code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
#!/user/bin/env python import yaml import xmltodict from ncclient import manager # Define a filter using <filter> tag to # retrieve the openconfig-interfaces model INTERFACE_STATE_XML = """ <filter> <interfaces xmlns="http://openconfig.net/yang/interfaces"> <interface> <state/> </interface> </interfaces> </filter> """ def main(): with open('device.yml', 'r') as fp: device = yaml.safe_load(fp.read()) # Connect with manager.connect(**device, hostkey_verify=False) as mgr: # Use .get() to retrieve the configuration using a filter resp = mgr.get(INTERFACE_STATE_XML).xml # Load the xml response data as a Python dict resp_dict = xmltodict.parse(resp) interfaces = resp_dict.get('rpc-reply')['data']['interfaces']['interface'] # Display operational for interfaces for iface in interfaces: state = iface['state'] if state['oper-status'] == 'UP': name = state['name'] counters = state['counters'] in_packets = int(counters['in-unicast-pkts']) out_packets = int(counters['out-unicast-pkts']) print(f'Interface: {name}') print(f'\tInput Packets: {in_packets}') print(f'\tOutput Packets: {out_packets}') print(f'\tTotal Packets: {in_packets + out_packets}') if __name__ == "__main__": main()
[ "ncclient.manager.connect", "xmltodict.parse" ]
[((485, 532), 'ncclient.manager.connect', 'manager.connect', ([], {'hostkey_verify': '(False)'}), '(**device, hostkey_verify=False)\n', (500, 532), False, 'from ncclient import manager\n'), ((737, 758), 'xmltodict.parse', 'xmltodict.parse', (['resp'], {}), '(resp)\n', (752, 758), False, 'import xmltodict\n')]
from tests.edge_walk.auto_gen.data.const import A, GOAL, INIT, IS, THIS # State from tests.edge_walk.code.states1.goal import GoalState from tests.edge_walk.code.states1.init import InitState from tests.edge_walk.code.states1.init_this import InitThisState from tests.edge_walk.code.states1.init_this_is import InitThisIsState from tests.edge_walk.code.states1.init_this_is_a import InitThisIsAState # State wrapper from tests.edge_walk.code.states2.goal import create_goal from tests.edge_walk.code.states2.init_this_is_a import create_init_this_is_a from tests.edge_walk.code.states2.init_this_is import create_init_this_is from tests.edge_walk.code.states2.init_this import create_init_this from tests.edge_walk.code.states2.init import create_init state_gen = { INIT: { "": lambda: create_init(InitState()), THIS: { "": lambda: create_init_this(InitThisState()), IS: { "": lambda: create_init_this_is(InitThisIsState()), A: { "": lambda: create_init_this_is_a(InitThisIsAState()), }, }, }, }, GOAL: lambda: create_goal(GoalState()), }
[ "tests.edge_walk.code.states1.init_this_is.InitThisIsState", "tests.edge_walk.code.states1.init_this_is_a.InitThisIsAState", "tests.edge_walk.code.states1.goal.GoalState", "tests.edge_walk.code.states1.init_this.InitThisState", "tests.edge_walk.code.states1.init.InitState" ]
[((1166, 1177), 'tests.edge_walk.code.states1.goal.GoalState', 'GoalState', ([], {}), '()\n', (1175, 1177), False, 'from tests.edge_walk.code.states1.goal import GoalState\n'), ((813, 824), 'tests.edge_walk.code.states1.init.InitState', 'InitState', ([], {}), '()\n', (822, 824), False, 'from tests.edge_walk.code.states1.init import InitState\n'), ((884, 899), 'tests.edge_walk.code.states1.init_this.InitThisState', 'InitThisState', ([], {}), '()\n', (897, 899), False, 'from tests.edge_walk.code.states1.init_this import InitThisState\n'), ((968, 985), 'tests.edge_walk.code.states1.init_this_is.InitThisIsState', 'InitThisIsState', ([], {}), '()\n', (983, 985), False, 'from tests.edge_walk.code.states1.init_this_is import InitThisIsState\n'), ((1063, 1081), 'tests.edge_walk.code.states1.init_this_is_a.InitThisIsAState', 'InitThisIsAState', ([], {}), '()\n', (1079, 1081), False, 'from tests.edge_walk.code.states1.init_this_is_a import InitThisIsAState\n')]
from pyvmmonitor_core.math_utils import almost_equal, is_clockwise def test_compute_distance(): from pyvmmonitor_core.math_utils import calculate_distance assert almost_equal(calculate_distance((10, 10), (0, 0)), 14.142135623730951) def test_is_clockwise(): assert is_clockwise([(0, 0), (10, 0), (10, 10)]) assert not is_clockwise([(0, 0), (10, 0), (10, -10)]) def test_is_point_close_to_line(): from pyvmmonitor_core.math_utils import is_point_close_to_line assert is_point_close_to_line((0, 0), [(0, 0), (0, 1)]) assert is_point_close_to_line((0, 0.5), [(0, 0), (0, 1)]) assert is_point_close_to_line((0.1, 0.5), [(0, 0), (0, 1)]) assert not is_point_close_to_line((0, 1.5), [(0, 0), (0, 1)]) assert not is_point_close_to_line((0.5, 1.0), [(0, 0), (0, 1)])
[ "pyvmmonitor_core.math_utils.is_point_close_to_line", "pyvmmonitor_core.math_utils.is_clockwise", "pyvmmonitor_core.math_utils.calculate_distance" ]
[((287, 328), 'pyvmmonitor_core.math_utils.is_clockwise', 'is_clockwise', (['[(0, 0), (10, 0), (10, 10)]'], {}), '([(0, 0), (10, 0), (10, 10)])\n', (299, 328), False, 'from pyvmmonitor_core.math_utils import almost_equal, is_clockwise\n'), ((507, 555), 'pyvmmonitor_core.math_utils.is_point_close_to_line', 'is_point_close_to_line', (['(0, 0)', '[(0, 0), (0, 1)]'], {}), '((0, 0), [(0, 0), (0, 1)])\n', (529, 555), False, 'from pyvmmonitor_core.math_utils import is_point_close_to_line\n'), ((567, 617), 'pyvmmonitor_core.math_utils.is_point_close_to_line', 'is_point_close_to_line', (['(0, 0.5)', '[(0, 0), (0, 1)]'], {}), '((0, 0.5), [(0, 0), (0, 1)])\n', (589, 617), False, 'from pyvmmonitor_core.math_utils import is_point_close_to_line\n'), ((629, 681), 'pyvmmonitor_core.math_utils.is_point_close_to_line', 'is_point_close_to_line', (['(0.1, 0.5)', '[(0, 0), (0, 1)]'], {}), '((0.1, 0.5), [(0, 0), (0, 1)])\n', (651, 681), False, 'from pyvmmonitor_core.math_utils import is_point_close_to_line\n'), ((187, 223), 'pyvmmonitor_core.math_utils.calculate_distance', 'calculate_distance', (['(10, 10)', '(0, 0)'], {}), '((10, 10), (0, 0))\n', (205, 223), False, 'from pyvmmonitor_core.math_utils import calculate_distance\n'), ((345, 387), 'pyvmmonitor_core.math_utils.is_clockwise', 'is_clockwise', (['[(0, 0), (10, 0), (10, -10)]'], {}), '([(0, 0), (10, 0), (10, -10)])\n', (357, 387), False, 'from pyvmmonitor_core.math_utils import almost_equal, is_clockwise\n'), ((698, 748), 'pyvmmonitor_core.math_utils.is_point_close_to_line', 'is_point_close_to_line', (['(0, 1.5)', '[(0, 0), (0, 1)]'], {}), '((0, 1.5), [(0, 0), (0, 1)])\n', (720, 748), False, 'from pyvmmonitor_core.math_utils import is_point_close_to_line\n'), ((764, 816), 'pyvmmonitor_core.math_utils.is_point_close_to_line', 'is_point_close_to_line', (['(0.5, 1.0)', '[(0, 0), (0, 1)]'], {}), '((0.5, 1.0), [(0, 0), (0, 1)])\n', (786, 816), False, 'from pyvmmonitor_core.math_utils import is_point_close_to_line\n')]
#!python import string # Hint: Use these string constants to ignore capitalization and/or punctuation # string.ascii_lowercase is 'abcdefghijklmnopqrstuvwxyz' # string.ascii_uppercase is 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # string.ascii_letters is ascii_lowercase + ascii_uppercase def is_palindrome(text): """A string of characters is a palindrome if it reads the same forwards and backwards, ignoring punctuation, whitespace, and letter casing.""" # implement is_palindrome_iterative and is_palindrome_recursive below, then # change this to call your implementation to verify it passes all tests assert isinstance(text, str), 'input is not a string: {}'.format(text) # return is_palindrome_iterative(text) return is_palindrome_recursive(text) def is_palindrome_iterative(text): # TODO: implement the is_palindrome function iteratively here # once implemented, change is_palindrome to call is_palindrome_iterative # to verify that your iterative implementation passes all tests cleaned_string = '' # Cleaning the string to have only characters for letter in text.lower(): if string.ascii_lowercase.find(letter) >= 0: cleaned_string += letter left_index = 0 right_index = len(cleaned_string) - 1 # Loop until reaches the middle because that's when they cross so can stop loop while left_index < right_index: if cleaned_string[left_index] != cleaned_string[right_index]: return False left_index += 1 right_index -= 1 return True def is_palindrome_recursive(text, left=None, right=None): # TODO: implement the is_palindrome function recursively here # once implemented, change is_palindrome to call is_palindrome_recursive # to verify that your iterative implementation passes all tests cleaned_string = '' # Cleaning the string to have only characters for letter in text.lower(): if string.ascii_lowercase.find(letter) >= 0: cleaned_string += letter # If left and right None then set then to be 0, and lenth of string - 1 respectively if left is None and right is None: left = 0 right = len(cleaned_string) - 1 # Three base cases if len(cleaned_string) == 0: # This if the string is empty return True elif cleaned_string[left] != cleaned_string[right]: return False elif left >= right: # When it reaches the mid point and not returning False to must be True return True else: return is_palindrome_recursive(cleaned_string, left+1, right-1) # Left pointer moves up, right down def main(): import sys args = sys.argv[1:] # Ignore script file name if len(args) > 0: for arg in args: is_pal = is_palindrome(arg) result = 'PASS' if is_pal else 'FAIL' is_str = 'is' if is_pal else 'is not' print('{}: {} {} a palindrome'.format(result, repr(arg), is_str)) else: print('Usage: {} string1 string2 ... stringN'.format(sys.argv[0])) print(' checks if each argument given is a palindrome') if __name__ == '__main__': main()
[ "string.ascii_lowercase.find" ]
[((1134, 1169), 'string.ascii_lowercase.find', 'string.ascii_lowercase.find', (['letter'], {}), '(letter)\n', (1161, 1169), False, 'import string\n'), ((1934, 1969), 'string.ascii_lowercase.find', 'string.ascii_lowercase.find', (['letter'], {}), '(letter)\n', (1961, 1969), False, 'import string\n')]
from django.contrib.auth.decorators import user_passes_test from django.core.exceptions import PermissionDenied def group_required(*group_names): def in_groups(u): if u.is_authenticated(): if u.groups.filter(name__in=group_names).count() > 0 or u.is_superuser: return True raise PermissionDenied("Not part of required group") actual_decorator = user_passes_test( in_groups, login_url='index:staffLogin', redirect_field_name='next', ) return actual_decorator def superuser_required(fn): def wrapper(*args, **kw): request = args[0] if request.user.is_superuser: return fn(*args, **kw) raise PermissionDenied("Didnt think so!") return wrapper
[ "django.contrib.auth.decorators.user_passes_test", "django.core.exceptions.PermissionDenied" ]
[((399, 488), 'django.contrib.auth.decorators.user_passes_test', 'user_passes_test', (['in_groups'], {'login_url': '"""index:staffLogin"""', 'redirect_field_name': '"""next"""'}), "(in_groups, login_url='index:staffLogin',\n redirect_field_name='next')\n", (415, 488), False, 'from django.contrib.auth.decorators import user_passes_test\n'), ((328, 374), 'django.core.exceptions.PermissionDenied', 'PermissionDenied', (['"""Not part of required group"""'], {}), "('Not part of required group')\n", (344, 374), False, 'from django.core.exceptions import PermissionDenied\n'), ((717, 752), 'django.core.exceptions.PermissionDenied', 'PermissionDenied', (['"""Didnt think so!"""'], {}), "('Didnt think so!')\n", (733, 752), False, 'from django.core.exceptions import PermissionDenied\n')]
# Import EEZYbotARM library from easyEEZYbotARM.kinematic_model import EEZYbotARM_Mk2 # Initialise robot arm with initial joint angles myRobotArm = EEZYbotARM_Mk2(initial_q1=0, initial_q2=70, initial_q3=-100) myRobotArm.plot() # plot it # Assign new joint angles a1 = 20 # joint angle 1 a2 = 80 # joint angle 2 a3 = -90 # joint angle 3 # Compute forward kinematics x, y, z = myRobotArm.forwardKinematics(q1=a1, q2=a2, q3=a3) # Print the result print('With joint angles(degrees) q1={}, q2={}, q3={}, the cartesian position of the end effector(mm) is x={}, y={}, z={}'.format(a1, a2, a3, x, y, z)) # Visualise the new joint angles myRobotArm.updateJointAngles(q1=a1, q2=a2, q3=a3) myRobotArm.plot()
[ "easyEEZYbotARM.kinematic_model.EEZYbotARM_Mk2" ]
[((149, 209), 'easyEEZYbotARM.kinematic_model.EEZYbotARM_Mk2', 'EEZYbotARM_Mk2', ([], {'initial_q1': '(0)', 'initial_q2': '(70)', 'initial_q3': '(-100)'}), '(initial_q1=0, initial_q2=70, initial_q3=-100)\n', (163, 209), False, 'from easyEEZYbotARM.kinematic_model import EEZYbotARM_Mk2\n')]
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.base import BaseEstimator, TransformerMixin class encoder(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, X): return self def transform(self, X): transformed = X.copy() for i in X.columns: if X[i].nunique()<len(X[i])/5: if X[i].nunique()>5: enc = LabelEncoder() transformed[i] = enc.fit_transform(X[i]) else: enc = OneHotEncoder() transformed[i] = enc.fit_transform(X[[i]]) temp_X = pd.DataFrame(OneHotEncoder(drop='first', handle_unknown='ignore').fit_transform(X[[i]]).toarray()) transformed = pd.concat([transformed, temp_X], axis=1) transformed.drop([i], axis=1, inplace=True) else: transformed.drop([i], axis=1, inplace=True) return transformed class Imputer(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self,X): return self def transform(self,X): imputer = SimpleImputer(strategy='most_frequent') self.X = imputer.fit_transform(X) self.X = pd.DataFrame(self.X) return self.X def Cleaner(df): # df = pd.read_csv("titanic.csv") # print(df.head(5)) X,y = df.iloc[:,:-1],df.iloc[:,-1] num_col = X.select_dtypes(include='number') cat_col = X.select_dtypes(include='object') num_features = X.select_dtypes(include='number').columns cat_features = X.select_dtypes(include='object').columns #encd= encoder() #X2 = encd.fit_transform(cat_col) #print(X2) num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler()) ]) #num_transformed = num_pipeline.fit_transform(num_col) #print(num_transformed) cat_pipeline = Pipeline([ ('imputer', Imputer()), ('encoder', encoder()), ]) #cat_transformed = cat_pipeline.fit_transform(cat_col) #print (cat_transformed) from sklearn.compose import ColumnTransformer data_pipeline = ColumnTransformer([ ('numerical', num_pipeline, num_features), ('categorical', cat_pipeline, cat_features) ]) processed_X = pd.DataFrame(data_pipeline.fit_transform(X)) data = pd.concat([processed_X, y], axis=1) data.dropna(axis=0, how='any', inplace=True) return data
[ "sklearn.preprocessing.LabelEncoder", "sklearn.preprocessing.OneHotEncoder", "sklearn.preprocessing.StandardScaler", "sklearn.impute.SimpleImputer", "sklearn.compose.ColumnTransformer", "pandas.DataFrame", "pandas.concat" ]
[((2427, 2539), 'sklearn.compose.ColumnTransformer', 'ColumnTransformer', (["[('numerical', num_pipeline, num_features), ('categorical', cat_pipeline,\n cat_features)]"], {}), "([('numerical', num_pipeline, num_features), (\n 'categorical', cat_pipeline, cat_features)])\n", (2444, 2539), False, 'from sklearn.compose import ColumnTransformer\n'), ((2669, 2704), 'pandas.concat', 'pd.concat', (['[processed_X, y]'], {'axis': '(1)'}), '([processed_X, y], axis=1)\n', (2678, 2704), True, 'import pandas as pd\n'), ((1401, 1440), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""most_frequent"""'}), "(strategy='most_frequent')\n", (1414, 1440), False, 'from sklearn.impute import SimpleImputer\n'), ((1500, 1520), 'pandas.DataFrame', 'pd.DataFrame', (['self.X'], {}), '(self.X)\n', (1512, 1520), True, 'import pandas as pd\n'), ((2005, 2037), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""median"""'}), "(strategy='median')\n", (2018, 2037), False, 'from sklearn.impute import SimpleImputer\n'), ((2059, 2075), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (2073, 2075), False, 'from sklearn.preprocessing import StandardScaler\n'), ((629, 643), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (641, 643), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((770, 785), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {}), '()\n', (783, 785), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((1011, 1051), 'pandas.concat', 'pd.concat', (['[transformed, temp_X]'], {'axis': '(1)'}), '([transformed, temp_X], axis=1)\n', (1020, 1051), True, 'import pandas as pd\n'), ((891, 943), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'drop': '"""first"""', 'handle_unknown': '"""ignore"""'}), "(drop='first', handle_unknown='ignore')\n", (904, 943), False, 'from sklearn.preprocessing import OneHotEncoder\n')]
from plyfile import PlyData, PlyElement import numpy as np import open3d as o3d import scipy from typing import Dict, Tuple from .utils import color_range_rgb_to_8bit_rgb # TODO: change value names ################# ### ply file ### ################# class Mesh: @staticmethod def read(file_path: str) -> Tuple[np.ndarray, np.ndarray, dict]: """read a triangle mesh file. Args: file_path: a triangle mesh file (support: obj, ply) Return: vertices: vertices xyz of mesh (N, 3) triangles: triangle edge indices (M, 3) data: other data """ def _obj(file_path): obj = o3d.io.read_triangle_mesh(file_path) _vertices = np.asarray(obj.vertices, dtype=np.float32) _triangles = np.asarray(obj.triangles, dtype=np.uint32) _data = None return _vertices, _triangles, _data def _ply(file_path): ply = o3d.io.read_triangle_mesh(file_path) _vertices = np.asarray(ply.vertices, dtype=np.float32) _triangles = np.asarray(ply.triangles, dtype=np.uint32) if ply.has_vertex_colors(): _data = np.asarray(ply.vertex_colors) else: _data = None return _vertices, _triangles, _data support = { "obj": _obj, "ply": _ply, } extension = file_path.split(".")[-1] if extension in support: vertices, triangles, data = support[extension](file_path) else: raise NotImplementedError() return vertices, triangles, data @staticmethod def write(filename: str, vertices: np.ndarray, triangles: np.ndarray): # Vertex vertex = [] vertex_prop = [] vertex.extend([*vertices.T]) vertex_prop.extend([("x", "f4"), ("y", "f4"), ("z", "f4")]) ply_vertex = np.empty(len(vertices), dtype=vertex_prop) for i, p in enumerate(vertex_prop): ply_vertex[p[0]] = vertex[i] # triangle face face = [] face_prop = [] face.extend([triangles]) face_prop.extend([("vertex_indices", "i4", (3,))]) ply_face = np.empty(len(triangles), dtype=face_prop) for i, p in enumerate(face_prop): ply_face[p[0]] = face[i] # write ply file ply = PlyData( [ PlyElement.describe(ply_vertex, "vertex"), PlyElement.describe(ply_face, "face"), ], text=True, ) ply.write(filename) class Points: @staticmethod def read(filename: str) -> Tuple[np.ndarray, np.ndarray, dict]: """read a point cloud file. Args: file_path: a point cloud file (support: ply, pcd) Return: xyz: xyz (N, 3) rgb: colors (M, 3) data: other data """ def _ply(filename): plydata = PlyData.read(filename) ply_points = plydata["vertex"] ply_properties = ply_points.data.dtype.names # XYZ xyz_properties = ["x", "y", "z"] xyz = np.array([ply_points[c] for c in xyz_properties], dtype=np.float32).T # Color rgb_properties = ["red", "green", "blue"] rgb = None if set(rgb_properties) <= set(ply_properties): rgb = np.array( [ply_points[c] for c in rgb_properties], dtype=np.uint32 ).T data = {} for prop in ply_properties: if not prop in xyz_properties and not prop in rgb_properties: data[prop] = ply_points[prop] return xyz, rgb, data def _pcd(filename): pcd = o3d.io.read_point_cloud(filename) xyz = np.asarray(pcd.points, dtype=np.float32) rgb = np.asarray(pcd.colors, dtype=np.uint32) data = None return xyz, rgb, data support = {"ply": _ply, "pcd": _pcd} extension = filename.split(".")[-1] # TODO if extension in support: xyz, rgb, data = support[extension](filename) else: raise NotImplementedError("This funcation support followeing") return xyz, rgb, data @staticmethod def write( filename: str, xyz: np.ndarray, colors: np.ndarray = None, color_range: list = [0, 255], additional_data: Dict[str, np.ndarray] = None, ): """ Write a point cloud into a ply file. """ # Point cloud data and properties for writing points = [] prop = [] # XYZ points.extend([*xyz.T]) prop.extend([("x", "f4"), ("y", "f4"), ("z", "f4")]) # Color if colors is not None: # to 0 ~ 255 color range colors = color_range_rgb_to_8bit_rgb(colors, color_range) points.extend([*colors.T]) prop.extend([("red", "u1"), ("green", "u1"), ("blue", "u1")]) # other data if not additional_data is None: for key in additional_data: assert len(additional_data[key].shape) == 1 points.append(additional_data[key]) prop.append((key, additional_data[key].dtype.str)) ply_data = np.empty(len(xyz), dtype=prop) for i, p in enumerate(prop): ply_data[p[0]] = points[i] ply = PlyData([PlyElement.describe(ply_data, "vertex")], text=True) ply.write(filename) if __name__ == "__main__": xyz, colors, _ = Points.read("../../data/pcl_data/biwi_face_database/model.pcd")
[ "numpy.asarray", "open3d.io.read_triangle_mesh", "numpy.array", "open3d.io.read_point_cloud", "plyfile.PlyElement.describe", "plyfile.PlyData.read" ]
[((680, 716), 'open3d.io.read_triangle_mesh', 'o3d.io.read_triangle_mesh', (['file_path'], {}), '(file_path)\n', (705, 716), True, 'import open3d as o3d\n'), ((741, 783), 'numpy.asarray', 'np.asarray', (['obj.vertices'], {'dtype': 'np.float32'}), '(obj.vertices, dtype=np.float32)\n', (751, 783), True, 'import numpy as np\n'), ((809, 851), 'numpy.asarray', 'np.asarray', (['obj.triangles'], {'dtype': 'np.uint32'}), '(obj.triangles, dtype=np.uint32)\n', (819, 851), True, 'import numpy as np\n'), ((973, 1009), 'open3d.io.read_triangle_mesh', 'o3d.io.read_triangle_mesh', (['file_path'], {}), '(file_path)\n', (998, 1009), True, 'import open3d as o3d\n'), ((1034, 1076), 'numpy.asarray', 'np.asarray', (['ply.vertices'], {'dtype': 'np.float32'}), '(ply.vertices, dtype=np.float32)\n', (1044, 1076), True, 'import numpy as np\n'), ((1102, 1144), 'numpy.asarray', 'np.asarray', (['ply.triangles'], {'dtype': 'np.uint32'}), '(ply.triangles, dtype=np.uint32)\n', (1112, 1144), True, 'import numpy as np\n'), ((3007, 3029), 'plyfile.PlyData.read', 'PlyData.read', (['filename'], {}), '(filename)\n', (3019, 3029), False, 'from plyfile import PlyData, PlyElement\n'), ((3840, 3873), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['filename'], {}), '(filename)\n', (3863, 3873), True, 'import open3d as o3d\n'), ((3892, 3932), 'numpy.asarray', 'np.asarray', (['pcd.points'], {'dtype': 'np.float32'}), '(pcd.points, dtype=np.float32)\n', (3902, 3932), True, 'import numpy as np\n'), ((3951, 3990), 'numpy.asarray', 'np.asarray', (['pcd.colors'], {'dtype': 'np.uint32'}), '(pcd.colors, dtype=np.uint32)\n', (3961, 3990), True, 'import numpy as np\n'), ((1209, 1238), 'numpy.asarray', 'np.asarray', (['ply.vertex_colors'], {}), '(ply.vertex_colors)\n', (1219, 1238), True, 'import numpy as np\n'), ((2450, 2491), 'plyfile.PlyElement.describe', 'PlyElement.describe', (['ply_vertex', '"""vertex"""'], {}), "(ply_vertex, 'vertex')\n", (2469, 2491), False, 'from plyfile import PlyData, PlyElement\n'), ((2509, 2546), 'plyfile.PlyElement.describe', 'PlyElement.describe', (['ply_face', '"""face"""'], {}), "(ply_face, 'face')\n", (2528, 2546), False, 'from plyfile import PlyData, PlyElement\n'), ((3212, 3279), 'numpy.array', 'np.array', (['[ply_points[c] for c in xyz_properties]'], {'dtype': 'np.float32'}), '([ply_points[c] for c in xyz_properties], dtype=np.float32)\n', (3220, 3279), True, 'import numpy as np\n'), ((5546, 5585), 'plyfile.PlyElement.describe', 'PlyElement.describe', (['ply_data', '"""vertex"""'], {}), "(ply_data, 'vertex')\n", (5565, 5585), False, 'from plyfile import PlyData, PlyElement\n'), ((3461, 3527), 'numpy.array', 'np.array', (['[ply_points[c] for c in rgb_properties]'], {'dtype': 'np.uint32'}), '([ply_points[c] for c in rgb_properties], dtype=np.uint32)\n', (3469, 3527), True, 'import numpy as np\n')]
import torch import logging # I don't use hyper parameter dict in here # because several moudles become a submodule # on other repository. class GE2E(torch.nn.Module): def __init__(self, mel_dims, lstm_size, lstm_stacks, embedding_size): super(GE2E, self).__init__() self.lstm_stacks = lstm_stacks self.layer_Dict = torch.nn.ModuleDict() self.layer_Dict['Prenet'] = Linear( in_features= mel_dims, out_features= lstm_size, ) for index in range(self.lstm_stacks): self.layer_Dict['LSTM_{}'.format(index)] = torch.nn.LSTM( input_size= lstm_size, hidden_size= lstm_size, bias= True, batch_first= True ) for name, parameter in self.layer_Dict['LSTM_{}'.format(index)].named_parameters(): if 'weight' in name: torch.nn.init.xavier_uniform_(parameter) elif 'bias' in name: torch.nn.init.zeros_(parameter) self.layer_Dict['Linear'] = Linear( in_features= lstm_size, out_features= embedding_size, ) def forward(self, mels, samples= 1): ''' mels: [Batch, Mel_dim, Time] ''' x = mels.transpose(2, 1) # [Batch, Time, Mel_dim] x = self.layer_Dict['Prenet'](x) # [Batch, Time, LSTM_dim] if 'cuda' != x.device: torch.cuda.synchronize() for index in range(self.lstm_stacks): self.layer_Dict['LSTM_{}'.format(index)].flatten_parameters() x = self.layer_Dict['LSTM_{}'.format(index)](x)[0] + \ (x if index < self.lstm_stacks - 1 else 0) # [Batch, Time, LSTM_dim] if 'cuda' != x.device: torch.cuda.synchronize() x = self.layer_Dict['Linear'](x[:, -1, :]) # [Batch, Emb_dim] if 'cuda' != x.device: torch.cuda.synchronize() x = x.view(-1, samples, x.size(1)).mean(dim= 1) # [Batch, Samples, Emb_dim] -> [Batch, Emb_dim] x = torch.nn.functional.normalize(x, p=2, dim= 1) return x class Linear(torch.nn.Linear): def __init__(self, w_init_gain= 'linear', *args, **kwagrs): self.w_init_gain = w_init_gain super(Linear, self).__init__(*args, **kwagrs) def reset_parameters(self): torch.nn.init.xavier_uniform_( self.weight, gain=torch.nn.init.calculate_gain(self.w_init_gain) ) if not self.bias is None: torch.nn.init.zeros_(self.bias) class GE2E_Loss(torch.nn.Module): def __init__(self, init_weight= 10.0, init_bias= -5.0): super(GE2E_Loss, self).__init__() self.weight = torch.nn.Parameter(torch.tensor(init_weight)) self.bias = torch.nn.Parameter(torch.tensor(init_bias)) self.layer_Dict = torch.nn.ModuleDict() self.layer_Dict['Consine_Similarity'] = torch.nn.CosineSimilarity(dim= 2) self.layer_Dict['Cross_Entroy_Loss'] = torch.nn.CrossEntropyLoss() def forward(self, embeddings, pattern_per_Speaker): ''' embeddings: [Batch, Emb_dim] The target of softmax is always 0. ''' x = embeddings.view( embeddings.size(0) // pattern_per_Speaker, pattern_per_Speaker, -1 ) # [Speakers, Pattern_per_Speaker, Emb_dim] centroid_for_Within = x.sum(dim= 1, keepdim= True).expand(-1, x.size(1), -1) # [Speakers, Pattern_per_Speaker, Emb_dim] centroid_for_Between = x.mean(dim= 1) # [Speakers, Emb_dim] within_Cosine_Similarities = self.layer_Dict['Consine_Similarity'](x, centroid_for_Within) # [Speakers, Pattern_per_Speaker] within_Cosine_Similarities = self.weight * within_Cosine_Similarities + self.bias between_Cosine_Simiarity_Filter = torch.eye(x.size(0)).to(embeddings.device) between_Cosine_Simiarity_Filter = 1.0 - between_Cosine_Simiarity_Filter.unsqueeze(1).expand(-1, x.size(1), -1) # [speaker, pattern_per_Speaker, speaker] between_Cosine_Simiarity_Filter = between_Cosine_Simiarity_Filter.bool() between_Cosine_Simiarities = self.layer_Dict['Consine_Similarity']( #[speaker * pattern_per_Speaker, speaker] embeddings.unsqueeze(dim= 1).expand(-1, centroid_for_Between.size(0), -1), # [Speakers * Pattern_per_Speaker, Speakers, Emb_dim] centroid_for_Between.unsqueeze(dim= 0).expand(embeddings.size(0), -1, -1), #[Speakers * Pattern_per_Speaker, Speakers, Emb_dim] ) between_Cosine_Simiarities = self.weight * between_Cosine_Simiarities + self.bias between_Cosine_Simiarities = between_Cosine_Simiarities.view(x.size(0), x.size(1), x.size(0)) # [speaker, pattern_per_Speaker, speaker] between_Cosine_Simiarities = torch.masked_select(between_Cosine_Simiarities, between_Cosine_Simiarity_Filter) between_Cosine_Simiarities = between_Cosine_Simiarities.view(x.size(0), x.size(1), x.size(0) - 1) # [speaker, pattern_per_Speaker, speaker - 1] logits = torch.cat([within_Cosine_Similarities.unsqueeze(2), between_Cosine_Simiarities], dim = 2) logits = logits.view(embeddings.size(0), -1) # [speaker * pattern_per_Speaker, speaker] labels = torch.zeros(embeddings.size(0), dtype= torch.long).to(embeddings.device) return self.layer_Dict['Cross_Entroy_Loss'](logits, labels)
[ "torch.nn.CosineSimilarity", "torch.nn.CrossEntropyLoss", "torch.nn.LSTM", "torch.nn.init.xavier_uniform_", "torch.nn.init.zeros_", "torch.nn.functional.normalize", "torch.masked_select", "torch.cuda.synchronize", "torch.tensor", "torch.nn.ModuleDict", "torch.nn.init.calculate_gain" ]
[((350, 371), 'torch.nn.ModuleDict', 'torch.nn.ModuleDict', ([], {}), '()\n', (369, 371), False, 'import torch\n'), ((2079, 2123), 'torch.nn.functional.normalize', 'torch.nn.functional.normalize', (['x'], {'p': '(2)', 'dim': '(1)'}), '(x, p=2, dim=1)\n', (2108, 2123), False, 'import torch\n'), ((2881, 2902), 'torch.nn.ModuleDict', 'torch.nn.ModuleDict', ([], {}), '()\n', (2900, 2902), False, 'import torch\n'), ((2951, 2983), 'torch.nn.CosineSimilarity', 'torch.nn.CosineSimilarity', ([], {'dim': '(2)'}), '(dim=2)\n', (2976, 2983), False, 'import torch\n'), ((3032, 3059), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (3057, 3059), False, 'import torch\n'), ((4856, 4941), 'torch.masked_select', 'torch.masked_select', (['between_Cosine_Simiarities', 'between_Cosine_Simiarity_Filter'], {}), '(between_Cosine_Simiarities, between_Cosine_Simiarity_Filter\n )\n', (4875, 4941), False, 'import torch\n'), ((605, 696), 'torch.nn.LSTM', 'torch.nn.LSTM', ([], {'input_size': 'lstm_size', 'hidden_size': 'lstm_size', 'bias': '(True)', 'batch_first': '(True)'}), '(input_size=lstm_size, hidden_size=lstm_size, bias=True,\n batch_first=True)\n', (618, 696), False, 'import torch\n'), ((1463, 1487), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1485, 1487), False, 'import torch\n'), ((1937, 1961), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1959, 1961), False, 'import torch\n'), ((2553, 2584), 'torch.nn.init.zeros_', 'torch.nn.init.zeros_', (['self.bias'], {}), '(self.bias)\n', (2573, 2584), False, 'import torch\n'), ((2763, 2788), 'torch.tensor', 'torch.tensor', (['init_weight'], {}), '(init_weight)\n', (2775, 2788), False, 'import torch\n'), ((2829, 2852), 'torch.tensor', 'torch.tensor', (['init_bias'], {}), '(init_bias)\n', (2841, 2852), False, 'import torch\n'), ((1799, 1823), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1821, 1823), False, 'import torch\n'), ((2446, 2492), 'torch.nn.init.calculate_gain', 'torch.nn.init.calculate_gain', (['self.w_init_gain'], {}), '(self.w_init_gain)\n', (2474, 2492), False, 'import torch\n'), ((932, 972), 'torch.nn.init.xavier_uniform_', 'torch.nn.init.xavier_uniform_', (['parameter'], {}), '(parameter)\n', (961, 972), False, 'import torch\n'), ((1030, 1061), 'torch.nn.init.zeros_', 'torch.nn.init.zeros_', (['parameter'], {}), '(parameter)\n', (1050, 1061), False, 'import torch\n')]
# This code is all CDS code # Author: <NAME> (<EMAIL>) import collections import numpy as np import pandas as pd import pickle from scipy.stats import zscore, pearsonr # YOU MAY HAVE TO CHANGE THE BELOW LINES achilles_dataseta_file = 'data/ceresgeneeffects.csv' cell_line_info_file = 'data/sample_info.csv' ccle_expression_file = 'data/CCLE_expression.csv' ccle_mutation_file = 'data/CCLE_mutations.csv' # YOU MAY HAVE TO CHANGE THE ABOVE LINES # Read in CERES data GENE_EFFECT_MATRIX = pd.read_csv(achilles_dataseta_file, header=0, index_col=0) # Get all cell lines in CERES data all_achilles_cell_lines = GENE_EFFECT_MATRIX.columns.tolist() # Read in the sample info file and subset it to all CEREs cell lines cell_line_info_df = pd.read_csv(cell_line_info_file, header=0) cell_line_info_df = cell_line_info_df.loc[cell_line_info_df['CCLE_Name'].isin(all_achilles_cell_lines)] # Remove cell lines where the lineage is not defined cell_line_info_df = cell_line_info_df[cell_line_info_df['lineage'].notna()] # Get all unique lineages all_lineages = set(cell_line_info_df['lineage'].tolist()) print(f"Number of lineages included: {len(all_lineages)}") # Dictionaries mapping between a cell line's DepMap_ID (used in CCLE files) and CCLE_Name (used in CEREs files) ccle_id_to_depmap_id = dict() depmap_id_to_ccle_id = dict() # Read through sample info file to populate above dictionaries for index, row in cell_line_info_df.iterrows(): ccle_id = row["CCLE_Name"] depmap_id = row['DepMap_ID'] if ccle_id not in ccle_id_to_depmap_id: ccle_id_to_depmap_id[ccle_id] = depmap_id depmap_id_to_ccle_id[depmap_id] = ccle_id else: print('ERROR!') quit() # This next section outputs a pickled dictionary mapping all lineages to all their cell lines for later use lineage_to_cell_lines = dict() for lineage in all_lineages: cell_line_info_df_ = cell_line_info_df.loc[cell_line_info_df['lineage'] == lineage] lineage_to_cell_lines[lineage] = set(cell_line_info_df_['DepMap_ID']) with open('achilles_data/lineage_to_cell_lines.pkl', 'wb') as handle: pickle.dump(lineage_to_cell_lines, handle) # End section # Dictionary containing the lineages of cell lines with >= 15 cell lines. These are the cell lines we will few shot learn over lineages_to_few_shot_over = dict() for lineage in all_lineages: # Subset dataframe containing sample information to each lineage, and check how many rows (cell lines) are in each lineage cell_line_info_df_ = cell_line_info_df.loc[cell_line_info_df['lineage'] == lineage] if cell_line_info_df_.shape[0] >= 15: lineages_to_few_shot_over[lineage] = set(cell_line_info_df_['DepMap_ID']) # Rename CERES matrix cell line names to their DepMap_IDs #-------------------------------- GENE EFFECT MATRIX -------------------------------------------------------------------------------------------------------------------# GENE_EFFECT_MATRIX.columns = [ccle_id_to_depmap_id[element] for element in GENE_EFFECT_MATRIX.columns] all_cell_lines_to_include = GENE_EFFECT_MATRIX.columns.tolist() GENE_EFFECT_MATRIX = GENE_EFFECT_MATRIX.T # Get a csv listing all genes to run genes_to_run_df_dict = collections.defaultdict(list) GENE_EFFECT_MATRIX_Z_SCORE = GENE_EFFECT_MATRIX.apply(zscore) all_genes_to_test_over = list() for gene in GENE_EFFECT_MATRIX_Z_SCORE.columns: column_list = GENE_EFFECT_MATRIX_Z_SCORE[gene].tolist() cell_lines_with_high_z_score = [element for element in column_list if element >= 6 or element <= -6] if len(cell_lines_with_high_z_score) > 0: all_genes_to_test_over.append(gene) genes_to_run_df_dict["Gene"].append(gene) genes_to_run_df = pd.DataFrame.from_dict(genes_to_run_df_dict) genes_to_run_df.to_csv("achilles_data/to_run_genes_feature_selection.csv", header=True, index=False) #-------------------------------- END GENE EFFECT MATRIX -------------------------------------------------------------------------------------------------------------------# #--------------------------------- EXPRESSION DATA -------------------------------------------------------------------------------------------------------------------# # Read in CCLE Expression data and subset to cell lines in CERES file. Rename expression feature columns as well. CCLE_EXPRESSION_MATRIX = pd.read_csv(ccle_expression_file, header=0, index_col=0) CCLE_EXPRESSION_MATRIX = CCLE_EXPRESSION_MATRIX.T CCLE_EXPRESSION_MATRIX = CCLE_EXPRESSION_MATRIX[all_cell_lines_to_include] CCLE_EXPRESSION_MATRIX = CCLE_EXPRESSION_MATRIX.T # The following code excludes all genes whos stdev is in the lower 10th percentile, as describe in the TCRP paper expression_stdevs = CCLE_EXPRESSION_MATRIX.std() tenth_percentile_expression_stdev = np.percentile(expression_stdevs.tolist(), 10) to_keep_gene_expression_genes = list() for gene in expression_stdevs.index: if expression_stdevs[gene] > tenth_percentile_expression_stdev: to_keep_gene_expression_genes.append(gene) CCLE_EXPRESSION_MATRIX = CCLE_EXPRESSION_MATRIX[to_keep_gene_expression_genes] # Section end # This following code maps HGNC gene symbols, which are what is used as gene names in the CEREs data, # to depmap gene IDs, which are gene names used in the CCLE matricies, and vice versa hgnc_id_to_depmap_id = dict() depmap_id_to_hgnc_id = dict() for depmap_id in CCLE_EXPRESSION_MATRIX.columns: hgnc_id = depmap_id.split(' ')[0] if hgnc_id in hgnc_id_to_depmap_id or depmap_id in depmap_id_to_hgnc_id: print("ERROR!") quit() else: hgnc_id_to_depmap_id[hgnc_id] = depmap_id depmap_id_to_hgnc_id[depmap_id] = hgnc_id # Section end # This next section finds gene expression features that correlate with each gene KO we want to predict # Co expression is defined in the TCRP paper as > 0.4 or < 0.4 correlation with the gene KO's expression gene_to_coexpression_features = collections.defaultdict(set) all_genes_to_test_over = [element for element in all_genes_to_test_over if element in hgnc_id_to_depmap_id] for gene in all_genes_to_test_over: depmap_id = hgnc_id_to_depmap_id[gene] gene_expression = CCLE_EXPRESSION_MATRIX[depmap_id] for column in CCLE_EXPRESSION_MATRIX.columns: if column != depmap_id: partner_expression = CCLE_EXPRESSION_MATRIX[column] corr = pearsonr(gene_expression.tolist(), partner_expression.tolist())[0] if abs(corr) > 0.4: gene_to_coexpression_features[gene].add(column) # Section end # convert nested defaultdict to regular dict for pickling def default_to_regular(d): if isinstance(d, collections.defaultdict): d = {k: default_to_regular(v) for k, v in d.items()} return d gene_to_coexpression_features = default_to_regular(gene_to_coexpression_features) # output pickled file of all gene expression features to use based on co expression with open('achilles_data/gene_to_coexpression_features.pkl', 'wb') as handle: pickle.dump(gene_to_coexpression_features, handle) # Rename columns in ccle expression matrix so differentiate them from mutation features CCLE_EXPRESSION_MATRIX.columns = [element + " EXPRESSION" for element in CCLE_EXPRESSION_MATRIX.columns] #--------------------------------- EXPRESSION END -------------------------------------------------------------------------------------------------------------------# #--------------------------------- MUTATAION DATA -------------------------------------------------------------------------------------------------------------------# # Read in CCLE Mutation data and subset to rows that contain info for cell lines in CERES and also exclude Silent mutations CCLE_MUTATION_DATA = pd.read_csv(ccle_mutation_file, header=0, index_col=0, dtype=str) CCLE_MUTATION_DATA = CCLE_MUTATION_DATA.loc[CCLE_MUTATION_DATA['DepMap_ID'].isin(all_cell_lines_to_include)] CCLE_MUTATION_DATA = CCLE_MUTATION_DATA.loc[CCLE_MUTATION_DATA['Variant_Classification'] != "Silent"] # One-hot encode mutation data as described in the TCRP paper CCLE_MUTATION_MATRIX_DICT = collections.defaultdict(dict) all_genes_with_mutations = set() for index, row in CCLE_MUTATION_DATA.iterrows(): depmap_id = row['DepMap_ID'] gene_symbol = row['Hugo_Symbol'] entrez_id = row['Entrez_Gene_Id'] depmap_gene_string = f"{gene_symbol} ({entrez_id})" all_genes_with_mutations.add(depmap_gene_string) if depmap_gene_string not in CCLE_MUTATION_MATRIX_DICT[depmap_id]: CCLE_MUTATION_MATRIX_DICT[depmap_id][depmap_gene_string] = 1.0 # Process data to be fed into pandas to create a dataframe CCLE_MUTATION_MATRIX_DF_DICT = collections.defaultdict(list) all_genes_with_mutations = sorted(list(all_genes_with_mutations)) for cell_line in all_cell_lines_to_include: CCLE_MUTATION_MATRIX_DF_DICT['Cell Line'].append(cell_line) for gene in all_genes_with_mutations: if gene in CCLE_MUTATION_MATRIX_DICT[cell_line]: CCLE_MUTATION_MATRIX_DF_DICT[gene + " MUTATAION"].append(CCLE_MUTATION_MATRIX_DICT[cell_line][gene]) else: CCLE_MUTATION_MATRIX_DF_DICT[gene + " MUTATAION"].append(0.0) # Create mutation csv feature matrix file CCLE_MUTATION_MATRIX = pd.DataFrame.from_dict(CCLE_MUTATION_MATRIX_DF_DICT) CCLE_MUTATION_MATRIX = CCLE_MUTATION_MATRIX.set_index('Cell Line') # This next section includes gene mutation features that have more than 10 counts for all cell lines, # as described in the TCRP paper mutation_sums = CCLE_MUTATION_MATRIX.sum() to_keep_gene_mutation_genes = list() for gene in mutation_sums.index: if mutation_sums[gene] >= 10: to_keep_gene_mutation_genes.append(gene) CCLE_MUTATION_MATRIX = CCLE_MUTATION_MATRIX[to_keep_gene_mutation_genes] # Section end #--------------------------------- MUTATAION DATA END -------------------------------------------------------------------------------------------------------------------# # Merge mutation and expression data into one feature matrix FEATURE_MATRIX = CCLE_EXPRESSION_MATRIX.merge(CCLE_MUTATION_MATRIX, left_index=True, right_index=True) # Output data, namely, feature matrix, labels matrix, and the dictionary mapping 9 lineages to few shot over and their cell lines FEATURE_MATRIX.to_csv("achilles_data/feature_matrix.csv", header=True, index=True) GENE_EFFECT_MATRIX.to_csv("achilles_data/labels_matrix.csv", header=True, index=True) with open('achilles_data/lineages_to_fewshot_over.pkl', 'wb') as handle: pickle.dump(lineages_to_few_shot_over, handle)
[ "pandas.DataFrame.from_dict", "pickle.dump", "collections.defaultdict", "pandas.read_csv" ]
