 'user_exists', (['"""dopey"""'], {}), "('dopey')\n", (358, 367), False, 'from dtool_lookup_server.utils import user_exists\n'), ((638, 655), 'json.dumps', 'json.dumps', (['users'], {}), '(users)\n', (648, 655), False, 'import json\n'), ((933, 950), 'json.dumps', 'json.dumps', (['users'], {}), '(users)\n', (943, 950), False, 'import json\n'), ((1351, 1368), 'json.dumps', 'json.dumps', (['users'], {}), '(users)\n', (1361, 1368), False, 'import json\n'), ((1610, 1627), 'json.dumps', 'json.dumps', (['users'], {}), '(users)\n', (1620, 1627), False, 'import json\n')]
from django.db import models from django.db.models.fields import DateTimeCheckMixin, DateTimeField from datetime import datetime """ * investimento * valor * pago * data """ class Investimento(models.Model): investimento = models.TextField(max_length=255) valor = models.FloatField() pago = models.BooleanField(default=False) data = models.DateField(default=datetime.now)
[ "django.db.models.DateField", "django.db.models.FloatField", "django.db.models.TextField", "django.db.models.BooleanField" ]
[((231, 263), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (247, 263), False, 'from django.db import models\n'), ((276, 295), 'django.db.models.FloatField', 'models.FloatField', ([], {}), '()\n', (293, 295), False, 'from django.db import models\n'), ((307, 341), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (326, 341), False, 'from django.db import models\n'), ((353, 391), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'datetime.now'}), '(default=datetime.now)\n', (369, 391), False, 'from django.db import models\n')]
import numpy as np import torch from base.base import Learner from runners.runners import make_ppo_runner, SavedRewardsResetsRunner from selection.select_layers import SelectModelFromLayers from utils.additional import GPU_ids from .policies_algs import ActorCriticPolicy, PPO class PPOLearner(Learner): """ Proximal Policy Optimization learner. """ @staticmethod def get_defaults(env_type="atari"): defaults = { "atari": { "num_train_steps": 10e6, "nenvs": 8, "num_runner_steps": 128, "gamma": 0.99, "lambda_": 0.95, "num_epochs": 3, "num_minibatches": 4, "cliprange": 0.1, "value_loss_coef": 0.25, "entropy_coef": 0.01, "max_grad_norm": 0.5, "lr": 2.5e-4, "optimizer_epsilon": 1e-5, }, "mujoco": { "num_train_steps": 1e6, "nenvs": dict(type=int, default=None), "num_runner_steps": 2048, "gamma": 0.99, "lambda_": 0.95, "num_epochs": 10, "num_minibatches": 32, "cliprange": 0.2, "value_loss_coef": 0.25, "entropy_coef": 0., "max_grad_norm": 0.5, "lr": 3e-4, "optimizer_epsilon": 1e-5, } } return defaults.get(env_type) @staticmethod def make_runner(env, args, model, device): policy = ActorCriticPolicy(model, device) kwargs = args # vars(args) runner_kwargs = {key: kwargs[key] for key in ["gamma", "lambda_", "num_epochs", "num_minibatches"] if key in kwargs} runner = make_ppo_runner(env, policy, args['num_runner_steps'], **runner_kwargs) return runner @staticmethod def make_alg(runner, args, device): lr = args['lr'] model = runner.policy.model model.to(device) model = torch.nn.DataParallel(model, device_ids=GPU_ids) if "optimizer_epsilon" in args: optimizer = torch.optim.Adam(model.parameters(), lr, eps=args['optimizer_epsilon']) else: optimizer = torch.optim.Adam(model.parameters(), lr) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args['num_train_steps']) kwargs = args ppo_kwargs = {key: kwargs[key] for key in ["value_loss_coef", "entropy_coef", "cliprange", "max_grad_norm"] if key in kwargs} ppo = PPO(runner.policy, device, optimizer, lr_scheduler, **ppo_kwargs) return ppo def learning_body(self): # self.runner.step_var+=1 data = self.runner.get_next() loss = self.alg.step(data) # save_to_file('new_logs/random_loss.csv', {'loss':loss}) yield data, loss while not self.runner.trajectory_is_stale(): data = self.runner.get_next() loss = self.alg.step(data) yield data, loss class ScoredLearner(Learner): """ Scored learner. """ # pylint: disable=abstract-method def __init__(self, runner, alg): if not isinstance(alg.model, SelectModelFromLayers): raise ValueError("alg.model must be an instance of SelectModel, " f"got type {type(alg.model)} instead") runner = SavedRewardsResetsRunner(runner) super().__init__(runner=runner, alg=alg) self.select_model = alg.model self.current_data = None self.current_loss = None def get_score(self): """ Returns score over the last learning trajectory. """ rewards, resets = self.runner.get_rewards_resets() self.runner.clear_rewards_resets() assert rewards.ndim == 1 and resets.ndim == 1, (rewards.ndim, resets.ndim) assert rewards.shape[0] == resets.shape[0], (rewards.shape, resets.shape) scores = [0] for t in reversed(range(rewards.shape[0])): if resets[t]: scores.append(0) scores[-1] += rewards[t] return np.mean(scores) def learning_body(self): data = self.runner.get_next() loss = self.alg.step(data) self.current_data = data self.current_loss = loss yield data, loss while not self.runner.trajectory_is_stale(): data = self.runner.get_next() loss = self.alg.step(data) yield data, loss
[ "numpy.mean", "torch.optim.lr_scheduler.CosineAnnealingLR", "runners.runners.make_ppo_runner", "torch.nn.DataParallel", "runners.runners.SavedRewardsResetsRunner" ]
[((1869, 1940), 'runners.runners.make_ppo_runner', 'make_ppo_runner', (['env', 'policy', "args['num_runner_steps']"], {}), "(env, policy, args['num_runner_steps'], **runner_kwargs)\n", (1884, 1940), False, 'from runners.runners import make_ppo_runner, SavedRewardsResetsRunner\n'), ((2156, 2204), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {'device_ids': 'GPU_ids'}), '(model, device_ids=GPU_ids)\n', (2177, 2204), False, 'import torch\n'), ((2445, 2523), 'torch.optim.lr_scheduler.CosineAnnealingLR', 'torch.optim.lr_scheduler.CosineAnnealingLR', (['optimizer', "args['num_train_steps']"], {}), "(optimizer, args['num_train_steps'])\n", (2487, 2523), False, 'import torch\n'), ((3610, 3642), 'runners.runners.SavedRewardsResetsRunner', 'SavedRewardsResetsRunner', (['runner'], {}), '(runner)\n', (3634, 3642), False, 'from runners.runners import make_ppo_runner, SavedRewardsResetsRunner\n'), ((4339, 4354), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (4346, 4354), True, 'import numpy as np\n')]
import asyncio import websockets import can import struct from threading import Timer class Watchdog(Exception): def __init__(self, timeout, userHandler=None): # timeout in seconds self.timeout = timeout self.handler = userHandler if userHandler is not None else self.defaultHandler self.timer = Timer(self.timeout, self.handler) self.timer.start() def reset(self): self.timer.cancel() self.timer = Timer(self.timeout, self.handler) self.timer.start() def stop(self): self.timer.cancel() def defaultHandler(self): raise self ws=None def pack_can(address, data, bus): CAN_TRANSMIT = 1 CAN_EXTENDED = 4 if(len(data) > 8): #can't have more than 8 bytes of data in a can frame return if ( address >= 0x800): address = ((address << 3) | CAN_TRANSMIT | CAN_EXTENDED) >> 0 else: address = ((address << 21) | CAN_TRANSMIT) >> 0 buff = bytearray(struct.pack('<I', address)) buff.extend(struct.pack('<I', (len(data) | (bus << 4)) >> 0)) buff.extend(data) print(buff) return buff msg_count=0 can_packet = bytearray() MAX_MESSAGE_QUEUE = 100 watchdog = None async def on_can_message(msg): global ws global can_packet global msg_count global MAX_MESSAGE_QUEUE global watchdog print(msg) watchdog.reset() can_frame = pack_can(msg.arbitration_id, msg.data, 0) if(len(can_frame) < 16): diff = 16-len(can_frame) can_frame.extend(bytearray(diff)) can_packet.extend(can_frame) msg_count+=1 if(ws is not None): if(msg_count >= MAX_MESSAGE_QUEUE): msg_count = 0 await ws.send(can_packet) can_packet = bytearray() def can_watchdog_expired(): global ws global can_packet global msg_count if(ws is not None): print("sending last little bit of data") print(can_packet) if(msg_count>0): asyncio.run(ws.send(can_packet)) can_packet = bytearray() msg_count = 0 async def on_new_ws_client(websocket, path): global ws ws = websocket print("New WS Client Connected") while True: try: name = await websocket.recv() except websockets.ConnectionClosed: print(f"Terminated") break # await websocket.send(greeting) async def can_setup(): global watchdog can_interface = 'can0' bus = can.interface.Bus(can_interface, bustype='socketcan') loop = asyncio.get_event_loop() notifier = can.Notifier(bus, [on_can_message], loop=loop) watchdog = Watchdog(0.5, can_watchdog_expired) start_server = websockets.serve(on_new_ws_client, "localhost", 8080) asyncio.get_event_loop().run_until_complete(can_setup()) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
[ "can.interface.Bus", "threading.Timer", "struct.pack", "websockets.serve", "asyncio.get_event_loop", "can.Notifier" ]
[((2714, 2767), 'websockets.serve', 'websockets.serve', (['on_new_ws_client', '"""localhost"""', '(8080)'], {}), "(on_new_ws_client, 'localhost', 8080)\n", (2730, 2767), False, 'import websockets\n'), ((2495, 2548), 'can.interface.Bus', 'can.interface.Bus', (['can_interface'], {'bustype': '"""socketcan"""'}), "(can_interface, bustype='socketcan')\n", (2512, 2548), False, 'import can\n'), ((2560, 2584), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2582, 2584), False, 'import asyncio\n'), ((2600, 2646), 'can.Notifier', 'can.Notifier', (['bus', '[on_can_message]'], {'loop': 'loop'}), '(bus, [on_can_message], loop=loop)\n', (2612, 2646), False, 'import can\n'), ((327, 360), 'threading.Timer', 'Timer', (['self.timeout', 'self.handler'], {}), '(self.timeout, self.handler)\n', (332, 360), False, 'from threading import Timer\n'), ((459, 492), 'threading.Timer', 'Timer', (['self.timeout', 'self.handler'], {}), '(self.timeout, self.handler)\n', (464, 492), False, 'from threading import Timer\n'), ((994, 1020), 'struct.pack', 'struct.pack', (['"""<I"""', 'address'], {}), "('<I', address)\n", (1005, 1020), False, 'import struct\n'), ((2770, 2794), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2792, 2794), False, 'import asyncio\n'), ((2827, 2851), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2849, 2851), False, 'import asyncio\n'), ((2885, 2909), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2907, 2909), False, 'import asyncio\n')]
from prometheus_client.core import GaugeMetricFamily from BaseCollector import BaseCollector class UcsmCollector(BaseCollector): def __init__(self, creds, inventory_file): super().__init__(creds, inventory_file) def describe(self): yield GaugeMetricFamily("ucsm_metrics", "ucsm_collector_registered") def collect(self): print("UcsmCollector: Get updated handles !") self.get_handles() g = GaugeMetricFamily('ucsm_info', 'UCSM server information', labels=['server', 'firmware_version']) for server, handle in self.handles.items(): sys = handle.query_dn("sys") firmware_status = handle.query_children(sys, class_id="FirmwareStatus") firmware_version = firmware_status[0].package_version g.add_metric(labels=[server, firmware_version], value=0) yield g self.logout_handles()
[ "prometheus_client.core.GaugeMetricFamily" ]
[((445, 545), 'prometheus_client.core.GaugeMetricFamily', 'GaugeMetricFamily', (['"""ucsm_info"""', '"""UCSM server information"""'], {'labels': "['server', 'firmware_version']"}), "('ucsm_info', 'UCSM server information', labels=['server',\n 'firmware_version'])\n", (462, 545), False, 'from prometheus_client.core import GaugeMetricFamily\n'), ((265, 327), 'prometheus_client.core.GaugeMetricFamily', 'GaugeMetricFamily', (['"""ucsm_metrics"""', '"""ucsm_collector_registered"""'], {}), "('ucsm_metrics', 'ucsm_collector_registered')\n", (282, 327), False, 'from prometheus_client.core import GaugeMetricFamily\n')]
import dbus import re import subprocess as s from dbus.mainloop.glib import DBusGMainLoop DBusGMainLoop(set_as_default=True) bus = dbus.SystemBus() DeviceName = {} def valid(name): return re.search("^sd[a-z][0-9][0-9]*$",name) def notify(title, desc): s.call(["notify-send", title, desc]) def extract_name(name): """ Extract /dev/ from the name """ return name.replace('/dev/', '').replace('/', '') def get_device_from_dbus(cls): deviceinfo = cls.get('org.freedesktop.UDisks2.Block') dev = bytearray(deviceinfo.get('Device')).replace(b'\x00', b'').decode('utf-8') return dev # Function which will run when signal is received def callback_added_function(address, cls): device = get_device_from_dbus(cls) naming = extract_name(device) DeviceName[address] = naming if valid(naming): notify("USB plugged in", "Mounting to /media/"+naming) def callback_removed_function(address, cls): device=DeviceName[address] if valid(device): notify("USB removed", "Unmounting from /media/"+device) # Which signal to have an eye for iface = 'org.freedesktop.DBus.ObjectManager' signal = 'InterfacesAdded' signalR = 'InterfacesRemoved' bus.add_signal_receiver(callback_added_function, signal, iface) bus.add_signal_receiver(callback_removed_function, signalR, iface) # Let's start the loop import gi.repository.GLib as gi loop = gi.MainLoop() loop.run()
[ "dbus.mainloop.glib.DBusGMainLoop", "gi.repository.GLib.MainLoop", "dbus.SystemBus", "subprocess.call", "re.search" ]
[((90, 124), 'dbus.mainloop.glib.DBusGMainLoop', 'DBusGMainLoop', ([], {'set_as_default': '(True)'}), '(set_as_default=True)\n', (103, 124), False, 'from dbus.mainloop.glib import DBusGMainLoop\n'), ((133, 149), 'dbus.SystemBus', 'dbus.SystemBus', ([], {}), '()\n', (147, 149), False, 'import dbus\n'), ((1400, 1413), 'gi.repository.GLib.MainLoop', 'gi.MainLoop', ([], {}), '()\n', (1411, 1413), True, 'import gi.repository.GLib as gi\n'), ((195, 234), 're.search', 're.search', (['"""^sd[a-z][0-9][0-9]*$"""', 'name'], {}), "('^sd[a-z][0-9][0-9]*$', name)\n", (204, 234), False, 'import re\n'), ((264, 300), 'subprocess.call', 's.call', (["['notify-send', title, desc]"], {}), "(['notify-send', title, desc])\n", (270, 300), True, 'import subprocess as s\n')]
"""Load and query configuration data. This module handles loading of the hil.cfg file, and querying the options therein. the `cfg` attribute is an instance of `ConfigParser.RawConfigParser`. Once `load` has been called, it will be ready to use. """ import ConfigParser import logging.handlers import importlib from schema import Schema, Optional, Use, And, Or import os import sys from urlparse import urlparse import errno cfg = ConfigParser.RawConfigParser() cfg.optionxform = str def string_is_bool(option): """Check if a string matches ConfigParser's definition of a bool""" return And(Use(str.lower), Or('true', 'yes', 'on', '1', 'false', 'no', 'off', '0')).validate(option) def string_is_web_url(option): """Check if a string is a valid web URL""" return And(lambda s: urlparse(s).scheme != '', lambda s: urlparse(s).netloc != '').validate(option) def string_is_db_uri(option): """Check if a string is a valid DB URI""" return And(Use(lambda s: urlparse(s).scheme), Or('postgresql', 'sqlite')).validate(option) def string_is_dir(option): """Check if a string is a valid directory path""" return Use(os.path.isabs).validate(option) def string_is_log_level(option): """Check if a string is a valid log level""" return And(Use(str.lower), Or('debug', 'info', 'warn', 'warning', 'error', 'critical', 'fatal')).validate(option) def string_has_vlans(option): """Check if a string is a valid list of VLANs""" for r in option.split(","): r = r.strip().split("-") if not all(s.isdigit() and 0 < int(s) <= 4096 for s in r): return False return True # Note: headnode section receiving minimal checking due to soon replacement core_schema = { Optional('general'): { 'log_level': string_is_log_level, Optional('log_dir'): string_is_dir, }, Optional('auth'): { Optional('require_authentication'): string_is_bool, }, 'headnode': { 'trunk_nic': str, 'base_imgs': str, 'libvirt_endpoint': str, }, 'client': { Optional('endpoint'): string_is_web_url, }, 'database': { 'uri': string_is_db_uri, }, Optional('devel'): { Optional('dry_run'): string_is_bool, }, Optional('maintenance'): { Optional('maintenance_project'): str, Optional('url'): string_is_web_url, Optional('shutdown'): '', }, Optional('network-daemon'): { Optional('sleep_time'): int, }, 'extensions': { Optional(str): '', }, } def load(filename='hil.cfg'): """Load the configuration from the file 'hil.cfg' in the current directory. This must be called once at program startup; no configuration options will be available until then. If the config file is not found, it will simply exit. """ if (os.stat(filename).st_mode & 0o077) != 0: sys.exit("Config file has overly-permissive permissions; make sure " "that only the HIL user may access the file.") opened_file = cfg.read(filename) if filename not in opened_file: sys.exit("Config file not found. Please create hil.cfg") def configure_logging(): """Configure the logger according to the settings in the config file. This must be called *after* the config is loaded. """ if cfg.has_option('general', 'log_level'): LOG_SET = ["CRITICAL", "DEBUG", "ERROR", "FATAL", "INFO", "WARN", "WARNING"] log_level = cfg.get('general', 'log_level').upper() if log_level in LOG_SET: # Set to mnemonic log level logging.basicConfig(level=getattr(logging, log_level)) else: # Set to 'warning', and warn that the config is bad logging.basicConfig(level=logging.WARNING) logging.getLogger(__name__).warn( "Invalid debugging level %s defaulted to WARNING", log_level) else: # Default to 'warning' logging.basicConfig(level=logging.WARNING) # Configure the formatter formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging._defaultFormatter = formatter # Add the file handlers for the modules if cfg.has_option('general', 'log_dir'): log_dir = cfg.get('general', 'log_dir') # logging log_file = os.path.join(log_dir, 'hil.log') logger = logging.getLogger('hil') # Catch bad log directories try: logger.addHandler(logging.handlers.TimedRotatingFileHandler( log_file, when='D', interval=1)) except IOError as e: if e.errno == errno.ENOENT: sys.exit("Error: log directory does not exist") elif e.errno == errno.EACCES: sys.exit("Error: insufficient permissions to " "access log directory") else: raise(e) def load_extensions(): """Load extensions. Each extension is specified as ``module =`` in the ``[extensions]`` section of ``hil.cfg``. This must be called after ``load``. """ if not cfg.has_section('extensions'): return for name in cfg.options('extensions'): importlib.import_module(name) for name in cfg.options('extensions'): if hasattr(sys.modules[name], 'setup'): sys.modules[name].setup() def validate_config(): """Validate the current config file""" cfg_dict = dict() for section in cfg.sections(): cfg_dict[section] = dict(cfg.items(section)) validated = Schema(core_schema).validate(cfg_dict) assert validated == cfg_dict def setup(filename='hil.cfg'): """Do full configuration setup. This is equivalent to calling load, configure_logging, and load_extensions in sequence. """ load(filename) load_extensions() validate_config() configure_logging()
[ "schema.Optional", "importlib.import_module", "ConfigParser.RawConfigParser", "schema.Use", "schema.Schema", "os.path.join", "schema.Or", "sys.exit", "os.stat", "urlparse.urlparse" ]
[((433, 463), 'ConfigParser.RawConfigParser', 'ConfigParser.RawConfigParser', ([], {}), '()\n', (461, 463), False, 'import ConfigParser\n'), ((1836, 1855), 'schema.Optional', 'Optional', (['"""general"""'], {}), "('general')\n", (1844, 1855), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1956, 1972), 'schema.Optional', 'Optional', (['"""auth"""'], {}), "('auth')\n", (1964, 1972), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2287, 2304), 'schema.Optional', 'Optional', (['"""devel"""'], {}), "('devel')\n", (2295, 2304), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2364, 2387), 'schema.Optional', 'Optional', (['"""maintenance"""'], {}), "('maintenance')\n", (2372, 2387), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2526, 2552), 'schema.Optional', 'Optional', (['"""network-daemon"""'], {}), "('network-daemon')\n", (2534, 2552), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1909, 1928), 'schema.Optional', 'Optional', (['"""log_dir"""'], {}), "('log_dir')\n", (1917, 1928), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1984, 2018), 'schema.Optional', 'Optional', (['"""require_authentication"""'], {}), "('require_authentication')\n", (1992, 2018), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2177, 2197), 'schema.Optional', 'Optional', (['"""endpoint"""'], {}), "('endpoint')\n", (2185, 2197), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2316, 2335), 'schema.Optional', 'Optional', (['"""dry_run"""'], {}), "('dry_run')\n", (2324, 2335), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2399, 2430), 'schema.Optional', 'Optional', (['"""maintenance_project"""'], {}), "('maintenance_project')\n", (2407, 2430), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2445, 2460), 'schema.Optional', 'Optional', (['"""url"""'], {}), "('url')\n", (2453, 2460), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2489, 2509), 'schema.Optional', 'Optional', (['"""shutdown"""'], {}), "('shutdown')\n", (2497, 2509), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2564, 2586), 'schema.Optional', 'Optional', (['"""sleep_time"""'], {}), "('sleep_time')\n", (2572, 2586), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2628, 2641), 'schema.Optional', 'Optional', (['str'], {}), '(str)\n', (2636, 2641), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((3001, 3123), 'sys.exit', 'sys.exit', (['"""Config file has overly-permissive permissions; make sure that only the HIL user may access the file."""'], {}), "(\n 'Config file has overly-permissive permissions; make sure that only the HIL user may access the file.'\n )\n", (3009, 3123), False, 'import sys\n'), ((3215, 3271), 'sys.exit', 'sys.exit', (['"""Config file not found. Please create hil.cfg"""'], {}), "('Config file not found. Please create hil.cfg')\n", (3223, 3271), False, 'import sys\n'), ((4483, 4515), 'os.path.join', 'os.path.join', (['log_dir', '"""hil.log"""'], {}), "(log_dir, 'hil.log')\n", (4495, 4515), False, 'import os\n'), ((5361, 5390), 'importlib.import_module', 'importlib.import_module', (['name'], {}), '(name)\n', (5384, 5390), False, 'import importlib\n'), ((1208, 1226), 'schema.Use', 'Use', (['os.path.isabs'], {}), '(os.path.isabs)\n', (1211, 1226), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((5714, 5733), 'schema.Schema', 'Schema', (['core_schema'], {}), '(core_schema)\n', (5720, 5733), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((603, 617), 'schema.Use', 'Use', (['str.lower'], {}), '(str.lower)\n', (606, 617), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((619, 674), 'schema.Or', 'Or', (['"""true"""', '"""yes"""', '"""on"""', '"""1"""', '"""false"""', '"""no"""', '"""off"""', '"""0"""'], {}), "('true', 'yes', 'on', '1', 'false', 'no', 'off', '0')\n", (621, 674), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1069, 1095), 'schema.Or', 'Or', (['"""postgresql"""', '"""sqlite"""'], {}), "('postgresql', 'sqlite')\n", (1071, 1095), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1343, 1357), 'schema.Use', 'Use', (['str.lower'], {}), '(str.lower)\n', (1346, 1357), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((1359, 1427), 'schema.Or', 'Or', (['"""debug"""', '"""info"""', '"""warn"""', '"""warning"""', '"""error"""', '"""critical"""', '"""fatal"""'], {}), "('debug', 'info', 'warn', 'warning', 'error', 'critical', 'fatal')\n", (1361, 1427), False, 'from schema import Schema, Optional, Use, And, Or\n'), ((2952, 2969), 'os.stat', 'os.stat', (['filename'], {}), '(filename)\n', (2959, 2969), False, 'import os\n'), ((4814, 4861), 'sys.exit', 'sys.exit', (['"""Error: log directory does not exist"""'], {}), "('Error: log directory does not exist')\n", (4822, 4861), False, 'import sys\n'), ((4920, 4987), 'sys.exit', 'sys.exit', (['"""Error: insufficient permissions to access log directory"""'], {}), "('Error: insufficient permissions to access log directory')\n", (4928, 4987), False, 'import sys\n'), ((832, 843), 'urlparse.urlparse', 'urlparse', (['s'], {}), '(s)\n', (840, 843), False, 'from urlparse import urlparse\n'), ((883, 894), 'urlparse.urlparse', 'urlparse', (['s'], {}), '(s)\n', (891, 894), False, 'from urlparse import urlparse\n'), ((1033, 1044), 'urlparse.urlparse', 'urlparse', (['s'], {}), '(s)\n', (1041, 1044), False, 'from urlparse import urlparse\n')]
import os import json from datetime import datetime import tornado.escape import tornado.web from bs4 import BeautifulSoup from sklearn.externals.joblib import Parallel, delayed from elephant_sense.evaluator import Evaluator from elephant_sense.qiita_api import search_posts class Application(tornado.web.Application): def __init__(self): self.evaluator = Evaluator().load() handlers = [ (r"/", IndexHandler), (r"/e/search", SearchHandler, dict(evaluator=self.evaluator)), ] settings = dict( template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "static"), xsrf_cookies=True, cookie_secret=os.environ.get("SECRET_TOKEN", "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__"), debug=True, ) super(Application, self).__init__(handlers, **settings) class IndexHandler(tornado.web.RequestHandler): def get(self): self.render("index.html") class SearchHandler(tornado.web.RequestHandler): def initialize(self, evaluator): self.evaluator = evaluator def post(self): data = tornado.escape.json_decode(self.request.body) is_debug = data["debug"] query = data["query"] message = {"posts": []} if is_debug: from elephant_sense.debug import search_posts_dummy posts = search_posts_dummy(query, count=30) posts = self.scoring(posts) message["posts"] = [self.trim(p) for p in posts] self.write(message) else: posts = search_posts(query, n=50) # limit for performance. need improvements for feature extraction. process = 4 batch_size = len(posts) / process tasks = [(int(i * batch_size), int(i * batch_size + batch_size)) for i in range(process)] dones = Parallel(n_jobs=process)(delayed(parallel_scoring)(self.evaluator, posts[t[0]:t[1]]) for t in tasks) posts = [] for scoreds in dones: posts += [self.trim(s) for s in scoreds] posts = sorted(posts, key=lambda p: p["score"], reverse=True) message["posts"] = posts self.write(message) @classmethod def trim(self, post): body = BeautifulSoup(post["rendered_body"], "html.parser") header = body.get_text()[:140] del post["rendered_body"] if "body" in post: del post["body"] post["header"] = header.strip().replace("\n", " ") update_time = datetime.strptime("".join(post["updated_at"].rsplit(":", 1)), "%Y-%m-%dT%H:%M:%S%z") post["update_time"] = update_time.strftime("%Y/%m/%d") return post def scoring(self, posts): scored = [] for p in posts: score = self.evaluator.evaluate(p) p["score"] = score scored.append(p) scored = sorted(scored, key=lambda p: p["score"], reverse=True) return scored def write_json(self, message): serialized = json.dumps(message, ensure_ascii=False) self.write(serialized) def parallel_scoring(evaluator, posts): scored = [] for p in posts: score = evaluator.evaluate(p) p["score"] = score scored.append(p) # sort after merge return scored
[ "elephant_sense.qiita_api.search_posts", "sklearn.externals.joblib.delayed", "elephant_sense.evaluator.Evaluator", "json.dumps", "os.environ.get", "bs4.BeautifulSoup", "os.path.dirname", "sklearn.externals.joblib.Parallel", "elephant_sense.debug.search_posts_dummy" ]
[((2366, 2417), 'bs4.BeautifulSoup', 'BeautifulSoup', (["post['rendered_body']", '"""html.parser"""'], {}), "(post['rendered_body'], 'html.parser')\n", (2379, 2417), False, 'from bs4 import BeautifulSoup\n'), ((3129, 3168), 'json.dumps', 'json.dumps', (['message'], {'ensure_ascii': '(False)'}), '(message, ensure_ascii=False)\n', (3139, 3168), False, 'import json\n'), ((1456, 1491), 'elephant_sense.debug.search_posts_dummy', 'search_posts_dummy', (['query'], {'count': '(30)'}), '(query, count=30)\n', (1474, 1491), False, 'from elephant_sense.debug import search_posts_dummy\n'), ((1659, 1684), 'elephant_sense.qiita_api.search_posts', 'search_posts', (['query'], {'n': '(50)'}), '(query, n=50)\n', (1671, 1684), False, 'from elephant_sense.qiita_api import search_posts\n'), ((371, 382), 'elephant_sense.evaluator.Evaluator', 'Evaluator', ([], {}), '()\n', (380, 382), False, 'from elephant_sense.evaluator import Evaluator\n'), ((767, 846), 'os.environ.get', 'os.environ.get', (['"""SECRET_TOKEN"""', '"""__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__"""'], {}), "('SECRET_TOKEN', '__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__')\n", (781, 846), False, 'import os\n'), ((1945, 1969), 'sklearn.externals.joblib.Parallel', 'Parallel', ([], {'n_jobs': 'process'}), '(n_jobs=process)\n', (1953, 1969), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((594, 619), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (609, 619), False, 'import os\n'), ((672, 697), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (687, 697), False, 'import os\n'), ((1970, 1995), 'sklearn.externals.joblib.delayed', 'delayed', (['parallel_scoring'], {}), '(parallel_scoring)\n', (1977, 1995), False, 'from sklearn.externals.joblib import Parallel, delayed\n')]
# SPDX-FileCopyrightText: 2017 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 """Fixture based tests of the SourceProxy module.""" # pylint: disable=redefined-outer-name import os import re import pytest from decisionengine.framework.modules.SourceProxy import SourceProxy from decisionengine.framework.tests.fixtures import ( # noqa: F401 DEServer, PG_DE_DB_WITHOUT_SCHEMA, PG_PROG, SQLALCHEMY_PG_WITH_SCHEMA, SQLALCHEMY_TEMPFILE_SQLITE, TEST_CONFIG_PATH, ) from decisionengine.framework.tests.WriteToDisk import wait_for_n_writes _channel_config_dir = os.path.join(TEST_CONFIG_PATH, "test-source-proxy") # noqa: F405 deserver = DEServer(conf_path=TEST_CONFIG_PATH, channel_conf_path=_channel_config_dir) # pylint: disable=invalid-name def test_cannot_inherit_from_source_proxy(): with pytest.raises(RuntimeError, match="Cannot inherit from SourceProxy."): class CannotInheritFrom(SourceProxy): pass @pytest.mark.timeout(180) @pytest.mark.usefixtures("deserver") def test_single_source_proxy(deserver): output = deserver.de_client_run_cli("--status") assert re.search("test_source_proxy.*state = STEADY", output, re.DOTALL) wait_for_n_writes(deserver.stdout_at_setup, 2) deserver.de_client_run_cli("--stop-channel", "test_source_proxy") output = deserver.de_client_run_cli("--status") assert re.search("test_source_proxy", output, re.DOTALL) is None _combined_channel_config_dir = os.path.join(TEST_CONFIG_PATH, "test-combined-channels") # noqa: F405 deserver_combined = DEServer( conf_path=TEST_CONFIG_PATH, channel_conf_path=_combined_channel_config_dir ) # pylint: disable=invalid-name @pytest.mark.usefixtures("deserver_combined") def test_combined_channels(deserver_combined): # Mimics the 'test_single_source_proxy' workflow but using a # combined-configuration approach. output = deserver_combined.de_client_run_cli("--status") assert re.search("test_combined_channels.*state = STEADY", output, re.DOTALL) wait_for_n_writes(deserver_combined.stdout_at_setup, 2) deserver_combined.de_client_run_cli("--stop-channel", "test_combined_channels") output = deserver_combined.de_client_run_cli("--status") assert re.search("test_combined_channels", output, re.DOTALL) is None _fail_channel_config_dir = os.path.join(TEST_CONFIG_PATH, "test-failing-source-proxy") # noqa: F405 deserver_fail = DEServer( conf_path=TEST_CONFIG_PATH, channel_conf_path=_fail_channel_config_dir ) # pylint: disable=invalid-name @pytest.mark.usefixtures("deserver_fail") def test_stop_failing_source_proxy(deserver_fail): output = deserver_fail.de_client_run_cli("--status") assert re.search("test_source_proxy.*state = OFFLINE", output, re.DOTALL) deserver_fail.de_client_run_cli("--stop-channel", "test_source_proxy") output = deserver_fail.de_client_run_cli("--status") assert re.search("test_source_proxy", output, re.DOTALL) is None
[ "decisionengine.framework.tests.WriteToDisk.wait_for_n_writes", "os.path.join", "decisionengine.framework.tests.fixtures.DEServer", "pytest.raises", "pytest.mark.usefixtures", "pytest.mark.timeout", "re.search" ]
[((604, 655), 'os.path.join', 'os.path.join', (['TEST_CONFIG_PATH', '"""test-source-proxy"""'], {}), "(TEST_CONFIG_PATH, 'test-source-proxy')\n", (616, 655), False, 'import os\n'), ((681, 756), 'decisionengine.framework.tests.fixtures.DEServer', 'DEServer', ([], {'conf_path': 'TEST_CONFIG_PATH', 'channel_conf_path': '_channel_config_dir'}), '(conf_path=TEST_CONFIG_PATH, channel_conf_path=_channel_config_dir)\n', (689, 756), False, 'from decisionengine.framework.tests.fixtures import DEServer, PG_DE_DB_WITHOUT_SCHEMA, PG_PROG, SQLALCHEMY_PG_WITH_SCHEMA, SQLALCHEMY_TEMPFILE_SQLITE, TEST_CONFIG_PATH\n'), ((983, 1007), 'pytest.mark.timeout', 'pytest.mark.timeout', (['(180)'], {}), '(180)\n', (1002, 1007), False, 'import pytest\n'), ((1009, 1044), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""deserver"""'], {}), "('deserver')\n", (1032, 1044), False, 'import pytest\n'), ((1491, 1547), 'os.path.join', 'os.path.join', (['TEST_CONFIG_PATH', '"""test-combined-channels"""'], {}), "(TEST_CONFIG_PATH, 'test-combined-channels')\n", (1503, 1547), False, 'import os\n'), ((1582, 1671), 'decisionengine.framework.tests.fixtures.DEServer', 'DEServer', ([], {'conf_path': 'TEST_CONFIG_PATH', 'channel_conf_path': '_combined_channel_config_dir'}), '(conf_path=TEST_CONFIG_PATH, channel_conf_path=\n _combined_channel_config_dir)\n', (1590, 1671), False, 'from decisionengine.framework.tests.fixtures import DEServer, PG_DE_DB_WITHOUT_SCHEMA, PG_PROG, SQLALCHEMY_PG_WITH_SCHEMA, SQLALCHEMY_TEMPFILE_SQLITE, TEST_CONFIG_PATH\n'), ((1708, 1752), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""deserver_combined"""'], {}), "('deserver_combined')\n", (1731, 1752), False, 'import pytest\n'), ((2357, 2416), 'os.path.join', 'os.path.join', (['TEST_CONFIG_PATH', '"""test-failing-source-proxy"""'], {}), "(TEST_CONFIG_PATH, 'test-failing-source-proxy')\n", (2369, 2416), False, 'import os\n'), ((2447, 2532), 'decisionengine.framework.tests.fixtures.DEServer', 'DEServer', ([], {'conf_path': 'TEST_CONFIG_PATH', 'channel_conf_path': '_fail_channel_config_dir'}), '(conf_path=TEST_CONFIG_PATH, channel_conf_path=_fail_channel_config_dir\n )\n', (2455, 2532), False, 'from decisionengine.framework.tests.fixtures import DEServer, PG_DE_DB_WITHOUT_SCHEMA, PG_PROG, SQLALCHEMY_PG_WITH_SCHEMA, SQLALCHEMY_TEMPFILE_SQLITE, TEST_CONFIG_PATH\n'), ((2569, 2609), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""deserver_fail"""'], {}), "('deserver_fail')\n", (2592, 2609), False, 'import pytest\n'), ((1148, 1213), 're.search', 're.search', (['"""test_source_proxy.*state = STEADY"""', 'output', 're.DOTALL'], {}), "('test_source_proxy.*state = STEADY', output, re.DOTALL)\n", (1157, 1213), False, 'import re\n'), ((1219, 1265), 'decisionengine.framework.tests.WriteToDisk.wait_for_n_writes', 'wait_for_n_writes', (['deserver.stdout_at_setup', '(2)'], {}), '(deserver.stdout_at_setup, 2)\n', (1236, 1265), False, 'from decisionengine.framework.tests.WriteToDisk import wait_for_n_writes\n'), ((1976, 2046), 're.search', 're.search', (['"""test_combined_channels.*state = STEADY"""', 'output', 're.DOTALL'], {}), "('test_combined_channels.*state = STEADY', output, re.DOTALL)\n", (1985, 2046), False, 'import re\n'), ((2052, 2107), 'decisionengine.framework.tests.WriteToDisk.wait_for_n_writes', 'wait_for_n_writes', (['deserver_combined.stdout_at_setup', '(2)'], {}), '(deserver_combined.stdout_at_setup, 2)\n', (2069, 2107), False, 'from decisionengine.framework.tests.WriteToDisk import wait_for_n_writes\n'), ((2729, 2795), 're.search', 're.search', (['"""test_source_proxy.*state = OFFLINE"""', 'output', 're.DOTALL'], {}), "('test_source_proxy.*state = OFFLINE', output, re.DOTALL)\n", (2738, 2795), False, 'import re\n'), ((845, 914), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""Cannot inherit from SourceProxy."""'}), "(RuntimeError, match='Cannot inherit from SourceProxy.')\n", (858, 914), False, 'import pytest\n'), ((1400, 1449), 're.search', 're.search', (['"""test_source_proxy"""', 'output', 're.DOTALL'], {}), "('test_source_proxy', output, re.DOTALL)\n", (1409, 1449), False, 'import re\n'), ((2265, 2319), 're.search', 're.search', (['"""test_combined_channels"""', 'output', 're.DOTALL'], {}), "('test_combined_channels', output, re.DOTALL)\n", (2274, 2319), False, 'import re\n'), ((2939, 2988), 're.search', 're.search', (['"""test_source_proxy"""', 'output', 're.DOTALL'], {}), "('test_source_proxy', output, re.DOTALL)\n", (2948, 2988), False, 'import re\n')]
from eth_account import Account from eth_account.signers.local import LocalAccount from eth_typing import ChecksumAddress ETHEREUM_DEFAULT_PATH = "m/44'/60'/0'/0/0" ETHEREUM_BASE_PATH = "m/44'/60'/0'/0" def get_account_from_words( words: str, index: int = 0, hd_path: str = ETHEREUM_DEFAULT_PATH ) -> LocalAccount: """ :param words: Mnemonic words(BIP39) for a Hierarchical Deterministic Wallet(BIP32) :param index: Index of account :param hd_path: BIP44 Path. By default Ethereum with 0 index is used :return: Ethereum Account :raises: eth_utils.ValidationError """ Account.enable_unaudited_hdwallet_features() if index: hd_path = f"{ETHEREUM_BASE_PATH}/{index}" return Account.from_mnemonic(words, account_path=hd_path) def get_address_from_words( words: str, index: int = 0, hd_path: str = ETHEREUM_DEFAULT_PATH ) -> ChecksumAddress: """ :param words: Mnemonic words(BIP39) for a Hierarchical Deterministic Wallet(BIP32) :param index: Index of account :param hd_path: BIP44 Path. By default Ethereum with 0 index is used :return: Ethereum checksummed public address :raises: eth_utils.ValidationError """ return get_account_from_words(words, index, hd_path).address
[ "eth_account.Account.enable_unaudited_hdwallet_features", "eth_account.Account.from_mnemonic" ]
[((606, 650), 'eth_account.Account.enable_unaudited_hdwallet_features', 'Account.enable_unaudited_hdwallet_features', ([], {}), '()\n', (648, 650), False, 'from eth_account import Account\n'), ((726, 776), 'eth_account.Account.from_mnemonic', 'Account.from_mnemonic', (['words'], {'account_path': 'hd_path'}), '(words, account_path=hd_path)\n', (747, 776), False, 'from eth_account import Account\n')]
from datasets import list_datasets, list_metrics, load_dataset, load_metric from pprint import pprint import sys import transformers import argparse TOKENIZERS = { "GPT2Fast" : "transformers.GPT2TokenizerFast.from_pretrained('gpt2')" } # add more tokenizers here as per need def get_dataset(name, tokenizer, split='train[:20%]', cache_dir=None, num_workers=8, bptt_len=1024): """Get a PyTorch Dataset object for popular LM datasets supported by huggingface Args: name (str): Name of dataset, eg:- wikitext-2, wikitext-103, openwebtext tokenizer (transformers.Tokenizer): a huggingface tokenizer object split (str, optional): Split of the dataset (train, test, val). Defaults to 'train[:20%]'. cache_dir (str, optional): The directory where the dataset is stored. Defaults to None (None implies -> ~/.cache/huggingface). On clusters dont leave this as None, change it to the filesystem for heavy I/O. num_workers (int, optional): number of processes for preprocessing. Defaults to 8. bptt_len (int, optional): Back-propagation through time length i.e. number of words in each training example. Defaults to 1024. Returns: torch.utils.data.Dataset : A PyTorch Dataset object that can be used with a PyTorch dataloader """ if name == "wikitext-103": dataset = load_dataset('wikitext', 'wikitext-103-v1', split=split, cache_dir=cache_dir) elif name == "wikitext-2": dataset = load_dataset('wikitext', 'wikitext-2-v1', split=split, cache_dir=cache_dir) else: dataset = load_dataset(name, split=split, cache_dir=cache_dir) encoded_dataset = dataset.map(lambda example : tokenizer(example['text']), batched=True, num_proc=num_workers, load_from_cache_file=True) print(encoded_dataset.column_names) block_size = bptt_len def chunk_examples(examples): concat = [] for input_ids in examples['input_ids']: if input_ids: concat.extend(input_ids + [tokenizer.eos_token_id]) chunks = [concat[i:i+block_size] for i in range(0, len(concat), block_size)] src = [] trg = [] for chunk in chunks: if len(chunk) >= block_size: src.append(chunk[:-1]) trg.append(chunk[1:]) return {"src" : src, "trg" : trg} lm_dataset = encoded_dataset.map( chunk_examples, batched=True, num_proc=num_workers, load_from_cache_file=True, remove_columns=encoded_dataset.column_names, batch_size = 2000, keep_in_memory=True ) lm_dataset.set_format(type='torch', columns=['src', 'trg']) return lm_dataset
[ "datasets.load_dataset" ]
[((1353, 1430), 'datasets.load_dataset', 'load_dataset', (['"""wikitext"""', '"""wikitext-103-v1"""'], {'split': 'split', 'cache_dir': 'cache_dir'}), "('wikitext', 'wikitext-103-v1', split=split, cache_dir=cache_dir)\n", (1365, 1430), False, 'from datasets import list_datasets, list_metrics, load_dataset, load_metric\n'), ((1480, 1555), 'datasets.load_dataset', 'load_dataset', (['"""wikitext"""', '"""wikitext-2-v1"""'], {'split': 'split', 'cache_dir': 'cache_dir'}), "('wikitext', 'wikitext-2-v1', split=split, cache_dir=cache_dir)\n", (1492, 1555), False, 'from datasets import list_datasets, list_metrics, load_dataset, load_metric\n'), ((1584, 1636), 'datasets.load_dataset', 'load_dataset', (['name'], {'split': 'split', 'cache_dir': 'cache_dir'}), '(name, split=split, cache_dir=cache_dir)\n', (1596, 1636), False, 'from datasets import list_datasets, list_metrics, load_dataset, load_metric\n')]
import numpy as np import time from fileReader import read_file #Returns tuple of 2 values added together resulting in value provided for "goal" def find_values(goal, list_of_values): for i in range(0, len(list_of_values) - 1): value_to_find = goal - list_of_values[i] for j in range(i + 1, len(list_of_values) - 1): if list_of_values[j] == value_to_find: return (list_of_values[i],list_of_values[j]) return () def find_2020(file_path): sum_to_find = 2020 expenses = read_file(file_path) result = find_values(sum_to_find, expenses) if len(result) != 0: product = np.prod(result) print("Values added resulting in sum", sum_to_find, ":", result[0:len(result)]) print("Product:", product) return product if __name__ == "__main__": find_2020("C:\\Users\\oscar\\Documents\\Repo\\AdventOfCode2020\\Day01\\exampleInput.txt")
[ "numpy.prod", "fileReader.read_file" ]
[((534, 554), 'fileReader.read_file', 'read_file', (['file_path'], {}), '(file_path)\n', (543, 554), False, 'from fileReader import read_file\n'), ((647, 662), 'numpy.prod', 'np.prod', (['result'], {}), '(result)\n', (654, 662), True, 'import numpy as np\n')]
from rdflib import ConjunctiveGraph, exceptions, Namespace from rdflib import RDFS, RDF, BNode from rdflib.collection import Collection from .ntr_terms import ( ntrs ) from .manual_slims import slim_shims import json EPILOG = __doc__ OWLNS = Namespace("http://www.w3.org/2002/07/owl#") OBO_OWL = Namespace("http://www.geneontology.org/formats/oboInOwl#") Synonym = OBO_OWL["hasExactSynonym"] Ontology = OWLNS["Ontology"] Class = OWLNS["Class"] Thing = OWLNS["Thing"] OnProperty = OWLNS["onProperty"] SomeValuesFrom = OWLNS["someValuesFrom"] IntersectionOf = OWLNS["intersectionOf"] PART_OF = "http://purl.obolibrary.org/obo/BFO_0000050" DERIVES_FROM = "http://www.obofoundry.org/ro/ro.owl#derives_from" DEFAULT_LANGUAGE = "en" class Inspector(object): """ Class that includes methods for querying an RDFS/OWL ontology """ def __init__(self, uri, language=""): super(Inspector, self).__init__() self.rdfGraph = ConjunctiveGraph() try: self.rdfGraph.parse(uri, format="application/rdf+xml") except: try: self.rdfGraph.parse(uri, format="n3") except: raise exceptions.Error( "Could not parse the file! Is `%s` a valid RDF/OWL ontology?" % uri) finally: self.baseURI = self.get_OntologyURI() or uri self.allclasses = self.__getAllClasses( includeDomainRange=True, includeImplicit=True, removeBlankNodes=False, excludeRDF_OWL=False) def get_OntologyURI(self, return_as_string=True): test = [x for x, y, z in self.rdfGraph.triples( (None, RDF.type, Ontology))] if test: if return_as_string: return str(test[0]) else: return test[0] else: return None def __getAllClasses(self, classPredicate="", includeDomainRange=False, includeImplicit=False, removeBlankNodes=True, addOWLThing=True, excludeRDF_OWL=True): rdfGraph = self.rdfGraph exit = {} def addIfYouCan(x, mydict): if excludeRDF_OWL: if x.startswith('http://www.w3.org/2002/07/owl#') or \ x.startswith("http://www.w3.org/1999/02/22-rdf-syntax-ns#") or \ x.startswith("http://www.w3.org/2000/01/rdf-schema#"): return mydict if x not in mydict: mydict[x] = None return mydict if addOWLThing: exit = addIfYouCan(Thing, exit) if classPredicate == "rdfs" or classPredicate == "": for s in rdfGraph.subjects(RDF.type, RDFS.Class): exit = addIfYouCan(s, exit) if classPredicate == "owl" or classPredicate == "": for s in rdfGraph.subjects(RDF.type, Class): exit = addIfYouCan(s, exit) if includeDomainRange: for o in rdfGraph.objects(None, RDFS.domain): exit = addIfYouCan(o, exit) for o in rdfGraph.objects(None, RDFS.range): exit = addIfYouCan(o, exit) if includeImplicit: for s, v, o in rdfGraph.triples((None, RDFS.subClassOf, None)): exit = addIfYouCan(s, exit) exit = addIfYouCan(o, exit) for o in rdfGraph.objects(None, RDF.type): exit = addIfYouCan(o, exit) # get a list exit = exit.keys() if removeBlankNodes: exit = [x for x in exit if not isBlankNode(x)] return sort_uri_list_by_name(exit) def __getTopclasses(self, classPredicate=''): returnlist = [] for eachclass in self.__getAllClasses(classPredicate): x = self.get_classDirectSupers(eachclass) if not x: returnlist.append(eachclass) return sort_uri_list_by_name(returnlist) def __getTree(self, father=None, out=None): if not father: out = {} topclasses = self.toplayer out[0] = topclasses for top in topclasses: children = self.get_classDirectSubs(top) out[top] = children for potentialfather in children: self.__getTree(potentialfather, out) return out else: children = self.get_classDirectSubs(father) out[father] = children for ch in children: self.__getTree(ch, out) def __buildClassTree(self, father=None, out=None): if not father: out = {} topclasses = self.toplayer out[0] = [Thing] out[Thing] = sort_uri_list_by_name(topclasses) for top in topclasses: children = self.get_classDirectSubs(top) out[top] = sort_uri_list_by_name(children) for potentialfather in children: self.__buildClassTree(potentialfather, out) return out else: children = self.get_classDirectSubs(father) out[father] = sort_uri_list_by_name(children) for ch in children: self.__buildClassTree(ch, out) # methods for getting ancestors and descendants of classes: by default, we do not include blank nodes def get_classDirectSupers(self, aClass, excludeBnodes=True, sortUriName=False): returnlist = [] for o in self.rdfGraph.objects(aClass, RDFS.subClassOf): if not (o == Thing): if excludeBnodes: if not isBlankNode(o): returnlist.append(o) else: returnlist.append(o) if sortUriName: return sort_uri_list_by_name(remove_duplicates(returnlist)) else: return remove_duplicates(returnlist) def get_classDirectSubs(self, aClass, excludeBnodes=True): returnlist = [] for s, v, o in self.rdfGraph.triples((None, RDFS.subClassOf, aClass)): if excludeBnodes: if not isBlankNode(s): returnlist.append(s) else: returnlist.append(s) return sort_uri_list_by_name(remove_duplicates(returnlist)) def get_classSiblings(self, aClass, excludeBnodes=True): returnlist = [] for father in self.get_classDirectSupers(aClass, excludeBnodes): for child in self.get_classDirectSubs(father, excludeBnodes): if child != aClass: returnlist.append(child) return sort_uri_list_by_name(remove_duplicates(returnlist)) def entitySynonyms(self, anEntity, getall=True): temp = [] for o in self.rdfGraph.objects(anEntity, Synonym): temp += [o] return temp def classFind(self, name, exact=False): temp = [] if name: for x in self.allclasses: if exact: if x.__str__().lower() == str(name).lower(): return [x] else: if x.__str__().lower().find(str(name).lower()) >= 0: temp.append(x) return temp def inferNamespacePrefix(aUri): stringa = aUri.__str__() try: prefix = stringa.replace("#", "").split("/")[-1] except: prefix = "" return prefix def sort_uri_list_by_name(uri_list): def get_last_bit(uri_string): try: x = uri_string.split("#")[1] except: x = uri_string.split("/")[-1] return x try: return sorted(uri_list, key=lambda x: get_last_bit(x.__str__())) except: # TODO: do more testing.. maybe use a unicode-safe method instead of __str__ print("Error in <sort_uri_list_by_name>: possibly a UnicodeEncodeError") return uri_list def remove_duplicates(seq, idfun=None): if seq: if idfun is None: def idfun(x): return x seen = {} result = [] for item in seq: marker = idfun(item) if marker in seen: continue seen[marker] = 1 result.append(item) return result else: return [] def isBlankNode(aClass): ''' Checks for blank node ''' if type(aClass) == BNode: return True else: return False def splitNameFromNamespace(aUri): stringa = aUri.__str__() try: ns = stringa.split("#")[0] name = stringa.split("#")[1] except: ns = stringa.rsplit("/", 1)[0] name = stringa.rsplit("/", 1)[1] return (name, ns) def iterativeChildren(nodes, terms): data = 'data' results = [] while 1: newNodes = [] if len(nodes) == 0: break for node in nodes: results.append(node) if node in terms.keys(): if terms[node][data]: for child in terms[node][data]: if child not in results: newNodes.append(child) nodes = list(set(newNodes)) return list(set(results)) def getTermStructure(): return { 'id': '', 'name': '', 'parents': [], 'part_of': [], 'derives_from': [], 'ancestors': [], 'data': [], 'synonyms': [] } def main(): ''' Downloads various ontologies and create a JSON file ''' efo_url = 'http://www.ebi.ac.uk/efo/efo.owl' uberon_url = 'http://purl.obolibrary.org/obo/uberon.owl' mondo_url = 'http://purl.obolibrary.org/obo/mondo.owl' hancestro_url = 'http://purl.obolibrary.org/obo/hancestro.owl' cl_url = 'http://purl.obolibrary.org/obo/cl.owl' hsapdv_url = 'http://purl.obolibrary.org/obo/hsapdv.owl' mmusdv_url = 'http://purl.obolibrary.org/obo/mmusdv.owl' url_whitelist = { uberon_url: ['UBERON', 'CL'], efo_url: ['EFO'], mondo_url: ['MONDO'], hancestro_url: ['HANCESTRO'], cl_url: ['CL'], hsapdv_url: ['HsapDv'], mmusdv_url: ['MmusDv'] } terms = {} # Run on ontologies defined in whitelist for url in url_whitelist.keys(): data = Inspector(url) for c in data.allclasses: if isBlankNode(c): for o in data.rdfGraph.objects(c, RDFS.subClassOf): if isBlankNode(o): pass else: for o1 in data.rdfGraph.objects(c, IntersectionOf): collection = Collection(data.rdfGraph, o1) col_list = [] for col in data.rdfGraph.objects(collection[1]): col_list.append(col.__str__()) if PART_OF in col_list: for subC in data.rdfGraph.objects(c, RDFS.subClassOf): term_id = splitNameFromNamespace( collection[0])[0].replace('_', ':') if term_id.split(':')[0] in url_whitelist[url]: if term_id not in terms: terms[term_id] = getTermStructure() terms[term_id]['part_of'].append( splitNameFromNamespace(subC)[0].replace('_', ':')) else: term_id = splitNameFromNamespace(c)[0].replace('_', ':') if term_id.split(':')[0] in url_whitelist[url]: if term_id not in terms: terms[term_id] = getTermStructure() terms[term_id]['id'] = term_id try: terms[term_id]['name'] = data.rdfGraph.label(c).__str__() except: terms[term_id]['name'] = '' # Get all parents for parent in data.get_classDirectSupers(c, excludeBnodes=False): if isBlankNode(parent): for s, v, o in data.rdfGraph.triples((parent, OnProperty, None)): if o.__str__() == PART_OF: for o1 in data.rdfGraph.objects(parent, SomeValuesFrom): if not isBlankNode(o1): terms[term_id]['part_of'].append( splitNameFromNamespace(o1)[0].replace('_', ':')) elif o.__str__() == DERIVES_FROM: for o1 in data.rdfGraph.objects(parent, SomeValuesFrom): if not isBlankNode(o1): terms[term_id]['derives_from'].append( splitNameFromNamespace(o1)[0].replace('_', ':')) else: for o2 in data.rdfGraph.objects(o1, IntersectionOf): for o3 in data.rdfGraph.objects(o2, RDF.first): if not isBlankNode(o3): terms[term_id]['derives_from'].append( splitNameFromNamespace(o3)[0].replace('_', ':')) for o3 in data.rdfGraph.objects(o2, RDF.rest): for o4 in data.rdfGraph.objects(o3, RDF.first): for o5 in data.rdfGraph.objects(o4, SomeValuesFrom): for o6 in data.rdfGraph.objects(o5, IntersectionOf): for o7 in data.rdfGraph.objects(o6, RDF.first): if not isBlankNode(o7): terms[term_id]['derives_from'].append( splitNameFromNamespace(o7)[0].replace('_', ':')) for o8 in data.rdfGraph.objects(o6, RDF.rest): for o9 in data.rdfGraph.objects(o8, RDF.first): if not isBlankNode(o9): terms[term_id]['derives_from'].append( splitNameFromNamespace(o9)[0].replace('_', ':')) else: terms[term_id]['parents'].append( splitNameFromNamespace(parent)[0].replace('_', ':')) for syn in data.entitySynonyms(c): try: terms[term_id]['synonyms'].append(syn.__str__()) except: pass for term in terms: terms[term]['data'] = list(set(terms[term]['parents']) | set(terms[term]['part_of']) | set( terms[term]['derives_from'])) for term in terms: ont_whitelist = [i for sublist in url_whitelist.values() for i in sublist] d = iterativeChildren( terms[term]['data'], terms) for dd in d: if dd.split(':')[0] in ont_whitelist: terms[term]['ancestors'].append(dd) terms[term]['ancestors'].append(term) if term in slim_shims: terms[term]['ancestors'].extend(slim_shims[term]) for term in terms: del terms[term]['parents'], terms[term]['derives_from'] del terms[term]['part_of'], terms[term]['id'], terms[term]['data'] for ntr in ntrs: ancestors = set() for parent in ntr.get('child_of'): ancestors.update(terms[parent]['ancestors']) terms[ntr['term_id']] = { 'name': ntr['name'], 'synonyms': ntr['synonyms'], 'ancestors': list(ancestors) } with open('ontology.json', 'w') as outfile: json.dump(terms, outfile) if __name__ == '__main__': main()
[ "rdflib.collection.Collection", "rdflib.ConjunctiveGraph", "rdflib.Namespace", "rdflib.exceptions.Error", "json.dump" ]
[((248, 291), 'rdflib.Namespace', 'Namespace', (['"""http://www.w3.org/2002/07/owl#"""'], {}), "('http://www.w3.org/2002/07/owl#')\n", (257, 291), False, 'from rdflib import ConjunctiveGraph, exceptions, Namespace\n'), ((302, 360), 'rdflib.Namespace', 'Namespace', (['"""http://www.geneontology.org/formats/oboInOwl#"""'], {}), "('http://www.geneontology.org/formats/oboInOwl#')\n", (311, 360), False, 'from rdflib import ConjunctiveGraph, exceptions, Namespace\n'), ((946, 964), 'rdflib.ConjunctiveGraph', 'ConjunctiveGraph', ([], {}), '()\n', (962, 964), False, 'from rdflib import ConjunctiveGraph, exceptions, Namespace\n'), ((16614, 16639), 'json.dump', 'json.dump', (['terms', 'outfile'], {}), '(terms, outfile)\n', (16623, 16639), False, 'import json\n'), ((1174, 1264), 'rdflib.exceptions.Error', 'exceptions.Error', (["('Could not parse the file! Is `%s` a valid RDF/OWL ontology?' % uri)"], {}), "(\n 'Could not parse the file! Is `%s` a valid RDF/OWL ontology?' % uri)\n", (1190, 1264), False, 'from rdflib import ConjunctiveGraph, exceptions, Namespace\n'), ((10638, 10667), 'rdflib.collection.Collection', 'Collection', (['data.rdfGraph', 'o1'], {}), '(data.rdfGraph, o1)\n', (10648, 10667), False, 'from rdflib.collection import Collection\n')]
# Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from google.cloud import bigquery from bq_benchmarks.generic_benchmark_tools import table_util from bq_benchmarks.query_benchmark_tools import query_generator SELECT_ALL_ID = 'SIMPLE_SELECT_*' SELECT_ONE_STRING_ID = 'SELECT_ONE_STRING' SELECT_50_PERCENT_ID = 'SELECT_50_PERCENT' class TestQueryGenerator(unittest.TestCase): """Tests functionality of query_benchmark_tools.query_generator. Attributes: bq_client(google.cloud.bigquery.client.Client): Client to hold configurations needed for BigQuery API requests. dataset_id(str): ID of the dataset that holds the test table. dataset_ref(google.cloud.bigquery.dataset.DatasetReference): Pointer to the dataset that holds the test table. dataset(google.cloud.bigquery.dataset.Dataset): Dataset that holds the test table. table_id(str): The name of the test table. table_util(generic_benchmark.TableUtil): BigQuery to handle test table. """ def setUp(self): """Sets up resources for tests. """ self.bq_client = bigquery.Client() self.dataset_id = 'bq_benchmark_test_dataset' self.dataset_ref = self.bq_client.dataset(self.dataset_id) dataset = bigquery.Dataset(self.dataset_ref) self.dataset = self.bq_client.create_dataset(dataset) self.table_id = 'test_table' abs_path = os.path.abspath(os.path.dirname(__file__)) json_schema_filename = os.path.join(abs_path, 'test_schemas/test_schema.json') self.table_util = table_util.TableUtil( table_id=self.table_id, dataset_id=self.dataset_id, json_schema_filename=json_schema_filename, ) self.table_util.create_table() self.test_query_generator = query_generator.QueryGenerator( table_id=self.table_id, dataset_id=self.dataset_id) def test_get_query_strings(self): """Tests QueryGenerator.get_query_strings(). Tests QueryGenerators's ability to create queries for a given table. Returns: True if test passes, else False. """ query_strings = self.test_query_generator.get_query_strings() expected_query_strings = { SELECT_ALL_ID: 'SELECT * FROM `{0:s}`', SELECT_ONE_STRING_ID: 'SELECT string1 FROM `{0:s}`', SELECT_50_PERCENT_ID: 'SELECT string1 FROM `{0:s}`' } assert query_strings == expected_query_strings def tearDown(self): """Deletes any resources used by tests. """ self.bq_client.delete_dataset(dataset=self.dataset_ref, delete_contents=True)
[ "bq_benchmarks.query_benchmark_tools.query_generator.QueryGenerator", "os.path.join", "google.cloud.bigquery.Dataset", "os.path.dirname", "bq_benchmarks.generic_benchmark_tools.table_util.TableUtil", "google.cloud.bigquery.Client" ]
[((1693, 1710), 'google.cloud.bigquery.Client', 'bigquery.Client', ([], {}), '()\n', (1708, 1710), False, 'from google.cloud import bigquery\n'), ((1850, 1884), 'google.cloud.bigquery.Dataset', 'bigquery.Dataset', (['self.dataset_ref'], {}), '(self.dataset_ref)\n', (1866, 1884), False, 'from google.cloud import bigquery\n'), ((2077, 2132), 'os.path.join', 'os.path.join', (['abs_path', '"""test_schemas/test_schema.json"""'], {}), "(abs_path, 'test_schemas/test_schema.json')\n", (2089, 2132), False, 'import os\n'), ((2203, 2322), 'bq_benchmarks.generic_benchmark_tools.table_util.TableUtil', 'table_util.TableUtil', ([], {'table_id': 'self.table_id', 'dataset_id': 'self.dataset_id', 'json_schema_filename': 'json_schema_filename'}), '(table_id=self.table_id, dataset_id=self.dataset_id,\n json_schema_filename=json_schema_filename)\n', (2223, 2322), False, 'from bq_benchmarks.generic_benchmark_tools import table_util\n'), ((2441, 2528), 'bq_benchmarks.query_benchmark_tools.query_generator.QueryGenerator', 'query_generator.QueryGenerator', ([], {'table_id': 'self.table_id', 'dataset_id': 'self.dataset_id'}), '(table_id=self.table_id, dataset_id=self.\n dataset_id)\n', (2471, 2528), False, 'from bq_benchmarks.query_benchmark_tools import query_generator\n'), ((2019, 2044), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2034, 2044), False, 'import os\n')]
# stdlib import itertools from collections import OrderedDict from functools import partial from typing import List, Tuple # 3rd party import numpy # type: ignore from cycler import cycler # type: ignore from matplotlib.axes import Axes # type: ignore from matplotlib.figure import Figure # type: ignore # this package from domplotlib.styles.default import plt def koch_snowflake() -> Tuple[Figure, Axes]: """ From https://matplotlib.org/3.3.3/gallery/lines_bars_and_markers/fill.html#sphx-glr-gallery-lines-bars-and-markers-fill-py """ def _koch_snowflake_complex(order): if order == 0: # initial triangle angles = numpy.array([0, 120, 240]) + 90 return 10 / numpy.sqrt(3) * numpy.exp(numpy.deg2rad(angles) * 1j) else: ZR = 0.5 - 0.5j * numpy.sqrt(3) / 3 p1 = _koch_snowflake_complex(order - 1) # start points p2 = numpy.roll(p1, shift=-1) # end points dp = p2 - p1 # connection vectors new_points = numpy.empty(len(p1) * 4, dtype=numpy.complex128) new_points[::4] = p1 new_points[1::4] = p1 + dp / 3 new_points[2::4] = p1 + dp * ZR new_points[3::4] = p1 + dp / 3 * 2 return new_points points = _koch_snowflake_complex(5) x, y = points.real, points.imag fig: Figure = plt.figure(figsize=(8, 8)) ax = fig.subplots() ax.axis("equal", emit=True) ax.fill(x, y, label="Koch Snowflake") return fig, ax def hatch_filled_histograms() -> Tuple[Figure, Axes]: """ From https://matplotlib.org/3.3.3/gallery/lines_bars_and_markers/filled_step.html#sphx-glr-gallery-lines-bars-and-markers-filled-step-py """ def filled_hist(ax, edges, values, bottoms=None, orientation='v', **kwargs): """ Draw a histogram as a stepped patch. Extra kwargs are passed through to `fill_between` Parameters ---------- ax : Axes The axes to plot to edges : array A length n+1 array giving the left edges of each bin and the right edge of the last bin. values : array A length n array of bin counts or values bottoms : float or array, optional A length n array of the bottom of the bars. If None, zero is used. orientation : {'v', 'h'} Orientation of the histogram. 'v' (default) has the bars increasing in the positive y-direction. Returns ------- ret : PolyCollection Artist added to the Axes """ print(orientation) if orientation not in "hv": raise ValueError(f"orientation must be in {{'h', 'v'}} not {orientation}") kwargs.setdefault("step", "post") edges = numpy.asarray(edges) values = numpy.asarray(values) if len(edges) - 1 != len(values): raise ValueError( 'Must provide one more bin edge than value not: ' 'len(edges): {lb} len(values): {lv}'.format(lb=len(edges), lv=len(values)) ) if bottoms is None: bottoms = 0 bottoms = numpy.broadcast_to(bottoms, values.shape) values = numpy.append(values, values[-1]) bottoms = numpy.append(bottoms, bottoms[-1]) if orientation == 'h': return ax.fill_betweenx(edges, values, bottoms, **kwargs) elif orientation == 'v': return ax.fill_between(edges, values, bottoms, **kwargs) else: raise AssertionError("you should never be here") def stack_hist( ax, stacked_data, sty_cycle, bottoms=None, hist_func=None, labels=None, plot_func=None, plot_kwargs=None ): # deal with default binning function if hist_func is None: hist_func = numpy.histogram # deal with default plotting function if plot_func is None: plot_func = filled_hist # deal with default if plot_kwargs is None: plot_kwargs = {} print(plot_kwargs) try: l_keys = stacked_data.keys() label_data = True if labels is None: labels = l_keys except AttributeError: label_data = False if labels is None: labels = itertools.repeat(None) if label_data: loop_iter = enumerate((stacked_data[lab], lab, s) for lab, s in zip(labels, sty_cycle)) else: loop_iter = enumerate(zip(stacked_data, labels, sty_cycle)) arts = {} for j, (data, label, sty) in loop_iter: if label is None: label = f'dflt set {j}' label = sty.pop("label", label) vals, edges = hist_func(data) if bottoms is None: bottoms = numpy.zeros_like(vals) top = bottoms + vals print(sty) sty.update(plot_kwargs) print(sty) ret = plot_func(ax, edges, top, bottoms=bottoms, label=label, **sty) bottoms = top arts[label] = ret ax.legend(fontsize=10) return arts # set up histogram function to fixed bins edges = numpy.linspace(-3, 3, 20, endpoint=True) hist_func = partial(numpy.histogram, bins=edges) # set up style cycles color_cycle = cycler(facecolor=plt.rcParams["axes.prop_cycle"][:4]) label_cycle = cycler(label=[f'set {n}' for n in range(4)]) hatch_cycle = cycler(hatch=['/', '*', '+', '|']) # Fixing random state for reproducibility numpy.random.seed(19680801) stack_data = numpy.random.randn(4, 12250) dict_data = OrderedDict(zip((c["label"] for c in label_cycle), stack_data)) fig, ax = plt.subplots(1, 1, figsize=(9, 4.5), tight_layout=True) arts = stack_hist(ax, stack_data, color_cycle + label_cycle + hatch_cycle, hist_func=hist_func) ax.set_ylabel("counts") ax.set_xlabel('x') return fig, ax def h_bar_chart() -> Tuple[Figure, Axes]: """ https://matplotlib.org/3.3.3/gallery/lines_bars_and_markers/horizontal_barchart_distribution.html#sphx-glr-gallery-lines-bars-and-markers-horizontal-barchart-distribution-py """ category_names = ["Strongly disagree", "Disagree", "Neither agree nor disagree", "Agree", "Strongly agree"] results = { "Question 1": [10, 15, 17, 32, 26], "Question 2": [26, 22, 29, 10, 13], "Question 3": [35, 37, 7, 2, 19], "Question 4": [32, 11, 9, 15, 33], "Question 5": [21, 29, 5, 5, 40], "Question 6": [8, 19, 5, 30, 38] } def survey(results, category_names): """ Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """ labels = list(results.keys()) data = numpy.array(list(results.values())) data_cum = data.cumsum(axis=1) category_colors = plt.get_cmap("RdYlGn")(numpy.linspace(0.15, 0.85, data.shape[1])) fig, ax = plt.subplots(figsize=(9.2, 5)) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, numpy.sum(data, axis=1).max()) for i, (colname, color) in enumerate(zip(category_names, category_colors)): widths = data[:, i] starts = data_cum[:, i] - widths ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color) xcenters = starts + widths / 2 r, g, b, _ = color text_color = "white" if r * g * b < 0.5 else "darkgrey" for y, (x, c) in enumerate(zip(xcenters, widths)): ax.text(x, y, str(int(c)), ha="center", va="center", color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc="lower left", fontsize="small") return fig, ax return survey(results, category_names) def markevery() -> Tuple[Figure, List[Axes]]: """ From https://matplotlib.org/3.3.3/gallery/lines_bars_and_markers/markevery_demo.html#sphx-glr-gallery-lines-bars-and-markers-markevery-demo-py """ # define a list of markevery cases to plot cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] # define the figure size and grid layout properties figsize = (10, 8) cols = 3 rows = len(cases) // cols + 1 # define the data for cartesian plots delta = 0.11 x = numpy.linspace(0, 10 - 2 * delta, 200) + delta y = numpy.sin(x) + 1.0 + delta def trim_axs(axs, N): """ Reduce *axs* to *N* Axes. All further Axes are removed from the figure. """ axs = axs.flat for ax in axs[N:]: ax.remove() return axs[:N] fig = plt.figure(figsize=figsize, constrained_layout=True) axs = fig.subplots(rows, cols) axs = trim_axs(axs, len(cases)) colour_cycle = itertools.cycle(plt.rcParams["axes.prop_cycle"].by_key()["color"]) for ax, case in zip(axs, cases): ax.set_title(f"markevery={case}") ax.plot(x, y, 'o', ls='-', ms=4, markevery=case, label=f"markevery={case}", color=next(colour_cycle)) return fig, axs
[ "numpy.sqrt", "numpy.array", "numpy.sin", "itertools.repeat", "domplotlib.styles.default.plt.get_cmap", "numpy.asarray", "numpy.zeros_like", "numpy.linspace", "numpy.random.seed", "numpy.deg2rad", "cycler.cycler", "numpy.random.randn", "domplotlib.styles.default.plt.figure", "numpy.roll", "domplotlib.styles.default.plt.subplots", "numpy.append", "numpy.sum", "functools.partial", "numpy.broadcast_to" ]
[((1235, 1261), 'domplotlib.styles.default.plt.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (1245, 1261), False, 'from domplotlib.styles.default import plt\n'), ((4485, 4525), 'numpy.linspace', 'numpy.linspace', (['(-3)', '(3)', '(20)'], {'endpoint': '(True)'}), '(-3, 3, 20, endpoint=True)\n', (4499, 4525), False, 'import numpy\n'), ((4539, 4575), 'functools.partial', 'partial', (['numpy.histogram'], {'bins': 'edges'}), '(numpy.histogram, bins=edges)\n', (4546, 4575), False, 'from functools import partial\n'), ((4615, 4668), 'cycler.cycler', 'cycler', ([], {'facecolor': "plt.rcParams['axes.prop_cycle'][:4]"}), "(facecolor=plt.rcParams['axes.prop_cycle'][:4])\n", (4621, 4668), False, 'from cycler import cycler\n'), ((4744, 4778), 'cycler.cycler', 'cycler', ([], {'hatch': "['/', '*', '+', '|']"}), "(hatch=['/', '*', '+', '|'])\n", (4750, 4778), False, 'from cycler import cycler\n'), ((4824, 4851), 'numpy.random.seed', 'numpy.random.seed', (['(19680801)'], {}), '(19680801)\n', (4841, 4851), False, 'import numpy\n'), ((4867, 4895), 'numpy.random.randn', 'numpy.random.randn', (['(4)', '(12250)'], {}), '(4, 12250)\n', (4885, 4895), False, 'import numpy\n'), ((4985, 5040), 'domplotlib.styles.default.plt.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(9, 4.5)', 'tight_layout': '(True)'}), '(1, 1, figsize=(9, 4.5), tight_layout=True)\n', (4997, 5040), False, 'from domplotlib.styles.default import plt\n'), ((7873, 7925), 'domplotlib.styles.default.plt.figure', 'plt.figure', ([], {'figsize': 'figsize', 'constrained_layout': '(True)'}), '(figsize=figsize, constrained_layout=True)\n', (7883, 7925), False, 'from domplotlib.styles.default import plt\n'), ((2484, 2504), 'numpy.asarray', 'numpy.asarray', (['edges'], {}), '(edges)\n', (2497, 2504), False, 'import numpy\n'), ((2516, 2537), 'numpy.asarray', 'numpy.asarray', (['values'], {}), '(values)\n', (2529, 2537), False, 'import numpy\n'), ((2787, 2828), 'numpy.broadcast_to', 'numpy.broadcast_to', (['bottoms', 'values.shape'], {}), '(bottoms, values.shape)\n', (2805, 2828), False, 'import numpy\n'), ((2841, 2873), 'numpy.append', 'numpy.append', (['values', 'values[-1]'], {}), '(values, values[-1])\n', (2853, 2873), False, 'import numpy\n'), ((2886, 2920), 'numpy.append', 'numpy.append', (['bottoms', 'bottoms[-1]'], {}), '(bottoms, bottoms[-1])\n', (2898, 2920), False, 'import numpy\n'), ((6328, 6358), 'domplotlib.styles.default.plt.subplots', 'plt.subplots', ([], {'figsize': '(9.2, 5)'}), '(figsize=(9.2, 5))\n', (6340, 6358), False, 'from domplotlib.styles.default import plt\n'), ((7606, 7644), 'numpy.linspace', 'numpy.linspace', (['(0)', '(10 - 2 * delta)', '(200)'], {}), '(0, 10 - 2 * delta, 200)\n', (7620, 7644), False, 'import numpy\n'), ((853, 877), 'numpy.roll', 'numpy.roll', (['p1'], {'shift': '(-1)'}), '(p1, shift=-1)\n', (863, 877), False, 'import numpy\n'), ((6249, 6271), 'domplotlib.styles.default.plt.get_cmap', 'plt.get_cmap', (['"""RdYlGn"""'], {}), "('RdYlGn')\n", (6261, 6271), False, 'from domplotlib.styles.default import plt\n'), ((6272, 6313), 'numpy.linspace', 'numpy.linspace', (['(0.15)', '(0.85)', 'data.shape[1]'], {}), '(0.15, 0.85, data.shape[1])\n', (6286, 6313), False, 'import numpy\n'), ((7658, 7670), 'numpy.sin', 'numpy.sin', (['x'], {}), '(x)\n', (7667, 7670), False, 'import numpy\n'), ((637, 663), 'numpy.array', 'numpy.array', (['[0, 120, 240]'], {}), '([0, 120, 240])\n', (648, 663), False, 'import numpy\n'), ((4181, 4203), 'numpy.zeros_like', 'numpy.zeros_like', (['vals'], {}), '(vals)\n', (4197, 4203), False, 'import numpy\n'), ((684, 697), 'numpy.sqrt', 'numpy.sqrt', (['(3)'], {}), '(3)\n', (694, 697), False, 'import numpy\n'), ((3769, 3791), 'itertools.repeat', 'itertools.repeat', (['None'], {}), '(None)\n', (3785, 3791), False, 'import itertools\n'), ((6426, 6449), 'numpy.sum', 'numpy.sum', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (6435, 6449), False, 'import numpy\n'), ((710, 731), 'numpy.deg2rad', 'numpy.deg2rad', (['angles'], {}), '(angles)\n', (723, 731), False, 'import numpy\n'), ((767, 780), 'numpy.sqrt', 'numpy.sqrt', (['(3)'], {}), '(3)\n', (777, 780), False, 'import numpy\n')]
#!/usr/bin/env python3 import time from cmd import Cmd from node import Node from threading import Thread, Event import random as r import math as m import queue class BNode(Cmd): def do_init(self): """Initializes the node.""" self.node = Node(debug=True) self.helping = Event() self.helper = Thread(target=self.__helper).start() print('init Pi Monte Carlo Node Started') def do_quit(self, args): """Terminates the node.""" self.helping.clear() self.node.kill() raise SystemExit def do_list(self, args): peers = self.node.peers() for peer in peers.keys(): print("peer %s-(%s, %5d)" % \ (peer, peers[peer][0], peers[peer][1])) print('done') def do_calc(self, args): args = args.split() if len(args) != 1: print('---- Invalid arguments!') return self.peers = self.node.peers() self.distributed_monte_carlo(int(args[0])) def distributed_monte_carlo(self, points): start = time.time() count = len(self.peers) if count < 1: print('---- No peers available') return for peer in self.peers: self.node.send_message(peer, 'calculate-' + str(m.ceil(points/count))) received = 0 points_inside = 0 while received < count: if not self.node.messages.empty(): message = self.node.messages.get() split = message['contents'].split('-') if split[0] == 'results': points_inside += int(split[1]) received += 1 else: self.node.messages.put(message) # inside / total = pi / 4 pi = (float(points_inside) / points) * 4 # It works! end = time.time() cost = round(end - start, 3) print('calc Calculated Pi =', pi, 'Time =', end-start, 'secs') def __helper(self): self.helping.set() while self.helping.is_set(): if not self.node.messages.empty(): message = self.node.messages.get() split = message['contents'].split('-') if split[0] == 'calculate': print('calc Processing', split[1], 'points for', message['sender']) points_inside = 0 for i in range(int(split[1])): # Generate random x, y in [0, 1]. x = r.random()**2 y = r.random()**2 # Increment if inside unit circle. if m.sqrt(x + y) < 1.0: points_inside += 1 print('send results') self.node.send_message(message['sender'], 'results-'+str(points_inside)) else: self.node.messages.put(message) if __name__ == '__main__': cmd = BNode() cmd.do_init() cmd.prompt = '' cmd.cmdloop('')
[ "math.ceil", "math.sqrt", "threading.Event", "random.random", "threading.Thread", "node.Node", "time.time" ]
[((264, 280), 'node.Node', 'Node', ([], {'debug': '(True)'}), '(debug=True)\n', (268, 280), False, 'from node import Node\n'), ((304, 311), 'threading.Event', 'Event', ([], {}), '()\n', (309, 311), False, 'from threading import Thread, Event\n'), ((1086, 1097), 'time.time', 'time.time', ([], {}), '()\n', (1095, 1097), False, 'import time\n'), ((1881, 1892), 'time.time', 'time.time', ([], {}), '()\n', (1890, 1892), False, 'import time\n'), ((334, 362), 'threading.Thread', 'Thread', ([], {'target': 'self.__helper'}), '(target=self.__helper)\n', (340, 362), False, 'from threading import Thread, Event\n'), ((1308, 1330), 'math.ceil', 'm.ceil', (['(points / count)'], {}), '(points / count)\n', (1314, 1330), True, 'import math as m\n'), ((2550, 2560), 'random.random', 'r.random', ([], {}), '()\n', (2558, 2560), True, 'import random as r\n'), ((2592, 2602), 'random.random', 'r.random', ([], {}), '()\n', (2600, 2602), True, 'import random as r\n'), ((2692, 2705), 'math.sqrt', 'm.sqrt', (['(x + y)'], {}), '(x + y)\n', (2698, 2705), True, 'import math as m\n')]
""" ClientSync """ import os import logging import asyncio import bson from file_system import FileSystem class ClientSync: """ Client Sync class """ def __init__(self, host: str, port: int, source: str, loop: bool = None) -> None: """ Initialize the class. Add some detail here. :param host: Host address :param port: Port number :param loop: Event loop """ self.host = host self.port = port self.source = source self._loop = loop or asyncio.get_event_loop() def __repr__(self) -> str: return f'{self.__class__.__name__}({self.host}, {self.port})' async def task_builder(self): """ Client tasks runner. """ tasks = [] # Select files for sending files = [] for file_ in FileSystem.get_files_with_size(source_path=self.source): files.append({ 'name': file_['name'], 'size': file_['size'], }) meta = { 'chunks': files } for file in files: task = asyncio.ensure_future( self.send_file(file_path=file['name'], **meta) ) tasks.append(task) contents = await asyncio.gather(*tasks) return contents def start(self) -> None: """ Start sync client. """ logging.info('Client Sync is started') future = asyncio.ensure_future(self.task_builder()) self._loop.run_until_complete(future) def stop(self) -> None: """ Stop sync client. """ self._loop.close() logging.info('Client Sync has been stopped') async def _echo(self, message): """ Sender. :param message: Sending message """ _, writer = await asyncio.open_connection( host=self.host, port=self.port, loop=self._loop ) logging.info('Send the message') writer.write(message) await writer.drain() logging.info('Close the connection') writer.close() await writer.wait_closed() async def send_file(self, file_path: str, **meta): """ Send file. :param file: Full file path :param meta: Meta information """ full_file_path = os.path.join(self.source, file_path) with open(full_file_path, mode='rb') as f_handle: file_chunk = f_handle.read() # build data frame data_frame = { 'data': file_chunk, 'meta': { 'name': file_path, 'chunks': meta.get('chunks', []) } } # data frame to BSON bson_data_frame = bson.dumps(data_frame) await self._echo(bson_data_frame)
[ "bson.dumps", "os.path.join", "asyncio.open_connection", "asyncio.gather", "asyncio.get_event_loop", "logging.info", "file_system.FileSystem.get_files_with_size" ]
[((868, 923), 'file_system.FileSystem.get_files_with_size', 'FileSystem.get_files_with_size', ([], {'source_path': 'self.source'}), '(source_path=self.source)\n', (898, 923), False, 'from file_system import FileSystem\n'), ((1443, 1481), 'logging.info', 'logging.info', (['"""Client Sync is started"""'], {}), "('Client Sync is started')\n", (1455, 1481), False, 'import logging\n'), ((1703, 1747), 'logging.info', 'logging.info', (['"""Client Sync has been stopped"""'], {}), "('Client Sync has been stopped')\n", (1715, 1747), False, 'import logging\n'), ((2021, 2053), 'logging.info', 'logging.info', (['"""Send the message"""'], {}), "('Send the message')\n", (2033, 2053), False, 'import logging\n'), ((2122, 2158), 'logging.info', 'logging.info', (['"""Close the connection"""'], {}), "('Close the connection')\n", (2134, 2158), False, 'import logging\n'), ((2416, 2452), 'os.path.join', 'os.path.join', (['self.source', 'file_path'], {}), '(self.source, file_path)\n', (2428, 2452), False, 'import os\n'), ((556, 580), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (578, 580), False, 'import asyncio\n'), ((1305, 1327), 'asyncio.gather', 'asyncio.gather', (['*tasks'], {}), '(*tasks)\n', (1319, 1327), False, 'import asyncio\n'), ((1893, 1965), 'asyncio.open_connection', 'asyncio.open_connection', ([], {'host': 'self.host', 'port': 'self.port', 'loop': 'self._loop'}), '(host=self.host, port=self.port, loop=self._loop)\n', (1916, 1965), False, 'import asyncio\n'), ((2862, 2884), 'bson.dumps', 'bson.dumps', (['data_frame'], {}), '(data_frame)\n', (2872, 2884), False, 'import bson\n')]
from typing import Any, Tuple from dice_rolling import Die class RollBuilder: """Class to build a complete throw of the dice. """ def __init__(self, seed: Any = None): """Constructor of RollBuilder. :param Any seed: Seed for the dice, if any. """ self.__n_dice = 1 self.__n_sides = 0 self.__addition = 0 self.__keep = 0 self.__rolls = [] self.__discarded = [] Die.set_seed(seed) def set_amount_of_dice(self, n_dice: int) -> None: """Method to set the amount of dice. :param int n_dice: Amount of dice. """ self.__n_dice = n_dice def set_number_of_sides(self, n_sides: int) -> None: """Method to set the number of sides of the dice. :param int n_sides: Number of sides of the dice. """ self.__n_sides = n_sides def addition_to_roll(self, addition: int) -> None: """Method to set the amount to add to every rolled die. :param int addition: Amount to add. """ self.__addition += addition def keep_n(self, n_items: int) -> None: """Method to set the number and preference to keep after every die has been rolled. - If n_items > 0: It will keep the highest n_items. - If n_items < 0: It will keep the lowest n_items. :param int n_items: Number and preference to keep. """ if abs(n_items) <= self.__n_dice: self.__keep = n_items def build(self) -> None: """Method to build the complete throw of the dice after every parameter has been set. """ self.__rolls = [] for _ in range(self.__n_dice): self.__rolls.append( Die(self.__n_sides).roll() + self.__addition ) if self.__keep: sort = sorted(self.__rolls, reverse=self.__keep > 0) self.__rolls = sort[:self.__keep] self.__discarded = sort[self.__keep:] def get_result(self) -> list: """Method to obtain the kept results of the complete roll. The discarded dice are not included. :returns: The kept results of the complete roll. """ return self.__rolls def get_full_result(self) -> Tuple[int, list, list]: """Method to obtain the full results of the complete roll. :returns: The full results of the full roll. The kept and the discarded rolls. """ return sum(self.__rolls), self.__rolls, self.__discarded
[ "dice_rolling.Die.set_seed", "dice_rolling.Die" ]
[((458, 476), 'dice_rolling.Die.set_seed', 'Die.set_seed', (['seed'], {}), '(seed)\n', (470, 476), False, 'from dice_rolling import Die\n'), ((1768, 1787), 'dice_rolling.Die', 'Die', (['self.__n_sides'], {}), '(self.__n_sides)\n', (1771, 1787), False, 'from dice_rolling import Die\n')]
#!/usr/bin/python """ Electobot by <NAME> (http://github.com/ZsigE) Analysis and prediction tool based on the 2010 UK General Election results Constants for use by all modules """ import math import logging import os # Party names CON = "Conservative" LAB = "Labour" LD = "Lib-Dem" SNP = "SNP" PC = "PC" GRN = "Green" BNP = "BNP" UKP = "UKIP" OTH = "Other" # List of all party names PARTY_NAMES = [CON, LAB, LD, SNP, PC, GRN, BNP, UKP, OTH] # Colours to represent each party, in matplotlib colour identifiers PARTY_COLOURS = {CON: "b", LAB: "r", LD: "Orange", SNP: "Yellow", PC: "DarkGreen", GRN: "g", BNP: "Indigo", UKP: "Purple", OTH: "Gray"} # Data CSV file paths RESOURCE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "res") HARVARD_CSV = os.path.join(RESOURCE_DIR, "harvard_election_results_2010.csv") GUARDIAN_CSV = os.path.join(RESOURCE_DIR, "guardian_election_results_2010.csv") # Wikipedia's historical poll data API URL WIKI_POLLS_URL = ("http://en.wikipedia.org/w/api.php?action=parse&prop=text&" "page=Opinion_polling_for_the_2015_United_Kingdom_general_" "election&format=json") # Constituency numbers (only including those contested in 2010) NUM_OF_CONSTITUENCIES = 649 NEEDED_FOR_MAJORITY = int(math.ceil(NUM_OF_CONSTITUENCIES / 2)) # Tuning parameters for the model RESULT_TOLERANCE = 0.03 # In percentage points divided by 100 SUPPORT_VARIATION = 0.005 # Also in percentage points SWING_SCALE_FACTOR = 70.0 # Scale the amount of variance in vote numbers by this # User agent to use when fetching historical poll data USER_AGENT_STR = "Electobot PollScrape http://github.com/ZsigE/electobot" # Results timeout. Set this to None on very slow machines. RESULTS_TIMEOUT = 10 # Logging LOGS_DIR = "logs" LOG_FILE = os.path.join(LOGS_DIR, "electobot.log") LOG_LEVEL = logging.INFO
[ "math.ceil", "os.path.join", "os.path.abspath" ]
[((967, 1030), 'os.path.join', 'os.path.join', (['RESOURCE_DIR', '"""harvard_election_results_2010.csv"""'], {}), "(RESOURCE_DIR, 'harvard_election_results_2010.csv')\n", (979, 1030), False, 'import os\n'), ((1046, 1110), 'os.path.join', 'os.path.join', (['RESOURCE_DIR', '"""guardian_election_results_2010.csv"""'], {}), "(RESOURCE_DIR, 'guardian_election_results_2010.csv')\n", (1058, 1110), False, 'import os\n'), ((1995, 2034), 'os.path.join', 'os.path.join', (['LOGS_DIR', '"""electobot.log"""'], {}), "(LOGS_DIR, 'electobot.log')\n", (2007, 2034), False, 'import os\n'), ((1472, 1508), 'math.ceil', 'math.ceil', (['(NUM_OF_CONSTITUENCIES / 2)'], {}), '(NUM_OF_CONSTITUENCIES / 2)\n', (1481, 1508), False, 'import math\n'), ((856, 881), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (871, 881), False, 'import os\n')]
# -*- coding: utf-8 -*- """ run using: blender --python render.py Note that this is coded in Python 3 """ #%% Imports % import bpy import sys, os, time, re import numpy as np from numpy.linalg import norm from numpy import array, pi, reshape, round import scipy.io # Define font times = bpy.data.fonts.load("/usr/share/fonts/TTF/times.ttf") #%% Function definitions % rodLib = {} # Contains rods of various aspect ratios def CreateRod(pos, r, material): pos = array(pos) LV = pos[1]-pos[0] L = norm(LV) assert r[0] == r[1] rMean = sum(r)/2 aspect = round(L/(2*rMean),1) keyName = str(aspect)+material # Dictionary stored based on aspect ratio and material if not keyName in rodLib: Say("\t\tAspect = {} with material = {} NOT in rodLib".format(aspect, material), verbosity=2) bpy.ops.mesh.primitive_cylinder_add(depth=L, location=(0, 0, L/2), radius=rMean) spring = bpy.context.object # Ugly but appears to be the way to do it bpy.ops.mesh.primitive_uv_sphere_add(location=(0, 0, L), size=rMean) ball1 = bpy.context.object bpy.ops.mesh.primitive_uv_sphere_add(location=(0, 0, 0), size=rMean) ball0 = bpy.context.object # Deselect everything, then select objects in the right order (making ball0 the active object) bpy.ops.object.select_all(action='DESELECT') spring.select = True ball1.select = True ball0.select = True rod = ball0 # Join meshes, easier to work on entire cell bpy.ops.object.join() # Apply modifiers and smoothing bpy.ops.object.modifier_add(type='EDGE_SPLIT') # Required to get proper "shinyness" bpy.ops.object.shade_smooth() # Set rotation mode rod.rotation_mode = 'AXIS_ANGLE' # Other rotations are sequential: rotate around X, THEN around y, etc. # Set material rod.active_material = bpy.data.materials[material] # Add this object to the library rodLib[keyName] = [rod, rMean] # rMean required for scaling only, material is copied by reference, not value, so needs to be recreated for different material else: Say("\t\tAspect = {} in rodLib".format(aspect), verbosity=2) originalRod,originalR = rodLib.get(keyName) rod = originalRod.copy() rod.scale = [rMean/originalR]*3 # Make it a len 3 vector rod.name = rod.name + "_copy_r{}".format(rMean) # Need to set something as to not have duplicate names in scene # Link to scene (not needed for original CreateRod) bpy.context.scene.objects.link(rod) # Identical for copied or new. Define vector in XY plane we will revolve along rod.rotation_axis_angle[1] = -1*LV[1] # X axis (use Y position). Relative, absolute doesn't matter. -1* because we want perpendicular vector rod.rotation_axis_angle[2] = LV[0] # Y axis (use X position) # Calculate how much we need to rotate (angle from [0 0 L] to [x y 0] to get vector [0 0 L] to overlay [x y z]) rotationRad = np.arccos(LV[2]/L) rod.rotation_axis_angle[0] = rotationRad # W (amount of rotation around defined axis) # Displace. Since selected object is still ball0 (and this is at the origin), displace to correct position for this one. rod.location = pos[0,:] return rod # Returns entire, merged cell sphereLib = {} def CreateSphere(pos, r, material): pos = array(pos) r = r keyName = material if not keyName in sphereLib: Say("\t\tDefining initial spherical cell", verbosity=2) bpy.ops.mesh.primitive_uv_sphere_add(location=pos, size=r) sphere = bpy.context.object bpy.ops.object.shade_smooth() sphere.active_material = bpy.data.materials[material] sphereLib[keyName] = [sphere, r] else: Say("\t\tCopying existing sphere", verbosity=2) originalSphere,originalR = sphereLib[keyName] sphere = originalSphere.copy() sphere.scale = [r/originalR]*3 sphere.location = pos # Add to scene bpy.context.scene.objects.link(sphere) return sphere cylLib = {} def CreateSpring(pos, r, material): pos = array(pos) LV = pos[1,:]-pos[0,:] L = norm(LV) keyName = material if not keyName in cylLib: Say("\t\tDefining initial spring", verbosity=2) bpy.ops.mesh.primitive_cylinder_add(depth=L, location=(0, 0, L/2), radius=0.15) cyl = bpy.context.object bpy.ops.object.shade_smooth() # Set rotation mode cyl.rotation_mode = 'AXIS_ANGLE' # Set material cyl.active_material = bpy.data.materials[material] # Set as original spring cylLib[keyName] = [cyl, L] else: Say("\t\tCopying existing spring", verbosity=2) originalCyl,originalL = cylLib[keyName] cyl = originalCyl.copy() cyl.scale[2] = L/originalL # Add to scene bpy.context.scene.objects.link(cyl) # Define vector in XY plane we will revolve along (note: see CreateRod for method) cyl.rotation_axis_angle[1] = -1*LV[1] cyl.rotation_axis_angle[2] = LV[0] # Calculate how much we need to rotate rotationRad = np.arccos(LV[2]/L) cyl.rotation_axis_angle[0] = rotationRad # Displace. cyl.location = (pos[0,:]+pos[1,:])/2 return cyl ############################################################################### def Offset(offset): offsetObjects = ['Sphere', 'Rod', 'Stick', 'Fil', 'Anchor', 'Sun'] # Objects that will be offset for k in bpy.data.objects.keys(): for o in offsetObjects: if o in k: # This is an object that will be offset obj = bpy.data.objects[k] obj.location = offset + np.array(obj.location) ############################################################################### def DefineMaterials(): # Prepare materials inkM = bpy.data.materials.new('ink') # ink (text, lines) inkM.diffuse_intensity = 0 inkM.specular_intensity = 0 inkM.use_cast_shadows = False whiteM = bpy.data.materials.new('white') # Bottom plane (to cash shadows on) whiteM.diffuse_color = (1, 1, 1) whiteM.diffuse_intensity = 1 whiteM.specular_intensity = 0 whiteM.diffuse_shader = 'TOON' # Give it a cartoon-ish finish, clear shadows and lines greyM = bpy.data.materials.new('grey') # Bottom plane (to cash shadows on), for E. coli greyM.diffuse_color = (0.5, 0.5, 0.5) # Grey (substratum) greyM.diffuse_intensity = 1 greyM.specular_intensity = 0 greyM.diffuse_shader = 'LAMBERT' wireM = bpy.data.materials.new('wire') # wire (grid) wireM.type = 'WIRE' wireM.specular_intensity = 0 wireM.diffuse_color = (0, 0, 0) cellDssM = bpy.data.materials.new('cellDss') cellDssM.diffuse_color = (0.3, 1.0, 0.0) # Medium-dark green/DSS cellDssM.diffuse_intensity = 0.7 cellDssM.specular_color = (0.6, 1.0, 0.5) cellDssM.specular_intensity = 0.1 cellDssM.specular_hardness = 5 cellDssM.specular_shader = 'PHONG' cellAnmeM = bpy.data.materials.new('cellAnme') cellAnmeM.diffuse_color = (0.4, 0.0, 0.0) # Dark red/ANME cellAnmeM.diffuse_intensity = 0.7 cellAnmeM.specular_color = (1.0, 0.25, 0.25) cellAnmeM.specular_intensity = 0.1 cellAnmeM.specular_hardness = 5 cellAnmeM.specular_shader = 'PHONG' cell0M = bpy.data.materials.new('cell0') cell0M.diffuse_color = (0.4, 0.0, 0.0) # Dark red/E. coli gen. 1 cell0M.diffuse_intensity = 0.7 cell0M.specular_color = (1.0, 0.25, 0.25) cell0M.specular_intensity = 0.1 cell0M.specular_hardness = 5 cell0M.specular_shader = 'PHONG' cell1M = bpy.data.materials.new('cell1') cell1M.diffuse_color = (1.0, 1.0, 0.5) # Bright yellow/E. coli gen. 2 cell1M.diffuse_intensity = 0.6 cell1M.specular_color = (1.0, 1.0, 0.8) cell1M.specular_intensity = 0.1 cell1M.specular_hardness = 5 cell1M.specular_shader = 'PHONG' cell2M = bpy.data.materials.new('cell2') cell2M.diffuse_color = (0.1, 1.0, 1.0) # Medium-bright blue/E. coli gen 3 cell2M.diffuse_intensity = 0.6 cell2M.specular_color = (1.0, 1.0, 1.0) cell2M.specular_intensity = 0.1 cell2M.specular_hardness = 5 cell2M.specular_shader = 'PHONG' cell3M = bpy.data.materials.new('cell3') cell3M.diffuse_color = (0.0, 1.0, 0.0) # Medium-dark green/E. coli gen 4 cell3M.diffuse_intensity = 0.6 cell3M.specular_color = (0.6, 1.0, 0.5) cell3M.specular_intensity = 0.1 cell3M.specular_hardness = 5 cell3M.specular_shader = 'PHONG' stickM = bpy.data.materials.new('stick') # EPS (sticking, adhesive) stickM.diffuse_color = (1.0, 1.0, 1.0) stickM.diffuse_intensity = 1.0 stickM.specular_intensity = 0.1 #stickM.use_shadows = False # Shadows are not cast on the nanowire #stickM.use_object_color = True # So we can assign colour scale to the nanowire, for rates filM = bpy.data.materials.new('fil') # EPS (filament) filM.diffuse_color = (0.0, 0.0, 0.0) filM.diffuse_intensity = 0.5 filM.specular_intensity = 0.1 anchorM = bpy.data.materials.new('anchor') # EPS (anchoring) anchorM.diffuse_color = (0.0, 0.0, 0.0) anchorM.diffuse_intensity = 0.5 anchorM.specular_intensity = 0.1 ############################################################################### def CameraPerspSetup(location, rotation): # Does not allow automatic configuration bpy.ops.object.camera_add(location=location, rotation=rotation) cam = bpy.context.object cam.name = 'CameraPersp' cam.data.clip_end = 1000 # Render whole range. This number will suffice cam.data.lens = 25 cam.data.sensor_width = 30 bpy.context.scene.camera = cam # Set as active camera """ Focal blur: see http://wiki.blender.org/index.php/Doc:2.6/Tutorials/Composite_Nodes/Setups/Depth_Of_Field Good settings: - Add defocus composite - Use Z buffer - Link Zs - Distance 70-100 - fStop 0.3-0.5 Don't forget to deselect preview! """ # Light point behind camera bpy.ops.object.lamp_add(type='POINT', location=(0,0,5)) # Location is relative to camera light = bpy.context.object light.name = 'PointCamPersp' light.data.energy = 0.8 # 1.0 is too bright for E. coli light.data.falloff_type = 'CONSTANT' bpy.ops.object.select_all(action='DESELECT') # Make camera the light point's parent (more detail in animation section, bottom of file) light.parent = cam lightTracker = light.constraints.new('TRACK_TO') # Tell camera to track empty (for rotation) lightTracker.target = cam lightTracker.track_axis = 'TRACK_Z' def CameraSideSetup(distance=None, Lx=20, Ly=20, Lz=20, camWidth=1920, camHeight=1080): # Add camera to the scene, for side view if distance is None: distance = max([camWidth/camHeight*Ly+20, camWidth/camHeight*Lz+20, Lx+20]) camPos,camRot,camName = [(Lx/2.0, Ly-distance, Lz/2.0), (0.5*pi, 0, 0), 'CameraSide'] # This is a useful formula bpy.ops.object.camera_add(location=camPos, rotation=camRot) cam = bpy.context.object cam.name = camName cam.data.clip_end = 1000 # Render whole range. This number will suffice cam.data.type = 'ORTHO' cam.data.ortho_scale = distance bpy.context.scene.camera = cam # Set as active camera # Add light point bpy.ops.object.lamp_add(type='POINT', location=camPos) # Location is relative to camera light = bpy.context.object light.name = 'PointCamSide' light.data.falloff_type = 'CONSTANT' def CameraTopSetup(distance=None, Lx=20, Ly=20, Lz=20, camWidth=1920, camHeight=1080): # Add camera to the scene, for top view if distance is None: distance = max([camWidth/camHeight*Ly+20, camWidth/camHeight*Lz+20, Lx+20]) camPos,camRot,camName = [(Lx/2.0, Ly/2.0, distance), (0, 0, 0), 'CameraTop'] bpy.ops.object.camera_add(location=camPos, rotation=camRot) cam = bpy.context.object cam.name = camName cam.data.clip_end = 1000 # Render whole range. This number will suffice cam.data.type = 'ORTHO' cam.data.ortho_scale = distance bpy.context.scene.camera = cam # Set as active camera def CamerasDelete(): # Delete only the side and top camera for cam in ['CameraSide', 'CameraTop']: obj = bpy.data.objects[cam] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) def CameraPerspDisable(): bpy.data.objects['PointCamPersp'].hide_render=True def CameraSideDisable(): bpy.data.objects['PointCamSide'].hide_render=True ############################################################################### def SetupXYZLegend(location=(0.0, 0.0, 0.0), fontSize=1, textSpacing=2): # The three arrows at the origin, showing which direction is X, Y, Z inkM = bpy.data.materials['ink'] #%% Draw XYZ axis legend axLegCylH = 3.0*fontSize # Arrow body axLegConeH = 0.8*fontSize # Arrow head axLegCylR = 0.2*fontSize # Arrow radius for ax,locCyl,locCone,rot in zip(['X', 'Y', 'Z'], \ [np.add((axLegCylH/2, 0.0, 0.0), location), np.add((0.0, axLegCylH/2, 0), location), np.add((0.0, 0.0, axLegCylH/2), location)], \ [np.add((axLegCylH+axLegConeH/2, 0.0, 0.0), location), np.add((0.0, axLegCylH+axLegConeH/2, 0), location), np.add((0.0, 0.0, axLegCylH+axLegConeH/2), location)], \ [(0, pi/2, 0), (3*pi/2, 0, 0), (0, 0, 0)]): bpy.ops.mesh.primitive_cylinder_add(radius=axLegCylR, depth=axLegCylH, location=locCyl, rotation=rot) bpy.ops.object.shade_smooth() bpy.context.object.name = 'legendCyl'+ax bpy.context.object.active_material = inkM bpy.ops.mesh.primitive_cone_add(radius1=axLegCylR*2, depth=axLegConeH, location=locCone, rotation=rot) bpy.ops.object.shade_smooth() bpy.context.object.name = 'legendCone'+ax bpy.context.object.active_material = inkM # Create text bpy.ops.object.text_add(location=np.add((textSpacing, -fontSize*5.0*0.5, 0), location)) xText = bpy.context.object xText.name = 'legendX' xText.data.body = 'x' bpy.ops.object.text_add(location=np.add((-fontSize*5.0*0.5, textSpacing, 0), location)) yText = bpy.context.object yText.name = 'legendY' yText.data.body = 'y' bpy.ops.object.text_add(location=np.add((-fontSize*5.0*0.5, -fontSize*5.0*0.5, 0), location)) zText = bpy.context.object zText.name = 'legendZ' zText.data.body = 'z' # Set, move text in place for text in (xText, yText, zText): text.data.size = fontSize*5.0 text.active_material = inkM text.data.font = times return [xText, yText, zText] def DeleteLegends(): for k in bpy.data.objects.keys(): if 'legend' in k: obj = bpy.data.objects[k] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) def SetupScalebarLegend(location=(-20,-20, 0), length=10, fontSize=1): inkM = bpy.data.materials['ink'] bpy.ops.mesh.primitive_cylinder_add(radius=0.2*fontSize, depth=length, location=location, rotation=(0, pi/2, 0)) bpy.ops.object.shade_smooth() scalebarCyl = bpy.context.object scalebarCyl.name = 'legendScalebarCyl' scalebarCyl.active_material = inkM bpy.ops.mesh.primitive_cube_add(radius=1, location=np.array(location)-np.array((length/2.0, 0.0, 0.0))) scalebarLeftMarker = bpy.context.object scalebarLeftMarker.name = 'legendScalebarLeftMarker' scalebarLeftMarker.dimensions = (0.1*fontSize, fontSize, fontSize) scalebarLeftMarker.active_material = inkM bpy.ops.mesh.primitive_cube_add(radius=1, location=np.array(location)+np.array((length/2.0, 0.0, 0.0))) scalebarRightMarker = bpy.context.object scalebarRightMarker.name = 'legendScalebarRightMarker' scalebarRightMarker.dimensions = (0.1*fontSize, fontSize, fontSize) scalebarRightMarker.active_material = inkM bpy.ops.object.text_add(location=np.array(location)-np.array([0,fontSize*5.0,0])) text = bpy.context.object text.data.body = str(int(length)) + ' um' text.data.align = 'CENTER' text.name = 'legendScalebarText' text.data.size = fontSize*5.0 text.active_material = inkM text.data.font = times ############################################################################### def SetupPlanes(drawPlaneZ=True, drawPlaneGrid=(False, True, True), Lx=20, Ly=20, Lz=20, radiusZPlane=None, stepSize=10.0): surfaceM = surfaceMaterial wireM = bpy.data.materials['wire'] # Plane to project shadows on if drawPlaneZ: if radiusZPlane is None: planeRadius = Lx/2 else: planeRadius = radiusZPlane bpy.ops.mesh.primitive_plane_add(radius=planeRadius, location=(Lx/2, Ly/2, -0.1)) planeZ = bpy.context.object planeZ.name = 'planeZ' planeZHeightScale = Ly/Lx planeZ.scale[1] = planeZHeightScale planeZ.active_material = surfaceM #%% Draw grid if drawPlaneGrid[2]: # Z plane (horizontal) bpy.ops.mesh.primitive_grid_add(x_subdivisions=int(Lx/stepSize)+1, y_subdivisions=int(Ly/stepSize)+1, radius=Lx/2) planeZGrid = bpy.context.object planeZGrid.name = 'planeZGrid' planeZGrid.location = [Lx/2, Ly/2, 0.0] planeZGrid.active_material = wireM planeZGrid.rotation_euler[2] = 1*pi planeZGrid.scale[1] = planeZHeightScale if drawPlaneGrid[1]: # Y plane (back) PlaneYHeightScale = Lz/Lx bpy.ops.mesh.primitive_grid_add(x_subdivisions=int(Lx/stepSize)+1, y_subdivisions=int(Lz/stepSize)+1, radius=Lx/2) PlaneYGrid = bpy.context.object PlaneYGrid.name = 'planeYGrid' PlaneYGrid.active_material = wireM PlaneYGrid.location = [Lx/2, Ly, Lz/2] PlaneYGrid.rotation_euler[0] = 0.5*pi PlaneYGrid.scale[1] = PlaneYHeightScale def DeletePlanes(): for k in bpy.data.objects.keys(): if 'plane' in k: obj = bpy.data.objects[k] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) ############################################################################### def SetupTicks(drawTicks = (True, True, True), Lx = 20.0, Ly = 20.0, Lz = 20.0, fontSize=1.0, stepSize=10.0): inkM = bpy.data.materials['ink'] pos = 0.0 tickListLarge = [] tickDone = False while not tickDone: tickList = [] tickDone = True if drawTicks[0] and pos <= Lx: # x ticks (x plane) tickDone = False bpy.ops.object.text_add(location=(pos, -fontSize*4.0, 0)) xTick = bpy.context.object xTick.name = "tickX{:g}".format(pos) xTick.data.body = "{:g}".format(pos) tickList.append(xTick) if drawTicks[1] and pos <= Ly: # y ticks (x plane) tickDone = False bpy.ops.object.text_add(location=(-fontSize*4.0, pos-fontSize/2.0, 0)) yTick = bpy.context.object yTick.name = "tickY{:g}".format(pos) yTick.data.body = "{:g}".format(pos) tickList.append(yTick) if drawTicks[2] and pos <= Lz: # z ticks (y plane) tickDone = False bpy.ops.object.text_add(location=(-fontSize*4.0, Ly, pos-fontSize/2.0)) zTick = bpy.context.object zTick.name = "tickZ{:g}".format(pos) zTick.data.body = "{:g}".format(pos) zTick.rotation_euler[0] = 0.5*pi tickList.append(zTick) for tick in tickList: # assign material tick.data.size = fontSize*4.0 tick.active_material = inkM tick.data.font = times tick.data.align = 'CENTER' # only horizontal tickListLarge.append(tick) pos += stepSize return tickListLarge def DeleteTicks(): for k in bpy.data.objects.keys(): if 'tick' in k: obj = bpy.data.objects[k] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) def DeleteTick(x=None, y=None, z=None): for a,prefix in zip([x,y,z],["tickX", "tickY", "tickZ"]): if a is not None: if type(a) is list or type(a) is tuple: for t in a: obj = bpy.data.objects[prefix + str(t)] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) else: print("deleting "+prefix + str(a)) obj = bpy.data.objects[prefix + str(a)] bpy.data.scenes[0].objects.unlink(obj) bpy.data.objects.remove(obj) def RotateX(): for t in bpy.data.objects.keys(): if 'tickX' in t: obj = bpy.data.objects[t] if obj.rotation_euler[0] == 0.0: # Default obj.rotation_euler[0] = 0.5*pi obj.location[2] -= 5 else: obj.rotation_euler[0] = 0.0 obj.location[2] += 5 if 'legendX' in t: obj = bpy.data.objects[t] if obj.rotation_euler[0] == 0.0: # Default obj.rotation_euler[0] = 0.5*pi obj.location[2] -= 3 else: obj.rotation_euler[0] = 0.0 obj.location[2] += 3 if 'legendScalebarText' in t: obj = bpy.data.objects[t] if obj.rotation_euler[0] == 0.0: # Default obj.rotation_euler[0] = 0.5*pi obj.location[2] -= 5 else: obj.rotation_euler[0] = 0.0 obj.location[2] += 5 if t == 'legendZ': obj = bpy.data.objects[t] if obj.rotation_euler[0] == 0.0: # Default obj.rotation_euler[0] = 0.5*pi obj.location[2] += 3 else: obj.rotation_euler[0] = 0.0 obj.location[2] -= 3 ############################################################################### def Render(): bpy.ops.render.render(write_still=True) ############################################################################### def Say(text, verbosity=0): if verbosity<=VERBOSITY: if verbosity == 0: printText = time.strftime('%H:%M:%S ') + text else: printText = time.strftime('%H:%M:%S-DEBUG: ') + text print(printText) def ParseVal(val): if val.isnumeric(): return float(val) elif val.lower() == 'true': return True elif val.lower() == 'false': return False elif re.search('\(.*\)',val): # If val contains a function, evaluate it (TODO security hazard) return eval(val) else: return val ############################################################################### ############################################################################### # Default settings for render.py (better to override from command line or rendermonitor.py) settingsDict = {'camPos':None, 'camRot':array([65, 0, -25]), 'colourByGeneration':False, 'drawAxisLegend':True, 'drawPlane':True, 'drawPlaneGrid':(False, True, True), 'drawPlaneGridY':True, 'drawAnchor':True, 'drawFil':True, 'drawStick':True, 'gridStepSize':10.0, 'offset':array([0,0,0]), 'planeInfinite':False, 'configMaterial':None, # Set materials, pre-configured 'renderDir':'render', 'resolution_percentage':100, # in percent 'saveBlend':True, 'suppressRender':False, 'textSizeDivider':50, } VERBOSITY = 0 ############################################################################### if __name__ == '__main__': # Run if not imported as module #%% Import model argv = sys.argv[sys.argv.index("--")+1:] # Get all arguments after -- (Blender won't touch these) matPath = argv[0]; # Get matPath VERBOSITY = 0 if not 'VERBOSITY' in argv else int(argv[argv.index('VERBOSITY')+1]) # Get VERBOSITY if defined model = scipy.io.loadmat(matPath, chars_as_strings=True, mat_dtype=False, squeeze_me=False, struct_as_record=False)['model'][0,0] # Get overwriting dictionary for render.py and model class modelFields = dir(model) Say('Argument parsing, analysing {} possible setting values and {} model fields'.format(len(settingsDict), len(modelFields)), verbosity=3) for key,val in zip(argv[1::2], argv[2::2]): if key.startswith('model.'): parsedKey = key[6:] # 6 is length of 'model.' if parsedKey in modelFields: Say("Found key = {} in model".format(parsedKey), verbosity=3) parsedVal = ParseVal(val) Say("parsedVal = " + str(parsedVal) + " of type " + str(type(parsedVal)), verbosity=4) setattr(model, parsedKey, reshape(parsedVal, [len(parsedVal) if not type(parsedVal) is bool else 1,1])) else: raise(key + " not found in model class") else: if key in settingsDict: parsedVal = ParseVal(val) settingsDict[key] = parsedVal elif not key=='VERBOSITY': # VERBOSITY is already evaluated raise(key + " not found in settings dictionary") #%% Get common parameters Say("Analysing domain and setting common parameters", verbosity=1) Lx = model.L[0,0] * 1e6 Ly = model.L[1,0] * 1e6 Lz = model.L[2,0] * 1e6 offset = settingsDict['offset'] #Lx = Ly = Lz = 200 # Throw warning if cells are outside of domain NBallOutsideDomain = 0 for ball in model.ballArray[:,0]: # Must loop row-wise, that's how MATLAB works pos = ball.pos[:,0]*1e6 if not np.all([(array([0,0,0]) < pos), (pos < array([Lx, Ly, Lz]))]): NBallOutsideDomain += 1 if NBallOutsideDomain > 0: Say("WARNING: {} balls are outside the domain".format(NBallOutsideDomain)) #%% Clean up geometry (default cube, camera, light source) Say("Cleaning up geometry", verbosity=1) bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete(use_global=False) #%% # Set up world Say("Setting up world", verbosity=1) bpy.context.scene.world.horizon_color = (1, 1, 1) # White background bpy.context.scene.render.resolution_x = 1920 bpy.context.scene.render.resolution_y = 1080 bpy.context.scene.render.resolution_percentage = settingsDict['resolution_percentage'] # Allows for quick scaling """ # Mist/fog, fading distant cells and nanowires bpy.context.scene.world.mist_settings.falloff = 'LINEAR' bpy.context.scene.world.mist_settings.intensity = 0 bpy.context.scene.world.mist_settings.height = 0 bpy.context.scene.world.mist_settings.start = 100 bpy.context.scene.world.mist_settings.depth = 40 bpy.context.scene.world.mist_settings.use_mist = True """ #%% Create camera Say("Calculating and creating camera", verbosity=1) if settingsDict['camPos'] == None: camPos = Lx/30* (array([-15, -46, 42])) # limited by camera width else: camPos= settingsDict['camPos'] camRot = (np.deg2rad(settingsDict['camRot'][0]), np.deg2rad(settingsDict['camRot'][1]), np.deg2rad(settingsDict['camRot'][2])) CameraPerspSetup(location=camPos, rotation=camRot) #%% Create light sources Say("Creating light sources", verbosity=1) # Sun bpy.ops.object.lamp_add(type='SUN', location=(0, 0, 40)) sun = bpy.context.object sun.data.shadow_method = 'RAY_SHADOW' # Sun casts shadow sun.data.shadow_soft_size = 1.5 # Soft shadow, based on distance to light source/plane sun.data.shadow_ray_samples = 10 #%% Materials # FIXME remove DefineMaterials() #%% Legend if settingsDict['drawAxisLegend']: Say("Drawing XYZ arrows/legend", verbosity=1) SetupXYZLegend(fontSize=round((norm(camPos)/settingsDict['textSizeDivider'])**0.5)) #%% Draw planes with all bells and whistles Say("Drawing plane, grid, etc", verbosity=1) if settingsDict['drawPlane']: if settingsDict['planeInfinite']: radiusZPlane = Lx*50 else: radiusZPlane = None SetupPlanes(Lx=Lx, Ly=Ly, Lz=Lz, drawPlaneGrid=settingsDict['drawPlaneGrid'], radiusZPlane=radiusZPlane, stepSize=settingsDict['gridStepSize']) SetupTicks(Lx=Lx, Ly=Ly, Lz=Lz, fontSize=round((norm(camPos)/settingsDict['textSizeDivider'])**0.5)) DeleteTick(x=0, y=[0, int(Ly)]) ############################################################################### #%% Draw cells Say("Drawing cells", verbosity=1) for iCell,cell in enumerate(model.cellArray[:,0]): Say("\tCell = {}".format(iCell, ), verbosity=1) if settingsDict['colourByGeneration']: ancestor = cell while np.where(model.cellArray[:,0]==ancestor)[0][0] > 3: # 0 through 3, because there will be 4 colours available ancestor = model.cellArray[ancestor.mother[0][0],0] cellType = int(np.where(model.cellArray==ancestor)[0][0]) Say("\t\tCell generation = " + str(cellType), verbosity=3) else: cellType = cell.type[0][0].astype(int) if cell.type[0,0].astype(int) <= 1: iBall = cell.ballArray[0,0].astype(int) ball = model.ballArray[iBall,0] pos = ball.pos[:,0] * 1e6 r = ball.radius[0,0] * 1e6 cellG = CreateSphere(pos, r, cellMaterial[cellType]) cellG.name = 'Sphere{:d}-{:04d}'.format(cellType, iCell) else: pos = np.empty([2,3]) r = np.empty(2) for ii,iBall in enumerate(cell.ballArray[:,0].astype(int)): ball = model.ballArray[iBall,0] pos[ii,:] = ball.pos[:,0] * 1e6 r[ii] = ball.radius[0,0] * 1e6 cellG = CreateRod(pos, r, cellMaterial[cellType]) cellG.name = 'Rod{:d}-{:04d}'.format(cellType, iCell) Say("fraction {} in rodLib".format(round(1-len(rodLib)/len(model.cellArray[:,0]),2)), verbosity=1) if settingsDict['drawStick']: stickM = bpy.data.materials['stick'] for iStick,stick in enumerate(model.stickSpringArray[:,0]): Say("\tSticking spring = {}".format(iStick), verbosity=1) pos = np.empty([2,3]) for ii,iBall in enumerate(stick.ballArray[:,0]): ball = model.ballArray[int(iBall),0] pos[ii,:] = ball.pos[:,0] * 1e6 stickG = CreateSpring(pos, 0.1, stickM.name) stickG.name = 'Stick-{:04d}'.format(int(iStick)) if settingsDict['drawFil']: filM = bpy.data.materials['fil'] for iFil,fil in enumerate(model.filSpringArray[:,0]): Say("\tFilament spring = {}".format(iFil), verbosity=1) pos = np.empty([2,3]) for ii,iBall in enumerate(fil.ballArray): ball = model.ballArray[int(iBall),0] pos[ii,:] = ball.pos[:,0] * 1e6 filG = CreateSpring(pos, 0.1, filM.name) filG.name = 'Fil-{:04d}'.format(int(iFil)) if settingsDict['drawAnchor']: anchorM = bpy.data.materials['anchor'] for iAnchor,anchor in enumerate(model.anchorSpringArray[:,0]): Say("\tAnchoring spring = {}".format(iAnchor), verbosity=1) iBall = anchor.ballArray[0,0] ball = model.ballArray[int(iBall),0] pos = ball.pos[:,0] * 1e6 anchorG = CreateSpring(np.concatenate([[pos, [pos[0],pos[1],0.0]]], 0), 0.1, anchorM.name) anchorG.name = 'Anchor-{:04d}'.format(int(iAnchor)) #CreateSphere([Lx/2+5,Ly/2+5,5],10) #CreateRod(array([[Lx/2,Ly/2,0],[Lx/2,Ly/2,4]]),array([1,1])) #CreateSpring(array([[Lx/2,Ly/2,0],[Lx/2,Ly/2,4]])) #CreateSphere(array([ -8.64662208, 14.65630608, 9.16357743]),0.3) """ # Create coloured nanowires rx = cellRx * (4./3.*pi*(0.5e-6)**3)*6 * N_A rx_max = rx.max() rx_min = rx[rx>0].min() cFact = 255/(rx_max-rx_min) cMat = (cFact*(rx-rx_min)).astype(int) for i0, i1 in cellPair: cyl = CreateNanowire(cellPos[i0], cellPos[i1]) cyl.active_material = nanowire cyl.color = cMap(cMat[i0,i1]) # Needs 4, last one being alpha (1 using cMap directly) cyl.name = 'Nanowire '+str(i0)+'-'+str(i1) """ # Unselect everything, get ready for playing around bpy.ops.object.select_all(action='DESELECT') # Offset Offset(offset) ########################################################################### ## Set viewport clipping to something reasonable #bpy.context.space_data.clip_end = 2000 ############################################################################### #%% Save Say("Saving", verbosity=1) matName = os.path.splitext( matPath.split("/")[-1] )[0] matDir = "/".join(matPath.split('/')[:-1]) if "/output/"+matName in matPath: renderPath = matPath[:matPath.index("/output/"+matName)] + "/" + settingsDict['renderDir'] if not os.path.isdir(renderPath): os.mkdir(renderPath) else: Say("WARNING: output directory not found, writing .png and .blend to same folder as .mat") renderPath = matDir if not os.path.isdir(renderPath): os.mkdir(renderPath) if settingsDict['saveBlend']: bpy.ops.wm.save_as_mainfile(filepath = renderPath + "/" + matName + ".blend", check_existing=False) #%% Render bpy.data.scenes['Scene'].render.filepath = renderPath + "/" + matName + ".png" if not settingsDict['suppressRender']: Say("Rendering", verbosity=1) Render() ###############################################################
[ "bpy.context.scene.objects.link", "numpy.arccos", "numpy.array", "bpy.ops.object.shade_smooth", "numpy.linalg.norm", "re.search", "bpy.ops.object.delete", "bpy.ops.object.camera_add", "numpy.where", "bpy.ops.object.lamp_add", "os.path.isdir", "bpy.data.objects.keys", "bpy.data.objects.remove", "bpy.ops.mesh.primitive_plane_add", "os.mkdir", "numpy.empty", "numpy.concatenate", "bpy.data.fonts.load", "bpy.ops.wm.save_as_mainfile", "numpy.round", "numpy.add", "bpy.ops.object.select_all", "bpy.ops.object.modifier_add", "bpy.ops.mesh.primitive_cone_add", "numpy.deg2rad", "bpy.ops.mesh.primitive_uv_sphere_add", "bpy.ops.object.join", "sys.argv.index", "bpy.ops.object.text_add", "time.strftime", "bpy.ops.mesh.primitive_cylinder_add", "bpy.data.materials.new", "bpy.ops.render.render" ]