[((490, 548), 'pandas.read_csv', 'pd.read_csv', (['achilles_dataseta_file'], {'header': '(0)', 'index_col': '(0)'}), '(achilles_dataseta_file, header=0, index_col=0)\n', (501, 548), True, 'import pandas as pd\n'), ((736, 778), 'pandas.read_csv', 'pd.read_csv', (['cell_line_info_file'], {'header': '(0)'}), '(cell_line_info_file, header=0)\n', (747, 778), True, 'import pandas as pd\n'), ((3192, 3221), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (3215, 3221), False, 'import collections\n'), ((3688, 3732), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['genes_to_run_df_dict'], {}), '(genes_to_run_df_dict)\n', (3710, 3732), True, 'import pandas as pd\n'), ((4316, 4372), 'pandas.read_csv', 'pd.read_csv', (['ccle_expression_file'], {'header': '(0)', 'index_col': '(0)'}), '(ccle_expression_file, header=0, index_col=0)\n', (4327, 4372), True, 'import pandas as pd\n'), ((5901, 5929), 'collections.defaultdict', 'collections.defaultdict', (['set'], {}), '(set)\n', (5924, 5929), False, 'import collections\n'), ((7699, 7764), 'pandas.read_csv', 'pd.read_csv', (['ccle_mutation_file'], {'header': '(0)', 'index_col': '(0)', 'dtype': 'str'}), '(ccle_mutation_file, header=0, index_col=0, dtype=str)\n', (7710, 7764), True, 'import pandas as pd\n'), ((8067, 8096), 'collections.defaultdict', 'collections.defaultdict', (['dict'], {}), '(dict)\n', (8090, 8096), False, 'import collections\n'), ((8629, 8658), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (8652, 8658), False, 'import collections\n'), ((9199, 9251), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['CCLE_MUTATION_MATRIX_DF_DICT'], {}), '(CCLE_MUTATION_MATRIX_DF_DICT)\n', (9221, 9251), True, 'import pandas as pd\n'), ((2103, 2145), 'pickle.dump', 'pickle.dump', (['lineage_to_cell_lines', 'handle'], {}), '(lineage_to_cell_lines, handle)\n', (2114, 2145), False, 'import pickle\n'), ((6972, 7022), 'pickle.dump', 'pickle.dump', (['gene_to_coexpression_features', 'handle'], {}), '(gene_to_coexpression_features, handle)\n', (6983, 7022), False, 'import pickle\n'), ((10454, 10500), 'pickle.dump', 'pickle.dump', (['lineages_to_few_shot_over', 'handle'], {}), '(lineages_to_few_shot_over, handle)\n', (10465, 10500), False, 'import pickle\n')]
from flask import render_template, Response from app import models from app.data import FIELD_MAPPING import ujson def register(app): @app.route("/") def index(): return render_template("index.html") ## # Data endpoints. # High-level %'s, used to power the donuts. @app.route("/data/reports/<report_name>.json") def report(report_name): response = Response(ujson.dumps(models.Report.latest().get(report_name, {}))) response.headers['Content-Type'] = 'application/json' return response # Detailed data per-domain, used to power the data tables. @app.route("/data/domains/<report_name>.<ext>") def domain_report(report_name, ext): domains = models.Domain.eligible(report_name) domains = sorted(domains, key=lambda k: k['domain']) if ext == "json": response = Response(ujson.dumps({'data': domains})) response.headers['Content-Type'] = 'application/json' elif ext == "csv": response = Response(models.Domain.to_csv(domains, report_name)) response.headers['Content-Type'] = 'text/csv' return response @app.route("/https/domains/") def https_domains(): return render_template("https/domains.html") @app.route("/https/guidance/") def https_guide(): return render_template("https/guide.html") # Sanity-check RSS feed, shows the latest report. @app.route("/data/reports/feed/") def report_feed(): return render_template("feed.xml") @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404
[ "flask.render_template", "app.models.Report.latest", "ujson.dumps", "app.models.Domain.to_csv", "app.models.Domain.eligible" ]
[((189, 218), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (204, 218), False, 'from flask import render_template, Response\n'), ((726, 761), 'app.models.Domain.eligible', 'models.Domain.eligible', (['report_name'], {}), '(report_name)\n', (748, 761), False, 'from app import models\n'), ((1233, 1270), 'flask.render_template', 'render_template', (['"""https/domains.html"""'], {}), "('https/domains.html')\n", (1248, 1270), False, 'from flask import render_template, Response\n'), ((1346, 1381), 'flask.render_template', 'render_template', (['"""https/guide.html"""'], {}), "('https/guide.html')\n", (1361, 1381), False, 'from flask import render_template, Response\n'), ((1514, 1541), 'flask.render_template', 'render_template', (['"""feed.xml"""'], {}), "('feed.xml')\n", (1529, 1541), False, 'from flask import render_template, Response\n'), ((1611, 1638), 'flask.render_template', 'render_template', (['"""404.html"""'], {}), "('404.html')\n", (1626, 1638), False, 'from flask import render_template, Response\n'), ((880, 910), 'ujson.dumps', 'ujson.dumps', (["{'data': domains}"], {}), "({'data': domains})\n", (891, 910), False, 'import ujson\n'), ((1033, 1075), 'app.models.Domain.to_csv', 'models.Domain.to_csv', (['domains', 'report_name'], {}), '(domains, report_name)\n', (1053, 1075), False, 'from app import models\n'), ((418, 440), 'app.models.Report.latest', 'models.Report.latest', ([], {}), '()\n', (438, 440), False, 'from app import models\n')]
from unittest import TestCase from array import array from pymanylinuxdemo.extension import dot class TestExtension(TestCase): def test_1(self): self.assertAlmostEqual(dot([1,2,3], [2,3,4]), 20.0) def test_2(self): self.assertAlmostEqual(dot([1,1.5,2.5,4], [-1.0,-2.0,-3.0,4]), 4.5) def test_3(self): x = array('d', [1.0, 2.0, 3.14]) self.assertAlmostEqual(dot(x, x), 14.8596)
[ "array.array", "pymanylinuxdemo.extension.dot" ]
[((345, 373), 'array.array', 'array', (['"""d"""', '[1.0, 2.0, 3.14]'], {}), "('d', [1.0, 2.0, 3.14])\n", (350, 373), False, 'from array import array\n'), ((182, 207), 'pymanylinuxdemo.extension.dot', 'dot', (['[1, 2, 3]', '[2, 3, 4]'], {}), '([1, 2, 3], [2, 3, 4])\n', (185, 207), False, 'from pymanylinuxdemo.extension import dot\n'), ((265, 309), 'pymanylinuxdemo.extension.dot', 'dot', (['[1, 1.5, 2.5, 4]', '[-1.0, -2.0, -3.0, 4]'], {}), '([1, 1.5, 2.5, 4], [-1.0, -2.0, -3.0, 4])\n', (268, 309), False, 'from pymanylinuxdemo.extension import dot\n'), ((405, 414), 'pymanylinuxdemo.extension.dot', 'dot', (['x', 'x'], {}), '(x, x)\n', (408, 414), False, 'from pymanylinuxdemo.extension import dot\n')]
#!/usr/bin/python3 # # MIT License # # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This quick hack writes a bash script that uses the PTTools to stitch a # panorama from all photos in the current directory. It assumes that all of the # photos are JPGs in the current directory, and that all of the JPGs in the # current directory are photos for the panorama. # # A short (i.e., non-comprehensive) list of choices the output script makes for # you would include: # * using CPFind as the control point detector; # * continuously overwriting the same project file instead of leaving # multiple project files behind to allow for problem tracing; # * treating the first file (according to standard lexicographic sort by # filename) as the reference (or "anchor") image for the purposes of both # position and exposure, which often winds up not being the best choice; # * assuming that the input images are taken with a rectilinear lens; # * running Celeste; # * running CPFind's version of Celeste instead of Celeste standalone; # * using the --multirow match detection algorithm, which is generally # pretty good, but which is not perfect for all possible scenarios, and # which does unnecessary work in single-row panoramas, sometimes causing # problems on its own; # * running CPClean with default parameters; # * automatically optimizing control points, which is almost certainly a # good idea in most, but not all, cases; # * trying to find a suitable projection type, which is often basically # successful but rarely makes the absolute best possible choice; # * doing photometric optimization, which wastes time if the shots were # manually shot at the same exposure; # * trying to find vertical control points, which is often successful and # frequently a good idea, though the process can go astray; # * automatically calculating ostensibly optimal canvas and crop sizes; and # * using hugin_executor as the stitching program (PTBatchGUI might also be # used for this purpose). import os, glob, subprocess import postprocessor as pprocessor the_files = sorted(list(set(glob.glob('*JPG') + glob.glob('*jpg')))) the_files_list = ' '.join(the_files) project_file = the_files[0] + ".pto" if the_files: the_script = """#!/usr/bin/env bash pto_gen -o %s %s """ % (project_file, the_files_list) the_script = the_script + """ cpfind --multirow --celeste -o %s %s cpclean -o %s %s linefind -o %s %s autooptimiser -a -l -s -m -o %s %s pano_modify --canvas=AUTO --crop=AUTO -o %s %s # hugin_executor -s %s # Uncomment to stitch the panorama immediately """ % tuple([project_file] * 11) script_file_name = os.path.splitext(the_files[0])[0] + '-pano.SH' with open(script_file_name, mode='w') as script_file: script_file.write(''.join(the_script)) os.chmod(script_file_name, os.stat(script_file_name).st_mode | 0o111) # or, in Bash, "chmod a+x SCRIPT_FILE_NAME" # pprocessor.run_shell_scripts() # uncomment this line to automatically run all scripts in the directory. else: raise IndexError('You must call panorama_script_generator.py in a folder with at least one .jpg or .JPG file;\n current working directory is %s' % os.getcwd())
[ "os.stat", "os.path.splitext", "glob.glob", "os.getcwd" ]
[((3818, 3848), 'os.path.splitext', 'os.path.splitext', (['the_files[0]'], {}), '(the_files[0])\n', (3834, 3848), False, 'import os, glob, subprocess\n'), ((4373, 4384), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4382, 4384), False, 'import os, glob, subprocess\n'), ((3242, 3259), 'glob.glob', 'glob.glob', (['"""*JPG"""'], {}), "('*JPG')\n", (3251, 3259), False, 'import os, glob, subprocess\n'), ((3262, 3279), 'glob.glob', 'glob.glob', (['"""*jpg"""'], {}), "('*jpg')\n", (3271, 3279), False, 'import os, glob, subprocess\n'), ((4006, 4031), 'os.stat', 'os.stat', (['script_file_name'], {}), '(script_file_name)\n', (4013, 4031), False, 'import os, glob, subprocess\n')]
from rest_framework import generics from races.serializers import RaceCompleteSerializer from races.models import Race class RaceListCreateView(generics.ListCreateAPIView): queryset = Race.objects.all() serializer_class = RaceCompleteSerializer class RaceDeatailsRetrieveUpdateDestroyView(generics.RetrieveUpdateDestroyAPIView): queryset = Race.objects.all() serializer_class = RaceCompleteSerializer lookup_field = "race_uuid"
[ "races.models.Race.objects.all" ]
[((191, 209), 'races.models.Race.objects.all', 'Race.objects.all', ([], {}), '()\n', (207, 209), False, 'from races.models import Race\n'), ((357, 375), 'races.models.Race.objects.all', 'Race.objects.all', ([], {}), '()\n', (373, 375), False, 'from races.models import Race\n')]
from sqlalchemy import Column, Integer, ForeignKey from sqlalchemy.orm import relationship from app.models.base import Base class PokemonBaseStats(Base): __tablename__ = 'pokemon_base_stats' poke_id = Column(Integer, ForeignKey('pokemon.poke_id'), primary_key = True) hp = Column(Integer, nullable=False) attack_stat = Column(Integer, nullable=True) defense_stat = Column(Integer, nullable=True) special_attack_stat = Column(Integer, nullable=True) special_defense_stat = Column(Integer, nullable=True) speed = Column(Integer, nullable=True) #... pokemon = relationship("Pokemon", back_populates="pokemon_base_stats") def __repr__(self): return "<PokemonBaseStats(poke_id='%d', hp='%d', speed='%d')>" % ( self.poke_id, self.hp, self.speed)
[ "sqlalchemy.orm.relationship", "sqlalchemy.ForeignKey", "sqlalchemy.Column" ]
[((288, 319), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(False)'}), '(Integer, nullable=False)\n', (294, 319), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((338, 368), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(True)'}), '(Integer, nullable=True)\n', (344, 368), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((388, 418), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(True)'}), '(Integer, nullable=True)\n', (394, 418), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((445, 475), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(True)'}), '(Integer, nullable=True)\n', (451, 475), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((503, 533), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(True)'}), '(Integer, nullable=True)\n', (509, 533), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((546, 576), 'sqlalchemy.Column', 'Column', (['Integer'], {'nullable': '(True)'}), '(Integer, nullable=True)\n', (552, 576), False, 'from sqlalchemy import Column, Integer, ForeignKey\n'), ((601, 661), 'sqlalchemy.orm.relationship', 'relationship', (['"""Pokemon"""'], {'back_populates': '"""pokemon_base_stats"""'}), "('Pokemon', back_populates='pokemon_base_stats')\n", (613, 661), False, 'from sqlalchemy.orm import relationship\n'), ((228, 257), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""pokemon.poke_id"""'], {}), "('pokemon.poke_id')\n", (238, 257), False, 'from sqlalchemy import Column, Integer, ForeignKey\n')]
from piglow import PiGlow def main(): piglow = PiGlow() piglow.all(0) if __name__ == '__main__': main()
[ "piglow.PiGlow" ]
[((53, 61), 'piglow.PiGlow', 'PiGlow', ([], {}), '()\n', (59, 61), False, 'from piglow import PiGlow\n')]
# Copyright 2012-2017, <NAME> and The Tor Project # See LICENSE for licensing information import io import re import time import stem import stem.control import stem.descriptor.router_status_entry import stem.response import stem.version from stem.util import str_type, int_type, connection, log, str_tools, tor_tools # Matches keyword=value arguments. This can't be a simple "(.*)=(.*)" pattern # because some positional arguments, like circuit paths, can have an equal # sign. KW_ARG = re.compile('^(.*) ([A-Za-z0-9_]+)=(\S*)$') QUOTED_KW_ARG = re.compile('^(.*) ([A-Za-z0-9_]+)="(.*)"$') CELL_TYPE = re.compile('^[a-z0-9_]+$') PARSE_NEWCONSENSUS_EVENTS = True class Event(stem.response.ControlMessage): """ Base for events we receive asynchronously, as described in section 4.1 of the `control-spec <https://gitweb.torproject.org/torspec.git/tree/control-spec.txt>`_. :var str type: event type :var int arrived_at: unix timestamp for when the message arrived :var list positional_args: positional arguments of the event :var dict keyword_args: key/value arguments of the event """ _POSITIONAL_ARGS = () # attribute names for recognized positional arguments _KEYWORD_ARGS = {} # map of 'keyword => attribute' for recognized attributes _QUOTED = () # positional arguments that are quoted _OPTIONALLY_QUOTED = () # positional arguments that may or may not be quoted _SKIP_PARSING = False # skip parsing contents into our positional_args and keyword_args _VERSION_ADDED = stem.version.Version('0.1.1.1-alpha') # minimum version with control-spec V1 event support def _parse_message(self, arrived_at = None): if arrived_at is None: arrived_at = int(time.time()) if not str(self).strip(): raise stem.ProtocolError('Received a blank tor event. Events must at the very least have a type.') self.type = str(self).split()[0] self.arrived_at = arrived_at # if we're a recognized event type then translate ourselves into that subclass if self.type in EVENT_TYPE_TO_CLASS: self.__class__ = EVENT_TYPE_TO_CLASS[self.type] self.positional_args = [] self.keyword_args = {} if not self._SKIP_PARSING: self._parse_standard_attr() self._parse() def _parse_standard_attr(self): """ Most events are of the form... 650 *( positional_args ) *( key "=" value ) This parses this standard format, populating our **positional_args** and **keyword_args** attributes and creating attributes if it's in our event's **_POSITIONAL_ARGS** and **_KEYWORD_ARGS**. """ # Tor events contain some number of positional arguments followed by # key/value mappings. Parsing keyword arguments from the end until we hit # something that isn't a key/value mapping. The rest are positional. content = str(self) while True: match = QUOTED_KW_ARG.match(content) if not match: match = KW_ARG.match(content) if match: content, keyword, value = match.groups() self.keyword_args[keyword] = value else: break # Setting attributes for the fields that we recognize. self.positional_args = content.split()[1:] positional = list(self.positional_args) for attr_name in self._POSITIONAL_ARGS: attr_value = None if positional: if attr_name in self._QUOTED or (attr_name in self._OPTIONALLY_QUOTED and positional[0].startswith('"')): attr_values = [positional.pop(0)] if not attr_values[0].startswith('"'): raise stem.ProtocolError("The %s value should be quoted, but didn't have a starting quote: %s" % (attr_name, self)) while True: if not positional: raise stem.ProtocolError("The %s value should be quoted, but didn't have an ending quote: %s" % (attr_name, self)) attr_values.append(positional.pop(0)) if attr_values[-1].endswith('"'): break attr_value = ' '.join(attr_values)[1:-1] else: attr_value = positional.pop(0) setattr(self, attr_name, attr_value) for controller_attr_name, attr_name in self._KEYWORD_ARGS.items(): setattr(self, attr_name, self.keyword_args.get(controller_attr_name)) def _iso_timestamp(self, timestamp): """ Parses an iso timestamp (ISOTime2Frac in the control-spec). :param str timestamp: timestamp to parse :returns: **datetime** with the parsed timestamp :raises: :class:`stem.ProtocolError` if timestamp is malformed """ if timestamp is None: return None try: return str_tools._parse_iso_timestamp(timestamp) except ValueError as exc: raise stem.ProtocolError('Unable to parse timestamp (%s): %s' % (exc, self)) # method overwritten by our subclasses for special handling that they do def _parse(self): pass def _log_if_unrecognized(self, attr, attr_enum): """ Checks if an attribute exists in a given enumeration, logging a message if it isn't. Attributes can either be for a string or collection of strings :param str attr: name of the attribute to check :param stem.util.enum.Enum enum: enumeration to check against """ attr_values = getattr(self, attr) if attr_values: if isinstance(attr_values, (bytes, str_type)): attr_values = [attr_values] for value in attr_values: if value not in attr_enum: log_id = 'event.%s.unknown_%s.%s' % (self.type.lower(), attr, value) unrecognized_msg = "%s event had an unrecognized %s (%s). Maybe a new addition to the control protocol? Full Event: '%s'" % (self.type, attr, value, self) log.log_once(log_id, log.INFO, unrecognized_msg) class AddrMapEvent(Event): """ Event that indicates a new address mapping. The ADDRMAP event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. .. versionchanged:: 1.1.0 Added the cached attribute. :var str hostname: address being resolved :var str destination: destination of the resolution, this is usually an ip, but could be a hostname if TrackHostExits is enabled or **NONE** if the resolution failed :var datetime expiry: expiration time of the resolution in local time :var str error: error code if the resolution failed :var datetime utc_expiry: expiration time of the resolution in UTC :var bool cached: **True** if the resolution will be kept until it expires, **False** otherwise or **None** if undefined """ _POSITIONAL_ARGS = ('hostname', 'destination', 'expiry') _KEYWORD_ARGS = { 'error': 'error', 'EXPIRES': 'utc_expiry', 'CACHED': 'cached', } _OPTIONALLY_QUOTED = ('expiry') def _parse(self): if self.destination == '<error>': self.destination = None if self.expiry is not None: if self.expiry == 'NEVER': self.expiry = None else: try: self.expiry = stem.util.str_tools._parse_timestamp(self.expiry) except ValueError: raise stem.ProtocolError('Unable to parse date in ADDRMAP event: %s' % self) if self.utc_expiry is not None: self.utc_expiry = stem.util.str_tools._parse_timestamp(self.utc_expiry) if self.cached is not None: if self.cached == 'YES': self.cached = True elif self.cached == 'NO': self.cached = False else: raise stem.ProtocolError("An ADDRMAP event's CACHED mapping can only be 'YES' or 'NO': %s" % self) class AuthDirNewDescEvent(Event): """ Event specific to directory authorities, indicating that we just received new descriptors. The descriptor type contained within this event is unspecified so the descriptor contents are left unparsed. The AUTHDIR_NEWDESCS event was introduced in tor version 0.1.1.10-alpha and removed in 0.3.2.1-alpha. (:spec:`6e887ba`) .. deprecated:: 1.6.0 Tor dropped this event as of version 0.3.2.1. (:spec:`6e887ba`) :var stem.AuthDescriptorAction action: what is being done with the descriptor :var str message: explanation of why we chose this action :var str descriptor: content of the descriptor """ _SKIP_PARSING = True _VERSION_ADDED = stem.version.Requirement.EVENT_AUTHDIR_NEWDESCS def _parse(self): lines = str(self).split('\n') if len(lines) < 5: raise stem.ProtocolError("AUTHDIR_NEWDESCS events must contain lines for at least the type, action, message, descriptor, and terminating 'OK'") elif lines[-1] != 'OK': raise stem.ProtocolError("AUTHDIR_NEWDESCS doesn't end with an 'OK'") # TODO: For stem 2.0.0 we should consider changing 'descriptor' to a # ServerDescriptor instance. self.action = lines[1] self.message = lines[2] self.descriptor = '\n'.join(lines[3:-1]) class BandwidthEvent(Event): """ Event emitted every second with the bytes sent and received by tor. The BW event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. :var long read: bytes received by tor that second :var long written: bytes sent by tor that second """ _POSITIONAL_ARGS = ('read', 'written') def _parse(self): if not self.read: raise stem.ProtocolError('BW event is missing its read value') elif not self.written: raise stem.ProtocolError('BW event is missing its written value') elif not self.read.isdigit() or not self.written.isdigit(): raise stem.ProtocolError("A BW event's bytes sent and received should be a positive numeric value, received: %s" % self) self.read = int_type(self.read) self.written = int_type(self.written) class BuildTimeoutSetEvent(Event): """ Event indicating that the timeout value for a circuit has changed. This was first added in tor version 0.2.2.7. The BUILDTIMEOUT_SET event was introduced in tor version 0.2.2.7-alpha. :var stem.TimeoutSetType set_type: way in which the timeout is changing :var int total_times: circuit build times tor used to determine the timeout :var int timeout: circuit timeout value in milliseconds :var int xm: Pareto parameter Xm in milliseconds :var float alpha: Pareto parameter alpha :var float quantile: CDF quantile cutoff point :var float timeout_rate: ratio of circuits that have time out :var int close_timeout: duration to keep measurement circuits in milliseconds :var float close_rate: ratio of measurement circuits that are closed """ _POSITIONAL_ARGS = ('set_type',) _KEYWORD_ARGS = { 'TOTAL_TIMES': 'total_times', 'TIMEOUT_MS': 'timeout', 'XM': 'xm', 'ALPHA': 'alpha', 'CUTOFF_QUANTILE': 'quantile', 'TIMEOUT_RATE': 'timeout_rate', 'CLOSE_MS': 'close_timeout', 'CLOSE_RATE': 'close_rate', } _VERSION_ADDED = stem.version.Requirement.EVENT_BUILDTIMEOUT_SET def _parse(self): # convert our integer and float parameters for param in ('total_times', 'timeout', 'xm', 'close_timeout'): param_value = getattr(self, param) if param_value is not None: try: setattr(self, param, int(param_value)) except ValueError: raise stem.ProtocolError('The %s of a BUILDTIMEOUT_SET should be an integer: %s' % (param, self)) for param in ('alpha', 'quantile', 'timeout_rate', 'close_rate'): param_value = getattr(self, param) if param_value is not None: try: setattr(self, param, float(param_value)) except ValueError: raise stem.ProtocolError('The %s of a BUILDTIMEOUT_SET should be a float: %s' % (param, self)) self._log_if_unrecognized('set_type', stem.TimeoutSetType) class CircuitEvent(Event): """ Event that indicates that a circuit has changed. The fingerprint or nickname values in our 'path' may be **None** if the VERBOSE_NAMES feature isn't enabled. The option was first introduced in tor version 0.1.2.2, and on by default after 0.2.2.1. The CIRC event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. .. versionchanged:: 1.4.0 Added the socks_username and socks_password attributes which is used for `stream isolation <https://gitweb.torproject.org/torspec.git/tree/proposals/171-separate-streams.txt>`_. :var str id: circuit identifier :var stem.CircStatus status: reported status for the circuit :var tuple path: relays involved in the circuit, these are **(fingerprint, nickname)** tuples :var tuple build_flags: :data:`~stem.CircBuildFlag` attributes governing how the circuit is built :var stem.CircPurpose purpose: purpose that the circuit is intended for :var stem.HiddenServiceState hs_state: status if this is a hidden service circuit :var str rend_query: circuit's rendezvous-point if this is hidden service related :var datetime created: time when the circuit was created or cannibalized :var stem.CircClosureReason reason: reason for the circuit to be closed :var stem.CircClosureReason remote_reason: remote side's reason for the circuit to be closed :var str socks_username: username for using this circuit :var str socks_password: password for using this circuit """ _POSITIONAL_ARGS = ('id', 'status', 'path') _KEYWORD_ARGS = { 'BUILD_FLAGS': 'build_flags', 'PURPOSE': 'purpose', 'HS_STATE': 'hs_state', 'REND_QUERY': 'rend_query', 'TIME_CREATED': 'created', 'REASON': 'reason', 'REMOTE_REASON': 'remote_reason', 'SOCKS_USERNAME': 'socks_username', 'SOCKS_PASSWORD': '<PASSWORD>', } def _parse(self): self.path = tuple(stem.control._parse_circ_path(self.path)) self.created = self._iso_timestamp(self.created) if self.build_flags is not None: self.build_flags = tuple(self.build_flags.split(',')) if not tor_tools.is_valid_circuit_id(self.id): raise stem.ProtocolError("Circuit IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) self._log_if_unrecognized('status', stem.CircStatus) self._log_if_unrecognized('build_flags', stem.CircBuildFlag) self._log_if_unrecognized('purpose', stem.CircPurpose) self._log_if_unrecognized('hs_state', stem.HiddenServiceState) self._log_if_unrecognized('reason', stem.CircClosureReason) self._log_if_unrecognized('remote_reason', stem.CircClosureReason) def _compare(self, other, method): if not isinstance(other, CircuitEvent): return False for attr in ('id', 'status', 'path', 'build_flags', 'purpose', 'hs_state', 'rend_query', 'created', 'reason', 'remote_reason', 'socks_username', 'socks_password'): my_attr = getattr(self, attr) other_attr = getattr(other, attr) # Our id attribute is technically a string, but Tor conventionally uses # ints. Attempt to handle as ints if that's the case so we get numeric # ordering. if attr == 'id' and my_attr and other_attr: if my_attr.isdigit() and other_attr.isdigit(): my_attr = int(my_attr) other_attr = int(other_attr) if my_attr is None: my_attr = '' if other_attr is None: other_attr = '' if my_attr != other_attr: return method(my_attr, other_attr) return True def __hash__(self): return hash(str(self).strip()) def __eq__(self, other): return self._compare(other, lambda s, o: s == o) def __ne__(self, other): return not self == other def __gt__(self, other): return self._compare(other, lambda s, o: s > o) def __ge__(self, other): return self._compare(other, lambda s, o: s >= o) class CircMinorEvent(Event): """ Event providing information about minor changes in our circuits. This was first added in tor version 0.2.3.11. The CIRC_MINOR event was introduced in tor version 0.2.3.11-alpha. :var str id: circuit identifier :var stem.CircEvent event: type of change in the circuit :var tuple path: relays involved in the circuit, these are **(fingerprint, nickname)** tuples :var tuple build_flags: :data:`~stem.CircBuildFlag` attributes governing how the circuit is built :var stem.CircPurpose purpose: purpose that the circuit is intended for :var stem.HiddenServiceState hs_state: status if this is a hidden service circuit :var str rend_query: circuit's rendezvous-point if this is hidden service related :var datetime created: time when the circuit was created or cannibalized :var stem.CircPurpose old_purpose: prior purpose for the circuit :var stem.HiddenServiceState old_hs_state: prior status as a hidden service circuit """ _POSITIONAL_ARGS = ('id', 'event', 'path') _KEYWORD_ARGS = { 'BUILD_FLAGS': 'build_flags', 'PURPOSE': 'purpose', 'HS_STATE': 'hs_state', 'REND_QUERY': 'rend_query', 'TIME_CREATED': 'created', 'OLD_PURPOSE': 'old_purpose', 'OLD_HS_STATE': 'old_hs_state', } _VERSION_ADDED = stem.version.Requirement.EVENT_CIRC_MINOR def _parse(self): self.path = tuple(stem.control._parse_circ_path(self.path)) self.created = self._iso_timestamp(self.created) if self.build_flags is not None: self.build_flags = tuple(self.build_flags.split(',')) if not tor_tools.is_valid_circuit_id(self.id): raise stem.ProtocolError("Circuit IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) self._log_if_unrecognized('event', stem.CircEvent) self._log_if_unrecognized('build_flags', stem.CircBuildFlag) self._log_if_unrecognized('purpose', stem.CircPurpose) self._log_if_unrecognized('hs_state', stem.HiddenServiceState) self._log_if_unrecognized('old_purpose', stem.CircPurpose) self._log_if_unrecognized('old_hs_state', stem.HiddenServiceState) class ClientsSeenEvent(Event): """ Periodic event on bridge relays that provides a summary of our users. The CLIENTS_SEEN event was introduced in tor version 0.2.1.10-alpha. :var datetime start_time: time in UTC that we started collecting these stats :var dict locales: mapping of country codes to a rounded count for the number of users :var dict ip_versions: mapping of ip protocols to a rounded count for the number of users """ _KEYWORD_ARGS = { 'TimeStarted': 'start_time', 'CountrySummary': 'locales', 'IPVersions': 'ip_versions', } _VERSION_ADDED = stem.version.Requirement.EVENT_CLIENTS_SEEN def _parse(self): if self.start_time is not None: self.start_time = stem.util.str_tools._parse_timestamp(self.start_time) if self.locales is not None: locale_to_count = {} for entry in self.locales.split(','): if '=' not in entry: raise stem.ProtocolError("The CLIENTS_SEEN's CountrySummary should be a comma separated listing of '<locale>=<count>' mappings: %s" % self) locale, count = entry.split('=', 1) if len(locale) != 2: raise stem.ProtocolError("Locales should be a two character code, got '%s': %s" % (locale, self)) elif not count.isdigit(): raise stem.ProtocolError('Locale count was non-numeric (%s): %s' % (count, self)) elif locale in locale_to_count: raise stem.ProtocolError("CountrySummary had multiple mappings for '%s': %s" % (locale, self)) locale_to_count[locale] = int(count) self.locales = locale_to_count if self.ip_versions is not None: protocol_to_count = {} for entry in self.ip_versions.split(','): if '=' not in entry: raise stem.ProtocolError("The CLIENTS_SEEN's IPVersions should be a comma separated listing of '<protocol>=<count>' mappings: %s" % self) protocol, count = entry.split('=', 1) if not count.isdigit(): raise stem.ProtocolError('IP protocol count was non-numeric (%s): %s' % (count, self)) protocol_to_count[protocol] = int(count) self.ip_versions = protocol_to_count class ConfChangedEvent(Event): """ Event that indicates that our configuration changed, either in response to a SETCONF or RELOAD signal. The CONF_CHANGED event was introduced in tor version 0.2.3.3-alpha. :var dict config: mapping of configuration options to their new values (**None** if the option is being unset) """ _SKIP_PARSING = True _VERSION_ADDED = stem.version.Requirement.EVENT_CONF_CHANGED def _parse(self): self.config = {} # Skip first and last line since they're the header and footer. For # instance... # # 650-CONF_CHANGED # 650-ExitNodes=caerSidi # 650-ExitPolicy # 650-MaxCircuitDirtiness=20 # 650 OK for line in str(self).splitlines()[1:-1]: if '=' in line: key, value = line.split('=', 1) else: key, value = line, None self.config[key] = value class DescChangedEvent(Event): """ Event that indicates that our descriptor has changed. The DESCCHANGED event was introduced in tor version 0.1.2.2-alpha. """ _VERSION_ADDED = stem.version.Requirement.EVENT_DESCCHANGED class GuardEvent(Event): """ Event that indicates that our guard relays have changed. The 'endpoint' could be either a... * fingerprint * 'fingerprint=nickname' pair The derived 'endpoint_*' attributes are generally more useful. The GUARD event was introduced in tor version 0.1.2.5-alpha. :var stem.GuardType guard_type: purpose the guard relay is for :var str endpoint: relay that the event concerns :var str endpoint_fingerprint: endpoint's finterprint :var str endpoint_nickname: endpoint's nickname if it was provided :var stem.GuardStatus status: status of the guard relay """ _VERSION_ADDED = stem.version.Requirement.EVENT_GUARD _POSITIONAL_ARGS = ('guard_type', 'endpoint', 'status') def _parse(self): self.endpoint_fingerprint = None self.endpoint_nickname = None try: self.endpoint_fingerprint, self.endpoint_nickname = \ stem.control._parse_circ_entry(self.endpoint) except stem.ProtocolError: raise stem.ProtocolError("GUARD's endpoint doesn't match a ServerSpec: %s" % self) self._log_if_unrecognized('guard_type', stem.GuardType) self._log_if_unrecognized('status', stem.GuardStatus) class HSDescEvent(Event): """ Event triggered when we fetch a hidden service descriptor that currently isn't in our cache. The HS_DESC event was introduced in tor version 0.2.5.2-alpha. .. versionadded:: 1.2.0 .. versionchanged:: 1.3.0 Added the reason attribute. .. versionchanged:: 1.5.0 Added the replica attribute. :var stem.HSDescAction action: what is happening with the descriptor :var str address: hidden service address :var stem.HSAuth authentication: service's authentication method :var str directory: hidden service directory servicing the request :var str directory_fingerprint: hidden service directory's finterprint :var str directory_nickname: hidden service directory's nickname if it was provided :var str descriptor_id: descriptor identifier :var stem.HSDescReason reason: reason the descriptor failed to be fetched :var int replica: replica number the descriptor involves """ _VERSION_ADDED = stem.version.Requirement.EVENT_HS_DESC _POSITIONAL_ARGS = ('action', 'address', 'authentication', 'directory', 'descriptor_id') _KEYWORD_ARGS = {'REASON': 'reason', 'REPLICA': 'replica'} def _parse(self): self.directory_fingerprint = None self.directory_nickname = None if self.directory != 'UNKNOWN': try: self.directory_fingerprint, self.directory_nickname = \ stem.control._parse_circ_entry(self.directory) except stem.ProtocolError: raise stem.ProtocolError("HS_DESC's directory doesn't match a ServerSpec: %s" % self) if self.replica is not None: if not self.replica.isdigit(): raise stem.ProtocolError('HS_DESC event got a non-numeric replica count (%s): %s' % (self.replica, self)) self.replica = int(self.replica) self._log_if_unrecognized('action', stem.HSDescAction) self._log_if_unrecognized('authentication', stem.HSAuth) class HSDescContentEvent(Event): """ Provides the content of hidden service descriptors we fetch. The HS_DESC_CONTENT event was introduced in tor version 0.2.7.1-alpha. .. versionadded:: 1.4.0 :var str address: hidden service address :var str descriptor_id: descriptor identifier :var str directory: hidden service directory servicing the request :var str directory_fingerprint: hidden service directory's finterprint :var str directory_nickname: hidden service directory's nickname if it was provided :var stem.descriptor.hidden_service_descriptor.HiddenServiceDescriptor descriptor: descriptor that was retrieved """ _VERSION_ADDED = stem.version.Requirement.EVENT_HS_DESC_CONTENT _POSITIONAL_ARGS = ('address', 'descriptor_id', 'directory') def _parse(self): if self.address == 'UNKNOWN': self.address = None self.directory_fingerprint = None self.directory_nickname = None try: self.directory_fingerprint, self.directory_nickname = \ stem.control._parse_circ_entry(self.directory) except stem.ProtocolError: raise stem.ProtocolError("HS_DESC_CONTENT's directory doesn't match a ServerSpec: %s" % self) # skip the first line (our positional arguments) and last ('OK') desc_content = str_tools._to_bytes('\n'.join(str(self).splitlines()[1:-1])) self.descriptor = None if desc_content: self.descriptor = list(stem.descriptor.hidden_service_descriptor._parse_file(io.BytesIO(desc_content)))[0] class LogEvent(Event): """ Tor logging event. These are the most visible kind of event since, by default, tor logs at the NOTICE :data:`~stem.Runlevel` to stdout. The logging events were some of the first Control Protocol V1 events and were introduced in tor version 0.1.1.1-alpha. :var stem.Runlevel runlevel: runlevel of the logged message :var str message: logged message """ _SKIP_PARSING = True def _parse(self): self.runlevel = self.type self._log_if_unrecognized('runlevel', stem.Runlevel) # message is our content, minus the runlevel and ending "OK" if a # multi-line message self.message = str(self)[len(self.runlevel) + 1:].rstrip('\nOK') class NetworkStatusEvent(Event): """ Event for when our copy of the consensus has changed. This was introduced in tor version 0.1.2.3. The NS event was introduced in tor version 0.1.2.3-alpha. :var list desc: :class:`~stem.descriptor.router_status_entry.RouterStatusEntryV3` for the changed descriptors """ _SKIP_PARSING = True _VERSION_ADDED = stem.version.Requirement.EVENT_NS def _parse(self): content = str(self).lstrip('NS\n').rstrip('\nOK') # TODO: For stem 2.0.0 consider changing 'desc' to 'descriptors' to match # our other events. self.desc = list(stem.descriptor.router_status_entry._parse_file( io.BytesIO(str_tools._to_bytes(content)), False, entry_class = stem.descriptor.router_status_entry.RouterStatusEntryV3, )) class NetworkLivenessEvent(Event): """ Event for when the network becomes reachable or unreachable. The NETWORK_LIVENESS event was introduced in tor version 0.2.7.2-alpha. .. versionadded:: 1.5.0 :var str status: status of the network ('UP', 'DOWN', or possibly other statuses in the future) """ _VERSION_ADDED = stem.version.Requirement.EVENT_NETWORK_LIVENESS _POSITIONAL_ARGS = ('status',) class NewConsensusEvent(Event): """ Event for when we have a new consensus. This is similar to :class:`~stem.response.events.NetworkStatusEvent`, except that it contains the whole consensus so anything not listed is implicitly no longer recommended. The NEWCONSENSUS event was introduced in tor version 0.2.1.13-alpha. .. versionchanged:: 1.6.0 Added the consensus_content attribute. .. deprecated:: 1.6.0 In Stem 2.0 we'll remove the desc attribute, so this event only provides the unparsed consensus. Callers can then parse it if they'd like. To drop parsing before then you can set... :: stem.response.events.PARSE_NEWCONSENSUS_EVENTS = False :var str consensus_content: consensus content :var list desc: :class:`~stem.descriptor.router_status_entry.RouterStatusEntryV3` for the changed descriptors """ _SKIP_PARSING = True _VERSION_ADDED = stem.version.Requirement.EVENT_NEWCONSENSUS def _parse(self): self.consensus_content = str(self).lstrip('NEWCONSENSUS\n').rstrip('\nOK') # TODO: For stem 2.0.0 consider changing 'desc' to 'descriptors' to match # our other events. if PARSE_NEWCONSENSUS_EVENTS: self.desc = list(stem.descriptor.router_status_entry._parse_file( io.BytesIO(str_tools._to_bytes(self.consensus_content)), False, entry_class = stem.descriptor.router_status_entry.RouterStatusEntryV3, )) else: self.desc = None class NewDescEvent(Event): """ Event that indicates that a new descriptor is available. The fingerprint or nickname values in our 'relays' may be **None** if the VERBOSE_NAMES feature isn't enabled. The option was first introduced in tor version 0.1.2.2, and on by default after 0.2.2.1. The NEWDESC event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. :var tuple relays: **(fingerprint, nickname)** tuples for the relays with new descriptors """ def _parse(self): self.relays = tuple([stem.control._parse_circ_entry(entry) for entry in str(self).split()[1:]]) class ORConnEvent(Event): """ Event that indicates a change in a relay connection. The 'endpoint' could be any of several things including a... * fingerprint * nickname * 'fingerprint=nickname' pair * address:port The derived 'endpoint_*' attributes are generally more useful. The ORCONN event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. Its id attribute was added in version 0.2.5.2-alpha. .. versionchanged:: 1.2.0 Added the id attribute. :var str id: connection identifier :var str endpoint: relay that the event concerns :var str endpoint_fingerprint: endpoint's finterprint if it was provided :var str endpoint_nickname: endpoint's nickname if it was provided :var str endpoint_address: endpoint's address if it was provided :var int endpoint_port: endpoint's port if it was provided :var stem.ORStatus status: state of the connection :var stem.ORClosureReason reason: reason for the connection to be closed :var int circ_count: number of established and pending circuits """ _POSITIONAL_ARGS = ('endpoint', 'status') _KEYWORD_ARGS = { 'REASON': 'reason', 'NCIRCS': 'circ_count', 'ID': 'id', } def _parse(self): self.endpoint_fingerprint = None self.endpoint_nickname = None self.endpoint_address = None self.endpoint_port = None try: self.endpoint_fingerprint, self.endpoint_nickname = \ stem.control._parse_circ_entry(self.endpoint) except stem.ProtocolError: if ':' not in self.endpoint: raise stem.ProtocolError("ORCONN endpoint is neither a relay nor 'address:port': %s" % self) address, port = self.endpoint.rsplit(':', 1) if not connection.is_valid_port(port): raise stem.ProtocolError("ORCONN's endpoint location's port is invalid: %s" % self) self.endpoint_address = address self.endpoint_port = int(port) if self.circ_count is not None: if not self.circ_count.isdigit(): raise stem.ProtocolError('ORCONN event got a non-numeric circuit count (%s): %s' % (self.circ_count, self)) self.circ_count = int(self.circ_count) if self.id and not tor_tools.is_valid_connection_id(self.id): raise stem.ProtocolError("Connection IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) self._log_if_unrecognized('status', stem.ORStatus) self._log_if_unrecognized('reason', stem.ORClosureReason) class SignalEvent(Event): """ Event that indicates that tor has received and acted upon a signal being sent to the process. As of tor version 0.2.4.6 the only signals conveyed by this event are... * RELOAD * DUMP * DEBUG * NEWNYM * CLEARDNSCACHE The SIGNAL event was introduced in tor version 0.2.3.1-alpha. :var stem.Signal signal: signal that tor received """ _POSITIONAL_ARGS = ('signal',) _VERSION_ADDED = stem.version.Requirement.EVENT_SIGNAL def _parse(self): # log if we recieved an unrecognized signal expected_signals = ( stem.Signal.RELOAD, stem.Signal.DUMP, stem.Signal.DEBUG, stem.Signal.NEWNYM, stem.Signal.CLEARDNSCACHE, ) self._log_if_unrecognized('signal', expected_signals) class StatusEvent(Event): """ Notification of a change in tor's state. These are generally triggered for the same sort of things as log messages of the NOTICE level or higher. However, unlike :class:`~stem.response.events.LogEvent` these contain well formed data. The STATUS_GENERAL, STATUS_CLIENT, STATUS_SERVER events were introduced in tor version 0.1.2.3-alpha. :var stem.StatusType status_type: category of the status event :var stem.Runlevel runlevel: runlevel of the logged message :var str action: activity that caused this message :var dict arguments: attributes about the event """ _POSITIONAL_ARGS = ('runlevel', 'action') _VERSION_ADDED = stem.version.Requirement.EVENT_STATUS def _parse(self): if self.type == 'STATUS_GENERAL': self.status_type = stem.StatusType.GENERAL elif self.type == 'STATUS_CLIENT': self.status_type = stem.StatusType.CLIENT elif self.type == 'STATUS_SERVER': self.status_type = stem.StatusType.SERVER else: raise ValueError("BUG: Unrecognized status type (%s), likely an EVENT_TYPE_TO_CLASS addition without revising how 'status_type' is assigned." % self.type) # Just an alias for our parent class' keyword_args since that already # parses these for us. Unlike our other event types Tor commonly supplies # arbitrary key/value pairs for these, so making an alias here to better # draw attention that the StatusEvent will likely have them. self.arguments = self.keyword_args self._log_if_unrecognized('runlevel', stem.Runlevel) class StreamEvent(Event): """ Event that indicates that a stream has changed. The STREAM event was one of the first Control Protocol V1 events and was introduced in tor version 0.1.1.1-alpha. :var str id: stream identifier :var stem.StreamStatus status: reported status for the stream :var str circ_id: circuit that the stream is attached to, this is **None** of the stream is unattached :var str target: destination of the stream :var str target_address: destination address (ip, hostname, or '(Tor_internal)') :var int target_port: destination port :var stem.StreamClosureReason reason: reason for the stream to be closed :var stem.StreamClosureReason remote_reason: remote side's reason for the stream to be closed :var stem.StreamSource source: origin of the REMAP request :var str source_addr: requester of the connection :var str source_address: requester address (ip or hostname) :var int source_port: requester port :var stem.StreamPurpose purpose: purpose for the stream """ _POSITIONAL_ARGS = ('id', 'status', 'circ_id', 'target') _KEYWORD_ARGS = { 'REASON': 'reason', 'REMOTE_REASON': 'remote_reason', 'SOURCE': 'source', 'SOURCE_ADDR': 'source_addr', 'PURPOSE': 'purpose', } def _parse(self): if self.target is None: raise stem.ProtocolError("STREAM event didn't have a target: %s" % self) else: if ':' not in self.target: raise stem.ProtocolError("Target location must be of the form 'address:port': %s" % self) address, port = self.target.rsplit(':', 1) if not connection.is_valid_port(port, allow_zero = True): raise stem.ProtocolError("Target location's port is invalid: %s" % self) self.target_address = address self.target_port = int(port) if self.source_addr is None: self.source_address = None self.source_port = None else: if ':' not in self.source_addr: raise stem.ProtocolError("Source location must be of the form 'address:port': %s" % self) address, port = self.source_addr.rsplit(':', 1) if not connection.is_valid_port(port, allow_zero = True): raise stem.ProtocolError("Source location's port is invalid: %s" % self) self.source_address = address self.source_port = int(port) # spec specifies a circ_id of zero if the stream is unattached if self.circ_id == '0': self.circ_id = None self._log_if_unrecognized('reason', stem.StreamClosureReason) self._log_if_unrecognized('remote_reason', stem.StreamClosureReason) self._log_if_unrecognized('purpose', stem.StreamPurpose) class StreamBwEvent(Event): """ Event (emitted approximately every second) with the bytes sent and received by the application since the last such event on this stream. The STREAM_BW event was introduced in tor version 0.1.2.8-beta. .. versionchanged:: 1.6.0 Added the time attribute. :var str id: stream identifier :var long written: bytes sent by the application :var long read: bytes received by the application :var datetime time: time when the measurement was recorded """ _POSITIONAL_ARGS = ('id', 'written', 'read', 'time') _VERSION_ADDED = stem.version.Requirement.EVENT_STREAM_BW def _parse(self): if not tor_tools.is_valid_stream_id(self.id): raise stem.ProtocolError("Stream IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) elif not self.written: raise stem.ProtocolError('STREAM_BW event is missing its written value') elif not self.read: raise stem.ProtocolError('STREAM_BW event is missing its read value') elif not self.read.isdigit() or not self.written.isdigit(): raise stem.ProtocolError("A STREAM_BW event's bytes sent and received should be a positive numeric value, received: %s" % self) self.read = int_type(self.read) self.written = int_type(self.written) self.time = self._iso_timestamp(self.time) class TransportLaunchedEvent(Event): """ Event triggered when a pluggable transport is launched. The TRANSPORT_LAUNCHED event was introduced in tor version 0.2.5.0-alpha. .. versionadded:: 1.1.0 :var str type: 'server' or 'client' :var str name: name of the pluggable transport :var str address: IPv4 or IPv6 address where the transport is listening for connections :var int port: port where the transport is listening for connections """ _POSITIONAL_ARGS = ('type', 'name', 'address', 'port') _VERSION_ADDED = stem.version.Requirement.EVENT_TRANSPORT_LAUNCHED def _parse(self): if self.type not in ('server', 'client'): raise stem.ProtocolError("Transport type should either be 'server' or 'client': %s" % self) if not connection.is_valid_ipv4_address(self.address) and \ not connection.is_valid_ipv6_address(self.address): raise stem.ProtocolError("Transport address isn't a valid IPv4 or IPv6 address: %s" % self) if not connection.is_valid_port(self.port): raise stem.ProtocolError('Transport port is invalid: %s' % self) self.port = int(self.port) class ConnectionBandwidthEvent(Event): """ Event emitted every second with the bytes sent and received by tor on a per-connection basis. The CONN_BW event was introduced in tor version 0.2.5.2-alpha. .. versionadded:: 1.2.0 .. versionchanged:: 1.6.0 Renamed 'type' attribute to 'conn_type' so it wouldn't be override parent class attribute with the same name. :var str id: connection identifier :var stem.ConnectionType conn_type: connection type :var long read: bytes received by tor that second :var long written: bytes sent by tor that second """ _KEYWORD_ARGS = { 'ID': 'id', 'TYPE': 'conn_type', 'READ': 'read', 'WRITTEN': 'written', } _VERSION_ADDED = stem.version.Requirement.EVENT_CONN_BW def _parse(self): if not self.id: raise stem.ProtocolError('CONN_BW event is missing its id') elif not self.conn_type: raise stem.ProtocolError('CONN_BW event is missing its connection type') elif not self.read: raise stem.ProtocolError('CONN_BW event is missing its read value') elif not self.written: raise stem.ProtocolError('CONN_BW event is missing its written value') elif not self.read.isdigit() or not self.written.isdigit(): raise stem.ProtocolError("A CONN_BW event's bytes sent and received should be a positive numeric value, received: %s" % self) elif not tor_tools.is_valid_connection_id(self.id): raise stem.ProtocolError("Connection IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) self.read = int_type(self.read) self.written = int_type(self.written) self._log_if_unrecognized('conn_type', stem.ConnectionType) class CircuitBandwidthEvent(Event): """ Event emitted every second with the bytes sent and received by tor on a per-circuit basis. The CIRC_BW event was introduced in tor version 0.2.5.2-alpha. .. versionadded:: 1.2.0 .. versionchanged:: 1.6.0 Added the time attribute. :var str id: circuit identifier :var long read: bytes received by tor that second :var long written: bytes sent by tor that second :var datetime time: time when the measurement was recorded """ _KEYWORD_ARGS = { 'ID': 'id', 'READ': 'read', 'WRITTEN': 'written', 'TIME': 'time', } _VERSION_ADDED = stem.version.Requirement.EVENT_CIRC_BW def _parse(self): if not self.id: raise stem.ProtocolError('CIRC_BW event is missing its id') elif not self.read: raise stem.ProtocolError('CIRC_BW event is missing its read value') elif not self.written: raise stem.ProtocolError('CIRC_BW event is missing its written value') elif not self.read.isdigit() or not self.written.isdigit(): raise stem.ProtocolError("A CIRC_BW event's bytes sent and received should be a positive numeric value, received: %s" % self) elif not tor_tools.is_valid_circuit_id(self.id): raise stem.ProtocolError("Circuit IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) self.read = int_type(self.read) self.written = int_type(self.written) self.time = self._iso_timestamp(self.time) class CellStatsEvent(Event): """ Event emitted every second with a count of the number of cells types broken down by the circuit. **These events are only emitted if TestingTorNetwork is set.** The CELL_STATS event was introduced in tor version 0.2.5.2-alpha. .. versionadded:: 1.2.0 :var str id: circuit identifier :var str inbound_queue: inbound queue identifier :var str inbound_connection: inbound connection identifier :var dict inbound_added: mapping of added inbound cell types to their count :var dict inbound_removed: mapping of removed inbound cell types to their count :var dict inbound_time: mapping of inbound cell types to the time they took to write in milliseconds :var str outbound_queue: outbound queue identifier :var str outbound_connection: outbound connection identifier :var dict outbound_added: mapping of added outbound cell types to their count :var dict outbound_removed: mapping of removed outbound cell types to their count :var dict outbound_time: mapping of outbound cell types to the time they took to write in milliseconds """ _KEYWORD_ARGS = { 'ID': 'id', 'InboundQueue': 'inbound_queue', 'InboundConn': 'inbound_connection', 'InboundAdded': 'inbound_added', 'InboundRemoved': 'inbound_removed', 'InboundTime': 'inbound_time', 'OutboundQueue': 'outbound_queue', 'OutboundConn': 'outbound_connection', 'OutboundAdded': 'outbound_added', 'OutboundRemoved': 'outbound_removed', 'OutboundTime': 'outbound_time', } _VERSION_ADDED = stem.version.Requirement.EVENT_CELL_STATS def _parse(self): if self.id and not tor_tools.is_valid_circuit_id(self.id): raise stem.ProtocolError("Circuit IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) elif self.inbound_queue and not tor_tools.is_valid_circuit_id(self.inbound_queue): raise stem.ProtocolError("Queue IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.inbound_queue, self)) elif self.inbound_connection and not tor_tools.is_valid_connection_id(self.inbound_connection): raise stem.ProtocolError("Connection IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.inbound_connection, self)) elif self.outbound_queue and not tor_tools.is_valid_circuit_id(self.outbound_queue): raise stem.ProtocolError("Queue IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.outbound_queue, self)) elif self.outbound_connection and not tor_tools.is_valid_connection_id(self.outbound_connection): raise stem.ProtocolError("Connection IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.outbound_connection, self)) self.inbound_added = _parse_cell_type_mapping(self.inbound_added) self.inbound_removed = _parse_cell_type_mapping(self.inbound_removed) self.inbound_time = _parse_cell_type_mapping(self.inbound_time) self.outbound_added = _parse_cell_type_mapping(self.outbound_added) self.outbound_removed = _parse_cell_type_mapping(self.outbound_removed) self.outbound_time = _parse_cell_type_mapping(self.outbound_time) class TokenBucketEmptyEvent(Event): """ Event emitted when refilling an empty token bucket. **These events are only emitted if TestingTorNetwork is set.** The TB_EMPTY event was introduced in tor version 0.2.5.2-alpha. .. versionadded:: 1.2.0 :var stem.TokenBucket bucket: bucket being refilled :var str id: connection identifier :var int read: time in milliseconds since the read bucket was last refilled :var int written: time in milliseconds since the write bucket was last refilled :var int last_refill: time in milliseconds the bucket has been empty since last refilled """ _POSITIONAL_ARGS = ('bucket',) _KEYWORD_ARGS = { 'ID': 'id', 'READ': 'read', 'WRITTEN': 'written', 'LAST': 'last_refill', } _VERSION_ADDED = stem.version.Requirement.EVENT_TB_EMPTY def _parse(self): if self.id and not tor_tools.is_valid_connection_id(self.id): raise stem.ProtocolError("Connection IDs must be one to sixteen alphanumeric characters, got '%s': %s" % (self.id, self)) elif not self.read.isdigit(): raise stem.ProtocolError("A TB_EMPTY's READ value should be a positive numeric value, received: %s" % self) elif not self.written.isdigit(): raise stem.ProtocolError("A TB_EMPTY's WRITTEN value should be a positive numeric value, received: %s" % self) elif not self.last_refill.isdigit(): raise stem.ProtocolError("A TB_EMPTY's LAST value should be a positive numeric value, received: %s" % self) self.read = int(self.read) self.written = int(self.written) self.last_refill = int(self.last_refill) self._log_if_unrecognized('bucket', stem.TokenBucket) def _parse_cell_type_mapping(mapping): """ Parses a mapping of the form... key1:value1,key2:value2... ... in which keys are strings and values are integers. :param str mapping: value to be parsed :returns: dict of **str => int** mappings :rasies: **stem.ProtocolError** if unable to parse the mapping """ if mapping is None: return None results = {} for entry in mapping.split(','): if ':' not in entry: raise stem.ProtocolError("Mappings are expected to be of the form 'key:value', got '%s': %s" % (entry, mapping)) key, value = entry.rsplit(':', 1) if not CELL_TYPE.match(key): raise stem.ProtocolError("Key had invalid characters, got '%s': %s" % (key, mapping)) elif not value.isdigit(): raise stem.ProtocolError("Values should just be integers, got '%s': %s" % (value, mapping)) results[key] = int(value) return results EVENT_TYPE_TO_CLASS = { 'ADDRMAP': AddrMapEvent, 'AUTHDIR_NEWDESCS': AuthDirNewDescEvent, 'BUILDTIMEOUT_SET': BuildTimeoutSetEvent, 'BW': BandwidthEvent, 'CELL_STATS': CellStatsEvent, 'CIRC': CircuitEvent, 'CIRC_BW': CircuitBandwidthEvent, 'CIRC_MINOR': CircMinorEvent, 'CLIENTS_SEEN': ClientsSeenEvent, 'CONF_CHANGED': ConfChangedEvent, 'CONN_BW': ConnectionBandwidthEvent, 'DEBUG': LogEvent, 'DESCCHANGED': DescChangedEvent, 'ERR': LogEvent, 'GUARD': GuardEvent, 'HS_DESC': HSDescEvent, 'HS_DESC_CONTENT': HSDescContentEvent, 'INFO': LogEvent, 'NETWORK_LIVENESS': NetworkLivenessEvent, 'NEWCONSENSUS': NewConsensusEvent, 'NEWDESC': NewDescEvent, 'NOTICE': LogEvent, 'NS': NetworkStatusEvent, 'ORCONN': ORConnEvent, 'SIGNAL': SignalEvent, 'STATUS_CLIENT': StatusEvent, 'STATUS_GENERAL': StatusEvent, 'STATUS_SERVER': StatusEvent, 'STREAM': StreamEvent, 'STREAM_BW': StreamBwEvent, 'TB_EMPTY': TokenBucketEmptyEvent, 'TRANSPORT_LAUNCHED': TransportLaunchedEvent, 'WARN': LogEvent, # accounting for a bug in tor 0.2.0.22 'STATUS_SEVER': StatusEvent, }
[ "stem.util.str_tools._parse_timestamp", "stem.util.tor_tools.is_valid_connection_id", "re.compile", "stem.util.connection.is_valid_port", "stem.control._parse_circ_entry", "stem.util.connection.is_valid_ipv6_address", "stem.util.log.log_once", "stem.util.str_tools._to_bytes", "stem.util.tor_tools.is_valid_stream_id", "stem.util.connection.is_valid_ipv4_address", "io.BytesIO", "stem.util.int_type", "stem.util.tor_tools.is_valid_circuit_id", "stem.version.Version", "stem.ProtocolError", "time.time", "stem.control._parse_circ_path", "stem.util.str_tools._parse_iso_timestamp" ]
[((493, 536), 're.compile', 're.compile', (['"""^(.*) ([A-Za-z0-9_]+)=(\\\\S*)$"""'], {}), "('^(.*) ([A-Za-z0-9_]+)=(\\\\S*)$')\n", (503, 536), False, 'import re\n'), ((552, 595), 're.compile', 're.compile', (['"""^(.*) ([A-Za-z0-9_]+)="(.*)"$"""'], {}), '(\'^(.*) ([A-Za-z0-9_]+)="(.*)"$\')\n', (562, 595), False, 'import re\n'), ((608, 634), 're.compile', 're.compile', (['"""^[a-z0-9_]+$"""'], {}), "('^[a-z0-9_]+$')\n", (618, 634), False, 'import re\n'), ((1535, 1572), 'stem.version.Version', 'stem.version.Version', (['"""0.1.1.1-alpha"""'], {}), "('0.1.1.1-alpha')\n", (1555, 1572), False, 'import stem\n'), ((9642, 9661), 'stem.util.int_type', 'int_type', (['self.read'], {}), '(self.read)\n', (9650, 9661), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((9681, 9703), 'stem.util.int_type', 'int_type', (['self.written'], {}), '(self.written)\n', (9689, 9703), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((38358, 38377), 'stem.util.int_type', 'int_type', (['self.read'], {}), '(self.read)\n', (38366, 38377), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((38397, 38419), 'stem.util.int_type', 'int_type', (['self.written'], {}), '(self.written)\n', (38405, 38419), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((41172, 41191), 'stem.util.int_type', 'int_type', (['self.read'], {}), '(self.read)\n', (41180, 41191), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((41211, 41233), 'stem.util.int_type', 'int_type', (['self.written'], {}), '(self.written)\n', (41219, 41233), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((42662, 42681), 'stem.util.int_type', 'int_type', (['self.read'], {}), '(self.read)\n', (42670, 42681), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((42701, 42723), 'stem.util.int_type', 'int_type', (['self.written'], {}), '(self.written)\n', (42709, 42723), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((1781, 1878), 'stem.ProtocolError', 'stem.ProtocolError', (['"""Received a blank tor event. Events must at the very least have a type."""'], {}), "(\n 'Received a blank tor event. Events must at the very least have a type.')\n", (1799, 1878), False, 'import stem\n'), ((4646, 4687), 'stem.util.str_tools._parse_iso_timestamp', 'str_tools._parse_iso_timestamp', (['timestamp'], {}), '(timestamp)\n', (4676, 4687), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((7230, 7283), 'stem.util.str_tools._parse_timestamp', 'stem.util.str_tools._parse_timestamp', (['self.utc_expiry'], {}), '(self.utc_expiry)\n', (7266, 7283), False, 'import stem\n'), ((8399, 8546), 'stem.ProtocolError', 'stem.ProtocolError', (['"""AUTHDIR_NEWDESCS events must contain lines for at least the type, action, message, descriptor, and terminating \'OK\'"""'], {}), '(\n "AUTHDIR_NEWDESCS events must contain lines for at least the type, action, message, descriptor, and terminating \'OK\'"\n )\n', (8417, 8546), False, 'import stem\n'), ((9278, 9334), 'stem.ProtocolError', 'stem.ProtocolError', (['"""BW event is missing its read value"""'], {}), "('BW event is missing its read value')\n", (9296, 9334), False, 'import stem\n'), ((13639, 13679), 'stem.control._parse_circ_path', 'stem.control._parse_circ_path', (['self.path'], {}), '(self.path)\n', (13668, 13679), False, 'import stem\n'), ((13844, 13882), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.id'], {}), '(self.id)\n', (13873, 13882), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((13896, 14018), 'stem.ProtocolError', 'stem.ProtocolError', (['("Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))'], {}), '(\n "Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (13914, 14018), False, 'import stem\n'), ((17034, 17074), 'stem.control._parse_circ_path', 'stem.control._parse_circ_path', (['self.path'], {}), '(self.path)\n', (17063, 17074), False, 'import stem\n'), ((17239, 17277), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.id'], {}), '(self.id)\n', (17268, 17277), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((17291, 17413), 'stem.ProtocolError', 'stem.ProtocolError', (['("Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))'], {}), '(\n "Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (17309, 17413), False, 'import stem\n'), ((18503, 18556), 'stem.util.str_tools._parse_timestamp', 'stem.util.str_tools._parse_timestamp', (['self.start_time'], {}), '(self.start_time)\n', (18539, 18556), False, 'import stem\n'), ((21949, 21994), 'stem.control._parse_circ_entry', 'stem.control._parse_circ_entry', (['self.endpoint'], {}), '(self.endpoint)\n', (21979, 21994), False, 'import stem\n'), ((25138, 25184), 'stem.control._parse_circ_entry', 'stem.control._parse_circ_entry', (['self.directory'], {}), '(self.directory)\n', (25168, 25184), False, 'import stem\n'), ((31109, 31154), 'stem.control._parse_circ_entry', 'stem.control._parse_circ_entry', (['self.endpoint'], {}), '(self.endpoint)\n', (31139, 31154), False, 'import stem\n'), ((31906, 32031), 'stem.ProtocolError', 'stem.ProtocolError', (['("Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))'], {}), '(\n "Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (31924, 32031), False, 'import stem\n'), ((35802, 35868), 'stem.ProtocolError', 'stem.ProtocolError', (['("STREAM event didn\'t have a target: %s" % self)'], {}), '("STREAM event didn\'t have a target: %s" % self)\n', (35820, 35868), False, 'import stem\n'), ((37774, 37811), 'stem.util.tor_tools.is_valid_stream_id', 'tor_tools.is_valid_stream_id', (['self.id'], {}), '(self.id)\n', (37802, 37811), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((37825, 37945), 'stem.ProtocolError', 'stem.ProtocolError', (['("Stream IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))'], {}), '(\n "Stream IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))\n', (37843, 37945), False, 'import stem\n'), ((39139, 39229), 'stem.ProtocolError', 'stem.ProtocolError', (['("Transport type should either be \'server\' or \'client\': %s" % self)'], {}), '(\n "Transport type should either be \'server\' or \'client\': %s" % self)\n', (39157, 39229), False, 'import stem\n'), ((39361, 39451), 'stem.ProtocolError', 'stem.ProtocolError', (['("Transport address isn\'t a valid IPv4 or IPv6 address: %s" % self)'], {}), '(\n "Transport address isn\'t a valid IPv4 or IPv6 address: %s" % self)\n', (39379, 39451), False, 'import stem\n'), ((39459, 39494), 'stem.util.connection.is_valid_port', 'connection.is_valid_port', (['self.port'], {}), '(self.port)\n', (39483, 39494), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((39508, 39566), 'stem.ProtocolError', 'stem.ProtocolError', (["('Transport port is invalid: %s' % self)"], {}), "('Transport port is invalid: %s' % self)\n", (39526, 39566), False, 'import stem\n'), ((40411, 40464), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CONN_BW event is missing its id"""'], {}), "('CONN_BW event is missing its id')\n", (40429, 40464), False, 'import stem\n'), ((42015, 42068), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CIRC_BW event is missing its id"""'], {}), "('CIRC_BW event is missing its id')\n", (42033, 42068), False, 'import stem\n'), ((44462, 44584), 'stem.ProtocolError', 'stem.ProtocolError', (['("Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))'], {}), '(\n "Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (44480, 44584), False, 'import stem\n'), ((46854, 46979), 'stem.ProtocolError', 'stem.ProtocolError', (['("Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))'], {}), '(\n "Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (46872, 46979), False, 'import stem\n'), ((48058, 48174), 'stem.ProtocolError', 'stem.ProtocolError', (['("Mappings are expected to be of the form \'key:value\', got \'%s\': %s" % (\n entry, mapping))'], {}), '(\n "Mappings are expected to be of the form \'key:value\', got \'%s\': %s" % (\n entry, mapping))\n', (48076, 48174), False, 'import stem\n'), ((48250, 48329), 'stem.ProtocolError', 'stem.ProtocolError', (['("Key had invalid characters, got \'%s\': %s" % (key, mapping))'], {}), '("Key had invalid characters, got \'%s\': %s" % (key, mapping))\n', (48268, 48329), False, 'import stem\n'), ((1725, 1736), 'time.time', 'time.time', ([], {}), '()\n', (1734, 1736), False, 'import time\n'), ((4730, 4800), 'stem.ProtocolError', 'stem.ProtocolError', (["('Unable to parse timestamp (%s): %s' % (exc, self))"], {}), "('Unable to parse timestamp (%s): %s' % (exc, self))\n", (4748, 4800), False, 'import stem\n'), ((8577, 8640), 'stem.ProtocolError', 'stem.ProtocolError', (['"""AUTHDIR_NEWDESCS doesn\'t end with an \'OK\'"""'], {}), '("AUTHDIR_NEWDESCS doesn\'t end with an \'OK\'")\n', (8595, 8640), False, 'import stem\n'), ((9374, 9433), 'stem.ProtocolError', 'stem.ProtocolError', (['"""BW event is missing its written value"""'], {}), "('BW event is missing its written value')\n", (9392, 9433), False, 'import stem\n'), ((22038, 22114), 'stem.ProtocolError', 'stem.ProtocolError', (['("GUARD\'s endpoint doesn\'t match a ServerSpec: %s" % self)'], {}), '("GUARD\'s endpoint doesn\'t match a ServerSpec: %s" % self)\n', (22056, 22114), False, 'import stem\n'), ((23607, 23653), 'stem.control._parse_circ_entry', 'stem.control._parse_circ_entry', (['self.directory'], {}), '(self.directory)\n', (23637, 23653), False, 'import stem\n'), ((23866, 23969), 'stem.ProtocolError', 'stem.ProtocolError', (["('HS_DESC event got a non-numeric replica count (%s): %s' % (self.replica,\n self))"], {}), "('HS_DESC event got a non-numeric replica count (%s): %s' %\n (self.replica, self))\n", (23884, 23969), False, 'import stem\n'), ((25228, 25320), 'stem.ProtocolError', 'stem.ProtocolError', (['("HS_DESC_CONTENT\'s directory doesn\'t match a ServerSpec: %s" % self)'], {}), '(\n "HS_DESC_CONTENT\'s directory doesn\'t match a ServerSpec: %s" % self)\n', (25246, 25320), False, 'import stem\n'), ((29574, 29611), 'stem.control._parse_circ_entry', 'stem.control._parse_circ_entry', (['entry'], {}), '(entry)\n', (29604, 29611), False, 'import stem\n'), ((31679, 31784), 'stem.ProtocolError', 'stem.ProtocolError', (["('ORCONN event got a non-numeric circuit count (%s): %s' % (self.circ_count,\n self))"], {}), "('ORCONN event got a non-numeric circuit count (%s): %s' %\n (self.circ_count, self))\n", (31697, 31784), False, 'import stem\n'), ((31851, 31892), 'stem.util.tor_tools.is_valid_connection_id', 'tor_tools.is_valid_connection_id', (['self.id'], {}), '(self.id)\n', (31883, 31892), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((35926, 36013), 'stem.ProtocolError', 'stem.ProtocolError', (['("Target location must be of the form \'address:port\': %s" % self)'], {}), '("Target location must be of the form \'address:port\': %s" %\n self)\n', (35944, 36013), False, 'import stem\n'), ((36074, 36121), 'stem.util.connection.is_valid_port', 'connection.is_valid_port', (['port'], {'allow_zero': '(True)'}), '(port, allow_zero=True)\n', (36098, 36121), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((36139, 36205), 'stem.ProtocolError', 'stem.ProtocolError', (['("Target location\'s port is invalid: %s" % self)'], {}), '("Target location\'s port is invalid: %s" % self)\n', (36157, 36205), False, 'import stem\n'), ((36437, 36524), 'stem.ProtocolError', 'stem.ProtocolError', (['("Source location must be of the form \'address:port\': %s" % self)'], {}), '("Source location must be of the form \'address:port\': %s" %\n self)\n', (36455, 36524), False, 'import stem\n'), ((36590, 36637), 'stem.util.connection.is_valid_port', 'connection.is_valid_port', (['port'], {'allow_zero': '(True)'}), '(port, allow_zero=True)\n', (36614, 36637), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((36655, 36721), 'stem.ProtocolError', 'stem.ProtocolError', (['("Source location\'s port is invalid: %s" % self)'], {}), '("Source location\'s port is invalid: %s" % self)\n', (36673, 36721), False, 'import stem\n'), ((37976, 38042), 'stem.ProtocolError', 'stem.ProtocolError', (['"""STREAM_BW event is missing its written value"""'], {}), "('STREAM_BW event is missing its written value')\n", (37994, 38042), False, 'import stem\n'), ((39237, 39283), 'stem.util.connection.is_valid_ipv4_address', 'connection.is_valid_ipv4_address', (['self.address'], {}), '(self.address)\n', (39269, 39283), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((39301, 39347), 'stem.util.connection.is_valid_ipv6_address', 'connection.is_valid_ipv6_address', (['self.address'], {}), '(self.address)\n', (39333, 39347), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((40506, 40572), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CONN_BW event is missing its connection type"""'], {}), "('CONN_BW event is missing its connection type')\n", (40524, 40572), False, 'import stem\n'), ((42105, 42166), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CIRC_BW event is missing its read value"""'], {}), "('CIRC_BW event is missing its read value')\n", (42123, 42166), False, 'import stem\n'), ((44410, 44448), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.id'], {}), '(self.id)\n', (44439, 44448), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((44674, 44804), 'stem.ProtocolError', 'stem.ProtocolError', (['("Queue IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.inbound_queue, self))'], {}), '(\n "Queue IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.inbound_queue, self))\n', (44692, 44804), False, 'import stem\n'), ((46799, 46840), 'stem.util.tor_tools.is_valid_connection_id', 'tor_tools.is_valid_connection_id', (['self.id'], {}), '(self.id)\n', (46831, 46840), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((47016, 47127), 'stem.ProtocolError', 'stem.ProtocolError', (['("A TB_EMPTY\'s READ value should be a positive numeric value, received: %s" %\n self)'], {}), '(\n "A TB_EMPTY\'s READ value should be a positive numeric value, received: %s"\n % self)\n', (47034, 47127), False, 'import stem\n'), ((48372, 48461), 'stem.ProtocolError', 'stem.ProtocolError', (['("Values should just be integers, got \'%s\': %s" % (value, mapping))'], {}), '("Values should just be integers, got \'%s\': %s" % (value,\n mapping))\n', (48390, 48461), False, 'import stem\n'), ((5720, 5768), 'stem.util.log.log_once', 'log.log_once', (['log_id', 'log.INFO', 'unrecognized_msg'], {}), '(log_id, log.INFO, unrecognized_msg)\n', (5732, 5768), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((7005, 7054), 'stem.util.str_tools._parse_timestamp', 'stem.util.str_tools._parse_timestamp', (['self.expiry'], {}), '(self.expiry)\n', (7041, 7054), False, 'import stem\n'), ((7461, 7558), 'stem.ProtocolError', 'stem.ProtocolError', (['("An ADDRMAP event\'s CACHED mapping can only be \'YES\' or \'NO\': %s" % self)'], {}), '(\n "An ADDRMAP event\'s CACHED mapping can only be \'YES\' or \'NO\': %s" % self)\n', (7479, 7558), False, 'import stem\n'), ((9510, 9634), 'stem.ProtocolError', 'stem.ProtocolError', (['("A BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)'], {}), '(\n "A BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)\n', (9528, 9634), False, 'import stem\n'), ((18708, 18851), 'stem.ProtocolError', 'stem.ProtocolError', (['("The CLIENTS_SEEN\'s CountrySummary should be a comma separated listing of \'<locale>=<count>\' mappings: %s"\n % self)'], {}), '(\n "The CLIENTS_SEEN\'s CountrySummary should be a comma separated listing of \'<locale>=<count>\' mappings: %s"\n % self)\n', (18726, 18851), False, 'import stem\n'), ((18933, 19028), 'stem.ProtocolError', 'stem.ProtocolError', (['("Locales should be a two character code, got \'%s\': %s" % (locale, self))'], {}), '("Locales should be a two character code, got \'%s\': %s" %\n (locale, self))\n', (18951, 19028), False, 'import stem\n'), ((19541, 19682), 'stem.ProtocolError', 'stem.ProtocolError', (['("The CLIENTS_SEEN\'s IPVersions should be a comma separated listing of \'<protocol>=<count>\' mappings: %s"\n % self)'], {}), '(\n "The CLIENTS_SEEN\'s IPVersions should be a comma separated listing of \'<protocol>=<count>\' mappings: %s"\n % self)\n', (19559, 19682), False, 'import stem\n'), ((19769, 19854), 'stem.ProtocolError', 'stem.ProtocolError', (["('IP protocol count was non-numeric (%s): %s' % (count, self))"], {}), "('IP protocol count was non-numeric (%s): %s' % (count, self)\n )\n", (19787, 19854), False, 'import stem\n'), ((23701, 23780), 'stem.ProtocolError', 'stem.ProtocolError', (['("HS_DESC\'s directory doesn\'t match a ServerSpec: %s" % self)'], {}), '("HS_DESC\'s directory doesn\'t match a ServerSpec: %s" % self)\n', (23719, 23780), False, 'import stem\n'), ((26992, 27020), 'stem.util.str_tools._to_bytes', 'str_tools._to_bytes', (['content'], {}), '(content)\n', (27011, 27020), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((31235, 31326), 'stem.ProtocolError', 'stem.ProtocolError', (['("ORCONN endpoint is neither a relay nor \'address:port\': %s" % self)'], {}), '(\n "ORCONN endpoint is neither a relay nor \'address:port\': %s" % self)\n', (31253, 31326), False, 'import stem\n'), ((31388, 31418), 'stem.util.connection.is_valid_port', 'connection.is_valid_port', (['port'], {}), '(port)\n', (31412, 31418), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((31434, 31511), 'stem.ProtocolError', 'stem.ProtocolError', (['("ORCONN\'s endpoint location\'s port is invalid: %s" % self)'], {}), '("ORCONN\'s endpoint location\'s port is invalid: %s" % self)\n', (31452, 31511), False, 'import stem\n'), ((38079, 38142), 'stem.ProtocolError', 'stem.ProtocolError', (['"""STREAM_BW event is missing its read value"""'], {}), "('STREAM_BW event is missing its read value')\n", (38097, 38142), False, 'import stem\n'), ((40609, 40670), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CONN_BW event is missing its read value"""'], {}), "('CONN_BW event is missing its read value')\n", (40627, 40670), False, 'import stem\n'), ((42206, 42270), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CIRC_BW event is missing its written value"""'], {}), "('CIRC_BW event is missing its written value')\n", (42224, 42270), False, 'import stem\n'), ((44611, 44660), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.inbound_queue'], {}), '(self.inbound_queue)\n', (44640, 44660), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((44908, 45049), 'stem.ProtocolError', 'stem.ProtocolError', (['("Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.inbound_connection, self))'], {}), '(\n "Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.inbound_connection, self))\n', (44926, 45049), False, 'import stem\n'), ((47167, 47281), 'stem.ProtocolError', 'stem.ProtocolError', (['("A TB_EMPTY\'s WRITTEN value should be a positive numeric value, received: %s"\n % self)'], {}), '(\n "A TB_EMPTY\'s WRITTEN value should be a positive numeric value, received: %s"\n % self)\n', (47185, 47281), False, 'import stem\n'), ((3580, 3698), 'stem.ProtocolError', 'stem.ProtocolError', (['("The %s value should be quoted, but didn\'t have a starting quote: %s" % (\n attr_name, self))'], {}), '(\n "The %s value should be quoted, but didn\'t have a starting quote: %s" %\n (attr_name, self))\n', (3598, 3698), False, 'import stem\n'), ((7098, 7168), 'stem.ProtocolError', 'stem.ProtocolError', (["('Unable to parse date in ADDRMAP event: %s' % self)"], {}), "('Unable to parse date in ADDRMAP event: %s' % self)\n", (7116, 7168), False, 'import stem\n'), ((11195, 11290), 'stem.ProtocolError', 'stem.ProtocolError', (["('The %s of a BUILDTIMEOUT_SET should be an integer: %s' % (param, self))"], {}), "('The %s of a BUILDTIMEOUT_SET should be an integer: %s' %\n (param, self))\n", (11213, 11290), False, 'import stem\n'), ((11541, 11634), 'stem.ProtocolError', 'stem.ProtocolError', (["('The %s of a BUILDTIMEOUT_SET should be a float: %s' % (param, self))"], {}), "('The %s of a BUILDTIMEOUT_SET should be a float: %s' % (\n param, self))\n", (11559, 11634), False, 'import stem\n'), ((19075, 19150), 'stem.ProtocolError', 'stem.ProtocolError', (["('Locale count was non-numeric (%s): %s' % (count, self))"], {}), "('Locale count was non-numeric (%s): %s' % (count, self))\n", (19093, 19150), False, 'import stem\n'), ((25599, 25623), 'io.BytesIO', 'io.BytesIO', (['desc_content'], {}), '(desc_content)\n', (25609, 25623), False, 'import io\n'), ((28822, 28865), 'stem.util.str_tools._to_bytes', 'str_tools._to_bytes', (['self.consensus_content'], {}), '(self.consensus_content)\n', (28841, 28865), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((38219, 38350), 'stem.ProtocolError', 'stem.ProtocolError', (['("A STREAM_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)'], {}), '(\n "A STREAM_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)\n', (38237, 38350), False, 'import stem\n'), ((40710, 40774), 'stem.ProtocolError', 'stem.ProtocolError', (['"""CONN_BW event is missing its written value"""'], {}), "('CONN_BW event is missing its written value')\n", (40728, 40774), False, 'import stem\n'), ((42347, 42476), 'stem.ProtocolError', 'stem.ProtocolError', (['("A CIRC_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)'], {}), '(\n "A CIRC_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)\n', (42365, 42476), False, 'import stem\n'), ((44837, 44894), 'stem.util.tor_tools.is_valid_connection_id', 'tor_tools.is_valid_connection_id', (['self.inbound_connection'], {}), '(self.inbound_connection)\n', (44869, 44894), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((45141, 45272), 'stem.ProtocolError', 'stem.ProtocolError', (['("Queue IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.outbound_queue, self))'], {}), '(\n "Queue IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.outbound_queue, self))\n', (45159, 45272), False, 'import stem\n'), ((47325, 47436), 'stem.ProtocolError', 'stem.ProtocolError', (['("A TB_EMPTY\'s LAST value should be a positive numeric value, received: %s" %\n self)'], {}), '(\n "A TB_EMPTY\'s LAST value should be a positive numeric value, received: %s"\n % self)\n', (47343, 47436), False, 'import stem\n'), ((3764, 3881), 'stem.ProtocolError', 'stem.ProtocolError', (['("The %s value should be quoted, but didn\'t have an ending quote: %s" % (\n attr_name, self))'], {}), '(\n "The %s value should be quoted, but didn\'t have an ending quote: %s" %\n (attr_name, self))\n', (3782, 3881), False, 'import stem\n'), ((19207, 19300), 'stem.ProtocolError', 'stem.ProtocolError', (['("CountrySummary had multiple mappings for \'%s\': %s" % (locale, self))'], {}), '("CountrySummary had multiple mappings for \'%s\': %s" % (\n locale, self))\n', (19225, 19300), False, 'import stem\n'), ((40851, 40980), 'stem.ProtocolError', 'stem.ProtocolError', (['("A CONN_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)'], {}), '(\n "A CONN_BW event\'s bytes sent and received should be a positive numeric value, received: %s"\n % self)\n', (40869, 40980), False, 'import stem\n'), ((42480, 42518), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.id'], {}), '(self.id)\n', (42509, 42518), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((42532, 42654), 'stem.ProtocolError', 'stem.ProtocolError', (['("Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s" %\n (self.id, self))'], {}), '(\n "Circuit IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (42550, 42654), False, 'import stem\n'), ((45077, 45127), 'stem.util.tor_tools.is_valid_circuit_id', 'tor_tools.is_valid_circuit_id', (['self.outbound_queue'], {}), '(self.outbound_queue)\n', (45106, 45127), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((45378, 45520), 'stem.ProtocolError', 'stem.ProtocolError', (['("Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.outbound_connection, self))'], {}), '(\n "Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.outbound_connection, self))\n', (45396, 45520), False, 'import stem\n'), ((40984, 41025), 'stem.util.tor_tools.is_valid_connection_id', 'tor_tools.is_valid_connection_id', (['self.id'], {}), '(self.id)\n', (41016, 41025), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n'), ((41039, 41164), 'stem.ProtocolError', 'stem.ProtocolError', (['("Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))'], {}), '(\n "Connection IDs must be one to sixteen alphanumeric characters, got \'%s\': %s"\n % (self.id, self))\n', (41057, 41164), False, 'import stem\n'), ((45306, 45364), 'stem.util.tor_tools.is_valid_connection_id', 'tor_tools.is_valid_connection_id', (['self.outbound_connection'], {}), '(self.outbound_connection)\n', (45338, 45364), False, 'from stem.util import str_type, int_type, connection, log, str_tools, tor_tools\n')]