[((293, 346), 'bpy.data.fonts.load', 'bpy.data.fonts.load', (['"""/usr/share/fonts/TTF/times.ttf"""'], {}), "('/usr/share/fonts/TTF/times.ttf')\n", (312, 346), False, 'import bpy\n'), ((514, 524), 'numpy.array', 'array', (['pos'], {}), '(pos)\n', (519, 524), False, 'from numpy import array, pi, reshape, round\n'), ((556, 564), 'numpy.linalg.norm', 'norm', (['LV'], {}), '(LV)\n', (560, 564), False, 'from numpy.linalg import norm\n'), ((623, 648), 'numpy.round', 'round', (['(L / (2 * rMean))', '(1)'], {}), '(L / (2 * rMean), 1)\n', (628, 648), False, 'from numpy import array, pi, reshape, round\n'), ((3224, 3244), 'numpy.arccos', 'np.arccos', (['(LV[2] / L)'], {}), '(LV[2] / L)\n', (3233, 3244), True, 'import numpy as np\n'), ((3644, 3654), 'numpy.array', 'array', (['pos'], {}), '(pos)\n', (3649, 3654), False, 'from numpy import array, pi, reshape, round\n'), ((4412, 4422), 'numpy.array', 'array', (['pos'], {}), '(pos)\n', (4417, 4422), False, 'from numpy import array, pi, reshape, round\n'), ((4458, 4466), 'numpy.linalg.norm', 'norm', (['LV'], {}), '(LV)\n', (4462, 4466), False, 'from numpy.linalg import norm\n'), ((5440, 5460), 'numpy.arccos', 'np.arccos', (['(LV[2] / L)'], {}), '(LV[2] / L)\n', (5449, 5460), True, 'import numpy as np\n'), ((5801, 5824), 'bpy.data.objects.keys', 'bpy.data.objects.keys', ([], {}), '()\n', (5822, 5824), False, 'import bpy\n'), ((6216, 6245), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""ink"""'], {}), "('ink')\n", (6238, 6245), False, 'import bpy\n'), ((6401, 6432), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""white"""'], {}), "('white')\n", (6423, 6432), False, 'import bpy\n'), ((6727, 6757), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""grey"""'], {}), "('grey')\n", (6749, 6757), False, 'import bpy\n'), ((7025, 7055), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""wire"""'], {}), "('wire')\n", (7047, 7055), False, 'import bpy\n'), ((7205, 7238), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cellDss"""'], {}), "('cellDss')\n", (7227, 7238), False, 'import bpy\n'), ((7544, 7578), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cellAnme"""'], {}), "('cellAnme')\n", (7566, 7578), False, 'import bpy\n'), ((7878, 7909), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cell0"""'], {}), "('cell0')\n", (7900, 7909), False, 'import bpy\n'), ((8206, 8237), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cell1"""'], {}), "('cell1')\n", (8228, 8237), False, 'import bpy\n'), ((8541, 8572), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cell2"""'], {}), "('cell2')\n", (8563, 8572), False, 'import bpy\n'), ((8871, 8902), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""cell3"""'], {}), "('cell3')\n", (8893, 8902), False, 'import bpy\n'), ((9208, 9239), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""stick"""'], {}), "('stick')\n", (9230, 9239), False, 'import bpy\n'), ((9640, 9669), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""fil"""'], {}), "('fil')\n", (9662, 9669), False, 'import bpy\n'), ((9837, 9869), 'bpy.data.materials.new', 'bpy.data.materials.new', (['"""anchor"""'], {}), "('anchor')\n", (9859, 9869), False, 'import bpy\n'), ((10218, 10281), 'bpy.ops.object.camera_add', 'bpy.ops.object.camera_add', ([], {'location': 'location', 'rotation': 'rotation'}), '(location=location, rotation=rotation)\n', (10243, 10281), False, 'import bpy\n'), ((10910, 10967), 'bpy.ops.object.lamp_add', 'bpy.ops.object.lamp_add', ([], {'type': '"""POINT"""', 'location': '(0, 0, 5)'}), "(type='POINT', location=(0, 0, 5))\n", (10933, 10967), False, 'import bpy\n'), ((11215, 11259), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (11240, 11259), False, 'import bpy\n'), ((11956, 12015), 'bpy.ops.object.camera_add', 'bpy.ops.object.camera_add', ([], {'location': 'camPos', 'rotation': 'camRot'}), '(location=camPos, rotation=camRot)\n', (11981, 12015), False, 'import bpy\n'), ((12440, 12494), 'bpy.ops.object.lamp_add', 'bpy.ops.object.lamp_add', ([], {'type': '"""POINT"""', 'location': 'camPos'}), "(type='POINT', location=camPos)\n", (12463, 12494), False, 'import bpy\n'), ((12978, 13037), 'bpy.ops.object.camera_add', 'bpy.ops.object.camera_add', ([], {'location': 'camPos', 'rotation': 'camRot'}), '(location=camPos, rotation=camRot)\n', (13003, 13037), False, 'import bpy\n'), ((16097, 16120), 'bpy.data.objects.keys', 'bpy.data.objects.keys', ([], {}), '()\n', (16118, 16120), False, 'import bpy\n'), ((16404, 16524), 'bpy.ops.mesh.primitive_cylinder_add', 'bpy.ops.mesh.primitive_cylinder_add', ([], {'radius': '(0.2 * fontSize)', 'depth': 'length', 'location': 'location', 'rotation': '(0, pi / 2, 0)'}), '(radius=0.2 * fontSize, depth=length,\n location=location, rotation=(0, pi / 2, 0))\n', (16439, 16524), False, 'import bpy\n'), ((16521, 16550), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (16548, 16550), False, 'import bpy\n'), ((19389, 19412), 'bpy.data.objects.keys', 'bpy.data.objects.keys', ([], {}), '()\n', (19410, 19412), False, 'import bpy\n'), ((21416, 21439), 'bpy.data.objects.keys', 'bpy.data.objects.keys', ([], {}), '()\n', (21437, 21439), False, 'import bpy\n'), ((22234, 22257), 'bpy.data.objects.keys', 'bpy.data.objects.keys', ([], {}), '()\n', (22255, 22257), False, 'import bpy\n'), ((23668, 23707), 'bpy.ops.render.render', 'bpy.ops.render.render', ([], {'write_still': '(True)'}), '(write_still=True)\n', (23689, 23707), False, 'import bpy\n'), ((24703, 24722), 'numpy.array', 'array', (['[65, 0, -25]'], {}), '([65, 0, -25])\n', (24708, 24722), False, 'from numpy import array, pi, reshape, round\n'), ((25096, 25112), 'numpy.array', 'array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (25101, 25112), False, 'from numpy import array, pi, reshape, round\n'), ((28102, 28144), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""SELECT"""'}), "(action='SELECT')\n", (28127, 28144), False, 'import bpy\n'), ((28149, 28188), 'bpy.ops.object.delete', 'bpy.ops.object.delete', ([], {'use_global': '(False)'}), '(use_global=False)\n', (28170, 28188), False, 'import bpy\n'), ((29534, 29590), 'bpy.ops.object.lamp_add', 'bpy.ops.object.lamp_add', ([], {'type': '"""SUN"""', 'location': '(0, 0, 40)'}), "(type='SUN', location=(0, 0, 40))\n", (29557, 29590), False, 'import bpy\n'), ((34740, 34784), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (34765, 34784), False, 'import bpy\n'), ((895, 982), 'bpy.ops.mesh.primitive_cylinder_add', 'bpy.ops.mesh.primitive_cylinder_add', ([], {'depth': 'L', 'location': '(0, 0, L / 2)', 'radius': 'rMean'}), '(depth=L, location=(0, 0, L / 2), radius\n =rMean)\n', (930, 982), False, 'import bpy\n'), ((1094, 1162), 'bpy.ops.mesh.primitive_uv_sphere_add', 'bpy.ops.mesh.primitive_uv_sphere_add', ([], {'location': '(0, 0, L)', 'size': 'rMean'}), '(location=(0, 0, L), size=rMean)\n', (1130, 1162), False, 'import bpy\n'), ((1206, 1274), 'bpy.ops.mesh.primitive_uv_sphere_add', 'bpy.ops.mesh.primitive_uv_sphere_add', ([], {'location': '(0, 0, 0)', 'size': 'rMean'}), '(location=(0, 0, 0), size=rMean)\n', (1242, 1274), False, 'import bpy\n'), ((1421, 1465), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (1446, 1465), False, 'import bpy\n'), ((1632, 1653), 'bpy.ops.object.join', 'bpy.ops.object.join', ([], {}), '()\n', (1651, 1653), False, 'import bpy\n'), ((1702, 1748), 'bpy.ops.object.modifier_add', 'bpy.ops.object.modifier_add', ([], {'type': '"""EDGE_SPLIT"""'}), "(type='EDGE_SPLIT')\n", (1729, 1748), False, 'import bpy\n'), ((1807, 1836), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (1834, 1836), False, 'import bpy\n'), ((2730, 2765), 'bpy.context.scene.objects.link', 'bpy.context.scene.objects.link', (['rod'], {}), '(rod)\n', (2760, 2765), False, 'import bpy\n'), ((3793, 3851), 'bpy.ops.mesh.primitive_uv_sphere_add', 'bpy.ops.mesh.primitive_uv_sphere_add', ([], {'location': 'pos', 'size': 'r'}), '(location=pos, size=r)\n', (3829, 3851), False, 'import bpy\n'), ((3896, 3925), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (3923, 3925), False, 'import bpy\n'), ((4288, 4326), 'bpy.context.scene.objects.link', 'bpy.context.scene.objects.link', (['sphere'], {}), '(sphere)\n', (4318, 4326), False, 'import bpy\n'), ((4584, 4670), 'bpy.ops.mesh.primitive_cylinder_add', 'bpy.ops.mesh.primitive_cylinder_add', ([], {'depth': 'L', 'location': '(0, 0, L / 2)', 'radius': '(0.15)'}), '(depth=L, location=(0, 0, L / 2), radius\n =0.15)\n', (4619, 4670), False, 'import bpy\n'), ((4705, 4734), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (4732, 4734), False, 'import bpy\n'), ((5167, 5202), 'bpy.context.scene.objects.link', 'bpy.context.scene.objects.link', (['cyl'], {}), '(cyl)\n', (5197, 5202), False, 'import bpy\n'), ((13579, 13607), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (13602, 13607), False, 'import bpy\n'), ((14814, 14919), 'bpy.ops.mesh.primitive_cylinder_add', 'bpy.ops.mesh.primitive_cylinder_add', ([], {'radius': 'axLegCylR', 'depth': 'axLegCylH', 'location': 'locCyl', 'rotation': 'rot'}), '(radius=axLegCylR, depth=axLegCylH,\n location=locCyl, rotation=rot)\n', (14849, 14919), False, 'import bpy\n'), ((14924, 14953), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (14951, 14953), False, 'import bpy\n'), ((15061, 15169), 'bpy.ops.mesh.primitive_cone_add', 'bpy.ops.mesh.primitive_cone_add', ([], {'radius1': '(axLegCylR * 2)', 'depth': 'axLegConeH', 'location': 'locCone', 'rotation': 'rot'}), '(radius1=axLegCylR * 2, depth=axLegConeH,\n location=locCone, rotation=rot)\n', (15092, 15169), False, 'import bpy\n'), ((15172, 15201), 'bpy.ops.object.shade_smooth', 'bpy.ops.object.shade_smooth', ([], {}), '()\n', (15199, 15201), False, 'import bpy\n'), ((18140, 18229), 'bpy.ops.mesh.primitive_plane_add', 'bpy.ops.mesh.primitive_plane_add', ([], {'radius': 'planeRadius', 'location': '(Lx / 2, Ly / 2, -0.1)'}), '(radius=planeRadius, location=(Lx / 2, Ly /\n 2, -0.1))\n', (18172, 18229), False, 'import bpy\n'), ((29267, 29304), 'numpy.deg2rad', 'np.deg2rad', (["settingsDict['camRot'][0]"], {}), "(settingsDict['camRot'][0])\n", (29277, 29304), True, 'import numpy as np\n'), ((29306, 29343), 'numpy.deg2rad', 'np.deg2rad', (["settingsDict['camRot'][1]"], {}), "(settingsDict['camRot'][1])\n", (29316, 29343), True, 'import numpy as np\n'), ((29345, 29382), 'numpy.deg2rad', 'np.deg2rad', (["settingsDict['camRot'][2]"], {}), "(settingsDict['camRot'][2])\n", (29355, 29382), True, 'import numpy as np\n'), ((35619, 35644), 'os.path.isdir', 'os.path.isdir', (['renderPath'], {}), '(renderPath)\n', (35632, 35644), False, 'import sys, os, time, re\n'), ((35658, 35678), 'os.mkdir', 'os.mkdir', (['renderPath'], {}), '(renderPath)\n', (35666, 35678), False, 'import sys, os, time, re\n'), ((35734, 35835), 'bpy.ops.wm.save_as_mainfile', 'bpy.ops.wm.save_as_mainfile', ([], {'filepath': "(renderPath + '/' + matName + '.blend')", 'check_existing': '(False)'}), "(filepath=renderPath + '/' + matName + '.blend',\n check_existing=False)\n", (35761, 35835), False, 'import bpy\n'), ((14414, 14457), 'numpy.add', 'np.add', (['(axLegCylH / 2, 0.0, 0.0)', 'location'], {}), '((axLegCylH / 2, 0.0, 0.0), location)\n', (14420, 14457), True, 'import numpy as np\n'), ((14471, 14512), 'numpy.add', 'np.add', (['(0.0, axLegCylH / 2, 0)', 'location'], {}), '((0.0, axLegCylH / 2, 0), location)\n', (14477, 14512), True, 'import numpy as np\n'), ((14525, 14568), 'numpy.add', 'np.add', (['(0.0, 0.0, axLegCylH / 2)', 'location'], {}), '((0.0, 0.0, axLegCylH / 2), location)\n', (14531, 14568), True, 'import numpy as np\n'), ((14583, 14639), 'numpy.add', 'np.add', (['(axLegCylH + axLegConeH / 2, 0.0, 0.0)', 'location'], {}), '((axLegCylH + axLegConeH / 2, 0.0, 0.0), location)\n', (14589, 14639), True, 'import numpy as np\n'), ((14640, 14694), 'numpy.add', 'np.add', (['(0.0, axLegCylH + axLegConeH / 2, 0)', 'location'], {}), '((0.0, axLegCylH + axLegConeH / 2, 0), location)\n', (14646, 14694), True, 'import numpy as np\n'), ((14694, 14750), 'numpy.add', 'np.add', (['(0.0, 0.0, axLegCylH + axLegConeH / 2)', 'location'], {}), '((0.0, 0.0, axLegCylH + axLegConeH / 2), location)\n', (14700, 14750), True, 'import numpy as np\n'), ((15357, 15414), 'numpy.add', 'np.add', (['(textSpacing, -fontSize * 5.0 * 0.5, 0)', 'location'], {}), '((textSpacing, -fontSize * 5.0 * 0.5, 0), location)\n', (15363, 15414), True, 'import numpy as np\n'), ((15533, 15590), 'numpy.add', 'np.add', (['(-fontSize * 5.0 * 0.5, textSpacing, 0)', 'location'], {}), '((-fontSize * 5.0 * 0.5, textSpacing, 0), location)\n', (15539, 15590), True, 'import numpy as np\n'), ((15709, 15776), 'numpy.add', 'np.add', (['(-fontSize * 5.0 * 0.5, -fontSize * 5.0 * 0.5, 0)', 'location'], {}), '((-fontSize * 5.0 * 0.5, -fontSize * 5.0 * 0.5, 0), location)\n', (15715, 15776), True, 'import numpy as np\n'), ((16249, 16277), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (16272, 16277), False, 'import bpy\n'), ((19540, 19568), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (19563, 19568), False, 'import bpy\n'), ((20061, 20120), 'bpy.ops.object.text_add', 'bpy.ops.object.text_add', ([], {'location': '(pos, -fontSize * 4.0, 0)'}), '(location=(pos, -fontSize * 4.0, 0))\n', (20084, 20120), False, 'import bpy\n'), ((20405, 20481), 'bpy.ops.object.text_add', 'bpy.ops.object.text_add', ([], {'location': '(-fontSize * 4.0, pos - fontSize / 2.0, 0)'}), '(location=(-fontSize * 4.0, pos - fontSize / 2.0, 0))\n', (20428, 20481), False, 'import bpy\n'), ((20762, 20839), 'bpy.ops.object.text_add', 'bpy.ops.object.text_add', ([], {'location': '(-fontSize * 4.0, Ly, pos - fontSize / 2.0)'}), '(location=(-fontSize * 4.0, Ly, pos - fontSize / 2.0))\n', (20785, 20839), False, 'import bpy\n'), ((21566, 21594), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (21589, 21594), False, 'import bpy\n'), ((29132, 29153), 'numpy.array', 'array', (['[-15, -46, 42]'], {}), '([-15, -46, 42])\n', (29137, 29153), False, 'from numpy import array, pi, reshape, round\n'), ((31835, 31851), 'numpy.empty', 'np.empty', (['[2, 3]'], {}), '([2, 3])\n', (31843, 31851), True, 'import numpy as np\n'), ((31869, 31880), 'numpy.empty', 'np.empty', (['(2)'], {}), '(2)\n', (31877, 31880), True, 'import numpy as np\n'), ((32582, 32598), 'numpy.empty', 'np.empty', (['[2, 3]'], {}), '([2, 3])\n', (32590, 32598), True, 'import numpy as np\n'), ((33106, 33122), 'numpy.empty', 'np.empty', (['[2, 3]'], {}), '([2, 3])\n', (33114, 33122), True, 'import numpy as np\n'), ((35402, 35427), 'os.path.isdir', 'os.path.isdir', (['renderPath'], {}), '(renderPath)\n', (35415, 35427), False, 'import sys, os, time, re\n'), ((35441, 35461), 'os.mkdir', 'os.mkdir', (['renderPath'], {}), '(renderPath)\n', (35449, 35461), False, 'import sys, os, time, re\n'), ((16730, 16748), 'numpy.array', 'np.array', (['location'], {}), '(location)\n', (16738, 16748), True, 'import numpy as np\n'), ((16749, 16783), 'numpy.array', 'np.array', (['(length / 2.0, 0.0, 0.0)'], {}), '((length / 2.0, 0.0, 0.0))\n', (16757, 16783), True, 'import numpy as np\n'), ((17057, 17075), 'numpy.array', 'np.array', (['location'], {}), '(location)\n', (17065, 17075), True, 'import numpy as np\n'), ((17076, 17110), 'numpy.array', 'np.array', (['(length / 2.0, 0.0, 0.0)'], {}), '((length / 2.0, 0.0, 0.0))\n', (17084, 17110), True, 'import numpy as np\n'), ((17379, 17397), 'numpy.array', 'np.array', (['location'], {}), '(location)\n', (17387, 17397), True, 'import numpy as np\n'), ((17398, 17430), 'numpy.array', 'np.array', (['[0, fontSize * 5.0, 0]'], {}), '([0, fontSize * 5.0, 0])\n', (17406, 17430), True, 'import numpy as np\n'), ((22176, 22204), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (22199, 22204), False, 'import bpy\n'), ((23914, 23942), 'time.strftime', 'time.strftime', (['"""%H:%M:%S """'], {}), "('%H:%M:%S ')\n", (23927, 23942), False, 'import sys, os, time, re\n'), ((23989, 24023), 'time.strftime', 'time.strftime', (['"""%H:%M:%S-DEBUG: """'], {}), "('%H:%M:%S-DEBUG: ')\n", (24002, 24023), False, 'import sys, os, time, re\n'), ((24246, 24272), 're.search', 're.search', (['"""\\\\(.*\\\\)"""', 'val'], {}), "('\\\\(.*\\\\)', val)\n", (24255, 24272), False, 'import sys, os, time, re\n'), ((25702, 25722), 'sys.argv.index', 'sys.argv.index', (['"""--"""'], {}), "('--')\n", (25716, 25722), False, 'import sys, os, time, re\n'), ((33783, 33832), 'numpy.concatenate', 'np.concatenate', (['[[pos, [pos[0], pos[1], 0.0]]]', '(0)'], {}), '([[pos, [pos[0], pos[1], 0.0]]], 0)\n', (33797, 33832), True, 'import numpy as np\n'), ((6048, 6070), 'numpy.array', 'np.array', (['obj.location'], {}), '(obj.location)\n', (6056, 6070), True, 'import numpy as np\n'), ((21951, 21979), 'bpy.data.objects.remove', 'bpy.data.objects.remove', (['obj'], {}), '(obj)\n', (21974, 21979), False, 'import bpy\n'), ((27781, 27797), 'numpy.array', 'array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (27786, 27797), False, 'from numpy import array, pi, reshape, round\n'), ((27811, 27830), 'numpy.array', 'array', (['[Lx, Ly, Lz]'], {}), '([Lx, Ly, Lz])\n', (27816, 27830), False, 'from numpy import array, pi, reshape, round\n'), ((31061, 31104), 'numpy.where', 'np.where', (['(model.cellArray[:, 0] == ancestor)'], {}), '(model.cellArray[:, 0] == ancestor)\n', (31069, 31104), True, 'import numpy as np\n'), ((31272, 31309), 'numpy.where', 'np.where', (['(model.cellArray == ancestor)'], {}), '(model.cellArray == ancestor)\n', (31280, 31309), True, 'import numpy as np\n'), ((30079, 30091), 'numpy.linalg.norm', 'norm', (['camPos'], {}), '(camPos)\n', (30083, 30091), False, 'from numpy.linalg import norm\n'), ((30606, 30618), 'numpy.linalg.norm', 'norm', (['camPos'], {}), '(camPos)\n', (30610, 30618), False, 'from numpy.linalg import norm\n')]
from copy import deepcopy from datetime import datetime from celery import current_app as celery from celery.utils.log import get_task_logger from celeryservice import celeryconfig from messenger.utils.requests_util import update_request, query_request, do_request from messenger.utils.response_util import RET from celeryservice.lib.job.case_handler import RunCaseHandler logger = get_task_logger('manage') @celery.task(bind=True) def run_case(self, user, body, env_params, suites_cases, pmachine_pool): return RunCaseHandler(user, logger, self, body).work( env_params, suites_cases, pmachine_pool, ) def _callback_task_job_result(job_id, auth, taskmilestone_id, status): try: _resp = dict() _r = do_request( method="put", url="https://{}/api/v1/task/milestones/{}".format( celeryconfig.server_addr, taskmilestone_id ), body={ "job_id": job_id, "result": status, }, headers={ "content-type": "application/json;charset=utf-8", "authorization": auth, }, obj=_resp, verify=True if celeryconfig.ca_verify == "True"\ else celeryconfig.server_cert_path ) if _r == 0 and _resp.get("error_code") == RET.OK: logger.info( "Task job has been call back => " + _resp.get("error_msg") ) else: logger.error( "Error in calling back to TaskMilestones => " + _resp.get( "error_msg" ) ) except (AttributeError, TypeError, RuntimeError, KeyError) as e: logger.error( "Error in calling back to TaskMilestones => " + str(e) ) @celery.task(bind=True) def job_result_callback(self, results, auth, job_id=None, taskmilestone_id=None): try: job = query_request( "/api/v1/job/{}".format( job_id ), None, auth ) if not job: raise RuntimeError("Job has already not existed") job["running_time"] = 0 for result in results: if result.get("status") == "BLOCK": raise RuntimeError( "one of subtask blocked: {}, because {}".format( result.get("name"), result.get("remark"), ) ) job["success_cases"] += result.get("success_cases") job["fail_cases"] += result.get("fail_cases") job["running_time"] = max( job["running_time"], result.get("running_time") ) job["status"] = "DONE" job["end_time"] = datetime.now() if job["total"] == job["success_cases"]: job["result"] = "success" else: job["result"] = "fail" except RuntimeError as e: job["result"] = "fail" job["status"] = "BLOCK" job["remark"] = str(e) finally: status = job.get("status") _body = deepcopy(job) _body.pop("id") if isinstance(_body.get("master"), list): _body["master"] = ','.join(_body.get("master")) update_request( "/api/v1/job/{}".format( job_id, ), _body, auth ) if taskmilestone_id is not None: _callback_task_job_result(job_id, auth, taskmilestone_id, status)
[ "celery.current_app.task", "celery.utils.log.get_task_logger", "datetime.datetime.now", "celeryservice.lib.job.case_handler.RunCaseHandler", "copy.deepcopy" ]
[((385, 410), 'celery.utils.log.get_task_logger', 'get_task_logger', (['"""manage"""'], {}), "('manage')\n", (400, 410), False, 'from celery.utils.log import get_task_logger\n'), ((414, 436), 'celery.current_app.task', 'celery.task', ([], {'bind': '(True)'}), '(bind=True)\n', (425, 436), True, 'from celery import current_app as celery\n'), ((1980, 2002), 'celery.current_app.task', 'celery.task', ([], {'bind': '(True)'}), '(bind=True)\n', (1991, 2002), True, 'from celery import current_app as celery\n'), ((3009, 3023), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3021, 3023), False, 'from datetime import datetime\n'), ((3364, 3377), 'copy.deepcopy', 'deepcopy', (['job'], {}), '(job)\n', (3372, 3377), False, 'from copy import deepcopy\n'), ((521, 561), 'celeryservice.lib.job.case_handler.RunCaseHandler', 'RunCaseHandler', (['user', 'logger', 'self', 'body'], {}), '(user, logger, self, body)\n', (535, 561), False, 'from celeryservice.lib.job.case_handler import RunCaseHandler\n')]
#!/usr/bin/python3 import os, sys, subprocess if len(sys.argv) != 3: print(f"{sys.argv[0]} <url filename path> <output file path>\nEx: {sys.argv[0]} url.txt output.txt\n") sys.exit(1) file = open(sys.argv[2], "w") with open(sys.argv[1]) as f: for i in f: cmd = "node src/drivers/npm/cli.js " + i print(f"Scanning IP: {i}") try: output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode() print(output) file.write(output) except subprocess.CalledProcessError: print("Execution of '%s' failed!\n" % cmd) sys.exit(1) file.close()
[ "subprocess.check_output", "sys.exit" ]
[((175, 186), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (183, 186), False, 'import os, sys, subprocess\n'), ((557, 568), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (565, 568), False, 'import os, sys, subprocess\n'), ((353, 419), 'subprocess.check_output', 'subprocess.check_output', (['cmd'], {'shell': '(True)', 'stderr': 'subprocess.STDOUT'}), '(cmd, shell=True, stderr=subprocess.STDOUT)\n', (376, 419), False, 'import os, sys, subprocess\n')]
import numpy as np import matplotlib.pyplot as plt a0s = np.load('a0s_r2.npy') a1s = np.load('a1s_r2.npy') ls = np.load('ls_r2.npy').transpose() trace = np.load('run2.npy')[:, 0:2] levels = np.linspace(8.5, 1600) c2 = plt.contour(a0s, a1s, ls, levels) plt.scatter(2.0, 1.3, c='r', marker='x') plt.scatter(trace[:,0], trace[:,1]) plt.title('Level sets of the loss function for D\'') plt.xlabel('A[0]') plt.ylabel('A[1]') plt.xlim(-3, 3) plt.ylim(-1, 5) # plt.clabel(c2, inline=1, fontsize=10) ns = np.arange(10) for i, txt in enumerate(ns): plt.annotate(txt, (trace[i,0], trace[i,1])) plt.show() a0s = np.load('a0s_r1.npy') a1s = np.load('a1s_r1.npy') ls = np.load('ls_r1.npy').transpose() trace = np.load('run1.npy')[:, 0:2] # trace = trace[0:10, :] levels = np.linspace(8.5, 5000) c1 = plt.contour(a0s, a1s, ls, levels) plt.scatter(2.0, 0.013, c='r', marker='x') plt.scatter(trace[:,0], trace[:,1]) plt.title('Level sets of the loss function for D') plt.xlabel('A[0]') plt.ylabel('A[1]') plt.xlim(1.4985, 1.5010) plt.ylim(-0.05, 0.06) # plt.clabel(c1, inline=1, fontsize=10) ns = np.arange(10) for i, txt in enumerate(ns): plt.annotate(txt, (trace[i,0], trace[i,1])) plt.show()
[ "matplotlib.pyplot.ylabel", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.contour", "numpy.linspace", "matplotlib.pyplot.annotate", "matplotlib.pyplot.scatter", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "numpy.load", "matplotlib.pyplot.ylim", "matplotlib.pyplot.show" ]
[((58, 79), 'numpy.load', 'np.load', (['"""a0s_r2.npy"""'], {}), "('a0s_r2.npy')\n", (65, 79), True, 'import numpy as np\n'), ((86, 107), 'numpy.load', 'np.load', (['"""a1s_r2.npy"""'], {}), "('a1s_r2.npy')\n", (93, 107), True, 'import numpy as np\n'), ((193, 215), 'numpy.linspace', 'np.linspace', (['(8.5)', '(1600)'], {}), '(8.5, 1600)\n', (204, 215), True, 'import numpy as np\n'), ((221, 254), 'matplotlib.pyplot.contour', 'plt.contour', (['a0s', 'a1s', 'ls', 'levels'], {}), '(a0s, a1s, ls, levels)\n', (232, 254), True, 'import matplotlib.pyplot as plt\n'), ((255, 295), 'matplotlib.pyplot.scatter', 'plt.scatter', (['(2.0)', '(1.3)'], {'c': '"""r"""', 'marker': '"""x"""'}), "(2.0, 1.3, c='r', marker='x')\n", (266, 295), True, 'import matplotlib.pyplot as plt\n'), ((296, 333), 'matplotlib.pyplot.scatter', 'plt.scatter', (['trace[:, 0]', 'trace[:, 1]'], {}), '(trace[:, 0], trace[:, 1])\n', (307, 333), True, 'import matplotlib.pyplot as plt\n'), ((332, 383), 'matplotlib.pyplot.title', 'plt.title', (['"""Level sets of the loss function for D\'"""'], {}), '("Level sets of the loss function for D\'")\n', (341, 383), True, 'import matplotlib.pyplot as plt\n'), ((385, 403), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""A[0]"""'], {}), "('A[0]')\n", (395, 403), True, 'import matplotlib.pyplot as plt\n'), ((404, 422), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""A[1]"""'], {}), "('A[1]')\n", (414, 422), True, 'import matplotlib.pyplot as plt\n'), ((423, 438), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-3)', '(3)'], {}), '(-3, 3)\n', (431, 438), True, 'import matplotlib.pyplot as plt\n'), ((439, 454), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1)', '(5)'], {}), '(-1, 5)\n', (447, 454), True, 'import matplotlib.pyplot as plt\n'), ((500, 513), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (509, 513), True, 'import numpy as np\n'), ((591, 601), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (599, 601), True, 'import matplotlib.pyplot as plt\n'), ((611, 632), 'numpy.load', 'np.load', (['"""a0s_r1.npy"""'], {}), "('a0s_r1.npy')\n", (618, 632), True, 'import numpy as np\n'), ((639, 660), 'numpy.load', 'np.load', (['"""a1s_r1.npy"""'], {}), "('a1s_r1.npy')\n", (646, 660), True, 'import numpy as np\n'), ((771, 793), 'numpy.linspace', 'np.linspace', (['(8.5)', '(5000)'], {}), '(8.5, 5000)\n', (782, 793), True, 'import numpy as np\n'), ((799, 832), 'matplotlib.pyplot.contour', 'plt.contour', (['a0s', 'a1s', 'ls', 'levels'], {}), '(a0s, a1s, ls, levels)\n', (810, 832), True, 'import matplotlib.pyplot as plt\n'), ((833, 875), 'matplotlib.pyplot.scatter', 'plt.scatter', (['(2.0)', '(0.013)'], {'c': '"""r"""', 'marker': '"""x"""'}), "(2.0, 0.013, c='r', marker='x')\n", (844, 875), True, 'import matplotlib.pyplot as plt\n'), ((876, 913), 'matplotlib.pyplot.scatter', 'plt.scatter', (['trace[:, 0]', 'trace[:, 1]'], {}), '(trace[:, 0], trace[:, 1])\n', (887, 913), True, 'import matplotlib.pyplot as plt\n'), ((912, 962), 'matplotlib.pyplot.title', 'plt.title', (['"""Level sets of the loss function for D"""'], {}), "('Level sets of the loss function for D')\n", (921, 962), True, 'import matplotlib.pyplot as plt\n'), ((963, 981), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""A[0]"""'], {}), "('A[0]')\n", (973, 981), True, 'import matplotlib.pyplot as plt\n'), ((982, 1000), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""A[1]"""'], {}), "('A[1]')\n", (992, 1000), True, 'import matplotlib.pyplot as plt\n'), ((1001, 1024), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1.4985)', '(1.501)'], {}), '(1.4985, 1.501)\n', (1009, 1024), True, 'import matplotlib.pyplot as plt\n'), ((1026, 1047), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.05)', '(0.06)'], {}), '(-0.05, 0.06)\n', (1034, 1047), True, 'import matplotlib.pyplot as plt\n'), ((1094, 1107), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (1103, 1107), True, 'import numpy as np\n'), ((1186, 1196), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1194, 1196), True, 'import matplotlib.pyplot as plt\n'), ((155, 174), 'numpy.load', 'np.load', (['"""run2.npy"""'], {}), "('run2.npy')\n", (162, 174), True, 'import numpy as np\n'), ((547, 592), 'matplotlib.pyplot.annotate', 'plt.annotate', (['txt', '(trace[i, 0], trace[i, 1])'], {}), '(txt, (trace[i, 0], trace[i, 1]))\n', (559, 592), True, 'import matplotlib.pyplot as plt\n'), ((708, 727), 'numpy.load', 'np.load', (['"""run1.npy"""'], {}), "('run1.npy')\n", (715, 727), True, 'import numpy as np\n'), ((1141, 1186), 'matplotlib.pyplot.annotate', 'plt.annotate', (['txt', '(trace[i, 0], trace[i, 1])'], {}), '(txt, (trace[i, 0], trace[i, 1]))\n', (1153, 1186), True, 'import matplotlib.pyplot as plt\n'), ((113, 133), 'numpy.load', 'np.load', (['"""ls_r2.npy"""'], {}), "('ls_r2.npy')\n", (120, 133), True, 'import numpy as np\n'), ((666, 686), 'numpy.load', 'np.load', (['"""ls_r1.npy"""'], {}), "('ls_r1.npy')\n", (673, 686), True, 'import numpy as np\n')]
# coding=utf-8 __source__ = 'https://leetcode.com/problems/longest-word-in-dictionary/' # Time: O(m) sum of the length of words[i] # Space: O(m) the space used by our trie # # Description: Leetcode # 720. Longest Word in Dictionary # # Given a list of strings words representing an English Dictionary, # find the longest word in words that can be built one character at a time by other words in words. # If there is more than one possible answer, # return the longest word with the smallest lexicographical order. # # If there is no answer, return the empty string. # Example 1: # Input: # words = ["w","wo","wor","worl", "world"] # Output: "world" # Explanation: # The word "world" can be built one character at a time by "w", "wo", "wor", and "worl". # Example 2: # Input: # words = ["a", "banana", "app", "appl", "ap", "apply", "apple"] # Output: "apple" # Explanation: # Both "apply" and "apple" can be built from other words in the dictionary. # However, "apple" is lexicographically smaller than "apply". # Note: # # All the strings in the input will only contain lowercase letters. # The length of words will be in the range [1, 1000]. # The length of words[i] will be in the range [1, 30]. # import unittest import collections #32 ms 100% class Solution(object): def longestWord(self, words): ans="" wordset=set(words) for word in words: if len(word)>len(ans) or (len(ans)==len(word) and word<ans): if all(word[:k] in wordset for k in xrange(1,len(word))): ans=word return ans #48ms 65.44% class Solution2(object): def longestWord(self, words): """ :type words: List[str] :rtype: str """ ans = "" wordset = set(words) words.sort(key = lambda c : (-len(c), c)) for word in words: if all(word[:k] in wordset for k in xrange(1, len(word))): return word return "" #With Trie: #104ms 41.72% class SolutionTrie(object): def longestWord(self, words): Trie = lambda: collections.defaultdict(Trie) trie = Trie() END = True for i, word in enumerate(words): reduce(dict.__getitem__, word, trie)[END] = i stack = trie.values() ans = "" while stack: cur = stack.pop() if END in cur: word = words[cur[END]] if len(word) > len(ans) or len(word) == len(ans) and word < ans: ans = word stack.extend([cur[letter] for letter in cur if letter != END]) return ans class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) if __name__ == '__main__': unittest.main() Java = ''' # Thought: https://leetcode.com/problems/longest-word-in-dictionary/solution/ # # Approach #2: Trie + Depth-First Search [Accepted] # # Time complexity : O(∑w i2), where w_i is the length of words[i]. # This is the complexity to build the trie and to search it. # If we used a BFS instead of a DFS, and ordered the children in an array, # we could drop the need to check whether the candidate word at each node is better than the answer, # by forcing that the last node visited will be the best answer. # # Space Complexity: O(∑w i0), the space used by our trie. # 8ms 100% class Solution { public String longestWord(String[] words) { Trie trie = new Trie(); for (String word : words) { trie.insert(word); } return dfs(trie.root, ""); } class TrieNode{ TrieNode [] base = new TrieNode[26]; String word; } class Trie{ TrieNode root; Trie() { root = new TrieNode(); root.word = ""; } void insert(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.base[c - 'a'] == null) node.base[c- 'a'] = new TrieNode(); node = node.base[c- 'a']; } node.word = word; } } public String dfs(TrieNode node, String res) { if (node.word == null) return res; if (node.word.length() > res.length()) res = node.word; for (TrieNode child : node.base) { if (child != null) res = dfs(child, res); } return res; } } Complexity Analysis Time complexity : O(∑w i2), where w_i is the length of words[i]. Checking whether all prefixes of words[i] are in the set is O(∑wi2). Space complexity : O(∑wi2) to create the substrings. # BruceForce # 8ms 100% class Solution { public String longestWord(String[] words) { String res = ""; Set<String> set = new HashSet(); for (String word: words) { set.add(word); } for(String word: words) { if (isBetter(word, res) && contains(set, word)) res = word; } return res; } private boolean isBetter(String a, String b) { if (a.length() > b.length()) return true; else if (a.length() < b.length()) return false; for (int i = 0; i < a.length(); i++) { if (a.charAt(i) > b.charAt(i)) return false; else if (a.charAt(i) < b.charAt(i)) return true; } return true; } private boolean contains(Set<String> set, String target) { for (int i = 1; i < target.length(); i++) { if (!set.contains(target.substring(0, i))) return false; } return true; } } '''
[ "unittest.main", "collections.defaultdict" ]
[((2748, 2763), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2761, 2763), False, 'import unittest\n'), ((2072, 2101), 'collections.defaultdict', 'collections.defaultdict', (['Trie'], {}), '(Trie)\n', (2095, 2101), False, 'import collections\n')]
from h3 import h3 from math import radians, cos, sin, asin, sqrt , floor, pow import numpy as np import math import csv from folium import folium from folium import features from folium import map print('ifd') n = 0 while n < 21 : print('n=',n,'ifd=', 0.152 * pow(2,n)) n += 1 print('edge length') res = 0 while res < 16 : print('res=', res, 'edge length=', h3.edge_length(res, unit='km'), 'km') res += 1
[ "math.pow", "h3.h3.edge_length" ]
[((364, 394), 'h3.h3.edge_length', 'h3.edge_length', (['res'], {'unit': '"""km"""'}), "(res, unit='km')\n", (378, 394), False, 'from h3 import h3\n'), ((262, 271), 'math.pow', 'pow', (['(2)', 'n'], {}), '(2, n)\n', (265, 271), False, 'from math import radians, cos, sin, asin, sqrt, floor, pow\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This is a project powered by Codecademy students. The project features a modified single-player version of the classic game: battleships. Game based on tutorials by <NAME> in his book 'Making Games with Python & Pygame" http://inventwithpython.com/pygame/chapters/ The game requires python 2 and the pygame modules. The game is a battleship puzzle game. The objective is to sink all the ships in as few shots as possible. The markers on the edges of the game board tell you how many ship pieces are in each column and row. """ # Importing pygame modules import random, sys, pygame from pygame.locals import * # Set variables, like screen width and height # globals FPS = 30 #Determines the number of frames per second REVEALSPEED = 8 #Determines the speed at which the squares reveals after being clicked WINDOWWIDTH = 800 #Width of game window WINDOWHEIGHT = 600 #Height of game window TILESIZE = 40 #Size of the squares in each grid(tile) MARKERSIZE = 40 #Size of the box which contatins the number that indicates how many ships in this row/col BUTTONHEIGHT = 20 #Height of a standard button BUTTONWIDTH = 40 #Width of a standard button TEXT_HEIGHT = 25 #Size of the text TEXT_LEFT_POSN = 10 #Where the text will be positioned BOARDWIDTH = 10 #Number of grids horizontally BOARDHEIGHT = 10 #Number of grids vertically DISPLAYWIDTH = 200 #Width of the game board EXPLOSIONSPEED = 10 #How fast the explosion graphics will play XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * TILESIZE) - DISPLAYWIDTH - MARKERSIZE) / 2) #x-position of the top left corner of board YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * TILESIZE) - MARKERSIZE) / 2) #y-position of the top left corner of board #Colours which will be used by the game BLACK = ( 0, 0, 0) WHITE = (255, 255, 255) GREEN = ( 0, 204, 0) GRAY = ( 60, 60, 60) BLUE = ( 0, 50, 255) YELLOW = (255, 255, 0) DARKGRAY =( 40, 40, 40) #Determine what to colour each element of the game BGCOLOR = GRAY BUTTONCOLOR = GREEN TEXTCOLOR = WHITE TILECOLOR = GREEN BORDERCOLOR = BLUE TEXTSHADOWCOLOR = BLUE SHIPCOLOR = YELLOW HIGHLIGHTCOLOR = BLUE def main(): """ The main function intializes the variables which will be used by the game. """ global DISPLAYSURF, FPSCLOCK, BASICFONT, HELP_SURF, HELP_RECT, NEW_SURF, \ NEW_RECT, SHOTS_SURF, SHOTS_RECT, BIGFONT, COUNTER_SURF, \ COUNTER_RECT, HBUTTON_SURF, EXPLOSION_IMAGES pygame.init() FPSCLOCK = pygame.time.Clock() #Fonts used by the game DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) BASICFONT = pygame.font.Font('freesansbold.ttf', 20) BIGFONT = pygame.font.Font('freesansbold.ttf', 50) # Create and label the buttons HELP_SURF = BASICFONT.render("HELP", True, WHITE) HELP_RECT = HELP_SURF.get_rect() HELP_RECT.topleft = (WINDOWWIDTH - 180, WINDOWHEIGHT - 350) NEW_SURF = BASICFONT.render("NEW GAME", True, WHITE) NEW_RECT = NEW_SURF.get_rect() NEW_RECT.topleft = (WINDOWWIDTH - 200, WINDOWHEIGHT - 200) # The 'Shots:' label at the top SHOTS_SURF = BASICFONT.render("Shots: ", True, WHITE) SHOTS_RECT = SHOTS_SURF.get_rect() SHOTS_RECT.topleft = (WINDOWWIDTH - 750, WINDOWHEIGHT - 570) # Load the explosion graphics from the /img folder EXPLOSION_IMAGES = [ pygame.image.load("img/blowup1.png"), pygame.image.load("img/blowup2.png"), pygame.image.load("img/blowup3.png"),pygame.image.load("img/blowup4.png"), pygame.image.load("img/blowup5.png"),pygame.image.load("img/blowup6.png")] # Set the title in the menu bar to 'Battleship' pygame.display.set_caption('Battleship') # Keep the game running at all times while True: shots_taken = run_game() #Run the game until it stops and save the result in shots_taken show_gameover_screen(shots_taken) #Display a gameover screen by passing in shots_taken def run_game(): """ Function is executed while a game is running. returns the amount of shots taken """ revealed_tiles = generate_default_tiles(False) #Contains the list of the tiles revealed by user # main board object, main_board = generate_default_tiles(None) #Contains the list of the ships which exists on board ship_objs = ['battleship','cruiser1','cruiser2','destroyer1','destroyer2', 'destroyer3','submarine1','submarine2','submarine3','submarine4'] # List of the ships available main_board = add_ships_to_board(main_board, ship_objs) #call add_ships_to_board to add the list of ships to the main_board mousex, mousey = 0, 0 #location of mouse counter = [] #counter to track number of shots fired xmarkers, ymarkers = set_markers(main_board) #The numerical markers on each side of the board while True: # counter display (it needs to be here in order to refresh it) COUNTER_SURF = BASICFONT.render(str(len(counter)), True, WHITE) COUNTER_RECT = SHOTS_SURF.get_rect() COUNTER_RECT.topleft = (WINDOWWIDTH - 680, WINDOWHEIGHT - 570) # Fill background DISPLAYSURF.fill(BGCOLOR) # draw the buttons DISPLAYSURF.blit(HELP_SURF, HELP_RECT) DISPLAYSURF.blit(NEW_SURF, NEW_RECT) DISPLAYSURF.blit(SHOTS_SURF, SHOTS_RECT) DISPLAYSURF.blit(COUNTER_SURF, COUNTER_RECT) # Draw the tiles onto the board and their respective markers draw_board(main_board, revealed_tiles) draw_markers(xmarkers, ymarkers) mouse_clicked = False check_for_quit() #Check for pygame events for event in pygame.event.get(): if event.type == MOUSEBUTTONUP: if HELP_RECT.collidepoint(event.pos): #if the help button is clicked on DISPLAYSURF.fill(BGCOLOR) show_help_screen() #Show the help screen elif NEW_RECT.collidepoint(event.pos): #if the new game button is clicked on main() #goto main, which resets the game else: #otherwise mousex, mousey = event.pos #set mouse positions to the new position mouse_clicked = True #mouse is clicked but not on a button elif event.type == MOUSEMOTION: #Detected mouse motion mousex, mousey = event.pos #set mouse positions to the new position #Check if the mouse is clicked at a position with a ship piece tilex, tiley = get_tile_at_pixel(mousex, mousey) if tilex != None and tiley != None: if not revealed_tiles[tilex][tiley]: #if the tile the mouse is on is not revealed draw_highlight_tile(tilex, tiley) # draws the hovering highlight over the tile if not revealed_tiles[tilex][tiley] and mouse_clicked: #if the mouse is clicked on the not revealed tile reveal_tile_animation(main_board, [(tilex, tiley)]) revealed_tiles[tilex][tiley] = True #set the tile to now be revealed if check_revealed_tile(main_board, [(tilex, tiley)]): # if the clicked position contains a ship piece left, top = left_top_coords_tile(tilex, tiley) blowup_animation((left, top)) if check_for_win(main_board, revealed_tiles): # check for a win counter.append((tilex, tiley)) return len(counter) # return the amount of shots taken counter.append((tilex, tiley)) pygame.display.update() FPSCLOCK.tick(FPS) def generate_default_tiles(default_value): """ Function generates a list of 10 x 10 tiles. The list will contain tuples ('shipName', boolShot) set to their (default_value). default_value -> boolean which tells what the value to set to returns the list of tuples """ default_tiles = [[default_value]*BOARDHEIGHT for i in xrange(BOARDWIDTH)] return default_tiles def blowup_animation(coord): """ Function creates the explosition played if a ship is shot. coord -> tuple of tile coords to apply the blowup animation """ for image in EXPLOSION_IMAGES: # go through the list of images in the list of pictures and play them in sequence #Determine the location and size to display the image image = pygame.transform.scale(image, (TILESIZE+10, TILESIZE+10)) DISPLAYSURF.blit(image, coord) pygame.display.flip() FPSCLOCK.tick(EXPLOSIONSPEED) #Determine the delay to play the image with def check_revealed_tile(board, tile): """ Function checks if a tile location contains a ship piece. board -> the tiled board either a ship piece or none tile -> location of tile returns True if ship piece exists at tile location """ return board[tile[0][0]][tile[0][1]] != None def reveal_tile_animation(board, tile_to_reveal): """ Function creates an animation which plays when the mouse is clicked on a tile, and whatever is behind the tile needs to be revealed. board -> list of board tile tuples ('shipName', boolShot) tile_to_reveal -> tuple of tile coords to apply the reveal animation to """ for coverage in xrange(TILESIZE, (-REVEALSPEED) - 1, -REVEALSPEED): #Plays animation based on reveal speed draw_tile_covers(board, tile_to_reveal, coverage) def draw_tile_covers(board, tile, coverage): """ Function draws the tiles according to a set of variables. board -> list; of board tiles tile -> tuple; of tile coords to reveal coverage -> int; amount of the tile that is covered """ left, top = left_top_coords_tile(tile[0][0], tile[0][1]) if check_revealed_tile(board, tile): pygame.draw.rect(DISPLAYSURF, SHIPCOLOR, (left, top, TILESIZE, TILESIZE)) else: pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, TILESIZE, TILESIZE)) if coverage > 0: pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left, top, coverage, TILESIZE)) pygame.display.update() FPSCLOCK.tick(FPS) def check_for_quit(): """ Function checks if the user has attempted to quit the game. """ for event in pygame.event.get(QUIT): pygame.quit() sys.exit() def check_for_win(board, revealed): """ Function checks if the current board state is a winning state. board -> the board which contains the ship pieces revealed -> list of revealed tiles returns True if all the ships are revealed """ for tilex in xrange(BOARDWIDTH): for tiley in xrange(BOARDHEIGHT): if board[tilex][tiley] != None and not revealed[tilex][tiley]: # check if every board with a ship is revealed, return false if not return False return True def draw_board(board, revealed): """ Function draws the game board. board -> list of board tiles revealed -> list of revealed tiles """ #draws the grids depending on its state for tilex in xrange(BOARDWIDTH): for tiley in xrange(BOARDHEIGHT): left, top = left_top_coords_tile(tilex, tiley) if not revealed[tilex][tiley]: pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left, top, TILESIZE, TILESIZE)) else: if board[tilex][tiley] != None: pygame.draw.rect(DISPLAYSURF, SHIPCOLOR, (left, top, TILESIZE, TILESIZE)) else: pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, TILESIZE, TILESIZE)) #draws the horizontal lines for x in xrange(0, (BOARDWIDTH + 1) * TILESIZE, TILESIZE): pygame.draw.line(DISPLAYSURF, DARKGRAY, (x + XMARGIN + MARKERSIZE, YMARGIN + MARKERSIZE), (x + XMARGIN + MARKERSIZE, WINDOWHEIGHT - YMARGIN)) #draws the vertical lines for y in xrange(0, (BOARDHEIGHT + 1) * TILESIZE, TILESIZE): pygame.draw.line(DISPLAYSURF, DARKGRAY, (XMARGIN + MARKERSIZE, y + YMARGIN + MARKERSIZE), (WINDOWWIDTH - (DISPLAYWIDTH + MARKERSIZE * 2), y + YMARGIN + MARKERSIZE)) def set_markers(board): """ Function creates the lists of the markers to the side of the game board which indicates the number of ship pieces in each row and column. board: list of board tiles returns the 2 lists of markers with number of ship pieces in each row (xmarkers) and column (ymarkers) """ xmarkers = [0 for i in xrange(BOARDWIDTH)] ymarkers = [0 for i in xrange(BOARDHEIGHT)] #Loop through the tiles for tilex in xrange(BOARDWIDTH): for tiley in xrange(BOARDHEIGHT): if board[tilex][tiley] != None: #if the tile is a ship piece, then increment the markers xmarkers[tilex] += 1 ymarkers[tiley] += 1 return xmarkers, ymarkers def draw_markers(xlist, ylist): """ Function draws the two list of markers to the side of the board. xlist -> list of row markers ylist -> list of column markers """ for i in xrange(len(xlist)): #Draw the x-marker list left = i * MARKERSIZE + XMARGIN + MARKERSIZE + (TILESIZE / 3) top = YMARGIN marker_surf, marker_rect = make_text_objs(str(xlist[i]), BASICFONT, TEXTCOLOR) marker_rect.topleft = (left, top) DISPLAYSURF.blit(marker_surf, marker_rect) for i in range(len(ylist)): #Draw the y-marker list left = XMARGIN top = i * MARKERSIZE + YMARGIN + MARKERSIZE + (TILESIZE / 3) marker_surf, marker_rect = make_text_objs(str(ylist[i]), BASICFONT, TEXTCOLOR) marker_rect.topleft = (left, top) DISPLAYSURF.blit(marker_surf, marker_rect) def add_ships_to_board(board, ships): """ Function goes through a list of ships and add them randomly into a board. board -> list of board tiles ships -> list of ships to place on board returns list of board tiles with ships placed on certain tiles """ new_board = board[:] ship_length = 0 for ship in ships: #go through each ship declared in the list #Randomly find a valid position that fits the ship valid_ship_position = False while not valid_ship_position: xStartpos = random.randint(0, 9) yStartpos = random.randint(0, 9) isHorizontal = random.randint(0, 1) #vertical or horizontal positioning #Type of ship and their respective length if 'battleship' in ship: ship_length = 4 elif 'cruiser' in ship: ship_length = 3 elif 'destroyer'in ship: ship_length = 2 elif 'submarine' in ship: ship_length = 1 #check if position is valid valid_ship_position, ship_coords = make_ship_position(new_board, xStartpos, yStartpos, isHorizontal, ship_length, ship) #add the ship if it is valid if valid_ship_position: for coord in ship_coords: new_board[coord[0]][coord[1]] = ship return new_board def make_ship_position(board, xPos, yPos, isHorizontal, length, ship): """ Function makes a ship on a board given a set of variables board -> list of board tiles xPos -> x-coordinate of first ship piece yPos -> y-coordinate of first ship piece isHorizontal -> True if ship is horizontal length -> length of ship returns tuple: True if ship position is valid and list ship coordinates """ ship_coordinates = [] #the coordinates the ship will occupy if isHorizontal: for i in xrange(length): if (i+xPos > 9) or (board[i+xPos][yPos] != None) or \ hasAdjacent(board, i+xPos, yPos, ship): #if the ship goes out of bound, hits another ship, or is adjacent to another ship return (False, ship_coordinates) #then return false else: ship_coordinates.append((i+xPos, yPos)) else: for i in xrange(length): if (i+yPos > 9) or (board[xPos][i+yPos] != None) or \ hasAdjacent(board, xPos, i+yPos, ship): #if the ship goes out of bound, hits another ship, or is adjacent to another ship return (False, ship_coordinates) #then return false else: ship_coordinates.append((xPos, i+yPos)) return (True, ship_coordinates) #ship is successfully added def hasAdjacent(board, xPos, yPos, ship): """ Funtion checks if a ship has adjacent ships board -> list of board tiles xPos -> x-coordinate of first ship piece yPos -> y-coordinate of first ship piece ship -> the ship being checked for adjacency returns true if there are adjacent ships and false if there are no adjacent ships """ for x in xrange(xPos-1,xPos+2): for y in xrange(yPos-1,yPos+2): if (x in range (10)) and (y in range (10)) and \ (board[x][y] not in (ship, None)): return True return False def left_top_coords_tile(tilex, tiley): """ Function calculates and returns the pixel of the tile in the top left corner tilex -> int; x position of tile tiley -> int; y position of tile returns tuple (int, int) which indicates top-left pixel coordinates of tile """ left = tilex * TILESIZE + XMARGIN + MARKERSIZE top = tiley * TILESIZE + YMARGIN + MARKERSIZE return (left, top) def get_tile_at_pixel(x, y): """ Function finds the corresponding tile coordinates of pixel at top left, defaults to (None, None) given a coordinate. x -> int; x position of pixel y -> int; y position of pixel returns tuple (tilex, tiley) """ for tilex in xrange(BOARDWIDTH): for tiley in xrange(BOARDHEIGHT): left, top = left_top_coords_tile(tilex, tiley) tile_rect = pygame.Rect(left, top, TILESIZE, TILESIZE) if tile_rect.collidepoint(x, y): return (tilex, tiley) return (None, None) def draw_highlight_tile(tilex, tiley): """ Function draws the hovering highlight over the tile. tilex -> int; x position of tile tiley -> int; y position of tile """ left, top = left_top_coords_tile(tilex, tiley) pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, (left, top, TILESIZE, TILESIZE), 4) def show_help_screen(): """ Function display a help screen until any button is pressed. """ line1_surf, line1_rect = make_text_objs('Press a key to return to the game', BASICFONT, TEXTCOLOR) line1_rect.topleft = (TEXT_LEFT_POSN, TEXT_HEIGHT) DISPLAYSURF.blit(line1_surf, line1_rect) line2_surf, line2_rect = make_text_objs( 'This is a battleship puzzle game. Your objective is ' \ 'to sink all the ships in as few', BASICFONT, TEXTCOLOR) line2_rect.topleft = (TEXT_LEFT_POSN, TEXT_HEIGHT * 3) DISPLAYSURF.blit(line2_surf, line2_rect) line3_surf, line3_rect = make_text_objs('shots as possible. The markers on'\ ' the edges of the game board tell you how', BASICFONT, TEXTCOLOR) line3_rect.topleft = (TEXT_LEFT_POSN, TEXT_HEIGHT * 4) DISPLAYSURF.blit(line3_surf, line3_rect) line4_surf, line4_rect = make_text_objs('many ship pieces are in each'\ ' column and row. To reset your game click on', BASICFONT, TEXTCOLOR) line4_rect.topleft = (TEXT_LEFT_POSN, TEXT_HEIGHT * 5) DISPLAYSURF.blit(line4_surf, line4_rect) line5_surf, line5_rect = make_text_objs('the "New Game" button.', BASICFONT, TEXTCOLOR) line5_rect.topleft = (TEXT_LEFT_POSN, TEXT_HEIGHT * 6) DISPLAYSURF.blit(line5_surf, line5_rect) while check_for_keypress() == None: #Check if the user has pressed keys, if so go back to the game pygame.display.update() FPSCLOCK.tick() def check_for_keypress(): """ Function checks for any key presses by pulling out all KEYDOWN and KEYUP events from queue. returns any KEYUP events, otherwise return None """ for event in pygame.event.get([KEYDOWN, KEYUP, MOUSEBUTTONDOWN, MOUSEBUTTONUP, MOUSEMOTION]): if event.type in (KEYDOWN, MOUSEBUTTONUP, MOUSEBUTTONDOWN, MOUSEMOTION): continue return event.key return None def make_text_objs(text, font, color): """ Function creates a text. text -> string; content of text font -> Font object; face of font color -> tuple of color (red, green blue); colour of text returns the surface object, rectangle object """ surf = font.render(text, True, color) return surf, surf.get_rect() def show_gameover_screen(shots_fired): """ Function display a gameover screen when the user has successfully shot at every ship pieces. shots_fired -> the number of shots taken before game is over """ DISPLAYSURF.fill(BGCOLOR) titleSurf, titleRect = make_text_objs('Congrats! Puzzle solved in:', BIGFONT, TEXTSHADOWCOLOR) titleRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2)) DISPLAYSURF.blit(titleSurf, titleRect) titleSurf, titleRect = make_text_objs('Congrats! Puzzle solved in:', BIGFONT, TEXTCOLOR) titleRect.center = (int(WINDOWWIDTH / 2) - 3, int(WINDOWHEIGHT / 2) - 3) DISPLAYSURF.blit(titleSurf, titleRect) titleSurf, titleRect = make_text_objs(str(shots_fired) + ' shots', BIGFONT, TEXTSHADOWCOLOR) titleRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2 + 50)) DISPLAYSURF.blit(titleSurf, titleRect) titleSurf, titleRect = make_text_objs(str(shots_fired) + ' shots', BIGFONT, TEXTCOLOR) titleRect.center = (int(WINDOWWIDTH / 2) - 3, int(WINDOWHEIGHT / 2 + 50) - 3) DISPLAYSURF.blit(titleSurf, titleRect) pressKeySurf, pressKeyRect = make_text_objs( 'Press a key to try to beat that score.', BASICFONT, TEXTCOLOR) pressKeyRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) + 100) DISPLAYSURF.blit(pressKeySurf, pressKeyRect) while check_for_keypress() == None: #Check if the user has pressed keys, if so start a new game pygame.display.update() FPSCLOCK.tick() if __name__ == "__main__": #This calls the game loop main()
[ "sys.exit", "pygame.init", "pygame.quit", "pygame.event.get", "pygame.draw.line", "pygame.display.set_mode", "pygame.display.flip", "pygame.time.Clock", "pygame.Rect", "pygame.draw.rect", "pygame.display.set_caption", "pygame.image.load", "pygame.font.Font", "pygame.display.update", "random.randint", "pygame.transform.scale" ]