import re from atlas.conf import settings from atlas.modules import ( constants as swagger_constants, exceptions, mixins, utils ) from atlas.modules.resource_data_generator import constants as resource_constants from atlas.modules.helpers import resource_map class AutoGenerator(mixins.YAMLReadWriteMixin): """ Auto Generate Resource Mapping from Swagger definition. Auto update Swagger definition and Resource Mapping file """ def __init__(self, swagger_file=None): super().__init__() self.swagger_file = swagger_file or settings.SWAGGER_FILE self.specs = self.read_file_from_input(self.swagger_file, {}) self.spec_definitions = self.format_references(self.specs.get(swagger_constants.DEFINITIONS, {}).keys()) self.resource_map_resolver = resource_map.ResourceMapResolver() self.resource_map_resolver.resolve_resources() self.resource_keys = self.format_references(self.resource_map_resolver.resource_map.keys()) self.new_resources = set() # Keep list of refs which are already processed to avoid duplicate processing self.processed_refs = set() # For any single operation, maintain a list of parameters self.resource_params = set() @staticmethod def format_references(references) -> set: """ Convert all resource keys to uniform format Uniformity is ensured by: - Making sure everything is in lower case - removing _, - from strings This does mean that abc_d, and ab_cd refers to same keys However, we estimate that this has lower probability than users writing Swagger correctly to adhere to correct casing in their references :return: Set of all Resource Keys """ return {"".join([x.lower() for x in re.sub("-", "_", key).split("_")]) for key in references} def add_resource(self, resource): if not resource: return "" resource = "".join([x.lower() for x in re.sub("-", "_", resource).split("_")]) if resource not in self.resource_keys: self.new_resources.add(resource) self.resource_keys.add(resource) return resource def add_reference_definition(self, reference, fields): """ Add a virtual reference for every resource in Swagger definition """ definitions = self.specs.get(swagger_constants.DEFINITIONS, {}) if reference in self.spec_definitions or reference in self.processed_refs: return # We already have reference with same name, or have processed it earlier, so do nothing definitions[reference] = { swagger_constants.TYPE: swagger_constants.OBJECT, # Without dict initialization, it is copying some auto-generated IDs also. # When have time, investigate! swagger_constants.PROPERTIES: { fields[swagger_constants.PARAMETER_NAME]: dict(fields) } } self.processed_refs.add(reference) def extract_resource_name_from_param(self, param_name, url_path, param_type=swagger_constants.PATH_PARAM): """ Extract Resource Name from parameter name Names could be either snake case (foo_id) or camelCase (fooId) In case of URL Params, further they could be foo/id Return None if no such resource could be found """ resource_name = utils.extract_resource_name_from_param(param_name, url_path, param_type) if not resource_name and param_name in self.resource_keys: resource_name = param_name return resource_name def parse_params(self, params, url): # Reset the params self.resource_params = set() for param in params: ref = param.get(swagger_constants.REF) if ref: param = utils.resolve_reference(self.specs, ref) param_type = param.get(swagger_constants.IN_) _name = param.get(swagger_constants.PARAMETER_NAME) if not param_type: raise exceptions.ImproperSwaggerException(f"Param type not defined for {_name}") if param_type in swagger_constants.URL_PARAMS: # Check if resource is defined resource = param.get(swagger_constants.RESOURCE) # Generate resources if none found. Do not generate if empty string if resource is None: resource = self.extract_resource_name_from_param(_name, url, param_type) if resource: resource = self.add_resource(resource) resource_alias = self.resource_map_resolver.get_alias(resource) param[swagger_constants.RESOURCE] = resource_alias self.add_reference_definition(resource_alias, param) self.resource_params.add(resource_alias) elif param_type == swagger_constants.BODY_PARAM: self.resolve_body_param(param) return self.resource_params def resolve_body_param(self, body_config): schema = body_config.get(swagger_constants.SCHEMA, {}) self.resolve_schema(schema) def resolve_schema(self, schema): """ We can only associate Complete references, and not in-line definitions """ ref = schema.get(swagger_constants.REF) if ref: self.get_ref_name_and_config(ref) def resolve_all_of_element(self, ref_name, schema): # Try resolving any references self.resolve_schema(schema) _type = schema.get(swagger_constants.TYPE) if _type == swagger_constants.OBJECT: self.parse_reference_properties(ref_name, schema.get(swagger_constants.PROPERTIES, {})) def get_ref_name_and_config(self, ref): if not isinstance(ref, str): print(f"\nWARNING: Only string references supported. Found: {ref}\n") return ref_config = utils.resolve_reference(self.specs, ref) ref_name = ref.split("/")[-1] self.parse_reference(ref_name, ref_config) def parse_reference(self, ref_name, ref_config): if ref_name in self.processed_refs: return # This has already been processed, so no need to do it again for element in ref_config.get(swagger_constants.ALL_OF, []): self.resolve_all_of_element(ref_name, element) self.parse_reference_properties(ref_name, ref_config.get(swagger_constants.PROPERTIES, {})) def parse_reference_properties(self, ref_name, properties): # By adding it to processed list before even processing, we avoid cycles self.processed_refs.add(ref_name) for key, value in properties.items(): resource = "" if key in settings.SWAGGER_REFERENCE_FIELD_RESOURCE_IDENTIFIERS: resource = value.get(swagger_constants.RESOURCE, utils.convert_to_snake_case(ref_name)) value[swagger_constants.READ_ONLY] = True elif swagger_constants.REF in value: self.get_ref_name_and_config(value[swagger_constants.REF]) # Commenting this out, as adding this logic generated lots of false positive resources # elif key in self.resource_keys: # resource = key if resource: resource = self.add_resource(resource) resource_alias = self.resource_map_resolver.get_alias(resource) value[swagger_constants.RESOURCE] = resource_alias self.resource_params.add(resource_alias) def parse(self): for url, path_config in self.specs.get(swagger_constants.PATHS, {}).items(): parameters = path_config.get(swagger_constants.PARAMETERS) common_resources = set() if parameters: common_resources = self.parse_params(parameters, url) for method, method_config in path_config.items(): method_resources = set() if method in swagger_constants.VALID_METHODS: parameters = method_config.get(swagger_constants.PARAMETERS) # Detect Operation ID in swagger, and if not present, generate and write back in Swagger # Operation IDs are used as primary key throughout application op_id = method_config.get(swagger_constants.OPERATION) if not op_id: method_config[swagger_constants.OPERATION] = utils.operation_id_name(url, method) if parameters: method_resources = self.parse_params(parameters, url) all_resources = common_resources.union(method_resources) if len(all_resources) > 1: method_config[swagger_constants.DEPENDENT_RESOURCES] = all_resources for ref_name, ref_config in self.specs.get(swagger_constants.DEFINITIONS, {}).items(): self.parse_reference(ref_name, ref_config) def update(self): # Update Specs File self.write_file_to_output(self.swagger_file, self.specs, append_mode=False) # Update Resource Mapping File auto_resource = { resource: {resource_constants.DUMMY_DEF: "# Add your definition here"} for resource in self.new_resources } self.write_file_to_input( settings.MAPPING_FILE, {**self.resource_map_resolver.resource_map, **auto_resource}, append_mode=False )
[ "atlas.modules.exceptions.ImproperSwaggerException", "atlas.modules.utils.extract_resource_name_from_param", "atlas.modules.utils.operation_id_name", "atlas.modules.helpers.resource_map.ResourceMapResolver", "atlas.modules.utils.convert_to_snake_case", "atlas.modules.utils.resolve_reference", "re.sub" ]
[((822, 856), 'atlas.modules.helpers.resource_map.ResourceMapResolver', 'resource_map.ResourceMapResolver', ([], {}), '()\n', (854, 856), False, 'from atlas.modules.helpers import resource_map\n'), ((3480, 3552), 'atlas.modules.utils.extract_resource_name_from_param', 'utils.extract_resource_name_from_param', (['param_name', 'url_path', 'param_type'], {}), '(param_name, url_path, param_type)\n', (3518, 3552), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((6065, 6105), 'atlas.modules.utils.resolve_reference', 'utils.resolve_reference', (['self.specs', 'ref'], {}), '(self.specs, ref)\n', (6088, 6105), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((3923, 3963), 'atlas.modules.utils.resolve_reference', 'utils.resolve_reference', (['self.specs', 'ref'], {}), '(self.specs, ref)\n', (3946, 3963), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((4141, 4215), 'atlas.modules.exceptions.ImproperSwaggerException', 'exceptions.ImproperSwaggerException', (['f"""Param type not defined for {_name}"""'], {}), "(f'Param type not defined for {_name}')\n", (4176, 4215), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((7013, 7050), 'atlas.modules.utils.convert_to_snake_case', 'utils.convert_to_snake_case', (['ref_name'], {}), '(ref_name)\n', (7040, 7050), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((8633, 8669), 'atlas.modules.utils.operation_id_name', 'utils.operation_id_name', (['url', 'method'], {}), '(url, method)\n', (8656, 8669), False, 'from atlas.modules import constants as swagger_constants, exceptions, mixins, utils\n'), ((2049, 2075), 're.sub', 're.sub', (['"""-"""', '"""_"""', 'resource'], {}), "('-', '_', resource)\n", (2055, 2075), False, 'import re\n'), ((1856, 1877), 're.sub', 're.sub', (['"""-"""', '"""_"""', 'key'], {}), "('-', '_', key)\n", (1862, 1877), False, 'import re\n')]
from django.urls import reverse, resolve def test_calendar(): path = reverse("calendar") assert path == "/calendar/" assert resolve(path).view_name == "calendar" def test_calendar_day(): path = reverse("day", kwargs={"month": 2, "day": 2}) assert path == "/calendar/day/2/2" assert resolve(path).view_name == "day"
[ "django.urls.resolve", "django.urls.reverse" ]
[((75, 94), 'django.urls.reverse', 'reverse', (['"""calendar"""'], {}), "('calendar')\n", (82, 94), False, 'from django.urls import reverse, resolve\n'), ((214, 259), 'django.urls.reverse', 'reverse', (['"""day"""'], {'kwargs': "{'month': 2, 'day': 2}"}), "('day', kwargs={'month': 2, 'day': 2})\n", (221, 259), False, 'from django.urls import reverse, resolve\n'), ((138, 151), 'django.urls.resolve', 'resolve', (['path'], {}), '(path)\n', (145, 151), False, 'from django.urls import reverse, resolve\n'), ((310, 323), 'django.urls.resolve', 'resolve', (['path'], {}), '(path)\n', (317, 323), False, 'from django.urls import reverse, resolve\n')]
import m3u8 from playlists import * def test_should_parse_simple_playlist_from_string(): data = m3u8.parse(SIMPLE_PLAYLIST) assert 5220 == data['targetduration'] assert ['http://media.example.com/entire.ts'] == [c['uri'] for c in data['segments']] assert [5220] == [c['duration'] for c in data['segments']] def test_should_parse_non_integer_duration_from_playlist_string(): data = m3u8.parse(PLAYLIST_WITH_NON_INTEGER_DURATION) assert 5220.5 == data['targetduration'] assert [5220.5] == [c['duration'] for c in data['segments']] def test_should_parse_simple_playlist_from_string_with_different_linebreaks(): data = m3u8.parse(SIMPLE_PLAYLIST.replace('\n', '\r\n')) assert 5220 == data['targetduration'] assert ['http://media.example.com/entire.ts'] == [c['uri'] for c in data['segments']] assert [5220] == [c['duration'] for c in data['segments']] def test_should_parse_sliding_window_playlist_from_string(): data = m3u8.parse(SLIDING_WINDOW_PLAYLIST) assert 8 == data['targetduration'] assert 2680 == data['media_sequence'] assert ['https://priv.example.com/fileSequence2680.ts', 'https://priv.example.com/fileSequence2681.ts', 'https://priv.example.com/fileSequence2682.ts'] == [c['uri'] for c in data['segments']] assert [8, 8, 8] == [c['duration'] for c in data['segments']] def test_should_parse_playlist_with_encripted_segments_from_string(): data = m3u8.parse(PLAYLIST_WITH_ENCRIPTED_SEGMENTS) assert 7794 == data['media_sequence'] assert 15 == data['targetduration'] assert 'AES-128' == data['key']['method'] assert 'https://priv.example.com/key.php?r=52' == data['key']['uri'] assert ['http://media.example.com/fileSequence52-1.ts', 'http://media.example.com/fileSequence52-2.ts', 'http://media.example.com/fileSequence52-3.ts'] == [c['uri'] for c in data['segments']] assert [15, 15, 15] == [c['duration'] for c in data['segments']] def test_should_load_playlist_with_iv_from_string(): data = m3u8.parse(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV) assert "/hls-key/key.bin" == data['key']['uri'] assert "AES-128" == data['key']['method'] assert "0X10ef8f758ca555115584bb5b3c687f52" == data['key']['iv'] def test_should_parse_title_from_playlist(): data = m3u8.parse(SIMPLE_PLAYLIST_WITH_TITLE) assert 1 == len(data['segments']) assert 5220 == data['segments'][0]['duration'] assert "A sample title" == data['segments'][0]['title'] assert "http://media.example.com/entire.ts" == data['segments'][0]['uri'] def test_should_parse_variant_playlist(): data = m3u8.parse(VARIANT_PLAYLIST) playlists = list(data['playlists']) assert True == data['is_variant'] assert 4 == len(playlists) assert 'http://example.com/low.m3u8' == playlists[0]['uri'] assert '1' == playlists[0]['stream_info']['program_id'] assert '1280000' == playlists[0]['stream_info']['bandwidth'] assert 'http://example.com/audio-only.m3u8' == playlists[-1]['uri'] assert '1' == playlists[-1]['stream_info']['program_id'] assert '65000' == playlists[-1]['stream_info']['bandwidth'] assert 'mp4a.40.5,avc1.42801e' == playlists[-1]['stream_info']['codecs'] def test_should_parse_endlist_playlist(): data = m3u8.parse(SIMPLE_PLAYLIST) assert True == data['is_endlist'] data = m3u8.parse(SLIDING_WINDOW_PLAYLIST) assert False == data['is_endlist'] def test_should_parse_ALLOW_CACHE(): data = m3u8.parse(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV) assert 'no' == data['allow_cache'] def test_should_parse_VERSION(): data = m3u8.parse(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV) assert '2' == data['version']
[ "m3u8.parse" ]
[((101, 128), 'm3u8.parse', 'm3u8.parse', (['SIMPLE_PLAYLIST'], {}), '(SIMPLE_PLAYLIST)\n', (111, 128), False, 'import m3u8\n'), ((403, 449), 'm3u8.parse', 'm3u8.parse', (['PLAYLIST_WITH_NON_INTEGER_DURATION'], {}), '(PLAYLIST_WITH_NON_INTEGER_DURATION)\n', (413, 449), False, 'import m3u8\n'), ((968, 1003), 'm3u8.parse', 'm3u8.parse', (['SLIDING_WINDOW_PLAYLIST'], {}), '(SLIDING_WINDOW_PLAYLIST)\n', (978, 1003), False, 'import m3u8\n'), ((1453, 1497), 'm3u8.parse', 'm3u8.parse', (['PLAYLIST_WITH_ENCRIPTED_SEGMENTS'], {}), '(PLAYLIST_WITH_ENCRIPTED_SEGMENTS)\n', (1463, 1497), False, 'import m3u8\n'), ((2053, 2104), 'm3u8.parse', 'm3u8.parse', (['PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV'], {}), '(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV)\n', (2063, 2104), False, 'import m3u8\n'), ((2329, 2367), 'm3u8.parse', 'm3u8.parse', (['SIMPLE_PLAYLIST_WITH_TITLE'], {}), '(SIMPLE_PLAYLIST_WITH_TITLE)\n', (2339, 2367), False, 'import m3u8\n'), ((2649, 2677), 'm3u8.parse', 'm3u8.parse', (['VARIANT_PLAYLIST'], {}), '(VARIANT_PLAYLIST)\n', (2659, 2677), False, 'import m3u8\n'), ((3307, 3334), 'm3u8.parse', 'm3u8.parse', (['SIMPLE_PLAYLIST'], {}), '(SIMPLE_PLAYLIST)\n', (3317, 3334), False, 'import m3u8\n'), ((3385, 3420), 'm3u8.parse', 'm3u8.parse', (['SLIDING_WINDOW_PLAYLIST'], {}), '(SLIDING_WINDOW_PLAYLIST)\n', (3395, 3420), False, 'import m3u8\n'), ((3509, 3560), 'm3u8.parse', 'm3u8.parse', (['PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV'], {}), '(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV)\n', (3519, 3560), False, 'import m3u8\n'), ((3645, 3696), 'm3u8.parse', 'm3u8.parse', (['PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV'], {}), '(PLAYLIST_WITH_ENCRIPTED_SEGMENTS_AND_IV)\n', (3655, 3696), False, 'import m3u8\n')]
import adsk.core import adsk.fusion import traceback import math import collections from adsk.fusion import BRepFaces from .Fusion360Utilities.Fusion360Utilities import AppObjects, combine_feature from .Fusion360Utilities.Fusion360CommandBase import Fusion360CommandBase Point = collections.namedtuple("Point", ["x", "y"]) def pointy_hex_corner(center, size, i): angle_deg = 60 * i - 30 angle_rad = math.pi / 180 * angle_deg return adsk.core.Point3D.create(center.x + size * math.cos(angle_rad), center.y + size * math.sin(angle_rad), 0) def pointy_square_corner(center, size, i): angle_deg = 90 * i angle_rad = math.pi / 180 * angle_deg return adsk.core.Point3D.create(center.x + size * math.cos(angle_rad), center.y + size * math.sin(angle_rad), 0) def pointy_shape_corner(center, size, i, offset, sides): angle_deg = (360 / sides) * i - offset angle_rad = math.pi / 180 * angle_deg return adsk.core.Point3D.create(center.x + size * math.cos(angle_rad), center.y + size * math.sin(angle_rad), 0) # Alternate Feature Method, cut def hex_sketch(center, input_size, thickness): # Get the root component of the active design. ao = AppObjects() gap = thickness / math.sqrt(3) sides = 6 corner_function = pointy_hex_corner spoke = (input_size / 2) - gap # Create a new sketch on the xy plane. sketches = ao.root_comp.sketches xy_plane = ao.root_comp.xYConstructionPlane sketch = sketches.add(xy_plane) lines = sketch.sketchCurves.sketchLines start_point = pointy_hex_corner(center, spoke, 0) previous_point = start_point first = True for corner in range(1, sides): new_point = corner_function(center, spoke, corner) line = lines.addByTwoPoints(previous_point, new_point) if first: start_point = line.startSketchPoint first = False previous_point = line.endSketchPoint lines.addByTwoPoints(previous_point, start_point) # Get the profile defined by the circle. prof = sketch.profiles.item(0) return prof def start_sketch(z): ao = AppObjects() # Get construction planes planes = ao.root_comp.constructionPlanes xy_plane = ao.root_comp.xYConstructionPlane plane_input = planes.createInput() offset_value = adsk.core.ValueInput.createByReal(z) plane_input.setByOffset(xy_plane, offset_value) sketch_plane = planes.add(plane_input) sketches = ao.root_comp.sketches sketch = sketches.add(sketch_plane) return sketch # Alternate Feature Method, cut def circle_sketch(center, input_size, gap): spoke = (input_size / 2) - gap sketch = start_sketch(center.z) sketch_circles = sketch.sketchCurves.sketchCircles circle_point = adsk.core.Point3D.create(center.x, center.y, 0) sketch_circles.addByCenterRadius(circle_point, spoke) prof = sketch.profiles.item(0) return prof # Alternate Feature Method, cut def shape_sketch(center, input_size, gap, sides, corner_function): spoke = (input_size / 2) - gap sketch = start_sketch(center.z) lines = sketch.sketchCurves.sketchLines start_point = corner_function(center, spoke, 0) previous_point = start_point first = True for corner in range(1, sides): new_point = corner_function(center, spoke, corner) line = lines.addByTwoPoints(previous_point, new_point) if first: start_point = line.startSketchPoint first = False previous_point = line.endSketchPoint lines.addByTwoPoints(previous_point, start_point) # Get the profile defined by the circle. prof = sketch.profiles.item(0) return prof # Alternate Feature Method, cut def shape_sketch2(center, input_size, gap, sides, offset): spoke = (input_size / 2) - gap sketch = start_sketch(center.z) lines = sketch.sketchCurves.sketchLines start_point = pointy_shape_corner(center, spoke, 0, offset, sides) previous_point = start_point first = True for corner in range(1, sides): new_point = pointy_shape_corner(center, spoke, corner, offset, sides) line = lines.addByTwoPoints(previous_point, new_point) if first: start_point = line.startSketchPoint first = False previous_point = line.endSketchPoint lines.addByTwoPoints(previous_point, start_point) # Get the profile defined by the circle. prof = sketch.profiles.item(0) return prof def shape_extrude(prof, height): ao = AppObjects() extrude_features = ao.root_comp.features.extrudeFeatures extrude_input = extrude_features.createInput(prof, adsk.fusion.FeatureOperations.NewBodyFeatureOperation) extrude_input.setSymmetricExtent(height, True) extrude_feature = extrude_features.add(extrude_input) return extrude_feature # Generic pattern in X Y Directions def cut_pattern(extrude_collection, x_qty, d1_space, y_qty, d2_space): ao = AppObjects() pattern_features = ao.root_comp.features.rectangularPatternFeatures x_axis = ao.root_comp.xConstructionAxis y_axis = ao.root_comp.yConstructionAxis pattern_type = adsk.fusion.PatternDistanceType.SpacingPatternDistanceType pattern_input = pattern_features.createInput(extrude_collection, x_axis, x_qty, d1_space, pattern_type) pattern_input.directionTwoEntity = y_axis pattern_input.distanceTwo = d2_space pattern_input.quantityTwo = y_qty pattern_input.isSymmetricInDirectionOne = True pattern_input.isSymmetricInDirectionTwo = True pattern_feature = ao.root_comp.features.rectangularPatternFeatures.add(pattern_input) return pattern_feature # Not Used def second_hex_body(size, hex_body, core_body, x_space, y_space): ao = AppObjects() copy_collection = adsk.core.ObjectCollection.create() copy_collection.add(hex_body) copy_body_feature = ao.root_comp.features.copyPasteBodies.add(copy_collection) hex_body_2 = copy_body_feature.bodies[0] move_collection = adsk.core.ObjectCollection.create() move_collection.add(hex_body_2) transform = adsk.core.Matrix3D.create() transform.translation = adsk.core.Vector3D.create(x_space / 2, .75 * y_space, 0) move_input = ao.root_comp.features.moveFeatures.createInput(move_collection, transform) ao.root_comp.features.moveFeatures.add(move_input) return hex_body_2 def create_core_body(input_body, input_shell_thickness): ao = AppObjects() # Shell Main body shell_features = ao.root_comp.features.shellFeatures input_collection = adsk.core.ObjectCollection.create() input_collection.add(input_body) shell_input = shell_features.createInput(input_collection) shell_input.insideThickness = adsk.core.ValueInput.createByReal(input_shell_thickness) shell_feature = shell_features.add(shell_input) # Offset internal faces 0 shell_faces = shell_feature.faces tools = adsk.core.ObjectCollection.create() for face in shell_faces: tools.add(face) distance = adsk.core.ValueInput.createByReal(0) offset_features = ao.root_comp.features.offsetFeatures offset_input = offset_features.createInput(tools, distance, adsk.fusion.FeatureOperations.NewBodyFeatureOperation) offset_feature = offset_features.add(offset_input) # Boundary FIll offset_tools = adsk.core.ObjectCollection.create() for body in offset_feature.bodies: offset_tools.add(body) boundary_fills = ao.root_comp.features.boundaryFillFeatures boundary_fill_input = boundary_fills.createInput(offset_tools, adsk.fusion.FeatureOperations.NewBodyFeatureOperation) cell = boundary_fill_input.bRepCells.item(0) cell.isSelected = True boundary_fill = boundary_fills.add(boundary_fill_input) core_body = boundary_fill.bodies[0] # Remove extra surface remove_features = ao.root_comp.features.removeFeatures for body in offset_feature.bodies: remove_features.add(body) return core_body # Class for a Fusion 360 Command # Place your program logic here # Delete the line that says "pass" for any method you want to use class FillerCommand(Fusion360CommandBase): # Run whenever a user makes any change to a value or selection in the addin UI # Commands in here will be run through the Fusion processor and changes will be reflected in Fusion graphics area def on_preview(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs, args, input_values): pass # Run after the command is finished. # Can be used to launch another command automatically or do other clean up. def on_destroy(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs, reason, input_values): pass # Run when any input is changed. # Can be used to check a value and then update the add-in UI accordingly def on_input_changed(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs, changed_input, input_values): pass # Run when the user presses OK # This is typically where your main program logic would go def on_execute(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs, args, input_values): # Get a reference to all relevant application objects in a dictionary ao = AppObjects() # Get the values from the user input infill_type = input_values['type_input'] body_type = input_values['body_type_input'] input_size = input_values['size_input'] input_shell_thickness = input_values['shell_input'] input_rib_thickness = input_values['rib_input'] all_selections = input_values['selection_input'] start_body = adsk.fusion.BRepBody.cast(all_selections[0]) bounding_box = start_body.boundingBox start_volume = start_body.volume start_body_count = ao.design.rootComponent.bRepBodies.count if body_type == "Create Shell": # Create Core Body of input body core_body = create_core_body(start_body, input_shell_thickness) else: core_body = start_body # General bounding box and pattern extent_vector = bounding_box.maxPoint.asVector() extent_vector.subtract(bounding_box.minPoint.asVector()) mid_vector = extent_vector.copy() mid_vector.scaleBy(.5) mid_vector.add(bounding_box.minPoint.asVector()) height_raw = extent_vector.z * 1.1 height = adsk.core.ValueInput.createByReal(height_raw) # Hex specific if infill_type == "Hex": gap = input_rib_thickness / math.sqrt(3) sides = 6 offset = 30 corner_function = pointy_hex_corner x_space = math.sqrt(3) * input_size / 4 y_space = 3 * input_size / 4 # Square specific elif infill_type == "Square": gap = input_rib_thickness * math.sqrt(2) / 2 sides = 4 offset = 0 corner_function = pointy_square_corner x_space = input_size / 2 y_space = input_size / 2 # Triangle specific elif infill_type == "Triangle": gap = input_rib_thickness sides = 3 offset = 60 x_space = input_size / 4 y_space = math.sqrt(3) * input_size / 4 elif infill_type == "Circle": gap = input_rib_thickness / 2 x_space = input_size / 2 y_space = math.sqrt(3) * input_size / 2 else: return # TODO at center of volume # cp_1 = adsk.core.Point3D.create(0, 0, 0) cp_1 = mid_vector.asPoint() cp_2 = adsk.core.Point3D.create(cp_1.x + x_space, cp_1.y + y_space, cp_1.z) if infill_type in ['Square', 'Hex']: prof_1 = shape_sketch2(cp_1, input_size, gap, sides, offset) prof_2 = shape_sketch2(cp_2, input_size, gap, sides, offset) elif infill_type in ['Triangle']: cp_3 = adsk.core.Point3D.create(cp_1.x + input_size, cp_1.y, cp_1.z) cp_4 = adsk.core.Point3D.create(cp_1.x + (3 * x_space), cp_1.y + y_space, cp_1.z) prof_1 = shape_sketch2(cp_1, input_size, gap, sides, 0) prof_2 = shape_sketch2(cp_2, input_size, gap, sides, offset) prof_3 = shape_sketch2(cp_3, input_size, gap, sides, offset) prof_4 = shape_sketch2(cp_4, input_size, gap, sides, 0) elif infill_type in ['Circle']: prof_1 = circle_sketch(cp_1, input_size, gap) prof_2 = circle_sketch(cp_2, input_size, gap) else: return d1_space = adsk.core.ValueInput.createByReal(x_space * 2) d2_space = adsk.core.ValueInput.createByReal(y_space * 2) x_qty_raw = math.ceil(extent_vector.x / d1_space.realValue) + 4 y_qty_raw = math.ceil(extent_vector.y / d2_space.realValue) + 4 x_qty = adsk.core.ValueInput.createByReal(x_qty_raw) y_qty = adsk.core.ValueInput.createByReal(y_qty_raw) extrude_cut_collection = adsk.core.ObjectCollection.create() extrude_1 = shape_extrude(prof_1, height) extrude_2 = shape_extrude(prof_2, height) extrude_cut_collection.add(extrude_1.bodies[0]) extrude_cut_collection.add(extrude_2.bodies[0]) if infill_type in ['Triangle']: d1_space = adsk.core.ValueInput.createByReal(3 * input_size / 2) x_qty = adsk.core.ValueInput.createByReal(x_qty_raw / 2) extrude_3 = shape_extrude(prof_3, height) extrude_4 = shape_extrude(prof_4, height) extrude_cut_collection.add(extrude_3.bodies[0]) extrude_cut_collection.add(extrude_4.bodies[0]) cut_pattern(extrude_cut_collection, x_qty, d1_space, y_qty, d2_space) cut_tools = adsk.core.ObjectCollection.create() cut_tools.add(extrude_1.bodies[0]) cut_tools.add(extrude_2.bodies[0]) return body_count = ao.design.rootComponent.bRepBodies.count for count in range(body_count - (2 * x_qty_raw * y_qty_raw), body_count): cut_tools.add(ao.design.rootComponent.bRepBodies[count]) combine_features = ao.root_comp.features.combineFeatures cut_combine_input = combine_features.createInput(core_body, cut_tools) cut_combine_input.operation = adsk.fusion.FeatureOperations.CutFeatureOperation combine_features.add(cut_combine_input) if body_type == "Create Shell": final_combine_tools = adsk.core.ObjectCollection.create() body_count = ao.design.rootComponent.bRepBodies.count for count in range(start_body_count, body_count): ao.ui.messageBox('here') final_combine_tools.add(ao.design.rootComponent.bRepBodies[count]) # final_combine_tools.add(core_body) final_combine_input = combine_features.createInput(start_body, final_combine_tools) final_combine_input.operation = adsk.fusion.FeatureOperations.JoinFeatureOperation combine_features.add(final_combine_input) else: pass final_volume = start_body.volume ao.ui.messageBox( 'The final percentage infill is: {0:.2g}% \n'.format(100 * final_volume / start_volume) ) # Run when the user selects your command icon from the Fusion 360 UI # Typically used to create and display a command dialog box # The following is a basic sample of a dialog UI def on_create(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs): ao = AppObjects() # ao.ui.messageBox("Test") # Create a default value using a string default_size = adsk.core.ValueInput.createByString('.5 in') default_shell = adsk.core.ValueInput.createByString('.3 in') default_rib = adsk.core.ValueInput.createByString('.1 in') ao = AppObjects() # Create a few inputs in the UI inputs.addValueInput('size_input', 'Size (Major Diameter)', ao.units_manager.defaultLengthUnits, default_size) inputs.addValueInput('shell_input', 'Shell Thickness (Outer Wall)', ao.units_manager.defaultLengthUnits, default_shell) inputs.addValueInput('rib_input', 'Rib Thickness', ao.units_manager.defaultLengthUnits, default_rib) # inputs.addBoolValueInput('bool_input', '***Sample***Checked', True) # inputs.addStringValueInput('string_input', '***Sample***String Value', 'Default value') selection = inputs.addSelectionInput('selection_input', 'Body for Infill', 'Select a solid body') selection.addSelectionFilter("SolidBodies") selection.setSelectionLimits(1, 1) drop_down_input = inputs.addDropDownCommandInput('type_input', 'Infill Style', adsk.core.DropDownStyles.TextListDropDownStyle) drop_down_input.listItems.add('Hex', True) drop_down_input.listItems.add('Square', False) drop_down_input.listItems.add('Triangle', False) drop_down_input.listItems.add('Circle', False) radio = inputs.addRadioButtonGroupCommandInput("body_type_input", "Infill Type") radio.listItems.add("Create Shell", True) radio.listItems.add("Direct Cut", False)
[ "collections.namedtuple", "math.ceil", "math.sqrt", "math.cos", "math.sin" ]
[((282, 325), 'collections.namedtuple', 'collections.namedtuple', (['"""Point"""', "['x', 'y']"], {}), "('Point', ['x', 'y'])\n", (304, 325), False, 'import collections\n'), ((1436, 1448), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (1445, 1448), False, 'import math\n'), ((13144, 13191), 'math.ceil', 'math.ceil', (['(extent_vector.x / d1_space.realValue)'], {}), '(extent_vector.x / d1_space.realValue)\n', (13153, 13191), False, 'import math\n'), ((13216, 13263), 'math.ceil', 'math.ceil', (['(extent_vector.y / d2_space.realValue)'], {}), '(extent_vector.y / d2_space.realValue)\n', (13225, 13263), False, 'import math\n'), ((492, 511), 'math.cos', 'math.cos', (['angle_rad'], {}), '(angle_rad)\n', (500, 511), False, 'import math\n'), ((567, 586), 'math.sin', 'math.sin', (['angle_rad'], {}), '(angle_rad)\n', (575, 586), False, 'import math\n'), ((791, 810), 'math.cos', 'math.cos', (['angle_rad'], {}), '(angle_rad)\n', (799, 810), False, 'import math\n'), ((866, 885), 'math.sin', 'math.sin', (['angle_rad'], {}), '(angle_rad)\n', (874, 885), False, 'import math\n'), ((1124, 1143), 'math.cos', 'math.cos', (['angle_rad'], {}), '(angle_rad)\n', (1132, 1143), False, 'import math\n'), ((1199, 1218), 'math.sin', 'math.sin', (['angle_rad'], {}), '(angle_rad)\n', (1207, 1218), False, 'import math\n'), ((10961, 10973), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (10970, 10973), False, 'import math\n'), ((11090, 11102), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (11099, 11102), False, 'import math\n'), ((11266, 11278), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (11275, 11278), False, 'import math\n'), ((11665, 11677), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (11674, 11677), False, 'import math\n'), ((11835, 11847), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (11844, 11847), False, 'import math\n')]
from time import time from bioptim import ControlType from .JumperOcp import JumperOcp, Jumper def generate_table(out): root_path_model = "/".join(__file__.split("/")[:-1]) jumper_model = Jumper(root_path_model + "/models/") jumper = JumperOcp(jumper=jumper_model, control_type=ControlType.CONSTANT, n_phases=3) tic = time() sol = jumper.solve(limit_memory_max_iter=400, exact_max_iter=1000, force_no_graph=True, linear_solver="ma57") toc = time() - tic sol_merged = sol.merge_phases() out.nx = sol_merged.states["all"].shape[0] out.nu = sol_merged.controls["all"].shape[0] out.ns = sol_merged.ns[0] out.solver.append(out.Solver("Ipopt")) out.solver[0].n_iteration = sol.iterations out.solver[0].cost = sol.cost out.solver[0].convergence_time = toc out.solver[0].compute_error_single_shooting(sol, 1)
[ "time.time" ]
[((339, 345), 'time.time', 'time', ([], {}), '()\n', (343, 345), False, 'from time import time\n'), ((470, 476), 'time.time', 'time', ([], {}), '()\n', (474, 476), False, 'from time import time\n')]
from flask import Flask, request, abort from werkzeug.datastructures import ImmutableMultiDict import json from api_types import ( DifficultyLevel, ParkTrailsResponse, ParkTrailsRequest, TrailDetailsResponse, ) from trail_selector import select_trails app = Flask(__name__) DAYS_ARG = "days" DIFFICULTY_ARG = "difficulty" PARTY_SIZE_ARG = "party_size" DEFAULT_DAYS = 3 DEFAULT_DIFFICULTY = DifficultyLevel.medium DEFAULT_PARTY_SIZE = 4 def parse_park_trails_args(args: ImmutableMultiDict) -> ParkTrailsRequest: days = DEFAULT_DAYS difficulty = DEFAULT_DIFFICULTY party_size = DEFAULT_PARTY_SIZE if DAYS_ARG in args: try: days = int(args[DAYS_ARG]) except ValueError: abort(400) if DIFFICULTY_ARG in args: try: difficulty = DifficultyLevel[args[DIFFICULTY_ARG]] except KeyError: abort(400) if PARTY_SIZE_ARG in args: try: party_size = int(args[PARTY_SIZE_ARG]) except ValueError: abort(400) return ParkTrailsRequest(days, difficulty, party_size) @app.route('/api/0/park_trails/<park_name>') def park_trails(park_name: str) -> str: trails_request = parse_park_trails_args(request.args) response = select_trails(trails_request) return json.dumps(response._asdict()) @app.route('/api/0/trail/<int:tid>') def trail_details(tid: int) -> str: trail_name = f"Trail #{tid}" response = TrailDetailsResponse(trail_name, "Some useful information about the trail here") return json.dumps(response._asdict()) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080)
[ "api_types.TrailDetailsResponse", "flask.abort", "flask.Flask", "trail_selector.select_trails", "api_types.ParkTrailsRequest" ]
[((268, 283), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (273, 283), False, 'from flask import Flask, request, abort\n'), ((1064, 1111), 'api_types.ParkTrailsRequest', 'ParkTrailsRequest', (['days', 'difficulty', 'party_size'], {}), '(days, difficulty, party_size)\n', (1081, 1111), False, 'from api_types import DifficultyLevel, ParkTrailsResponse, ParkTrailsRequest, TrailDetailsResponse\n'), ((1272, 1301), 'trail_selector.select_trails', 'select_trails', (['trails_request'], {}), '(trails_request)\n', (1285, 1301), False, 'from trail_selector import select_trails\n'), ((1467, 1552), 'api_types.TrailDetailsResponse', 'TrailDetailsResponse', (['trail_name', '"""Some useful information about the trail here"""'], {}), "(trail_name, 'Some useful information about the trail here'\n )\n", (1487, 1552), False, 'from api_types import DifficultyLevel, ParkTrailsResponse, ParkTrailsRequest, TrailDetailsResponse\n'), ((738, 748), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (743, 748), False, 'from flask import Flask, request, abort\n'), ((894, 904), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (899, 904), False, 'from flask import Flask, request, abort\n'), ((1040, 1050), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (1045, 1050), False, 'from flask import Flask, request, abort\n')]
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from ._clierror import ConflictRequestError from ._utils import wait_till_end from .vendored_sdks.appplatform.v2022_03_01_preview import models as models_20220301preview from azure.cli.core.azclierror import (AzureInternalError, CLIInternalError) from azure.core.exceptions import HttpResponseError from msrestazure.azure_exceptions import CloudError from azure.cli.core.commands import arm as _arm from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.profiles import (ResourceType, get_sdk) from knack.log import get_logger from time import sleep logger = get_logger(__name__) ENABLE_LOWER = "enable" DISABLE_LOWER = "disable" UPDATING_LOWER = "updating" DELETING_LOWER = "deleting" APP_CREATE_OR_UPDATE_SLEEP_INTERVAL = 2 def app_identity_assign(cmd, client, resource_group, service, name, role=None, scope=None, system_assigned=None, user_assigned=None): """ Note: Always use sync method to operate managed identity to avoid data inconsistency. :param role: role name of role assignment for system-assigned managed identity. :param scope: scope of role assignment for system-assigned managed identity. :param system_assigned: 1. None or False: Don't change system-assigned managed identity. 2. Enable system-assigned managed identity on app. :param user_assigned: 1. None: Don't change user-assigned managed identities. 2. A non-empty list of user-assigned managed identity resource id to app. 3. A empty list: should be blocked by validator. """ # TODO(jiec): Retire legacy identity assign after migration. poller = None if _is_legacy_identity_assign(system_assigned, user_assigned): poller = _legacy_app_identity_assign(cmd, client, resource_group, service, name) else: poller = _new_app_identity_assign(cmd, client, resource_group, service, name, system_assigned, user_assigned) wait_till_end(poller) poller.result() if "succeeded" != poller.status().lower(): return poller if role and scope: _create_role_assignment(cmd, client, resource_group, service, name, role, scope) return client.apps.get(resource_group, service, name) def app_identity_remove(cmd, client, resource_group, service, name, system_assigned=None, user_assigned=None): """ Note: Always use sync method to operate managed identity to avoid data inconsistency. :param system_assigned: 1) None or False: Don't change system-assigned managed identity. 2) True: remove system-assigned managed identity :param user_assigned: 1) None: Don't change user-assigned managed identities. 2) An empty list: remove all user-assigned managed identities. 3) A non-empty list of user-assigned managed identity resource id to remove. """ app = client.apps.get(resource_group, service, name) if _app_not_updatable(app): raise ConflictRequestError("Failed to remove managed identities since app is in {} state.".format(app.properties.provisioning_state)) if not app.identity: logger.warning("Skip remove managed identity since no identities assigned to app.") return if not app.identity.type: raise AzureInternalError("Invalid existed identity type {}.".format(app.identity.type)) if app.identity.type == models_20220301preview.ManagedIdentityType.NONE: logger.warning("Skip remove managed identity since identity type is {}.".format(app.identity.type)) return # TODO(jiec): For back-compatible, convert to remove system-assigned only case. Remove code after migration. if system_assigned is None and user_assigned is None: system_assigned = True new_user_identities = _get_new_user_identities_for_remove(app.identity.user_assigned_identities, user_assigned) new_identity_type = _get_new_identity_type_for_remove(app.identity.type, system_assigned, new_user_identities) user_identity_payload = _get_user_identity_payload_for_remove(new_identity_type, user_assigned) target_identity = models_20220301preview.ManagedIdentityProperties() target_identity.type = new_identity_type target_identity.user_assigned_identities = user_identity_payload app_resource = models_20220301preview.AppResource() app_resource.identity = target_identity poller = client.apps.begin_update(resource_group, service, name, app_resource) wait_till_end(cmd, poller) poller.result() if "succeeded" != poller.status().lower(): return poller else: return client.apps.get(resource_group, service, name) def app_identity_force_set(cmd, client, resource_group, service, name, system_assigned, user_assigned): """ :param system_assigned: string, disable or enable :param user_assigned: 1. A single-element string list with 'disable' 2. A non-empty list of user-assigned managed identity resource ID. """ exist_app = client.apps.get(resource_group, service, name) if _app_not_updatable(exist_app): raise ConflictRequestError("Failed to force set managed identities since app is in {} state.".format( exist_app.properties.provisioning_state)) new_identity_type = _get_new_identity_type_for_force_set(system_assigned, user_assigned) user_identity_payload = _get_user_identity_payload_for_force_set(user_assigned) target_identity = models_20220301preview.ManagedIdentityProperties() target_identity.type = new_identity_type target_identity.user_assigned_identities = user_identity_payload # All read-only attributes will be droped by SDK automatically. exist_app.identity = target_identity poller = client.apps.begin_create_or_update(resource_group, service, name, exist_app) wait_till_end(cmd, poller) poller.result() if "succeeded" != poller.status().lower(): return poller else: return client.apps.get(resource_group, service, name) def app_identity_show(cmd, client, resource_group, service, name): app = client.apps.get(resource_group, service, name) return app.identity def _is_legacy_identity_assign(system_assigned, user_assigned): return not system_assigned and not user_assigned def _legacy_app_identity_assign(cmd, client, resource_group, service, name): """ Enable system-assigned managed identity on app. """ app = client.apps.get(resource_group, service, name) if _app_not_updatable(app): raise ConflictRequestError("Failed to enable system-assigned managed identity since app is in {} state.".format( app.properties.provisioning_state)) new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED if app.identity and app.identity.type in (models_20220301preview.ManagedIdentityType.USER_ASSIGNED, models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED): new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED target_identity = models_20220301preview.ManagedIdentityProperties(type=new_identity_type) app_resource = models_20220301preview.AppResource(identity=target_identity) logger.warning("Start to enable system-assigned managed identity.") return client.apps.begin_update(resource_group, service, name, app_resource) def _new_app_identity_assign(cmd, client, resource_group, service, name, system_assigned, user_assigned): app = client.apps.get(resource_group, service, name) if _app_not_updatable(app): raise ConflictRequestError( "Failed to assign managed identities since app is in {} state.".format(app.properties.provisioning_state)) new_identity_type = _get_new_identity_type_for_assign(app, system_assigned, user_assigned) user_identity_payload = _get_user_identity_payload_for_assign(new_identity_type, user_assigned) identity_payload = models_20220301preview.ManagedIdentityProperties() identity_payload.type = new_identity_type identity_payload.user_assigned_identities = user_identity_payload app_resource = models_20220301preview.AppResource(identity=identity_payload) logger.warning("Start to assign managed identities to app.") return client.apps.begin_update(resource_group, service, name, app_resource) def _get_new_identity_type_for_assign(app, system_assigned, user_assigned): new_identity_type = None if app.identity and app.identity.type: new_identity_type = app.identity.type else: new_identity_type = models_20220301preview.ManagedIdentityType.NONE if system_assigned: if new_identity_type in (models_20220301preview.ManagedIdentityType.USER_ASSIGNED, models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED): new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED else: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED if user_assigned: if new_identity_type in (models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED, models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED): new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED else: new_identity_type = models_20220301preview.ManagedIdentityType.USER_ASSIGNED if not new_identity_type or new_identity_type == models_20220301preview.ManagedIdentityType.NONE: raise CLIInternalError("Internal error: invalid new identity type:{}.".format(new_identity_type)) return new_identity_type def _get_user_identity_payload_for_assign(new_identity_type, new_user_identity_rid_list): """ :param new_user_identity_rid_list: 1. None object. 2. A non-empty list of user-assigned managed identity resource ID. :return 1. None object. 2. A dict from user-assigned managed identity to an empty object. """ uid_payload = {} if new_identity_type == models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED: pass elif new_identity_type in (models_20220301preview.ManagedIdentityType.USER_ASSIGNED, models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED): if new_user_identity_rid_list: for rid in new_user_identity_rid_list: uid_payload[rid] = models_20220301preview.UserAssignedManagedIdentity() if len(uid_payload) == 0: uid_payload = None return uid_payload def _create_role_assignment(cmd, client, resource_group, service, name, role, scope): app = client.apps.get(resource_group, service, name) if not app.identity or not app.identity.principal_id: raise AzureInternalError( "Failed to create role assignment without object ID(principal ID) of system-assigned managed identity.") identity_role_id = _arm.resolve_role_id(cmd.cli_ctx, role, scope) assignments_client = get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_AUTHORIZATION).role_assignments RoleAssignmentCreateParameters = get_sdk(cmd.cli_ctx, ResourceType.MGMT_AUTHORIZATION, 'RoleAssignmentCreateParameters', mod='models', operation_group='role_assignments') parameters = RoleAssignmentCreateParameters(role_definition_id=identity_role_id, principal_id=app.identity.principal_id) logger.warning("Creating an assignment with a role '%s' on the scope of '%s'", identity_role_id, scope) retry_times = 36 assignment_name = _arm._gen_guid() for i in range(0, retry_times): try: assignments_client.create(scope=scope, role_assignment_name=assignment_name, parameters=parameters) break except (HttpResponseError, CloudError) as ex: if 'role assignment already exists' in ex.message: logger.warning('Role assignment already exists') break elif i < retry_times and ' does not exist in the directory ' in ex.message: sleep(APP_CREATE_OR_UPDATE_SLEEP_INTERVAL) logger.warning('Retrying role assignment creation: %s/%s', i + 1, retry_times) continue else: raise def _get_new_user_identities_for_remove(exist_user_identity_dict, user_identity_list_to_remove): """ :param exist_user_identity_dict: A dict from user-assigned managed identity resource id to identity objecct. :param user_identity_list_to_remove: None, an empty list or a list of string of user-assigned managed identity resource id to remove. :return A list of string of user-assigned managed identity resource ID. """ if not exist_user_identity_dict: return [] # None if user_identity_list_to_remove is None: return list(exist_user_identity_dict.keys()) # Empty list means remove all user-assigned managed identities if len(user_identity_list_to_remove) == 0: return [] # Non-empty list new_identities = [] for id in exist_user_identity_dict.keys(): if not id.lower() in user_identity_list_to_remove: new_identities.append(id) return new_identities def _get_new_identity_type_for_remove(exist_identity_type, is_remove_system_identity, new_user_identities): new_identity_type = exist_identity_type exist_identity_type_str = exist_identity_type.lower() if exist_identity_type_str == models_20220301preview.ManagedIdentityType.NONE.lower(): new_identity_type = models_20220301preview.ManagedIdentityType.NONE elif exist_identity_type_str == models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED.lower(): if is_remove_system_identity: new_identity_type = models_20220301preview.ManagedIdentityType.NONE else: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED elif exist_identity_type_str == models_20220301preview.ManagedIdentityType.USER_ASSIGNED.lower(): if not new_user_identities: new_identity_type = models_20220301preview.ManagedIdentityType.NONE else: new_identity_type = models_20220301preview.ManagedIdentityType.USER_ASSIGNED elif exist_identity_type_str == models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED.lower(): if is_remove_system_identity and not new_user_identities: new_identity_type = models_20220301preview.ManagedIdentityType.NONE elif not is_remove_system_identity and not new_user_identities: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED elif is_remove_system_identity and new_user_identities: new_identity_type = models_20220301preview.ManagedIdentityType.USER_ASSIGNED else: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED else: raise AzureInternalError("Invalid identity type: {}.".format(exist_identity_type_str)) return new_identity_type def _get_user_identity_payload_for_remove(new_identity_type, user_identity_list_to_remove): """ :param new_identity_type: ManagedIdentityType :param user_identity_list_to_remove: None, an empty list or a list of string of user-assigned managed identity resource id to remove. :return None object or a non-empty dict from user-assigned managed identity resource id to None object """ user_identity_payload = {} if new_identity_type in (models_20220301preview.ManagedIdentityType.USER_ASSIGNED, models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED): # empty list means remove all user-assigned managed identites if user_identity_list_to_remove is not None and len(user_identity_list_to_remove) == 0: raise CLIInternalError("When remove all user-assigned managed identities, " "target identity type should not be {}.".format(new_identity_type)) # non-empty list elif user_identity_list_to_remove: for id in user_identity_list_to_remove: user_identity_payload[id] = None if not user_identity_payload: user_identity_payload = None return user_identity_payload def _get_new_identity_type_for_force_set(system_assigned, user_assigned): new_identity_type = models_20220301preview.ManagedIdentityType.NONE if DISABLE_LOWER == system_assigned and DISABLE_LOWER != user_assigned[0]: new_identity_type = models_20220301preview.ManagedIdentityType.USER_ASSIGNED elif ENABLE_LOWER == system_assigned and DISABLE_LOWER == user_assigned[0]: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED elif ENABLE_LOWER == system_assigned and DISABLE_LOWER != user_assigned[0]: new_identity_type = models_20220301preview.ManagedIdentityType.SYSTEM_ASSIGNED_USER_ASSIGNED return new_identity_type def _get_user_identity_payload_for_force_set(user_assigned): if DISABLE_LOWER == user_assigned[0]: return None user_identity_payload = {} for user_identity_resource_id in user_assigned: user_identity_payload[user_identity_resource_id] = models_20220301preview.UserAssignedManagedIdentity() if not user_identity_payload: user_identity_payload = None return user_identity_payload def _app_not_updatable(app): return app.properties \ and app.properties.provisioning_state \ and app.properties.provisioning_state.lower() in [UPDATING_LOWER, DELETING_LOWER]
[ "azure.cli.core.commands.arm._gen_guid", "knack.log.get_logger", "time.sleep", "azure.cli.core.profiles.get_sdk", "azure.cli.core.commands.arm.resolve_role_id", "azure.cli.core.commands.client_factory.get_mgmt_service_client", "azure.cli.core.azclierror.AzureInternalError" ]
[((947, 967), 'knack.log.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (957, 967), False, 'from knack.log import get_logger\n'), ((12023, 12069), 'azure.cli.core.commands.arm.resolve_role_id', '_arm.resolve_role_id', (['cmd.cli_ctx', 'role', 'scope'], {}), '(cmd.cli_ctx, role, scope)\n', (12043, 12069), True, 'from azure.cli.core.commands import arm as _arm\n'), ((12219, 12365), 'azure.cli.core.profiles.get_sdk', 'get_sdk', (['cmd.cli_ctx', 'ResourceType.MGMT_AUTHORIZATION', '"""RoleAssignmentCreateParameters"""'], {'mod': '"""models"""', 'operation_group': '"""role_assignments"""'}), "(cmd.cli_ctx, ResourceType.MGMT_AUTHORIZATION,\n 'RoleAssignmentCreateParameters', mod='models', operation_group=\n 'role_assignments')\n", (12226, 12365), False, 'from azure.cli.core.profiles import ResourceType, get_sdk\n'), ((12771, 12787), 'azure.cli.core.commands.arm._gen_guid', '_arm._gen_guid', ([], {}), '()\n', (12785, 12787), True, 'from azure.cli.core.commands import arm as _arm\n'), ((11862, 11995), 'azure.cli.core.azclierror.AzureInternalError', 'AzureInternalError', (['"""Failed to create role assignment without object ID(principal ID) of system-assigned managed identity."""'], {}), "(\n 'Failed to create role assignment without object ID(principal ID) of system-assigned managed identity.'\n )\n", (11880, 11995), False, 'from azure.cli.core.azclierror import AzureInternalError, CLIInternalError\n'), ((12095, 12164), 'azure.cli.core.commands.client_factory.get_mgmt_service_client', 'get_mgmt_service_client', (['cmd.cli_ctx', 'ResourceType.MGMT_AUTHORIZATION'], {}), '(cmd.cli_ctx, ResourceType.MGMT_AUTHORIZATION)\n', (12118, 12164), False, 'from azure.cli.core.commands.client_factory import get_mgmt_service_client\n'), ((13313, 13355), 'time.sleep', 'sleep', (['APP_CREATE_OR_UPDATE_SLEEP_INTERVAL'], {}), '(APP_CREATE_OR_UPDATE_SLEEP_INTERVAL)\n', (13318, 13355), False, 'from time import sleep\n')]
import subprocess from configparser import ConfigParser from functools import cached_property from services import logger class PostgresBackup: def __init__(self, config: ConfigParser): self.config = config self.result = None def __str__(self): if not self.result: return None return '\n'.join(self.result.splitlines()) @cached_property def pg_kwargs(self): return { 'user': self.config.get('postgresql', 'user'), 'password': self.config.get('postgresql', 'password'), 'host': self.config.get('postgresql', 'host'), 'port': self.config.get('postgresql', 'port'), 'db': self.config.get('postgresql', 'db') } def process(self, print_results=True): process = subprocess.Popen( [ 'psql', f"--dbname=postgresql://{self.pg_kwargs['user']}:{self.pg_kwargs['password']}@" f"{self.pg_kwargs['host']}:{self.pg_kwargs['port']}/{self.pg_kwargs['db']}", '--list', ], stdout=subprocess.PIPE, ) output = process.communicate()[0] if int(process.returncode) != 0: logger.error(f'Command failed with return code {process.returncode}') raise Exception('Non-zero return code!') self.result = output if print_results: print(self) return self.result
[ "subprocess.Popen", "services.logger.error" ]
[((811, 1033), 'subprocess.Popen', 'subprocess.Popen', (['[\'psql\',\n f"--dbname=postgresql://{self.pg_kwargs[\'user\']}:{self.pg_kwargs[\'password\']}@{self.pg_kwargs[\'host\']}:{self.pg_kwargs[\'port\']}/{self.pg_kwargs[\'db\']}"\n , \'--list\']'], {'stdout': 'subprocess.PIPE'}), '([\'psql\',\n f"--dbname=postgresql://{self.pg_kwargs[\'user\']}:{self.pg_kwargs[\'password\']}@{self.pg_kwargs[\'host\']}:{self.pg_kwargs[\'port\']}/{self.pg_kwargs[\'db\']}"\n , \'--list\'], stdout=subprocess.PIPE)\n', (827, 1033), False, 'import subprocess\n'), ((1239, 1308), 'services.logger.error', 'logger.error', (['f"""Command failed with return code {process.returncode}"""'], {}), "(f'Command failed with return code {process.returncode}')\n", (1251, 1308), False, 'from services import logger\n')]
"""Add circulating supply Revision ID: c<PASSWORD> Revises: <PASSWORD> Create Date: 2020-06-05 14:58:15.471738 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): op.create_table('circulating_supply', sa.Column('id', sa.Integer(), nullable=False), sa.Column('snapshot_date', sa.DateTime(timezone=True), server_default=sa.text(u'now()'), nullable=True, index=True), sa.Column('supply_amount', sa.Float(), nullable=True), sa.Column('created_at', sa.DateTime(timezone=True), server_default=sa.text(u'now()'), nullable=True), sa.PrimaryKeyConstraint('id') ) def downgrade(): op.drop_table('circulating_supply')
[ "sqlalchemy.Float", "sqlalchemy.text", "sqlalchemy.DateTime", "alembic.op.drop_table", "sqlalchemy.PrimaryKeyConstraint", "sqlalchemy.Integer" ]
[((798, 833), 'alembic.op.drop_table', 'op.drop_table', (['"""circulating_supply"""'], {}), "('circulating_supply')\n", (811, 833), False, 'from alembic import op\n'), ((740, 769), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (763, 769), True, 'import sqlalchemy as sa\n'), ((419, 431), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (429, 431), True, 'import sqlalchemy as sa\n'), ((481, 507), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (492, 507), True, 'import sqlalchemy as sa\n'), ((602, 612), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (610, 612), True, 'import sqlalchemy as sa\n'), ((658, 684), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (669, 684), True, 'import sqlalchemy as sa\n'), ((524, 541), 'sqlalchemy.text', 'sa.text', (['u"""now()"""'], {}), "(u'now()')\n", (531, 541), True, 'import sqlalchemy as sa\n'), ((701, 718), 'sqlalchemy.text', 'sa.text', (['u"""now()"""'], {}), "(u'now()')\n", (708, 718), True, 'import sqlalchemy as sa\n')]
""" .. module:: DialOutClient :platform: Unix, Windows :synopsis: A TCP server for listening to streams of telemetry data from a Cisco device .. moduleauthor:: <NAME> <<EMAIL>> """ import json import gzip from logging import getLogger, Logger from datetime import datetime from struct import Struct from typing import List, Dict, Tuple, Any from concurrent.futures import ThreadPoolExecutor, Future from tornado.httpclient import AsyncHTTPClient, HTTPError, HTTPRequest, HTTPResponse from tornado.tcpserver import TCPServer from tornado.iostream import IOStream from tornado.netutil import bind_sockets from tornado.process import fork_processes from tornado.ioloop import IOLoop from tornado.iostream import StreamClosedError from multiprocessing import Process, Queue class DialOutClient(Process, TCPServer): """Create a TCP dial out server to listen for telemetry data from a Cisco device :param address: The IP address to bind to :type address: str :param port: The port to listen on :type port: str :param batch_size: The number of messages to gather before uploading :type batch_size: int :param log_name: Used for getting the application log :type log_name: str """ def __init__(self, data_queue: Queue, log_name: str, inputs: Dict[str,str], name: str) -> None: Process.__init__(self, name=name) TCPServer.__init__(self, max_buffer_size=10485760000, read_chunk_size=104857600) self.address: str = inputs["address"] self.port: int = inputs["port"] self.log: Logger = getLogger(log_name) self.log.info("Starting dial out client[%s]", self.name) self.url: str = f"http://{self.address}:{self.port}" self._header_size: int = 12 self._header_struct: Struct = Struct(">hhhhi") self.data_queue: Queue = data_queue async def handle_stream(self, stream: IOStream, address: Tuple[str, str]) -> None: """ :param stream: Client IOStream to read telemetry data from :type stream: IOStream :param address: The IP address and port on which a client connects to the server :type address: Tuple[str,str] :return: None """ try: self.log.info(f"Got Connection from {address[0]}:{address[1]}") while not stream.closed(): header_data: bytes = await stream.read_bytes(self._header_size) (msg_type, encode_type, msg_version, flags, msg_length,) = self._header_struct.unpack(header_data) # encoding = {1: "gpb", 2: "json"}[encode_type] # implement json encoding msg_data: bytes = b"" while len(msg_data) < msg_length: packet: bytes = await stream.read_bytes(msg_length - len(msg_data)) msg_data += packet self.data_queue.put_nowait(("ems", msg_data, None, None, address[0])) except StreamClosedError as error: self.log.error(f'{address[0]}:{address[1]} {error}') stream.close() def run(self): sockets = bind_sockets(self.port) fork_processes(0) self.log.info("Started dial out server listening on %s:%s", self.address, self.port) self.add_sockets(sockets) IOLoop.current().set_default_executor(ThreadPoolExecutor(10)) IOLoop.current().start()
[ "logging.getLogger", "multiprocessing.Process.__init__", "struct.Struct", "concurrent.futures.ThreadPoolExecutor", "tornado.ioloop.IOLoop.current", "tornado.netutil.bind_sockets", "tornado.tcpserver.TCPServer.__init__", "tornado.process.fork_processes" ]
[((1342, 1375), 'multiprocessing.Process.__init__', 'Process.__init__', (['self'], {'name': 'name'}), '(self, name=name)\n', (1358, 1375), False, 'from multiprocessing import Process, Queue\n'), ((1384, 1469), 'tornado.tcpserver.TCPServer.__init__', 'TCPServer.__init__', (['self'], {'max_buffer_size': '(10485760000)', 'read_chunk_size': '(104857600)'}), '(self, max_buffer_size=10485760000, read_chunk_size=104857600\n )\n', (1402, 1469), False, 'from tornado.tcpserver import TCPServer\n'), ((1578, 1597), 'logging.getLogger', 'getLogger', (['log_name'], {}), '(log_name)\n', (1587, 1597), False, 'from logging import getLogger, Logger\n'), ((1798, 1814), 'struct.Struct', 'Struct', (['""">hhhhi"""'], {}), "('>hhhhi')\n", (1804, 1814), False, 'from struct import Struct\n'), ((3133, 3156), 'tornado.netutil.bind_sockets', 'bind_sockets', (['self.port'], {}), '(self.port)\n', (3145, 3156), False, 'from tornado.netutil import bind_sockets\n'), ((3165, 3182), 'tornado.process.fork_processes', 'fork_processes', (['(0)'], {}), '(0)\n', (3179, 3182), False, 'from tornado.process import fork_processes\n'), ((3356, 3378), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', (['(10)'], {}), '(10)\n', (3374, 3378), False, 'from concurrent.futures import ThreadPoolExecutor, Future\n'), ((3318, 3334), 'tornado.ioloop.IOLoop.current', 'IOLoop.current', ([], {}), '()\n', (3332, 3334), False, 'from tornado.ioloop import IOLoop\n'), ((3388, 3404), 'tornado.ioloop.IOLoop.current', 'IOLoop.current', ([], {}), '()\n', (3402, 3404), False, 'from tornado.ioloop import IOLoop\n')]
from django import template register = template.Library() @register.simple_tag def create_list(*args): return list(args)
[ "django.template.Library" ]
[((40, 58), 'django.template.Library', 'template.Library', ([], {}), '()\n', (56, 58), False, 'from django import template\n')]
""" Magnetic field ... er, fields. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import numpy as np from yt.units import dimensions from yt.units.unit_object import Unit from yt.utilities.physical_constants import mu_0 from yt.fields.derived_field import \ ValidateParameter from .field_plugin_registry import \ register_field_plugin from yt.utilities.math_utils import \ get_sph_theta_component, \ get_sph_phi_component mag_factors = {dimensions.magnetic_field_cgs: 4.0*np.pi, dimensions.magnetic_field_mks: mu_0} @register_field_plugin def setup_magnetic_field_fields(registry, ftype = "gas", slice_info = None): unit_system = registry.ds.unit_system axis_names = registry.ds.coordinates.axis_order if (ftype,"magnetic_field_%s" % axis_names[0]) not in registry: return u = registry[ftype,"magnetic_field_%s" % axis_names[0]].units def _magnetic_field_strength(field,data): B2 = (data[ftype,"magnetic_field_%s" % axis_names[0]]**2 + data[ftype,"magnetic_field_%s" % axis_names[1]]**2 + data[ftype,"magnetic_field_%s" % axis_names[2]]**2) return np.sqrt(B2) registry.add_field((ftype,"magnetic_field_strength"), sampling_type="cell", function=_magnetic_field_strength, units=u) def _magnetic_energy(field, data): B = data[ftype,"magnetic_field_strength"] return 0.5*B*B/mag_factors[B.units.dimensions] registry.add_field((ftype, "magnetic_energy"), sampling_type="cell", function=_magnetic_energy, units=unit_system["pressure"]) def _plasma_beta(field,data): return data[ftype,'pressure']/data[ftype,'magnetic_energy'] registry.add_field((ftype, "plasma_beta"), sampling_type="cell", function=_plasma_beta, units="") def _magnetic_pressure(field,data): return data[ftype,'magnetic_energy'] registry.add_field((ftype, "magnetic_pressure"), sampling_type="cell", function=_magnetic_pressure, units=unit_system["pressure"]) if registry.ds.geometry == "cartesian": def _magnetic_field_poloidal(field,data): normal = data.get_field_parameter("normal") d = data[ftype,'magnetic_field_x'] Bfields = data.ds.arr( [data[ftype,'magnetic_field_x'], data[ftype,'magnetic_field_y'], data[ftype,'magnetic_field_z']], d.units) theta = data["index", 'spherical_theta'] phi = data["index", 'spherical_phi'] return get_sph_theta_component(Bfields, theta, phi, normal) def _magnetic_field_toroidal(field,data): normal = data.get_field_parameter("normal") d = data[ftype,'magnetic_field_x'] Bfields = data.ds.arr( [data[ftype,'magnetic_field_x'], data[ftype,'magnetic_field_y'], data[ftype,'magnetic_field_z']], d.units) phi = data["index", 'spherical_phi'] return get_sph_phi_component(Bfields, phi, normal) elif registry.ds.geometry == "cylindrical": def _magnetic_field_poloidal(field, data): r = data["index", "r"] z = data["index", "z"] d = np.sqrt(r*r+z*z) return (data[ftype, "magnetic_field_r"]*(r/d) + data[ftype, "magnetic_field_z"]*(z/d)) def _magnetic_field_toroidal(field, data): return data[ftype,"magnetic_field_theta"] elif registry.ds.geometry == "spherical": def _magnetic_field_poloidal(field, data): return data[ftype,"magnetic_field_theta"] def _magnetic_field_toroidal(field, data): return data[ftype,"magnetic_field_phi"] else: # Unidentified geometry--set to None _magnetic_field_toroidal = None _magnetic_field_poloidal = None registry.add_field((ftype, "magnetic_field_poloidal"), sampling_type="cell", function=_magnetic_field_poloidal, units=u, validators=[ValidateParameter("normal")]) registry.add_field((ftype, "magnetic_field_toroidal"), sampling_type="cell", function=_magnetic_field_toroidal, units=u, validators=[ValidateParameter("normal")]) def _alfven_speed(field,data): B = data[ftype,'magnetic_field_strength'] return B/np.sqrt(mag_factors[B.units.dimensions]*data[ftype,'density']) registry.add_field((ftype, "alfven_speed"), sampling_type="cell", function=_alfven_speed, units=unit_system["velocity"]) def _mach_alfven(field,data): return data[ftype,'velocity_magnitude']/data[ftype,'alfven_speed'] registry.add_field((ftype, "mach_alfven"), sampling_type="cell", function=_mach_alfven, units="dimensionless") def setup_magnetic_field_aliases(registry, ds_ftype, ds_fields, ftype="gas"): r""" This routine sets up special aliases between dataset-specific magnetic fields and the default magnetic fields in yt so that unit conversions between different unit systems can be handled properly. This is only called from the `setup_fluid_fields` method of a frontend's :class:`FieldInfoContainer` instance. Parameters ---------- registry : :class:`FieldInfoContainer` The field registry that these definitions will be installed into. ds_ftype : string The field type for the fields we're going to alias, e.g. "flash", "enzo", "athena", etc. ds_fields : list of strings The fields that will be aliased. ftype : string, optional The resulting field type of the fields. Default "gas". Examples -------- >>> class PlutoFieldInfo(ChomboFieldInfo): ... def setup_fluid_fields(self): ... from yt.fields.magnetic_field import \ ... setup_magnetic_field_aliases ... setup_magnetic_field_aliases(self, "chombo", ["bx%s" % ax for ax in [1,2,3]]) """ unit_system = registry.ds.unit_system ds_fields = [(ds_ftype, fd) for fd in ds_fields] if ds_fields[0] not in registry: return from_units = Unit(registry[ds_fields[0]].units, registry=registry.ds.unit_registry) if dimensions.current_mks in unit_system.base_units: to_units = unit_system["magnetic_field_mks"] equiv = "SI" else: to_units = unit_system["magnetic_field_cgs"] equiv = "CGS" if from_units.dimensions == to_units.dimensions: convert = lambda x: x.in_units(to_units) else: convert = lambda x: x.to_equivalent(to_units, equiv) def mag_field(fd): def _mag_field(field, data): return convert(data[fd]) return _mag_field for ax, fd in zip(registry.ds.coordinates.axis_order, ds_fields): registry.add_field((ftype,"magnetic_field_%s" % ax), sampling_type="cell", function=mag_field(fd), units=unit_system[to_units.dimensions])
[ "numpy.sqrt", "yt.utilities.math_utils.get_sph_theta_component", "yt.fields.derived_field.ValidateParameter", "yt.units.unit_object.Unit", "yt.utilities.math_utils.get_sph_phi_component" ]
[((6662, 6732), 'yt.units.unit_object.Unit', 'Unit', (['registry[ds_fields[0]].units'], {'registry': 'registry.ds.unit_registry'}), '(registry[ds_fields[0]].units, registry=registry.ds.unit_registry)\n', (6666, 6732), False, 'from yt.units.unit_object import Unit\n'), ((1466, 1477), 'numpy.sqrt', 'np.sqrt', (['B2'], {}), '(B2)\n', (1473, 1477), True, 'import numpy as np\n'), ((2996, 3048), 'yt.utilities.math_utils.get_sph_theta_component', 'get_sph_theta_component', (['Bfields', 'theta', 'phi', 'normal'], {}), '(Bfields, theta, phi, normal)\n', (3019, 3048), False, 'from yt.utilities.math_utils import get_sph_theta_component, get_sph_phi_component\n'), ((3513, 3556), 'yt.utilities.math_utils.get_sph_phi_component', 'get_sph_phi_component', (['Bfields', 'phi', 'normal'], {}), '(Bfields, phi, normal)\n', (3534, 3556), False, 'from yt.utilities.math_utils import get_sph_theta_component, get_sph_phi_component\n'), ((4871, 4936), 'numpy.sqrt', 'np.sqrt', (["(mag_factors[B.units.dimensions] * data[ftype, 'density'])"], {}), "(mag_factors[B.units.dimensions] * data[ftype, 'density'])\n", (4878, 4936), True, 'import numpy as np\n'), ((3743, 3765), 'numpy.sqrt', 'np.sqrt', (['(r * r + z * z)'], {}), '(r * r + z * z)\n', (3750, 3765), True, 'import numpy as np\n'), ((4544, 4571), 'yt.fields.derived_field.ValidateParameter', 'ValidateParameter', (['"""normal"""'], {}), "('normal')\n", (4561, 4571), False, 'from yt.fields.derived_field import ValidateParameter\n'), ((4738, 4765), 'yt.fields.derived_field.ValidateParameter', 'ValidateParameter', (['"""normal"""'], {}), "('normal')\n", (4755, 4765), False, 'from yt.fields.derived_field import ValidateParameter\n')]
import cv2 import numpy as np from collections import defaultdict def segment_by_angle_kmeans(lines, k=2, **kwargs): """Groups lines based on angle with k-means. Uses k-means on the coordinates of the angle on the unit circle to segment `k` angles inside `lines`. """ # Define criteria = (type, max_iter, epsilon) default_criteria_type = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER criteria = kwargs.get('criteria', (default_criteria_type, 10, 1.0)) flags = kwargs.get('flags', cv2.KMEANS_RANDOM_CENTERS) attempts = kwargs.get('attempts', 10) # returns angles in [0, pi] in radians angles = np.array([line[0][1] for line in lines]) # multiply the angles by two and find coordinates of that angle pts = np.array([[np.cos(2*angle), np.sin(2*angle)] for angle in angles], dtype=np.float32) # run kmeans on the coords labels, centers = cv2.kmeans(pts, k, None, criteria, attempts, flags)[1:] labels = labels.reshape(-1) # transpose to row vec # segment lines based on their kmeans label segmented = defaultdict(list) for i, line in zip(range(len(lines)), lines): segmented[labels[i]].append(line) segmented = list(segmented.values()) return segmented
[ "cv2.kmeans", "numpy.array", "collections.defaultdict", "numpy.cos", "numpy.sin" ]
[((647, 687), 'numpy.array', 'np.array', (['[line[0][1] for line in lines]'], {}), '([line[0][1] for line in lines])\n', (655, 687), True, 'import numpy as np\n'), ((1102, 1119), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1113, 1119), False, 'from collections import defaultdict\n'), ((925, 976), 'cv2.kmeans', 'cv2.kmeans', (['pts', 'k', 'None', 'criteria', 'attempts', 'flags'], {}), '(pts, k, None, criteria, attempts, flags)\n', (935, 976), False, 'import cv2\n'), ((777, 794), 'numpy.cos', 'np.cos', (['(2 * angle)'], {}), '(2 * angle)\n', (783, 794), True, 'import numpy as np\n'), ((794, 811), 'numpy.sin', 'np.sin', (['(2 * angle)'], {}), '(2 * angle)\n', (800, 811), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin # Register your models here. from .models import Article, Language, Feed @admin.register(Article) class ArticleAdmin(admin.ModelAdmin): list_display = ('published', 'title', 'valid') list_display_links = ('published', 'title') prepopulated_fields = {'slug': ('title',), } list_select_related = ('language', 'thumb') raw_id_fields = ('authors', 'things', 'people') search_fields = ('title', 'description', 'url', 'text', 'html') # @admin.register(Language) # class LanguageAdmin(admin.ModelAdmin): # list_display = ('code', 'name') @admin.register(Feed) class FeedAdmin(admin.ModelAdmin): list_display = ('url', 'domain', 'valid')
[ "django.contrib.admin.register" ]
[((175, 198), 'django.contrib.admin.register', 'admin.register', (['Article'], {}), '(Article)\n', (189, 198), False, 'from django.contrib import admin\n'), ((665, 685), 'django.contrib.admin.register', 'admin.register', (['Feed'], {}), '(Feed)\n', (679, 685), False, 'from django.contrib import admin\n')]