[((2479, 2492), 'pygame.init', 'pygame.init', ([], {}), '()\n', (2490, 2492), False, 'import random, sys, pygame\n'), ((2508, 2527), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (2525, 2527), False, 'import random, sys, pygame\n'), ((2574, 2626), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WINDOWWIDTH, WINDOWHEIGHT)'], {}), '((WINDOWWIDTH, WINDOWHEIGHT))\n', (2597, 2626), False, 'import random, sys, pygame\n'), ((2643, 2683), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(20)'], {}), "('freesansbold.ttf', 20)\n", (2659, 2683), False, 'import random, sys, pygame\n'), ((2698, 2738), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(50)'], {}), "('freesansbold.ttf', 50)\n", (2714, 2738), False, 'import random, sys, pygame\n'), ((3684, 3724), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Battleship"""'], {}), "('Battleship')\n", (3710, 3724), False, 'import random, sys, pygame\n'), ((10355, 10378), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (10376, 10378), False, 'import random, sys, pygame\n'), ((10527, 10549), 'pygame.event.get', 'pygame.event.get', (['QUIT'], {}), '(QUIT)\n', (10543, 10549), False, 'import random, sys, pygame\n'), ((18965, 19050), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'HIGHLIGHTCOLOR', '(left, top, TILESIZE, TILESIZE)', '(4)'], {}), '(DISPLAYSURF, HIGHLIGHTCOLOR, (left, top, TILESIZE,\n TILESIZE), 4)\n', (18981, 19050), False, 'import random, sys, pygame\n'), ((20816, 20895), 'pygame.event.get', 'pygame.event.get', (['[KEYDOWN, KEYUP, MOUSEBUTTONDOWN, MOUSEBUTTONUP, MOUSEMOTION]'], {}), '([KEYDOWN, KEYUP, MOUSEBUTTONDOWN, MOUSEBUTTONUP, MOUSEMOTION])\n', (20832, 20895), False, 'import random, sys, pygame\n'), ((3381, 3417), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup1.png"""'], {}), "('img/blowup1.png')\n", (3398, 3417), False, 'import random, sys, pygame\n'), ((3419, 3455), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup2.png"""'], {}), "('img/blowup2.png')\n", (3436, 3455), False, 'import random, sys, pygame\n'), ((3465, 3501), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup3.png"""'], {}), "('img/blowup3.png')\n", (3482, 3501), False, 'import random, sys, pygame\n'), ((3502, 3538), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup4.png"""'], {}), "('img/blowup4.png')\n", (3519, 3538), False, 'import random, sys, pygame\n'), ((3548, 3584), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup5.png"""'], {}), "('img/blowup5.png')\n", (3565, 3584), False, 'import random, sys, pygame\n'), ((3585, 3621), 'pygame.image.load', 'pygame.image.load', (['"""img/blowup6.png"""'], {}), "('img/blowup6.png')\n", (3602, 3621), False, 'import random, sys, pygame\n'), ((5731, 5749), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (5747, 5749), False, 'import random, sys, pygame\n'), ((7663, 7686), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (7684, 7686), False, 'import random, sys, pygame\n'), ((8498, 8559), 'pygame.transform.scale', 'pygame.transform.scale', (['image', '(TILESIZE + 10, TILESIZE + 10)'], {}), '(image, (TILESIZE + 10, TILESIZE + 10))\n', (8520, 8559), False, 'import random, sys, pygame\n'), ((8603, 8624), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (8622, 8624), False, 'import random, sys, pygame\n'), ((9923, 9996), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'SHIPCOLOR', '(left, top, TILESIZE, TILESIZE)'], {}), '(DISPLAYSURF, SHIPCOLOR, (left, top, TILESIZE, TILESIZE))\n', (9939, 9996), False, 'import random, sys, pygame\n'), ((10065, 10136), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'BGCOLOR', '(left, top, TILESIZE, TILESIZE)'], {}), '(DISPLAYSURF, BGCOLOR, (left, top, TILESIZE, TILESIZE))\n', (10081, 10136), False, 'import random, sys, pygame\n'), ((10214, 10287), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'TILECOLOR', '(left, top, coverage, TILESIZE)'], {}), '(DISPLAYSURF, TILECOLOR, (left, top, coverage, TILESIZE))\n', (10230, 10287), False, 'import random, sys, pygame\n'), ((10559, 10572), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (10570, 10572), False, 'import random, sys, pygame\n'), ((10581, 10591), 'sys.exit', 'sys.exit', ([], {}), '()\n', (10589, 10591), False, 'import random, sys, pygame\n'), ((12126, 12271), 'pygame.draw.line', 'pygame.draw.line', (['DISPLAYSURF', 'DARKGRAY', '(x + XMARGIN + MARKERSIZE, YMARGIN + MARKERSIZE)', '(x + XMARGIN + MARKERSIZE, WINDOWHEIGHT - YMARGIN)'], {}), '(DISPLAYSURF, DARKGRAY, (x + XMARGIN + MARKERSIZE, YMARGIN +\n MARKERSIZE), (x + XMARGIN + MARKERSIZE, WINDOWHEIGHT - YMARGIN))\n', (12142, 12271), False, 'import random, sys, pygame\n'), ((12395, 12567), 'pygame.draw.line', 'pygame.draw.line', (['DISPLAYSURF', 'DARKGRAY', '(XMARGIN + MARKERSIZE, y + YMARGIN + MARKERSIZE)', '(WINDOWWIDTH - (DISPLAYWIDTH + MARKERSIZE * 2), y + YMARGIN + MARKERSIZE)'], {}), '(DISPLAYSURF, DARKGRAY, (XMARGIN + MARKERSIZE, y + YMARGIN +\n MARKERSIZE), (WINDOWWIDTH - (DISPLAYWIDTH + MARKERSIZE * 2), y +\n YMARGIN + MARKERSIZE))\n', (12411, 12567), False, 'import random, sys, pygame\n'), ((20546, 20569), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (20567, 20569), False, 'import random, sys, pygame\n'), ((23059, 23082), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (23080, 23082), False, 'import random, sys, pygame\n'), ((14846, 14866), 'random.randint', 'random.randint', (['(0)', '(9)'], {}), '(0, 9)\n', (14860, 14866), False, 'import random, sys, pygame\n'), ((14891, 14911), 'random.randint', 'random.randint', (['(0)', '(9)'], {}), '(0, 9)\n', (14905, 14911), False, 'import random, sys, pygame\n'), ((14939, 14959), 'random.randint', 'random.randint', (['(0)', '(1)'], {}), '(0, 1)\n', (14953, 14959), False, 'import random, sys, pygame\n'), ((18559, 18601), 'pygame.Rect', 'pygame.Rect', (['left', 'top', 'TILESIZE', 'TILESIZE'], {}), '(left, top, TILESIZE, TILESIZE)\n', (18570, 18601), False, 'import random, sys, pygame\n'), ((11529, 11602), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'TILECOLOR', '(left, top, TILESIZE, TILESIZE)'], {}), '(DISPLAYSURF, TILECOLOR, (left, top, TILESIZE, TILESIZE))\n', (11545, 11602), False, 'import random, sys, pygame\n'), ((11747, 11820), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'SHIPCOLOR', '(left, top, TILESIZE, TILESIZE)'], {}), '(DISPLAYSURF, SHIPCOLOR, (left, top, TILESIZE, TILESIZE))\n', (11763, 11820), False, 'import random, sys, pygame\n'), ((11901, 11972), 'pygame.draw.rect', 'pygame.draw.rect', (['DISPLAYSURF', 'BGCOLOR', '(left, top, TILESIZE, TILESIZE)'], {}), '(DISPLAYSURF, BGCOLOR, (left, top, TILESIZE, TILESIZE))\n', (11917, 11972), False, 'import random, sys, pygame\n')]
import random import sys listword=["hello","computer","python","java","html","world","apple","windows"] guessword=[] random_word=random.choice(listword) lenghtword=len(random_word) alphabet="abcdefghijklmnopqrstuvwxyz" letter_storage=[] def intro(): print("\tHello and Welcome to Hangman (A word prediction game)") while True: name=input("Enter your name:\n").strip() if name=="": print("Enter a valid name\n") else: break print("\n\t\tSo %s welcome to the Game :) " % name) intro() def game(): while True: String=input("So you ready to play :\n ") if String=="yes" or String=="Y" or String=="y": break elif String=="No" or String=="N" or String=="n": sys.exit() else: print("Please Enter something ") continue game() def rules(): for character in random_word: guessword.append("_") print("Ok, so the word You need to guess has", lenghtword, "characters") print("Be aware that You can enter only 1 letter from a-z\n\n") print(guessword) def guessing(): guess_no=1 while guess_no<10: guess=input("\nPick a letter : ") if not guess in alphabet: print("pick a letter from a-z ") elif guess in letter_storage: print("Already guessed this letter.") else: letter_storage.append(guess) if guess in random_word: print("You guessed correctly") for x in range(0,lenghtword): if random_word[x]==guess: guessword[x]=guess print(guessword) if not '_' in guessword: print("You won") break else: print("Guessed letter not in the word") guess_no+=1 if guess_no==10: print("Sorry, you have used all your chances. YOU LOST !!") rules() guessing() print("\tGAME OVER !! ") # By: <NAME> (https://github.com/DarshAsawa)
[ "random.choice", "sys.exit" ]
[((131, 154), 'random.choice', 'random.choice', (['listword'], {}), '(listword)\n', (144, 154), False, 'import random\n'), ((688, 698), 'sys.exit', 'sys.exit', ([], {}), '()\n', (696, 698), False, 'import sys\n')]
# vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 # std libs import logging import random # third-party libs # our libs logger = logging.getLogger('D42Experiment') ALGO_POOL = ['astar', 'astarbi', 'dijkstra', 'dijkstrabi', 'dijkstraNativebi'] BI_POOL = ['astarbi', 'dijkstrabi', 'dijkstraNativebi'] NONBI_POOL = ['astar', 'dijkstra'] DIJSKTRA_POOL = ['dijkstra', 'dijkstrabi', 'dijkstraNativebi'] ASTAR_POOL = ['astar', 'astarbi'] ASTAR_MIX = ['astar', 'astarbi', 'dijkstraNativebi'] DIJKSTRA_MIX = ['dijkstra', 'dijkstrabi', 'dijkstraNativebi', 'astar'] TWO_MIX = [['astar', 'dijkstrabi'], ['astar', 'dijkstraNativebi'],['astar', \ 'dijkstra']] THREE_MIX = [['astarbi', 'dijkstra', 'dijkstrabi'], ['astarbi', 'dijkstra', \ 'dijkstraNativebi'], ['astarbi','dijkstrabi', 'dijkstraNativebi']] WEIGHTINGS = ['fastest', 'shortest'] def pickFirst(): first = ALGO_POOL[0] logger.info("Picking algorithm: %s"%(first)) return first def pickDijkstra(): return ALGO_POOL[2] def pickFromTwoMix(): two_mix_pool = random.sample(TWO_MIX, 1)[0] logger.info("Picked two mix pool: %s"%(str(two_mix_pool))) while True: randAlgo = random.sample(two_mix_pool, 1)[0] yield randAlgo def pickFromThreeMix(): three_mix_pool = random.sample(THREE_MIX, 1)[0] logger.info("Picked three mix pool: %s"%(str(three_mix_pool))) while True: randAlgo = random.sample(three_mix_pool, 1)[0] yield randAlgo def pickLast(): last = ALGO_POOL[-1] logger.info("Picking algorithm: %s"%(last)) return last def pickRandom(): randAlgo = random.sample(ALGO_POOL, 1)[0] logger.info("Picking random algorithm: %s"%(randAlgo)) return randAlgo def pickRandomBi(): randAlgo = random.sample(BI_POOL, 1)[0] logger.info("Picking random bidirectional algorithm: %s"%(randAlgo)) return randAlgo def pickRandomNonBi(): randAlgo = random.sample(NONBI_POOL, 1)[0] logger.info("Picking random non-bidirectional algorithm: %s"%(randAlgo)) return randAlgo def pickFastestWeighting(): weighting = WEIGHTINGS[0] logger.debug("Picking weighting to be: %s"%(weighting)) return weighting def pickShortestWeighting(): weighting = WEIGHTINGS[1] logger.debug("Picking weighting to be: %s"%(weighting)) return weighting def pickRandomWeighting(): weighting = random.sample(WEIGHTINGS, 1)[0] logger.debug("Picking weighting to be: %s"%(weighting)) return weighting
[ "logging.getLogger", "random.sample" ]
[((137, 171), 'logging.getLogger', 'logging.getLogger', (['"""D42Experiment"""'], {}), "('D42Experiment')\n", (154, 171), False, 'import logging\n'), ((1037, 1062), 'random.sample', 'random.sample', (['TWO_MIX', '(1)'], {}), '(TWO_MIX, 1)\n', (1050, 1062), False, 'import random\n'), ((1267, 1294), 'random.sample', 'random.sample', (['THREE_MIX', '(1)'], {}), '(THREE_MIX, 1)\n', (1280, 1294), False, 'import random\n'), ((1599, 1626), 'random.sample', 'random.sample', (['ALGO_POOL', '(1)'], {}), '(ALGO_POOL, 1)\n', (1612, 1626), False, 'import random\n'), ((1745, 1770), 'random.sample', 'random.sample', (['BI_POOL', '(1)'], {}), '(BI_POOL, 1)\n', (1758, 1770), False, 'import random\n'), ((1906, 1934), 'random.sample', 'random.sample', (['NONBI_POOL', '(1)'], {}), '(NONBI_POOL, 1)\n', (1919, 1934), False, 'import random\n'), ((2361, 2389), 'random.sample', 'random.sample', (['WEIGHTINGS', '(1)'], {}), '(WEIGHTINGS, 1)\n', (2374, 2389), False, 'import random\n'), ((1164, 1194), 'random.sample', 'random.sample', (['two_mix_pool', '(1)'], {}), '(two_mix_pool, 1)\n', (1177, 1194), False, 'import random\n'), ((1400, 1432), 'random.sample', 'random.sample', (['three_mix_pool', '(1)'], {}), '(three_mix_pool, 1)\n', (1413, 1432), False, 'import random\n')]
''' default ''' from datetime import timedelta from typing import List, Generator from srtsync.srt_sequence import SRTSequence class SRT: ''' default ''' def __init__(self, srt_file: str = None): self.file = srt_file self.sequences = [] def parse_file(self) -> None: ''' default ''' def init_sequence(sequence_arr: List[str]) -> SRTSequence: try: seq = sequence_arr.pop(0).strip('\n') seq_number = int(seq) except ValueError: seq_number = int(seq.replace('\ufeff', '')) seq_time = SRTSequence.strp_seq_time( sequence_arr.pop(0).strip('\n') ) srt_sequence = SRTSequence( seq_number=seq_number, seq_time=seq_time ) for caption_line in sequence_arr: srt_sequence.append_caption(caption_line.strip('\n')) return srt_sequence def generate_sequence() -> Generator[SRTSequence, None, None]: with open(self.file, 'r') as srt_file: temp_sequence = [] for line in srt_file: if line == '\n': yield init_sequence(temp_sequence) temp_sequence = [] else: temp_sequence.append(line) self.sequences = [sequence for sequence in generate_sequence()] def write_file(self, output_file: str = None) -> None: ''' default ''' output_file = output_file if output_file else self.file with open(output_file, 'w') as srt_file: for sequence in self.sequences: srt_file.write(str(sequence)) def time_shift(self, time_shift: int) -> None: ''' default ''' time_shift_delta = timedelta(milliseconds=time_shift) for sequence in self.sequences: sequence.set_time(( sequence.time[0] + time_shift_delta, sequence.time[1] + time_shift_delta ))
[ "datetime.timedelta", "srtsync.srt_sequence.SRTSequence" ]
[((1917, 1951), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': 'time_shift'}), '(milliseconds=time_shift)\n', (1926, 1951), False, 'from datetime import timedelta\n'), ((757, 810), 'srtsync.srt_sequence.SRTSequence', 'SRTSequence', ([], {'seq_number': 'seq_number', 'seq_time': 'seq_time'}), '(seq_number=seq_number, seq_time=seq_time)\n', (768, 810), False, 'from srtsync.srt_sequence import SRTSequence\n')]
#!/usr/bin/env python import numpy as np from LLC_Membranes.analysis.rdf import System from LLC_Membranes.llclib import file_rw, stats import matplotlib.pyplot as plt import names import tqdm def calculate_rdf(res, path, gro='berendsen.gro', traj='PR_nojump.xtc', atoms=None): print('Calculating RDF of residue %s' % r) if atoms is not None: rdf = System('%s/%s' %(path, gro), '%s/%s' %(path, traj), r, 'NAcarb11V', atoms=atoms) else: rdf = System('%s/%s' %(path, gro), '%s/%s' %(path, traj), r, 'NAcarb11V') rdf.radial_distribution_function(spline=True, npts_spline=10) rdf.bootstrap(200) file_rw.save_object(rdf, '%s/rdf_%s.pl' % (path, res)) return rdf recalculate = False simple_alcohols = False polyols = False head_groups = True thiol_comparison = False ketones = False nondonors = True probability = False if simple_alcohols: residues=["MET", "ETH", "PR", "BUT"] # simple_alcohol_rdf.pdf elif polyols: residues=["GCL", "PG", "GLY", "TET", "RIB"] elif thiol_comparison: #residues=["SOH", "GCL"] #residues=["DMP", "GLY"] residues=["DMS", "ATO"] elif ketones: residues=["ACH", "URE", "ACN", "ATO"] elif nondonors: residues=["THF", "PCB", "EAC", "DMF"] #residues=["THF", "DMF"] else: residues=["PG", "GCL"] # residues=["DMP", "GLY"] #residues = ["GLY", "TET", "RIB"] wt=10 maximum = 0 i = 0 v = np.zeros([len(residues), 49]) #equil = 200 # chop off first equil frames opacity = 0.2 for r in residues: path = "/home/bcoscia/Documents/Gromacs/Transport/NaGA3C11/%s/%dwt" %(r,wt) if recalculate: rdf = calculate_rdf(r, path) else: try: rdf = file_rw.load_object('%s/rdf_%s.pl' %(path, r)) except FileNotFoundError: rdf = calculate_rdf(r, path) mean = rdf.density.mean(axis=0) if probability: rdf.errorbars /= sum(mean) mean /= sum(mean) new_max = np.amax(mean[np.argwhere(rdf.r > 0.4)]) # really looking for the head group peak maximum = max(maximum, new_max) plt.plot(rdf.r, mean, label='%s' % names.res_to_name[r], linewidth=2) plt.fill_between(rdf.r, rdf.errorbars[1, :] + mean, mean - rdf.errorbars[0, :], alpha=opacity) #v[i, :] = [mean[i] * np.pi*(rdf.r[i + 1] ** 2 - rdf.r[i] ** 2) for i in range(len(rdf.r) - 1)] #print(r, sum(v[i, :np.argmin(np.abs(rdf.r - 0.4)**2)])) #plt.plot(rdf.r[:-1], v[i, :]) i += 1 nboot = 200 nselect = 400 * len(residues) # each system has 400 head groups. Each bootstrap trial should randomly select "400 * n residues being plotted" RDFs if head_groups: nframes = 200 # d_head_groups = np.zeros([len(residues)*nframes, 50, len(residues)]) d_head_groups = np.zeros([len(residues)*nframes, 50]) for i, r in enumerate(residues): path = "/home/bcoscia/Documents/Gromacs/Transport/NaGA3C11/%s/%dwt" %(r,wt) hg = file_rw.load_object('%s/rdf_HII_CC1C2C3C4C5.pl' % path) #d_head_groups[:, i] = hg.density.mean(axis=0) d_head_groups[i*nframes:(i+1)*nframes, :] = hg.density boot = np.zeros([nboot, 50]) for b in tqdm.tqdm(range(nboot)): ndx = np.random.choice(np.arange(d_head_groups.shape[0]), size=nselect, replace=True) boot[b, :] = d_head_groups[ndx, :].mean(axis=0) mean = boot.mean(axis=0) error = stats.confidence_interval(boot, 68) * (maximum / np.max(mean)) mean *= (maximum / np.max(mean)) #mean *= (24 / 400) #std *= (24 / 400) #mean *= (24 / 400) #plt.plot(hg.r, maximum * hg.density.mean(axis=0) / np.max(hg.density.mean(axis=0)), '--') # Option 1 plt.plot(hg.r, mean, '--', color='black', label='Head Groups') #plt.fill_between(hg.r, mean + std, mean - std, alpha=0.6, color='black') plt.fill_between(hg.r, mean + error[1, :], mean - error[0, :], alpha=opacity, color='black') # Option 2 #rmax = hg.r[np.argmax(mean)] #plt.plot([rmax, rmax], [0, 1.05*mean.max()], '--', color='black') # Option 3 # rmax_ndx = np.argmax(mean) # r = hg.r[:rmax_ndx] # mean = mean[:rmax_ndx] # std = std[:rmax_ndx] # plt.plot(r, mean, '--', color='black') #plt.fill_between(r, mean + std, mean - std, alpha=0.7, color='black') #r = residues[0] #path = "/home/bcoscia/Documents/Gromacs/Transport/NaGA3C11/%s/%dwt" % (r, wt) #try: # rdf = file_rw.load_object('%s/rdf_HII.pl' %path) #except FileNotFoundError: # rdf = calculate_rdf(r, path, atoms=['C', 'C1', 'C2', 'C3', 'C4', 'C5']) #normalization = 24 / 400 #plt.plot(rdf.r, maximum * rdf.density.mean(axis=0) / np.amax(rdf.density.mean(axis=0)), '--', color='black') #plt.plot(rdf.r, normalization * rdf.density.mean(axis=0), '--', color='black') if not head_groups: top = maximum * 1.05 plt.plot([0.75, 0.75], [0, top], '--', color='black') plt.fill_between([0.73, 0.77], [top, top], y2=[0, 0], color='grey', alpha=0.5) plt.ylabel('Density (count / nm$^3$)', fontsize=14) plt.xlabel('Distance from pore center (nm)', fontsize=14) if polyols: plt.ylim(-0.05, 1) # for diols only if thiol_comparison: if 'DMS' in residues: plt.ylim(-0.015, 0.45) # for DMSO and acetone thiol comparison elif 'SOH' in residues: plt.ylim(-0.015, 0.5) # for mercaptoethanol and ethylene glycol comparison #plt.ylim(-0.015, 12) # for nondonors #plt.ylim(-0.015, 1) plt.gcf().get_axes()[0].tick_params(labelsize=14) #plt.legend(fontsize=13, loc=1, ncol=2, columnspacing=0.5) # for nondonors plt.legend(fontsize=13, loc=1) plt.tight_layout() if simple_alcohols: plt.savefig('simple_alcohol_rdf.pdf') elif polyols: plt.savefig('polyols_rdf.pdf') elif thiol_comparison: plt.savefig('thiol_comparison_%s.pdf' % residues[0]) elif ketones: plt.savefig('ketone_rdf.pdf') elif nondonors: plt.savefig('nondonors_rdf.pdf') plt.show()
[ "LLC_Membranes.llclib.file_rw.save_object", "matplotlib.pyplot.savefig", "matplotlib.pyplot.ylabel", "LLC_Membranes.llclib.file_rw.load_object", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "LLC_Membranes.analysis.rdf.System", "matplotlib.pyplot.gcf", "matplotlib.pyplot.fill_between", "numpy.max", "numpy.zeros", "numpy.argwhere", "matplotlib.pyplot.tight_layout", "LLC_Membranes.llclib.stats.confidence_interval", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((4637, 4688), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Density (count / nm$^3$)"""'], {'fontsize': '(14)'}), "('Density (count / nm$^3$)', fontsize=14)\n", (4647, 4688), True, 'import matplotlib.pyplot as plt\n'), ((4689, 4746), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Distance from pore center (nm)"""'], {'fontsize': '(14)'}), "('Distance from pore center (nm)', fontsize=14)\n", (4699, 4746), True, 'import matplotlib.pyplot as plt\n'), ((5193, 5223), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(13)', 'loc': '(1)'}), '(fontsize=13, loc=1)\n', (5203, 5223), True, 'import matplotlib.pyplot as plt\n'), ((5224, 5242), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5240, 5242), True, 'import matplotlib.pyplot as plt\n'), ((5520, 5530), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5528, 5530), True, 'import matplotlib.pyplot as plt\n'), ((607, 661), 'LLC_Membranes.llclib.file_rw.save_object', 'file_rw.save_object', (['rdf', "('%s/rdf_%s.pl' % (path, res))"], {}), "(rdf, '%s/rdf_%s.pl' % (path, res))\n", (626, 661), False, 'from LLC_Membranes.llclib import file_rw, stats\n'), ((1932, 2001), 'matplotlib.pyplot.plot', 'plt.plot', (['rdf.r', 'mean'], {'label': "('%s' % names.res_to_name[r])", 'linewidth': '(2)'}), "(rdf.r, mean, label='%s' % names.res_to_name[r], linewidth=2)\n", (1940, 2001), True, 'import matplotlib.pyplot as plt\n'), ((2003, 2101), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['rdf.r', '(rdf.errorbars[1, :] + mean)', '(mean - rdf.errorbars[0, :])'], {'alpha': 'opacity'}), '(rdf.r, rdf.errorbars[1, :] + mean, mean - rdf.errorbars[0,\n :], alpha=opacity)\n', (2019, 2101), True, 'import matplotlib.pyplot as plt\n'), ((2908, 2929), 'numpy.zeros', 'np.zeros', (['[nboot, 50]'], {}), '([nboot, 50])\n', (2916, 2929), True, 'import numpy as np\n'), ((3407, 3469), 'matplotlib.pyplot.plot', 'plt.plot', (['hg.r', 'mean', '"""--"""'], {'color': '"""black"""', 'label': '"""Head Groups"""'}), "(hg.r, mean, '--', color='black', label='Head Groups')\n", (3415, 3469), True, 'import matplotlib.pyplot as plt\n'), ((3546, 3643), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['hg.r', '(mean + error[1, :])', '(mean - error[0, :])'], {'alpha': 'opacity', 'color': '"""black"""'}), "(hg.r, mean + error[1, :], mean - error[0, :], alpha=\n opacity, color='black')\n", (3562, 3643), True, 'import matplotlib.pyplot as plt\n'), ((4502, 4555), 'matplotlib.pyplot.plot', 'plt.plot', (['[0.75, 0.75]', '[0, top]', '"""--"""'], {'color': '"""black"""'}), "([0.75, 0.75], [0, top], '--', color='black')\n", (4510, 4555), True, 'import matplotlib.pyplot as plt\n'), ((4557, 4635), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['[0.73, 0.77]', '[top, top]'], {'y2': '[0, 0]', 'color': '"""grey"""', 'alpha': '(0.5)'}), "([0.73, 0.77], [top, top], y2=[0, 0], color='grey', alpha=0.5)\n", (4573, 4635), True, 'import matplotlib.pyplot as plt\n'), ((4760, 4778), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.05)', '(1)'], {}), '(-0.05, 1)\n', (4768, 4778), True, 'import matplotlib.pyplot as plt\n'), ((5264, 5301), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""simple_alcohol_rdf.pdf"""'], {}), "('simple_alcohol_rdf.pdf')\n", (5275, 5301), True, 'import matplotlib.pyplot as plt\n'), ((355, 442), 'LLC_Membranes.analysis.rdf.System', 'System', (["('%s/%s' % (path, gro))", "('%s/%s' % (path, traj))", 'r', '"""NAcarb11V"""'], {'atoms': 'atoms'}), "('%s/%s' % (path, gro), '%s/%s' % (path, traj), r, 'NAcarb11V', atoms\n =atoms)\n", (361, 442), False, 'from LLC_Membranes.analysis.rdf import System\n'), ((451, 520), 'LLC_Membranes.analysis.rdf.System', 'System', (["('%s/%s' % (path, gro))", "('%s/%s' % (path, traj))", 'r', '"""NAcarb11V"""'], {}), "('%s/%s' % (path, gro), '%s/%s' % (path, traj), r, 'NAcarb11V')\n", (457, 520), False, 'from LLC_Membranes.analysis.rdf import System\n'), ((2736, 2791), 'LLC_Membranes.llclib.file_rw.load_object', 'file_rw.load_object', (["('%s/rdf_HII_CC1C2C3C4C5.pl' % path)"], {}), "('%s/rdf_HII_CC1C2C3C4C5.pl' % path)\n", (2755, 2791), False, 'from LLC_Membranes.llclib import file_rw, stats\n'), ((3139, 3174), 'LLC_Membranes.llclib.stats.confidence_interval', 'stats.confidence_interval', (['boot', '(68)'], {}), '(boot, 68)\n', (3164, 3174), False, 'from LLC_Membranes.llclib import file_rw, stats\n'), ((3222, 3234), 'numpy.max', 'np.max', (['mean'], {}), '(mean)\n', (3228, 3234), True, 'import numpy as np\n'), ((4843, 4865), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.015)', '(0.45)'], {}), '(-0.015, 0.45)\n', (4851, 4865), True, 'import matplotlib.pyplot as plt\n'), ((5317, 5347), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""polyols_rdf.pdf"""'], {}), "('polyols_rdf.pdf')\n", (5328, 5347), True, 'import matplotlib.pyplot as plt\n'), ((1596, 1643), 'LLC_Membranes.llclib.file_rw.load_object', 'file_rw.load_object', (["('%s/rdf_%s.pl' % (path, r))"], {}), "('%s/rdf_%s.pl' % (path, r))\n", (1615, 1643), False, 'from LLC_Membranes.llclib import file_rw, stats\n'), ((1829, 1853), 'numpy.argwhere', 'np.argwhere', (['(rdf.r > 0.4)'], {}), '(rdf.r > 0.4)\n', (1840, 1853), True, 'import numpy as np\n'), ((2990, 3023), 'numpy.arange', 'np.arange', (['d_head_groups.shape[0]'], {}), '(d_head_groups.shape[0])\n', (2999, 3023), True, 'import numpy as np\n'), ((3188, 3200), 'numpy.max', 'np.max', (['mean'], {}), '(mean)\n', (3194, 3200), True, 'import numpy as np\n'), ((4933, 4954), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.015)', '(0.5)'], {}), '(-0.015, 0.5)\n', (4941, 4954), True, 'import matplotlib.pyplot as plt\n'), ((5372, 5424), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('thiol_comparison_%s.pdf' % residues[0])"], {}), "('thiol_comparison_%s.pdf' % residues[0])\n", (5383, 5424), True, 'import matplotlib.pyplot as plt\n'), ((5440, 5469), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""ketone_rdf.pdf"""'], {}), "('ketone_rdf.pdf')\n", (5451, 5469), True, 'import matplotlib.pyplot as plt\n'), ((5067, 5076), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5074, 5076), True, 'import matplotlib.pyplot as plt\n'), ((5487, 5519), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""nondonors_rdf.pdf"""'], {}), "('nondonors_rdf.pdf')\n", (5498, 5519), True, 'import matplotlib.pyplot as plt\n')]
import sys import os import json import nltk import collections from tensorflow.core.example import example_pb2 import struct dm_single_close_quote = u'\u2019' # unicode dm_double_close_quote = u'\u201d' END_TOKENS = ['.', '!', '?', '...', "'", "`", '"', dm_single_close_quote, dm_double_close_quote, ")"] # acceptable ways to end a sentence VOCAB_SIZE = 200000 CHUNK_SIZE = 1000 # num examples per chunk, for the chunked data # We use these to separate the summary sentences in the .bin datafiles SENTENCE_START = '<s>' SENTENCE_END = '</s>' finished_files_dir = "finished_files_piccolo" chunks_dir = os.path.join(finished_files_dir, "chunked") def fix_missing_period(line): if line[-1] in END_TOKENS: return line return line + " ." def get_art_summary(text,summary): # Lowercase everything text =text.lower() summary =summary.lower() # Make article into a single string text = ' '.join(nltk.word_tokenize(text)) # Make abstract into a signle string, putting <s> and </s> tags around the sentences summary=f"{SENTENCE_START} {' '.join(nltk.word_tokenize(summary))} {SENTENCE_END}" return text, summary def write_to_bin(dataset_jsonl_file, out_file, makevocab=False): if makevocab: vocab_counter = collections.Counter() with open(out_file, 'wb') as writer: with open(dataset_jsonl_file,'r') as f: for idx,s in enumerate(f): obj = json.loads(s) if idx%1000==0: print(idx) # Get the strings to write to .bin file article, abstract = get_art_summary(obj['text'],obj['summary']) # Write to tf.Example tf_example = example_pb2.Example() tf_example.features.feature['article'].bytes_list.value.extend([article.encode()]) tf_example.features.feature['abstract'].bytes_list.value.extend([abstract.encode()]) tf_example_str = tf_example.SerializeToString() str_len = len(tf_example_str) writer.write(struct.pack('q', str_len)) writer.write(struct.pack('%ds' % str_len, tf_example_str)) # Write the vocab to file, if applicable if makevocab: art_tokens = article.split(' ') abs_tokens = abstract.split(' ') abs_tokens = [t for t in abs_tokens if t not in [SENTENCE_START, SENTENCE_END]] # remove these tags from vocab tokens = art_tokens + abs_tokens tokens = [t.strip() for t in tokens] # strip tokens = [t for t in tokens if t!=""] # remove empty vocab_counter.update(tokens) print(f"Finished writing file {out_file}") # write vocab to file if makevocab: print("Writing vocab file...") with open(os.path.join(finished_files_dir, "vocab"), 'w') as writer: for word, count in vocab_counter.most_common(VOCAB_SIZE): writer.write(word + ' ' + str(count) + '\n') print("Finished writing vocab file") def chunk_file(set_name): in_file = finished_files_dir+'/%s.bin' % set_name reader = open(in_file, "rb") chunk = 0 finished = False while not finished: chunk_fname = os.path.join(chunks_dir, '%s_%03d.bin' % (set_name, chunk)) # new chunk with open(chunk_fname, 'wb') as writer: for _ in range(CHUNK_SIZE): len_bytes = reader.read(8) if not len_bytes: finished = True break str_len = struct.unpack('q', len_bytes)[0] example_str = struct.unpack('%ds' % str_len, reader.read(str_len))[0] writer.write(struct.pack('q', str_len)) writer.write(struct.pack('%ds' % str_len, example_str)) chunk += 1 def chunk_all(): # Make a dir to hold the chunks if not os.path.isdir(chunks_dir): os.mkdir(chunks_dir) # Chunk the data for set_name in ['train', 'test']:#TODO VAL print("Splitting %s data into chunks..." % set_name) chunk_file(set_name) print("Saved chunked data in %s" % chunks_dir) if __name__ == '__main__': if len(sys.argv) != 3: print("USAGE: python make_datafiles.py <train> <test>") sys.exit() train = sys.argv[1] test = sys.argv[2] write_to_bin(train, os.path.join(finished_files_dir, "train.bin"),makevocab=True) write_to_bin(test, os.path.join(finished_files_dir, "test.bin")) # Chunk the data. This splits each of train.bin, val.bin and test.bin into smaller chunks, each containing e.g. 1000 examples, and saves them in finished_files/chunks chunk_all()
[ "json.loads", "nltk.word_tokenize", "os.path.join", "tensorflow.core.example.example_pb2.Example", "struct.pack", "collections.Counter", "os.path.isdir", "struct.unpack", "os.mkdir", "sys.exit" ]
[((622, 665), 'os.path.join', 'os.path.join', (['finished_files_dir', '"""chunked"""'], {}), "(finished_files_dir, 'chunked')\n", (634, 665), False, 'import os\n'), ((940, 964), 'nltk.word_tokenize', 'nltk.word_tokenize', (['text'], {}), '(text)\n', (958, 964), False, 'import nltk\n'), ((1273, 1294), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (1292, 1294), False, 'import collections\n'), ((3333, 3392), 'os.path.join', 'os.path.join', (['chunks_dir', "('%s_%03d.bin' % (set_name, chunk))"], {}), "(chunks_dir, '%s_%03d.bin' % (set_name, chunk))\n", (3345, 3392), False, 'import os\n'), ((3996, 4021), 'os.path.isdir', 'os.path.isdir', (['chunks_dir'], {}), '(chunks_dir)\n', (4009, 4021), False, 'import os\n'), ((4031, 4051), 'os.mkdir', 'os.mkdir', (['chunks_dir'], {}), '(chunks_dir)\n', (4039, 4051), False, 'import os\n'), ((4389, 4399), 'sys.exit', 'sys.exit', ([], {}), '()\n', (4397, 4399), False, 'import sys\n'), ((4473, 4518), 'os.path.join', 'os.path.join', (['finished_files_dir', '"""train.bin"""'], {}), "(finished_files_dir, 'train.bin')\n", (4485, 4518), False, 'import os\n'), ((4558, 4602), 'os.path.join', 'os.path.join', (['finished_files_dir', '"""test.bin"""'], {}), "(finished_files_dir, 'test.bin')\n", (4570, 4602), False, 'import os\n'), ((1096, 1123), 'nltk.word_tokenize', 'nltk.word_tokenize', (['summary'], {}), '(summary)\n', (1114, 1123), False, 'import nltk\n'), ((1446, 1459), 'json.loads', 'json.loads', (['s'], {}), '(s)\n', (1456, 1459), False, 'import json\n'), ((1728, 1749), 'tensorflow.core.example.example_pb2.Example', 'example_pb2.Example', ([], {}), '()\n', (1747, 1749), False, 'from tensorflow.core.example import example_pb2\n'), ((2903, 2944), 'os.path.join', 'os.path.join', (['finished_files_dir', '"""vocab"""'], {}), "(finished_files_dir, 'vocab')\n", (2915, 2944), False, 'import os\n'), ((2089, 2114), 'struct.pack', 'struct.pack', (['"""q"""', 'str_len'], {}), "('q', str_len)\n", (2100, 2114), False, 'import struct\n'), ((2145, 2189), 'struct.pack', 'struct.pack', (["('%ds' % str_len)", 'tf_example_str'], {}), "('%ds' % str_len, tf_example_str)\n", (2156, 2189), False, 'import struct\n'), ((3659, 3688), 'struct.unpack', 'struct.unpack', (['"""q"""', 'len_bytes'], {}), "('q', len_bytes)\n", (3672, 3688), False, 'import struct\n'), ((3808, 3833), 'struct.pack', 'struct.pack', (['"""q"""', 'str_len'], {}), "('q', str_len)\n", (3819, 3833), False, 'import struct\n'), ((3864, 3905), 'struct.pack', 'struct.pack', (["('%ds' % str_len)", 'example_str'], {}), "('%ds' % str_len, example_str)\n", (3875, 3905), False, 'import struct\n')]
""" Illustration of Oja's rule (Hebbian learning) in Spiking Neural Networks using LIF neuron. Author: <NAME> """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits import matplotlib.animation as animation """ Functions """ def sample_spherical(npoints, ndim): #sample a vector of dimension "ndim" from the unit sphere randomly vec = np.random.randn(ndim, npoints) vec /= np.linalg.norm(vec, axis=0) return vec[:,0] def simulate_neuron_Oja(Tsim, dt, trc, tref, vrest, vth, Jbias, alpha, e, input_vec, tau, eta): N = int(np.round(Tsim/dt)) Vprev = 0 Jprev = 0 spike_train = np.zeros(N) Vhist = np.zeros(N) psc = np.zeros(N) W_vec = np.zeros((N, len(e))) W = alpha*e W_vec[0,:] = W Jbias_vec = np.zeros(N) Jbias_vec[0] = Jbias mutex = 0 for i in range(N): J = np.inner(W, input_vec[i,:]) + Jbias if mutex == 0: V = (J + Jprev - (1-2*trc/dt)*Vprev)/(1+2*trc/dt) #bilinear transform if V < vrest: V = vrest elif V > vth: spike_train[i] = 1 V = vrest mutex = np.round(tref/dt) Vhist[i] = V Jprev = J Vprev = V else: mutex -= 1 if i > 0: psc[i] = (spike_train[i] + spike_train[i-1])*(1/(1+2*tau/dt)) - ((1-2*tau/dt)/(1+2*tau/dt))*psc[i-1] #update weights following Oja's rule DELW = psc[i]*input_vec[i,:] - (psc[i]**2)*W W = W + eta*DELW W_vec[i,:] = W Jbias_vec[i] = Jbias return Vhist, spike_train, W_vec, psc, Jbias_vec def PSC_filter(Tsim, dt, tau): t = np.linspace(0,Tsim,int(np.round(Tsim/dt))) h = np.exp(-(t-Tsim/2)/tau) h[0:len(h)//2] = 0 h = (1/dt)*h/np.sum(h) return h def normalize_imges(data): #normalize pixel values to [-1, 1] for i in range(data.shape[0]): img = data[i] data[i] = 2*(img - min(img))/(max(img) - min(img)) - 1 return data """ Main """ np.random.seed(2) #to get reproducable results plt.close('all') D = 64 #data dimensions F_max_l = 100 #100 F_max_h = 200 in_l = -1.0 in_h = 1.0 tref = 0.002 #2ms trc = 0.02 #20ms Tsim = 0.2 dt = 0.002 vrest = 0 vth = 1 Tlen = int(np.round(Tsim/dt)) digits = load_digits(n_class=1) x = normalize_imges(digits.data) input_vec = x[:Tlen,:] amax = np.random.uniform(F_max_l,F_max_h,1) # maximum rate uniformly distributed between 100 and 200 HZ #xi = np.random.uniform(in_l+0.05,in_h-0.05,1) # x-intercept xi = np.random.uniform(in_l+0.05,in_h-0.05,1) # new idea x-intercept alpha = (1/(1-np.exp((tref - 1/amax)/trc)) - 1)/(1-xi) #for LIF neuron Jbias = 1-xi*alpha e = sample_spherical(1, D) Vhist, spike_train, W_vec, psc, Jbias_vec = simulate_neuron_Oja(Tsim, dt, trc, tref, vrest, vth, Jbias, alpha, e, input_vec, 0.05, 1) plt.figure(1) plt.gray() plt.axis('off') im = np.reshape(W_vec[-1,:], (8,8)) plt.imshow(im) #if True: plt.figure(2) fig, ax = plt.subplots(1,1) plt.gray() plt.axis('off') plt.title('On-line and Unsuppervised Pattern Learning', fontsize=15, color='black') def img_anim(i): im = np.reshape(W_vec[i,:], (8,8)) ax.matshow(im) print("Time step: " + str(i) + "/" + str(Tlen)) anim2 = animation.FuncAnimation(fig, img_anim, frames=Tlen, interval=1) #plt.show() Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) #anim2.save('Hebbian.mp4', writer=writer) plt.figure(4) plt.subplot(2,2,1) plt.gray() plt.axis('off') plt.title('Time step: 0ms', fontsize=15, color='black') im = np.reshape(W_vec[0,:], (8,8)) plt.imshow(im) plt.subplot(2,2,2) plt.gray() plt.axis('off') plt.title('Time step: 20ms', fontsize=15, color='black') im = np.reshape(W_vec[10,:], (8,8)) plt.imshow(im) plt.subplot(2,2,3) plt.gray() plt.axis('off') plt.title('Time step: 28ms', fontsize=15, color='black') im = np.reshape(W_vec[14,:], (8,8)) plt.imshow(im) plt.subplot(2,2,4) plt.gray() plt.axis('off') plt.title('Time step: 60ms', fontsize=15, color='black') im = np.reshape(W_vec[30,:], (8,8)) plt.imshow(im)
[ "numpy.linalg.norm", "matplotlib.pyplot.imshow", "numpy.reshape", "matplotlib.pyplot.close", "numpy.exp", "numpy.random.seed", "matplotlib.pyplot.axis", "numpy.round", "matplotlib.pyplot.gray", "numpy.inner", "matplotlib.pyplot.title", "numpy.random.randn", "matplotlib.animation.FuncAnimation", "sklearn.datasets.load_digits", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.random.uniform", "matplotlib.pyplot.subplot", "matplotlib.pyplot.subplots" ]
[((2114, 2131), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (2128, 2131), True, 'import numpy as np\n'), ((2161, 2177), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (2170, 2177), True, 'import matplotlib.pyplot as plt\n'), ((2375, 2397), 'sklearn.datasets.load_digits', 'load_digits', ([], {'n_class': '(1)'}), '(n_class=1)\n', (2386, 2397), False, 'from sklearn.datasets import load_digits\n'), ((2462, 2500), 'numpy.random.uniform', 'np.random.uniform', (['F_max_l', 'F_max_h', '(1)'], {}), '(F_max_l, F_max_h, 1)\n', (2479, 2500), True, 'import numpy as np\n'), ((2625, 2671), 'numpy.random.uniform', 'np.random.uniform', (['(in_l + 0.05)', '(in_h - 0.05)', '(1)'], {}), '(in_l + 0.05, in_h - 0.05, 1)\n', (2642, 2671), True, 'import numpy as np\n'), ((2942, 2955), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2952, 2955), True, 'import matplotlib.pyplot as plt\n'), ((2956, 2966), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (2964, 2966), True, 'import matplotlib.pyplot as plt\n'), ((2968, 2983), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2976, 2983), True, 'import matplotlib.pyplot as plt\n'), ((2989, 3021), 'numpy.reshape', 'np.reshape', (['W_vec[-1, :]', '(8, 8)'], {}), '(W_vec[-1, :], (8, 8))\n', (2999, 3021), True, 'import numpy as np\n'), ((3020, 3034), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (3030, 3034), True, 'import matplotlib.pyplot as plt\n'), ((3048, 3061), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (3058, 3061), True, 'import matplotlib.pyplot as plt\n'), ((3072, 3090), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (3084, 3090), True, 'import matplotlib.pyplot as plt\n'), ((3090, 3100), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (3098, 3100), True, 'import matplotlib.pyplot as plt\n'), ((3102, 3117), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3110, 3117), True, 'import matplotlib.pyplot as plt\n'), ((3118, 3206), 'matplotlib.pyplot.title', 'plt.title', (['"""On-line and Unsuppervised Pattern Learning"""'], {'fontsize': '(15)', 'color': '"""black"""'}), "('On-line and Unsuppervised Pattern Learning', fontsize=15, color=\n 'black')\n", (3127, 3206), True, 'import matplotlib.pyplot as plt\n'), ((3348, 3411), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'img_anim'], {'frames': 'Tlen', 'interval': '(1)'}), '(fig, img_anim, frames=Tlen, interval=1)\n', (3371, 3411), True, 'import matplotlib.animation as animation\n'), ((3571, 3584), 'matplotlib.pyplot.figure', 'plt.figure', (['(4)'], {}), '(4)\n', (3581, 3584), True, 'import matplotlib.pyplot as plt\n'), ((3585, 3605), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (3596, 3605), True, 'import matplotlib.pyplot as plt\n'), ((3604, 3614), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (3612, 3614), True, 'import matplotlib.pyplot as plt\n'), ((3616, 3631), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3624, 3631), True, 'import matplotlib.pyplot as plt\n'), ((3632, 3687), 'matplotlib.pyplot.title', 'plt.title', (['"""Time step: 0ms"""'], {'fontsize': '(15)', 'color': '"""black"""'}), "('Time step: 0ms', fontsize=15, color='black')\n", (3641, 3687), True, 'import matplotlib.pyplot as plt\n'), ((3693, 3724), 'numpy.reshape', 'np.reshape', (['W_vec[0, :]', '(8, 8)'], {}), '(W_vec[0, :], (8, 8))\n', (3703, 3724), True, 'import numpy as np\n'), ((3723, 3737), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (3733, 3737), True, 'import matplotlib.pyplot as plt\n'), ((3739, 3759), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (3750, 3759), True, 'import matplotlib.pyplot as plt\n'), ((3758, 3768), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (3766, 3768), True, 'import matplotlib.pyplot as plt\n'), ((3770, 3785), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3778, 3785), True, 'import matplotlib.pyplot as plt\n'), ((3786, 3842), 'matplotlib.pyplot.title', 'plt.title', (['"""Time step: 20ms"""'], {'fontsize': '(15)', 'color': '"""black"""'}), "('Time step: 20ms', fontsize=15, color='black')\n", (3795, 3842), True, 'import matplotlib.pyplot as plt\n'), ((3848, 3880), 'numpy.reshape', 'np.reshape', (['W_vec[10, :]', '(8, 8)'], {}), '(W_vec[10, :], (8, 8))\n', (3858, 3880), True, 'import numpy as np\n'), ((3879, 3893), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (3889, 3893), True, 'import matplotlib.pyplot as plt\n'), ((3895, 3915), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (3906, 3915), True, 'import matplotlib.pyplot as plt\n'), ((3914, 3924), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (3922, 3924), True, 'import matplotlib.pyplot as plt\n'), ((3926, 3941), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3934, 3941), True, 'import matplotlib.pyplot as plt\n'), ((3942, 3998), 'matplotlib.pyplot.title', 'plt.title', (['"""Time step: 28ms"""'], {'fontsize': '(15)', 'color': '"""black"""'}), "('Time step: 28ms', fontsize=15, color='black')\n", (3951, 3998), True, 'import matplotlib.pyplot as plt\n'), ((4004, 4036), 'numpy.reshape', 'np.reshape', (['W_vec[14, :]', '(8, 8)'], {}), '(W_vec[14, :], (8, 8))\n', (4014, 4036), True, 'import numpy as np\n'), ((4035, 4049), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (4045, 4049), True, 'import matplotlib.pyplot as plt\n'), ((4051, 4071), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (4062, 4071), True, 'import matplotlib.pyplot as plt\n'), ((4070, 4080), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (4078, 4080), True, 'import matplotlib.pyplot as plt\n'), ((4082, 4097), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4090, 4097), True, 'import matplotlib.pyplot as plt\n'), ((4098, 4154), 'matplotlib.pyplot.title', 'plt.title', (['"""Time step: 60ms"""'], {'fontsize': '(15)', 'color': '"""black"""'}), "('Time step: 60ms', fontsize=15, color='black')\n", (4107, 4154), True, 'import matplotlib.pyplot as plt\n'), ((4160, 4192), 'numpy.reshape', 'np.reshape', (['W_vec[30, :]', '(8, 8)'], {}), '(W_vec[30, :], (8, 8))\n', (4170, 4192), True, 'import numpy as np\n'), ((4191, 4205), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (4201, 4205), True, 'import matplotlib.pyplot as plt\n'), ((381, 411), 'numpy.random.randn', 'np.random.randn', (['ndim', 'npoints'], {}), '(ndim, npoints)\n', (396, 411), True, 'import numpy as np\n'), ((423, 450), 'numpy.linalg.norm', 'np.linalg.norm', (['vec'], {'axis': '(0)'}), '(vec, axis=0)\n', (437, 450), True, 'import numpy as np\n'), ((645, 656), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (653, 656), True, 'import numpy as np\n'), ((669, 680), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (677, 680), True, 'import numpy as np\n'), ((691, 702), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (699, 702), True, 'import numpy as np\n'), ((789, 800), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (797, 800), True, 'import numpy as np\n'), ((1813, 1842), 'numpy.exp', 'np.exp', (['(-(t - Tsim / 2) / tau)'], {}), '(-(t - Tsim / 2) / tau)\n', (1819, 1842), True, 'import numpy as np\n'), ((2346, 2365), 'numpy.round', 'np.round', (['(Tsim / dt)'], {}), '(Tsim / dt)\n', (2354, 2365), True, 'import numpy as np\n'), ((3229, 3260), 'numpy.reshape', 'np.reshape', (['W_vec[i, :]', '(8, 8)'], {}), '(W_vec[i, :], (8, 8))\n', (3239, 3260), True, 'import numpy as np\n'), ((580, 599), 'numpy.round', 'np.round', (['(Tsim / dt)'], {}), '(Tsim / dt)\n', (588, 599), True, 'import numpy as np\n'), ((1877, 1886), 'numpy.sum', 'np.sum', (['h'], {}), '(h)\n', (1883, 1886), True, 'import numpy as np\n'), ((876, 904), 'numpy.inner', 'np.inner', (['W', 'input_vec[i, :]'], {}), '(W, input_vec[i, :])\n', (884, 904), True, 'import numpy as np\n'), ((1785, 1804), 'numpy.round', 'np.round', (['(Tsim / dt)'], {}), '(Tsim / dt)\n', (1793, 1804), True, 'import numpy as np\n'), ((2703, 2734), 'numpy.exp', 'np.exp', (['((tref - 1 / amax) / trc)'], {}), '((tref - 1 / amax) / trc)\n', (2709, 2734), True, 'import numpy as np\n'), ((1180, 1199), 'numpy.round', 'np.round', (['(tref / dt)'], {}), '(tref / dt)\n', (1188, 1199), True, 'import numpy as np\n')]
import doctest from unittest import TextTestRunner import ciphers import polymod if __name__ == '__main__': runner = TextTestRunner() for module in [ ciphers, polymod ]: runner.run(doctest.DocTestSuite(module))
[ "doctest.DocTestSuite", "unittest.TextTestRunner" ]
[((123, 139), 'unittest.TextTestRunner', 'TextTestRunner', ([], {}), '()\n', (137, 139), False, 'from unittest import TextTestRunner\n'), ((219, 247), 'doctest.DocTestSuite', 'doctest.DocTestSuite', (['module'], {}), '(module)\n', (239, 247), False, 'import doctest\n')]
from django.contrib import admin from django.utils.translation import gettext as _ from django.contrib.auth.models import User from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from .models import * class EstablishmentOperatingHoursInline(admin.TabularInline): model = EstablishmentOperatingHours extra = 0 class EstablishmentPromotionsInline(admin.TabularInline): model = EstablishmentPromotions extra = 0 class EstablishmentEventsInline(admin.TabularInline): model = EstablishmentEvents extra = 0 class EstablishmentPhotoInline(admin.TabularInline): model = EstablishmentPhoto extra = 0 class EstablishmentManagerInline(admin.TabularInline): model = EstablishmentManager extra = 0 class TableInline(admin.TabularInline): model = Table extra = 0 class EstablishmentAdmin(admin.ModelAdmin): model = Establishment inlines = ( EstablishmentOperatingHoursInline, EstablishmentPromotionsInline, EstablishmentEventsInline, EstablishmentPhotoInline, EstablishmentManagerInline, TableInline, ) list_display = ( 'name', 'cuisine_type', 'enabled', 'opened', ) class MenuItemInline(admin.TabularInline): model = MenuItem extra = 0 class MenuAdmin(admin.ModelAdmin): model = Menu inlines = ( MenuItemInline, ) list_display = ('name', 'establishment', 'menu_items_count') def menu_items_count(self, obj) -> int: return obj.items.count() menu_items_count.short_description = _('Menu items') class MenuItemAdmin(admin.ModelAdmin): model = MenuItem list_display = ('name', 'establishment', 'price', 'category', 'serve_up', 'available') def establishment(self, obj) -> Establishment: return obj.menu.establishment establishment.short_description = _('Establishment') establishment.admin_order_field = 'menu__establishment' class OrderInline(admin.TabularInline): model = Order extra = 0 class BillPaymentInline(admin.TabularInline): model = BillPayment extra = 0 class UserRatingInline(admin.TabularInline): model = UserRating extra = 0 class BillAdmin(admin.ModelAdmin): model = Bill inlines = ( OrderInline, BillPaymentInline, UserRatingInline, ) readonly_fields = ( 'table', 'customers', 'establishment', 'payment_date', 'opening_date', ) list_display = ( 'table', 'establishment', 'payment_date', 'opening_date', ) class TableAdmin(admin.ModelAdmin): model = Table list_display = ('name', 'establishment', 'table_zone', 'enabled', 'is_available') def establishment(self, obj) -> Establishment: return obj.menu.establishment establishment.short_description = _('Establishment') establishment.admin_order_field = 'menu__establishment' def is_available(self, obj) -> bool: return obj.is_available is_available.short_description = _('Available') is_available.admin_order_field = 'bill__payment_date' is_available.boolean = True class TableZoneAdmin(admin.ModelAdmin): model = TableZone list_display = ('name', 'enabled', 'tables_count') def tables_count(self, obj) -> int: return obj.zone.count() tables_count.short_description = _('# tables') tables_count.admin_order_field = 'zone__name' class EmployeeAdmin(admin.ModelAdmin): model = Employee list_display = ('user', 'establishment', 'user_type', 'cpf') class OfflineCompensationsAdmin(admin.ModelAdmin): model = OfflineCompensations list_display = ('establishment', 'month', 'value', 'date_compensation') class UserProfileInline(admin.TabularInline): model = UserProfile class UserAdmin(BaseUserAdmin): model = User admin.site.register(Establishment, EstablishmentAdmin) admin.site.register(Amenity) admin.site.register(Menu, MenuAdmin) admin.site.register(ItemObservations) admin.site.register(MenuItem, MenuItemAdmin) admin.site.register(ItemCategory) admin.site.register(TableZone, TableZoneAdmin) admin.site.register(Table, TableAdmin) admin.site.register(Bill, BillAdmin) admin.site.register(OfflineCompensations, OfflineCompensationsAdmin) admin.site.register(CuisineType) admin.site.unregister(User) admin.site.register(User, UserAdmin) admin.site.register(UserPayment) admin.site.register(MoipWirecardAPP) admin.site.register(MoipWirecardCustomer) admin.site.register(UserCreditCard) admin.site.register(Employee, EmployeeAdmin) admin.site.register(Profile)
[ "django.contrib.admin.site.unregister", "django.contrib.admin.site.register", "django.utils.translation.gettext" ]
[((3918, 3972), 'django.contrib.admin.site.register', 'admin.site.register', (['Establishment', 'EstablishmentAdmin'], {}), '(Establishment, EstablishmentAdmin)\n', (3937, 3972), False, 'from django.contrib import admin\n'), ((3973, 4001), 'django.contrib.admin.site.register', 'admin.site.register', (['Amenity'], {}), '(Amenity)\n', (3992, 4001), False, 'from django.contrib import admin\n'), ((4002, 4038), 'django.contrib.admin.site.register', 'admin.site.register', (['Menu', 'MenuAdmin'], {}), '(Menu, MenuAdmin)\n', (4021, 4038), False, 'from django.contrib import admin\n'), ((4039, 4076), 'django.contrib.admin.site.register', 'admin.site.register', (['ItemObservations'], {}), '(ItemObservations)\n', (4058, 4076), False, 'from django.contrib import admin\n'), ((4077, 4121), 'django.contrib.admin.site.register', 'admin.site.register', (['MenuItem', 'MenuItemAdmin'], {}), '(MenuItem, MenuItemAdmin)\n', (4096, 4121), False, 'from django.contrib import admin\n'), ((4122, 4155), 'django.contrib.admin.site.register', 'admin.site.register', (['ItemCategory'], {}), '(ItemCategory)\n', (4141, 4155), False, 'from django.contrib import admin\n'), ((4156, 4202), 'django.contrib.admin.site.register', 'admin.site.register', (['TableZone', 'TableZoneAdmin'], {}), '(TableZone, TableZoneAdmin)\n', (4175, 4202), False, 'from django.contrib import admin\n'), ((4203, 4241), 'django.contrib.admin.site.register', 'admin.site.register', (['Table', 'TableAdmin'], {}), '(Table, TableAdmin)\n', (4222, 4241), False, 'from django.contrib import admin\n'), ((4242, 4278), 'django.contrib.admin.site.register', 'admin.site.register', (['Bill', 'BillAdmin'], {}), '(Bill, BillAdmin)\n', (4261, 4278), False, 'from django.contrib import admin\n'), ((4279, 4347), 'django.contrib.admin.site.register', 'admin.site.register', (['OfflineCompensations', 'OfflineCompensationsAdmin'], {}), '(OfflineCompensations, OfflineCompensationsAdmin)\n', (4298, 4347), False, 'from django.contrib import admin\n'), ((4348, 4380), 'django.contrib.admin.site.register', 'admin.site.register', (['CuisineType'], {}), '(CuisineType)\n', (4367, 4380), False, 'from django.contrib import admin\n'), ((4381, 4408), 'django.contrib.admin.site.unregister', 'admin.site.unregister', (['User'], {}), '(User)\n', (4402, 4408), False, 'from django.contrib import admin\n'), ((4409, 4445), 'django.contrib.admin.site.register', 'admin.site.register', (['User', 'UserAdmin'], {}), '(User, UserAdmin)\n', (4428, 4445), False, 'from django.contrib import admin\n'), ((4446, 4478), 'django.contrib.admin.site.register', 'admin.site.register', (['UserPayment'], {}), '(UserPayment)\n', (4465, 4478), False, 'from django.contrib import admin\n'), ((4479, 4515), 'django.contrib.admin.site.register', 'admin.site.register', (['MoipWirecardAPP'], {}), '(MoipWirecardAPP)\n', (4498, 4515), False, 'from django.contrib import admin\n'), ((4516, 4557), 'django.contrib.admin.site.register', 'admin.site.register', (['MoipWirecardCustomer'], {}), '(MoipWirecardCustomer)\n', (4535, 4557), False, 'from django.contrib import admin\n'), ((4558, 4593), 'django.contrib.admin.site.register', 'admin.site.register', (['UserCreditCard'], {}), '(UserCreditCard)\n', (4577, 4593), False, 'from django.contrib import admin\n'), ((4594, 4638), 'django.contrib.admin.site.register', 'admin.site.register', (['Employee', 'EmployeeAdmin'], {}), '(Employee, EmployeeAdmin)\n', (4613, 4638), False, 'from django.contrib import admin\n'), ((4639, 4667), 'django.contrib.admin.site.register', 'admin.site.register', (['Profile'], {}), '(Profile)\n', (4658, 4667), False, 'from django.contrib import admin\n'), ((1598, 1613), 'django.utils.translation.gettext', '_', (['"""Menu items"""'], {}), "('Menu items')\n", (1599, 1613), True, 'from django.utils.translation import gettext as _\n'), ((1895, 1913), 'django.utils.translation.gettext', '_', (['"""Establishment"""'], {}), "('Establishment')\n", (1896, 1913), True, 'from django.utils.translation import gettext as _\n'), ((2916, 2934), 'django.utils.translation.gettext', '_', (['"""Establishment"""'], {}), "('Establishment')\n", (2917, 2934), True, 'from django.utils.translation import gettext as _\n'), ((3106, 3120), 'django.utils.translation.gettext', '_', (['"""Available"""'], {}), "('Available')\n", (3107, 3120), True, 'from django.utils.translation import gettext as _\n'), ((3440, 3453), 'django.utils.translation.gettext', '_', (['"""# tables"""'], {}), "('# tables')\n", (3441, 3453), True, 'from django.utils.translation import gettext as _\n')]
import math from torch import nn, Tensor from helpers import freeze_params import torch class MaskedNorm(nn.Module): """ Original Code from: https://discuss.pytorch.org/t/batchnorm-for-different-sized-samples-in-batch/44251/8 """ def __init__(self, norm_type, num_groups, num_features): super().__init__() self.norm_type = norm_type if self.norm_type == "batch": self.norm = nn.BatchNorm1d(num_features=num_features) elif self.norm_type == "group": self.norm = nn.GroupNorm(num_groups=num_groups, num_channels=num_features) elif self.norm_type == "layer": self.norm = nn.LayerNorm(normalized_shape=num_features) else: raise ValueError("Unsupported Normalization Layer") self.num_features = num_features def forward(self, x: Tensor, mask: Tensor): if self.training: reshaped = x.reshape([-1, self.num_features]) reshaped_mask = mask.reshape([-1, 1]) > 0 selected = torch.masked_select(reshaped, reshaped_mask).reshape( [-1, self.num_features] ) batch_normed = self.norm(selected) scattered = reshaped.masked_scatter(reshaped_mask, batch_normed) return scattered.reshape([x.shape[0], -1, self.num_features]) else: reshaped = x.reshape([-1, self.num_features]) batched_normed = self.norm(reshaped) return batched_normed.reshape([x.shape[0], -1, self.num_features]) class Embeddings(nn.Module): """ Simple embeddings class """ # pylint: disable=unused-argument def __init__(self, embedding_dim: int = 64, scale: bool = False, vocab_size: int = 0, padding_idx: int = 1, freeze: bool = False, **kwargs): """ Create new embeddings for the vocabulary. Use scaling for the Transformer. :param embedding_dim: :param scale: :param vocab_size: :param padding_idx: :param freeze: freeze the embeddings during training """ super(Embeddings, self).__init__() self.embedding_dim = embedding_dim self.scale = scale self.vocab_size = vocab_size self.lut = nn.Embedding(vocab_size, self.embedding_dim, padding_idx=padding_idx) if freeze: freeze_params(self) # pylint: disable=arguments-differ def forward(self, x: Tensor) -> Tensor: """ Perform lookup for input `x` in the embedding table. :param x: index in the vocabulary :return: embedded representation for `x` """ if self.scale: return self.lut(x) * math.sqrt(self.embedding_dim) return self.lut(x) def __repr__(self): return "%s(embedding_dim=%d, vocab_size=%d)" % ( self.__class__.__name__, self.embedding_dim, self.vocab_size)