import os import argparse def get_args(): args_parser = argparse.ArgumentParser() args_parser.add_argument( '--input-dir', type = str, help = 'input directory with source data', required = False ) args_parser.add_argument( '--input-file', type = str, help = 'input file with source data', required = False ) args_parser.add_argument( '--output-dir', type = str, help = 'output directory with result data', required = True ) return args_parser.parse_args() def convert_playlist(aimp_playlist_directory, aimp_playlist_filename): def get_m3u8_playlist_lines(): def get_relative_audiofile_path(audiofile_path): paths = {audiofile_path, args.output_dir} common_path = os.path.commonpath(paths) if common_path != '': result = os.path.relpath(audiofile_path, start = common_path) else: result = audiofile_path return result result = [] result.append('#EXTM3U') is_content = False for (index, line) in enumerate(aimp_playlist_lines): if line == '#-----CONTENT-----#': is_content = True continue if not is_content: continue if line.startswith('#-----'): is_content = False continue if line.startswith('-'): continue line_parts = line.split('|') audiofile_path = get_relative_audiofile_path(line_parts[0]) result.append('#EXTINF:') result.append(audiofile_path) return result def write_m3u8_playlist(): def get_m3u8_playlist_path(): aimp_playlist_filename_without_extension = os.path.splitext(aimp_playlist_filename)[0] m3u8_playlist_filename = '{}.m3u8'.format(aimp_playlist_filename_without_extension) return os.path.join(args.output_dir, m3u8_playlist_filename) playlist_path = get_m3u8_playlist_path() playlist_data = '\n'.join(m3u8_playlist_lines) with open(playlist_path, "w", encoding = 'utf-8-sig') as m3u8file: m3u8file.write(playlist_data) file_path = os.path.join(aimp_playlist_directory, aimp_playlist_filename) with open(file_path, encoding = 'utf_16_le') as handle: aimp_playlist_lines = handle.read().splitlines() m3u8_playlist_lines = get_m3u8_playlist_lines() write_m3u8_playlist() args = get_args() if args.input_file != None: dirname = os.path.dirname(args.input_file) basename = os.path.basename(args.input_file) convert_playlist(dirname, basename) elif args.input_dir != None: files = os.walk(args.input_dir) for root, dirs, filenames in files: for filename in filenames: filename_extension = os.path.splitext(filename)[1] if filename_extension == '.aimppl4': convert_playlist(args.input_dir, filename)
[ "argparse.ArgumentParser", "os.path.join", "os.path.splitext", "os.path.dirname", "os.path.basename", "os.path.commonpath", "os.walk", "os.path.relpath" ]
[((62, 87), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (85, 87), False, 'import argparse\n'), ((2398, 2459), 'os.path.join', 'os.path.join', (['aimp_playlist_directory', 'aimp_playlist_filename'], {}), '(aimp_playlist_directory, aimp_playlist_filename)\n', (2410, 2459), False, 'import os\n'), ((2761, 2793), 'os.path.dirname', 'os.path.dirname', (['args.input_file'], {}), '(args.input_file)\n', (2776, 2793), False, 'import os\n'), ((2812, 2845), 'os.path.basename', 'os.path.basename', (['args.input_file'], {}), '(args.input_file)\n', (2828, 2845), False, 'import os\n'), ((2938, 2961), 'os.walk', 'os.walk', (['args.input_dir'], {}), '(args.input_dir)\n', (2945, 2961), False, 'import os\n'), ((869, 894), 'os.path.commonpath', 'os.path.commonpath', (['paths'], {}), '(paths)\n', (887, 894), False, 'import os\n'), ((2096, 2149), 'os.path.join', 'os.path.join', (['args.output_dir', 'm3u8_playlist_filename'], {}), '(args.output_dir, m3u8_playlist_filename)\n', (2108, 2149), False, 'import os\n'), ((955, 1005), 'os.path.relpath', 'os.path.relpath', (['audiofile_path'], {'start': 'common_path'}), '(audiofile_path, start=common_path)\n', (970, 1005), False, 'import os\n'), ((1915, 1955), 'os.path.splitext', 'os.path.splitext', (['aimp_playlist_filename'], {}), '(aimp_playlist_filename)\n', (1931, 1955), False, 'import os\n'), ((3089, 3115), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3105, 3115), False, 'import os\n')]
import time class FiboIter(): def __init__(self, max:int): self.max = max def __iter__(self): self.num1 = 0 self.num2 = 1 self.counter = 0 return self def __next__(self): if self.counter == 0: self.counter += 1 return self.num1 elif self.counter == 1: self.counter += 1 return self.num2 else: if self.counter <= self.max: self.aux = self.num1 + self.num2 self.num1, self.num2 = self.num2, self.aux self.counter += 1 return self.aux else: raise StopIteration if __name__ == '__main__': fibonacci = FiboIter for element in fibonacci(50): print(element) time.sleep(0.5)
[ "time.sleep" ]
[((812, 827), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (822, 827), False, 'import time\n')]
import json import unittest from choria_external.exceptions import InvalidRPCData from mco_agent.protocol import ( ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply) class TestProtocolMessage(unittest.TestCase): def setUp(self): pass def test_parse_valid_external_request(self): request = ExternalRPCRequest.from_dict({ '$schema': 'https://choria.io/schemas/mcorpc/external/v1/rpc_request.json', 'protocol': 'io.choria.mcorpc.external.v1.rpc_request', 'agent': 'testagent', 'action': 'testaction', 'requestid': '123', 'senderid': '123', 'callerid': '123', 'collective': 'mcollective', 'ttl': 30, 'msgtime': 123, 'data': {}, }) self.assertIsInstance(request, ExternalRPCRequest) self.assertEqual('testagent', request.agent) self.assertEqual('testaction', request.action) def test_parse_invalid_external_request(self): with self.assertRaises(InvalidRPCData): ExternalRPCRequest.from_dict({ 'invalid_dict': True, }) with self.assertRaises(InvalidRPCData): ExternalRPCRequest.from_dict({ 'protocol': 'io.choria.mcorpc.external.v1.rpc_request', 'agent': 'testagent', 'action': 'testaction', 'requestid': '123', 'senderid': '123', 'callerid': '123', 'collective': 'mcollective', 'ttl': 30, 'msgtime': 123, 'data': {}, 'extra_field': True, }) def test_parse_valid_activation_check(self): request = ExternalActivationRequest.from_dict({ '$schema': 'https://choria.io/schemas/mcorpc/external/v1/activation_request.json', 'protocol': 'io.choria.mcorpc.external.v1.activation_request', 'agent': 'testagent', }) self.assertIsInstance(request, ExternalActivationRequest) self.assertEqual('testagent', request.agent) def test_activation_reply_mark_failure(self): reply = ActivationReply() self.assertTrue(reply.successful()) self.assertTrue(reply.activate) reply.fail() self.assertFalse(reply.activate) def test_activation_reply_serialisation(self): reply = ActivationReply() self.assertEqual('{"activate": true}', reply.to_json()) def test_activation_reply_inactive_serialisation(self): reply = ActivationReply() reply.activate = False self.assertEqual('{"activate": false}', reply.to_json()) def test_action_reply_reply_serialisation(self): reply = ActionReply() result = json.loads(reply.to_json()) self.assertEqual(3, len(result.keys())) self.assertIn('statuscode', result) self.assertIn('statusmsg', result) self.assertIn('data', result) def test_action_reply_mark_failure(self): reply = ActionReply() self.assertEqual(0, reply.statuscode) self.assertEqual('', reply.statusmsg) self.assertTrue(reply.successful()) reply.fail(1, 'test') self.assertEqual(1, reply.statuscode) self.assertEqual('test', reply.statusmsg) self.assertFalse(reply.successful())
[ "mco_agent.protocol.ExternalRPCRequest.from_dict", "mco_agent.protocol.ActivationReply", "mco_agent.protocol.ActionReply", "mco_agent.protocol.ExternalActivationRequest.from_dict" ]
[((352, 706), 'mco_agent.protocol.ExternalRPCRequest.from_dict', 'ExternalRPCRequest.from_dict', (["{'$schema': 'https://choria.io/schemas/mcorpc/external/v1/rpc_request.json',\n 'protocol': 'io.choria.mcorpc.external.v1.rpc_request', 'agent':\n 'testagent', 'action': 'testaction', 'requestid': '123', 'senderid':\n '123', 'callerid': '123', 'collective': 'mcollective', 'ttl': 30,\n 'msgtime': 123, 'data': {}}"], {}), "({'$schema':\n 'https://choria.io/schemas/mcorpc/external/v1/rpc_request.json',\n 'protocol': 'io.choria.mcorpc.external.v1.rpc_request', 'agent':\n 'testagent', 'action': 'testaction', 'requestid': '123', 'senderid':\n '123', 'callerid': '123', 'collective': 'mcollective', 'ttl': 30,\n 'msgtime': 123, 'data': {}})\n", (380, 706), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((1794, 2011), 'mco_agent.protocol.ExternalActivationRequest.from_dict', 'ExternalActivationRequest.from_dict', (["{'$schema':\n 'https://choria.io/schemas/mcorpc/external/v1/activation_request.json',\n 'protocol': 'io.choria.mcorpc.external.v1.activation_request', 'agent':\n 'testagent'}"], {}), "({'$schema':\n 'https://choria.io/schemas/mcorpc/external/v1/activation_request.json',\n 'protocol': 'io.choria.mcorpc.external.v1.activation_request', 'agent':\n 'testagent'})\n", (1829, 2011), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((2234, 2251), 'mco_agent.protocol.ActivationReply', 'ActivationReply', ([], {}), '()\n', (2249, 2251), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((2466, 2483), 'mco_agent.protocol.ActivationReply', 'ActivationReply', ([], {}), '()\n', (2481, 2483), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((2625, 2642), 'mco_agent.protocol.ActivationReply', 'ActivationReply', ([], {}), '()\n', (2640, 2642), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((2809, 2822), 'mco_agent.protocol.ActionReply', 'ActionReply', ([], {}), '()\n', (2820, 2822), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((3104, 3117), 'mco_agent.protocol.ActionReply', 'ActionReply', ([], {}), '()\n', (3115, 3117), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((1110, 1162), 'mco_agent.protocol.ExternalRPCRequest.from_dict', 'ExternalRPCRequest.from_dict', (["{'invalid_dict': True}"], {}), "({'invalid_dict': True})\n", (1138, 1162), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n'), ((1255, 1551), 'mco_agent.protocol.ExternalRPCRequest.from_dict', 'ExternalRPCRequest.from_dict', (["{'protocol': 'io.choria.mcorpc.external.v1.rpc_request', 'agent':\n 'testagent', 'action': 'testaction', 'requestid': '123', 'senderid':\n '123', 'callerid': '123', 'collective': 'mcollective', 'ttl': 30,\n 'msgtime': 123, 'data': {}, 'extra_field': True}"], {}), "({'protocol':\n 'io.choria.mcorpc.external.v1.rpc_request', 'agent': 'testagent',\n 'action': 'testaction', 'requestid': '123', 'senderid': '123',\n 'callerid': '123', 'collective': 'mcollective', 'ttl': 30, 'msgtime': \n 123, 'data': {}, 'extra_field': True})\n", (1283, 1551), False, 'from mco_agent.protocol import ExternalRPCRequest, ExternalActivationRequest, ActivationReply, ActionReply\n')]
import sys from rpython.rlib.objectmodel import we_are_translated, fetch_translated_config from rpython.rlib.objectmodel import specialize from rpython.rlib.rarithmetic import r_longlong from rpython.rtyper.lltypesystem import lltype, llmemory, rstr from rpython.rtyper.lltypesystem.lloperation import llop from rpython.rtyper.extregistry import ExtRegistryEntry from rpython.rtyper.annlowlevel import llhelper, hlstr from rpython.rtyper.annlowlevel import cast_gcref_to_instance from rpython.rtyper.lltypesystem import lltype, rffi CMD_PRINT = 1 CMD_BACKTRACE = 2 CMD_LOCALS = 3 CMD_BREAKPOINTS = 4 CMD_STACKID = 5 CMD_ATTACHID = 6 CMD_COMPILEWATCH= 7 CMD_CHECKWATCH = 8 CMD_WATCHVALUES = 9 ANSWER_LINECACHE= 19 ANSWER_TEXT = 20 ANSWER_STACKID = 21 ANSWER_NEXTNID = 22 ANSWER_WATCH = 23 ANSWER_CHBKPT = 24 def stop_point(place=0): """Indicates a point in the execution of the RPython program where the reverse-debugger can stop. When reverse-debugging, we see the "time" as the index of the stop-point that happened. """ if we_are_translated(): if fetch_translated_config().translation.reverse_debugger: llop.revdb_stop_point(lltype.Void, place) def register_debug_command(command, lambda_func): """Register the extra RPython-implemented debug command.""" def send_answer(cmd, arg1=0, arg2=0, arg3=0, extra=""): """For RPython debug commands: writes an answer block to stdout""" llop.revdb_send_answer(lltype.Void, cmd, arg1, arg2, arg3, extra) def send_output(text): send_answer(ANSWER_TEXT, extra=text) def send_print(text): send_answer(ANSWER_TEXT, 1, extra=text) # adds a newline def send_nextnid(unique_id): send_answer(ANSWER_NEXTNID, unique_id) def send_watch(text, ok_flag): send_answer(ANSWER_WATCH, ok_flag, extra=text) def send_linecache(filename, linenum, strip=True): send_answer(ANSWER_LINECACHE, linenum, int(strip), extra=filename) def send_change_breakpoint(breakpointnum, newtext=''): send_answer(ANSWER_CHBKPT, breakpointnum, extra=newtext) def current_time(): """For RPython debug commands: returns the current time.""" return llop.revdb_get_value(lltype.SignedLongLong, 'c') def current_break_time(): """Returns the time configured for the next break. When going forward, this is the target time at which we'll stop going forward.""" return llop.revdb_get_value(lltype.SignedLongLong, 'b') def total_time(): """For RPython debug commands: returns the total time (measured as the total number of stop-points).""" return llop.revdb_get_value(lltype.SignedLongLong, 't') def currently_created_objects(): """For RPython debug commands: returns the current value of the object creation counter. All objects created so far have a lower unique id; all objects created afterwards will have a unique id greater or equal.""" return llop.revdb_get_value(lltype.SignedLongLong, 'u') def current_place(): """For RPython debug commands: the value of the 'place' argument passed to stop_point(). """ return llop.revdb_get_value(lltype.Signed, 'p') def flag_io_disabled(): """Returns True if we're in the debugger typing commands.""" if we_are_translated(): if fetch_translated_config().translation.reverse_debugger: flag = llop.revdb_get_value(lltype.Signed, 'i') return flag != ord('R') # FID_REGULAR_MODE return False ## @specialize.arg(1) ## def go_forward(time_delta, callback): ## """For RPython debug commands: tells that after this function finishes, ## the debugger should run the 'forward <time_delta>' command and then ## invoke the 'callback' with no argument. ## """ ## _change_time('f', time_delta, callback) def breakpoint(num): llop.revdb_breakpoint(lltype.Void, num) def set_thread_breakpoint(tnum): llop.revdb_set_thread_breakpoint(lltype.Void, tnum) @specialize.argtype(0) def get_unique_id(x): """Returns the creation number of the object 'x'. For objects created by the program, it is globally unique, monotonic, and reproducible among multiple processes. For objects created by a debug command, this returns a (random) negative number. Right now, this returns 0 for all prebuilt objects. """ return llop.revdb_get_unique_id(lltype.SignedLongLong, x) def track_object(unique_id, callback): """Track the creation of the object given by its unique_id, which must be in the future (i.e. >= currently_created_objects()). Call this before go_forward(). If go_forward() goes over the creation of this object, then 'callback(gcref)' is called. Careful in callback(), gcref is not fully initialized and should not be immediately read from, only stored for later. The purpose of callback() is to possibly call track_object() again to track the next object, and/or to call breakpoint(). Note: object tracking remains activated until one of: (1) we reach the creation time in go_forward(); (2) we call track_object() to track a different object; (3) we call jump_in_time(). """ ll_callback = llhelper(_CALLBACK_GCREF_FNPTR, callback) llop.revdb_track_object(lltype.Void, unique_id, ll_callback) def watch_save_state(force=False): return llop.revdb_watch_save_state(lltype.Bool, force) def watch_restore_state(any_watch_point): llop.revdb_watch_restore_state(lltype.Void, any_watch_point) def split_breakpoints_arg(breakpoints): # RPython generator to help in splitting the string arg in CMD_BREAKPOINTS n = 0 i = 0 while i < len(breakpoints): kind = breakpoints[i] i += 1 if kind != '\x00': length = (ord(breakpoints[i]) | (ord(breakpoints[i + 1]) << 8) | (ord(breakpoints[i + 2]) << 16)) assert length >= 0 i += 3 yield n, kind, breakpoints[i : i + length] i += length n += 1 assert i == len(breakpoints) # ____________________________________________________________ ## @specialize.arg(2) ## def _change_time(mode, time, callback): ## ll_callback = llhelper(_CALLBACK_NOARG_FNPTR, callback) ## llop.revdb_change_time(lltype.Void, mode, time, ll_callback) ## _CALLBACK_NOARG_FNPTR = lltype.Ptr(lltype.FuncType([], lltype.Void)) _CALLBACK_GCREF_FNPTR = lltype.Ptr(lltype.FuncType([llmemory.GCREF], lltype.Void)) _CMDPTR = rffi.CStructPtr('rpy_revdb_command_s', ('cmd', rffi.INT), ('arg1', lltype.SignedLongLong), ('arg2', lltype.SignedLongLong), ('arg3', lltype.SignedLongLong), hints={'ignore_revdb': True}) class RegisterDebugCommand(ExtRegistryEntry): _about_ = register_debug_command def compute_result_annotation(self, s_command_num, s_lambda_func): command_num = s_command_num.const lambda_func = s_lambda_func.const assert isinstance(command_num, (int, str)) t = self.bookkeeper.annotator.translator if t.config.translation.reverse_debugger: func = lambda_func() try: cmds = t.revdb_commands except AttributeError: cmds = t.revdb_commands = {} old_func = cmds.setdefault(command_num, func) assert old_func is func s_func = self.bookkeeper.immutablevalue(func) arg_getter = getattr(self, 'arguments_' + str(command_num), self.default_arguments) self.bookkeeper.emulate_pbc_call(self.bookkeeper.position_key, s_func, arg_getter()) def default_arguments(self): from rpython.annotator import model as annmodel from rpython.rtyper import llannotation return [llannotation.SomePtr(ll_ptrtype=_CMDPTR), annmodel.SomeString()] def arguments_ALLOCATING(self): from rpython.annotator import model as annmodel from rpython.rtyper import llannotation return [annmodel.SomeInteger(knowntype=r_longlong), llannotation.lltype_to_annotation(llmemory.GCREF)] def arguments_WATCHING(self): raise Exception("XXX remove me") def specialize_call(self, hop): hop.exception_cannot_occur() # ____________________________________________________________ # Emulation for strtod() and dtoa() when running debugger commands # (we can't easily just call C code there). The emulation can return # a crude result. Hack hack hack. _INVALID_STRTOD = -3.46739514239368e+113 def emulate_strtod(input): d = llop.revdb_strtod(lltype.Float, input) if d == _INVALID_STRTOD: raise ValueError return d def emulate_dtoa(value): s = llop.revdb_dtoa(lltype.Ptr(rstr.STR), value) s = hlstr(s) assert s is not None return s def emulate_modf(x): return (llop.revdb_modf(lltype.Float, x, 0), llop.revdb_modf(lltype.Float, x, 1)) def emulate_frexp(x): return (llop.revdb_frexp(lltype.Float, x, 0), int(llop.revdb_frexp(lltype.Float, x, 1)))
[ "rpython.rlib.objectmodel.we_are_translated", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_breakpoint", "rpython.rtyper.llannotation.SomePtr", "rpython.rlib.objectmodel.fetch_translated_config", "rpython.rlib.objectmodel.specialize.argtype", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_modf", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value", "rpython.rtyper.lltypesystem.rffi.CStructPtr", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_set_thread_breakpoint", "rpython.rtyper.lltypesystem.lltype.FuncType", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_stop_point", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_watch_restore_state", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_strtod", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_track_object", "rpython.rtyper.annlowlevel.llhelper", "rpython.rtyper.lltypesystem.lltype.Ptr", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_unique_id", "rpython.rtyper.annlowlevel.hlstr", "rpython.rtyper.llannotation.lltype_to_annotation", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_send_answer", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_watch_save_state", "rpython.annotator.model.SomeInteger", "rpython.rtyper.lltypesystem.lloperation.llop.revdb_frexp", "rpython.annotator.model.SomeString" ]
[((3952, 3973), 'rpython.rlib.objectmodel.specialize.argtype', 'specialize.argtype', (['(0)'], {}), '(0)\n', (3970, 3973), False, 'from rpython.rlib.objectmodel import specialize\n'), ((6534, 6730), 'rpython.rtyper.lltypesystem.rffi.CStructPtr', 'rffi.CStructPtr', (['"""rpy_revdb_command_s"""', "('cmd', rffi.INT)", "('arg1', lltype.SignedLongLong)", "('arg2', lltype.SignedLongLong)", "('arg3', lltype.SignedLongLong)"], {'hints': "{'ignore_revdb': True}"}), "('rpy_revdb_command_s', ('cmd', rffi.INT), ('arg1', lltype.\n SignedLongLong), ('arg2', lltype.SignedLongLong), ('arg3', lltype.\n SignedLongLong), hints={'ignore_revdb': True})\n", (6549, 6730), False, 'from rpython.rtyper.lltypesystem import lltype, rffi\n'), ((1082, 1101), 'rpython.rlib.objectmodel.we_are_translated', 'we_are_translated', ([], {}), '()\n', (1099, 1101), False, 'from rpython.rlib.objectmodel import we_are_translated, fetch_translated_config\n'), ((1471, 1536), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_send_answer', 'llop.revdb_send_answer', (['lltype.Void', 'cmd', 'arg1', 'arg2', 'arg3', 'extra'], {}), '(lltype.Void, cmd, arg1, arg2, arg3, extra)\n', (1493, 1536), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((2180, 2228), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.SignedLongLong', '"""c"""'], {}), "(lltype.SignedLongLong, 'c')\n", (2200, 2228), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((2409, 2457), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.SignedLongLong', '"""b"""'], {}), "(lltype.SignedLongLong, 'b')\n", (2429, 2457), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((2600, 2648), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.SignedLongLong', '"""t"""'], {}), "(lltype.SignedLongLong, 't')\n", (2620, 2648), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((2925, 2973), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.SignedLongLong', '"""u"""'], {}), "(lltype.SignedLongLong, 'u')\n", (2945, 2973), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((3112, 3152), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.Signed', '"""p"""'], {}), "(lltype.Signed, 'p')\n", (3132, 3152), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((3250, 3269), 'rpython.rlib.objectmodel.we_are_translated', 'we_are_translated', ([], {}), '()\n', (3267, 3269), False, 'from rpython.rlib.objectmodel import we_are_translated, fetch_translated_config\n'), ((3820, 3859), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_breakpoint', 'llop.revdb_breakpoint', (['lltype.Void', 'num'], {}), '(lltype.Void, num)\n', (3841, 3859), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((3898, 3949), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_set_thread_breakpoint', 'llop.revdb_set_thread_breakpoint', (['lltype.Void', 'tnum'], {}), '(lltype.Void, tnum)\n', (3930, 3949), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((4334, 4384), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_unique_id', 'llop.revdb_get_unique_id', (['lltype.SignedLongLong', 'x'], {}), '(lltype.SignedLongLong, x)\n', (4358, 4384), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((5169, 5210), 'rpython.rtyper.annlowlevel.llhelper', 'llhelper', (['_CALLBACK_GCREF_FNPTR', 'callback'], {}), '(_CALLBACK_GCREF_FNPTR, callback)\n', (5177, 5210), False, 'from rpython.rtyper.annlowlevel import llhelper, hlstr\n'), ((5215, 5275), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_track_object', 'llop.revdb_track_object', (['lltype.Void', 'unique_id', 'll_callback'], {}), '(lltype.Void, unique_id, ll_callback)\n', (5238, 5275), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((5323, 5370), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_watch_save_state', 'llop.revdb_watch_save_state', (['lltype.Bool', 'force'], {}), '(lltype.Bool, force)\n', (5350, 5370), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((5418, 5478), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_watch_restore_state', 'llop.revdb_watch_restore_state', (['lltype.Void', 'any_watch_point'], {}), '(lltype.Void, any_watch_point)\n', (5448, 5478), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((6425, 6471), 'rpython.rtyper.lltypesystem.lltype.FuncType', 'lltype.FuncType', (['[llmemory.GCREF]', 'lltype.Void'], {}), '([llmemory.GCREF], lltype.Void)\n', (6440, 6471), False, 'from rpython.rtyper.lltypesystem import lltype, rffi\n'), ((8804, 8842), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_strtod', 'llop.revdb_strtod', (['lltype.Float', 'input'], {}), '(lltype.Float, input)\n', (8821, 8842), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((8997, 9005), 'rpython.rtyper.annlowlevel.hlstr', 'hlstr', (['s'], {}), '(s)\n', (9002, 9005), False, 'from rpython.rtyper.annlowlevel import llhelper, hlstr\n'), ((8960, 8980), 'rpython.rtyper.lltypesystem.lltype.Ptr', 'lltype.Ptr', (['rstr.STR'], {}), '(rstr.STR)\n', (8970, 8980), False, 'from rpython.rtyper.lltypesystem import lltype, rffi\n'), ((9078, 9113), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_modf', 'llop.revdb_modf', (['lltype.Float', 'x', '(0)'], {}), '(lltype.Float, x, 0)\n', (9093, 9113), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((9127, 9162), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_modf', 'llop.revdb_modf', (['lltype.Float', 'x', '(1)'], {}), '(lltype.Float, x, 1)\n', (9142, 9162), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((9199, 9235), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_frexp', 'llop.revdb_frexp', (['lltype.Float', 'x', '(0)'], {}), '(lltype.Float, x, 0)\n', (9215, 9235), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((1182, 1223), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_stop_point', 'llop.revdb_stop_point', (['lltype.Void', 'place'], {}), '(lltype.Void, place)\n', (1203, 1223), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((3357, 3397), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_get_value', 'llop.revdb_get_value', (['lltype.Signed', '"""i"""'], {}), "(lltype.Signed, 'i')\n", (3377, 3397), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((7989, 8029), 'rpython.rtyper.llannotation.SomePtr', 'llannotation.SomePtr', ([], {'ll_ptrtype': '_CMDPTR'}), '(ll_ptrtype=_CMDPTR)\n', (8009, 8029), False, 'from rpython.rtyper import llannotation\n'), ((8047, 8068), 'rpython.annotator.model.SomeString', 'annmodel.SomeString', ([], {}), '()\n', (8066, 8068), True, 'from rpython.annotator import model as annmodel\n'), ((8227, 8269), 'rpython.annotator.model.SomeInteger', 'annmodel.SomeInteger', ([], {'knowntype': 'r_longlong'}), '(knowntype=r_longlong)\n', (8247, 8269), True, 'from rpython.annotator import model as annmodel\n'), ((8287, 8336), 'rpython.rtyper.llannotation.lltype_to_annotation', 'llannotation.lltype_to_annotation', (['llmemory.GCREF'], {}), '(llmemory.GCREF)\n', (8320, 8336), False, 'from rpython.rtyper import llannotation\n'), ((9253, 9289), 'rpython.rtyper.lltypesystem.lloperation.llop.revdb_frexp', 'llop.revdb_frexp', (['lltype.Float', 'x', '(1)'], {}), '(lltype.Float, x, 1)\n', (9269, 9289), False, 'from rpython.rtyper.lltypesystem.lloperation import llop\n'), ((1114, 1139), 'rpython.rlib.objectmodel.fetch_translated_config', 'fetch_translated_config', ([], {}), '()\n', (1137, 1139), False, 'from rpython.rlib.objectmodel import we_are_translated, fetch_translated_config\n'), ((3282, 3307), 'rpython.rlib.objectmodel.fetch_translated_config', 'fetch_translated_config', ([], {}), '()\n', (3305, 3307), False, 'from rpython.rlib.objectmodel import we_are_translated, fetch_translated_config\n')]
from balutils.CatalogFeature import SimpleCatalog import numpy as np class Detection(SimpleCatalog): """ Adds detection catalog functionality to the catalog. """ def applyTo(self, catalog: Catalog) -> None: self.parent.applyTo(catalog) ''' Balrog stack versions 1.4 and below have a small bug that seems to duplicate exactly 1 object, so check for these ''' unq, unq_idx, unq_cnt = np.unique( catalog._cat['bal_id'], return_inverse=True, return_counts=True ) Nunq = len(unq) if Nunq != catalog.Nobjs: Ndups = catalog.Nobjs - Nunq dup_ids = unq[np.where(unq_cnt > 1)] print('Warning: Detection catalog has {} duplicate(s)!'.format(Ndups)) print('Removing the following duplicates from detection catalog:') print(dup_ids) Nbefore = catalog.Nobjs for did in dup_ids: indx = np.where(catalog._cat['bal_id']==did)[0] L = len(indx) for i in range(L-1): # keep last one catalog._cat.remove_row(indx[i]) catalog.Nobjs = len(catalog._cat) assert catalog.Nobjs == (Nbefore - Ndups) print('{} duplicates removed, catalog size now {}'.format(Ndups, catalog.Nobjs)) return
[ "numpy.where", "numpy.unique" ]
[((457, 531), 'numpy.unique', 'np.unique', (["catalog._cat['bal_id']"], {'return_inverse': '(True)', 'return_counts': '(True)'}), "(catalog._cat['bal_id'], return_inverse=True, return_counts=True)\n", (466, 531), True, 'import numpy as np\n'), ((705, 726), 'numpy.where', 'np.where', (['(unq_cnt > 1)'], {}), '(unq_cnt > 1)\n', (713, 726), True, 'import numpy as np\n'), ((1009, 1048), 'numpy.where', 'np.where', (["(catalog._cat['bal_id'] == did)"], {}), "(catalog._cat['bal_id'] == did)\n", (1017, 1048), True, 'import numpy as np\n')]
# Generated by Django 2.0.6 on 2018-07-24 16:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('marketplace', '0055_auto_20180724_1042'), ] operations = [ migrations.AlterField( model_name='organization', name='logo_file', field=models.ImageField(blank=True, help_text='Upload an image file that represents your organization', null=True, upload_to='orglogos/', verbose_name='Organization logo'), ), ]
[ "django.db.models.ImageField" ]
[((349, 523), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'help_text': '"""Upload an image file that represents your organization"""', 'null': '(True)', 'upload_to': '"""orglogos/"""', 'verbose_name': '"""Organization logo"""'}), "(blank=True, help_text=\n 'Upload an image file that represents your organization', null=True,\n upload_to='orglogos/', verbose_name='Organization logo')\n", (366, 523), False, 'from django.db import migrations, models\n')]
import torch import os os.environ["CUDA_VISIBLE_DEVICES"] = "6,7" import json import codecs import pandas as pd import csv if __name__ == '__main__': for index in range(32,33): print(index) json_file = '/datanew/hwb/data/Football/SoftWare/{}/{}.json'.format(index,index) with codecs.open(json_file, 'r', 'utf-8-sig') as f: action_datas = json.load(f) data = action_datas['data'] Team = {} for item in data: team = item['team'] name = item['name'] num = item['num'] # name = team if team not in Team: Team[team] = {} if num not in Team[team]: Team[team][num] = name else: continue with open('/datanew/hwb/data/Football/SoftWare/四官报告/{}_siguan.csv'.format(index),'w',encoding='utf-8-sig') as f: writer = csv.writer(f) for index, team in enumerate(Team.keys()): writer.writerow([team]) for index, team in enumerate(Team.keys()): for [num,name] in Team[team].items(): writer.writerow([index+1,num,name]) # f.writelines('{}\t{}\t{}\n'.format(index+1,num, name)) print(index+1 ,num,name) print()
[ "json.load", "codecs.open", "csv.writer" ]
[((305, 345), 'codecs.open', 'codecs.open', (['json_file', '"""r"""', '"""utf-8-sig"""'], {}), "(json_file, 'r', 'utf-8-sig')\n", (316, 345), False, 'import codecs\n'), ((379, 391), 'json.load', 'json.load', (['f'], {}), '(f)\n', (388, 391), False, 'import json\n'), ((922, 935), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (932, 935), False, 'import csv\n')]
# coding: utf-8 ''' REST_FRAMEWORK = { 'EXCEPTION_HANDLER': 'mymedia.exceptions.exception_handler' } ''' from rest_framework.views import exception_handler as default_handler from rest_framework.response import Response from rest_framework import status from .encoders import BaseObjectEncoder import traceback def exception_handler(exc, context): response = default_handler(exc, context) setattr(exc, 'exc', exc.__class__.__name__) content = BaseObjectEncoder.to_json(exc) return Response(content, status=status.HTTP_400_BAD_REQUEST)
[ "rest_framework.response.Response", "rest_framework.views.exception_handler" ]
[((369, 398), 'rest_framework.views.exception_handler', 'default_handler', (['exc', 'context'], {}), '(exc, context)\n', (384, 398), True, 'from rest_framework.views import exception_handler as default_handler\n'), ((503, 556), 'rest_framework.response.Response', 'Response', (['content'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(content, status=status.HTTP_400_BAD_REQUEST)\n', (511, 556), False, 'from rest_framework.response import Response\n')]
import unittest import numpy as np from topoml_util import geom_scaler as gs # noinspection PyUnresolvedReferences dummy_geom = np.zeros((1, 1, 5)) square = np.array([[ [0., 0., 1., 0., 0.], [1., 0., 1., 0., 0.], [1., 1., 1., 0., 0.], [0., 1., 1., 0., 0.], [0., 0., 0., 0., 1.], ]]) square_duplicate_nodes = np.array([[ [0., 0., 1., 0., 0.], [1., 0., 1., 0., 0.], [1., 1., 1., 0., 0.], [1., 1., 1., 0., 0.], [1., 1., 1., 0., 0.], [1., 1., 1., 0., 0.], [1., 1., 1., 0., 0.], [0., 1., 1., 0., 0.], [0., 0., 0., 0., 1.], ]]) rectangle = np.array([[ [0., 0., 1., 0., 0.], [1., 0., 1., 0., 0.], [1., 2., 1., 0., 0.], [0., 2., 1., 0., 0.], [0., 0., 0., 0., 1.], ]]) normalized_square = np.array([[ [-1., -1., 1., 0., 0.], [ 1., -1., 1., 0., 0.], [ 1., 1., 1., 0., 0.], [-1., 1., 1., 0., 0.], [-1., -1., 0., 0., 1.], ]]) class TestGeomScaler(unittest.TestCase): def test_localized_mean(self): means = gs.localized_mean(square) for mean in means[0]: self.assertTrue((mean == 0.5).all()) def test_localized_mean_rectangle(self): means = gs.localized_mean(rectangle) self.assertEqual(means[0, 0, 0], 0.5) self.assertEqual(means[0, 0, 1], 1) def test_localized_mean_dup_nodes(self): means = gs.localized_mean(square_duplicate_nodes) self.assertTrue((means == 0.75).all()) def test_scaling_square(self): scale = gs.scale(square) self.assertEqual(scale, 0.5) def test_scaling_square_dup_nodes(self): scale = gs.scale(square_duplicate_nodes) self.assertEqual(scale, 0.5) def test_transform(self): # scaled_square = square[0] * 2 # scaled_square[4, 12] = 1. scale = gs.scale(square) n_square = gs.transform(square, scale=scale) self.assertTrue((n_square == normalized_square).all()) coords = [geom[:, :2].flatten() for geom in n_square] coords = [item for sublist in coords for item in sublist] std = np.std(coords) self.assertAlmostEqual(std, 1., 1) def test_upsized_transform(self): square_0 = square[0] * 2 square_0[:4, 2] = 1. square_0[4, 4] = 1. scale = gs.scale([square_0]) n_square = gs.transform([square_0], scale=scale) self.assertTrue((n_square == normalized_square).all()) coords = [geom[:, :2].flatten() for geom in n_square] coords = [item for sublist in coords for item in sublist] std = np.std(coords) self.assertAlmostEqual(std, 1., 1)
[ "topoml_util.geom_scaler.scale", "numpy.array", "numpy.zeros", "topoml_util.geom_scaler.localized_mean", "numpy.std", "topoml_util.geom_scaler.transform" ]
[((131, 150), 'numpy.zeros', 'np.zeros', (['(1, 1, 5)'], {}), '((1, 1, 5))\n', (139, 150), True, 'import numpy as np\n'), ((161, 312), 'numpy.array', 'np.array', (['[[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0,\n 0.0], [0.0, 1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]]]'], {}), '([[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 1.0,\n 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]]])\n', (169, 312), True, 'import numpy as np\n'), ((333, 602), 'numpy.array', 'np.array', (['[[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0,\n 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, \n 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0, 0.0], [\n 0.0, 0.0, 0.0, 0.0, 1.0]]]'], {}), '([[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 1.0,\n 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [\n 1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, \n 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]]])\n', (341, 602), True, 'import numpy as np\n'), ((596, 747), 'numpy.array', 'np.array', (['[[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 2.0, 1.0, 0.0,\n 0.0], [0.0, 2.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]]]'], {}), '([[[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0, 0.0], [1.0, 2.0,\n 1.0, 0.0, 0.0], [0.0, 2.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]]])\n', (604, 747), True, 'import numpy as np\n'), ((763, 925), 'numpy.array', 'np.array', (['[[[-1.0, -1.0, 1.0, 0.0, 0.0], [1.0, -1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, \n 0.0, 0.0], [-1.0, 1.0, 1.0, 0.0, 0.0], [-1.0, -1.0, 0.0, 0.0, 1.0]]]'], {}), '([[[-1.0, -1.0, 1.0, 0.0, 0.0], [1.0, -1.0, 1.0, 0.0, 0.0], [1.0, \n 1.0, 1.0, 0.0, 0.0], [-1.0, 1.0, 1.0, 0.0, 0.0], [-1.0, -1.0, 0.0, 0.0,\n 1.0]]])\n', (771, 925), True, 'import numpy as np\n'), ((1013, 1038), 'topoml_util.geom_scaler.localized_mean', 'gs.localized_mean', (['square'], {}), '(square)\n', (1030, 1038), True, 'from topoml_util import geom_scaler as gs\n'), ((1180, 1208), 'topoml_util.geom_scaler.localized_mean', 'gs.localized_mean', (['rectangle'], {}), '(rectangle)\n', (1197, 1208), True, 'from topoml_util import geom_scaler as gs\n'), ((1361, 1402), 'topoml_util.geom_scaler.localized_mean', 'gs.localized_mean', (['square_duplicate_nodes'], {}), '(square_duplicate_nodes)\n', (1378, 1402), True, 'from topoml_util import geom_scaler as gs\n'), ((1502, 1518), 'topoml_util.geom_scaler.scale', 'gs.scale', (['square'], {}), '(square)\n', (1510, 1518), True, 'from topoml_util import geom_scaler as gs\n'), ((1618, 1650), 'topoml_util.geom_scaler.scale', 'gs.scale', (['square_duplicate_nodes'], {}), '(square_duplicate_nodes)\n', (1626, 1650), True, 'from topoml_util import geom_scaler as gs\n'), ((1811, 1827), 'topoml_util.geom_scaler.scale', 'gs.scale', (['square'], {}), '(square)\n', (1819, 1827), True, 'from topoml_util import geom_scaler as gs\n'), ((1847, 1880), 'topoml_util.geom_scaler.transform', 'gs.transform', (['square'], {'scale': 'scale'}), '(square, scale=scale)\n', (1859, 1880), True, 'from topoml_util import geom_scaler as gs\n'), ((2086, 2100), 'numpy.std', 'np.std', (['coords'], {}), '(coords)\n', (2092, 2100), True, 'import numpy as np\n'), ((2289, 2309), 'topoml_util.geom_scaler.scale', 'gs.scale', (['[square_0]'], {}), '([square_0])\n', (2297, 2309), True, 'from topoml_util import geom_scaler as gs\n'), ((2329, 2366), 'topoml_util.geom_scaler.transform', 'gs.transform', (['[square_0]'], {'scale': 'scale'}), '([square_0], scale=scale)\n', (2341, 2366), True, 'from topoml_util import geom_scaler as gs\n'), ((2572, 2586), 'numpy.std', 'np.std', (['coords'], {}), '(coords)\n', (2578, 2586), True, 'import numpy as np\n')]