[ "torch.nn.GroupNorm", "helpers.freeze_params", "torch.nn.LayerNorm", "math.sqrt", "torch.masked_select", "torch.nn.BatchNorm1d", "torch.nn.Embedding" ]
[((2369, 2438), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'self.embedding_dim'], {'padding_idx': 'padding_idx'}), '(vocab_size, self.embedding_dim, padding_idx=padding_idx)\n', (2381, 2438), False, 'from torch import nn, Tensor\n'), ((441, 482), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', ([], {'num_features': 'num_features'}), '(num_features=num_features)\n', (455, 482), False, 'from torch import nn, Tensor\n'), ((2503, 2522), 'helpers.freeze_params', 'freeze_params', (['self'], {}), '(self)\n', (2516, 2522), False, 'from helpers import freeze_params\n'), ((547, 609), 'torch.nn.GroupNorm', 'nn.GroupNorm', ([], {'num_groups': 'num_groups', 'num_channels': 'num_features'}), '(num_groups=num_groups, num_channels=num_features)\n', (559, 609), False, 'from torch import nn, Tensor\n'), ((2840, 2869), 'math.sqrt', 'math.sqrt', (['self.embedding_dim'], {}), '(self.embedding_dim)\n', (2849, 2869), False, 'import math\n'), ((674, 717), 'torch.nn.LayerNorm', 'nn.LayerNorm', ([], {'normalized_shape': 'num_features'}), '(normalized_shape=num_features)\n', (686, 717), False, 'from torch import nn, Tensor\n'), ((1048, 1092), 'torch.masked_select', 'torch.masked_select', (['reshaped', 'reshaped_mask'], {}), '(reshaped, reshaped_mask)\n', (1067, 1092), False, 'import torch\n')]
import os import types from io import BytesIO from tarfile import TarFile import tempfile import importlib import importlib.machinery import hashlib import sys from logging import getLogger __all__ = ('extend', 'extend_ray', 'extend_cloudpickle') log = getLogger(__name__) TEMPDIR_ID = 'MODULEPICKLE' def md5(compressed): md5 = hashlib.md5() md5.update(compressed) return md5.hexdigest()[:16] # 32 bytes ought to be enough for everyone class Package(): def __init__(self, name, compressed): self.name = name self.compressed = compressed self.md5 = md5(compressed) def invalidate_caches(self): # Chuck out any modules that come from one of our temp dirs, so that when they get importer next time it's imported from # the shiny new temp dir modules = list(sys.modules) for k in modules: v = sys.modules[k] filepath = getattr(v, '__file__', '') or '' if f'{TEMPDIR_ID}-{self.name}-' in filepath: del sys.modules[k] # And then invalidate the cache of everyone on the meta_path, just to be safe. importlib.invalidate_caches() def uninstall(self): sys.path = [p for p in sys.path if f'{TEMPDIR_ID}-{self.name}-' not in p] def extract(self): # Salt the temp directory with the hashcode of the compressed dir, so that when the next copy of it comes down the line, # we can either reuse the existing dir if it's the same, or point ourselves at a new one if it isn't. dirpath = tempfile.mkdtemp(prefix=f'{TEMPDIR_ID}-{self.name}-{self.md5}-') bs = BytesIO(self.compressed) with TarFile(fileobj=bs) as tf: tf.extractall(os.path.join(dirpath)) return dirpath def install(self): """'Installing' this package means extracting it to a hash-salted temp dir and then appending the dir to the path""" # Only need to install it if the hash of the dir has changed since we last added it to the path if not any(self.md5 in p for p in sys.path): self.uninstall() self.invalidate_caches() sys.path.append(self.extract()) def load(self, name): self.install() return importlib.import_module(name) def compress(packagename): tar = BytesIO() with TarFile(fileobj=tar, mode='w') as tf: tf.add(packagename, packagename) #TODO: This was originally gzipped, but the gzipped value seems to change on repeated compressions, breaking hashing. # Looks like the issue is a timestamp that can be overriden with a parameter, but let's leave it uncompressed for now. return tar.getvalue() def import_compressed(name, package): return package.load(name) def import_global(module, obj): return obj def packagename(module): # The package we want to zip up is the first part of the module name #TODO: Check this holds on relative imports return module.__name__.split('.')[0] def is_local(module): # If the module is in the current working directory, # and it doesn't have `site-packages` in it's path (which probably means it's part of a local virtualenv) # assume it's local and that it's cool to pickle it. path = getattr(module, '__file__', '') return path.startswith(os.getcwd()) and ('site-packages' not in path) def extend(base): """Create a Pickler that can pickle packages by inheriting from `base` We're dynamically inheriting from `base` here because my principal use case is extending ray's pickler, and ray's installation dependencies are vast. Don't want to truck that around for a one-module package which works just as well with cloudpickle. """ class ModulePickler(base): dispatch = base.dispatch.copy() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.packages = {} def compress_package(self, name): # The same package might contain many of the modules a function references, so it makes sense to cache them # as we go. if name not in self.packages: compressed = compress(name) self.packages[name] = Package(name, compressed) return self.packages[name] def save_module(self, obj): if is_local(obj): args = (obj.__name__, self.compress_package(packagename(obj))) return self.save_reduce(import_compressed, args, obj=obj) else: return super().save_module(obj) dispatch[types.ModuleType] = save_module def save_global(self, obj, *args, **kwargs): module = sys.modules[obj.__module__] # This is a dumb trick to handle my incomprehension of pickletools. # The problem is that sometimes a global will be unpickled before it's module is, which will throw an error. # Here, if we haven't seen the package before, we require it to reconstruct the global. # There is surely a better way if you understand the pickle VM better than I do. if is_local(module) and (packagename(module) not in self.packages): args = (module, obj) return self.save_reduce(import_global, args, obj=obj) return super().save_global(obj, *args, **kwargs) dispatch[type] = save_global dispatch[types.ClassType] = save_global return ModulePickler def extend_ray(): """Extends Ray's CloudPickler with a ModulePickler""" import ray import ray.cloudpickle ray.cloudpickle.CloudPickler = extend(ray.cloudpickle.CloudPickler) ray.cloudpickle.dump.__globals__['CloudPickler'] = ray.cloudpickle.CloudPickler ray.cloudpickle.dumps.__globals__['CloudPickler'] = ray.cloudpickle.CloudPickler def extend_cloudpickle(): """Extends cloudpickle's CloudPickler with a ModulePickler""" import cloudpickle cloudpickle.CloudPickler = extend(cloudpickle.CloudPickler) cloudpickle.dump.__globals__['CloudPickler'] = cloudpickle.CloudPickler cloudpickle.dumps.__globals__['CloudPickler'] = cloudpickle.CloudPickler
[ "logging.getLogger", "importlib.invalidate_caches", "hashlib.md5", "importlib.import_module", "tarfile.TarFile", "io.BytesIO", "os.path.join", "os.getcwd", "tempfile.mkdtemp" ]
[((255, 274), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (264, 274), False, 'from logging import getLogger\n'), ((336, 349), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (347, 349), False, 'import hashlib\n'), ((2328, 2337), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (2335, 2337), False, 'from io import BytesIO\n'), ((1144, 1173), 'importlib.invalidate_caches', 'importlib.invalidate_caches', ([], {}), '()\n', (1171, 1173), False, 'import importlib\n'), ((1564, 1628), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'prefix': 'f"""{TEMPDIR_ID}-{self.name}-{self.md5}-"""'}), "(prefix=f'{TEMPDIR_ID}-{self.name}-{self.md5}-')\n", (1580, 1628), False, 'import tempfile\n'), ((1642, 1666), 'io.BytesIO', 'BytesIO', (['self.compressed'], {}), '(self.compressed)\n', (1649, 1666), False, 'from io import BytesIO\n'), ((2260, 2289), 'importlib.import_module', 'importlib.import_module', (['name'], {}), '(name)\n', (2283, 2289), False, 'import importlib\n'), ((2347, 2377), 'tarfile.TarFile', 'TarFile', ([], {'fileobj': 'tar', 'mode': '"""w"""'}), "(fileobj=tar, mode='w')\n", (2354, 2377), False, 'from tarfile import TarFile\n'), ((1680, 1699), 'tarfile.TarFile', 'TarFile', ([], {'fileobj': 'bs'}), '(fileobj=bs)\n', (1687, 1699), False, 'from tarfile import TarFile\n'), ((3320, 3331), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3329, 3331), False, 'import os\n'), ((1733, 1754), 'os.path.join', 'os.path.join', (['dirpath'], {}), '(dirpath)\n', (1745, 1754), False, 'import os\n')]
from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestRegressor import pickle import json import numpy as np import torch # relation pairs: {class1query1...class1query15,class2query1...} # rf relations are rounded to the nearest 0.01 # rfRelations = rf.getBatchRelScores(supportNames, batchQueryNames) #(relation_pairs_sizex1) -> embedding as additional channel class RF(): def __init__(self): print('loading dataset') with open('rf_trainX.pkl', 'rb') as f: trainX = pickle.load(f) with open('rf_trainY.pkl', 'rb') as f: trainY = pickle.load(f) with open('embedding_new.pkl', 'rb') as f: self.embeddings = pickle.load(f) with open('embedding_val.pkl', 'rb') as f: self.embeddingsVal = pickle.load(f) with open('imgNameToIdx.json', 'r') as f: self.nameToIdx = json.load(f) with open('imgNameToIdxVal.json', 'r') as f: self.nameToIdxVal = json.load(f) print(trainX.shape, trainY.shape) print('start RF training') self.classifier = RandomForestRegressor(n_estimators = 200, random_state = 42, max_features=4) self.classifier.fit(trainX, trainY) #to-do del trainX del trainY def getBatchRelScores(self, supportNames, batchQueryNames): relations = [] for sName in supportNames: sName = sName[len('./train/n03347037/'):] sEmbedding = self.embeddings[self.nameToIdx[sName]] for qName in batchQueryNames: qName = qName[len('./train/n03347037/'):] qEmbedding = self.embeddings[self.nameToIdx[qName]] concat = np.concatenate([sEmbedding, qEmbedding], axis = 1).squeeze() relations.append(concat) relations = np.stack(relations).round(2) # print(relations) # print(relations.shape) preds = self.classifier.predict(relations) preds *= 100 preds = preds.astype(int) return torch.from_numpy(preds).cuda()#to-do: check rf is correct def getBatchRelScoresVal(self, supportNames, batchQueryNames): relations = [] for sName in supportNames: sName = sName[len('./val/n03347037/'):] sEmbedding = self.embeddingsVal[self.nameToIdxVal[sName]] for qName in batchQueryNames: qName = qName[len('./val/n03347037/'):] qEmbedding = self.embeddingsVal[self.nameToIdxVal[qName]] concat = np.concatenate([sEmbedding, qEmbedding], axis = 1).squeeze() relations.append(concat) relations = np.stack(relations).round(2) # print(relations) # print(relations.shape) preds = self.classifier.predict(relations) preds *= 100 preds = preds.astype(int) return torch.from_numpy(preds).cuda()
[ "sklearn.ensemble.RandomForestRegressor", "pickle.load", "torch.from_numpy", "numpy.stack", "numpy.concatenate", "json.load" ]
[((1123, 1195), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'n_estimators': '(200)', 'random_state': '(42)', 'max_features': '(4)'}), '(n_estimators=200, random_state=42, max_features=4)\n', (1144, 1195), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((531, 545), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (542, 545), False, 'import pickle\n'), ((615, 629), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (626, 629), False, 'import pickle\n'), ((712, 726), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (723, 726), False, 'import pickle\n'), ((812, 826), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (823, 826), False, 'import pickle\n'), ((907, 919), 'json.load', 'json.load', (['f'], {}), '(f)\n', (916, 919), False, 'import json\n'), ((1006, 1018), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1015, 1018), False, 'import json\n'), ((1845, 1864), 'numpy.stack', 'np.stack', (['relations'], {}), '(relations)\n', (1853, 1864), True, 'import numpy as np\n'), ((2055, 2078), 'torch.from_numpy', 'torch.from_numpy', (['preds'], {}), '(preds)\n', (2071, 2078), False, 'import torch\n'), ((2680, 2699), 'numpy.stack', 'np.stack', (['relations'], {}), '(relations)\n', (2688, 2699), True, 'import numpy as np\n'), ((2890, 2913), 'torch.from_numpy', 'torch.from_numpy', (['preds'], {}), '(preds)\n', (2906, 2913), False, 'import torch\n'), ((1723, 1771), 'numpy.concatenate', 'np.concatenate', (['[sEmbedding, qEmbedding]'], {'axis': '(1)'}), '([sEmbedding, qEmbedding], axis=1)\n', (1737, 1771), True, 'import numpy as np\n'), ((2558, 2606), 'numpy.concatenate', 'np.concatenate', (['[sEmbedding, qEmbedding]'], {'axis': '(1)'}), '([sEmbedding, qEmbedding], axis=1)\n', (2572, 2606), True, 'import numpy as np\n')]
from datetime import date, datetime from decimal import Decimal from fractions import Fraction import pytest from apteco.query import ( ArrayClause, CombinedCategoriesClause, DateListClause, DateRangeClause, DateTimeRangeClause, FlagArrayClause, NumericClause, ReferenceClause, SelectorClause, TextClause, ) class TestSelectorVariable: def test_eq(self, chy_selector_var, chy_session): high_value_supporters = chy_selector_var == ("Gold", "Platinum") assert type(high_value_supporters) == SelectorClause assert high_value_supporters.table_name == "Supporters" assert high_value_supporters.variable_name == "suMember" assert high_value_supporters.values == ["Gold", "Platinum"] assert high_value_supporters.include is True assert high_value_supporters.session is chy_session bronze_supporters = chy_selector_var == "Bronze" assert type(bronze_supporters) == SelectorClause assert bronze_supporters.table_name == "Supporters" assert bronze_supporters.variable_name == "suMember" assert bronze_supporters.values == ["Bronze"] assert bronze_supporters.include is True assert bronze_supporters.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_a_number = chy_selector_var == 3 assert exc_info.value.args[0] == ( "Chosen value(s) for a selector variable" " must be given as a string or an iterable of strings." ) def test_ne(self, chy_selector_var, chy_session): higher_value_supporters = chy_selector_var != ("Bronze", "Silver") assert type(higher_value_supporters) == SelectorClause assert higher_value_supporters.table_name == "Supporters" assert higher_value_supporters.variable_name == "suMember" assert higher_value_supporters.values == ["Bronze", "Silver"] assert higher_value_supporters.include is False assert higher_value_supporters.session is chy_session not_platinum = chy_selector_var != "Platinum" assert type(not_platinum) == SelectorClause assert not_platinum.table_name == "Supporters" assert not_platinum.variable_name == "suMember" assert not_platinum.values == ["Platinum"] assert not_platinum.include is False assert not_platinum.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_a_float = chy_selector_var != 2.5 assert exc_info.value.args[0] == ( "Chosen value(s) for a selector variable" " must be given as a string or an iterable of strings." ) @pytest.mark.xfail(reason="Not yet implemented.") class TestCombinedCategoriesVariable: # TODO: update when implemented def test_eq(self, chy_combined_categories_var, chy_session): northern_supporters = chy_combined_categories_var == ["NE", "NW", "YRK"] assert type(northern_supporters) == CombinedCategoriesClause assert northern_supporters.table_name == "Supporters" assert northern_supporters.variable_name == "suRegion" assert northern_supporters.values == ["NE", "NW", "YRK"] assert northern_supporters.include is True assert northern_supporters.session is chy_session # TODO: update when implemented def test_ne(self, chy_combined_categories_var, chy_session): supporters_outside_london = chy_combined_categories_var != "LDN" assert type(supporters_outside_london) == CombinedCategoriesClause assert supporters_outside_london.table_name == "Supporters" assert supporters_outside_london.variable_name == "suRegion" assert supporters_outside_london.values == ["LDN"] assert supporters_outside_london.include is False assert supporters_outside_london.session is chy_session class TestNumericVariable: def test_eq(self, chy_numeric_var_amount, chy_session): donations_100 = chy_numeric_var_amount == 100 assert type(donations_100) == NumericClause assert donations_100.table_name == "Donations" assert donations_100.variable_name == "doAmount" assert donations_100.values == ["100"] assert donations_100.include is True assert donations_100.session is chy_session hundreds_donations = chy_numeric_var_amount == (i * 100 for i in range(1, 10)) assert type(hundreds_donations) == NumericClause assert hundreds_donations.table_name == "Donations" assert hundreds_donations.variable_name == "doAmount" assert hundreds_donations.values == [ "100", "200", "300", "400", "500", "600", "700", "800", "900", ] assert hundreds_donations.include is True assert hundreds_donations.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_a_string = chy_numeric_var_amount == "256" assert exc_info.value.args[0] == ( "Chosen value(s) for a numeric variable" " must be given as a number or an iterable of numbers." ) def test_ne(self, chy_numeric_var_amount, chy_session): not_this = chy_numeric_var_amount != 72.1896 assert type(not_this) == NumericClause assert not_this.table_name == "Donations" assert not_this.variable_name == "doAmount" assert not_this.values == ["72.1896"] assert not_this.include is False assert not_this.session is chy_session not_one_of_these = chy_numeric_var_amount != (17.5, 8192) assert type(not_one_of_these) == NumericClause assert not_one_of_these.table_name == "Donations" assert not_one_of_these.variable_name == "doAmount" assert not_one_of_these.values == ["17.5", "8192"] assert not_one_of_these.include is False assert not_one_of_these.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_a_boolean = chy_numeric_var_amount != False assert exc_info.value.args[0] == ( "Chosen value(s) for a numeric variable" " must be given as a number or an iterable of numbers." ) def test_lt(self, chy_numeric_var_amount, chy_session): small_donations = chy_numeric_var_amount < Decimal("10.00") assert type(small_donations) == NumericClause assert small_donations.table_name == "Donations" assert small_donations.variable_name == "doAmount" assert small_donations.values == ["<10.0000"] assert small_donations.include is True assert small_donations.session is chy_session with pytest.raises(ValueError) as exc_info: less_than_a_list = chy_numeric_var_amount < [512.64, 646.464_646] assert exc_info.value.args[0] == ( "Must specify a single number for this type of operation." ) def test_le(self, chy_numeric_var_amount, chy_session): up_to_including_10k = chy_numeric_var_amount <= 10000 assert type(up_to_including_10k) == NumericClause assert up_to_including_10k.table_name == "Donations" assert up_to_including_10k.variable_name == "doAmount" assert up_to_including_10k.values == ["<=10000"] assert up_to_including_10k.include is True assert up_to_including_10k.session is chy_session with pytest.raises(ValueError) as exc_info: less_than_equal_tuple = chy_numeric_var_amount <= (52, 27, 9.75) assert exc_info.value.args[0] == ( "Must specify a single number for this type of operation." ) def test_gt(self, chy_numeric_var_amount, chy_session): big_donations = chy_numeric_var_amount > 0.01 * 26000 assert type(big_donations) == NumericClause assert big_donations.table_name == "Donations" assert big_donations.variable_name == "doAmount" assert big_donations.values == [">260.0"] assert big_donations.include is True assert big_donations.session is chy_session with pytest.raises(ValueError) as exc_info: more_than_a_set = chy_numeric_var_amount > {15, 30, 40, 40} assert exc_info.value.args[0] == ( "Must specify a single number for this type of operation." ) def test_ge(self, chy_numeric_var_amount, chy_session): at_least_this_ratio = chy_numeric_var_amount >= Fraction(65432, 987) assert type(at_least_this_ratio) == NumericClause assert at_least_this_ratio.table_name == "Donations" assert at_least_this_ratio.variable_name == "doAmount" assert at_least_this_ratio.values == [">=66.2938"] assert at_least_this_ratio.include is True assert at_least_this_ratio.session is chy_session with pytest.raises(ValueError) as exc_info: number_gen = (n for n in "12.3 4.56 789".split()) at_least_a_generator = chy_numeric_var_amount >= number_gen assert exc_info.value.args[0] == ( "Must specify a single number for this type of operation." ) class TestTextVariable: def test_eq(self, chy_text_var_email, chy_session): specific_donor = chy_text_var_email == "<EMAIL>" assert type(specific_donor) == TextClause assert specific_donor.table_name == "Supporters" assert specific_donor.variable_name == "suEmail" assert specific_donor.values == ["<EMAIL>"] assert specific_donor.match_type == "Is" assert specific_donor.match_case is True assert specific_donor.include is True assert specific_donor.session is chy_session donors_by_email = chy_text_var_email == [ f"<EMAIL>" for i in range(4) ] assert type(donors_by_email) == TextClause assert donors_by_email.table_name == "Supporters" assert donors_by_email.variable_name == "suEmail" assert donors_by_email.values == [ "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", ] assert donors_by_email.match_type == "Is" assert donors_by_email.match_case is True assert donors_by_email.include is True assert donors_by_email.session is chy_session with pytest.raises(ValueError) as exc_info: donors_by_number = chy_text_var_email == {34, 765, 2930} assert exc_info.value.args[0] == ( "Chosen value(s) for a text variable" " must be given as a string or an iterable of strings." ) def test_ne(self, chy_text_var_email, chy_session): dont_want_this_person = chy_text_var_email != "<EMAIL>" assert type(dont_want_this_person) == TextClause assert dont_want_this_person.table_name == "Supporters" assert dont_want_this_person.variable_name == "suEmail" assert dont_want_this_person.values == ["<EMAIL>"] assert dont_want_this_person.match_type == "Is" assert dont_want_this_person.match_case is True assert dont_want_this_person.include is False assert dont_want_this_person.session is chy_session not_these_people = chy_text_var_email != { "<EMAIL>", "<EMAIL>", } assert type(not_these_people) == TextClause assert not_these_people.table_name == "Supporters" assert not_these_people.variable_name == "suEmail" assert sorted(not_these_people.values) == [ "<EMAIL>", "<EMAIL>", ] assert not_these_people.match_type == "Is" assert not_these_people.match_case is True assert not_these_people.include is False assert not_these_people.session is chy_session with pytest.raises(ValueError) as exc_info: donor_not_an_obj = chy_text_var_email != object() assert exc_info.value.args[0] == ( "Chosen value(s) for a text variable" " must be given as a string or an iterable of strings." ) def test_lt(self, chy_text_var_surname, chy_session): before_breakfast = chy_text_var_surname < "breakfast" assert type(before_breakfast) == TextClause assert before_breakfast.table_name == "Supporters" assert before_breakfast.variable_name == "suSrName" assert before_breakfast.values == ['<"breakfast"'] assert before_breakfast.match_type == "Ranges" assert before_breakfast.match_case is False assert before_breakfast.include is True assert before_breakfast.session is chy_session with pytest.raises(ValueError) as exc_info: less_than_a_zero = chy_text_var_surname < 0 assert exc_info.value.args[0] == ( "Must specify a single string for this type of operation." ) def test_le(self, chy_text_var_surname, chy_session): first_half_alphabet = chy_text_var_surname <= "n" assert type(first_half_alphabet) == TextClause assert first_half_alphabet.table_name == "Supporters" assert first_half_alphabet.variable_name == "suSrName" assert first_half_alphabet.values == ['<="n"'] assert first_half_alphabet.match_type == "Ranges" assert first_half_alphabet.match_case is False assert first_half_alphabet.include is True assert first_half_alphabet.session is chy_session with pytest.raises(ValueError) as exc_info: earlier_than_letters = chy_text_var_surname <= list("abcedfgh") assert exc_info.value.args[0] == ( "Must specify a single string for this type of operation." ) def test_gt(self, chy_text_var_surname, chy_session): after_tea = chy_text_var_surname > "Tea" assert type(after_tea) == TextClause assert after_tea.table_name == "Supporters" assert after_tea.variable_name == "suSrName" assert after_tea.values == ['>"Tea"'] assert after_tea.match_type == "Ranges" assert after_tea.match_case is False assert after_tea.include is True assert after_tea.session is chy_session with pytest.raises(ValueError) as exc_info: more_than_a_date = chy_text_var_surname > date(2020, 10, 5) assert exc_info.value.args[0] == ( "Must specify a single string for this type of operation." ) def test_ge(self, chy_text_var_surname, chy_session): smith_or_later = chy_text_var_surname >= "Smith" assert type(smith_or_later) == TextClause assert smith_or_later.table_name == "Supporters" assert smith_or_later.variable_name == "suSrName" assert smith_or_later.values == ['>="Smith"'] assert smith_or_later.match_type == "Ranges" assert smith_or_later.match_case is False assert smith_or_later.include is True assert smith_or_later.session is chy_session with pytest.raises(ValueError) as exc_info: later_than_tuple = chy_text_var_surname >= ("A", "e", "i", "O") assert exc_info.value.args[0] == ( "Must specify a single string for this type of operation." ) class TestArrayVariable: def test_eq(self, chy_array_var, chy_session): national_campaigns = chy_array_var == "National" assert type(national_campaigns) == ArrayClause assert national_campaigns.table_name == "Campaigns" assert national_campaigns.variable_name == "caTags" assert national_campaigns.values == ["National"] assert national_campaigns.logic == "OR" assert national_campaigns.include is True assert national_campaigns.session is chy_session autumn_campaigns = chy_array_var == { "Autumn", "Fall", "Sep", "Oct", "Nov", "Halloween", "Back-to-School", } assert type(autumn_campaigns) == ArrayClause assert autumn_campaigns.table_name == "Campaigns" assert autumn_campaigns.variable_name == "caTags" assert sorted(autumn_campaigns.values) == [ "Autumn", "Back-to-School", "Fall", "Halloween", "Nov", "Oct", "Sep", ] assert autumn_campaigns.logic == "OR" assert autumn_campaigns.include is True assert autumn_campaigns.session is chy_session with pytest.raises(ValueError) as exc_info: forgot_string_quotes = chy_array_var == ["4", 6] assert exc_info.value.args[0] == ( "Chosen value(s) for an array variable" " must be given as a string or an iterable of strings." ) def test_ne(self, chy_array_var, chy_session): not_christmas = chy_array_var != "Christmas" assert type(not_christmas) == ArrayClause assert not_christmas.table_name == "Campaigns" assert not_christmas.variable_name == "caTags" assert not_christmas.values == ["Christmas"] assert not_christmas.logic == "OR" assert not_christmas.include is False assert not_christmas.session is chy_session one_off_campaigns = chy_array_var != [ "Recurrent", "Annual", "Regular", "Monthly", "Weekly", "Daily", "Seasonal", ] assert type(one_off_campaigns) == ArrayClause assert one_off_campaigns.table_name == "Campaigns" assert one_off_campaigns.variable_name == "caTags" assert one_off_campaigns.values == [ "Recurrent", "Annual", "Regular", "Monthly", "Weekly", "Daily", "Seasonal", ] assert one_off_campaigns.logic == "OR" assert one_off_campaigns.include is False assert one_off_campaigns.session is chy_session with pytest.raises(ValueError) as exc_info: undesired_values = ("value_we_dont_like", None) not_none = chy_array_var != undesired_values assert exc_info.value.args[0] == ( "Chosen value(s) for an array variable" " must be given as a string or an iterable of strings." ) class TestFlagArrayVariable: def test_eq(self, chy_flag_array_var, chy_session): can_post = chy_flag_array_var == "DirectMail" assert type(can_post) == FlagArrayClause assert can_post.table_name == "Supporters" assert can_post.variable_name == "suCtcPrf" assert can_post.values == ["DirectMail"] assert can_post.logic == "OR" assert can_post.include is True assert can_post.session is chy_session phone_or_text = chy_flag_array_var == ("SMS", "Telephone") assert type(phone_or_text) == FlagArrayClause assert phone_or_text.table_name == "Supporters" assert phone_or_text.variable_name == "suCtcPrf" assert phone_or_text.values == ["SMS", "Telephone"] assert phone_or_text.logic == "OR" assert phone_or_text.include is True assert phone_or_text.session is chy_session with pytest.raises(ValueError) as exc_info: true = True # so editor doesn't complain about comparison not using `is` contactable = chy_flag_array_var == true assert exc_info.value.args[0] == ( "Chosen value(s) for a flag array variable" " must be given as a string or an iterable of strings." ) def test_ne(self, chy_flag_array_var, chy_session): cant_email = chy_flag_array_var != "Email" assert type(cant_email) == FlagArrayClause assert cant_email.table_name == "Supporters" assert cant_email.variable_name == "suCtcPrf" assert cant_email.values == ["Email"] assert cant_email.logic == "OR" assert cant_email.include is False assert cant_email.session is chy_session not_business = chy_flag_array_var != { "BusinessPhone", "BusinessDirectMail", "BusinessEmail", } assert type(not_business) == FlagArrayClause assert not_business.table_name == "Supporters" assert not_business.variable_name == "suCtcPrf" assert sorted(not_business.values) == [ "BusinessDirectMail", "BusinessEmail", "BusinessPhone", ] assert not_business.logic == "OR" assert not_business.include is False assert not_business.session is chy_session with pytest.raises(ValueError) as exc_info: contactable = chy_flag_array_var != 0 assert exc_info.value.args[0] == ( "Chosen value(s) for a flag array variable" " must be given as a string or an iterable of strings." ) class TestDateVariable: def test_eq(self, chy_date_var, chy_session): august_bank_holiday_2018 = chy_date_var == date(2018, 8, 27) assert type(august_bank_holiday_2018) == DateListClause assert august_bank_holiday_2018.table_name == "Donations" assert august_bank_holiday_2018.variable_name == "doDate" assert august_bank_holiday_2018.values == ["20180827"] assert august_bank_holiday_2018.include is True assert august_bank_holiday_2018.session is chy_session festive_days_from_random_years = chy_date_var == [ date(1912, 12, 25), date(1934, 2, 14), date(1956, 4, 1), date(1978, 10, 31), date(1990, 11, 5), date(2011, 4, 29), date(2023, 9, 23), ] assert type(festive_days_from_random_years) == DateListClause assert festive_days_from_random_years.table_name == "Donations" assert festive_days_from_random_years.variable_name == "doDate" assert festive_days_from_random_years.values == [ "19121225", "19340214", "19560401", "19781031", "19901105", "20110429", "20230923", ] assert festive_days_from_random_years.include is True assert festive_days_from_random_years.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_date_string = chy_date_var == "20180528" assert exc_info.value.args[0] == ( "Chosen value for a date variable" " must be a date object or an iterable of date objects." ) def test_ne(self, chy_date_var, chy_session): not_easter_2050 = chy_date_var != date(2050, 4, 10) assert type(not_easter_2050) == DateListClause assert not_easter_2050.table_name == "Donations" assert not_easter_2050.variable_name == "doDate" assert not_easter_2050.values == ["20500410"] assert not_easter_2050.include is False assert not_easter_2050.session is chy_session exclude_solstices_and_equinoxes_2030 = chy_date_var != [ date(2030, 3, 20), datetime(2030, 6, 21, 7, 31), date(2030, 9, 22), datetime(2030, 12, 21, 20, 9), ] assert type(exclude_solstices_and_equinoxes_2030) == DateListClause assert exclude_solstices_and_equinoxes_2030.table_name == "Donations" assert exclude_solstices_and_equinoxes_2030.variable_name == "doDate" assert exclude_solstices_and_equinoxes_2030.values == [ "20300320", "20300621", "20300922", "20301221", ] assert exclude_solstices_and_equinoxes_2030.include is False assert exclude_solstices_and_equinoxes_2030.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_list_some_invalid = chy_date_var == [ date(2012, 7, 27), "20221121", datetime(2018, 2, 9, 11, 0, 0), ] assert exc_info.value.args[0] == ( "Chosen value for a date variable" " must be a date object or an iterable of date objects." ) def test_le(self, chy_date_var, chy_session): before_tax_year_end_2018_19 = chy_date_var <= date(2019, 4, 5) assert type(before_tax_year_end_2018_19) == DateRangeClause assert before_tax_year_end_2018_19.table_name == "Donations" assert before_tax_year_end_2018_19.variable_name == "doDate" assert before_tax_year_end_2018_19.start == "Earliest" assert before_tax_year_end_2018_19.end == "2019-04-05" assert before_tax_year_end_2018_19.include is True assert before_tax_year_end_2018_19.session is chy_session with pytest.raises(ValueError) as exc_info: two_dates = (date(2019, 2, 14), date(2019, 6, 21)) less_than_equal_a_pair = chy_date_var <= two_dates assert exc_info.value.args[0] == ( "Must specify a single date for this type of operation." ) def test_ge(self, chy_date_var, chy_session): after_christmas_2015 = chy_date_var >= date(2015, 12, 25) assert type(after_christmas_2015) == DateRangeClause assert after_christmas_2015.table_name == "Donations" assert after_christmas_2015.variable_name == "doDate" assert after_christmas_2015.start == "2015-12-25" assert after_christmas_2015.end == "Latest" assert after_christmas_2015.include is True assert after_christmas_2015.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_a_string = chy_date_var >= "2011-11-20" assert exc_info.value.args[0] == ( "Must specify a single date for this type of operation." ) class TestDateTimeVariable: def test_le(self, chy_datetime_var, chy_session): xmas_campaign_launch = datetime(2019, 11, 25, 11, 22, 33) before_christmas_campaign = chy_datetime_var <= xmas_campaign_launch assert type(before_christmas_campaign) == DateTimeRangeClause assert before_christmas_campaign.table_name == "WebsiteVisits" assert before_christmas_campaign.variable_name == "weSessSt" assert before_christmas_campaign.start == "Earliest" assert before_christmas_campaign.end == "2019-11-25T11:22:33" assert before_christmas_campaign.include is True assert before_christmas_campaign.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_date_only = chy_datetime_var <= date(2019, 11, 25) assert exc_info.value.args[0] == ( "Must specify a single datetime for this type of operation." ) def test_ge(self, chy_datetime_var, chy_session): sale_start = datetime(2019, 12, 26, 4, 32, 10) after_boxing_day_sale_start = chy_datetime_var >= sale_start assert type(after_boxing_day_sale_start) == DateTimeRangeClause assert after_boxing_day_sale_start.table_name == "WebsiteVisits" assert after_boxing_day_sale_start.variable_name == "weSessSt" assert after_boxing_day_sale_start.start == "2019-12-26T04:32:10" assert after_boxing_day_sale_start.end == "Latest" assert after_boxing_day_sale_start.include is True assert after_boxing_day_sale_start.session is chy_session with pytest.raises(ValueError) as exc_info: trying_with_number = chy_datetime_var >= 2_019_122_643_210 assert exc_info.value.args[0] == ( "Must specify a single datetime for this type of operation." ) @pytest.mark.xfail(reason="Not yet implemented.") class TestReferenceVariable: def test_eq(self, chy_reference_var, chy_session): abc_campaign = chy_reference_var == "abc" assert type(abc_campaign) == ReferenceClause assert abc_campaign.table_name == "Campaigns" assert abc_campaign.variable_name == "caID" assert abc_campaign.values == ["abc"] assert abc_campaign.include is True assert abc_campaign.session is chy_session def test_ne(self, chy_reference_var, chy_session): not_x_campaigns = chy_reference_var != ["x", "xy", "xs", "xyz", "x1"] assert type(not_x_campaigns) == ReferenceClause assert not_x_campaigns.table_name == "Campaigns" assert not_x_campaigns.variable_name == "caID" assert not_x_campaigns.values == ["x", "xy", "xs", "xyz", "x1"] assert not_x_campaigns.include is False assert not_x_campaigns.session is chy_session
[ "datetime.datetime", "pytest.mark.xfail", "fractions.Fraction", "pytest.raises", "datetime.date", "decimal.Decimal" ]
[((2726, 2774), 'pytest.mark.xfail', 'pytest.mark.xfail', ([], {'reason': '"""Not yet implemented."""'}), "(reason='Not yet implemented.')\n", (2743, 2774), False, 'import pytest\n'), ((27858, 27906), 'pytest.mark.xfail', 'pytest.mark.xfail', ([], {'reason': '"""Not yet implemented."""'}), "(reason='Not yet implemented.')\n", (27875, 27906), False, 'import pytest\n'), ((26124, 26158), 'datetime.datetime', 'datetime', (['(2019)', '(11)', '(25)', '(11)', '(22)', '(33)'], {}), '(2019, 11, 25, 11, 22, 33)\n', (26132, 26158), False, 'from datetime import date, datetime\n'), ((27028, 27061), 'datetime.datetime', 'datetime', (['(2019)', '(12)', '(26)', '(4)', '(32)', '(10)'], {}), '(2019, 12, 26, 4, 32, 10)\n', (27036, 27061), False, 'from datetime import date, datetime\n'), ((1287, 1312), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1300, 1312), False, 'import pytest\n'), ((2451, 2476), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2464, 2476), False, 'import pytest\n'), ((4997, 5022), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5010, 5022), False, 'import pytest\n'), ((6091, 6116), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6104, 6116), False, 'import pytest\n'), ((6484, 6500), 'decimal.Decimal', 'Decimal', (['"""10.00"""'], {}), "('10.00')\n", (6491, 6500), False, 'from decimal import Decimal\n'), ((6840, 6865), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6853, 6865), False, 'import pytest\n'), ((7566, 7591), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7579, 7591), False, 'import pytest\n'), ((8254, 8279), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (8267, 8279), False, 'import pytest\n'), ((8606, 8626), 'fractions.Fraction', 'Fraction', (['(65432)', '(987)'], {}), '(65432, 987)\n', (8614, 8626), False, 'from fractions import Fraction\n'), ((8991, 9016), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (9004, 9016), False, 'import pytest\n'), ((10469, 10494), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (10482, 10494), False, 'import pytest\n'), ((11945, 11970), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (11958, 11970), False, 'import pytest\n'), ((12792, 12817), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (12805, 12817), False, 'import pytest\n'), ((13599, 13624), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (13612, 13624), False, 'import pytest\n'), ((14338, 14363), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (14351, 14363), False, 'import pytest\n'), ((15124, 15149), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (15137, 15149), False, 'import pytest\n'), ((16644, 16669), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (16657, 16669), False, 'import pytest\n'), ((18148, 18173), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (18161, 18173), False, 'import pytest\n'), ((19393, 19418), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (19406, 19418), False, 'import pytest\n'), ((20808, 20833), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (20821, 20833), False, 'import pytest\n'), ((21201, 21218), 'datetime.date', 'date', (['(2018)', '(8)', '(27)'], {}), '(2018, 8, 27)\n', (21205, 21218), False, 'from datetime import date, datetime\n'), ((22480, 22505), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (22493, 22505), False, 'import pytest\n'), ((22846, 22863), 'datetime.date', 'date', (['(2050)', '(4)', '(10)'], {}), '(2050, 4, 10)\n', (22850, 22863), False, 'from datetime import date, datetime\n'), ((23972, 23997), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (23985, 23997), False, 'import pytest\n'), ((24472, 24488), 'datetime.date', 'date', (['(2019)', '(4)', '(5)'], {}), '(2019, 4, 5)\n', (24476, 24488), False, 'from datetime import date, datetime\n'), ((24960, 24985), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (24973, 24985), False, 'import pytest\n'), ((25345, 25363), 'datetime.date', 'date', (['(2015)', '(12)', '(25)'], {}), '(2015, 12, 25)\n', (25349, 25363), False, 'from datetime import date, datetime\n'), ((25784, 25809), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (25797, 25809), False, 'import pytest\n'), ((26712, 26737), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (26725, 26737), False, 'import pytest\n'), ((27619, 27644), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (27632, 27644), False, 'import pytest\n'), ((14431, 14448), 'datetime.date', 'date', (['(2020)', '(10)', '(5)'], {}), '(2020, 10, 5)\n', (14435, 14448), False, 'from datetime import date, datetime\n'), ((21669, 21687), 'datetime.date', 'date', (['(1912)', '(12)', '(25)'], {}), '(1912, 12, 25)\n', (21673, 21687), False, 'from datetime import date, datetime\n'), ((21701, 21718), 'datetime.date', 'date', (['(1934)', '(2)', '(14)'], {}), '(1934, 2, 14)\n', (21705, 21718), False, 'from datetime import date, datetime\n'), ((21732, 21748), 'datetime.date', 'date', (['(1956)', '(4)', '(1)'], {}), '(1956, 4, 1)\n', (21736, 21748), False, 'from datetime import date, datetime\n'), ((21762, 21780), 'datetime.date', 'date', (['(1978)', '(10)', '(31)'], {}), '(1978, 10, 31)\n', (21766, 21780), False, 'from datetime import date, datetime\n'), ((21794, 21811), 'datetime.date', 'date', (['(1990)', '(11)', '(5)'], {}), '(1990, 11, 5)\n', (21798, 21811), False, 'from datetime import date, datetime\n'), ((21825, 21842), 'datetime.date', 'date', (['(2011)', '(4)', '(29)'], {}), '(2011, 4, 29)\n', (21829, 21842), False, 'from datetime import date, datetime\n'), ((21856, 21873), 'datetime.date', 'date', (['(2023)', '(9)', '(23)'], {}), '(2023, 9, 23)\n', (21860, 21873), False, 'from datetime import date, datetime\n'), ((23267, 23284), 'datetime.date', 'date', (['(2030)', '(3)', '(20)'], {}), '(2030, 3, 20)\n', (23271, 23284), False, 'from datetime import date, datetime\n'), ((23298, 23326), 'datetime.datetime', 'datetime', (['(2030)', '(6)', '(21)', '(7)', '(31)'], {}), '(2030, 6, 21, 7, 31)\n', (23306, 23326), False, 'from datetime import date, datetime\n'), ((23340, 23357), 'datetime.date', 'date', (['(2030)', '(9)', '(22)'], {}), '(2030, 9, 22)\n', (23344, 23357), False, 'from datetime import date, datetime\n'), ((23371, 23400), 'datetime.datetime', 'datetime', (['(2030)', '(12)', '(21)', '(20)', '(9)'], {}), '(2030, 12, 21, 20, 9)\n', (23379, 23400), False, 'from datetime import date, datetime\n'), ((25024, 25041), 'datetime.date', 'date', (['(2019)', '(2)', '(14)'], {}), '(2019, 2, 14)\n', (25028, 25041), False, 'from datetime import date, datetime\n'), ((25043, 25060), 'datetime.date', 'date', (['(2019)', '(6)', '(21)'], {}), '(2019, 6, 21)\n', (25047, 25060), False, 'from datetime import date, datetime\n'), ((26807, 26825), 'datetime.date', 'date', (['(2019)', '(11)', '(25)'], {}), '(2019, 11, 25)\n', (26811, 26825), False, 'from datetime import date, datetime\n'), ((24089, 24106), 'datetime.date', 'date', (['(2012)', '(7)', '(27)'], {}), '(2012, 7, 27)\n', (24093, 24106), False, 'from datetime import date, datetime\n'), ((24152, 24182), 'datetime.datetime', 'datetime', (['(2018)', '(2)', '(9)', '(11)', '(0)', '(0)'], {}), '(2018, 2, 9, 11, 0, 0)\n', (24160, 24182), False, 'from datetime import date, datetime\n')]
import json import os from argparse import ArgumentParser from typing import Dict from boto3 import client from core.constructs.commands import BaseCommand from core.default.commands.function.utils import get_cloud_id_from_cdev_name RUUID = "cdev::simple::function" class execute(BaseCommand): help = """ Execute a function in the cloud. """ def add_arguments(self, parser: ArgumentParser) -> None: parser.add_argument( "function_id", type=str, help="The id of the function to execute." ) parser.add_argument( "--event", type=str, help="File (json) location of event object to provide as input to the function. Can not be used with '--event-data` flag.", ) parser.add_argument( "--event-data", type=str, help="Raw string form of event object to provide as input to the function. Can not be used with '--event' flag.", ) def command(self, *args, **kwargs) -> None: event_data = self._get_event_data(*args, **kwargs) full_function_name = kwargs.get("function_id") ( component_name, function_name, ) = self.get_component_and_resource_from_qualified_name(full_function_name) cloud_name = get_cloud_id_from_cdev_name(component_name, function_name) lambda_client = client("lambda") self.stdout.write(f"executing {full_function_name}") response = lambda_client.invoke( FunctionName=cloud_name, InvocationType="RequestResponse", Payload=json.dumps(event_data), ) self.stdout.write(str(response)) def _get_event_data(self, *args, **kwargs) -> Dict: event_file_location: str = kwargs.get("event") event_raw_data: str = kwargs.get("event_data") if event_file_location and event_raw_data: raise Exception("Can not provide both '--event-data' and '--event'") if event_file_location: if not os.path.isfile(event_file_location): raise Exception(f"{event_file_location} is not a valid file location") with open(event_file_location) as fh: try: event_data = json.load(fh) return event_data except Exception as e: print(e) raise Exception(f"Could not load {event_file_location} as json") if event_raw_data: try: event_data = json.loads(event_raw_data) return event_data except Exception as e: print(e) raise Exception(f"Could not load {event_raw_data} as json") return {}
[ "json.loads", "boto3.client", "json.dumps", "os.path.isfile", "core.default.commands.function.utils.get_cloud_id_from_cdev_name", "json.load" ]
[((1315, 1373), 'core.default.commands.function.utils.get_cloud_id_from_cdev_name', 'get_cloud_id_from_cdev_name', (['component_name', 'function_name'], {}), '(component_name, function_name)\n', (1342, 1373), False, 'from core.default.commands.function.utils import get_cloud_id_from_cdev_name\n'), ((1399, 1415), 'boto3.client', 'client', (['"""lambda"""'], {}), "('lambda')\n", (1405, 1415), False, 'from boto3 import client\n'), ((1622, 1644), 'json.dumps', 'json.dumps', (['event_data'], {}), '(event_data)\n', (1632, 1644), False, 'import json\n'), ((2050, 2085), 'os.path.isfile', 'os.path.isfile', (['event_file_location'], {}), '(event_file_location)\n', (2064, 2085), False, 'import os\n'), ((2558, 2584), 'json.loads', 'json.loads', (['event_raw_data'], {}), '(event_raw_data)\n', (2568, 2584), False, 'import json\n'), ((2279, 2292), 'json.load', 'json.load', (['fh'], {}), '(fh)\n', (2288, 2292), False, 'import json\n')]
from torchvision import transforms from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST from torch.utils.data import DataLoader, Subset __all__ = ['cifar10_dataloaders', 'cifar100_dataloaders', 'svhn_dataloaders', 'fashionmnist_dataloaders'] def cifar10_dataloaders(batch_size=64, data_dir = 'datasets/cifar10'): normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]) train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) train_set = Subset(CIFAR10(data_dir, train=True, transform=train_transform, download=True), list(range(45000))) val_set = Subset(CIFAR10(data_dir, train=True, transform=test_transform, download=True), list(range(45000, 50000))) test_set = CIFAR10(data_dir, train=False, transform=test_transform, download=True) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) return train_loader, val_loader, test_loader def cifar100_dataloaders(batch_size=64, data_dir = 'datasets/cifar100'): normalize = transforms.Normalize(mean=[0.5071, 0.4866, 0.4409], std=[0.2009, 0.1984, 0.2023]) train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) train_set = Subset(CIFAR100(data_dir, train=True, transform=train_transform, download=True), list(range(45000))) val_set = Subset(CIFAR100(data_dir, train=True, transform=test_transform, download=True), list(range(45000, 50000))) test_set = CIFAR100(data_dir, train=False, transform=test_transform, download=True) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) return train_loader, val_loader, test_loader def svhn_dataloaders(batch_size=64, data_dir = 'datasets/svhn'): normalize = transforms.Normalize(mean=[0.4377, 0.4438, 0.4728], std=[0.1201, 0.1231, 0.1052]) train_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) train_set = Subset(SVHN(data_dir, split='train', transform=train_transform, download=True),list(range(68257))) val_set = Subset(SVHN(data_dir, split='train', transform=train_transform, download=True),list(range(68257,73257))) test_set = SVHN(data_dir, split='test', transform=test_transform, download=True) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) return train_loader, val_loader, test_loader def fashionmnist_dataloaders(batch_size=64, data_dir = 'datasets/fashionmnist'): normalize = transforms.Normalize(mean=[0.1436], std=[0.1609]) train_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize ]) train_set = Subset(FashionMNIST(data_dir, train=True, transform=train_transform, download=True), list(range(55000))) val_set = Subset(FashionMNIST(data_dir, train=True, transform=test_transform, download=True), list(range(55000, 60000))) test_set = FashionMNIST(data_dir, train=False, transform=test_transform, download=True) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) return train_loader, val_loader, test_loader
[ "torchvision.datasets.CIFAR100", "torchvision.datasets.FashionMNIST", "torchvision.transforms.RandomHorizontalFlip", "torchvision.transforms.RandomCrop", "torchvision.datasets.SVHN", "torchvision.datasets.CIFAR10", "torchvision.transforms.Normalize", "torch.utils.data.DataLoader", "torchvision.transforms.ToTensor" ]
[((350, 435), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.4914, 0.4822, 0.4465]', 'std': '[0.2023, 0.1994, 0.201]'}), '(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201]\n )\n', (370, 435), False, 'from torchvision import transforms\n'), ((971, 1042), 'torchvision.datasets.CIFAR10', 'CIFAR10', (['data_dir'], {'train': '(False)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=False, transform=test_transform, download=True)\n', (978, 1042), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((1063, 1173), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(2)', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(train_set, batch_size=batch_size, shuffle=True, num_workers=2,\n drop_last=True, pin_memory=True)\n', (1073, 1173), False, 'from torch.utils.data import DataLoader, Subset\n'), ((1219, 1312), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(val_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (1229, 1312), False, 'from torch.utils.data import DataLoader, Subset\n'), ((1327, 1421), 'torch.utils.data.DataLoader', 'DataLoader', (['test_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(test_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (1337, 1421), False, 'from torch.utils.data import DataLoader, Subset\n'), ((1559, 1645), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5071, 0.4866, 0.4409]', 'std': '[0.2009, 0.1984, 0.2023]'}), '(mean=[0.5071, 0.4866, 0.4409], std=[0.2009, 0.1984, \n 0.2023])\n', (1579, 1645), False, 'from torchvision import transforms\n'), ((2182, 2254), 'torchvision.datasets.CIFAR100', 'CIFAR100', (['data_dir'], {'train': '(False)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=False, transform=test_transform, download=True)\n', (2190, 2254), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((2275, 2385), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(2)', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(train_set, batch_size=batch_size, shuffle=True, num_workers=2,\n drop_last=True, pin_memory=True)\n', (2285, 2385), False, 'from torch.utils.data import DataLoader, Subset\n'), ((2431, 2524), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(val_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (2441, 2524), False, 'from torch.utils.data import DataLoader, Subset\n'), ((2539, 2633), 'torch.utils.data.DataLoader', 'DataLoader', (['test_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(test_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (2549, 2633), False, 'from torch.utils.data import DataLoader, Subset\n'), ((2763, 2849), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.4377, 0.4438, 0.4728]', 'std': '[0.1201, 0.1231, 0.1052]'}), '(mean=[0.4377, 0.4438, 0.4728], std=[0.1201, 0.1231, \n 0.1052])\n', (2783, 2849), False, 'from torchvision import transforms\n'), ((3293, 3362), 'torchvision.datasets.SVHN', 'SVHN', (['data_dir'], {'split': '"""test"""', 'transform': 'test_transform', 'download': '(True)'}), "(data_dir, split='test', transform=test_transform, download=True)\n", (3297, 3362), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((3395, 3505), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(2)', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(train_set, batch_size=batch_size, shuffle=True, num_workers=2,\n drop_last=True, pin_memory=True)\n', (3405, 3505), False, 'from torch.utils.data import DataLoader, Subset\n'), ((3519, 3612), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(val_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (3529, 3612), False, 'from torch.utils.data import DataLoader, Subset\n'), ((3627, 3721), 'torch.utils.data.DataLoader', 'DataLoader', (['test_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(test_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (3637, 3721), False, 'from torch.utils.data import DataLoader, Subset\n'), ((3871, 3920), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.1436]', 'std': '[0.1609]'}), '(mean=[0.1436], std=[0.1609])\n', (3891, 3920), False, 'from torchvision import transforms\n'), ((4381, 4457), 'torchvision.datasets.FashionMNIST', 'FashionMNIST', (['data_dir'], {'train': '(False)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=False, transform=test_transform, download=True)\n', (4393, 4457), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((4478, 4588), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(2)', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(train_set, batch_size=batch_size, shuffle=True, num_workers=2,\n drop_last=True, pin_memory=True)\n', (4488, 4588), False, 'from torch.utils.data import DataLoader, Subset\n'), ((4602, 4695), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(val_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (4612, 4695), False, 'from torch.utils.data import DataLoader, Subset\n'), ((4710, 4804), 'torch.utils.data.DataLoader', 'DataLoader', (['test_set'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)', 'pin_memory': '(True)'}), '(test_set, batch_size=batch_size, shuffle=False, num_workers=2,\n pin_memory=True)\n', (4720, 4804), False, 'from torch.utils.data import DataLoader, Subset\n'), ((743, 814), 'torchvision.datasets.CIFAR10', 'CIFAR10', (['data_dir'], {'train': '(True)', 'transform': 'train_transform', 'download': '(True)'}), '(data_dir, train=True, transform=train_transform, download=True)\n', (750, 814), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((857, 927), 'torchvision.datasets.CIFAR10', 'CIFAR10', (['data_dir'], {'train': '(True)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=True, transform=test_transform, download=True)\n', (864, 927), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((1952, 2024), 'torchvision.datasets.CIFAR100', 'CIFAR100', (['data_dir'], {'train': '(True)', 'transform': 'train_transform', 'download': '(True)'}), '(data_dir, train=True, transform=train_transform, download=True)\n', (1960, 2024), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((2067, 2138), 'torchvision.datasets.CIFAR100', 'CIFAR100', (['data_dir'], {'train': '(True)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=True, transform=test_transform, download=True)\n', (2075, 2138), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((3067, 3138), 'torchvision.datasets.SVHN', 'SVHN', (['data_dir'], {'split': '"""train"""', 'transform': 'train_transform', 'download': '(True)'}), "(data_dir, split='train', transform=train_transform, download=True)\n", (3071, 3138), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((3180, 3251), 'torchvision.datasets.SVHN', 'SVHN', (['data_dir'], {'split': '"""train"""', 'transform': 'train_transform', 'download': '(True)'}), "(data_dir, split='train', transform=train_transform, download=True)\n", (3184, 3251), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((4143, 4219), 'torchvision.datasets.FashionMNIST', 'FashionMNIST', (['data_dir'], {'train': '(True)', 'transform': 'train_transform', 'download': '(True)'}), '(data_dir, train=True, transform=train_transform, download=True)\n', (4155, 4219), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((4262, 4337), 'torchvision.datasets.FashionMNIST', 'FashionMNIST', (['data_dir'], {'train': '(True)', 'transform': 'test_transform', 'download': '(True)'}), '(data_dir, train=True, transform=test_transform, download=True)\n', (4274, 4337), False, 'from torchvision.datasets import CIFAR10, CIFAR100, SVHN, FashionMNIST\n'), ((483, 519), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['(32)'], {'padding': '(4)'}), '(32, padding=4)\n', (504, 519), False, 'from torchvision import transforms\n'), ((529, 562), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (560, 562), False, 'from torchvision import transforms\n'), ((572, 593), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (591, 593), False, 'from torchvision import transforms\n'), ((671, 692), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (690, 692), False, 'from torchvision import transforms\n'), ((1692, 1728), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['(32)'], {'padding': '(4)'}), '(32, padding=4)\n', (1713, 1728), False, 'from torchvision import transforms\n'), ((1738, 1771), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (1769, 1771), False, 'from torchvision import transforms\n'), ((1781, 1802), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1800, 1802), False, 'from torchvision import transforms\n'), ((1880, 1901), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1899, 1901), False, 'from torchvision import transforms\n'), ((2896, 2917), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2915, 2917), False, 'from torchvision import transforms\n'), ((2995, 3016), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3014, 3016), False, 'from torchvision import transforms\n'), ((3972, 3993), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3991, 3993), False, 'from torchvision import transforms\n'), ((4071, 4092), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (4090, 4092), False, 'from torchvision import transforms\n')]