import pickle import warnings import numpy as np import pandas as pd from copy import deepcopy as copy from treelib import Tree from functools import reduce class SuperTree(Tree): # tested def get_children_ids(self, nid): return self.is_branch(nid) def get_bfs_nodes(self, ): """ get BFS (breadth first search) node ids :return: ids """ # tested nodes = {} for i in range(self.depth() + 1): nodes[i] = [] for node in self.expand_tree(mode=2): if self.level(node) == i: nodes[i].append(node) return nodes def get_bfs_data(self, ): """ get BFS (breadth first search) nodes data, in {layer_number: [values]} format :return: data: {layer_number: [values]} """ # tested nodes = self.get_bfs_nodes() return {i: list(map(lambda x: self[x].data, nodes[i])) for i in range(self.depth() + 1)} def get_dfs_nodes(self, ): """ get DFS (depth first search) node ids :return: ids """ # tested return self.get_paths_to_leaves() def get_paths_to_leaves(self, ): """ :return: """ res = [] for leaf in self.leaves(): res.append([nid for nid in self.rsearch(leaf.identifier)][::-1]) return res def get_dfs_data(self, dfs_nodes=None): """ get DFS (depth first search) nodes data, in [[val1, val2, ...], [val1, ...]] format the order of dfs node ids is preserved. :return: data: [[val1, val2, ...], [val1, ...]] """ # tested if not dfs_nodes: dfs_nodes = self.get_dfs_nodes() # list return [list(map(lambda x: self[x].data, path)) for path in dfs_nodes] def init_nodes_data(self, value=0): """ initiate node values, you can specify the init_value of all nodes with :param value :return: None """ # tested for id in self.expand_tree(mode=1): self[id].data = value def from_paths(self, paths): """ construct a super_tree from node id paths :param paths: node id paths, eg [['country','china'],['country','usa','texas']] :return: None """ # tested # check duplicated son-fathur relationship for path in paths: current_node = self.root for nid in path: children_ids = self.get_children_ids(current_node) if nid not in children_ids: self.create_node(identifier=nid, parent=current_node) current_node = nid ''' def from_child_father(self, ): return None ''' def from_pickle(self, file: str): """ restore a super_tree from a pickle file :param file: path to pickle file :return: a super_tree obj. """ # tested with open(file, 'rb') as f: stree = pickle.load(f) return stree def get_path_to_node(self, node_id: str): """ get the path of any node in the tree :param node_id: node id :return: path """ # tested path = [nid for nid in self.rsearch(node_id)] path.reverse() return path def fill_with(self, data: dict): """ update values for nodes on the tree fix multiple update issues. 2020/3/23 :param data: data, eg.{id: value} :return: None """ # tested for nid, val in data.items(): self[nid].data = val def to_pickle(self, file: str): """ backup super_tree to a pickle file :param file: the path of pickle file :return: None """ # tested with open(file, 'wb') as f: pickle.dump(self, f) def to_matrix_npy(self, file: str, dtype=np.float32): """ save matrix to npy file :param file: the path of npy file :param dtype: data type :return: None """ # tested matrix = self.get_matrix(dtype=dtype) np.save(file, matrix) def copy(self, using_pickle=True): """ get a deep copy of super_tree :return: new copy of super_tree """ if not using_pickle: return deepcopy(self) else: return pickle.loads(pickle.dumps(self)) # return super_tree(self.subtree(self.root), deep=True) def remove_levels(self, level: int): """ remove levels that are greater that :param level :param level: integer :return: None """ # tested nids = list(self.expand_tree(mode=1))[::-1] for nid in nids: if self.level(nid) >= level: self.remove_node(nid) # check def save_paths_to_csv(self, file: str, fill_na=True): """ save id paths of super_tree to a csv file :param file: csv file path :param fill_na: if True, fill na with '' :return: None """ # tested paths = self.get_paths_to_leaves() df = pd.DataFrame(paths) if fill_na: df.fillna('') df.to_csv(file, sep=',') def get_top_down_ids(self, max_level=-1): """ get node ids in top-down order, tested. :return: [id1, id2, ...] """ if max_level == -1: return [nid for nid in self.expand_tree(mode=self.WIDTH)] else: return [nid for nid in self.expand_tree(mode=self.WIDTH) if self.level(nid) <= max_level] def get_bottom_up_ids(self, ): """ get node ids in bottom-up order, tested. :return: [id1, id2, ...] """ top_down_ids = self.get_top_down_ids() ids = copy(top_down_ids) ids.reverse() return ids def get_ids_by_level(self, ): """ get node ids grouped by level, tested. :return: {1: [id1, ...], 2: [idn, ...], ...} """ levels = range(self.depth() + 1) ids = {level: [] for level in levels} for nid in self.expand_tree(mode=self.WIDTH): ids[self.level(nid)].append(nid) return ids def get_paths_to_level(self, level=-1, ids_by_level=None, include_inner_leaves=True): """ get paths to specific level of the tree, you can specify the ids_by_level :param to \ speed up this calculation, tested :param include_inner_leaves: paths to inner leaves are included with this set to be True :param ids_by_level: ids_by_level dict calculated by `get_ids_by_level` method :param level: level :return: [path1, path2, path3, ...], each path: [id1, id2, id3, ...] """ if not ids_by_level: msg = '''Calculating ids_by_level could be time-consuming, \ you can specify the `ids_by_level` parameter to speed up. e.g. `ids=tree.get_ids_by_level(); tree.get_paths_to_level(level=1; ids_by_level=ids)`.'''.replace('\t', '') warnings.warn(msg, SyntaxWarning) ids_by_level = self.get_ids_by_level() if level == -1: return self.get_paths_to_leaves() elif include_inner_leaves: print('include_inner_leaves: yes') inner_leaves = [node.identifier for node in self.leaves() if self.level(node.identifier) < level] ids_use = ids_by_level[level] + inner_leaves else: print('include_inner_leaves: no') ids_use = ids_by_level[level] return [[nid_ for nid_ in self.rsearch(nid)][::-1] for nid in ids_use] def get_matrix(self, paths=None, ncol=None, dtype=np.float32): """ get matrix (like dfs data format but is a numpy n-dimensional array), tested :param ncol: number of columns of matrix :param paths: paths you want to generate matrix, will calculate itself (time-consuming) if absent \ :param dtype: data type :return: matrix """ # tested if not paths: paths = self.get_paths_to_leaves() if not ncol: ncol = max([len(i) for i in paths]) nrow = len(paths) Matrix = np.zeros(ncol * nrow, dtype=dtype).reshape(nrow, ncol) for row, path in enumerate(paths): for col, nid in enumerate(path): Matrix[row, col] = self[nid].data return Matrix def update_values(self, bottom_up_ids=None): """ starting from the leaf node to the root node, update the value of each node in the tree new_value = old_value + sum([child.data for child in children]) :return: None """ # tested if not bottom_up_ids: msg = '''Calculating the bottom up ids could be very time-consuming, \ you can specify the `bottom_up_ids` parameter to speed up. e.g. `ids=tree.get_bottom_up_ids; tree.update_value(bottom_up_ids=ids)`.'''.replace('\t', '') warnings.warn(msg, SyntaxWarning) bottom_up_ids = self.get_bottom_up_ids() for nid in bottom_up_ids: d = sum([node.data for node in self.children(nid)]) self[nid].data = self[nid].data + d """ get_bottom_up_ids() tested get_top_down_ids() tested update_values() tested get_matrix() tested get_ids_by_level() tested get_paths_to_level() tested """ # paths_to_leaves replacement
[ "pickle.dump", "pickle.dumps", "pickle.load", "numpy.zeros", "copy.deepcopy", "pandas.DataFrame", "warnings.warn", "numpy.save" ]
[((3588, 3609), 'numpy.save', 'np.save', (['file', 'matrix'], {}), '(file, matrix)\n', (3595, 3609), True, 'import numpy as np\n'), ((4457, 4476), 'pandas.DataFrame', 'pd.DataFrame', (['paths'], {}), '(paths)\n', (4469, 4476), True, 'import pandas as pd\n'), ((5029, 5047), 'copy.deepcopy', 'copy', (['top_down_ids'], {}), '(top_down_ids)\n', (5033, 5047), True, 'from copy import deepcopy as copy\n'), ((2615, 2629), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2626, 2629), False, 'import pickle\n'), ((3331, 3351), 'pickle.dump', 'pickle.dump', (['self', 'f'], {}), '(self, f)\n', (3342, 3351), False, 'import pickle\n'), ((6162, 6195), 'warnings.warn', 'warnings.warn', (['msg', 'SyntaxWarning'], {}), '(msg, SyntaxWarning)\n', (6175, 6195), False, 'import warnings\n'), ((7886, 7919), 'warnings.warn', 'warnings.warn', (['msg', 'SyntaxWarning'], {}), '(msg, SyntaxWarning)\n', (7899, 7919), False, 'import warnings\n'), ((3814, 3832), 'pickle.dumps', 'pickle.dumps', (['self'], {}), '(self)\n', (3826, 3832), False, 'import pickle\n'), ((7182, 7216), 'numpy.zeros', 'np.zeros', (['(ncol * nrow)'], {'dtype': 'dtype'}), '(ncol * nrow, dtype=dtype)\n', (7190, 7216), True, 'import numpy as np\n')]
import discord from discord.ext import commands class Voice_Text_Link(commands.Cog): def __init__(self, bot): self.bot = bot async def cog_check(self, ctx): if ctx.channel.type == discord.ChannelType.private: return True if await self.bot.is_owner(ctx.author): return True enabled = await self.bot.pg_conn.fetchval(""" SELECT enabled FROM cogs_data WHERE guild_id = $1 """, ctx.guild.id) if f"Bot.cogs.{self.qualified_name}" in enabled: return True return False @commands.Cog.listener() async def on_voice_state_update(self, member: discord.Member, before: discord.VoiceState, after: discord.VoiceState): join_overwrites = { member.guild.default_role: discord.PermissionOverwrite(read_messages=False, send_messages=False, read_message_history=False), member: discord.PermissionOverwrite(read_messages=True, send_messages=True, read_message_history=True) } leave_overwrites = { member.guild.default_role: discord.PermissionOverwrite(read_messages=False, send_messages=False, read_message_history=False), member: discord.PermissionOverwrite(read_messages=False, send_messages=False, read_message_history=False) } enabled = await self.bot.pg_conn.fetchval(""" SELECT enabled FROM cogs_data WHERE guild_id = $1 """, member.guild.id) if f"Bot.cogs.{self.qualified_name}" in enabled: if after.channel and (not before.channel): after_text_channel_id, history_for_text = await self.bot.pg_conn.fetchval(""" SELECT (text_channel_id, history_for_text) FROM voice_text_data WHERE guild_id = $1 AND voice_channel_id = $2 """, member.guild.id, after.channel.id) channel: discord.TextChannel = discord.utils.get(member.guild.text_channels, id=after_text_channel_id) if channel: join_overwrites = { member.guild.default_role: discord.PermissionOverwrite(read_messages=False, send_messages=False, read_message_history=False), member: discord.PermissionOverwrite(read_messages=True, send_messages=True, read_message_history=True if history_for_text else False) } await channel.edit(overwrites=join_overwrites) elif (not after.channel) and before.channel: before_text_channel_id = await self.bot.pg_conn.fetchval(""" SELECT text_channel_id FROM voice_text_data WHERE guild_id = $1 AND voice_channel_id = $2 """, member.guild.id, before.channel.id) channel: discord.TextChannel = discord.utils.get(member.guild.text_channels, id=before_text_channel_id) if channel: await channel.edit(overwrites=leave_overwrites) await channel.set_permissions(member, overwrite=None) elif after.channel and before.channel: if not after.channel == before.channel: before_text_channel_id = await self.bot.pg_conn.fetchval(""" SELECT text_channel_id FROM voice_text_data WHERE guild_id = $1 AND voice_channel_id = $2 """, member.guild.id, before.channel.id) after_text_channel_id = await self.bot.pg_conn.fetchval(""" SELECT text_channel_id FROM voice_text_data WHERE guild_id = $1 AND voice_channel_id = $2 """, member.guild.id, after.channel.id) before_channel: discord.TextChannel = discord.utils.get(member.guild.text_channels, id=before_text_channel_id) after_channel: discord.TextChannel = discord.utils.get(member.guild.text_channels, id=after_text_channel_id) if before_channel: await before_channel.edit(overwrites=leave_overwrites) if after_channel: await after_channel.edit(overwrites=join_overwrites) @commands.group(aliases=["vtl", "voice_link"], invoke_without_command=True, help="Returns all Voice Text Links.") async def voice_text_link(self, ctx): voice_text_data = await self.bot.pg_conn.fetch(""" SELECT * FROM voice_text_data WHERE guild_id = $1 """, ctx.guild.id) embed = discord.Embed() embed.title = "Available voice text links!" msg = '' for index, voice_text_link1 in enumerate(voice_text_data): index += 1 voice_channel = discord.utils.get(ctx.guild.voice_channels, id=voice_text_link1['voice_channel_id']) text_channel = discord.utils.get(ctx.guild.text_channels, id=voice_text_link1['text_channel_id']) msg += f"{index}. {voice_channel.mention} -> {text_channel.mention}\n" embed.description = msg embed.set_author(name=ctx.me.name, icon_url=ctx.me.avatar_url) await ctx.send(embed=embed) @voice_text_link.command(name="add", help='Creates a new a voice text link', aliases=['+']) async def vtl_add(self, ctx, voice_channel: discord.VoiceChannel, text_channel: discord.TextChannel): if (voice_channel or text_channel) is None: await ctx.send("You didn't send voice channel or text channel!") else: await self.bot.pg_conn.execute(""" INSERT INTO voice_text_data (guild_id, voice_channel_id, text_channel_id) VALUES ($1, $2, $3) """, ctx.guild.id, voice_channel.id, text_channel.id) await ctx.send(f"Added the voice text link! {voice_channel.name} -> {text_channel.name}") @voice_text_link.command(name="remove", help="Deletes a existing voice text link", aliases=['-']) async def vtl_remove(self, ctx, voice_channel: discord.VoiceChannel, text_channel: discord.TextChannel): if voice_channel is None or text_channel is None: await ctx.send("You didn't send voice channel or text channel!") else: await self.bot.pg_conn.execute(""" DELETE FROM voice_text_data WHERE guild_id = $1 AND voice_channel_id = $2 AND text_channel_id = $3 """, ctx.guild.id, voice_channel.id, text_channel.id) await ctx.send(f"Removed the voice text link! {voice_channel.name} -> {text_channel.name}") def setup(bot): bot.add_cog(Voice_Text_Link(bot))
[ "discord.ext.commands.Cog.listener", "discord.PermissionOverwrite", "discord.utils.get", "discord.ext.commands.group", "discord.Embed" ]
[((588, 611), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (609, 611), False, 'from discord.ext import commands\n'), ((4233, 4349), 'discord.ext.commands.group', 'commands.group', ([], {'aliases': "['vtl', 'voice_link']", 'invoke_without_command': '(True)', 'help': '"""Returns all Voice Text Links."""'}), "(aliases=['vtl', 'voice_link'], invoke_without_command=True,\n help='Returns all Voice Text Links.')\n", (4247, 4349), False, 'from discord.ext import commands\n'), ((4616, 4631), 'discord.Embed', 'discord.Embed', ([], {}), '()\n', (4629, 4631), False, 'import discord\n'), ((801, 902), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(False)', 'send_messages': '(False)', 'read_message_history': '(False)'}), '(read_messages=False, send_messages=False,\n read_message_history=False)\n', (828, 902), False, 'import discord\n'), ((920, 1018), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(True)', 'send_messages': '(True)', 'read_message_history': '(True)'}), '(read_messages=True, send_messages=True,\n read_message_history=True)\n', (947, 1018), False, 'import discord\n'), ((1093, 1194), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(False)', 'send_messages': '(False)', 'read_message_history': '(False)'}), '(read_messages=False, send_messages=False,\n read_message_history=False)\n', (1120, 1194), False, 'import discord\n'), ((1212, 1313), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(False)', 'send_messages': '(False)', 'read_message_history': '(False)'}), '(read_messages=False, send_messages=False,\n read_message_history=False)\n', (1239, 1313), False, 'import discord\n'), ((4819, 4908), 'discord.utils.get', 'discord.utils.get', (['ctx.guild.voice_channels'], {'id': "voice_text_link1['voice_channel_id']"}), "(ctx.guild.voice_channels, id=voice_text_link1[\n 'voice_channel_id'])\n", (4836, 4908), False, 'import discord\n'), ((4931, 5018), 'discord.utils.get', 'discord.utils.get', (['ctx.guild.text_channels'], {'id': "voice_text_link1['text_channel_id']"}), "(ctx.guild.text_channels, id=voice_text_link1[\n 'text_channel_id'])\n", (4948, 5018), False, 'import discord\n'), ((1945, 2016), 'discord.utils.get', 'discord.utils.get', (['member.guild.text_channels'], {'id': 'after_text_channel_id'}), '(member.guild.text_channels, id=after_text_channel_id)\n', (1962, 2016), False, 'import discord\n'), ((2842, 2914), 'discord.utils.get', 'discord.utils.get', (['member.guild.text_channels'], {'id': 'before_text_channel_id'}), '(member.guild.text_channels, id=before_text_channel_id)\n', (2859, 2914), False, 'import discord\n'), ((2136, 2237), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(False)', 'send_messages': '(False)', 'read_message_history': '(False)'}), '(read_messages=False, send_messages=False,\n read_message_history=False)\n', (2163, 2237), False, 'import discord\n'), ((2267, 2396), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {'read_messages': '(True)', 'send_messages': '(True)', 'read_message_history': '(True if history_for_text else False)'}), '(read_messages=True, send_messages=True,\n read_message_history=True if history_for_text else False)\n', (2294, 2396), False, 'import discord\n'), ((3792, 3864), 'discord.utils.get', 'discord.utils.get', (['member.guild.text_channels'], {'id': 'before_text_channel_id'}), '(member.guild.text_channels, id=before_text_channel_id)\n', (3809, 3864), False, 'import discord\n'), ((3922, 3993), 'discord.utils.get', 'discord.utils.get', (['member.guild.text_channels'], {'id': 'after_text_channel_id'}), '(member.guild.text_channels, id=after_text_channel_id)\n', (3939, 3993), False, 'import discord\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import iris from cube_funcs import get_dates from iris.experimental.equalise_cubes import equalise_attributes from iris.util import unify_time_units import warnings warnings.filterwarnings("ignore") def read_cmip_cube(fname, constraint=None): try: cube = iris.load_cube(fname, constraint=constraint) except: cubes = iris.load(fname, constraints=constraint) equalise_attributes(cubes) unify_time_units(cubes) try: cube = cubes.merge_cube() except: cube = cubes.concatenate_cube() print(cube.shape) return(cube) def iris_read(data_path, standard_name, short_name=None): cubes = iris.load(data_path, standard_name) if short_name is not None: var_name_temp = iris.Constraint(cube_func=lambda cube: cube.var_name == short_name) cubes = cubes.extract(var_name_temp) return(cubes) #%% # change path to location of data # data should be sorted into folders by model name path = '/nfs/a68/gyjcab/datasets/cmip5/' # edit to read in another variable var = 'evspsbl' # 13 CMIP5 models analysed in study models = ['ACCESS1-3', 'bcc-csm1-1','BNU-ESM', 'CanESM2','CCSM4', 'CESM1-BGC', 'FIO-ESM', 'HadGEM2-CC', 'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'MPI-ESM-LR','NorESM1-M'] # loop over models, read in data and calculate mean of multiple runs for model in models: constraint = None if model == 'HadGEM2-ES': constraint = iris.Constraint(time=lambda cell: 1859 <= cell.point.year <= 2004) if model == 'HadGEM2-CC': constraint = iris.Constraint(time=lambda cell: 1960 <= cell.point.year <= 2004) print(model) temp1 = temp2 = temp3 = temp4 = temp5 = temp6 = temp7 = None temp8 = temp9 = temp10 = temp11 = temp12 = temp13 = temp14 = None # path to historical data fpath = path + var + '/historical/' + model temp1 = read_cmip_cube(fpath + '/*r1i1p1_*.nc', constraint=constraint) try: temp2 = read_cmip_cube(fpath + '/*r2i1p1*.nc', constraint=constraint) except OSError: pass try: temp3 = read_cmip_cube(fpath + '/*r3i1p1*.nc', constraint=constraint) except OSError: pass try: temp4 = read_cmip_cube(fpath + '/*r4i1p1*.nc', constraint=constraint) except OSError: pass try: temp5 = read_cmip_cube(fpath + '/*r5i1p1*.nc', constraint=constraint) except OSError: pass try: temp6 = read_cmip_cube(fpath + '/*r6i1p1*.nc', constraint=constraint) except OSError: pass try: temp7 = read_cmip_cube(fpath + '/*r7i1p1*.nc', constraint=constraint) except OSError: pass try: temp8 = read_cmip_cube(fpath + '/*r8i1p1*.nc', constraint=constraint) except OSError: pass try: temp9 = read_cmip_cube(fpath + '/*r9i1p1*.nc', constraint=constraint) except OSError: pass try: temp10 = read_cmip_cube(fpath + '/*r10i1p1*.nc', constraint=constraint) except OSError: pass try: temp11 = read_cmip_cube(fpath + '/*r11i1p1*.nc', constraint=constraint) except OSError: pass try: temp12 = read_cmip_cube(fpath + '/*r12i1p1*.nc', constraint=constraint) except OSError: pass try: temp13 = read_cmip_cube(fpath + '/*r13i1p1*.nc', constraint=constraint) except OSError: pass try: temp14 = read_cmip_cube(fpath + '/*r114i1p1*.nc', constraint=constraint) except OSError: pass temp_list = [temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9, temp10, temp11, temp12, temp13, temp14] # get list of model runs temp_list_trim = [x for x in temp_list if x is not None] print(len(temp_list_trim)) # if length only 1 save as new netcdf if len(temp_list_trim) == 1: ensemble_mean = temp_list_trim[0] ensemble_mean.standard_name = temp_list_trim[0].standard_name ensemble_mean.attributes = temp_list_trim[0].attributes dates = get_dates(ensemble_mean, verbose=False) outpath = (fpath + '/test_ensemble_mean_historical_' + model + '_' + var + '_' + str(dates[0].year) + str(dates[0].month).zfill(2) + '_' + str(dates[-1].year) + str(dates[-1].month).zfill(2) + '.nc') print(outpath) iris.save(ensemble_mean, outpath) continue else: # if multiple runs calculate mean of runs n = len(temp_list_trim) print(n) equalise_attributes(temp_list_trim) unify_time_units(temp_list_trim) if n == 2: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1])/n if n == 3: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2])/n if n == 4: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3])/n if n == 5: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4])/n if n == 6: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5])/n if n == 7: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6])/n if n == 8: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7])/n if n == 9: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8])/n if n == 10: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8] + temp_list_trim[9])/n if n == 11: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8] + temp_list_trim[9] + temp_list_trim[10])/n if n == 12: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8] + temp_list_trim[9] + temp_list_trim[10] + temp_list_trim[11])/n if n == 13: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8] + temp_list_trim[9] + temp_list_trim[10] + temp_list_trim[11] + temp_list_trim[12])/n if n == 14: ensemble_mean = (temp_list_trim[0] + temp_list_trim[1] + temp_list_trim[2] + temp_list_trim[3] + temp_list_trim[4] + temp_list_trim[5] + temp_list_trim[6] + temp_list_trim[7] + temp_list_trim[8] + temp_list_trim[9] + temp_list_trim[10] + temp_list_trim[11] + temp_list_trim[12] + temp_list_trim[13])/n # save as new netcdf ensemble_mean.standard_name = temp_list_trim[0].standard_name ensemble_mean.attributes = temp_list_trim[0].attributes dates = get_dates(ensemble_mean, verbose=False) outpath = (fpath + '/test_ensemble_mean_historical_' + model + '_' + var + '_' + str(dates[0].year) + str(dates[0].month).zfill(2) + '_' + str(dates[-1].year) + str(dates[-1].month).zfill(2) + '.nc') print(outpath) iris.save(ensemble_mean, outpath)
[ "warnings.filterwarnings", "iris.util.unify_time_units", "iris.save", "iris.experimental.equalise_cubes.equalise_attributes", "cube_funcs.get_dates", "iris.load_cube", "iris.Constraint", "iris.load" ]
[((213, 246), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (236, 246), False, 'import warnings\n'), ((730, 765), 'iris.load', 'iris.load', (['data_path', 'standard_name'], {}), '(data_path, standard_name)\n', (739, 765), False, 'import iris\n'), ((316, 360), 'iris.load_cube', 'iris.load_cube', (['fname'], {'constraint': 'constraint'}), '(fname, constraint=constraint)\n', (330, 360), False, 'import iris\n'), ((821, 888), 'iris.Constraint', 'iris.Constraint', ([], {'cube_func': '(lambda cube: cube.var_name == short_name)'}), '(cube_func=lambda cube: cube.var_name == short_name)\n', (836, 888), False, 'import iris\n'), ((1572, 1638), 'iris.Constraint', 'iris.Constraint', ([], {'time': '(lambda cell: 1859 <= cell.point.year <= 2004)'}), '(time=lambda cell: 1859 <= cell.point.year <= 2004)\n', (1587, 1638), False, 'import iris\n'), ((1727, 1793), 'iris.Constraint', 'iris.Constraint', ([], {'time': '(lambda cell: 1960 <= cell.point.year <= 2004)'}), '(time=lambda cell: 1960 <= cell.point.year <= 2004)\n', (1742, 1793), False, 'import iris\n'), ((4321, 4360), 'cube_funcs.get_dates', 'get_dates', (['ensemble_mean'], {'verbose': '(False)'}), '(ensemble_mean, verbose=False)\n', (4330, 4360), False, 'from cube_funcs import get_dates\n'), ((4666, 4699), 'iris.save', 'iris.save', (['ensemble_mean', 'outpath'], {}), '(ensemble_mean, outpath)\n', (4675, 4699), False, 'import iris\n'), ((4843, 4878), 'iris.experimental.equalise_cubes.equalise_attributes', 'equalise_attributes', (['temp_list_trim'], {}), '(temp_list_trim)\n', (4862, 4878), False, 'from iris.experimental.equalise_cubes import equalise_attributes\n'), ((4887, 4919), 'iris.util.unify_time_units', 'unify_time_units', (['temp_list_trim'], {}), '(temp_list_trim)\n', (4903, 4919), False, 'from iris.util import unify_time_units\n'), ((9210, 9249), 'cube_funcs.get_dates', 'get_dates', (['ensemble_mean'], {'verbose': '(False)'}), '(ensemble_mean, verbose=False)\n', (9219, 9249), False, 'from cube_funcs import get_dates\n'), ((9555, 9588), 'iris.save', 'iris.save', (['ensemble_mean', 'outpath'], {}), '(ensemble_mean, outpath)\n', (9564, 9588), False, 'import iris\n'), ((389, 429), 'iris.load', 'iris.load', (['fname'], {'constraints': 'constraint'}), '(fname, constraints=constraint)\n', (398, 429), False, 'import iris\n'), ((438, 464), 'iris.experimental.equalise_cubes.equalise_attributes', 'equalise_attributes', (['cubes'], {}), '(cubes)\n', (457, 464), False, 'from iris.experimental.equalise_cubes import equalise_attributes\n'), ((473, 496), 'iris.util.unify_time_units', 'unify_time_units', (['cubes'], {}), '(cubes)\n', (489, 496), False, 'from iris.util import unify_time_units\n')]
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import sys import itertools import numpy import awkward1 import cupy def test_from_cupy(): cupy_array_1d = cupy.arange(10) cupy_array_2d = cupy.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6], [7.7, 8.8]]) ak_cupy_array_1d = awkward1.from_cupy(cupy_array_1d) ak_cupy_array_2d = awkward1.from_cupy(cupy_array_2d) for i in range(10): assert ak_cupy_array_1d[i] == cupy_array_1d[i] for i in range(4): for j in range(2): assert ak_cupy_array_2d[i][j] == cupy_array_2d[i][j] def test_from_cupy_tolist(): cupy_array_1d = cupy.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) ak_cupy_array_1d = awkward1.from_cupy(cupy_array_1d) assert awkward1.to_list(ak_cupy_array_1d.layout) == [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] def test_NumpyArray_constructor(): assert awkward1.kernels(awkward1.layout.NumpyArray(numpy.array([1, 2, 3]))) == "cpu" assert awkward1.kernels(awkward1.layout.NumpyArray(cupy.array([1, 2, 3]))) == "cuda" def test_add(): one = awkward1.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]], kernels="cuda") two = awkward1.Array([100, 200, 300], kernels="cuda") assert awkward1.kernels(one) == "cuda" assert awkward1.kernels(two) == "cuda" three = one + two assert awkward1.to_list(three) == [[101.1, 102.2, 103.3], [], [304.4, 305.5]] assert awkward1.kernels(three) == "cuda" def test_add_2(): one = awkward1.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]], kernels="cuda") two = 100 assert awkward1.kernels(one) == "cuda" three = one + two assert awkward1.to_list(three) == [[101.1, 102.2, 103.3], [], [104.4, 105.5]] assert awkward1.kernels(three) == "cuda"
[ "cupy.arange", "awkward1.to_list", "numpy.array", "awkward1.kernels", "awkward1.Array", "cupy.array", "awkward1.from_cupy" ]
[((246, 261), 'cupy.arange', 'cupy.arange', (['(10)'], {}), '(10)\n', (257, 261), False, 'import cupy\n'), ((282, 342), 'cupy.array', 'cupy.array', (['[[1.1, 2.2], [3.3, 4.4], [5.5, 6.6], [7.7, 8.8]]'], {}), '([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6], [7.7, 8.8]])\n', (292, 342), False, 'import cupy\n'), ((367, 400), 'awkward1.from_cupy', 'awkward1.from_cupy', (['cupy_array_1d'], {}), '(cupy_array_1d)\n', (385, 400), False, 'import awkward1\n'), ((424, 457), 'awkward1.from_cupy', 'awkward1.from_cupy', (['cupy_array_2d'], {}), '(cupy_array_2d)\n', (442, 457), False, 'import awkward1\n'), ((705, 747), 'cupy.array', 'cupy.array', (['[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]'], {}), '([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])\n', (715, 747), False, 'import cupy\n'), ((772, 805), 'awkward1.from_cupy', 'awkward1.from_cupy', (['cupy_array_1d'], {}), '(cupy_array_1d)\n', (790, 805), False, 'import awkward1\n'), ((1137, 1202), 'awkward1.Array', 'awkward1.Array', (['[[1.1, 2.2, 3.3], [], [4.4, 5.5]]'], {'kernels': '"""cuda"""'}), "([[1.1, 2.2, 3.3], [], [4.4, 5.5]], kernels='cuda')\n", (1151, 1202), False, 'import awkward1\n'), ((1213, 1260), 'awkward1.Array', 'awkward1.Array', (['[100, 200, 300]'], {'kernels': '"""cuda"""'}), "([100, 200, 300], kernels='cuda')\n", (1227, 1260), False, 'import awkward1\n'), ((1526, 1591), 'awkward1.Array', 'awkward1.Array', (['[[1.1, 2.2, 3.3], [], [4.4, 5.5]]'], {'kernels': '"""cuda"""'}), "([[1.1, 2.2, 3.3], [], [4.4, 5.5]], kernels='cuda')\n", (1540, 1591), False, 'import awkward1\n'), ((818, 859), 'awkward1.to_list', 'awkward1.to_list', (['ak_cupy_array_1d.layout'], {}), '(ak_cupy_array_1d.layout)\n', (834, 859), False, 'import awkward1\n'), ((1272, 1293), 'awkward1.kernels', 'awkward1.kernels', (['one'], {}), '(one)\n', (1288, 1293), False, 'import awkward1\n'), ((1315, 1336), 'awkward1.kernels', 'awkward1.kernels', (['two'], {}), '(two)\n', (1331, 1336), False, 'import awkward1\n'), ((1380, 1403), 'awkward1.to_list', 'awkward1.to_list', (['three'], {}), '(three)\n', (1396, 1403), False, 'import awkward1\n'), ((1462, 1485), 'awkward1.kernels', 'awkward1.kernels', (['three'], {}), '(three)\n', (1478, 1485), False, 'import awkward1\n'), ((1617, 1638), 'awkward1.kernels', 'awkward1.kernels', (['one'], {}), '(one)\n', (1633, 1638), False, 'import awkward1\n'), ((1682, 1705), 'awkward1.to_list', 'awkward1.to_list', (['three'], {}), '(three)\n', (1698, 1705), False, 'import awkward1\n'), ((1764, 1787), 'awkward1.kernels', 'awkward1.kernels', (['three'], {}), '(three)\n', (1780, 1787), False, 'import awkward1\n'), ((986, 1008), 'numpy.array', 'numpy.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (997, 1008), False, 'import numpy\n'), ((1075, 1096), 'cupy.array', 'cupy.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1085, 1096), False, 'import cupy\n')]
# Generated by Django 3.0.6 on 2020-07-10 13:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('registrations', '0004_auto_20200621_0910'), ] operations = [ migrations.AlterField( model_name='saccodriver', name='last_status_update_date', field=models.DateField(blank=True, null=True), ), ]
[ "django.db.models.DateField" ]
[((364, 403), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (380, 403), False, 'from django.db import migrations, models\n')]
"""Example AWS Lambda function for chip-n-scale""" import os import pg8000 from typing import Dict, Any from download_and_predict.base import DownloadAndPredict from download_and_predict.custom_types import SQSEvent def handler(event: SQSEvent, context: Dict[str, Any]) -> None: # read all our environment variables to throw errors early imagery = os.getenv('TILE_ENDPOINT') db = os.getenv('DATABASE_URL') prediction_endpoint=os.getenv('PREDICTION_ENDPOINT') assert(imagery) assert(db) assert(prediction_endpoint) # instantiate our DownloadAndPredict class dap = DownloadAndPredict( imagery=imagery, db=db, prediction_endpoint=prediction_endpoint ) # get tiles from our SQS event tiles = dap.get_tiles(event) # construct a payload for our prediction endpoint tile_indices, payload = dap.get_prediction_payload(tiles) # send prediction request content = dap.post_prediction(payload) # save prediction request to db dap.save_to_db( tile_indices, content['predictions'], result_wrapper=lambda x: pg8000.PGJsonb(x) )
[ "download_and_predict.base.DownloadAndPredict", "pg8000.PGJsonb", "os.getenv" ]
[((359, 385), 'os.getenv', 'os.getenv', (['"""TILE_ENDPOINT"""'], {}), "('TILE_ENDPOINT')\n", (368, 385), False, 'import os\n'), ((395, 420), 'os.getenv', 'os.getenv', (['"""DATABASE_URL"""'], {}), "('DATABASE_URL')\n", (404, 420), False, 'import os\n'), ((445, 477), 'os.getenv', 'os.getenv', (['"""PREDICTION_ENDPOINT"""'], {}), "('PREDICTION_ENDPOINT')\n", (454, 477), False, 'import os\n'), ((604, 692), 'download_and_predict.base.DownloadAndPredict', 'DownloadAndPredict', ([], {'imagery': 'imagery', 'db': 'db', 'prediction_endpoint': 'prediction_endpoint'}), '(imagery=imagery, db=db, prediction_endpoint=\n prediction_endpoint)\n', (622, 692), False, 'from download_and_predict.base import DownloadAndPredict\n'), ((1116, 1133), 'pg8000.PGJsonb', 'pg8000.PGJsonb', (['x'], {}), '(x)\n', (1130, 1133), False, 'import pg8000\n')]
import json from os import getenv from Common import path class OAuthConfig: _instance = None def __init__(self): super().__init__() stage = getenv("STAGES") self.HTTP = "http" with open(path.APP_CONFIG_ABS_PATH, "r") as json_file: content = json.load(json_file) self.IS_DOCKER = content["STORAGE_SERVICE_IS_USING_DOCKER"] if stage: self.PORT = 8080 self.URL = f"{self.HTTP}://oauth-server.{stage}.svc.cluster.local:{self.PORT}" elif self.IS_DOCKER: self.PORT = 3001 self.URL = f"{self.HTTP}://host.docker.internal:{self.PORT}" else: self.PORT = 3001 self.URL = f"{self.HTTP}://localhost:{self.PORT}" @classmethod def get_instance(cls): if not cls._instance: cls._instance = OAuthConfig() return cls._instance
[ "json.load", "os.getenv" ]
[((169, 185), 'os.getenv', 'getenv', (['"""STAGES"""'], {}), "('STAGES')\n", (175, 185), False, 'from os import getenv\n'), ((300, 320), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (309, 320), False, 'import json\n')]
# from django.db import models # # Create your models here. from django.contrib import admin from django.contrib.auth.models import User from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from django.shortcuts import reverse from djongo import models #18.216.224.202u Available_Size = ( ('S', 'small'), ('M', 'medium'), ('L', 'large'), ('XL', 'extra large'), ) Available_Color = ( ('w','white'), ('b','black'), ('g','green'), ('y','yellow'), ) Trasaction_status = ( ('1', 'Done'), ('2', 'pending'), ('3', '--------'), ) PAYMENT_MODE = ( ('online', 'online'), ('offline', 'offline'), ) RANKING = ( ('promoted', 'Promoted'), ('best_seller', 'Best Seller'), ) class Categories(models.Model): objects = models.DjongoManager() _id = models.ObjectIdField(primary_key=True) parent = models.ForeignKey("self", on_delete=models.CASCADE, null=True, blank=True) category_name = models.CharField(max_length=100,null=True,blank=True) category_name_de = models.CharField(max_length=100,null=True,blank=True) picture = models.ImageField(null=True,blank=True, upload_to="images") active = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) def __str__(self): return self.category_name or '' class Meta: db_table = 'odata_category' class Customer(models.Model): """This model is used for customer""" _id = models.ObjectIdField(primary_key=True) user = models.OneToOneField(User, on_delete=models.CASCADE) first_name = models.CharField(max_length=100,null=True,blank=True) last_name = models.CharField(max_length=100,null=True,blank=True) address1 = models.CharField(max_length=100,null=True,blank=True) address2 = models.CharField(max_length=100,null=True,blank=True) city = models.CharField(max_length=100,null=True,blank=True) state = models.CharField(max_length=100,null=True,blank=True) postal_code = models.IntegerField(null=True,blank=True) country = models.CharField(max_length=100,null=True,blank=True) phone = models.CharField(max_length=10,null=True,blank=True) # password = models.CharField(max_length=100) salutation = models.CharField(max_length=100,null=True,blank=True) credit_card = models.CharField(max_length=15, null=True,blank=True) credit_card_type_id = models.CharField(max_length=100) mm_yy = models.CharField(max_length=7, null=True, blank=True) billing_address = models.CharField(max_length=250, null=True,blank=True) billing_city = models.CharField(max_length=100, null=True,blank=True) billing_postal_code = models.CharField(max_length=100, null=True,blank=True) billing_country = models.CharField(max_length=100, null=True,blank=True) ship_address = models.CharField(max_length=250, null=True,blank=True) ship_city = models.CharField(max_length=250, null=True,blank=True) ship_region = models.CharField(max_length=250, null=True,blank=True) ship_postal_code = models.CharField(max_length=100, null=True,blank=True) ship_country = models.CharField(max_length=100, null=True,blank=True) marketing_code = models.CharField(max_length=100, null=True, blank=True) source = models.CharField(max_length=100, null=True, blank=True) medium = models.CharField(max_length=100, null=True, blank=True) gcustid = models.CharField(max_length=512, null=True, blank=True) gclid = models.CharField(max_length=1024, null=True, blank=True) fbclid = models.CharField(max_length=1024, null=True, blank=True) date_entered = models.DateTimeField(auto_now_add=True) terms_condition = models.BooleanField(default=True) data_privacy = models.BooleanField(default=True) guest_login = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) def __str__(self): if self.first_name is not None and self.last_name is not None: return self.first_name+' '+self.last_name elif self.first_name is not None: return self.first_name else: return '' @classmethod def get(cls, email): try: user_detail = User.objects.get(email=email) return cls.objects.get(user=user_detail) except User.DoesNotExist: return None class UserForgotPassword(models.Model): _id = models.ObjectIdField(primary_key=True) user = models.OneToOneField(User, related_name='reset_password_user', on_delete=models.CASCADE) token = models.CharField(max_length=10) is_consumed = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) # @receiver(post_save, sender=User) # def create_user_customer(sender, instance, created, **kwargs): # if created: # Customer.objects.create(user=instance) # @receiver(post_save, sender=User) # def save_user_customer(sender, instance, **kwargs): # instance.customer.save() class Product(models.Model): """This models is used for Products Details.""" _id = models.ObjectIdField(primary_key=True) vendor_product_id = models.CharField(max_length=50,null=True,blank=True) product_name = models.CharField(max_length=100) category = models.CharField(max_length=250, default='') quantity = models.IntegerField(default=0) price = models.FloatField() msrp = models.CharField(max_length=100, null=True,blank=True) ean = models.CharField(max_length=255, null=True, blank=True) title = models.CharField(max_length=1024) title_de = models.CharField(max_length=1024, blank=True, null=True) size = models.CharField(max_length=100,null=True,blank=True) color = models.CharField(max_length=100,null=True,blank=True) discount = models.DecimalField(decimal_places=2, max_digits=10, verbose_name="Discount %") product_available = models.BooleanField(default=False) picture = models.URLField(null=True,blank=True) ranking = models.CharField(max_length=15,choices=RANKING, null=True,blank=True) description = models.TextField(max_length=200, null=True,blank=True) description_de = models.TextField(max_length=200, blank=True, null=True) product_highlight = models.TextField(max_length=200, null=True,blank=True) product_highlight_de = models.TextField(max_length=200, blank=True, null=True) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) objects = models.DjongoManager() def __str__(self): return self.product_name or ' ' def get_absolute_url(self): return reverse("products", args=[str(self.id)]) @classmethod def get(cls, pro_id): from bson import ObjectId try: return cls.objects.get(pk=ObjectId(pro_id)) except cls.DoesNotExist: return None class ProductImage(models.Model): _id = models.ObjectIdField(primary_key=True) product = models.ForeignKey(Product, on_delete=models.CASCADE) image_order = models.IntegerField() image = models.URLField(null=True,blank=True) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) class ProductVariant(models.Model): _id = models.ObjectIdField(primary_key=True) parent_product = models.ForeignKey(Product, on_delete=models.CASCADE) size = models.CharField(max_length=100) color = models.CharField(max_length=100) material = models.CharField(max_length=100) image = models.URLField(null=True, blank=True) # class Shipper(models.Model): # _id = models.ObjectIdField(primary_key=True) # company_name = models.CharField(max_length=100) # phone = models.CharField(max_length=10) # created_at = models.DateTimeField(auto_now=False, auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) # class Order(models.Model): # _id = models.ObjectIdField(primary_key=True) # customer = models.ForeignKey(Customer, on_delete=models.CASCADE) # order_number = models.CharField(max_length=100,null=True,blank=True) # payment_id = models.CharField(max_length=50,null=True,blank=True) # order_date = models.DateTimeField(auto_now_add=True) # ship_date = models.DateTimeField(default='') # required_date = models.DateField() # freight = models.CharField(max_length=100,null=True,blank=True) # sale_tax = models.CharField(max_length=100,null=True,blank=True) # timestamp = models.DateTimeField(auto_now_add=True) # transaction_status = models.CharField(max_length=1,choices=Trasaction_status) # error_lock = models.CharField(max_length=100,null=True,blank=True) # error_msg = models.CharField(max_length=100,null=True,blank=True) # fullfiled = models.BooleanField(default=False) # deleted = models.BooleanField(default=False) # paid = models.BooleanField(default=False) # payment_date = models.DateTimeField(auto_now_add=True) # created_at = models.DateTimeField(auto_now=False, auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) # def __str__(self): # return self.order_number class Payment(models.Model): _id = models.ObjectIdField(primary_key=True) customer = models.ForeignKey(Customer, on_delete=models.CASCADE) order = models.CharField(max_length=100) invoice = models.CharField(max_length=100) amount = models.DecimalField(max_digits=19, decimal_places=2) payment_type = models.CharField(max_length=50) status = models.CharField(max_length=15) date_of_payment = models.DateField() created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) # class OrderDetail(models.Model): # _id = models.ObjectIdField(primary_key=True) # order = models.ForeignKey(Order, on_delete=models.DO_NOTHING) # product = models.ForeignKey(Product, on_delete=models.DO_NOTHING, null=False, blank=False) # order_number = models.CharField(max_length=100,null=True,blank=True) # payment_id = models.CharField(max_length=50,null=True,blank=True) # price = models.DecimalField(max_digits=19, decimal_places=2) # quatity = models.IntegerField() # discount = models.DecimalField(decimal_places=2, max_digits=10) # total = models.IntegerField() # idsku = models.CharField(max_length=100,null=True,blank=True) # size = models.CharField(max_length=3,choices=Available_Size) # color = models.CharField(max_length=3,choices=Available_Color) # fullfield = models.BooleanField(default=False) # bill_date = models.DateField(default='') # created_at = models.DateTimeField(auto_now=False, auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True, auto_now_add=False) # def __str__(self): # return self.order.order_number class NewsletterSubscription(models.Model): _id = models.ObjectIdField(primary_key=True) salutation = models.CharField(max_length=3) first_name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.CharField(max_length=100) data_acceptance = models.BooleanField() created_at = models.DateTimeField(auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(auto_now=True, auto_now_add=False)
[ "djongo.models.BooleanField", "djongo.models.CharField", "djongo.models.ObjectIdField", "djongo.models.DateTimeField", "django.contrib.auth.models.User.objects.get", "djongo.models.DjongoManager", "djongo.models.DateField", "djongo.models.ImageField", "djongo.models.FloatField", "djongo.models.ForeignKey", "djongo.models.DecimalField", "djongo.models.URLField", "djongo.models.IntegerField", "bson.ObjectId", "djongo.models.OneToOneField", "djongo.models.TextField" ]