from apscheduler.schedulers.blocking import BlockingScheduler import time import setdb scheduler = BlockingScheduler() SCHEDULED_HOUR = 9 SCHEDULED_MINUTE = 0 def flush_db(): deleted_row_cnt = setdb.flushDb() print(time.strftime('%Y-%m-%d %H:%M:%S'), 'old record delete count :', deleted_row_cnt, flush=True) scheduler.add_job(flush_db, 'cron', hour=SCHEDULED_HOUR, minute=SCHEDULED_MINUTE, id='flush_db') print(time.strftime('%Y-%m-%d %H:%M:%S'), ' [*] db_refresher started. Runs every day at [', '{0:02d}'.format(SCHEDULED_HOUR),':','{0:02d}'.format(SCHEDULED_MINUTE),']. To exit press CTRL+C', flush=True) scheduler.start()
[ "apscheduler.schedulers.blocking.BlockingScheduler", "time.strftime", "setdb.flushDb" ]
[((100, 119), 'apscheduler.schedulers.blocking.BlockingScheduler', 'BlockingScheduler', ([], {}), '()\n', (117, 119), False, 'from apscheduler.schedulers.blocking import BlockingScheduler\n'), ((199, 214), 'setdb.flushDb', 'setdb.flushDb', ([], {}), '()\n', (212, 214), False, 'import setdb\n'), ((423, 457), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (436, 457), False, 'import time\n'), ((225, 259), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (238, 259), False, 'import time\n')]
''' Map from the ACA catalogue to the IRAM catalogue from Corbelli+2017 We'll also determine which clouds have 13CO detected and their evolutionary phase ''' from astropy.table import Table from astropy.io import fits import os import astropy.units as u from astropy.coordinates import SkyCoord from spectral_cube import SpectralCube import numpy as np # data_path = os.path.expanduser("~/storage/M33/") data_path = os.path.expanduser("~/bigdata/ekoch/M33/") aca_path = f"{data_path}/ALMA/ACA_Band6/" corbelli_table = Table.read(f"{data_path}/Corbelli_17_catalogues/J_A+A_601_A146_table5.dat.fits") aca_table = Table.read(f"{aca_path}/cprops_12CO21/M33_ACA_12CO21_0p7kms_fullmosaic_roundbeam.image_K_M33_co21_m33_props.fits") # The beam is ~12 arcsec. We're going to require matched clouds be within # 1.5 beams max_sep = 12 * u.arcsec * 1.5 iram_cloud_coords = SkyCoord(corbelli_table['RAdeg'], corbelli_table['DEdeg'], frame='icrs') dist_matrix = np.zeros((len(aca_table), len(corbelli_table))) * u.deg for idx in range(len(aca_table)): cloud_coord = SkyCoord(aca_table['XCTR_DEG'][idx] * u.deg, aca_table['YCTR_DEG'][idx] * u.deg, frame='icrs') dist_matrix[idx] = cloud_coord.separation(iram_cloud_coords) # Match the clouds. Assume that each ACA cloud is associated with 0 or 1 # IRAM clouds mapping_dict = {} iram_cloud_index = np.arange(len(corbelli_table)) for idx in range(len(aca_table)): mapping_dict[idx] = [] matches = np.where(dist_matrix[idx] < max_sep)[0] if len(matches) == 0: continue match_dists = dist_matrix[idx][matches] # Otherwise, match the minimum, if it's closest. for idx2 in np.argsort(match_dists): match_idx = matches[idx2] match_dist = match_dists[idx2] # If this is the smallest distance from the IRAM cloud, # include the mapping and ignore the rest. if match_dist == dist_matrix[:, match_idx].min(): mapping_dict[idx].append(match_idx) # Otherwise, we don't map those clouds. # Need to save this in some format. # Convert to an array. Pad empty spots max_match = 0 for match in mapping_dict: nmatch = len(mapping_dict[match]) if max_match < nmatch: max_match = nmatch out_array = np.zeros((len(aca_table), max_match + 1), dtype=int) for match in mapping_dict: nmatch = len(mapping_dict[match]) out_array[match, 0] = match out_array[match, 1:nmatch + 1] = mapping_dict[match] if nmatch < max_match: out_array[match, nmatch + 1:] = (2 - nmatch) * [-1] columns = ['ACA_IDX'] + [f'IRAM_IDX_{i +1 }' for i in range(max_match)] match_table = Table(data=out_array, names=columns) match_table.write(f"{aca_path}/cprops_12CO21/M33_ACA_12CO21_0p7kms_fullmosaic_roundbeam.image_K_M33_co21.GMCcat_mapto_IRAM.fits", overwrite=True)
[ "astropy.table.Table", "numpy.where", "astropy.coordinates.SkyCoord", "numpy.argsort", "os.path.expanduser", "astropy.table.Table.read" ]
[((421, 463), 'os.path.expanduser', 'os.path.expanduser', (['"""~/bigdata/ekoch/M33/"""'], {}), "('~/bigdata/ekoch/M33/')\n", (439, 463), False, 'import os\n'), ((525, 610), 'astropy.table.Table.read', 'Table.read', (['f"""{data_path}/Corbelli_17_catalogues/J_A+A_601_A146_table5.dat.fits"""'], {}), "(f'{data_path}/Corbelli_17_catalogues/J_A+A_601_A146_table5.dat.fits'\n )\n", (535, 610), False, 'from astropy.table import Table\n'), ((619, 743), 'astropy.table.Table.read', 'Table.read', (['f"""{aca_path}/cprops_12CO21/M33_ACA_12CO21_0p7kms_fullmosaic_roundbeam.image_K_M33_co21_m33_props.fits"""'], {}), "(\n f'{aca_path}/cprops_12CO21/M33_ACA_12CO21_0p7kms_fullmosaic_roundbeam.image_K_M33_co21_m33_props.fits'\n )\n", (629, 743), False, 'from astropy.table import Table\n'), ((873, 945), 'astropy.coordinates.SkyCoord', 'SkyCoord', (["corbelli_table['RAdeg']", "corbelli_table['DEdeg']"], {'frame': '"""icrs"""'}), "(corbelli_table['RAdeg'], corbelli_table['DEdeg'], frame='icrs')\n", (881, 945), False, 'from astropy.coordinates import SkyCoord\n'), ((2759, 2795), 'astropy.table.Table', 'Table', ([], {'data': 'out_array', 'names': 'columns'}), '(data=out_array, names=columns)\n', (2764, 2795), False, 'from astropy.table import Table\n'), ((1129, 1228), 'astropy.coordinates.SkyCoord', 'SkyCoord', (["(aca_table['XCTR_DEG'][idx] * u.deg)", "(aca_table['YCTR_DEG'][idx] * u.deg)"], {'frame': '"""icrs"""'}), "(aca_table['XCTR_DEG'][idx] * u.deg, aca_table['YCTR_DEG'][idx] * u\n .deg, frame='icrs')\n", (1137, 1228), False, 'from astropy.coordinates import SkyCoord\n'), ((1780, 1803), 'numpy.argsort', 'np.argsort', (['match_dists'], {}), '(match_dists)\n', (1790, 1803), True, 'import numpy as np\n'), ((1581, 1617), 'numpy.where', 'np.where', (['(dist_matrix[idx] < max_sep)'], {}), '(dist_matrix[idx] < max_sep)\n', (1589, 1617), True, 'import numpy as np\n')]
# -*- coding:utf-8 -*- import os import shutil import subprocess import time import pytest from Basic import Log # 清空app缓存数据 # os.system("adb shell pm clear com.baoneng.appstore") # 给虚拟机设置网络 # os.system("adb shell setprop net.dns1 192.168.1.1") # 判断测试结果数据所在目录是否存在日志,有则删除日志 # file = 'result' # files = os.listdir(file) # for i in files: # if i.endswith(".json"): # os.remove(os.path.join(file + '//' +i)) PATH = os.path.split(os.path.realpath(__file__))[0] xml_report_path = PATH + "/result/xml" html_report_path = PATH + "/report/html" tm = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime(time.time())) def invoke(md): output, errors = subprocess.Popen(md, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate() o = output.decode("utf-8") return o if __name__ == '__main__': log = Log.MyLog() log.info("-----------------------------START: %s----------------------------------" % tm) shutil.rmtree(xml_report_path) args = ['-s', '-v', '测试用例路径', '--alluredir', xml_report_path] pytest.main(args) cmd = 'allure generate %s -o %s --clean' % (xml_report_path, html_report_path) invoke(cmd) log.info("-----------------------------END: %s------------------------------------" % tm) os.system("allure open report/html")
[ "subprocess.Popen", "pytest.main", "Basic.Log.MyLog", "os.path.realpath", "shutil.rmtree", "os.system", "time.time" ]
[((838, 849), 'Basic.Log.MyLog', 'Log.MyLog', ([], {}), '()\n', (847, 849), False, 'from Basic import Log\n'), ((948, 978), 'shutil.rmtree', 'shutil.rmtree', (['xml_report_path'], {}), '(xml_report_path)\n', (961, 978), False, 'import shutil\n'), ((1049, 1066), 'pytest.main', 'pytest.main', (['args'], {}), '(args)\n', (1060, 1066), False, 'import pytest\n'), ((1264, 1300), 'os.system', 'os.system', (['"""allure open report/html"""'], {}), "('allure open report/html')\n", (1273, 1300), False, 'import os\n'), ((442, 468), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (458, 468), False, 'import os\n'), ((608, 619), 'time.time', 'time.time', ([], {}), '()\n', (617, 619), False, 'import time\n'), ((661, 746), 'subprocess.Popen', 'subprocess.Popen', (['md'], {'shell': '(True)', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), '(md, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE\n )\n', (677, 746), False, 'import subprocess\n')]
import torch import math # definition of the general Module class class Module(object): def forward(self, *input): raise NotImplementedError def backward(self, *gradwrtoutput): raise NotImplementedError def param(self): return [] # definition of the general Linear class class Linear(Module): def __init__(self, input_dim, output_dim): super().__init__() self.input = 0 # init the weight tensor self.weight = torch.Tensor(input_dim, output_dim).normal_() # init the bias tensor self.bias = torch.Tensor(1, output_dim).normal_() # init the derivative tensors self.dl_dw = torch.Tensor(self.weight.size()) self.dl_db = torch.Tensor(self.bias.size()) def forward(self, input): # store the input for the backward step self.input = input output = self.input.mm(self.weight) + self.bias return output def backward(self, grdwrtoutput): self.dl_dw += self.input.t().mm(grdwrtoutput) self.dl_db += grdwrtoutput.mean(0) * self.input.size(0) output = grdwrtoutput.mm(self.weight.t()) return output def param(self): # store the pairs of weights and derivatives return [(self.weight, self.dl_dw), (self.bias, self.dl_db)] # definition of the general ReLu class : max(0, x) class ReLu(Module): def __init__(self): super().__init__() self.s = 0 def forward(self, input): self.s = input return input.clamp(min=0.0) def backward(self, grdwrtoutput): drelu = self.s.sign().clamp(min=0.0) return grdwrtoutput * drelu def param(self): return [] # definition of the general LeakyReLu class : max(alpha*x, x) class LeakyReLu(Module): def __init__(self, alpha=0.01): super().__init__() self.s = 0 self.alpha = alpha def forward(self, input): self.s = input return input.clamp(min=0.0) + self.alpha*input.clamp(max=0.0) def backward(self, grdwrtoutput): drelu = torch.ones(self.s.size()) drelu[self.s < 0] = self.alpha return grdwrtoutput * drelu def param(self): return [] # definition of the general tanh class class Tanh(Module): def __init__(self): super().__init__() self.s = 0 def forward(self, input): self.s = input return input.tanh() # call the func def backward(self, grdwrtoutput): dtanh = 1 - self.s.tanh().pow(2) # formula of deriv of tanh return grdwrtoutput * dtanh def param(self): return [] # definition of the general sigmoid class class Sigmoid(Module): def __init__(self): super().__init__() self.s = 0 def forward(self, input): self.s = input return self.sigmoid_f(input) # call the sigmoid func below def backward(self, grdwrtoutput): dsigmoid = self.sigmoid_f(self.s) * (1 - self.sigmoid_f(self.s)) return grdwrtoutput * dsigmoid def sigmoid_f(self, x): return 1 / (1 + torch.exp(-x)) def param(self): return [] # definition of the general Sequential class class Sequential(Module): def __init__(self, modules): super().__init__() self.modules = modules def add_module(self, ind, module): # add the module to the list of modules self.modules.append(module) return module def forward(self, input): output = input for module in self.modules: # apply forward of each module to the input output = module.forward(output) return output def backward(self, grdwrtoutput): output = grdwrtoutput for module in self.modules[::-1]: # apply backward of each module in reverse order output = module.backward(output) def param(self): parameters = [] for module in self.modules: # append all the parameters of all the modules parameters.append(module.param()) return parameters # definition of the general SGD class class SGD(): def __init__(self, params, lr, reduce_lr_patience, reduce_lr_factor, early_stop_patience, monitor='val'): self.params = params # the parameters of the model self.lr = lr # the learning rate self.plateau_counter = 0 # the counter to know since how many epochs we are stucked in a local minima self.reduce_lr_patience = reduce_lr_patience # the number of epochs to wait stucked before reducing the learning rate self.reduce_lr_factor = reduce_lr_factor # the factor by which we reduce the learning rate self.early_stop_patience = early_stop_patience # the number of epochs to wait stucked before stopping the learning self.monitor = monitor # the loss to monitor (validation or training) # perform the gradient descent step def step(self): for module in self.params: for weight, grad in module: # remove from weight learningrate*grad for each module in each param (perform gradient descent) weight -= self.lr * grad # reset the gradients to zero def zero_grad(self): for module in self.params: for weight, grad in module: grad.zero_() # reduce the learning rate based on the monitored loss def reduce_lr_on_plateau(self, loss): # if the feature is enabled if self.reduce_lr_patience is not None: self.plateau_counter += 1 # if the last value of val_loss is equal to the min, then reset the counter if loss[-1] == min(loss): self.plateau_counter = 0 # if counter bigger than the patience, reset and mul learning rate by reducing factor elif self.plateau_counter > self.reduce_lr_patience: self.plateau_counter = 0 self.lr *= self.reduce_lr_factor print('New lr:', self.lr) # stop the training based on the monitored loss def early_stopping(self, loss): # if the feature is enabled if self.early_stop_patience is None: return False return torch.Tensor(loss).argmin() < len(loss) - self.early_stop_patience # definition of the mean squared loss class LossMSE(Module): def __init__(self): super().__init__() def forward(self, y_pred, y): return 0.5 * (y_pred - y.float()).pow(2).mean(1).sum() def backward(self, y_pred, y): return (y_pred - y.float()) / y.size(1) def param(self): return [] # function for the training of the model def train_model(model, optimizer, X_train, y_train, X_val, y_val, epochs, batch_size): all_train_loss = [] all_train_acc = [] all_val_loss = [] all_val_acc = [] for epoch in range(epochs): # Training ------------------------------------------------------------------------------- train_loss = 0 train_errors = 0 for b in range(0, X_train.size(0), batch_size): # begin by setting all grad of the optimizer to 0 optimizer.zero_grad() x = X_train[b:b+batch_size] y = y_train[b:b+batch_size] # will call forward of all modules of the model (Sequential) output = model.forward(x) # number of errors on training set train_errors += (output.argmax(1) != y.argmax(1)).sum() # compute the loss and its derivatives train_loss += LossMSE().forward(output, y.float()) dl_dloss = LossMSE().backward(output, y.float()) # will call backward of all modules of the model (Sequential) model.backward(dl_dloss) # perform the optimization step (gradient descent) optimizer.step() # store the training loss and accuracy train_loss = train_loss.item() / X_train.size(0) all_train_loss.append(train_loss) all_train_acc.append(1 - float(train_errors) / X_train.size(0)) # Validation -------------------------------------------------------------------------------- val_loss = 0 val_errors = 0 for b in range(0, X_val.size(0), batch_size): x = X_val[b:b+batch_size] y = y_val[b:b+batch_size] # will call forward of all modules of the model (Sequential) output = model.forward(x) # number of errors on the validation set val_errors += (output.argmax(1) != y.argmax(1)).sum() # compute the validation loss val_loss += LossMSE().forward(output, y.float()) # store the validation loss and accuracy val_loss = val_loss.item() / X_val.size(0) all_val_loss.append(val_loss) all_val_acc.append(1 - float(val_errors) / X_val.size(0)) if epoch % (epochs//20) == 0: print('Epoch: {}: train -> {:.5f}, validation -> {:.5f}'.format(epoch, train_loss, val_loss)) # base on the loss to monitor, reduce learning size or stop earlier if needed loss_to_analyse = all_val_loss if optimizer.monitor == 'val' else all_train_loss optimizer.reduce_lr_on_plateau(loss_to_analyse) if optimizer.early_stopping(loss_to_analyse): print('Early Stopping') break return all_train_loss, all_train_acc, all_val_loss, all_val_acc # function for testing the model def test_model(model, X_test, y_test, batch_size): test_errors = 0 for b in range(0, X_test.size(0), batch_size): x = X_test[b:b+batch_size] y = y_test[b:b+batch_size] # we compute the output by forwarding in all modules output = model.forward(x) # number of errors for this batch test_errors += (output.argmax(1) != y.argmax(1)).sum() test_acc = 1 - float(test_errors)/X_test.size(0) return test_acc # function to generate n data uniformly in [0,1]² X, and labels Y # depending of position outside (0) of disk of radius 1/sqrt(2*pi) else val 1 def generate_data(n): X = torch.empty(n, 2).uniform_() y = (((X[:, 0]-0.5).pow(2) + (X[:, 1]-0.5).pow(2)) <= 1 / (2*math.pi)).long().view(-1, 1) # circle centered at 0.5, 0.5 return X, y # function to normalize data def normalize(data): return (data - data.mean(0)) / data.std(0) # function that splits dataset given in two, with percentage # and possibility of shuffling def split_train_test(X, y, train_size=0.8, shuffle=True): if shuffle: perm = torch.randperm(X.size(0)) X = X[perm] y = y[perm] cut = int(train_size * X.size(0)) X_train = X[:cut] y_train = y[:cut] X_val = X[cut:] y_val = y[cut:] return X_train, y_train, X_val, y_val # function that takes labels and one hot encode them def one_hot_encode(y): one_hot = torch.empty(y.size(0), 2).zero_() one_hot[torch.arange(y.size(0)), y[:, 0]] = 1 return one_hot
[ "torch.empty", "torch.exp", "torch.Tensor" ]
[((10193, 10210), 'torch.empty', 'torch.empty', (['n', '(2)'], {}), '(n, 2)\n', (10204, 10210), False, 'import torch\n'), ((487, 522), 'torch.Tensor', 'torch.Tensor', (['input_dim', 'output_dim'], {}), '(input_dim, output_dim)\n', (499, 522), False, 'import torch\n'), ((584, 611), 'torch.Tensor', 'torch.Tensor', (['(1)', 'output_dim'], {}), '(1, output_dim)\n', (596, 611), False, 'import torch\n'), ((3112, 3125), 'torch.exp', 'torch.exp', (['(-x)'], {}), '(-x)\n', (3121, 3125), False, 'import torch\n'), ((6274, 6292), 'torch.Tensor', 'torch.Tensor', (['loss'], {}), '(loss)\n', (6286, 6292), False, 'import torch\n')]
__doc__ = """ QCP rotation calculation This is an RMSD and optimal rotation calculator, written in pure Python. The goal of this is to allow the code to be run in a JIT compiler such as PyPy, Jython that cannot interface with extern C modules, such as numpy. The algorithm was originally developed by D<NAME>obald as a C module, [qcp][qcp], which solves the eigenvalue decomposition in quaternion space, and thus avoids the expensive SVD decomposition of 3D rotational matrices. The current code is based on a Cython adaption of qcp, [pyqcprot][pyqcprot], written by <NAME>. [pyqcprot]: https://github.com/synapticarbors/pyqcprot [qcp]: http://theobald.brandeis.edu/qcp/ References: <NAME>. (2005) "Rapid calculation of RMSD using a quaternion- based characteristic polynomial." Acta Crystallographica A. 61(4):478-480 <NAME>, <NAME> and <NAME>. (2010) "Fast determination of the optimal rotational matrix for macromolecular superpositions."J. Comput. Chem. 31, 1561-1563 <NAME> (2011) "Pyqcprot" https://github.com/synapticarbors/pyqcprot # BSD License ----------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- """ import math def make_correlation_matrix(coords1, coords2): """ Returns E0, and A, a 3x3 matrix reprsented as a list of 9 values, which represents the correlation matrix between the coords. E0 is the static component of the RMSD, which is half the sum of the squared lengths of the coordinate vectors. Parameters: - coords1, coords2: a list of 3 floats, a list of N coordinates """ N = len(coords1) assert N == len(coords2) G1 = 0.0 G2 = 0.0 A = [0.0 for i in range(9)] for i in xrange(N): x1 = coords1[i][0] y1 = coords1[i][1] z1 = coords1[i][2] G1 += (x1*x1 + y1*y1 + z1*z1) x2 = coords2[i][0] y2 = coords2[i][1] z2 = coords2[i][2] G2 += (x2*x2 + y2*y2 + z2*z2) A[0] += (x1 * x2) A[1] += (x1 * y2) A[2] += (x1 * z2) A[3] += (y1 * x2) A[4] += (y1 * y2) A[5] += (y1 * z2) A[6] += (z1 * x2) A[7] += (z1 * y2) A[8] += (z1 * z2) E0 = (G1 + G2) * 0.5 return E0, A def calc_rms_rot(coords1, coords2): """ Returns rms and a list of 9 values that represents a rotation matrix. Args: coords1, coords2: a list of 3 floats, representing an Nx3 matrix, or a list of N set of coordinate vectors. """ E0, A = make_correlation_matrix(coords1, coords2) N = len(coords1) oldg = 0.0 evecprec = 1e-6 evalprec = 1e-14 Sxx = A[0] Sxy = A[1] Sxz = A[2] Syx = A[3] Syy = A[4] Syz = A[5] Szx = A[6] Szy = A[7] Szz = A[8] Sxx2 = Sxx * Sxx Syy2 = Syy * Syy Szz2 = Szz * Szz Sxy2 = Sxy * Sxy Syz2 = Syz * Syz Sxz2 = Sxz * Sxz Syx2 = Syx * Syx Szy2 = Szy * Szy Szx2 = Szx * Szx SyzSzymSyySzz2 = 2.0*(Syz*Szy - Syy*Szz) Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2 C = [0.0 for i in range(3)] C[2] = -2.0 * (Sxx2 + Syy2 + Szz2 + Sxy2 + Syx2 + Sxz2 + Szx2 + Syz2 + Szy2) C[1] = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz) SxzpSzx = Sxz + Szx SyzpSzy = Syz + Szy SxypSyx = Sxy + Syx SyzmSzy = Syz - Szy SxzmSzx = Sxz - Szx SxymSyx = Sxy - Syx SxxpSyy = Sxx + Syy SxxmSyy = Sxx - Syy Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2 C[0] = (Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2 + (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2) + (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz)) + (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz)) + (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz)) + (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz))) mxEigenV = E0 n_iter = 50 for i in range(n_iter): oldg = mxEigenV x2 = mxEigenV*mxEigenV b = (x2 + C[2])*mxEigenV a = b + C[1] delta = ((a*mxEigenV + C[0])/(2.0*x2*mxEigenV + b + a)) mxEigenV -= delta if (abs(mxEigenV - oldg) < abs((evalprec)*mxEigenV)): break else: raise Exception("More iterations needed to find eigenvalue") val = 2.0 * (E0 - mxEigenV)/float(N) if abs(val) < evecprec: rms = 0.0 else: rms = math.sqrt(val) rot = [0.0 for i in range(9)] a11 = SxxpSyy + Szz-mxEigenV a12 = SyzmSzy a13 = - SxzmSzx a14 = SxymSyx a21 = SyzmSzy a22 = SxxmSyy - Szz-mxEigenV a23 = SxypSyx a24= SxzpSzx a31 = a13 a32 = a23 a33 = Syy-Sxx-Szz - mxEigenV a34 = SyzpSzy a41 = a14 a42 = a24 a43 = a34 a44 = Szz - SxxpSyy - mxEigenV a3344_4334 = a33 * a44 - a43 * a34 a3244_4234 = a32 * a44-a42*a34 a3243_4233 = a32 * a43 - a42 * a33 a3143_4133 = a31 * a43-a41*a33 a3144_4134 = a31 * a44 - a41 * a34 a3142_4132 = a31 * a42-a41*a32 q1 = a22*a3344_4334-a23*a3244_4234+a24*a3243_4233 q2 = -a21*a3344_4334+a23*a3144_4134-a24*a3143_4133 q3 = a21*a3244_4234-a22*a3144_4134+a24*a3142_4132 q4 = -a21*a3243_4233+a22*a3143_4133-a23*a3142_4132 qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4 # The following code tries to calculate another column in the adjoint # matrix when the norm of the current column is too small. Usually # this commented block will never be activated. To be absolutely safe # this should be uncommented, but it is most likely unnecessary. if (qsqr < evecprec): q1 = a12*a3344_4334 - a13*a3244_4234 + a14*a3243_4233 q2 = -a11*a3344_4334 + a13*a3144_4134 - a14*a3143_4133 q3 = a11*a3244_4234 - a12*a3144_4134 + a14*a3142_4132 q4 = -a11*a3243_4233 + a12*a3143_4133 - a13*a3142_4132 qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4 if (qsqr < evecprec): a1324_1423 = a13 * a24 - a14 * a23 a1224_1422 = a12 * a24 - a14 * a22 a1223_1322 = a12 * a23 - a13 * a22 a1124_1421 = a11 * a24 - a14 * a21 a1123_1321 = a11 * a23 - a13 * a21 a1122_1221 = a11 * a22 - a12 * a21 q1 = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322 q2 = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321 q3 = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221 q4 = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221 qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4 if (qsqr < evecprec): q1 = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322 q2 = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321 q3 = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221 q4 = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221 qsqr = q1*q1 + q2 *q2 + q3*q3 + q4*q4 if (qsqr < evecprec): # if qsqr is still too small, return the identity matrix. # rot[0] = rot[4] = rot[8] = 1.0 rot[1] = rot[2] = rot[3] = rot[5] = rot[6] = rot[7] = 0.0 return rms, rot normq = math.sqrt(qsqr) q1 /= normq q2 /= normq q3 /= normq q4 /= normq a2 = q1 * q1 x2 = q2 * q2 y2 = q3 * q3 z2 = q4 * q4 xy = q2 * q3 az = q1 * q4 zx = q4 * q2 ay = q1 * q3 yz = q3 * q4 ax = q1 * q2 rot[0] = a2 + x2 - y2 - z2 rot[1] = 2 * (xy + az) rot[2] = 2 * (zx - ay) rot[3] = 2 * (xy - az) rot[4] = a2 - x2 + y2 - z2 rot[5] = 2 * (yz + ax) rot[6] = 2 * (zx + ay) rot[7] = 2 * (yz - ax) rot[8] = a2 - x2 - y2 + z2 return rms, rot
[ "math.sqrt" ]
[((8490, 8505), 'math.sqrt', 'math.sqrt', (['qsqr'], {}), '(qsqr)\n', (8499, 8505), False, 'import math\n'), ((5899, 5913), 'math.sqrt', 'math.sqrt', (['val'], {}), '(val)\n', (5908, 5913), False, 'import math\n')]
# Copyright (C) 2017 MetaBrainz Foundation # Distributed under the MIT license, see the LICENSE file for details. # Simple WSGI module intended to be used by uWSGI. from artwork_redirect.server import Server from artwork_redirect.config import load_config from artwork_redirect.loggers import init_raven_client config = load_config() sentry_dsn = config.sentry.dsn if sentry_dsn: init_raven_client(sentry_dsn) application = Server(config)
[ "artwork_redirect.config.load_config", "artwork_redirect.loggers.init_raven_client", "artwork_redirect.server.Server" ]
[((324, 337), 'artwork_redirect.config.load_config', 'load_config', ([], {}), '()\n', (335, 337), False, 'from artwork_redirect.config import load_config\n'), ((434, 448), 'artwork_redirect.server.Server', 'Server', (['config'], {}), '(config)\n', (440, 448), False, 'from artwork_redirect.server import Server\n'), ((389, 418), 'artwork_redirect.loggers.init_raven_client', 'init_raven_client', (['sentry_dsn'], {}), '(sentry_dsn)\n', (406, 418), False, 'from artwork_redirect.loggers import init_raven_client\n')]
from keepa_request import get_varies import pandas as pd import datetime import pymysql def stock_handle(file): stock_list = [] # data = pd.read_excel(file) # asin_list = data['asin'].tolist() asin_list = ['B07XFCX2Z5'] for asin in asin_list: stock_list.extend(get_varies(asin)) print(stock_list) aft = "./data/stock_" + datetime.datetime.now().strftime("%m%d%H%M") data_pd = pd.DataFrame(stock_list, columns=['parent_asin', 'asin', 'style', 'stock', 'model']) data_pd.drop_duplicates(subset=['asin'], inplace=True) data_pd.to_excel(aft + '.xlsx') conn = pymysql.connect(host='localhost', port=3306, db='amazon_test', user='root', passwd='<PASSWORD>') cs = conn.cursor() for each in data_pd.values.tolist(): parent_asin, asin, style, stock, model = each stock_date = datetime.datetime.now() insert_sql = "INSERT INTO amazon_test.amazon_stock(parent_asin, asin, style, stock, model, stock_date) VALUES" \ "(%s,%s,%s,%s,%s,%s)" count = cs.execute(insert_sql, (parent_asin, asin, style, stock, model, stock_date)) print(count) try: conn.commit() except: conn.rollback() cs.close() if __name__ == '__main__': file = r'E:\爬虫pycharm\data\goods_detail\目标产品.xlsx' stock_handle(file)
[ "pandas.DataFrame", "datetime.datetime.now", "pymysql.connect", "keepa_request.get_varies" ]
[((422, 510), 'pandas.DataFrame', 'pd.DataFrame', (['stock_list'], {'columns': "['parent_asin', 'asin', 'style', 'stock', 'model']"}), "(stock_list, columns=['parent_asin', 'asin', 'style', 'stock',\n 'model'])\n", (434, 510), True, 'import pandas as pd\n'), ((614, 714), 'pymysql.connect', 'pymysql.connect', ([], {'host': '"""localhost"""', 'port': '(3306)', 'db': '"""amazon_test"""', 'user': '"""root"""', 'passwd': '"""<PASSWORD>"""'}), "(host='localhost', port=3306, db='amazon_test', user='root',\n passwd='<PASSWORD>')\n", (629, 714), False, 'import pymysql\n'), ((850, 873), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (871, 873), False, 'import datetime\n'), ((290, 306), 'keepa_request.get_varies', 'get_varies', (['asin'], {}), '(asin)\n', (300, 306), False, 'from keepa_request import get_varies\n'), ((363, 386), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (384, 386), False, 'import datetime\n')]
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Unit tests for security_hub_custom_framework.py. """ import boto3 from botocore.exceptions import ClientError import pytest from security_hub_custom_framework import SecurityHub @pytest.mark.parametrize('tokens, error_code, stop_on_action', [ ([None, None], None, None), ([None, '1', None], None, None), ([None, None], 'TestException', 'stub_list_controls')]) def test_get_sechub_controls( make_stubber, stub_runner, tokens, error_code, stop_on_action): auditmanager_client = boto3.client('auditmanager') auditmanager_stubber = make_stubber(auditmanager_client) sechub = SecurityHub(auditmanager_client) control_list = [f'ctl-{"1"*36}', f'ctl-{"2"*36}'] ctl_sets = 0 with stub_runner(error_code, stop_on_action) as runner: for i_token in range(len(tokens) - 1): ctl_sets += 1 runner.add( auditmanager_stubber.stub_list_controls, 'Standard', 100, tokens[i_token:i_token+2], control_list) for ctl in control_list: runner.add( auditmanager_stubber.stub_get_control, ctl, 'AWS Security Hub') if error_code is None: got_control_list = sechub.get_sechub_controls() assert [ctl['id'] for ctl in got_control_list] == control_list * ctl_sets else: with pytest.raises(ClientError) as exc_info: sechub.get_sechub_controls() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_create_custom_framework(make_stubber, error_code): auditmanager_client = boto3.client('auditmanager') auditmanager_stubber = make_stubber(auditmanager_client) sechub = SecurityHub(auditmanager_client) controls = [{'id': f'ctl-{index*36}'} for index in ['1', '2']] control_sets = [{'name': 'Security-Hub', 'controls': controls}] fw = {'name': 'All Security Hub Controls Framework', 'id': f'fw-{"1"*36}'} auditmanager_stubber.stub_create_assessment_framework( fw['name'], control_sets, fw['id'], error_code=error_code) if error_code is None: sechub.create_custom_framework(controls) else: with pytest.raises(ClientError) as exc_info: sechub.create_custom_framework(controls) assert exc_info.value.response['Error']['Code'] == error_code
[ "pytest.mark.parametrize", "boto3.client", "pytest.raises", "security_hub_custom_framework.SecurityHub" ]
[((295, 483), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""tokens, error_code, stop_on_action"""', "[([None, None], None, None), ([None, '1', None], None, None), ([None, None],\n 'TestException', 'stub_list_controls')]"], {}), "('tokens, error_code, stop_on_action', [([None, None\n ], None, None), ([None, '1', None], None, None), ([None, None],\n 'TestException', 'stub_list_controls')])\n", (318, 483), False, 'import pytest\n'), ((1624, 1686), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""error_code"""', "[None, 'TestException']"], {}), "('error_code', [None, 'TestException'])\n", (1647, 1686), False, 'import pytest\n'), ((616, 644), 'boto3.client', 'boto3.client', (['"""auditmanager"""'], {}), "('auditmanager')\n", (628, 644), False, 'import boto3\n'), ((719, 751), 'security_hub_custom_framework.SecurityHub', 'SecurityHub', (['auditmanager_client'], {}), '(auditmanager_client)\n', (730, 751), False, 'from security_hub_custom_framework import SecurityHub\n'), ((1773, 1801), 'boto3.client', 'boto3.client', (['"""auditmanager"""'], {}), "('auditmanager')\n", (1785, 1801), False, 'import boto3\n'), ((1876, 1908), 'security_hub_custom_framework.SecurityHub', 'SecurityHub', (['auditmanager_client'], {}), '(auditmanager_client)\n', (1887, 1908), False, 'from security_hub_custom_framework import SecurityHub\n'), ((1470, 1496), 'pytest.raises', 'pytest.raises', (['ClientError'], {}), '(ClientError)\n', (1483, 1496), False, 'import pytest\n'), ((2351, 2377), 'pytest.raises', 'pytest.raises', (['ClientError'], {}), '(ClientError)\n', (2364, 2377), False, 'import pytest\n')]
# -*- coding: utf-8 -*- if 'test' not in __import__('sys').argv[0]: import gevent.monkey gevent.monkey.patch_all() from couchdb import Server as CouchdbServer, Session from logging import getLogger from openprocurement.edge.utils import ( add_logging_context, set_logging_context, prepare_couchdb, prepare_couchdb_views, beforerender, request_params, set_renderer ) LOGGER = getLogger("{}.init".format(__name__)) from pyramid.config import Configurator from pyramid.events import NewRequest, BeforeRender, ContextFound from pyramid.renderers import JSON, JSONP from pyramid.settings import asbool VALIDATE_DOC_ID = '_design/_auth' VALIDATE_DOC_UPDATE = """function(newDoc, oldDoc, userCtx){ if(newDoc._deleted && newDoc.tenderID) { throw({forbidden: 'Not authorized to delete this document'}); } if(userCtx.roles.indexOf('_admin') !== -1 && newDoc._id.indexOf('_design/') === 0) { return; } if(userCtx.name === '%s') { return; } else { throw({forbidden: 'Only authorized user may edit the database'}); } }""" class Server(CouchdbServer): _uuid = None @property def uuid(self): """The uuid of the server. :rtype: basestring """ if self._uuid is None: _, _, data = self.resource.get_json() self._uuid = data['uuid'] return self._uuid def main(global_config, **settings): version = settings.get('api_version') route_prefix = '/api/{}'.format(version) config = Configurator( autocommit=True, settings=settings, route_prefix=route_prefix, ) config.include('pyramid_exclog') config.include("cornice") config.add_request_method(request_params, 'params', reify=True) config.add_renderer('prettyjson', JSON(indent=4)) config.add_renderer('jsonp', JSONP(param_name='opt_jsonp')) config.add_renderer('prettyjsonp', JSONP(indent=4, param_name='opt_jsonp')) config.add_subscriber(add_logging_context, NewRequest) config.add_subscriber(set_logging_context, ContextFound) config.add_subscriber(set_renderer, NewRequest) config.add_subscriber(beforerender, BeforeRender) config.scan("openprocurement.edge.views.spore") config.scan("openprocurement.edge.views.health") resources = settings.get('resources') and settings['resources'].split(',') couch_url = settings.get('couchdb.url') + settings.get('couchdb.db_name') for resource in resources: config.scan("openprocurement.edge.views." + resource) prepare_couchdb_views(couch_url, resource, LOGGER) LOGGER.info('Push couch {} views successful.'.format(resource)) LOGGER.info('{} resource initialized successful.'.format(resource.title())) # CouchDB connection server = Server(settings.get('couchdb.url'), session=Session(retry_delays=range(10))) config.registry.couchdb_server = server config.registry.db = prepare_couchdb(settings.get('couchdb.url'), settings.get('couchdb.db_name'), LOGGER) config.registry.server_id = settings.get('id', '') config.registry.health_threshold = float(settings.get('health_threshold', 99)) config.registry.api_version = version config.registry.update_after = asbool(settings.get('update_after', True)) return config.make_wsgi_app()
[ "pyramid.config.Configurator", "openprocurement.edge.utils.prepare_couchdb_views", "pyramid.renderers.JSON", "pyramid.renderers.JSONP" ]
[((1550, 1625), 'pyramid.config.Configurator', 'Configurator', ([], {'autocommit': '(True)', 'settings': 'settings', 'route_prefix': 'route_prefix'}), '(autocommit=True, settings=settings, route_prefix=route_prefix)\n', (1562, 1625), False, 'from pyramid.config import Configurator\n'), ((1830, 1844), 'pyramid.renderers.JSON', 'JSON', ([], {'indent': '(4)'}), '(indent=4)\n', (1834, 1844), False, 'from pyramid.renderers import JSON, JSONP\n'), ((1879, 1908), 'pyramid.renderers.JSONP', 'JSONP', ([], {'param_name': '"""opt_jsonp"""'}), "(param_name='opt_jsonp')\n", (1884, 1908), False, 'from pyramid.renderers import JSON, JSONP\n'), ((1949, 1988), 'pyramid.renderers.JSONP', 'JSONP', ([], {'indent': '(4)', 'param_name': '"""opt_jsonp"""'}), "(indent=4, param_name='opt_jsonp')\n", (1954, 1988), False, 'from pyramid.renderers import JSON, JSONP\n'), ((2580, 2630), 'openprocurement.edge.utils.prepare_couchdb_views', 'prepare_couchdb_views', (['couch_url', 'resource', 'LOGGER'], {}), '(couch_url, resource, LOGGER)\n', (2601, 2630), False, 'from openprocurement.edge.utils import add_logging_context, set_logging_context, prepare_couchdb, prepare_couchdb_views, beforerender, request_params, set_renderer\n')]
import numpy as np import matplotlib.pyplot as plt import networkx as nx import os import pickle import sys import glob from scipy.linalg import polar from numpy import linalg as LA import moviepy.editor as mp import imageio ########################################################################################## def get_frame_matrix(folder_name, frame): """Get the npy matrix for a frame of the movie.""" if frame < 10: file_root = '_matrices/frame-000%i'%(frame) elif frame < 100: file_root = '_matrices/frame-00%i'%(frame) else: file_root = '_matrices/frame-0%i'%(frame) root = 'ALL_MOVIES_MATRICES/' + folder_name + file_root + '.npy' raw_img = np.load(root) return raw_img ########################################################################################## def compute_frame_OOP(folder_name,frame_num): """Given a specific frame, compute Orientation Order Parameter (OOP) of the frame.""" num_frames = len(glob.glob('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')) out_file = 'ALL_MOVIES_PROCESSED' + '/' + folder_name + '/segmented_sarc' ang = [] dat_fname = out_file + '/frame-%04d_sarc_data.txt'%(frame_num) dat = np.loadtxt(dat_fname) ang_dat = dat[:,6] for jj in range(0,ang_dat.shape[0]): val = ang_dat[jj] ang.append(val) mat = np.zeros((2,2)) for kk in range(0,len(ang)): x = np.cos(ang[kk]) y = np.sin(ang[kk]) vec = np.asarray([x,y]) n = np.outer(vec,vec) mat += 2.0*n - np.asarray([[1,0],[0,1]]) mat = mat / len(ang) u, v = np.linalg.eig(mat) OOP = np.max(u) OOP_vec = v[:,np.argmax(u)] return OOP, OOP_vec ########################################################################################## def compute_frame_F(folder_name,frame_0,frame_t): """Compute the average deformation gradient given frame 0 and current frame.""" x_pos = np.loadtxt('ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/tracking_results_x_pos.txt') y_pos = np.loadtxt('ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/tracking_results_y_pos.txt') num_sarc = x_pos.shape[0] num_time = x_pos.shape[1] num_vec = int((num_sarc * num_sarc - num_sarc) / 2.0) Lambda_0 = np.zeros((2,num_vec)) ix = 0 for kk in range(0,num_sarc): for jj in range(kk+1,num_sarc): x_vec = x_pos[kk,frame_0] - x_pos[jj,frame_0] y_vec = y_pos[kk,frame_0] - y_pos[jj,frame_0] Lambda_0[0,ix] = x_vec Lambda_0[1,ix] = y_vec ix += 1 Lambda_t = np.zeros((2,num_vec)) ix = 0 for kk in range(0,num_sarc): for jj in range(kk+1,num_sarc): x_vec = x_pos[kk,frame_t] - x_pos[jj,frame_t] y_vec = y_pos[kk,frame_t] - y_pos[jj,frame_t] Lambda_t[0,ix] = x_vec Lambda_t[1,ix] = y_vec ix += 1 term_1 = np.dot( Lambda_t , np.transpose(Lambda_0) ) term_2 = np.linalg.inv( np.dot( Lambda_0 , np.transpose(Lambda_0) ) ) F = np.dot(term_1 , term_2) J = F[0,0]*F[1,1] - F[0,1]*F[1,0] return F, J ########################################################################################## def compute_all_OOP(folder_name): """Compute OOP for every frame.""" num_frames = len(glob.glob('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')) OOP_list = []; OOP_vec_list = [] for kk in range(0,num_frames): OOP, OOP_vec = compute_frame_OOP(folder_name,kk) OOP_list.append(OOP) OOP_vec_list.append(OOP_vec) return OOP_list, OOP_vec_list ########################################################################################## def compute_all_F(folder_name, reference_frame): """Compute F and J for every frame.""" num_frames = len(glob.glob('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')) F_list = []; J_list = [] for kk in range(0,num_frames): F, J = compute_frame_F(folder_name,reference_frame,kk) F_list.append(F) J_list.append(J) return F_list, J_list ########################################################################################## def compute_all_F_adjusted(folder_name): """Compute F and J for every frame. Reference frame is most relaxed frame.""" F_list, J_list = compute_all_F(folder_name, 0) reference_frame = np.argmax(J_list) F_list, J_list = compute_all_F(folder_name, reference_frame) return F_list, J_list, reference_frame ########################################################################################## def visualize_OOP_and_F_timeseries(OOP_list,J_list,folder_name): """Plot timeseries.""" external_folder_name = 'ALL_MOVIES_PROCESSED' out_analysis = external_folder_name + '/' + folder_name + '/analysis' plt.figure() plt.subplot(1,2,1) plt.plot(OOP_list) plt.xlabel('frame number') plt.ylabel('OOP') plt.tight_layout() plt.subplot(1,2,2) plt.plot(J_list) plt.xlabel('frame number') plt.ylabel('average deformation J') plt.tight_layout() plt.savefig(out_analysis + '/OOP_J_timeseries') return ########################################################################################## def visualize_OOP_and_F_on_image(folder_name, frame_num, F_list, OOP_vec_list, OOP_list): """Plot the OOP and F visualize don the image""" external_folder_name = 'ALL_MOVIES_PROCESSED' out_analysis = external_folder_name + '/' + folder_name + '/analysis' F = F_list[frame_num] J = F[0,0]*F[1,1] - F[0,1]*F[1,0] R, U = polar(F) w, v = LA.eig(U) v = np.dot(R, v) vec_1 = v[:,np.argmin(w)] vec_2 = v[:,np.argmax(w)] raw_img = get_frame_matrix(folder_name, frame_num) x_pos_mean = raw_img.shape[0]/2.0; y_pos_mean = raw_img.shape[1]/2.0 plt.figure(figsize=(5,5)) plt.imshow(raw_img, cmap=plt.cm.gray) rad = .2*np.min([raw_img.shape[0],raw_img.shape[1]]); th = np.linspace(0,2.0*np.pi,100) plt.plot([y_pos_mean-rad*vec_1[1],y_pos_mean+rad*vec_1[1]],[x_pos_mean-rad*vec_1[0],x_pos_mean+rad*vec_1[0]],'-',color=(255/255,204/255,203/255),linewidth=0.3) plt.plot([y_pos_mean-rad*vec_2[1],y_pos_mean+rad*vec_2[1]],[x_pos_mean-rad*vec_2[0],x_pos_mean+rad*vec_2[0]],'-',color=(0.5,0.5,0.5),linewidth=0.3) x_vec = []; y_vec = [] ; x_vec_circ = []; y_vec_circ = [] scale = np.asarray([[.9,0],[0,.9]]) for jj in range(0,100): v = np.asarray([rad*np.cos(th[jj]),rad*np.sin(th[jj])]) #v_def = np.dot(np.dot(F_list_mat[jj],scale),v) nest1 = np.dot(F,F); nest2 = np.dot(F,nest1); nest3 = np.dot(F,nest2) nest4 = np.dot(F,nest3); nest5 = np.dot(F,nest4); nest6 = np.dot(F,nest5) nest7 = np.dot(F,nest6); nest8 = np.dot(F,nest7) v_def = np.dot(nest8,v) x_vec.append(v_def[0] + x_pos_mean); y_vec.append(v_def[1] + y_pos_mean) x_vec_circ.append(x_pos_mean + v[0]); y_vec_circ.append(y_pos_mean + v[1]) plt.plot(y_vec_circ,x_vec_circ,'-',color=(255/255,204/255,203/255),linewidth=0.3) plt.plot(y_vec,x_vec,'-',color=(255/255,204/255,203/255),linewidth=1.0) OOP_vec = OOP_vec_list[frame_num] rad_OOP = rad*OOP_list[frame_num] plt.plot([y_pos_mean - rad_OOP*OOP_vec[1],y_pos_mean + rad_OOP*OOP_vec[1]],[x_pos_mean - rad_OOP*OOP_vec[0],x_pos_mean + rad_OOP*OOP_vec[0]],'r-',linewidth=5) plt.title('J: %.3f, OOP:%.3f, frame: %i'%(J,OOP_list[frame_num],frame_num)) ax = plt.gca() ax.set_xticks([]); ax.set_yticks([]); plt.savefig(out_analysis + '/OOP_J_on_img') return ########################################################################################## def compute_s(y_vec): y_max = np.max(y_vec) y_min = np.min(y_vec) s = (y_max - y_min) / (y_max + 1) return s ########################################################################################## ########################################################################################## def compute_s_median(y_mat): s_list = [] for kk in range(0,y_mat.shape[0]): s = compute_s(y_mat[kk,:]) s_list.append(s) return np.median(s_list), s_list ########################################################################################## def compute_shortening(folder_name): """Compute \bar{s} and s_avg, two measures of sarcomere shortening.""" external_folder_name = 'ALL_MOVIES_PROCESSED/' out_analysis = external_folder_name + '/' + folder_name + '/analysis' # timeseries data fname_leng = external_folder_name + folder_name + '/timeseries/tracking_results_leng.txt' dat_leng = np.loadtxt(fname_leng) dat_avg = np.mean(dat_leng,axis=0) s_til, s_list = compute_s_median(dat_leng) s_avg = compute_s(dat_avg) np.savetxt(out_analysis + '/s_til.txt', np.asarray([s_til])) np.savetxt(out_analysis + '/s_avg.txt', np.asarray([s_avg])) return s_til, s_avg, s_list ########################################################################################## def compute_metrics(folder_name): """Compute metrics, OOP, Ciso and C||.""" external_folder_name = 'ALL_MOVIES_PROCESSED' out_analysis = external_folder_name + '/' + folder_name + '/analysis' F_list, J_list, reference_frame = compute_all_F_adjusted(folder_name) with open(out_analysis + '/F_list.pkl', 'wb') as f: pickle.dump(F_list, f) with open(out_analysis + '/J_list.pkl', 'wb') as f: pickle.dump(J_list, f) OOP_list, OOP_vec_list = compute_all_OOP(folder_name) with open(out_analysis + '/OOP_list.pkl', 'wb') as f: pickle.dump(OOP_list, f) with open(out_analysis + '/OOP_vec_list.pkl', 'wb') as f: pickle.dump(OOP_vec_list, f) max_contract_frame = np.argmin(J_list) visualize_OOP_and_F_timeseries(OOP_list,J_list,folder_name) visualize_OOP_and_F_on_image(folder_name,max_contract_frame, F_list, OOP_vec_list, OOP_list) selected_frame = np.argmin(J_list) OOP_selected = OOP_list[selected_frame] J = J_list[selected_frame] F = F_list[selected_frame] avg_contract = 1.0 - np.sqrt(J) v = OOP_vec_list[selected_frame] v0 = np.dot(np.linalg.inv(F),v) v_abs = np.sqrt((v[0])**2.0 + (v[1])**2.0) v0_abs = np.sqrt((v0[0])**2.0 + (v0[1])**2.0) avg_aligned_contract = (v0_abs - v_abs)/v0_abs s_til, s_avg, s_list = compute_shortening(folder_name) np.savetxt(out_analysis + '/OOP.txt', np.asarray([OOP_selected])) np.savetxt(out_analysis + '/C_iso.txt',np.asarray([avg_contract])) np.savetxt(out_analysis + '/C_OOP.txt',np.asarray([avg_aligned_contract])) np.savetxt(out_analysis + '/s_til.txt',np.asarray([s_til])) np.savetxt(out_analysis + '/s_avg.txt',np.asarray([s_avg])) return OOP_selected, avg_contract, avg_aligned_contract, s_til, s_avg ########################################################################################## def compute_metrics_load_state(folder_name): """Compute metrics, OOP, Ciso and C||. Start from loaded """ external_folder_name = 'ALL_MOVIES_PROCESSED' out_analysis = external_folder_name + '/' + folder_name + '/analysis' with open(out_analysis + '/F_list.pkl', 'rb') as f: F_list = pickle.load(f) with open(out_analysis + '/J_list.pkl', 'rb') as f: J_list = pickle.load(f) with open(out_analysis + '/OOP_list.pkl', 'rb') as f: OOP_list = pickle.load(f) with open(out_analysis + '/OOP_vec_list.pkl', 'rb') as f: OOP_vec_list = pickle.load(f) max_contract_frame = np.argmin(J_list) visualize_OOP_and_F_timeseries(OOP_list,J_list,folder_name) visualize_OOP_and_F_on_image(folder_name,max_contract_frame, F_list, OOP_vec_list, OOP_list) selected_frame = np.argmin(J_list) OOP_selected = OOP_list[selected_frame] J = J_list[selected_frame] F = F_list[selected_frame] avg_contract = 1.0 - np.sqrt(J) v = OOP_vec_list[selected_frame] v0 = np.dot(np.linalg.inv(F),v) v_abs = np.sqrt((v[0])**2.0 + (v[1])**2.0) v0_abs = np.sqrt((v0[0])**2.0 + (v0[1])**2.0) avg_aligned_contract = (v0_abs - v_abs)/v0_abs np.savetxt(out_analysis + '/OOP.txt', np.asarray([OOP_selected])) np.savetxt(out_analysis + '/C_iso.txt',np.asarray([avg_contract])) np.savetxt(out_analysis + '/C_OOP.txt',np.asarray([avg_aligned_contract])) return OOP_selected, avg_contract, avg_aligned_contract ########################################################################################## def visualize_lambda_as_functional_metric(folder_name, include_eps=False): """Plot lambda 1 and lambda 2 along with a movie of the cell deforming with tracked sarcomeres marked.""" external_folder_name = 'ALL_MOVIES_PROCESSED/' out_analysis = external_folder_name + '/' + folder_name + '/analysis' # timeseries data fname_leng = external_folder_name + folder_name + '/timeseries/tracking_results_leng.txt' dat_leng = np.loadtxt(fname_leng) avg_leng = np.mean(dat_leng,axis=0) ########################################################################################## plot_info_frames_fname = 'ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/' + 'plotting_all_frames.pkl' ALL_frames_above_thresh = pickle.load( open( plot_info_frames_fname , "rb" ) ) plot_info_x_pos_fname = 'ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/' + 'plotting_all_x.pkl' ALL_x_pos_above_thresh = pickle.load( open( plot_info_x_pos_fname , "rb" ) ) plot_info_y_pos_fname = 'ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/' + 'plotting_all_y.pkl' ALL_y_pos_above_thresh = pickle.load( open( plot_info_y_pos_fname , "rb" ) ) sarc_data_normalized_fname = 'ALL_MOVIES_PROCESSED/' + folder_name + '/timeseries/' + 'tracking_results_leng.txt' all_normalized = np.loadtxt(sarc_data_normalized_fname) color_matrix = np.zeros(all_normalized.shape) for kk in range(0,all_normalized.shape[0]): for jj in range(0,all_normalized.shape[1]): of = all_normalized[kk,jj] if of < -.1: color_matrix[kk,jj] = 0 elif of > .1: color_matrix[kk,jj] = 1 else: color_matrix[kk,jj] = of*5 + .5 ########################################################################################## out_plots = out_analysis + '/summary_plot' if not os.path.exists(out_plots): os.makedirs(out_plots) # F data F_list = np.loadtxt(external_folder_name + '/' + folder_name + '/analysis/recovered_F.txt') num_frames = F_list.shape[0]; x = [] lambda_1_list = []; vec_1_list = [] lambda_2_list = []; vec_2_list = [] J_list = []; F_list_mat = [] for kk in range(0,num_frames): F00 = F_list[kk,0]; F01 = F_list[kk,1]; F10 = F_list[kk,2]; F11 = F_list[kk,3] J_list.append(F00*F11 - F01*F10) x.append(kk) R, U = polar(np.asarray([[F00,F01],[F10,F11]])) w, v = LA.eig(U) lambda_1_list.append(np.min(w)); lambda_2_list.append(np.max(w)) v = np.dot(R, v) vec_1_list.append(v[:,np.argmin(w)]); vec_2_list.append(v[:,np.argmax(w)]) F_list_mat.append(np.asarray([[F00,F01],[F10,F11]])) ########################################################################################## img_list = [] for kk in range(0,num_frames): t = kk if t < 10: file_root = '/frame-000%i'%(t) elif t < 100: file_root = '/frame-00%i'%(t) else: file_root = '/frame-0%i'%(t) fig = plt.figure(figsize=(10*.7,5*.7)) gs = fig.add_gridspec(2,2) ax1 = fig.add_subplot(gs[:,0]) raw_img = get_frame_matrix(folder_name, kk) x_pos_mean = raw_img.shape[0]/2.0; y_pos_mean = raw_img.shape[1]/2.0 plt.imshow(raw_img, cmap=plt.cm.gray) ########################################################################################## for zz in range(0,all_normalized.shape[0]): if kk in ALL_frames_above_thresh[zz]: ix = np.argwhere(np.asarray(ALL_frames_above_thresh[zz]) == kk)[0][0] col = (1-color_matrix[zz,kk], 0 , color_matrix[zz,kk]) yy = ALL_y_pos_above_thresh[zz][ix] xx = ALL_x_pos_above_thresh[zz][ix] plt.scatter(yy,xx,s=3,color=col,marker='o') ########################################################################################## rad = .2*np.min([raw_img.shape[0],raw_img.shape[1]]); th = np.linspace(0,2.0*np.pi,100) plt.plot([y_pos_mean-rad*vec_1_list[kk][1],y_pos_mean+rad*vec_1_list[kk][1]],[x_pos_mean-rad*vec_1_list[kk][0],x_pos_mean+rad*vec_1_list[kk][0]],'-',color=(255/255,204/255,203/255),linewidth=0.3) plt.plot([y_pos_mean-rad*vec_2_list[kk][1],y_pos_mean+rad*vec_2_list[kk][1]],[x_pos_mean-rad*vec_2_list[kk][0],x_pos_mean+rad*vec_2_list[kk][0]],'-',color=(0.5,0.5,0.5),linewidth=0.3) #plt.plot([y_pos_mean,y_pos_mean],[x_pos_mean-rad,x_pos_mean+rad],'-',color=(255/255,204/255,203/255),linewidth=0.2) # add in eigenvector directions x_vec = []; y_vec = [] ; x_vec_circ = []; y_vec_circ = [] scale = np.asarray([[.9,0],[0,.9]]) for jj in range(0,100): v = np.asarray([rad*np.cos(th[jj]),rad*np.sin(th[jj])]) #v_def = np.dot(np.dot(F_list_mat[jj],scale),v) nest1 = np.dot(F_list_mat[kk],F_list_mat[kk]) nest2 = np.dot(F_list_mat[kk],nest1) nest3 = np.dot(F_list_mat[kk],nest2) nest4 = np.dot(F_list_mat[kk],nest3) nest5 = np.dot(F_list_mat[kk],nest4) nest6 = np.dot(F_list_mat[kk],nest5) nest7 = np.dot(F_list_mat[kk],nest6) nest8 = np.dot(F_list_mat[kk],nest7) v_def = np.dot(nest8,v) x_vec.append(v_def[0] + x_pos_mean); y_vec.append(v_def[1] + y_pos_mean) x_vec_circ.append(x_pos_mean + v[0]); y_vec_circ.append(y_pos_mean + v[1]) plt.plot(y_vec_circ,x_vec_circ,'-',color=(255/255,204/255,203/255),linewidth=0.3) plt.plot(y_vec,x_vec,'-',color=(255/255,204/255,203/255),linewidth=1.0) ax = plt.gca() ax.set_xticks([]); ax.set_yticks([]); ########################################################################################## ########################################################################################## ax = fig.add_subplot(gs[0,1]) ax.set_title('average deformation') ax.plot(x,lambda_1_list,'-',color='k',linewidth=1,label='λ1') ax.plot(x,lambda_2_list,'-',color=(0.5,0.5,0.5),linewidth=1,label='λ2') ax.plot(x[kk],lambda_1_list[kk],'o',mfc=(.7,0,0),mec=(0,0,0),markersize=7) ax.plot(x[kk],lambda_2_list[kk],'o',mfc=(.7,0,0),mec=(0.5,0.5,0.5),markersize=7) ax.set_xlim((np.min(x)-2,np.max(x)+2)) plt.legend(loc='upper right') #ax.set_ylabel('avg deformation') ax2 = fig.add_subplot(gs[1,1]) #ax2.set_ylabel('sarc length') ax2.set_title('normalized sarcomere length') ax2.plot(dat_leng.T,linewidth=5/dat_leng.shape[0],color=(0.75,0.75,0.75),alpha=.75) ax2.plot(x,avg_leng,'-',color=(0,0,0),linewidth=1,label='mean') val = np.max(np.abs(avg_leng)) ax2.set_ylim((-2*val,2*val)) ax2.set_xlim((np.min(x)-2,np.max(x)+2)) ax2.plot(x[kk],avg_leng[kk],'o',mfc=(.7,0,0),mec=(0,0,0),markersize=7) plt.xlabel('frame number') plt.legend(loc='upper right') plt.tight_layout() plt.savefig(out_plots + '/' + file_root + '_summary') if include_eps or kk == np.argmin(J_list): plt.savefig(out_plots + '/' + 'frame-%i'%(t) + '_summary.eps') plt.close() img_list.append(plt.imread(out_plots + '/' + file_root + '_summary.png')) imageio.mimsave(out_plots + '/summary.gif', img_list, loop = 10) clip = mp.VideoFileClip(out_plots + '/summary.gif') clip.write_videofile(out_plots + '/summary.mp4')
[ "numpy.sqrt", "matplotlib.pyplot.ylabel", "numpy.sin", "matplotlib.pyplot.imshow", "numpy.mean", "os.path.exists", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.asarray", "numpy.max", "matplotlib.pyplot.close", "numpy.dot", "numpy.linspace", "matplotlib.pyplot.scatter", "numpy.min", "numpy.argmin", "moviepy.editor.VideoFileClip", "glob.glob", "numpy.abs", "matplotlib.pyplot.savefig", "numpy.linalg.eig", "matplotlib.pyplot.gca", "pickle.load", "numpy.argmax", "numpy.outer", "numpy.cos", "matplotlib.pyplot.title", "imageio.mimsave", "numpy.transpose", "matplotlib.pyplot.legend", "numpy.median", "pickle.dump", "os.makedirs", "matplotlib.pyplot.imread", "scipy.linalg.polar", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.linalg.inv", "matplotlib.pyplot.tight_layout", "numpy.loadtxt", "numpy.load", "matplotlib.pyplot.subplot" ]
[((660, 673), 'numpy.load', 'np.load', (['root'], {}), '(root)\n', (667, 673), True, 'import numpy as np\n'), ((1159, 1180), 'numpy.loadtxt', 'np.loadtxt', (['dat_fname'], {}), '(dat_fname)\n', (1169, 1180), True, 'import numpy as np\n'), ((1286, 1302), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (1294, 1302), True, 'import numpy as np\n'), ((1503, 1521), 'numpy.linalg.eig', 'np.linalg.eig', (['mat'], {}), '(mat)\n', (1516, 1521), True, 'import numpy as np\n'), ((1531, 1540), 'numpy.max', 'np.max', (['u'], {}), '(u)\n', (1537, 1540), True, 'import numpy as np\n'), ((1825, 1921), 'numpy.loadtxt', 'np.loadtxt', (["('ALL_MOVIES_PROCESSED/' + folder_name +\n '/timeseries/tracking_results_x_pos.txt')"], {}), "('ALL_MOVIES_PROCESSED/' + folder_name +\n '/timeseries/tracking_results_x_pos.txt')\n", (1835, 1921), True, 'import numpy as np\n'), ((1927, 2023), 'numpy.loadtxt', 'np.loadtxt', (["('ALL_MOVIES_PROCESSED/' + folder_name +\n '/timeseries/tracking_results_y_pos.txt')"], {}), "('ALL_MOVIES_PROCESSED/' + folder_name +\n '/timeseries/tracking_results_y_pos.txt')\n", (1937, 2023), True, 'import numpy as np\n'), ((2145, 2167), 'numpy.zeros', 'np.zeros', (['(2, num_vec)'], {}), '((2, num_vec))\n', (2153, 2167), True, 'import numpy as np\n'), ((2418, 2440), 'numpy.zeros', 'np.zeros', (['(2, num_vec)'], {}), '((2, num_vec))\n', (2426, 2440), True, 'import numpy as np\n'), ((2807, 2829), 'numpy.dot', 'np.dot', (['term_1', 'term_2'], {}), '(term_1, term_2)\n', (2813, 2829), True, 'import numpy as np\n'), ((4062, 4079), 'numpy.argmax', 'np.argmax', (['J_list'], {}), '(J_list)\n', (4071, 4079), True, 'import numpy as np\n'), ((4482, 4494), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4492, 4494), True, 'import matplotlib.pyplot as plt\n'), ((4496, 4516), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (4507, 4516), True, 'import matplotlib.pyplot as plt\n'), ((4516, 4534), 'matplotlib.pyplot.plot', 'plt.plot', (['OOP_list'], {}), '(OOP_list)\n', (4524, 4534), True, 'import matplotlib.pyplot as plt\n'), ((4536, 4562), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""frame number"""'], {}), "('frame number')\n", (4546, 4562), True, 'import matplotlib.pyplot as plt\n'), ((4564, 4581), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""OOP"""'], {}), "('OOP')\n", (4574, 4581), True, 'import matplotlib.pyplot as plt\n'), ((4583, 4601), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4599, 4601), True, 'import matplotlib.pyplot as plt\n'), ((4603, 4623), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (4614, 4623), True, 'import matplotlib.pyplot as plt\n'), ((4623, 4639), 'matplotlib.pyplot.plot', 'plt.plot', (['J_list'], {}), '(J_list)\n', (4631, 4639), True, 'import matplotlib.pyplot as plt\n'), ((4641, 4667), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""frame number"""'], {}), "('frame number')\n", (4651, 4667), True, 'import matplotlib.pyplot as plt\n'), ((4669, 4704), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""average deformation J"""'], {}), "('average deformation J')\n", (4679, 4704), True, 'import matplotlib.pyplot as plt\n'), ((4706, 4724), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4722, 4724), True, 'import matplotlib.pyplot as plt\n'), ((4726, 4773), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_analysis + '/OOP_J_timeseries')"], {}), "(out_analysis + '/OOP_J_timeseries')\n", (4737, 4773), True, 'import matplotlib.pyplot as plt\n'), ((5199, 5207), 'scipy.linalg.polar', 'polar', (['F'], {}), '(F)\n', (5204, 5207), False, 'from scipy.linalg import polar\n'), ((5216, 5225), 'numpy.linalg.eig', 'LA.eig', (['U'], {}), '(U)\n', (5222, 5225), True, 'from numpy import linalg as LA\n'), ((5231, 5243), 'numpy.dot', 'np.dot', (['R', 'v'], {}), '(R, v)\n', (5237, 5243), True, 'import numpy as np\n'), ((5421, 5447), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (5431, 5447), True, 'import matplotlib.pyplot as plt\n'), ((5448, 5485), 'matplotlib.pyplot.imshow', 'plt.imshow', (['raw_img'], {'cmap': 'plt.cm.gray'}), '(raw_img, cmap=plt.cm.gray)\n', (5458, 5485), True, 'import matplotlib.pyplot as plt\n'), ((5546, 5578), 'numpy.linspace', 'np.linspace', (['(0)', '(2.0 * np.pi)', '(100)'], {}), '(0, 2.0 * np.pi, 100)\n', (5557, 5578), True, 'import numpy as np\n'), ((5576, 5775), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_pos_mean - rad * vec_1[1], y_pos_mean + rad * vec_1[1]]', '[x_pos_mean - rad * vec_1[0], x_pos_mean + rad * vec_1[0]]', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(0.3)'}), "([y_pos_mean - rad * vec_1[1], y_pos_mean + rad * vec_1[1]], [\n x_pos_mean - rad * vec_1[0], x_pos_mean + rad * vec_1[0]], '-', color=(\n 255 / 255, 204 / 255, 203 / 255), linewidth=0.3)\n", (5584, 5775), True, 'import matplotlib.pyplot as plt\n'), ((5737, 5918), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_pos_mean - rad * vec_2[1], y_pos_mean + rad * vec_2[1]]', '[x_pos_mean - rad * vec_2[0], x_pos_mean + rad * vec_2[0]]', '"""-"""'], {'color': '(0.5, 0.5, 0.5)', 'linewidth': '(0.3)'}), "([y_pos_mean - rad * vec_2[1], y_pos_mean + rad * vec_2[1]], [\n x_pos_mean - rad * vec_2[0], x_pos_mean + rad * vec_2[0]], '-', color=(\n 0.5, 0.5, 0.5), linewidth=0.3)\n", (5745, 5918), True, 'import matplotlib.pyplot as plt\n'), ((5956, 5988), 'numpy.asarray', 'np.asarray', (['[[0.9, 0], [0, 0.9]]'], {}), '([[0.9, 0], [0, 0.9]])\n', (5966, 5988), True, 'import numpy as np\n'), ((6497, 6595), 'matplotlib.pyplot.plot', 'plt.plot', (['y_vec_circ', 'x_vec_circ', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(0.3)'}), "(y_vec_circ, x_vec_circ, '-', color=(255 / 255, 204 / 255, 203 / \n 255), linewidth=0.3)\n", (6505, 6595), True, 'import matplotlib.pyplot as plt\n'), ((6580, 6667), 'matplotlib.pyplot.plot', 'plt.plot', (['y_vec', 'x_vec', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(1.0)'}), "(y_vec, x_vec, '-', color=(255 / 255, 204 / 255, 203 / 255),\n linewidth=1.0)\n", (6588, 6667), True, 'import matplotlib.pyplot as plt\n'), ((6725, 6905), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_pos_mean - rad_OOP * OOP_vec[1], y_pos_mean + rad_OOP * OOP_vec[1]]', '[x_pos_mean - rad_OOP * OOP_vec[0], x_pos_mean + rad_OOP * OOP_vec[0]]', '"""r-"""'], {'linewidth': '(5)'}), "([y_pos_mean - rad_OOP * OOP_vec[1], y_pos_mean + rad_OOP * OOP_vec\n [1]], [x_pos_mean - rad_OOP * OOP_vec[0], x_pos_mean + rad_OOP *\n OOP_vec[0]], 'r-', linewidth=5)\n", (6733, 6905), True, 'import matplotlib.pyplot as plt\n'), ((6887, 6966), 'matplotlib.pyplot.title', 'plt.title', (["('J: %.3f, OOP:%.3f, frame: %i' % (J, OOP_list[frame_num], frame_num))"], {}), "('J: %.3f, OOP:%.3f, frame: %i' % (J, OOP_list[frame_num], frame_num))\n", (6896, 6966), True, 'import matplotlib.pyplot as plt\n'), ((6969, 6978), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6976, 6978), True, 'import matplotlib.pyplot as plt\n'), ((7019, 7062), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_analysis + '/OOP_J_on_img')"], {}), "(out_analysis + '/OOP_J_on_img')\n", (7030, 7062), True, 'import matplotlib.pyplot as plt\n'), ((7195, 7208), 'numpy.max', 'np.max', (['y_vec'], {}), '(y_vec)\n', (7201, 7208), True, 'import numpy as np\n'), ((7218, 7231), 'numpy.min', 'np.min', (['y_vec'], {}), '(y_vec)\n', (7224, 7231), True, 'import numpy as np\n'), ((8065, 8087), 'numpy.loadtxt', 'np.loadtxt', (['fname_leng'], {}), '(fname_leng)\n', (8075, 8087), True, 'import numpy as np\n'), ((8099, 8124), 'numpy.mean', 'np.mean', (['dat_leng'], {'axis': '(0)'}), '(dat_leng, axis=0)\n', (8106, 8124), True, 'import numpy as np\n'), ((9120, 9137), 'numpy.argmin', 'np.argmin', (['J_list'], {}), '(J_list)\n', (9129, 9137), True, 'import numpy as np\n'), ((9311, 9328), 'numpy.argmin', 'np.argmin', (['J_list'], {}), '(J_list)\n', (9320, 9328), True, 'import numpy as np\n'), ((9535, 9569), 'numpy.sqrt', 'np.sqrt', (['(v[0] ** 2.0 + v[1] ** 2.0)'], {}), '(v[0] ** 2.0 + v[1] ** 2.0)\n', (9542, 9569), True, 'import numpy as np\n'), ((9580, 9616), 'numpy.sqrt', 'np.sqrt', (['(v0[0] ** 2.0 + v0[1] ** 2.0)'], {}), '(v0[0] ** 2.0 + v0[1] ** 2.0)\n', (9587, 9616), True, 'import numpy as np\n'), ((10798, 10815), 'numpy.argmin', 'np.argmin', (['J_list'], {}), '(J_list)\n', (10807, 10815), True, 'import numpy as np\n'), ((10989, 11006), 'numpy.argmin', 'np.argmin', (['J_list'], {}), '(J_list)\n', (10998, 11006), True, 'import numpy as np\n'), ((11213, 11247), 'numpy.sqrt', 'np.sqrt', (['(v[0] ** 2.0 + v[1] ** 2.0)'], {}), '(v[0] ** 2.0 + v[1] ** 2.0)\n', (11220, 11247), True, 'import numpy as np\n'), ((11258, 11294), 'numpy.sqrt', 'np.sqrt', (['(v0[0] ** 2.0 + v0[1] ** 2.0)'], {}), '(v0[0] ** 2.0 + v0[1] ** 2.0)\n', (11265, 11294), True, 'import numpy as np\n'), ((12131, 12153), 'numpy.loadtxt', 'np.loadtxt', (['fname_leng'], {}), '(fname_leng)\n', (12141, 12153), True, 'import numpy as np\n'), ((12166, 12191), 'numpy.mean', 'np.mean', (['dat_leng'], {'axis': '(0)'}), '(dat_leng, axis=0)\n', (12173, 12191), True, 'import numpy as np\n'), ((12970, 13008), 'numpy.loadtxt', 'np.loadtxt', (['sarc_data_normalized_fname'], {}), '(sarc_data_normalized_fname)\n', (12980, 13008), True, 'import numpy as np\n'), ((13025, 13055), 'numpy.zeros', 'np.zeros', (['all_normalized.shape'], {}), '(all_normalized.shape)\n', (13033, 13055), True, 'import numpy as np\n'), ((13514, 13600), 'numpy.loadtxt', 'np.loadtxt', (["(external_folder_name + '/' + folder_name + '/analysis/recovered_F.txt')"], {}), "(external_folder_name + '/' + folder_name +\n '/analysis/recovered_F.txt')\n", (13524, 13600), True, 'import numpy as np\n'), ((18317, 18379), 'imageio.mimsave', 'imageio.mimsave', (["(out_plots + '/summary.gif')", 'img_list'], {'loop': '(10)'}), "(out_plots + '/summary.gif', img_list, loop=10)\n", (18332, 18379), False, 'import imageio\n'), ((18391, 18435), 'moviepy.editor.VideoFileClip', 'mp.VideoFileClip', (["(out_plots + '/summary.gif')"], {}), "(out_plots + '/summary.gif')\n", (18407, 18435), True, 'import moviepy.editor as mp\n'), ((933, 1000), 'glob.glob', 'glob.glob', (["('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')"], {}), "('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')\n", (942, 1000), False, 'import glob\n'), ((1338, 1353), 'numpy.cos', 'np.cos', (['ang[kk]'], {}), '(ang[kk])\n', (1344, 1353), True, 'import numpy as np\n'), ((1360, 1375), 'numpy.sin', 'np.sin', (['ang[kk]'], {}), '(ang[kk])\n', (1366, 1375), True, 'import numpy as np\n'), ((1384, 1402), 'numpy.asarray', 'np.asarray', (['[x, y]'], {}), '([x, y])\n', (1394, 1402), True, 'import numpy as np\n'), ((1408, 1426), 'numpy.outer', 'np.outer', (['vec', 'vec'], {}), '(vec, vec)\n', (1416, 1426), True, 'import numpy as np\n'), ((2706, 2728), 'numpy.transpose', 'np.transpose', (['Lambda_0'], {}), '(Lambda_0)\n', (2718, 2728), True, 'import numpy as np\n'), ((3062, 3129), 'glob.glob', 'glob.glob', (["('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')"], {}), "('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')\n", (3071, 3129), False, 'import glob\n'), ((3535, 3602), 'glob.glob', 'glob.glob', (["('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')"], {}), "('ALL_MOVIES_MATRICES/' + folder_name + '_matrices/*.npy')\n", (3544, 3602), False, 'import glob\n'), ((5496, 5540), 'numpy.min', 'np.min', (['[raw_img.shape[0], raw_img.shape[1]]'], {}), '([raw_img.shape[0], raw_img.shape[1]])\n', (5502, 5540), True, 'import numpy as np\n'), ((6127, 6139), 'numpy.dot', 'np.dot', (['F', 'F'], {}), '(F, F)\n', (6133, 6139), True, 'import numpy as np\n'), ((6148, 6164), 'numpy.dot', 'np.dot', (['F', 'nest1'], {}), '(F, nest1)\n', (6154, 6164), True, 'import numpy as np\n'), ((6173, 6189), 'numpy.dot', 'np.dot', (['F', 'nest2'], {}), '(F, nest2)\n', (6179, 6189), True, 'import numpy as np\n'), ((6199, 6215), 'numpy.dot', 'np.dot', (['F', 'nest3'], {}), '(F, nest3)\n', (6205, 6215), True, 'import numpy as np\n'), ((6224, 6240), 'numpy.dot', 'np.dot', (['F', 'nest4'], {}), '(F, nest4)\n', (6230, 6240), True, 'import numpy as np\n'), ((6249, 6265), 'numpy.dot', 'np.dot', (['F', 'nest5'], {}), '(F, nest5)\n', (6255, 6265), True, 'import numpy as np\n'), ((6275, 6291), 'numpy.dot', 'np.dot', (['F', 'nest6'], {}), '(F, nest6)\n', (6281, 6291), True, 'import numpy as np\n'), ((6300, 6316), 'numpy.dot', 'np.dot', (['F', 'nest7'], {}), '(F, nest7)\n', (6306, 6316), True, 'import numpy as np\n'), ((6326, 6342), 'numpy.dot', 'np.dot', (['nest8', 'v'], {}), '(nest8, v)\n', (6332, 6342), True, 'import numpy as np\n'), ((7597, 7614), 'numpy.median', 'np.median', (['s_list'], {}), '(s_list)\n', (7606, 7614), True, 'import numpy as np\n'), ((8237, 8256), 'numpy.asarray', 'np.asarray', (['[s_til]'], {}), '([s_til])\n', (8247, 8256), True, 'import numpy as np\n'), ((8299, 8318), 'numpy.asarray', 'np.asarray', (['[s_avg]'], {}), '([s_avg])\n', (8309, 8318), True, 'import numpy as np\n'), ((8765, 8787), 'pickle.dump', 'pickle.dump', (['F_list', 'f'], {}), '(F_list, f)\n', (8776, 8787), False, 'import pickle\n'), ((8843, 8865), 'pickle.dump', 'pickle.dump', (['J_list', 'f'], {}), '(J_list, f)\n', (8854, 8865), False, 'import pickle\n'), ((8981, 9005), 'pickle.dump', 'pickle.dump', (['OOP_list', 'f'], {}), '(OOP_list, f)\n', (8992, 9005), False, 'import pickle\n'), ((9067, 9095), 'pickle.dump', 'pickle.dump', (['OOP_vec_list', 'f'], {}), '(OOP_vec_list, f)\n', (9078, 9095), False, 'import pickle\n'), ((9448, 9458), 'numpy.sqrt', 'np.sqrt', (['J'], {}), '(J)\n', (9455, 9458), True, 'import numpy as np\n'), ((9506, 9522), 'numpy.linalg.inv', 'np.linalg.inv', (['F'], {}), '(F)\n', (9519, 9522), True, 'import numpy as np\n'), ((9764, 9790), 'numpy.asarray', 'np.asarray', (['[OOP_selected]'], {}), '([OOP_selected])\n', (9774, 9790), True, 'import numpy as np\n'), ((9832, 9858), 'numpy.asarray', 'np.asarray', (['[avg_contract]'], {}), '([avg_contract])\n', (9842, 9858), True, 'import numpy as np\n'), ((9900, 9934), 'numpy.asarray', 'np.asarray', (['[avg_aligned_contract]'], {}), '([avg_aligned_contract])\n', (9910, 9934), True, 'import numpy as np\n'), ((9976, 9995), 'numpy.asarray', 'np.asarray', (['[s_til]'], {}), '([s_til])\n', (9986, 9995), True, 'import numpy as np\n'), ((10037, 10056), 'numpy.asarray', 'np.asarray', (['[s_avg]'], {}), '([s_avg])\n', (10047, 10056), True, 'import numpy as np\n'), ((10512, 10526), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10523, 10526), False, 'import pickle\n'), ((10589, 10603), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10600, 10603), False, 'import pickle\n'), ((10670, 10684), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10681, 10684), False, 'import pickle\n'), ((10759, 10773), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10770, 10773), False, 'import pickle\n'), ((11126, 11136), 'numpy.sqrt', 'np.sqrt', (['J'], {}), '(J)\n', (11133, 11136), True, 'import numpy as np\n'), ((11184, 11200), 'numpy.linalg.inv', 'np.linalg.inv', (['F'], {}), '(F)\n', (11197, 11200), True, 'import numpy as np\n'), ((11384, 11410), 'numpy.asarray', 'np.asarray', (['[OOP_selected]'], {}), '([OOP_selected])\n', (11394, 11410), True, 'import numpy as np\n'), ((11452, 11478), 'numpy.asarray', 'np.asarray', (['[avg_contract]'], {}), '([avg_contract])\n', (11462, 11478), True, 'import numpy as np\n'), ((11520, 11554), 'numpy.asarray', 'np.asarray', (['[avg_aligned_contract]'], {}), '([avg_aligned_contract])\n', (11530, 11554), True, 'import numpy as np\n'), ((13443, 13468), 'os.path.exists', 'os.path.exists', (['out_plots'], {}), '(out_plots)\n', (13457, 13468), False, 'import os\n'), ((13470, 13492), 'os.makedirs', 'os.makedirs', (['out_plots'], {}), '(out_plots)\n', (13481, 13492), False, 'import os\n'), ((13965, 13974), 'numpy.linalg.eig', 'LA.eig', (['U'], {}), '(U)\n', (13971, 13974), True, 'from numpy import linalg as LA\n'), ((14048, 14060), 'numpy.dot', 'np.dot', (['R', 'v'], {}), '(R, v)\n', (14054, 14060), True, 'import numpy as np\n'), ((14482, 14521), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10 * 0.7, 5 * 0.7)'}), '(figsize=(10 * 0.7, 5 * 0.7))\n', (14492, 14521), True, 'import matplotlib.pyplot as plt\n'), ((14698, 14735), 'matplotlib.pyplot.imshow', 'plt.imshow', (['raw_img'], {'cmap': 'plt.cm.gray'}), '(raw_img, cmap=plt.cm.gray)\n', (14708, 14735), True, 'import matplotlib.pyplot as plt\n'), ((15334, 15366), 'numpy.linspace', 'np.linspace', (['(0)', '(2.0 * np.pi)', '(100)'], {}), '(0, 2.0 * np.pi, 100)\n', (15345, 15366), True, 'import numpy as np\n'), ((15365, 15602), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_pos_mean - rad * vec_1_list[kk][1], y_pos_mean + rad * vec_1_list[kk][1]]', '[x_pos_mean - rad * vec_1_list[kk][0], x_pos_mean + rad * vec_1_list[kk][0]]', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(0.3)'}), "([y_pos_mean - rad * vec_1_list[kk][1], y_pos_mean + rad *\n vec_1_list[kk][1]], [x_pos_mean - rad * vec_1_list[kk][0], x_pos_mean +\n rad * vec_1_list[kk][0]], '-', color=(255 / 255, 204 / 255, 203 / 255),\n linewidth=0.3)\n", (15373, 15602), True, 'import matplotlib.pyplot as plt\n'), ((15563, 15778), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_pos_mean - rad * vec_2_list[kk][1], y_pos_mean + rad * vec_2_list[kk][1]]', '[x_pos_mean - rad * vec_2_list[kk][0], x_pos_mean + rad * vec_2_list[kk][0]]', '"""-"""'], {'color': '(0.5, 0.5, 0.5)', 'linewidth': '(0.3)'}), "([y_pos_mean - rad * vec_2_list[kk][1], y_pos_mean + rad *\n vec_2_list[kk][1]], [x_pos_mean - rad * vec_2_list[kk][0], x_pos_mean +\n rad * vec_2_list[kk][0]], '-', color=(0.5, 0.5, 0.5), linewidth=0.3)\n", (15571, 15778), True, 'import matplotlib.pyplot as plt\n'), ((15971, 16003), 'numpy.asarray', 'np.asarray', (['[[0.9, 0], [0, 0.9]]'], {}), '([[0.9, 0], [0, 0.9]])\n', (15981, 16003), True, 'import numpy as np\n'), ((16648, 16746), 'matplotlib.pyplot.plot', 'plt.plot', (['y_vec_circ', 'x_vec_circ', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(0.3)'}), "(y_vec_circ, x_vec_circ, '-', color=(255 / 255, 204 / 255, 203 / \n 255), linewidth=0.3)\n", (16656, 16746), True, 'import matplotlib.pyplot as plt\n'), ((16732, 16819), 'matplotlib.pyplot.plot', 'plt.plot', (['y_vec', 'x_vec', '"""-"""'], {'color': '(255 / 255, 204 / 255, 203 / 255)', 'linewidth': '(1.0)'}), "(y_vec, x_vec, '-', color=(255 / 255, 204 / 255, 203 / 255),\n linewidth=1.0)\n", (16740, 16819), True, 'import matplotlib.pyplot as plt\n'), ((16812, 16821), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (16819, 16821), True, 'import matplotlib.pyplot as plt\n'), ((17459, 17488), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (17469, 17488), True, 'import matplotlib.pyplot as plt\n'), ((17975, 18001), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""frame number"""'], {}), "('frame number')\n", (17985, 18001), True, 'import matplotlib.pyplot as plt\n'), ((18004, 18033), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (18014, 18033), True, 'import matplotlib.pyplot as plt\n'), ((18036, 18054), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (18052, 18054), True, 'import matplotlib.pyplot as plt\n'), ((18059, 18112), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_plots + '/' + file_root + '_summary')"], {}), "(out_plots + '/' + file_root + '_summary')\n", (18070, 18112), True, 'import matplotlib.pyplot as plt\n'), ((18226, 18237), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (18235, 18237), True, 'import matplotlib.pyplot as plt\n'), ((1443, 1471), 'numpy.asarray', 'np.asarray', (['[[1, 0], [0, 1]]'], {}), '([[1, 0], [0, 1]])\n', (1453, 1471), True, 'import numpy as np\n'), ((1556, 1568), 'numpy.argmax', 'np.argmax', (['u'], {}), '(u)\n', (1565, 1568), True, 'import numpy as np\n'), ((2775, 2797), 'numpy.transpose', 'np.transpose', (['Lambda_0'], {}), '(Lambda_0)\n', (2787, 2797), True, 'import numpy as np\n'), ((5257, 5269), 'numpy.argmin', 'np.argmin', (['w'], {}), '(w)\n', (5266, 5269), True, 'import numpy as np\n'), ((5284, 5296), 'numpy.argmax', 'np.argmax', (['w'], {}), '(w)\n', (5293, 5296), True, 'import numpy as np\n'), ((13921, 13957), 'numpy.asarray', 'np.asarray', (['[[F00, F01], [F10, F11]]'], {}), '([[F00, F01], [F10, F11]])\n', (13931, 13957), True, 'import numpy as np\n'), ((13998, 14007), 'numpy.min', 'np.min', (['w'], {}), '(w)\n', (14004, 14007), True, 'import numpy as np\n'), ((14031, 14040), 'numpy.max', 'np.max', (['w'], {}), '(w)\n', (14037, 14040), True, 'import numpy as np\n'), ((14158, 14194), 'numpy.asarray', 'np.asarray', (['[[F00, F01], [F10, F11]]'], {}), '([[F00, F01], [F10, F11]])\n', (14168, 14194), True, 'import numpy as np\n'), ((15284, 15328), 'numpy.min', 'np.min', (['[raw_img.shape[0], raw_img.shape[1]]'], {}), '([raw_img.shape[0], raw_img.shape[1]])\n', (15290, 15328), True, 'import numpy as np\n'), ((16146, 16184), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'F_list_mat[kk]'], {}), '(F_list_mat[kk], F_list_mat[kk])\n', (16152, 16184), True, 'import numpy as np\n'), ((16195, 16224), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest1'], {}), '(F_list_mat[kk], nest1)\n', (16201, 16224), True, 'import numpy as np\n'), ((16235, 16264), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest2'], {}), '(F_list_mat[kk], nest2)\n', (16241, 16264), True, 'import numpy as np\n'), ((16275, 16304), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest3'], {}), '(F_list_mat[kk], nest3)\n', (16281, 16304), True, 'import numpy as np\n'), ((16315, 16344), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest4'], {}), '(F_list_mat[kk], nest4)\n', (16321, 16344), True, 'import numpy as np\n'), ((16355, 16384), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest5'], {}), '(F_list_mat[kk], nest5)\n', (16361, 16384), True, 'import numpy as np\n'), ((16395, 16424), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest6'], {}), '(F_list_mat[kk], nest6)\n', (16401, 16424), True, 'import numpy as np\n'), ((16435, 16464), 'numpy.dot', 'np.dot', (['F_list_mat[kk]', 'nest7'], {}), '(F_list_mat[kk], nest7)\n', (16441, 16464), True, 'import numpy as np\n'), ((16475, 16491), 'numpy.dot', 'np.dot', (['nest8', 'v'], {}), '(nest8, v)\n', (16481, 16491), True, 'import numpy as np\n'), ((17807, 17823), 'numpy.abs', 'np.abs', (['avg_leng'], {}), '(avg_leng)\n', (17813, 17823), True, 'import numpy as np\n'), ((18161, 18223), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_plots + '/' + 'frame-%i' % t + '_summary.eps')"], {}), "(out_plots + '/' + 'frame-%i' % t + '_summary.eps')\n", (18172, 18223), True, 'import matplotlib.pyplot as plt\n'), ((18256, 18312), 'matplotlib.pyplot.imread', 'plt.imread', (["(out_plots + '/' + file_root + '_summary.png')"], {}), "(out_plots + '/' + file_root + '_summary.png')\n", (18266, 18312), True, 'import matplotlib.pyplot as plt\n'), ((15134, 15181), 'matplotlib.pyplot.scatter', 'plt.scatter', (['yy', 'xx'], {'s': '(3)', 'color': 'col', 'marker': '"""o"""'}), "(yy, xx, s=3, color=col, marker='o')\n", (15145, 15181), True, 'import matplotlib.pyplot as plt\n'), ((18139, 18156), 'numpy.argmin', 'np.argmin', (['J_list'], {}), '(J_list)\n', (18148, 18156), True, 'import numpy as np\n'), ((6031, 6045), 'numpy.cos', 'np.cos', (['th[jj]'], {}), '(th[jj])\n', (6037, 6045), True, 'import numpy as np\n'), ((6050, 6064), 'numpy.sin', 'np.sin', (['th[jj]'], {}), '(th[jj])\n', (6056, 6064), True, 'import numpy as np\n'), ((14085, 14097), 'numpy.argmin', 'np.argmin', (['w'], {}), '(w)\n', (14094, 14097), True, 'import numpy as np\n'), ((14123, 14135), 'numpy.argmax', 'np.argmax', (['w'], {}), '(w)\n', (14132, 14135), True, 'import numpy as np\n'), ((17431, 17440), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (17437, 17440), True, 'import numpy as np\n'), ((17443, 17452), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (17449, 17452), True, 'import numpy as np\n'), ((17872, 17881), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (17878, 17881), True, 'import numpy as np\n'), ((17884, 17893), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (17890, 17893), True, 'import numpy as np\n'), ((16048, 16062), 'numpy.cos', 'np.cos', (['th[jj]'], {}), '(th[jj])\n', (16054, 16062), True, 'import numpy as np\n'), ((16067, 16081), 'numpy.sin', 'np.sin', (['th[jj]'], {}), '(th[jj])\n', (16073, 16081), True, 'import numpy as np\n'), ((14938, 14977), 'numpy.asarray', 'np.asarray', (['ALL_frames_above_thresh[zz]'], {}), '(ALL_frames_above_thresh[zz])\n', (14948, 14977), True, 'import numpy as np\n')]
from sotabencheval.question_answering.evaluate_v11 import evaluate as evaluate_v11 from sotabencheval.question_answering.evaluate_v20 import get_raw_scores __all__ = ["evaluate_v11", "evaluate_v20"] def evaluate_v20(dataset, predictions): exact_scores, f1_scores = get_raw_scores(dataset, predictions) total = sum([len(p['qas']) for article in dataset for p in article['paragraphs']]) exact_match = 100.0 * sum(exact_scores.values()) / total f1 = 100.0 * sum(f1_scores.values()) / total return {'exact_match': exact_match, 'f1': f1}
[ "sotabencheval.question_answering.evaluate_v20.get_raw_scores" ]
[((272, 308), 'sotabencheval.question_answering.evaluate_v20.get_raw_scores', 'get_raw_scores', (['dataset', 'predictions'], {}), '(dataset, predictions)\n', (286, 308), False, 'from sotabencheval.question_answering.evaluate_v20 import get_raw_scores\n')]
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """AiiDA profile related code""" import collections from copy import deepcopy import os import pathlib from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Type from aiida.common import exceptions from .options import parse_option from .settings import DAEMON_DIR, DAEMON_LOG_DIR if TYPE_CHECKING: from aiida.orm.implementation import StorageBackend __all__ = ('Profile',) CIRCUS_PID_FILE_TEMPLATE = os.path.join(DAEMON_DIR, 'circus-{}.pid') DAEMON_PID_FILE_TEMPLATE = os.path.join(DAEMON_DIR, 'aiida-{}.pid') CIRCUS_LOG_FILE_TEMPLATE = os.path.join(DAEMON_LOG_DIR, 'circus-{}.log') DAEMON_LOG_FILE_TEMPLATE = os.path.join(DAEMON_LOG_DIR, 'aiida-{}.log') CIRCUS_PORT_FILE_TEMPLATE = os.path.join(DAEMON_DIR, 'circus-{}.port') CIRCUS_SOCKET_FILE_TEMPATE = os.path.join(DAEMON_DIR, 'circus-{}.sockets') CIRCUS_CONTROLLER_SOCKET_TEMPLATE = 'circus.c.sock' CIRCUS_PUBSUB_SOCKET_TEMPLATE = 'circus.p.sock' CIRCUS_STATS_SOCKET_TEMPLATE = 'circus.s.sock' class Profile: # pylint: disable=too-many-public-methods """Class that models a profile as it is stored in the configuration file of an AiiDA instance.""" KEY_UUID = 'PROFILE_UUID' KEY_DEFAULT_USER_EMAIL = 'default_user_email' KEY_STORAGE = 'storage' KEY_PROCESS = 'process_control' KEY_STORAGE_BACKEND = 'backend' KEY_STORAGE_CONFIG = 'config' KEY_PROCESS_BACKEND = 'backend' KEY_PROCESS_CONFIG = 'config' KEY_OPTIONS = 'options' KEY_TEST_PROFILE = 'test_profile' # keys that are expected to be in the parsed configuration REQUIRED_KEYS = ( KEY_STORAGE, KEY_PROCESS, ) def __init__(self, name: str, config: Mapping[str, Any], validate=True): """Load a profile with the profile configuration.""" if not isinstance(config, collections.abc.Mapping): raise TypeError(f'config should be a mapping but is {type(config)}') if validate and not set(config.keys()).issuperset(self.REQUIRED_KEYS): raise exceptions.ConfigurationError( f'profile {name!r} configuration does not contain all required keys: {self.REQUIRED_KEYS}' ) self._name = name self._attributes: Dict[str, Any] = deepcopy(config) # Create a default UUID if not specified if self._attributes.get(self.KEY_UUID, None) is None: from uuid import uuid4 self._attributes[self.KEY_UUID] = uuid4().hex def __str__(self) -> str: return f'Profile<{self.uuid!r} ({self.name!r})>' def copy(self): """Return a copy of the profile.""" return self.__class__(self.name, self._attributes) @property def uuid(self) -> str: """Return the profile uuid. :return: string UUID """ return self._attributes[self.KEY_UUID] @uuid.setter def uuid(self, value: str) -> None: self._attributes[self.KEY_UUID] = value @property def default_user_email(self) -> Optional[str]: """Return the default user email.""" return self._attributes.get(self.KEY_DEFAULT_USER_EMAIL, None) @default_user_email.setter def default_user_email(self, value: Optional[str]) -> None: """Set the default user email.""" self._attributes[self.KEY_DEFAULT_USER_EMAIL] = value @property def storage_backend(self) -> str: """Return the type of the storage backend.""" return self._attributes[self.KEY_STORAGE][self.KEY_STORAGE_BACKEND] @property def storage_config(self) -> Dict[str, Any]: """Return the configuration required by the storage backend.""" return self._attributes[self.KEY_STORAGE][self.KEY_STORAGE_CONFIG] def set_storage(self, name: str, config: Dict[str, Any]) -> None: """Set the storage backend and its configuration. :param name: the name of the storage backend :param config: the configuration of the storage backend """ self._attributes.setdefault(self.KEY_STORAGE, {}) self._attributes[self.KEY_STORAGE][self.KEY_STORAGE_BACKEND] = name self._attributes[self.KEY_STORAGE][self.KEY_STORAGE_CONFIG] = config @property def storage_cls(self) -> Type['StorageBackend']: """Return the storage backend class for this profile.""" if self.storage_backend == 'psql_dos': from aiida.storage.psql_dos.backend import PsqlDosBackend return PsqlDosBackend if self.storage_backend == 'sqlite_zip': from aiida.storage.sqlite_zip.backend import SqliteZipBackend return SqliteZipBackend raise ValueError(f'unknown storage backend type: {self.storage_backend}') @property def process_control_backend(self) -> str: """Return the type of the process control backend.""" return self._attributes[self.KEY_PROCESS][self.KEY_PROCESS_BACKEND] @property def process_control_config(self) -> Dict[str, Any]: """Return the configuration required by the process control backend.""" return self._attributes[self.KEY_PROCESS][self.KEY_PROCESS_CONFIG] def set_process_controller(self, name: str, config: Dict[str, Any]) -> None: """Set the process control backend and its configuration. :param name: the name of the process backend :param config: the configuration of the process backend """ self._attributes.setdefault(self.KEY_PROCESS, {}) self._attributes[self.KEY_PROCESS][self.KEY_PROCESS_BACKEND] = name self._attributes[self.KEY_PROCESS][self.KEY_PROCESS_CONFIG] = config @property def options(self): self._attributes.setdefault(self.KEY_OPTIONS, {}) return self._attributes[self.KEY_OPTIONS] @options.setter def options(self, value): self._attributes[self.KEY_OPTIONS] = value def get_option(self, option_key, default=None): return self.options.get(option_key, default) def set_option(self, option_key, value, override=True): """Set a configuration option for a certain scope. :param option_key: the key of the configuration option :param option_value: the option value :param override: boolean, if False, will not override the option if it already exists """ _, parsed_value = parse_option(option_key, value) # ensure the value is validated if option_key not in self.options or override: self.options[option_key] = parsed_value def unset_option(self, option_key): self.options.pop(option_key, None) @property def name(self): """Return the profile name. :return: the profile name """ return self._name @property def dictionary(self) -> Dict[str, Any]: """Return the profile attributes as a dictionary with keys as it is stored in the config :return: the profile configuration dictionary """ return self._attributes @property def is_test_profile(self) -> bool: """Return whether the profile is a test profile :return: boolean, True if test profile, False otherwise """ # Check explicitly for ``True`` for safety. If an invalid value is defined, we default to treating it as not # a test profile as that can unintentionally clear the database. return self._attributes.get(self.KEY_TEST_PROFILE, False) is True @is_test_profile.setter def is_test_profile(self, value: bool) -> None: """Set whether the profile is a test profile. :param value: boolean indicating whether this profile is a test profile. """ self._attributes[self.KEY_TEST_PROFILE] = value @property def repository_path(self) -> pathlib.Path: """Return the absolute path of the repository configured for this profile. The URI should be in the format `protocol://address` :note: At the moment, only the file protocol is supported. :return: absolute filepath of the profile's file repository """ from urllib.parse import urlparse parts = urlparse(self.storage_config['repository_uri']) if parts.scheme != 'file': raise exceptions.ConfigurationError('invalid repository protocol, only the local `file://` is supported') if not os.path.isabs(parts.path): raise exceptions.ConfigurationError('invalid repository URI: the path has to be absolute') return pathlib.Path(os.path.expanduser(parts.path)) @property def rmq_prefix(self) -> str: """Return the prefix that should be used for RMQ resources :return: the rmq prefix string """ return f'aiida-{self.uuid}' def get_rmq_url(self) -> str: """Return the RMQ url for this profile.""" from aiida.manage.external.rmq import get_rmq_url if self.process_control_backend != 'rabbitmq': raise exceptions.ConfigurationError( f"invalid process control backend, only 'rabbitmq' is supported: {self.process_control_backend}" ) kwargs = {key[7:]: val for key, val in self.process_control_config.items() if key.startswith('broker_')} additional_kwargs = kwargs.pop('parameters', {}) return get_rmq_url(**kwargs, **additional_kwargs) @property def filepaths(self): """Return the filepaths used by this profile. :return: a dictionary of filepaths """ return { 'circus': { 'log': CIRCUS_LOG_FILE_TEMPLATE.format(self.name), 'pid': CIRCUS_PID_FILE_TEMPLATE.format(self.name), 'port': CIRCUS_PORT_FILE_TEMPLATE.format(self.name), 'socket': { 'file': CIRCUS_SOCKET_FILE_TEMPATE.format(self.name), 'controller': CIRCUS_CONTROLLER_SOCKET_TEMPLATE, 'pubsub': CIRCUS_PUBSUB_SOCKET_TEMPLATE, 'stats': CIRCUS_STATS_SOCKET_TEMPLATE, } }, 'daemon': { 'log': DAEMON_LOG_FILE_TEMPLATE.format(self.name), 'pid': DAEMON_PID_FILE_TEMPLATE.format(self.name), } }
[ "urllib.parse.urlparse", "os.path.isabs", "os.path.join", "uuid.uuid4", "aiida.common.exceptions.ConfigurationError", "copy.deepcopy", "aiida.manage.external.rmq.get_rmq_url", "os.path.expanduser" ]
[((1052, 1093), 'os.path.join', 'os.path.join', (['DAEMON_DIR', '"""circus-{}.pid"""'], {}), "(DAEMON_DIR, 'circus-{}.pid')\n", (1064, 1093), False, 'import os\n'), ((1121, 1161), 'os.path.join', 'os.path.join', (['DAEMON_DIR', '"""aiida-{}.pid"""'], {}), "(DAEMON_DIR, 'aiida-{}.pid')\n", (1133, 1161), False, 'import os\n'), ((1189, 1234), 'os.path.join', 'os.path.join', (['DAEMON_LOG_DIR', '"""circus-{}.log"""'], {}), "(DAEMON_LOG_DIR, 'circus-{}.log')\n", (1201, 1234), False, 'import os\n'), ((1262, 1306), 'os.path.join', 'os.path.join', (['DAEMON_LOG_DIR', '"""aiida-{}.log"""'], {}), "(DAEMON_LOG_DIR, 'aiida-{}.log')\n", (1274, 1306), False, 'import os\n'), ((1335, 1377), 'os.path.join', 'os.path.join', (['DAEMON_DIR', '"""circus-{}.port"""'], {}), "(DAEMON_DIR, 'circus-{}.port')\n", (1347, 1377), False, 'import os\n'), ((1407, 1452), 'os.path.join', 'os.path.join', (['DAEMON_DIR', '"""circus-{}.sockets"""'], {}), "(DAEMON_DIR, 'circus-{}.sockets')\n", (1419, 1452), False, 'import os\n'), ((2846, 2862), 'copy.deepcopy', 'deepcopy', (['config'], {}), '(config)\n', (2854, 2862), False, 'from copy import deepcopy\n'), ((8759, 8806), 'urllib.parse.urlparse', 'urlparse', (["self.storage_config['repository_uri']"], {}), "(self.storage_config['repository_uri'])\n", (8767, 8806), False, 'from urllib.parse import urlparse\n'), ((9932, 9974), 'aiida.manage.external.rmq.get_rmq_url', 'get_rmq_url', ([], {}), '(**kwargs, **additional_kwargs)\n', (9943, 9974), False, 'from aiida.manage.external.rmq import get_rmq_url\n'), ((2624, 2755), 'aiida.common.exceptions.ConfigurationError', 'exceptions.ConfigurationError', (['f"""profile {name!r} configuration does not contain all required keys: {self.REQUIRED_KEYS}"""'], {}), "(\n f'profile {name!r} configuration does not contain all required keys: {self.REQUIRED_KEYS}'\n )\n", (2653, 2755), False, 'from aiida.common import exceptions\n'), ((8861, 8965), 'aiida.common.exceptions.ConfigurationError', 'exceptions.ConfigurationError', (['"""invalid repository protocol, only the local `file://` is supported"""'], {}), "(\n 'invalid repository protocol, only the local `file://` is supported')\n", (8890, 8965), False, 'from aiida.common import exceptions\n'), ((8977, 9002), 'os.path.isabs', 'os.path.isabs', (['parts.path'], {}), '(parts.path)\n', (8990, 9002), False, 'import os\n'), ((9022, 9111), 'aiida.common.exceptions.ConfigurationError', 'exceptions.ConfigurationError', (['"""invalid repository URI: the path has to be absolute"""'], {}), "(\n 'invalid repository URI: the path has to be absolute')\n", (9051, 9111), False, 'from aiida.common import exceptions\n'), ((9136, 9166), 'os.path.expanduser', 'os.path.expanduser', (['parts.path'], {}), '(parts.path)\n', (9154, 9166), False, 'import os\n'), ((9589, 9726), 'aiida.common.exceptions.ConfigurationError', 'exceptions.ConfigurationError', (['f"""invalid process control backend, only \'rabbitmq\' is supported: {self.process_control_backend}"""'], {}), '(\n f"invalid process control backend, only \'rabbitmq\' is supported: {self.process_control_backend}"\n )\n', (9618, 9726), False, 'from aiida.common import exceptions\n'), ((3056, 3063), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (3061, 3063), False, 'from uuid import uuid4\n')]
import unittest from unittest_expander import expand, foreach from pypidb._compat import PY2 from pypidb._db import _fetch_mapping from pypidb._github import GitHubAPIMessage, check_repo from pypidb._pypi import InvalidPackage from pypidb._similarity import _compute_similarity, normalize from tests.data import ( exact, exact_fetched, exact_metadata, invalid, mismatch, missing_repos, name_mismatch_fetched, name_mismatch_metadata, ) from tests.utils import _TestBase, normalise_list, web_session expected = {} expected.update(exact) expected.update(mismatch) missing_repos = normalise_list(missing_repos) class _ExplicitBase(object): def _check_result(self, name, url): pass def _test_package(self, name): try: url = self._get_scm(name) except InvalidPackage: self.assertIn(name, invalid) raise unittest.SkipTest("{} is an invalid package".format(name)) except unittest.SkipTest: raise except Exception as e: self.assertIn(name, self.expected_failures, e) if name in self.expected_failures: return self.assertIsNotNone(url) self.assertNotIn(name, invalid) expected = self.expected[name] self.assertInsensitiveEqual(url, expected) self._check_result(name, url) return url @expand class TestExactFromJson(_TestBase): expected = expected def _check_result(self, name, url): normalised_name = normalize(name) r = None if normalised_name in missing_repos: pass elif url.startswith("https://github.com/"): slug = url[len("https://github.com/") :] rv = self._check_github_repo(slug) self.assertTrue(rv) try: rv = self._check_github_setuppy(slug, normalised_name) except GitHubAPIMessage as e: raise unittest.SkipTest(str(e)) if rv is False: return self.assertTrue(rv) else: r = web_session.get(url, allow_redirects=False) if r is not None: r.raise_for_status() self.assertEqual(r.url, url) location = r.headers.get("location") if location: self.assertIn(r.status_code, [301, 302]) location = location.replace( "code.google.com/archive/p/", "code.google.com/p/" ) self.assertIn(location, [url, url + "/"]) else: self.assertEqual(r.status_code, 200) @foreach(exact_metadata.keys()) def test_package(self, name): expected = self.expected[name] url = self._get_scm(name) self.assertIsNotNone(url) self.assertInsensitiveEqual(url, expected) normalised_name = normalize(name) fetch_list = _fetch_mapping[normalised_name] self.assertFalse(fetch_list) self._check_result(name, url) if PY2: return if isinstance(expected, str): self.assertLess( _compute_similarity(name, expected), 0.05, "{} - {} should be moved to name mismatches".format(name, expected), ) else: for i in expected: self.assertLess( _compute_similarity(name, i), 0.05, "{} - {} should be moved to name mismatches".format(name, expected), ) @expand class TestExactFetched(_TestBase): expected = expected @foreach(exact_fetched.keys()) def test_package(self, name): expected = self.expected[name] url = self._get_scm(name) self.assertIsNotNone(url) self.assertInsensitiveEqual(url, expected) normalised_name = normalize(name) fetch_list = _fetch_mapping[normalised_name] self.assertTrue(fetch_list) if normalised_name in missing_repos: pass elif url.startswith("https://github.com/"): slug = url[len("https://github.com/") :] rv = self._check_github_repo(slug) self.assertTrue(rv) try: rv = self._check_github_setuppy(slug, normalised_name) except GitHubAPIMessage as e: raise unittest.SkipTest(str(e)) if rv is False: return self.assertTrue(rv) else: r = web_session.get(url) r.raise_for_status() if PY2: return if isinstance(expected, str): self.assertLess( _compute_similarity(name, expected), 0.05, "{} - {} should be moved to name mismatches".format(name, expected), ) else: for i in expected: self.assertLess( _compute_similarity(name, i), 0.05, "{} - {} should be moved to name mismatches".format(name, expected), ) @expand class TestMismatchFromJson(_TestBase): expected = expected names = mismatch expected_failures = [] @foreach(name_mismatch_metadata.keys()) def test_package(self, name): expected = self.expected[name] try: url = self._get_scm(name) except unittest.SkipTest: raise except Exception: if name in self.expected_failures: return raise if name in self.expected_failures: return self.assertIsNotNone(url) self.assertInsensitiveEqual(url, expected) if isinstance(expected, str): self.assertIn("/", expected, "{} should be {}".format(expected, url)) normalised_name = normalize(name) fetch_list = _fetch_mapping[normalised_name] self.assertFalse(fetch_list) if normalised_name in missing_repos: pass elif url.startswith("https://github.com/"): slug = url[len("https://github.com/") :] rv = self._check_github_repo(slug) self.assertTrue(rv) try: rv = self._check_github_setuppy(slug, normalised_name) except GitHubAPIMessage as e: raise unittest.SkipTest(str(e)) if rv is False: return self.assertTrue(rv) else: r = web_session.get(url) r.raise_for_status() if PY2: return if isinstance(expected, str): self.assertGreater(_compute_similarity(name, expected), 0.05) else: highest = 0 for i in expected: val = _compute_similarity(name, i) highest = max(highest, val) self.assertGreater(highest, 0.05) @expand class TestMismatchFetched(_ExplicitBase, _TestBase): expected = expected names = mismatch expected_failures = ["marionette-driver"] @foreach(name_mismatch_fetched.keys()) def test_package(self, name): expected = self.expected[name] url = self._test_package(name) if name in self.expected_failures: return self.assertIsNotNone(url) self.assertInsensitiveEqual(url, expected) if isinstance(expected, str): self.assertIn("/", expected, "{} should be {}".format(expected, url)) normalised_name = normalize(name) fetch_list = _fetch_mapping[normalised_name] self.assertTrue(fetch_list) if normalised_name in missing_repos: pass elif url.startswith("https://github.com/"): slug = url[len("https://github.com/") :] rv = self._check_github_repo(slug) self.assertTrue(rv) try: rv = self._check_github_setuppy(slug, normalised_name) except GitHubAPIMessage as e: raise unittest.SkipTest(str(e)) if rv is False: return self.assertTrue(rv) elif url == "https://wiki.mozilla.org/Auto-tools/Projects/Mozbase": # Fetching is a bit slow, and failures for moz* are very repetitive pass else: r = web_session.get(url) r.raise_for_status() if PY2: return if isinstance(expected, str): self.assertGreater(_compute_similarity(name, expected), 0.05) else: highest = 0 for i in expected: val = _compute_similarity(name, i) highest = max(highest, val) self.assertGreater(highest, 0.05)
[ "tests.utils.web_session.get", "pypidb._similarity._compute_similarity", "tests.data.name_mismatch_metadata.keys", "pypidb._similarity.normalize", "tests.utils.normalise_list", "tests.data.name_mismatch_fetched.keys", "tests.data.exact_fetched.keys", "tests.data.exact_metadata.keys" ]
[((613, 642), 'tests.utils.normalise_list', 'normalise_list', (['missing_repos'], {}), '(missing_repos)\n', (627, 642), False, 'from tests.utils import _TestBase, normalise_list, web_session\n'), ((1530, 1545), 'pypidb._similarity.normalize', 'normalize', (['name'], {}), '(name)\n', (1539, 1545), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((2902, 2917), 'pypidb._similarity.normalize', 'normalize', (['name'], {}), '(name)\n', (2911, 2917), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((2658, 2679), 'tests.data.exact_metadata.keys', 'exact_metadata.keys', ([], {}), '()\n', (2677, 2679), False, 'from tests.data import exact, exact_fetched, exact_metadata, invalid, mismatch, missing_repos, name_mismatch_fetched, name_mismatch_metadata\n'), ((3913, 3928), 'pypidb._similarity.normalize', 'normalize', (['name'], {}), '(name)\n', (3922, 3928), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((3670, 3690), 'tests.data.exact_fetched.keys', 'exact_fetched.keys', ([], {}), '()\n', (3688, 3690), False, 'from tests.data import exact, exact_fetched, exact_metadata, invalid, mismatch, missing_repos, name_mismatch_fetched, name_mismatch_metadata\n'), ((5907, 5922), 'pypidb._similarity.normalize', 'normalize', (['name'], {}), '(name)\n', (5916, 5922), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((5289, 5318), 'tests.data.name_mismatch_metadata.keys', 'name_mismatch_metadata.keys', ([], {}), '()\n', (5316, 5318), False, 'from tests.data import exact, exact_fetched, exact_metadata, invalid, mismatch, missing_repos, name_mismatch_fetched, name_mismatch_metadata\n'), ((7576, 7591), 'pypidb._similarity.normalize', 'normalize', (['name'], {}), '(name)\n', (7585, 7591), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((7137, 7165), 'tests.data.name_mismatch_fetched.keys', 'name_mismatch_fetched.keys', ([], {}), '()\n', (7163, 7165), False, 'from tests.data import exact, exact_fetched, exact_metadata, invalid, mismatch, missing_repos, name_mismatch_fetched, name_mismatch_metadata\n'), ((2105, 2148), 'tests.utils.web_session.get', 'web_session.get', (['url'], {'allow_redirects': '(False)'}), '(url, allow_redirects=False)\n', (2120, 2148), False, 'from tests.utils import _TestBase, normalise_list, web_session\n'), ((3167, 3202), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'expected'], {}), '(name, expected)\n', (3186, 3202), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((4560, 4580), 'tests.utils.web_session.get', 'web_session.get', (['url'], {}), '(url)\n', (4575, 4580), False, 'from tests.utils import _TestBase, normalise_list, web_session\n'), ((4734, 4769), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'expected'], {}), '(name, expected)\n', (4753, 4769), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((6555, 6575), 'tests.utils.web_session.get', 'web_session.get', (['url'], {}), '(url)\n', (6570, 6575), False, 'from tests.utils import _TestBase, normalise_list, web_session\n'), ((6715, 6750), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'expected'], {}), '(name, expected)\n', (6734, 6750), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((6849, 6877), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'i'], {}), '(name, i)\n', (6868, 6877), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((8557, 8592), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'expected'], {}), '(name, expected)\n', (8576, 8592), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((8691, 8719), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'i'], {}), '(name, i)\n', (8710, 8719), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((3423, 3451), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'i'], {}), '(name, i)\n', (3442, 3451), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((4990, 5018), 'pypidb._similarity._compute_similarity', '_compute_similarity', (['name', 'i'], {}), '(name, i)\n', (5009, 5018), False, 'from pypidb._similarity import _compute_similarity, normalize\n'), ((8397, 8417), 'tests.utils.web_session.get', 'web_session.get', (['url'], {}), '(url)\n', (8412, 8417), False, 'from tests.utils import _TestBase, normalise_list, web_session\n')]
import pandas as pd import numpy as np import pickle from web_constants import * from project_data import ProjectData, get_selected_project_data # Read in meta file meta_clinical_df = pd.read_csv(META_CLINICAL_FILE, sep='\t') meta_clinical_df = meta_clinical_df.loc[~meta_clinical_df[META_COL_CLINICAL_COL].isin([ICD_O_3_SITE_DESC, ICD_O_3_HISTOLOGY_DESC, SURVIVAL_DAYS_TO_DEATH, SURVIVAL_DAYS_TO_LAST_FOLLOWUP])] def append_icd_desc(row, code_col, desc_col): if row[desc_col] != 'nan': return ("%s (%s)" % (row[code_col], row[desc_col])) else: return row[code_col] def get_clinical_variables(): return list(meta_clinical_df[META_COL_CLINICAL_COL].unique()) def get_clinical_variable_scale_types(): return meta_clinical_df.drop_duplicates(subset=[META_COL_CLINICAL_COL])[[META_COL_CLINICAL_COL, META_COL_CLINICAL_SCALE_TYPE]].to_dict('records') def plot_clinical(projects, return_df=False): result = [] clinical_vars = get_clinical_variables() project_data = get_selected_project_data(projects) clinical_df = pd.DataFrame(index=[], data=[], columns=clinical_vars + [ICD_O_3_SITE_DESC, ICD_O_3_HISTOLOGY_DESC]) for proj in project_data: samples = proj.get_samples_list() if proj.has_clinical_df(): proj_clinical_df = proj.get_clinical_df() else: proj_clinical_df = pd.DataFrame(index=samples, data=[], columns=[]) clinical_df = clinical_df.append(proj_clinical_df, ignore_index=False) # Try to convert columns to float if continuous-valued variables for clinical_var in clinical_vars: if meta_clinical_df.loc[(meta_clinical_df[META_COL_CLINICAL_COL] == clinical_var) & \ (meta_clinical_df[META_COL_CLINICAL_SCALE_TYPE] == 'continuous')].shape[0] > 0: try: clinical_df[clinical_var] = clinical_df[clinical_var].astype(float) except: pass else: clinical_df[clinical_var] = clinical_df[clinical_var].fillna(value='nan') # "special" variable behavior if ICD_O_3_SITE_CODE in clinical_vars: clinical_df[ICD_O_3_SITE_CODE] = clinical_df.apply( lambda row: append_icd_desc(row, ICD_O_3_SITE_CODE, ICD_O_3_SITE_DESC), axis='columns' ) if ICD_O_3_HISTOLOGY_CODE in clinical_vars: clinical_df[ICD_O_3_HISTOLOGY_CODE] = clinical_df.apply( lambda row: append_icd_desc(row, ICD_O_3_HISTOLOGY_CODE, ICD_O_3_HISTOLOGY_DESC), axis='columns' ) if SURVIVAL_DAYS_TO_DEATH in clinical_vars: clinical_df[SURVIVAL_DAYS_TO_DEATH] = clinical_df[SURVIVAL_DAYS_TO_DEATH].clip(lower=0.0) if SURVIVAL_DAYS_TO_LAST_FOLLOWUP in clinical_vars: clinical_df[SURVIVAL_DAYS_TO_LAST_FOLLOWUP] = clinical_df[SURVIVAL_DAYS_TO_LAST_FOLLOWUP].clip(lower=0.0) clinical_df.index = clinical_df.index.rename("sample_id") clinical_df = clinical_df[clinical_vars] if return_df: return clinical_df clinical_df = clinical_df.fillna(value='nan') clinical_df = clinical_df.reset_index() result = clinical_df.to_dict('records') return result
[ "project_data.get_selected_project_data", "pandas.DataFrame", "pandas.read_csv" ]
[((186, 227), 'pandas.read_csv', 'pd.read_csv', (['META_CLINICAL_FILE'], {'sep': '"""\t"""'}), "(META_CLINICAL_FILE, sep='\\t')\n", (197, 227), True, 'import pandas as pd\n'), ((1010, 1045), 'project_data.get_selected_project_data', 'get_selected_project_data', (['projects'], {}), '(projects)\n', (1035, 1045), False, 'from project_data import ProjectData, get_selected_project_data\n'), ((1065, 1169), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': '[]', 'data': '[]', 'columns': '(clinical_vars + [ICD_O_3_SITE_DESC, ICD_O_3_HISTOLOGY_DESC])'}), '(index=[], data=[], columns=clinical_vars + [ICD_O_3_SITE_DESC,\n ICD_O_3_HISTOLOGY_DESC])\n', (1077, 1169), True, 'import pandas as pd\n'), ((1372, 1420), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'samples', 'data': '[]', 'columns': '[]'}), '(index=samples, data=[], columns=[])\n', (1384, 1420), True, 'import pandas as pd\n')]
import json from unittest.mock import patch import flask_testing from webapp import app from webapp.test_utils import mocks from webapp.json_api import serializers class TestContainerEndpoints(flask_testing.TestCase): def create_app(self): return app def test_getting_contain_without_id(self): mocks.DockerClient.containers.get = mocks.NotFound with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers/1", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 404) def test_getting_container_with_id(self): mocks.DockerClient.containers.get = mocks.SingleContainer with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers/1", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 200) def test_get_container_logs_with_unknown_id(self): mocks.DockerClient.containers.get = mocks.NotFound with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers/1/logs", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 404) def test_get_container_logs_with_known_id(self): mocks.DockerClient.containers.get = mocks.SingleContainer with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers/1/logs", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 200) def test_get_all_containers(self): expected_response = {"data": []} for container in mocks.Containers: serialized_container = serializers.dict_serializer( container, fields=["id", "image", "name", "short_id", "status"] ) expected_response["data"].append(serialized_container) mocks.DockerClient.containers.list = mocks.ContainersList with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 200) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) self.assertDictEqual(response.get_json(), expected_response) def test_get_all_containers_with_filters(self): expected_response = {"data": []} for container in mocks.Containers[:3]: serialized_container = serializers.dict_serializer( container, fields=["id", "image", "name", "short_id", "status"] ) expected_response["data"].append(serialized_container) mocks.DockerClient.containers.list = mocks.ContainersList with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.get( "/containers", query_string={"active": "true"}, headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 200) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) self.assertDictEqual(response.get_json(), expected_response) def test_delete_container_without_id(self): mocks.DockerClient.containers.get = mocks.NotFound with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.delete( "/containers/1", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 404) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) def test_delete_container_with_id(self): mocks.DockerClient.containers.get = mocks.SingleContainer with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.delete( "/containers/1", headers={"Accept": "application/json"} ) self.assertEqual(response.status_code, 200) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) def test_update_container_patch_without_id(self): mocks.DockerClient.containers.get = mocks.NotFound with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.patch( "/containers/1", headers={ "Accept": "application/json", "Content-Type": "application/json" }, data=json.dumps({"state": "start"}) ) self.assertEqual(response.status_code, 404) def test_update_container_patch_request_with_id(self): mocks.DockerClient.containers.get = mocks.SingleContainer with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.patch( "/containers/1", headers={ "Accept": "application/json", "Content-Type": "application/json" }, data=json.dumps({"state": "start"}) ) self.assertEqual(response.status_code, 200) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) def test_container_create_without_valid_api_params(self): requests = ( {}, {"image": 23}, {"image": "alpine", "command": 323}, {"image": "alpine", "command": "echo hello world", "ports": 234}, {"image": "alpine", "command": "echo hello world", "ports": "te"}, ) for request in requests: response = self.client.post( "/containers", headers={ "Accept": "application/json", "Content-Type": "application/json" }, data=json.dumps(request) ) with self.subTest(request=request): self.assertEqual(response.status_code, 400) self.assertIn("error", response.get_json()) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) def test_container_create_with_valid_api_params(self): request_data = { "image": "alpine:latest", "command": "echo hello world", "ports": { '8000': '8000' } } expected_response = serializers.dict_serializer( mocks.Containers[0], fields=["id", "image", "name", "short_id", "status"] ) mocks.DockerClient.containers.run.return_value = mocks.Containers[0] with patch("webapp.containers.views.docker.from_env", mocks.from_env): response = self.client.post( "/containers", headers={ "Accept": "application/json", "Content-Type": "application/json" }, data=json.dumps(request_data) ) self.assertEqual(response.status_code, 201) self.assertEqual( response.headers.get("Content-Type"), "application/json" ) self.assertDictEqual(response.get_json(), expected_response)
[ "webapp.json_api.serializers.dict_serializer", "json.dumps", "unittest.mock.patch" ]
[((7071, 7177), 'webapp.json_api.serializers.dict_serializer', 'serializers.dict_serializer', (['mocks.Containers[0]'], {'fields': "['id', 'image', 'name', 'short_id', 'status']"}), "(mocks.Containers[0], fields=['id', 'image',\n 'name', 'short_id', 'status'])\n", (7098, 7177), False, 'from webapp.json_api import serializers\n'), ((387, 451), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (392, 451), False, 'from unittest.mock import patch\n'), ((773, 837), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (778, 837), False, 'from unittest.mock import patch\n'), ((1161, 1225), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (1166, 1225), False, 'from unittest.mock import patch\n'), ((1563, 1627), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (1568, 1627), False, 'from unittest.mock import patch\n'), ((1992, 2088), 'webapp.json_api.serializers.dict_serializer', 'serializers.dict_serializer', (['container'], {'fields': "['id', 'image', 'name', 'short_id', 'status']"}), "(container, fields=['id', 'image', 'name',\n 'short_id', 'status'])\n", (2019, 2088), False, 'from webapp.json_api import serializers\n'), ((2262, 2326), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (2267, 2326), False, 'from unittest.mock import patch\n'), ((2871, 2967), 'webapp.json_api.serializers.dict_serializer', 'serializers.dict_serializer', (['container'], {'fields': "['id', 'image', 'name', 'short_id', 'status']"}), "(container, fields=['id', 'image', 'name',\n 'short_id', 'status'])\n", (2898, 2967), False, 'from webapp.json_api import serializers\n'), ((3141, 3205), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (3146, 3205), False, 'from unittest.mock import patch\n'), ((3743, 3807), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (3748, 3807), False, 'from unittest.mock import patch\n'), ((4236, 4300), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (4241, 4300), False, 'from unittest.mock import patch\n'), ((4731, 4795), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (4736, 4795), False, 'from unittest.mock import patch\n'), ((5283, 5347), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (5288, 5347), False, 'from unittest.mock import patch\n'), ((7298, 7362), 'unittest.mock.patch', 'patch', (['"""webapp.containers.views.docker.from_env"""', 'mocks.from_env'], {}), "('webapp.containers.views.docker.from_env', mocks.from_env)\n", (7303, 7362), False, 'from unittest.mock import patch\n'), ((5043, 5073), 'json.dumps', 'json.dumps', (["{'state': 'start'}"], {}), "({'state': 'start'})\n", (5053, 5073), False, 'import json\n'), ((5595, 5625), 'json.dumps', 'json.dumps', (["{'state': 'start'}"], {}), "({'state': 'start'})\n", (5605, 5625), False, 'import json\n'), ((6448, 6467), 'json.dumps', 'json.dumps', (['request'], {}), '(request)\n', (6458, 6467), False, 'import json\n'), ((7607, 7631), 'json.dumps', 'json.dumps', (['request_data'], {}), '(request_data)\n', (7617, 7631), False, 'import json\n')]
''' Code generator for message protocol xml files. ''' import os import sys import yaml import genutil as util Version = 11 #------------------------------------------------------------------------------- def writeHeaderTop(f, desc) : ''' Write header area for the generated C++ header. ''' f.write('#pragma once\n') f.write('//-----------------------------------------------------------------------------\n') f.write('/* #version:{}#\n'.format(Version)) f.write(' machine generated, do not edit!\n') f.write('*/\n') f.write('#include <cstring>\n') #------------------------------------------------------------------------------- def writeIncludes(f, desc) : ''' Write include statements in the generated C++ header. ''' f.write('#include "Messaging/Message.h"\n') f.write('#include "Messaging/Serializer.h"\n') parentHdr = desc.get('parentProtocolHeader', 'Messaging/Protocol.h') f.write('#include "{}"\n'.format(parentHdr)) for hdr in desc.get('headers', []) : f.write('#include "{}"\n'.format(hdr)) f.write('\n') #------------------------------------------------------------------------------- def writeProtocolMethods(f, desc) : ''' Write the protocol methods ''' f.write(' static ProtocolIdType GetProtocolId() {\n') f.write(" return '{}';\n".format(desc['id'])) f.write(' };\n') #------------------------------------------------------------------------------- def writeMessageIdEnum(f, desc) : ''' Write the enum with message ids ''' protocol = desc['name'] parentProtocol = desc.get('parentProtocol', 'Protocol') f.write(' class MessageId {\n') f.write(' public:\n') f.write(' enum {\n') msgCount = 0 for msg in desc['messages'] : if msgCount == 0: f.write(' ' + msg['name'] + 'Id = ' + parentProtocol + '::MessageId::NumMessageIds, \n') else : f.write(' ' + msg['name'] + 'Id,\n') msgCount += 1 f.write(' NumMessageIds\n') f.write(' };\n') f.write(' static const char* ToString(MessageIdType c) {\n') f.write(' switch (c) {\n') for msg in desc['messages'] : msgName = msg['name'] + 'Id' f.write(' case ' + msgName + ': return "' + msgName + '";\n') f.write(' default: return "InvalidMessageId";\n') f.write(' }\n') f.write(' };\n') f.write(' static MessageIdType FromString(const char* str) {\n') for msg in desc['messages'] : msgName = msg['name'] + 'Id' f.write(' if (std::strcmp("' + msgName + '", str) == 0) return ' + msgName + ';\n') f.write(' return InvalidMessageId;\n') f.write(' };\n') f.write(' };\n') f.write(' typedef Ptr<Message> (*CreateCallback)();\n') f.write(' static CreateCallback jumpTable[' + protocol + '::MessageId::NumMessageIds];\n') #------------------------------------------------------------------------------- def writeFactoryClassDecl(f, desc) : ''' Writes the message factory for this protocol ''' f.write(' class Factory {\n') f.write(' public:\n') f.write(' static Ptr<Message> Create(MessageIdType id);\n') f.write(' };\n') #------------------------------------------------------------------------------- def writeFactoryClassImpl(f, desc) : ''' Writes the factory class implementation ''' protocol = desc['name'] parentProtocol = desc.get('parentProtocol', 'Protocol') f.write(protocol + '::CreateCallback ' + protocol + '::jumpTable[' + protocol + '::MessageId::NumMessageIds] = { \n') for msg in desc['messages'] : f.write(' &' + protocol + '::' + msg['name'] + '::FactoryCreate,\n') f.write('};\n') f.write('Ptr<Message>\n') f.write(protocol + '::Factory::Create(MessageIdType id) {\n') f.write(' if (id < ' + parentProtocol + '::MessageId::NumMessageIds) {\n') f.write(' return ' + parentProtocol + '::Factory::Create(id);\n') f.write(' }\n') f.write(' else {\n') f.write(' o_assert(id < ' + protocol + '::MessageId::NumMessageIds);\n') f.write(' return jumpTable[id - ' + parentProtocol + '::MessageId::NumMessageIds]();\n') f.write(' };\n') f.write('}\n') #------------------------------------------------------------------------------- def getAttrDefaultValue(attr) : ''' Get the default value for a given attribute ''' defValue = attr.get('default') attrType = attr['type'] if attrType in ('int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64') : if not defValue : defValue = '0' elif attrType in ('char', 'unsigned char', 'int', 'unsigned int', 'short', 'unsigned short', 'long', 'unsigned long') : if not defValue : defValue = '0' elif attrType == 'bool' : if not defValue : defValue = 'false' elif attrType in ('float32', 'float') : if not defValue : defValue = '0.0f' elif attrType in ('float64', 'double') : if not defValue : defValue = '0.0' return defValue; #------------------------------------------------------------------------------- def getRefType(attrType) : ''' Get the reference type string for an attribute type ''' if attrType in ('int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64') : return attrType elif attrType in ('bool', 'char', 'unsigned char', 'int', 'unsigned int', 'short', 'unsigned short', 'long', 'unsigned long') : return attrType elif attrType in ('float32', 'float') : return attrType elif attrType in ('float64', 'double') : return attrType else : return 'const ' + attrType + '&' #------------------------------------------------------------------------------- def getValueType(attrType) : ''' Get the value type string for an attribute type ''' return attrType #------------------------------------------------------------------------------- def isArrayType(attrType) : ''' Test if the type string is an array type (Array<TYPE>) ''' return attrType.startswith('Array<') and attrType.endswith('>') #------------------------------------------------------------------------------- def getArrayType(attrType) : ''' Get the element type of an array type. ''' # strip the 'Array<' at the left, and the '>' at the right return attrType[12:-1] #------------------------------------------------------------------------------- def writeMessageClasses(f, desc) : ''' Write the message classes to the generated C++ header ''' protocolId = desc['id'] for msg in desc['messages'] : msgClassName = msg['name'] msgParentClassName = msg.get('parent', 'Message') f.write(' class ' + msgClassName + ' : public ' + msgParentClassName + ' {\n') f.write(' OryolClassDecl(' + msgClassName + ');\n') f.write(' OryolTypeDecl(' + msgClassName + ',' + msgParentClassName + ');\n') f.write(' public:\n') # write constructor f.write(' ' + msgClassName + '() {\n') f.write(' this->msgId = MessageId::' + msgClassName + 'Id;\n') for attr in msg.get('attrs', []) : attrName = attr['name'].lower() defValue = getAttrDefaultValue(attr) if defValue : f.write(' this->' + attrName + ' = ' + defValue + ';\n') f.write(' };\n') # special factory create method f.write(' static Ptr<Message> FactoryCreate() {\n') f.write(' return Create();\n') f.write(' };\n') # special class message id static method f.write(' static MessageIdType ClassMessageId() {\n') f.write(' return MessageId::' + msgClassName + 'Id;\n') f.write(' };\n') # virtual method which checks whether the method belongs to a protocol f.write(' virtual bool IsMemberOf(ProtocolIdType protId) const override {\n') f.write(" if (protId == '" + protocolId + "') return true;\n") f.write(' else return ' + msgParentClassName + '::IsMemberOf(protId);\n') f.write(' };\n') # write serializer methods if msg.get('serialize', False) : f.write(' virtual int32 EncodedSize() const override;\n') f.write(' virtual uint8* Encode(uint8* dstPtr, const uint8* maxValidPtr) const override;\n') f.write(' virtual const uint8* Decode(const uint8* srcPtr, const uint8* maxValidPtr) override;\n') # write setters/getters for attr in msg.get('attrs', []) : attrName = attr['name'] attrType = attr['type'] f.write(' void Set' + attrName + '(' + getRefType(attrType) + ' val) {\n') f.write(' this->' + attrName.lower() + ' = val;\n') f.write(' };\n') f.write(' ' + getRefType(attrType) + ' Get' + attrName + '() const {\n') f.write(' return this->' + attrName.lower() + ';\n') f.write(' };\n') # write members f.write('private:\n') for attr in msg.get('attrs', []) : attrName = attr['name'].lower() attrType = attr['type'] f.write(' ' + getValueType(attrType) + ' ' + attrName + ';\n') f.write(' };\n') #------------------------------------------------------------------------------- def writeSerializeMethods(f, desc) : ''' Writes the serializer methods of the message to the source file. ''' for msg in desc['messages'] : if msg.get('serialize', False) : protocol = desc['name'] msgClassName = msg['name'] msgParentClassName = msg.get('parent', 'Message') # EncodedSize() f.write('int32 ' + protocol + '::' + msgClassName + '::EncodedSize() const {\n') f.write(' int32 s = ' + msgParentClassName + '::EncodedSize();\n') for attr in msg.get('attrs', []) : attrName = attr['name'].lower() attrType = attr['type'] if isArrayType(attrType) : elmType = getArrayType(attrType) f.write(' s += Serializer::EncodedArraySize<' + elmType + '>(this->' + attrName + ');\n') else : f.write(' s += Serializer::EncodedSize<' + attrType + '>(this->' + attrName + ');\n') f.write(' return s;\n') f.write('}\n') # Encode # FIXME: I think we need to diffentiate between "send" and "receive" attributes! # ... so: EncodeSend/DecodeSend, EncodeReceive/DecodeReceive f.write('uint8* ' + protocol + '::' + msgClassName + '::Encode(uint8* dstPtr, const uint8* maxValidPtr) const {\n') f.write(' dstPtr = ' + msgParentClassName + '::Encode(dstPtr, maxValidPtr);\n') for attr in msg.get('attrs', []) : attrName = attr['name'].lower() attrType = attr['type'] if isArrayType(attrType) : elmType = getArrayType(attrType) f.write(' dstPtr = Serializer::EncodeArray<' + elmType + '>(this->' + attrName + ', dstPtr, maxValidPtr);\n') else : f.write(' dstPtr = Serializer::Encode<' + attrType + '>(this->' + attrName + ', dstPtr, maxValidPtr);\n') f.write(' return dstPtr;\n') f.write('}\n') # Decode f.write('const uint8* ' + protocol + '::' + msgClassName + '::Decode(const uint8* srcPtr, const uint8* maxValidPtr) {\n') f.write(' srcPtr = ' + msgParentClassName + '::Decode(srcPtr, maxValidPtr);\n') for attr in msg.get('attrs', []) : attrName = attr['name'].lower() attrType = attr['type'] if isArrayType(attrType) : elmType = getArrayType(attrType) f.write(' srcPtr = Serializer::DecodeArray<' + elmType + '>(srcPtr, maxValidPtr, this->' + attrName + ');\n') else : f.write(' srcPtr = Serializer::Decode<' + attrType + '>(srcPtr, maxValidPtr, this->' + attrName + ');\n') f.write(' return srcPtr;\n') f.write('}\n') #------------------------------------------------------------------------------- def generateHeader(desc, absHeaderPath) : ''' Generate the C++ header file ''' f = open(absHeaderPath, 'w') protocol = desc['name'] writeHeaderTop(f, desc) writeIncludes(f, desc) f.write('namespace Oryol {\n') f.write('class ' + protocol + ' {\n') f.write('public:\n') writeProtocolMethods(f, desc) writeMessageIdEnum(f, desc) writeFactoryClassDecl(f, desc) writeMessageClasses(f, desc) f.write('};\n') f.write('}\n') f.close() #------------------------------------------------------------------------------- def writeSourceTop(f, desc, absSourcePath) : ''' Write source file header area ''' path, hdrFileAndExt = os.path.split(absSourcePath) hdrFile, ext = os.path.splitext(hdrFileAndExt) f.write('//-----------------------------------------------------------------------------\n') f.write('// #version:{}# machine generated, do not edit!\n'.format(Version)) f.write('//-----------------------------------------------------------------------------\n') f.write('#include "Pre.h"\n') f.write('#include "' + hdrFile + '.h"\n') f.write('\n') #------------------------------------------------------------------------------- def generateSource(desc, absSourcePath) : ''' Generate the C++ source file ''' protocol = desc['name'] f = open(absSourcePath, 'w') writeSourceTop(f, desc, absSourcePath) f.write('namespace Oryol {\n') for msg in desc['messages'] : msgClassName = msg['name'] f.write('OryolClassImpl(' + protocol + '::' + msgClassName + ');\n') writeFactoryClassImpl(f, desc) writeSerializeMethods(f, desc) f.write('}\n') f.close() #------------------------------------------------------------------------------- def generate(input, out_src, out_hdr) : if util.isDirty(Version, [input], [out_src, out_hdr]) : with open(input, 'r') as f : desc = yaml.load(f) generateHeader(desc, out_hdr) generateSource(desc, out_src)
[ "yaml.load", "os.path.splitext", "genutil.isDirty", "os.path.split" ]
[((13647, 13675), 'os.path.split', 'os.path.split', (['absSourcePath'], {}), '(absSourcePath)\n', (13660, 13675), False, 'import os\n'), ((13695, 13726), 'os.path.splitext', 'os.path.splitext', (['hdrFileAndExt'], {}), '(hdrFileAndExt)\n', (13711, 13726), False, 'import os\n'), ((14801, 14851), 'genutil.isDirty', 'util.isDirty', (['Version', '[input]', '[out_src, out_hdr]'], {}), '(Version, [input], [out_src, out_hdr])\n', (14813, 14851), True, 'import genutil as util\n'), ((14910, 14922), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (14919, 14922), False, 'import yaml\n')]
""" """ import numpy as np from afib import BaseRisk # points for each variable CHADS2_PTS = [1, 1, 2, 1, 2, 1, 1, 1] def chad(chf, htn, age, dm, stroke, vd, fem): feat = np.array([chf, htn, age >= 75, dm, stroke, vd, 65 <= age <= 74, fem], dtype=int) return feat.dot(CHADS2_PTS) class Chads2(BaseRisk): #features = ["chf","htn","index_age","dm","stroke","vd","fem"] def score(self, row): return chad(row["chf"], row["htn"], row["index_age"], row["dm"], row["stroke"], row["vd"], row["fem"])
[ "numpy.array" ]
[((179, 264), 'numpy.array', 'np.array', (['[chf, htn, age >= 75, dm, stroke, vd, 65 <= age <= 74, fem]'], {'dtype': 'int'}), '([chf, htn, age >= 75, dm, stroke, vd, 65 <= age <= 74, fem], dtype=int\n )\n', (187, 264), True, 'import numpy as np\n')]
#!/usr/bin/env python # Copyright 2019 <NAME> # License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import torch as th import torch.nn as nn import torch.nn.functional as F from typing import Tuple, List, Union, Optional from aps.sse.base import SseBase from aps.libs import ApsRegisters def parse_1dstr(sstr: str) -> List[int]: return list(map(int, sstr.split(","))) def parse_2dstr(sstr: str) -> List[List[int]]: return [parse_1dstr(tok) for tok in sstr.split(";")] class ComplexConv2d(nn.Module): """ Complex 2D Convolution """ def __init__(self, *args, **kwargs): super(ComplexConv2d, self).__init__() self.real = nn.Conv2d(*args, **kwargs) self.imag = nn.Conv2d(*args, **kwargs) def forward(self, x: th.Tensor) -> th.Tensor: """ Args: x (Tensor): N x C x 2F x T Return: y (Tensor): N x C' x 2F' x T' """ xr, xi = th.chunk(x, 2, -2) yr = self.real(xr) - self.imag(xi) yi = self.imag(xr) + self.real(xi) y = th.cat([yr, yi], -2) return y class ComplexConvTranspose2d(nn.Module): """ Complex Transpose 2D Convolution """ def __init__(self, *args, **kwargs): super(ComplexConvTranspose2d, self).__init__() self.real = nn.ConvTranspose2d(*args, **kwargs) self.imag = nn.ConvTranspose2d(*args, **kwargs) def forward(self, x: th.Tensor) -> th.Tensor: """ Args: x (Tensor): N x C x 2F x T Return: y (Tensor): N x C' x 2F' x T' """ xr, xi = th.chunk(x, 2, -2) yr = self.real(xr) - self.imag(xi) yi = self.imag(xr) + self.real(xi) y = th.cat([yr, yi], -2) return y class ComplexBatchNorm2d(nn.Module): """ A easy implementation of complex 2d batchnorm """ def __init__(self, *args, **kwargs): super(ComplexBatchNorm2d, self).__init__() self.real_bn = nn.BatchNorm2d(*args, **kwargs) self.imag_bn = nn.BatchNorm2d(*args, **kwargs) def forward(self, x: th.Tensor) -> th.Tensor: xr, xi = th.chunk(x, 2, -2) xr = self.real_bn(xr) xi = self.imag_bn(xi) x = th.cat([xr, xi], -2) return x class EncoderBlock(nn.Module): """ Convolutional block in encoder """ def __init__(self, in_channels: int, out_channels: int, kernel_size: Tuple[int], stride: int = 1, padding: int = 0, causal: bool = False, cplx: bool = True) -> None: super(EncoderBlock, self).__init__() conv_impl = ComplexConv2d if cplx else nn.Conv2d # NOTE: time stride should be 1 var_kt = kernel_size[1] - 1 time_axis_pad = var_kt if causal else var_kt // 2 self.conv = conv_impl(in_channels, out_channels, kernel_size, stride=stride, padding=(padding, time_axis_pad)) if cplx: self.bn = ComplexBatchNorm2d(out_channels) else: self.bn = nn.BatchNorm2d(out_channels) self.causal = causal self.time_axis_pad = time_axis_pad def forward(self, x: th.Tensor) -> th.Tensor: """ Args: x (Tensor): N x 2C x F x T """ x = self.conv(x) if self.causal: x = x[..., :-self.time_axis_pad] x = self.bn(x) x = F.leaky_relu(x) return x class DecoderBlock(nn.Module): """ Convolutional block in decoder """ def __init__(self, in_channels: int, out_channels: int, kernel_size: Tuple[int], stride: int = 1, padding: int = 0, output_padding: int = 0, causal: bool = False, cplx: bool = True, last_layer: bool = False) -> None: super(DecoderBlock, self).__init__() conv_impl = ComplexConvTranspose2d if cplx else nn.ConvTranspose2d var_kt = kernel_size[1] - 1 time_axis_pad = var_kt if causal else var_kt // 2 self.trans_conv = conv_impl(in_channels, out_channels, kernel_size, stride=stride, padding=(padding, var_kt - time_axis_pad), output_padding=(output_padding, 0)) if last_layer: self.bn = None else: if cplx: self.bn = ComplexBatchNorm2d(out_channels) else: self.bn = nn.BatchNorm2d(out_channels) self.causal = causal self.time_axis_pad = time_axis_pad def forward(self, x: th.Tensor) -> th.Tensor: """ Args: x (Tensor): N x 2C x F x T """ x = self.trans_conv(x) if self.causal: x = x[..., :-self.time_axis_pad] if self.bn: x = self.bn(x) x = F.leaky_relu(x) return x class Encoder(nn.Module): """ Encoder of the UNet K: filters S: strides C: output channels """ def __init__(self, cplx: bool, K: List[Tuple[int, int]], S: List[Tuple[int, int]], C: List[int], P: List[int], causal: bool = False) -> None: super(Encoder, self).__init__() layers = [ EncoderBlock(C[i], C[i + 1], k, stride=S[i], padding=P[i], cplx=cplx, causal=causal) for i, k in enumerate(K) ] self.layers = nn.ModuleList(layers) self.num_layers = len(layers) def forward(self, x: th.Tensor) -> Tuple[List[th.Tensor], th.Tensor]: enc_h = [] for index, layer in enumerate(self.layers): x = layer(x) # print(f"encoder-{index}: {x.shape}") if index + 1 != self.num_layers: enc_h.append(x) return enc_h, x class Decoder(nn.Module): """ Decoder of the UNet K: filters S: strides C: output channels """ def __init__(self, cplx: bool, K: List[Tuple[int, int]], S: List[Tuple[int, int]], C: List[int], P: List[int], O: List[int], causal: bool = False, connection: str = "sum") -> None: super(Decoder, self).__init__() if connection not in ["cat", "sum"]: raise ValueError(f"Unknown connection mode: {connection}") layers = [ DecoderBlock(C[i] * 2 if connection == "cat" and i != 0 else C[i], C[i + 1], k, stride=S[i], padding=P[i], output_padding=O[i], causal=causal, cplx=cplx, last_layer=(i == len(K) - 1)) for i, k in enumerate(K) ] self.layers = nn.ModuleList(layers) self.connection = connection def forward(self, x: th.Tensor, enc_h: List[th.Tensor]) -> th.Tensor: # N = len(self.layers) for index, layer in enumerate(self.layers): if index == 0: x = layer(x) else: # N x C x F x T if self.connection == "sum": inp = x + enc_h[index - 1] else: # N x 2C x F x T inp = th.cat([x, enc_h[index - 1]], 1) x = layer(inp) # print(f"decoder-{N - 1 - index}: {x.shape}") return x @ApsRegisters.sse.register("sse@dcunet") class DCUNet(SseBase): """ Real or Complex UNet for Speech Enhancement Args: K, S, C: kernel, stride, padding, channel size for convolution in encoder/decoder P: padding on frequency axis for convolution in encoder/decoder O: output_padding on frequency axis for transposed_conv2d in decoder NOTE: make sure that stride size on time axis is 1 (we do not do subsampling on time axis) """ def __init__(self, cplx: bool = True, K: str = "7,5;7,5;7,5;5,3;5,3;5,3;5,3", S: str = "2,1;2,1;2,1;2,1;2,1;2,1;2,1", C: str = "32,32,64,64,64,64,64", P: str = "1,1,1,1,1,1,1", O: str = "0,0,0,0,0,0,0", num_branch: int = 1, causal_conv: bool = False, enh_transform: Optional[nn.Module] = None, freq_padding: bool = True, connection: str = "sum") -> None: super(DCUNet, self).__init__(enh_transform, training_mode="freq") assert enh_transform is not None self.cplx = cplx self.forward_stft = enh_transform.ctx(name="forward_stft") self.inverse_stft = enh_transform.ctx(name="inverse_stft") K = parse_2dstr(K) S = parse_2dstr(S) C = parse_1dstr(C) P = parse_1dstr(P) O = parse_1dstr(O) self.encoder = Encoder(cplx, K, S, [1] + C, P, causal=causal_conv) self.decoder = Decoder(cplx, K[::-1], S[::-1], C[::-1] + [num_branch], P[::-1], O[::-1], causal=causal_conv, connection=connection) self.num_branch = num_branch def sep(self, m: th.Tensor, sr: th.Tensor, si: th.Tensor) -> th.Tensor: # m: N x 2F x T if self.cplx: # N x F x T mr, mi = th.chunk(m, 2, -2) m_abs = (mr**2 + mi**2)**0.5 m_mag = th.tanh(m_abs) mr, mi = m_mag * mr / m_abs, m_mag * mi / m_abs s = self.inverse_stft((sr * mr - si * mi, sr * mi + si * mr), input="complex") else: s = self.inverse_stft((sr * m, si * m), input="complex") return s def infer(self, mix: th.Tensor, mode="time") -> Union[th.Tensor, List[th.Tensor]]: """ Args: mix (Tensor): S Return: Tensor: S """ self.check_args(mix, training=False, valid_dim=[1]) with th.no_grad(): mix = mix[None, :] sep = self.forward(mix) if self.num_branch == 1: return sep[0] else: return [s[0] for s in sep] def forward(self, s: th.Tensor) -> Union[th.Tensor, List[th.Tensor]]: """ Args: s (Tensor): N x S Return: Tensor: N x S """ self.check_args(s, training=True, valid_dim=[2]) # N x F x T sr, si = self.forward_stft(s, output="complex") if self.cplx: # N x 2F x T s = th.cat([sr, si], -2) else: # N x F x T s = (sr**2 + si**2)**0.5 # encoder enc_h, h = self.encoder(s[:, None]) # reverse enc_h = enc_h[::-1] # decoder m = self.decoder(h, enc_h) # N x C x 2F x T if self.num_branch == 1: s = self.sep(m[:, 0], sr, si) else: s = [self.sep(m[:, i], sr, si) for i in range(self.num_branch)] return s
[ "torch.tanh", "torch.nn.BatchNorm2d", "torch.nn.functional.leaky_relu", "torch.nn.ModuleList", "torch.nn.Conv2d", "aps.libs.ApsRegisters.sse.register", "torch.chunk", "torch.no_grad", "torch.nn.ConvTranspose2d", "torch.cat" ]
[((8120, 8159), 'aps.libs.ApsRegisters.sse.register', 'ApsRegisters.sse.register', (['"""sse@dcunet"""'], {}), "('sse@dcunet')\n", (8145, 8159), False, 'from aps.libs import ApsRegisters\n'), ((682, 708), 'torch.nn.Conv2d', 'nn.Conv2d', (['*args'], {}), '(*args, **kwargs)\n', (691, 708), True, 'import torch.nn as nn\n'), ((729, 755), 'torch.nn.Conv2d', 'nn.Conv2d', (['*args'], {}), '(*args, **kwargs)\n', (738, 755), True, 'import torch.nn as nn\n'), ((959, 977), 'torch.chunk', 'th.chunk', (['x', '(2)', '(-2)'], {}), '(x, 2, -2)\n', (967, 977), True, 'import torch as th\n'), ((1076, 1096), 'torch.cat', 'th.cat', (['[yr, yi]', '(-2)'], {}), '([yr, yi], -2)\n', (1082, 1096), True, 'import torch as th\n'), ((1327, 1362), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['*args'], {}), '(*args, **kwargs)\n', (1345, 1362), True, 'import torch.nn as nn\n'), ((1383, 1418), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['*args'], {}), '(*args, **kwargs)\n', (1401, 1418), True, 'import torch.nn as nn\n'), ((1622, 1640), 'torch.chunk', 'th.chunk', (['x', '(2)', '(-2)'], {}), '(x, 2, -2)\n', (1630, 1640), True, 'import torch as th\n'), ((1739, 1759), 'torch.cat', 'th.cat', (['[yr, yi]', '(-2)'], {}), '([yr, yi], -2)\n', (1745, 1759), True, 'import torch as th\n'), ((1998, 2029), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['*args'], {}), '(*args, **kwargs)\n', (2012, 2029), True, 'import torch.nn as nn\n'), ((2053, 2084), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['*args'], {}), '(*args, **kwargs)\n', (2067, 2084), True, 'import torch.nn as nn\n'), ((2153, 2171), 'torch.chunk', 'th.chunk', (['x', '(2)', '(-2)'], {}), '(x, 2, -2)\n', (2161, 2171), True, 'import torch as th\n'), ((2244, 2264), 'torch.cat', 'th.cat', (['[xr, xi]', '(-2)'], {}), '([xr, xi], -2)\n', (2250, 2264), True, 'import torch as th\n'), ((3597, 3612), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (3609, 3612), True, 'import torch.nn.functional as F\n'), ((6011, 6032), 'torch.nn.ModuleList', 'nn.ModuleList', (['layers'], {}), '(layers)\n', (6024, 6032), True, 'import torch.nn as nn\n'), ((7477, 7498), 'torch.nn.ModuleList', 'nn.ModuleList', (['layers'], {}), '(layers)\n', (7490, 7498), True, 'import torch.nn as nn\n'), ((3239, 3267), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (3253, 3267), True, 'import torch.nn as nn\n'), ((5233, 5248), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (5245, 5248), True, 'import torch.nn.functional as F\n'), ((10185, 10203), 'torch.chunk', 'th.chunk', (['m', '(2)', '(-2)'], {}), '(m, 2, -2)\n', (10193, 10203), True, 'import torch as th\n'), ((10265, 10279), 'torch.tanh', 'th.tanh', (['m_abs'], {}), '(m_abs)\n', (10272, 10279), True, 'import torch as th\n'), ((10858, 10870), 'torch.no_grad', 'th.no_grad', ([], {}), '()\n', (10868, 10870), True, 'import torch as th\n'), ((11448, 11468), 'torch.cat', 'th.cat', (['[sr, si]', '(-2)'], {}), '([sr, si], -2)\n', (11454, 11468), True, 'import torch as th\n'), ((4841, 4869), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (4855, 4869), True, 'import torch.nn as nn\n'), ((7977, 8009), 'torch.cat', 'th.cat', (['[x, enc_h[index - 1]]', '(1)'], {}), '([x, enc_h[index - 1]], 1)\n', (7983, 8009), True, 'import torch as th\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['ModelBiasJobDefinitionArgs', 'ModelBiasJobDefinition'] @pulumi.input_type class ModelBiasJobDefinitionArgs: def __init__(__self__, *, job_resources: pulumi.Input['ModelBiasJobDefinitionMonitoringResourcesArgs'], model_bias_app_specification: pulumi.Input['ModelBiasJobDefinitionModelBiasAppSpecificationArgs'], model_bias_job_input: pulumi.Input['ModelBiasJobDefinitionModelBiasJobInputArgs'], model_bias_job_output_config: pulumi.Input['ModelBiasJobDefinitionMonitoringOutputConfigArgs'], role_arn: pulumi.Input[str], job_definition_name: Optional[pulumi.Input[str]] = None, model_bias_baseline_config: Optional[pulumi.Input['ModelBiasJobDefinitionModelBiasBaselineConfigArgs']] = None, network_config: Optional[pulumi.Input['ModelBiasJobDefinitionNetworkConfigArgs']] = None, stopping_condition: Optional[pulumi.Input['ModelBiasJobDefinitionStoppingConditionArgs']] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['ModelBiasJobDefinitionTagArgs']]]] = None): """ The set of arguments for constructing a ModelBiasJobDefinition resource. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. :param pulumi.Input[Sequence[pulumi.Input['ModelBiasJobDefinitionTagArgs']]] tags: An array of key-value pairs to apply to this resource. """ pulumi.set(__self__, "job_resources", job_resources) pulumi.set(__self__, "model_bias_app_specification", model_bias_app_specification) pulumi.set(__self__, "model_bias_job_input", model_bias_job_input) pulumi.set(__self__, "model_bias_job_output_config", model_bias_job_output_config) pulumi.set(__self__, "role_arn", role_arn) if job_definition_name is not None: pulumi.set(__self__, "job_definition_name", job_definition_name) if model_bias_baseline_config is not None: pulumi.set(__self__, "model_bias_baseline_config", model_bias_baseline_config) if network_config is not None: pulumi.set(__self__, "network_config", network_config) if stopping_condition is not None: pulumi.set(__self__, "stopping_condition", stopping_condition) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="jobResources") def job_resources(self) -> pulumi.Input['ModelBiasJobDefinitionMonitoringResourcesArgs']: return pulumi.get(self, "job_resources") @job_resources.setter def job_resources(self, value: pulumi.Input['ModelBiasJobDefinitionMonitoringResourcesArgs']): pulumi.set(self, "job_resources", value) @property @pulumi.getter(name="modelBiasAppSpecification") def model_bias_app_specification(self) -> pulumi.Input['ModelBiasJobDefinitionModelBiasAppSpecificationArgs']: return pulumi.get(self, "model_bias_app_specification") @model_bias_app_specification.setter def model_bias_app_specification(self, value: pulumi.Input['ModelBiasJobDefinitionModelBiasAppSpecificationArgs']): pulumi.set(self, "model_bias_app_specification", value) @property @pulumi.getter(name="modelBiasJobInput") def model_bias_job_input(self) -> pulumi.Input['ModelBiasJobDefinitionModelBiasJobInputArgs']: return pulumi.get(self, "model_bias_job_input") @model_bias_job_input.setter def model_bias_job_input(self, value: pulumi.Input['ModelBiasJobDefinitionModelBiasJobInputArgs']): pulumi.set(self, "model_bias_job_input", value) @property @pulumi.getter(name="modelBiasJobOutputConfig") def model_bias_job_output_config(self) -> pulumi.Input['ModelBiasJobDefinitionMonitoringOutputConfigArgs']: return pulumi.get(self, "model_bias_job_output_config") @model_bias_job_output_config.setter def model_bias_job_output_config(self, value: pulumi.Input['ModelBiasJobDefinitionMonitoringOutputConfigArgs']): pulumi.set(self, "model_bias_job_output_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @property @pulumi.getter(name="jobDefinitionName") def job_definition_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "job_definition_name") @job_definition_name.setter def job_definition_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "job_definition_name", value) @property @pulumi.getter(name="modelBiasBaselineConfig") def model_bias_baseline_config(self) -> Optional[pulumi.Input['ModelBiasJobDefinitionModelBiasBaselineConfigArgs']]: return pulumi.get(self, "model_bias_baseline_config") @model_bias_baseline_config.setter def model_bias_baseline_config(self, value: Optional[pulumi.Input['ModelBiasJobDefinitionModelBiasBaselineConfigArgs']]): pulumi.set(self, "model_bias_baseline_config", value) @property @pulumi.getter(name="networkConfig") def network_config(self) -> Optional[pulumi.Input['ModelBiasJobDefinitionNetworkConfigArgs']]: return pulumi.get(self, "network_config") @network_config.setter def network_config(self, value: Optional[pulumi.Input['ModelBiasJobDefinitionNetworkConfigArgs']]): pulumi.set(self, "network_config", value) @property @pulumi.getter(name="stoppingCondition") def stopping_condition(self) -> Optional[pulumi.Input['ModelBiasJobDefinitionStoppingConditionArgs']]: return pulumi.get(self, "stopping_condition") @stopping_condition.setter def stopping_condition(self, value: Optional[pulumi.Input['ModelBiasJobDefinitionStoppingConditionArgs']]): pulumi.set(self, "stopping_condition", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ModelBiasJobDefinitionTagArgs']]]]: """ An array of key-value pairs to apply to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ModelBiasJobDefinitionTagArgs']]]]): pulumi.set(self, "tags", value) class ModelBiasJobDefinition(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, job_definition_name: Optional[pulumi.Input[str]] = None, job_resources: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionMonitoringResourcesArgs']]] = None, model_bias_app_specification: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasAppSpecificationArgs']]] = None, model_bias_baseline_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasBaselineConfigArgs']]] = None, model_bias_job_input: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasJobInputArgs']]] = None, model_bias_job_output_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionMonitoringOutputConfigArgs']]] = None, network_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionNetworkConfigArgs']]] = None, role_arn: Optional[pulumi.Input[str]] = None, stopping_condition: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionStoppingConditionArgs']]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionTagArgs']]]]] = None, __props__=None): """ Resource Type definition for AWS::SageMaker::ModelBiasJobDefinition :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionTagArgs']]]] tags: An array of key-value pairs to apply to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: ModelBiasJobDefinitionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::SageMaker::ModelBiasJobDefinition :param str resource_name: The name of the resource. :param ModelBiasJobDefinitionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ModelBiasJobDefinitionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, job_definition_name: Optional[pulumi.Input[str]] = None, job_resources: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionMonitoringResourcesArgs']]] = None, model_bias_app_specification: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasAppSpecificationArgs']]] = None, model_bias_baseline_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasBaselineConfigArgs']]] = None, model_bias_job_input: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionModelBiasJobInputArgs']]] = None, model_bias_job_output_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionMonitoringOutputConfigArgs']]] = None, network_config: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionNetworkConfigArgs']]] = None, role_arn: Optional[pulumi.Input[str]] = None, stopping_condition: Optional[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionStoppingConditionArgs']]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ModelBiasJobDefinitionTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ModelBiasJobDefinitionArgs.__new__(ModelBiasJobDefinitionArgs) __props__.__dict__["job_definition_name"] = job_definition_name if job_resources is None and not opts.urn: raise TypeError("Missing required property 'job_resources'") __props__.__dict__["job_resources"] = job_resources if model_bias_app_specification is None and not opts.urn: raise TypeError("Missing required property 'model_bias_app_specification'") __props__.__dict__["model_bias_app_specification"] = model_bias_app_specification __props__.__dict__["model_bias_baseline_config"] = model_bias_baseline_config if model_bias_job_input is None and not opts.urn: raise TypeError("Missing required property 'model_bias_job_input'") __props__.__dict__["model_bias_job_input"] = model_bias_job_input if model_bias_job_output_config is None and not opts.urn: raise TypeError("Missing required property 'model_bias_job_output_config'") __props__.__dict__["model_bias_job_output_config"] = model_bias_job_output_config __props__.__dict__["network_config"] = network_config if role_arn is None and not opts.urn: raise TypeError("Missing required property 'role_arn'") __props__.__dict__["role_arn"] = role_arn __props__.__dict__["stopping_condition"] = stopping_condition __props__.__dict__["tags"] = tags __props__.__dict__["creation_time"] = None __props__.__dict__["job_definition_arn"] = None super(ModelBiasJobDefinition, __self__).__init__( 'aws-native:sagemaker:ModelBiasJobDefinition', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ModelBiasJobDefinition': """ Get an existing ModelBiasJobDefinition resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ModelBiasJobDefinitionArgs.__new__(ModelBiasJobDefinitionArgs) __props__.__dict__["creation_time"] = None __props__.__dict__["job_definition_arn"] = None __props__.__dict__["job_definition_name"] = None __props__.__dict__["job_resources"] = None __props__.__dict__["model_bias_app_specification"] = None __props__.__dict__["model_bias_baseline_config"] = None __props__.__dict__["model_bias_job_input"] = None __props__.__dict__["model_bias_job_output_config"] = None __props__.__dict__["network_config"] = None __props__.__dict__["role_arn"] = None __props__.__dict__["stopping_condition"] = None __props__.__dict__["tags"] = None return ModelBiasJobDefinition(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="creationTime") def creation_time(self) -> pulumi.Output[str]: """ The time at which the job definition was created. """ return pulumi.get(self, "creation_time") @property @pulumi.getter(name="jobDefinitionArn") def job_definition_arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) of job definition. """ return pulumi.get(self, "job_definition_arn") @property @pulumi.getter(name="jobDefinitionName") def job_definition_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "job_definition_name") @property @pulumi.getter(name="jobResources") def job_resources(self) -> pulumi.Output['outputs.ModelBiasJobDefinitionMonitoringResources']: return pulumi.get(self, "job_resources") @property @pulumi.getter(name="modelBiasAppSpecification") def model_bias_app_specification(self) -> pulumi.Output['outputs.ModelBiasJobDefinitionModelBiasAppSpecification']: return pulumi.get(self, "model_bias_app_specification") @property @pulumi.getter(name="modelBiasBaselineConfig") def model_bias_baseline_config(self) -> pulumi.Output[Optional['outputs.ModelBiasJobDefinitionModelBiasBaselineConfig']]: return pulumi.get(self, "model_bias_baseline_config") @property @pulumi.getter(name="modelBiasJobInput") def model_bias_job_input(self) -> pulumi.Output['outputs.ModelBiasJobDefinitionModelBiasJobInput']: return pulumi.get(self, "model_bias_job_input") @property @pulumi.getter(name="modelBiasJobOutputConfig") def model_bias_job_output_config(self) -> pulumi.Output['outputs.ModelBiasJobDefinitionMonitoringOutputConfig']: return pulumi.get(self, "model_bias_job_output_config") @property @pulumi.getter(name="networkConfig") def network_config(self) -> pulumi.Output[Optional['outputs.ModelBiasJobDefinitionNetworkConfig']]: return pulumi.get(self, "network_config") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. """ return pulumi.get(self, "role_arn") @property @pulumi.getter(name="stoppingCondition") def stopping_condition(self) -> pulumi.Output[Optional['outputs.ModelBiasJobDefinitionStoppingCondition']]: return pulumi.get(self, "stopping_condition") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.ModelBiasJobDefinitionTag']]]: """ An array of key-value pairs to apply to this resource. """ return pulumi.get(self, "tags")
[ "pulumi.getter", "pulumi.set", "pulumi.ResourceOptions", "pulumi.get" ]
[((2900, 2934), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""jobResources"""'}), "(name='jobResources')\n", (2913, 2934), False, 'import pulumi\n'), ((3273, 3320), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasAppSpecification"""'}), "(name='modelBiasAppSpecification')\n", (3286, 3320), False, 'import pulumi\n'), ((3746, 3785), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasJobInput"""'}), "(name='modelBiasJobInput')\n", (3759, 3785), False, 'import pulumi\n'), ((4155, 4201), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasJobOutputConfig"""'}), "(name='modelBiasJobOutputConfig')\n", (4168, 4201), False, 'import pulumi\n'), ((4621, 4650), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""roleArn"""'}), "(name='roleArn')\n", (4634, 4650), False, 'import pulumi\n'), ((5020, 5059), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""jobDefinitionName"""'}), "(name='jobDefinitionName')\n", (5033, 5059), False, 'import pulumi\n'), ((5360, 5405), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasBaselineConfig"""'}), "(name='modelBiasBaselineConfig')\n", (5373, 5405), False, 'import pulumi\n'), ((5837, 5872), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""networkConfig"""'}), "(name='networkConfig')\n", (5850, 5872), False, 'import pulumi\n'), ((6224, 6263), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stoppingCondition"""'}), "(name='stoppingCondition')\n", (6237, 6263), False, 'import pulumi\n'), ((15306, 15340), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""creationTime"""'}), "(name='creationTime')\n", (15319, 15340), False, 'import pulumi\n'), ((15543, 15581), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""jobDefinitionArn"""'}), "(name='jobDefinitionArn')\n", (15556, 15581), False, 'import pulumi\n'), ((15794, 15833), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""jobDefinitionName"""'}), "(name='jobDefinitionName')\n", (15807, 15833), False, 'import pulumi\n'), ((15976, 16010), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""jobResources"""'}), "(name='jobResources')\n", (15989, 16010), False, 'import pulumi\n'), ((16179, 16226), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasAppSpecification"""'}), "(name='modelBiasAppSpecification')\n", (16192, 16226), False, 'import pulumi\n'), ((16431, 16476), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasBaselineConfig"""'}), "(name='modelBiasBaselineConfig')\n", (16444, 16476), False, 'import pulumi\n'), ((16685, 16724), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasJobInput"""'}), "(name='modelBiasJobInput')\n", (16698, 16724), False, 'import pulumi\n'), ((16905, 16951), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""modelBiasJobOutputConfig"""'}), "(name='modelBiasJobOutputConfig')\n", (16918, 16951), False, 'import pulumi\n'), ((17153, 17188), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""networkConfig"""'}), "(name='networkConfig')\n", (17166, 17188), False, 'import pulumi\n'), ((17363, 17392), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""roleArn"""'}), "(name='roleArn')\n", (17376, 17392), False, 'import pulumi\n'), ((17647, 17686), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stoppingCondition"""'}), "(name='stoppingCondition')\n", (17660, 17686), False, 'import pulumi\n'), ((1956, 2008), 'pulumi.set', 'pulumi.set', (['__self__', '"""job_resources"""', 'job_resources'], {}), "(__self__, 'job_resources', job_resources)\n", (1966, 2008), False, 'import pulumi\n'), ((2017, 2103), 'pulumi.set', 'pulumi.set', (['__self__', '"""model_bias_app_specification"""', 'model_bias_app_specification'], {}), "(__self__, 'model_bias_app_specification',\n model_bias_app_specification)\n", (2027, 2103), False, 'import pulumi\n'), ((2108, 2174), 'pulumi.set', 'pulumi.set', (['__self__', '"""model_bias_job_input"""', 'model_bias_job_input'], {}), "(__self__, 'model_bias_job_input', model_bias_job_input)\n", (2118, 2174), False, 'import pulumi\n'), ((2183, 2269), 'pulumi.set', 'pulumi.set', (['__self__', '"""model_bias_job_output_config"""', 'model_bias_job_output_config'], {}), "(__self__, 'model_bias_job_output_config',\n model_bias_job_output_config)\n", (2193, 2269), False, 'import pulumi\n'), ((2274, 2316), 'pulumi.set', 'pulumi.set', (['__self__', '"""role_arn"""', 'role_arn'], {}), "(__self__, 'role_arn', role_arn)\n", (2284, 2316), False, 'import pulumi\n'), ((3044, 3077), 'pulumi.get', 'pulumi.get', (['self', '"""job_resources"""'], {}), "(self, 'job_resources')\n", (3054, 3077), False, 'import pulumi\n'), ((3212, 3252), 'pulumi.set', 'pulumi.set', (['self', '"""job_resources"""', 'value'], {}), "(self, 'job_resources', value)\n", (3222, 3252), False, 'import pulumi\n'), ((3451, 3499), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_app_specification"""'], {}), "(self, 'model_bias_app_specification')\n", (3461, 3499), False, 'import pulumi\n'), ((3670, 3725), 'pulumi.set', 'pulumi.set', (['self', '"""model_bias_app_specification"""', 'value'], {}), "(self, 'model_bias_app_specification', value)\n", (3680, 3725), False, 'import pulumi\n'), ((3900, 3940), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_job_input"""'], {}), "(self, 'model_bias_job_input')\n", (3910, 3940), False, 'import pulumi\n'), ((4087, 4134), 'pulumi.set', 'pulumi.set', (['self', '"""model_bias_job_input"""', 'value'], {}), "(self, 'model_bias_job_input', value)\n", (4097, 4134), False, 'import pulumi\n'), ((4329, 4377), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_job_output_config"""'], {}), "(self, 'model_bias_job_output_config')\n", (4339, 4377), False, 'import pulumi\n'), ((4545, 4600), 'pulumi.set', 'pulumi.set', (['self', '"""model_bias_job_output_config"""', 'value'], {}), "(self, 'model_bias_job_output_config', value)\n", (4555, 4600), False, 'import pulumi\n'), ((4855, 4883), 'pulumi.get', 'pulumi.get', (['self', '"""role_arn"""'], {}), "(self, 'role_arn')\n", (4865, 4883), False, 'import pulumi\n'), ((4964, 4999), 'pulumi.set', 'pulumi.set', (['self', '"""role_arn"""', 'value'], {}), "(self, 'role_arn', value)\n", (4974, 4999), False, 'import pulumi\n'), ((5141, 5180), 'pulumi.get', 'pulumi.get', (['self', '"""job_definition_name"""'], {}), "(self, 'job_definition_name')\n", (5151, 5180), False, 'import pulumi\n'), ((5293, 5339), 'pulumi.set', 'pulumi.set', (['self', '"""job_definition_name"""', 'value'], {}), "(self, 'job_definition_name', value)\n", (5303, 5339), False, 'import pulumi\n'), ((5542, 5588), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_baseline_config"""'], {}), "(self, 'model_bias_baseline_config')\n", (5552, 5588), False, 'import pulumi\n'), ((5763, 5816), 'pulumi.set', 'pulumi.set', (['self', '"""model_bias_baseline_config"""', 'value'], {}), "(self, 'model_bias_baseline_config', value)\n", (5773, 5816), False, 'import pulumi\n'), ((5987, 6021), 'pulumi.get', 'pulumi.get', (['self', '"""network_config"""'], {}), "(self, 'network_config')\n", (5997, 6021), False, 'import pulumi\n'), ((6162, 6203), 'pulumi.set', 'pulumi.set', (['self', '"""network_config"""', 'value'], {}), "(self, 'network_config', value)\n", (6172, 6203), False, 'import pulumi\n'), ((6386, 6424), 'pulumi.get', 'pulumi.get', (['self', '"""stopping_condition"""'], {}), "(self, 'stopping_condition')\n", (6396, 6424), False, 'import pulumi\n'), ((6577, 6622), 'pulumi.set', 'pulumi.set', (['self', '"""stopping_condition"""', 'value'], {}), "(self, 'stopping_condition', value)\n", (6587, 6622), False, 'import pulumi\n'), ((6862, 6886), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (6872, 6886), False, 'import pulumi\n'), ((7021, 7052), 'pulumi.set', 'pulumi.set', (['self', '"""tags"""', 'value'], {}), "(self, 'tags', value)\n", (7031, 7052), False, 'import pulumi\n'), ((15489, 15522), 'pulumi.get', 'pulumi.get', (['self', '"""creation_time"""'], {}), "(self, 'creation_time')\n", (15499, 15522), False, 'import pulumi\n'), ((15735, 15773), 'pulumi.get', 'pulumi.get', (['self', '"""job_definition_arn"""'], {}), "(self, 'job_definition_arn')\n", (15745, 15773), False, 'import pulumi\n'), ((15916, 15955), 'pulumi.get', 'pulumi.get', (['self', '"""job_definition_name"""'], {}), "(self, 'job_definition_name')\n", (15926, 15955), False, 'import pulumi\n'), ((16125, 16158), 'pulumi.get', 'pulumi.get', (['self', '"""job_resources"""'], {}), "(self, 'job_resources')\n", (16135, 16158), False, 'import pulumi\n'), ((16362, 16410), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_app_specification"""'], {}), "(self, 'model_bias_app_specification')\n", (16372, 16410), False, 'import pulumi\n'), ((16618, 16664), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_baseline_config"""'], {}), "(self, 'model_bias_baseline_config')\n", (16628, 16664), False, 'import pulumi\n'), ((16844, 16884), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_job_input"""'], {}), "(self, 'model_bias_job_input')\n", (16854, 16884), False, 'import pulumi\n'), ((17084, 17132), 'pulumi.get', 'pulumi.get', (['self', '"""model_bias_job_output_config"""'], {}), "(self, 'model_bias_job_output_config')\n", (17094, 17132), False, 'import pulumi\n'), ((17308, 17342), 'pulumi.get', 'pulumi.get', (['self', '"""network_config"""'], {}), "(self, 'network_config')\n", (17318, 17342), False, 'import pulumi\n'), ((17598, 17626), 'pulumi.get', 'pulumi.get', (['self', '"""role_arn"""'], {}), "(self, 'role_arn')\n", (17608, 17626), False, 'import pulumi\n'), ((17814, 17852), 'pulumi.get', 'pulumi.get', (['self', '"""stopping_condition"""'], {}), "(self, 'stopping_condition')\n", (17824, 17852), False, 'import pulumi\n'), ((18083, 18107), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (18093, 18107), False, 'import pulumi\n'), ((2373, 2437), 'pulumi.set', 'pulumi.set', (['__self__', '"""job_definition_name"""', 'job_definition_name'], {}), "(__self__, 'job_definition_name', job_definition_name)\n", (2383, 2437), False, 'import pulumi\n'), ((2501, 2579), 'pulumi.set', 'pulumi.set', (['__self__', '"""model_bias_baseline_config"""', 'model_bias_baseline_config'], {}), "(__self__, 'model_bias_baseline_config', model_bias_baseline_config)\n", (2511, 2579), False, 'import pulumi\n'), ((2631, 2685), 'pulumi.set', 'pulumi.set', (['__self__', '"""network_config"""', 'network_config'], {}), "(__self__, 'network_config', network_config)\n", (2641, 2685), False, 'import pulumi\n'), ((2741, 2803), 'pulumi.set', 'pulumi.set', (['__self__', '"""stopping_condition"""', 'stopping_condition'], {}), "(__self__, 'stopping_condition', stopping_condition)\n", (2751, 2803), False, 'import pulumi\n'), ((2845, 2879), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (2855, 2879), False, 'import pulumi\n'), ((11476, 11500), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {}), '()\n', (11498, 11500), False, 'import pulumi\n'), ((14420, 14449), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'id': 'id'}), '(id=id)\n', (14442, 14449), False, 'import pulumi\n')]