[((818, 840), 'djongo.models.DjongoManager', 'models.DjongoManager', ([], {}), '()\n', (838, 840), False, 'from djongo import models\n'), ((851, 889), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (871, 889), False, 'from djongo import models\n'), ((903, 977), 'djongo.models.ForeignKey', 'models.ForeignKey', (['"""self"""'], {'on_delete': 'models.CASCADE', 'null': '(True)', 'blank': '(True)'}), "('self', on_delete=models.CASCADE, null=True, blank=True)\n", (920, 977), False, 'from djongo import models\n'), ((998, 1053), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1014, 1053), False, 'from djongo import models\n'), ((1077, 1132), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1093, 1132), False, 'from djongo import models\n'), ((1147, 1207), 'djongo.models.ImageField', 'models.ImageField', ([], {'null': '(True)', 'blank': '(True)', 'upload_to': '"""images"""'}), "(null=True, blank=True, upload_to='images')\n", (1164, 1207), False, 'from djongo import models\n'), ((1220, 1254), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (1239, 1254), False, 'from djongo import models\n'), ((1272, 1327), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (1292, 1327), False, 'from djongo import models\n'), ((1345, 1400), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (1365, 1400), False, 'from djongo import models\n'), ((1615, 1653), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1635, 1653), False, 'from djongo import models\n'), ((1665, 1717), 'djongo.models.OneToOneField', 'models.OneToOneField', (['User'], {'on_delete': 'models.CASCADE'}), '(User, on_delete=models.CASCADE)\n', (1685, 1717), False, 'from djongo import models\n'), ((1735, 1790), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1751, 1790), False, 'from djongo import models\n'), ((1805, 1860), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1821, 1860), False, 'from djongo import models\n'), ((1878, 1933), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1894, 1933), False, 'from djongo import models\n'), ((1947, 2002), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (1963, 2002), False, 'from djongo import models\n'), ((2012, 2067), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2028, 2067), False, 'from djongo import models\n'), ((2078, 2133), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2094, 2133), False, 'from djongo import models\n'), ((2150, 2192), 'djongo.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (2169, 2192), False, 'from djongo import models\n'), ((2206, 2261), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2222, 2261), False, 'from djongo import models\n'), ((2272, 2326), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'null': '(True)', 'blank': '(True)'}), '(max_length=10, null=True, blank=True)\n', (2288, 2326), False, 'from djongo import models\n'), ((2392, 2447), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2408, 2447), False, 'from djongo import models\n'), ((2464, 2518), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(15)', 'null': '(True)', 'blank': '(True)'}), '(max_length=15, null=True, blank=True)\n', (2480, 2518), False, 'from djongo import models\n'), ((2544, 2576), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (2560, 2576), False, 'from djongo import models\n'), ((2589, 2642), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(7)', 'null': '(True)', 'blank': '(True)'}), '(max_length=7, null=True, blank=True)\n', (2605, 2642), False, 'from djongo import models\n'), ((2665, 2720), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'null': '(True)', 'blank': '(True)'}), '(max_length=250, null=True, blank=True)\n', (2681, 2720), False, 'from djongo import models\n'), ((2739, 2794), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2755, 2794), False, 'from djongo import models\n'), ((2824, 2879), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2840, 2879), False, 'from djongo import models\n'), ((2901, 2956), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (2917, 2956), False, 'from djongo import models\n'), ((2975, 3030), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'null': '(True)', 'blank': '(True)'}), '(max_length=250, null=True, blank=True)\n', (2991, 3030), False, 'from djongo import models\n'), ((3046, 3101), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'null': '(True)', 'blank': '(True)'}), '(max_length=250, null=True, blank=True)\n', (3062, 3101), False, 'from djongo import models\n'), ((3119, 3174), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'null': '(True)', 'blank': '(True)'}), '(max_length=250, null=True, blank=True)\n', (3135, 3174), False, 'from djongo import models\n'), ((3197, 3252), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (3213, 3252), False, 'from djongo import models\n'), ((3271, 3326), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (3287, 3326), False, 'from djongo import models\n'), ((3347, 3402), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (3363, 3402), False, 'from djongo import models\n'), ((3416, 3471), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (3432, 3471), False, 'from djongo import models\n'), ((3485, 3540), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (3501, 3540), False, 'from djongo import models\n'), ((3555, 3610), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'null': '(True)', 'blank': '(True)'}), '(max_length=512, null=True, blank=True)\n', (3571, 3610), False, 'from djongo import models\n'), ((3623, 3679), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(1024)', 'null': '(True)', 'blank': '(True)'}), '(max_length=1024, null=True, blank=True)\n', (3639, 3679), False, 'from djongo import models\n'), ((3693, 3749), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(1024)', 'null': '(True)', 'blank': '(True)'}), '(max_length=1024, null=True, blank=True)\n', (3709, 3749), False, 'from djongo import models\n'), ((3769, 3808), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3789, 3808), False, 'from djongo import models\n'), ((3831, 3864), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (3850, 3864), False, 'from djongo import models\n'), ((3884, 3917), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (3903, 3917), False, 'from djongo import models\n'), ((3936, 3970), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (3955, 3970), False, 'from djongo import models\n'), ((3988, 4043), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (4008, 4043), False, 'from djongo import models\n'), ((4061, 4116), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (4081, 4116), False, 'from djongo import models\n'), ((4658, 4696), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (4678, 4696), False, 'from djongo import models\n'), ((4708, 4801), 'djongo.models.OneToOneField', 'models.OneToOneField', (['User'], {'related_name': '"""reset_password_user"""', 'on_delete': 'models.CASCADE'}), "(User, related_name='reset_password_user', on_delete=\n models.CASCADE)\n", (4728, 4801), False, 'from djongo import models\n'), ((4809, 4840), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (4825, 4840), False, 'from djongo import models\n'), ((4859, 4893), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (4878, 4893), False, 'from djongo import models\n'), ((4911, 4950), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (4931, 4950), False, 'from djongo import models\n'), ((4968, 5003), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (4988, 5003), False, 'from djongo import models\n'), ((5405, 5443), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (5425, 5443), False, 'from djongo import models\n'), ((5476, 5530), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'null': '(True)', 'blank': '(True)'}), '(max_length=50, null=True, blank=True)\n', (5492, 5530), False, 'from djongo import models\n'), ((5548, 5580), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (5564, 5580), False, 'from djongo import models\n'), ((5600, 5644), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'default': '""""""'}), "(max_length=250, default='')\n", (5616, 5644), False, 'from djongo import models\n'), ((5660, 5690), 'djongo.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (5679, 5690), False, 'from djongo import models\n'), ((5703, 5722), 'djongo.models.FloatField', 'models.FloatField', ([], {}), '()\n', (5720, 5722), False, 'from djongo import models\n'), ((5734, 5789), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (5750, 5789), False, 'from djongo import models\n'), ((5799, 5854), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'null': '(True)', 'blank': '(True)'}), '(max_length=255, null=True, blank=True)\n', (5815, 5854), False, 'from djongo import models\n'), ((5867, 5900), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(1024)'}), '(max_length=1024)\n', (5883, 5900), False, 'from djongo import models\n'), ((5916, 5972), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(1024)', 'blank': '(True)', 'null': '(True)'}), '(max_length=1024, blank=True, null=True)\n', (5932, 5972), False, 'from djongo import models\n'), ((5988, 6043), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (6004, 6043), False, 'from djongo import models\n'), ((6054, 6109), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)'}), '(max_length=100, null=True, blank=True)\n', (6070, 6109), False, 'from djongo import models\n'), ((6123, 6202), 'djongo.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'max_digits': '(10)', 'verbose_name': '"""Discount %"""'}), "(decimal_places=2, max_digits=10, verbose_name='Discount %')\n", (6142, 6202), False, 'from djongo import models\n'), ((6227, 6261), 'djongo.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (6246, 6261), False, 'from djongo import models\n'), ((6284, 6322), 'djongo.models.URLField', 'models.URLField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (6299, 6322), False, 'from djongo import models\n'), ((6336, 6407), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(15)', 'choices': 'RANKING', 'null': '(True)', 'blank': '(True)'}), '(max_length=15, choices=RANKING, null=True, blank=True)\n', (6352, 6407), False, 'from djongo import models\n'), ((6424, 6479), 'djongo.models.TextField', 'models.TextField', ([], {'max_length': '(200)', 'null': '(True)', 'blank': '(True)'}), '(max_length=200, null=True, blank=True)\n', (6440, 6479), False, 'from djongo import models\n'), ((6500, 6555), 'djongo.models.TextField', 'models.TextField', ([], {'max_length': '(200)', 'blank': '(True)', 'null': '(True)'}), '(max_length=200, blank=True, null=True)\n', (6516, 6555), False, 'from djongo import models\n'), ((6580, 6635), 'djongo.models.TextField', 'models.TextField', ([], {'max_length': '(200)', 'null': '(True)', 'blank': '(True)'}), '(max_length=200, null=True, blank=True)\n', (6596, 6635), False, 'from djongo import models\n'), ((6662, 6717), 'djongo.models.TextField', 'models.TextField', ([], {'max_length': '(200)', 'blank': '(True)', 'null': '(True)'}), '(max_length=200, blank=True, null=True)\n', (6678, 6717), False, 'from djongo import models\n'), ((6735, 6790), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (6755, 6790), False, 'from djongo import models\n'), ((6808, 6863), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (6828, 6863), False, 'from djongo import models\n'), ((6878, 6900), 'djongo.models.DjongoManager', 'models.DjongoManager', ([], {}), '()\n', (6898, 6900), False, 'from djongo import models\n'), ((7312, 7350), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (7332, 7350), False, 'from djongo import models\n'), ((7365, 7417), 'djongo.models.ForeignKey', 'models.ForeignKey', (['Product'], {'on_delete': 'models.CASCADE'}), '(Product, on_delete=models.CASCADE)\n', (7382, 7417), False, 'from djongo import models\n'), ((7436, 7457), 'djongo.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (7455, 7457), False, 'from djongo import models\n'), ((7470, 7508), 'djongo.models.URLField', 'models.URLField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (7485, 7508), False, 'from djongo import models\n'), ((7525, 7580), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (7545, 7580), False, 'from djongo import models\n'), ((7598, 7653), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (7618, 7653), False, 'from djongo import models\n'), ((7706, 7744), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (7726, 7744), False, 'from djongo import models\n'), ((7766, 7818), 'djongo.models.ForeignKey', 'models.ForeignKey', (['Product'], {'on_delete': 'models.CASCADE'}), '(Product, on_delete=models.CASCADE)\n', (7783, 7818), False, 'from djongo import models\n'), ((7830, 7862), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (7846, 7862), False, 'from djongo import models\n'), ((7875, 7907), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (7891, 7907), False, 'from djongo import models\n'), ((7923, 7955), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (7939, 7955), False, 'from djongo import models\n'), ((7968, 8006), 'djongo.models.URLField', 'models.URLField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (7983, 8006), False, 'from djongo import models\n'), ((9694, 9732), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (9714, 9732), False, 'from djongo import models\n'), ((9748, 9801), 'djongo.models.ForeignKey', 'models.ForeignKey', (['Customer'], {'on_delete': 'models.CASCADE'}), '(Customer, on_delete=models.CASCADE)\n', (9765, 9801), False, 'from djongo import models\n'), ((9814, 9846), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (9830, 9846), False, 'from djongo import models\n'), ((9861, 9893), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (9877, 9893), False, 'from djongo import models\n'), ((9907, 9959), 'djongo.models.DecimalField', 'models.DecimalField', ([], {'max_digits': '(19)', 'decimal_places': '(2)'}), '(max_digits=19, decimal_places=2)\n', (9926, 9959), False, 'from djongo import models\n'), ((9979, 10010), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (9995, 10010), False, 'from djongo import models\n'), ((10024, 10055), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(15)'}), '(max_length=15)\n', (10040, 10055), False, 'from djongo import models\n'), ((10078, 10096), 'djongo.models.DateField', 'models.DateField', ([], {}), '()\n', (10094, 10096), False, 'from djongo import models\n'), ((10114, 10169), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (10134, 10169), False, 'from djongo import models\n'), ((10187, 10242), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (10207, 10242), False, 'from djongo import models\n'), ((11446, 11484), 'djongo.models.ObjectIdField', 'models.ObjectIdField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (11466, 11484), False, 'from djongo import models\n'), ((11502, 11532), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(3)'}), '(max_length=3)\n', (11518, 11532), False, 'from djongo import models\n'), ((11550, 11582), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (11566, 11582), False, 'from djongo import models\n'), ((11599, 11631), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (11615, 11631), False, 'from djongo import models\n'), ((11644, 11676), 'djongo.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (11660, 11676), False, 'from djongo import models\n'), ((11699, 11720), 'djongo.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (11718, 11720), False, 'from djongo import models\n'), ((11738, 11793), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(False)', 'auto_now_add': '(True)'}), '(auto_now=False, auto_now_add=True)\n', (11758, 11793), False, 'from djongo import models\n'), ((11811, 11866), 'djongo.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'auto_now_add': '(False)'}), '(auto_now=True, auto_now_add=False)\n', (11831, 11866), False, 'from djongo import models\n'), ((4465, 4494), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'email': 'email'}), '(email=email)\n', (4481, 4494), False, 'from django.contrib.auth.models import User\n'), ((7191, 7207), 'bson.ObjectId', 'ObjectId', (['pro_id'], {}), '(pro_id)\n', (7199, 7207), False, 'from bson import ObjectId\n')]
import sys sys.path.append('../../src/') from p4rrot.generator_tools import * from p4rrot.known_types import * from p4rrot.standard_fields import * from p4rrot.core.commands import * UID.reset() fp = FlowProcessor( istruct = [('msg_in',string_t(12))], locals = [('l',bool_t),('msg_tmp',string_t(12))], ostruct = [('msg_out',string_t(12))] ) ( fp .add(AssignConst('msg_tmp',b'Hello World!')) .add(Equals('l','msg_in','msg_tmp')) .add(If('l')) .add(AssignConst('msg_out',b'HELLO! :) ')) .add(SendBack()) .Else() .add(StrictAssignVar('msg_out','msg_in')) .EndIf() ) fs = FlowSelector( 'IPV4_UDP', [(UdpDstPort,5555),(UdpLen,8+13)], fp ) solution = Solution() solution.add_flow_processor(fp) solution.add_flow_selector(fs) solution.get_generated_code().dump('test.p4app')
[ "sys.path.append" ]
[((11, 40), 'sys.path.append', 'sys.path.append', (['"""../../src/"""'], {}), "('../../src/')\n", (26, 40), False, 'import sys\n')]
import curses import subprocess class LdmGtk: LDM_GTK_CONF = '/etc/lightdm/lightdm-gtk-greeter.conf' @staticmethod def get_bg() -> str: """ Fetch the background image of the LDM's GTK greeter from the config file :return: Full path to the background image """ with open(LdmGtk.LDM_GTK_CONF) as ldm_file: for line in ldm_file: if line.startswith('background'): return line.strip().split(' ')[2] raise LookupError( "[ERR] Couldn't locate the LDM greeter's background!") @staticmethod def set_bg(win, ldm_bg_name: str, wall_name: str) -> bool: """ Set the background image of the LDM's GTK greeter in the config file :return: True on success """ if ldm_bg_name == wall_name: win.addstr( '[!] Cannot change DM background to the same one!\n', curses.color_pair(5)) win.getkey() return False try: subprocess.check_call( ['sudo', 'sed', '-i', f"s/{ldm_bg_name}/{wall_name}/g", LdmGtk.LDM_GTK_CONF]) except (KeyboardInterrupt, PermissionError, subprocess.CalledProcessError): win.addstr("[X] An external error occurred while change DM's background!\n", curses.color_pair(2)) win.getkey() return False win.addstr('[+] Lock-screen background replaced!\n', curses.color_pair(3)) win.getkey() return True
[ "curses.color_pair", "subprocess.check_call" ]
[((1036, 1139), 'subprocess.check_call', 'subprocess.check_call', (["['sudo', 'sed', '-i', f's/{ldm_bg_name}/{wall_name}/g', LdmGtk.LDM_GTK_CONF]"], {}), "(['sudo', 'sed', '-i',\n f's/{ldm_bg_name}/{wall_name}/g', LdmGtk.LDM_GTK_CONF])\n", (1057, 1139), False, 'import subprocess\n'), ((1502, 1522), 'curses.color_pair', 'curses.color_pair', (['(3)'], {}), '(3)\n', (1519, 1522), False, 'import curses\n'), ((938, 958), 'curses.color_pair', 'curses.color_pair', (['(5)'], {}), '(5)\n', (955, 958), False, 'import curses\n'), ((1349, 1369), 'curses.color_pair', 'curses.color_pair', (['(2)'], {}), '(2)\n', (1366, 1369), False, 'import curses\n')]
import os from NewsData import create_mini_batch, NewsDataset, NewsDoc import torch from transformers import BertForSequenceClassification from transformers import BertTokenizer root = os.path.join('..', 'data') #PRETRAINED_MODEL_NAME = "clue/roberta_chinese_base" PRETRAINED_MODEL_NAME = "hfl/chinese-roberta-wwm-ext" #PRETRAINED_MODEL_NAME = "hfl/chinese-roberta-wwm-ext-large" NUM_LABELS = 2 BATCH_SIZE = 2 classifier_model_idx = 4 train = True #EPOCHS = 5 EPOCHS = 7 cuda_num = "cuda:0" setup = "Setup1" #setup = "" TrainFile = "TrainClassify" + setup + ".csv" ValidFile = "ValidClassify" + setup + ".csv" #ValidFile = "CheckClassify.csv" #ValidFile = "WeakClassify.csv" ModelName = "RobertaWwmExtClassifier" + setup + "Model{}" def get_predictions(model, dataloader,device): predictions = None correct = 0 tp = 0 relative = 0 unrelative = 0 tn = 0 total = 0 model.eval() with torch.no_grad(): for data in dataloader: if next(model.parameters()).is_cuda: data = [t.to(device) for t in data if t is not None] tokens_tensors, segments_tensors, masks_tensors, labels = data outputs = model(input_ids=tokens_tensors, # token_type_ids=segments_tensors, attention_mask=masks_tensors) logits = outputs[0] _, pred = torch.max(logits.data, 1) total += labels.size(0) correct += (pred == labels).sum().item() for i,la in enumerate(labels): if la == 1: relative+=1 if pred[i] == 1: tp+=1 else: unrelative+=1 if pred[i]==0: tn+=1 if predictions is None: predictions = pred else: predictions = torch.cat((predictions, pred)) acc = correct / total print("relative accuracy = {}/{} = {}".format(tp,relative,tp/relative)) print("unrelative accuracy = {}/{} = {}".format(tn,unrelative,tn/unrelative)) return predictions, acc def classifier(): tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME) device = torch.device(cuda_num if torch.cuda.is_available() else "cpu") model = BertForSequenceClassification.from_pretrained( PRETRAINED_MODEL_NAME, num_labels=NUM_LABELS) model = model.to(device) model.load_state_dict( torch.load(os.path.join(ModelName.format(classifier_model_idx), 'pytorch_model.bin'), map_location="cpu")) model.eval() def predict(doc): predset = NewsDoc(tokenizer=tokenizer, doc=doc) dataloader = torch.utils.data.DataLoader( predset,batch_size=1,shuffle=True,collate_fn=create_mini_batch) with torch.no_grad(): data = next(iter(dataloader)) if next(model.parameters()).is_cuda: data = [t.to(device) for t in data if t is not None] #if next(model.parameters()).is_cuda: # data = [t.to(device) for t in data if t is not None] tokens_tensors, segments_tensors, masks_tensors, labels = data outputs = model(input_ids=tokens_tensors, # token_type_ids=segments_tensors, attention_mask=masks_tensors) logits = outputs[0] _, pred = torch.max(logits.data, 1) return bool(pred[0]) return predict, None if __name__ == "__main__": tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME) device = torch.device(cuda_num if torch.cuda.is_available() else "cpu") model = BertForSequenceClassification.from_pretrained( PRETRAINED_MODEL_NAME, num_labels=NUM_LABELS) model = model.to(device) if train: trainset = NewsDataset(os.path.join(root, TrainFile), tokenizer=tokenizer) trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, collate_fn=create_mini_batch,shuffle=True) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) for epoch in range(EPOCHS): running_loss = 0.0 for data in trainloader: tokens_tensors, segments_tensors, \ masks_tensors, labels = [t.to(device) for t in data] optimizer.zero_grad() outputs = model(input_ids=tokens_tensors, # token_type_ids=segments_tensors, attention_mask=masks_tensors, labels=labels) loss = outputs[0] loss.backward() optimizer.step() running_loss += loss.item() _, acc = get_predictions(model, trainloader, device=device) print('[epoch %d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss, acc)) model.save_pretrained(ModelName.format(epoch)) else: for model_idx in range(0, EPOCHS): print("epoch {}:".format(model_idx)) model.load_state_dict( torch.load(os.path.join(ModelName.format(model_idx), 'pytorch_model.bin'), map_location="cpu")) trainset = NewsDataset(os.path.join(root, ValidFile), tokenizer=tokenizer) testloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, collate_fn=create_mini_batch) _, acc = get_predictions(model, testloader, device=device) print(acc)
[ "NewsData.NewsDoc", "torch.max", "transformers.BertTokenizer.from_pretrained", "os.path.join", "transformers.BertForSequenceClassification.from_pretrained", "torch.cuda.is_available", "torch.utils.data.DataLoader", "torch.no_grad", "torch.cat" ]
[((186, 212), 'os.path.join', 'os.path.join', (['""".."""', '"""data"""'], {}), "('..', 'data')\n", (198, 212), False, 'import os\n'), ((2199, 2251), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['PRETRAINED_MODEL_NAME'], {}), '(PRETRAINED_MODEL_NAME)\n', (2228, 2251), False, 'from transformers import BertTokenizer\n'), ((2341, 2436), 'transformers.BertForSequenceClassification.from_pretrained', 'BertForSequenceClassification.from_pretrained', (['PRETRAINED_MODEL_NAME'], {'num_labels': 'NUM_LABELS'}), '(PRETRAINED_MODEL_NAME,\n num_labels=NUM_LABELS)\n', (2386, 2436), False, 'from transformers import BertForSequenceClassification\n'), ((3608, 3660), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['PRETRAINED_MODEL_NAME'], {}), '(PRETRAINED_MODEL_NAME)\n', (3637, 3660), False, 'from transformers import BertTokenizer\n'), ((3750, 3845), 'transformers.BertForSequenceClassification.from_pretrained', 'BertForSequenceClassification.from_pretrained', (['PRETRAINED_MODEL_NAME'], {'num_labels': 'NUM_LABELS'}), '(PRETRAINED_MODEL_NAME,\n num_labels=NUM_LABELS)\n', (3795, 3845), False, 'from transformers import BertForSequenceClassification\n'), ((921, 936), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (934, 936), False, 'import torch\n'), ((2694, 2731), 'NewsData.NewsDoc', 'NewsDoc', ([], {'tokenizer': 'tokenizer', 'doc': 'doc'}), '(tokenizer=tokenizer, doc=doc)\n', (2701, 2731), False, 'from NewsData import create_mini_batch, NewsDataset, NewsDoc\n'), ((2753, 2852), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['predset'], {'batch_size': '(1)', 'shuffle': '(True)', 'collate_fn': 'create_mini_batch'}), '(predset, batch_size=1, shuffle=True, collate_fn\n =create_mini_batch)\n', (2780, 2852), False, 'import torch\n'), ((4001, 4110), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['trainset'], {'batch_size': 'BATCH_SIZE', 'collate_fn': 'create_mini_batch', 'shuffle': '(True)'}), '(trainset, batch_size=BATCH_SIZE, collate_fn=\n create_mini_batch, shuffle=True)\n', (4028, 4110), False, 'import torch\n'), ((1393, 1418), 'torch.max', 'torch.max', (['logits.data', '(1)'], {}), '(logits.data, 1)\n', (1402, 1418), False, 'import torch\n'), ((2290, 2315), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2313, 2315), False, 'import torch\n'), ((2876, 2891), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2889, 2891), False, 'import torch\n'), ((3481, 3506), 'torch.max', 'torch.max', (['logits.data', '(1)'], {}), '(logits.data, 1)\n', (3490, 3506), False, 'import torch\n'), ((3699, 3724), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3722, 3724), False, 'import torch\n'), ((3927, 3956), 'os.path.join', 'os.path.join', (['root', 'TrainFile'], {}), '(root, TrainFile)\n', (3939, 3956), False, 'import os\n'), ((5494, 5589), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['trainset'], {'batch_size': 'BATCH_SIZE', 'collate_fn': 'create_mini_batch'}), '(trainset, batch_size=BATCH_SIZE, collate_fn=\n create_mini_batch)\n', (5521, 5589), False, 'import torch\n'), ((1920, 1950), 'torch.cat', 'torch.cat', (['(predictions, pred)'], {}), '((predictions, pred))\n', (1929, 1950), False, 'import torch\n'), ((5417, 5446), 'os.path.join', 'os.path.join', (['root', 'ValidFile'], {}), '(root, ValidFile)\n', (5429, 5446), False, 'import os\n')]
import cv2 import time cascade_src = 'cars.xml' # video = 'data/Cars_On_Highway.mp4' video = 'data/video1.avi' # video = 'data/video2.avi' def detectCars(filename): rectangles = [] cascade = cv2.CascadeClassifier(cascade_src) vc = cv2.VideoCapture(filename) if vc.isOpened(): rval , frame = vc.read() else: rval = False while rval: rval, frame = vc.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # car detection cars = cascade.detectMultiScale(gray, 1.3, 3) if len(cars) > 0: print("Car detected at " + str(vc.get(cv2.CAP_PROP_POS_MSEC)/1000) + "seconds") time.sleep(2) if cv2.waitKey(33) == ord('q'): break vc.release() detectCars(video)
[ "time.sleep", "cv2.VideoCapture", "cv2.cvtColor", "cv2.CascadeClassifier", "cv2.waitKey" ]
[((198, 232), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['cascade_src'], {}), '(cascade_src)\n', (219, 232), False, 'import cv2\n'), ((241, 267), 'cv2.VideoCapture', 'cv2.VideoCapture', (['filename'], {}), '(filename)\n', (257, 267), False, 'import cv2\n'), ((402, 441), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (414, 441), False, 'import cv2\n'), ((628, 641), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (638, 641), False, 'import time\n'), ((650, 665), 'cv2.waitKey', 'cv2.waitKey', (['(33)'], {}), '(33)\n', (661, 665), False, 'import cv2\n')]
from dataclasses import dataclass from logging import Logger, getLogger from pathlib import Path import pandas as pd from omegaconf import MISSING, DictConfig from fseval.config.callbacks.to_csv import ToCSVCallback from fseval.types import TerminalColor from ._base_export_callback import BaseExportCallback @dataclass class CSVCallback(BaseExportCallback, ToCSVCallback): """CSV support for fseval. Uploads general information on the experiment to a `experiments` table and provides a hook for uploading custom tables. Use the `on_table` hook in your pipeline to upload a DataFrame to a certain database table. """ def __post_init__(self): # assert dir param was given assert self.dir != MISSING, ( "The CSV callback did not receive a `dir` param. All results will be " + "written to files in this dir. This is required to export to CSV files." ) # upgrade dir to Path type self.save_dir = Path(self.dir) # create directories where necessary if not self.save_dir.is_dir(): # ensure directories exist self.save_dir.mkdir(parents=True) # parents=True so creates recursively # print save path dir_abs_str = TerminalColor.blue(self.save_dir.absolute()) self.logger: Logger = getLogger(__name__) self.logger.info(f"CSV callback enabled. Writing .csv files to: {dir_abs_str}") def should_insert_header(self, filepath: Path) -> bool: if filepath.exists(): # when the target `.csv` file already exists, omit header. return False else: # otherwise, add a header to the csv file. return True def on_begin(self, config: DictConfig): df = self.get_experiment_config(config) # write experiment config to `experiments.csv` filepath = self.save_dir / "experiments.csv" header = self.should_insert_header(filepath) df.to_csv(filepath, mode=self.mode, header=header) # log filepath_abs_str = TerminalColor.blue(filepath.absolute()) self.logger.info( f"Written experiment config to: {filepath_abs_str} {TerminalColor.green('✓')}" ) def on_table(self, df: pd.DataFrame, name: str): # make sure experiment `id` is added to this table. this allows a user to JOIN # the results back into each other, after being distributed over several # database tables. df = self.add_experiment_id(df) # upload table to CSV file, named after the table name filepath = self.save_dir / f"{name}.csv" header = self.should_insert_header(filepath) df.to_csv(filepath, mode=self.mode, header=header) # log table upload filepath_abs_str = TerminalColor.blue(filepath.absolute()) self.logger.info( f"Written `{name}` table to: {filepath_abs_str} {TerminalColor.green('✓')}" )
[ "logging.getLogger", "fseval.types.TerminalColor.green", "pathlib.Path" ]
[((983, 997), 'pathlib.Path', 'Path', (['self.dir'], {}), '(self.dir)\n', (987, 997), False, 'from pathlib import Path\n'), ((1320, 1339), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (1329, 1339), False, 'from logging import Logger, getLogger\n'), ((2194, 2218), 'fseval.types.TerminalColor.green', 'TerminalColor.green', (['"""✓"""'], {}), "('✓')\n", (2213, 2218), False, 'from fseval.types import TerminalColor\n'), ((2927, 2951), 'fseval.types.TerminalColor.green', 'TerminalColor.green', (['"""✓"""'], {}), "('✓')\n", (2946, 2951), False, 'from fseval.types import TerminalColor\n')]
import sys,os import boto3 from pprint import pprint AUTOSTART = False AUTOSTOP = False ## Our main "part" if( __name__ == "__main__" ): ec2con = boto3.resource("ec2") keys = {} instance_id_list = [] instance_states = {} instances = ec2con.instances.filter( Filters=[ {'Name': 'instance-state-name', 'Values': ['*']} ]) for instance in instances: print( instance.id, instance.instance_type, instance.image_id, instance.state ) if instance.state['Name'] not in instance_states: instance_states[ instance.state['Name'] ] = []; instance_states[ instance.state['Name'] ].append( instance.id ); if( instance.key_name not in keys ): kv = ec2con.KeyPair( instance.key_name ) keys[ instance.key_name ] = kv.key_fingerprint for interface in instance.network_interfaces_attribute: print( "VPC: %(vpcid)s" % { "vpcid":interface['VpcId'] } ) print("#####################################################################") print("Found states:" ) pprint( instance_states ) if 'stopped' in instance_states and len( instance_states['stopped'] ) > 0: client = boto3.client("ec2") print("Can start nodes: %(s)s" % { "s": ",".join( instance_states['stopped'] ) } ) if AUTOSTART: start_state = client.start_instances( InstanceIds=instance_states['stopped'] ) elif 'running' in instance_states and len( instance_states['running'] ) > 0: client = boto3.client("ec2") print("Can stop nodes: %(s)s" % { "s": ",".join( instance_states['running'] ) } ) if AUTOSTOP: stop_state = client.stop_instances( InstanceIds=instance_states['running'] ) else: print("No actions taken on any insatnces") print("#########################") if( len( keys.keys() ) > 1 ): print("WARN: More then one key-pair used, %(n)s" % {"n": len( keys.keys() ) }) if( len( keys.keys() ) > 0 ): pprint( keys ) print("#####################################################################") defaultvpc = boto3.client("ec2").describe_vpcs()['Vpcs'][0]['VpcId']; for vpc in ec2con.Vpc( defaultvpc ).security_groups.all(): pprint( vpc )
[ "boto3.resource", "boto3.client", "pprint.pprint" ]
[((152, 173), 'boto3.resource', 'boto3.resource', (['"""ec2"""'], {}), "('ec2')\n", (166, 173), False, 'import boto3\n'), ((979, 1002), 'pprint.pprint', 'pprint', (['instance_states'], {}), '(instance_states)\n', (985, 1002), False, 'from pprint import pprint\n'), ((1094, 1113), 'boto3.client', 'boto3.client', (['"""ec2"""'], {}), "('ec2')\n", (1106, 1113), False, 'import boto3\n'), ((1824, 1836), 'pprint.pprint', 'pprint', (['keys'], {}), '(keys)\n', (1830, 1836), False, 'from pprint import pprint\n'), ((2054, 2065), 'pprint.pprint', 'pprint', (['vpc'], {}), '(vpc)\n', (2060, 2065), False, 'from pprint import pprint\n'), ((1388, 1407), 'boto3.client', 'boto3.client', (['"""ec2"""'], {}), "('ec2')\n", (1400, 1407), False, 'import boto3\n'), ((1935, 1954), 'boto3.client', 'boto3.client', (['"""ec2"""'], {}), "('ec2')\n", (1947, 1954), False, 'import boto3\n')]
import pandas as pd from spherical_geometry.polygon import SphericalPolygon import numpy as np lon = [91.3320117152011, 74.6060844556399, 174.409435753150, 144.284491292185, 91.3320117152011] lat = [9.37366242174489, 61.1396992149365, 48.6744705245903, 2.08633373396527, 9.37366242174489] coordinate = [] for i, j in zip(lon, lat): phi = np.deg2rad(i) theta = np.deg2rad(90-j) x = np.sin(theta)*np.cos(phi) y = np.sin(theta)*np.sin(phi) z = np.cos(theta) coordinate.append((x, y, z)) sp = SphericalPolygon(coordinate) def filter_in_box(row): lat = row.evla lon = row.evlo phi = np.deg2rad(lon) theta = np.deg2rad(90-lat) x = np.sin(theta)*np.cos(phi) y = np.sin(theta)*np.sin(phi) z = np.cos(theta) return sp.contains_point((x, y, z)) def main(): data = pd.read_csv( "./data/list_227evts_info_EARA2014_inversion", sep="\s+") data_selected = data[data.apply(filter_in_box, axis=1)] data_selected.to_csv( "./data/list_227evts_info_EARA2014_inversion.selected", sep=" ", index=False) if __name__ == "__main__": main()
[ "pandas.read_csv", "spherical_geometry.polygon.SphericalPolygon", "numpy.deg2rad", "numpy.cos", "numpy.sin" ]
[((528, 556), 'spherical_geometry.polygon.SphericalPolygon', 'SphericalPolygon', (['coordinate'], {}), '(coordinate)\n', (544, 556), False, 'from spherical_geometry.polygon import SphericalPolygon\n'), ((357, 370), 'numpy.deg2rad', 'np.deg2rad', (['i'], {}), '(i)\n', (367, 370), True, 'import numpy as np\n'), ((383, 401), 'numpy.deg2rad', 'np.deg2rad', (['(90 - j)'], {}), '(90 - j)\n', (393, 401), True, 'import numpy as np\n'), ((476, 489), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (482, 489), True, 'import numpy as np\n'), ((631, 646), 'numpy.deg2rad', 'np.deg2rad', (['lon'], {}), '(lon)\n', (641, 646), True, 'import numpy as np\n'), ((659, 679), 'numpy.deg2rad', 'np.deg2rad', (['(90 - lat)'], {}), '(90 - lat)\n', (669, 679), True, 'import numpy as np\n'), ((754, 767), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (760, 767), True, 'import numpy as np\n'), ((833, 903), 'pandas.read_csv', 'pd.read_csv', (['"""./data/list_227evts_info_EARA2014_inversion"""'], {'sep': '"""\\\\s+"""'}), "('./data/list_227evts_info_EARA2014_inversion', sep='\\\\s+')\n", (844, 903), True, 'import pandas as pd\n'), ((408, 421), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (414, 421), True, 'import numpy as np\n'), ((422, 433), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (428, 433), True, 'import numpy as np\n'), ((442, 455), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (448, 455), True, 'import numpy as np\n'), ((456, 467), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (462, 467), True, 'import numpy as np\n'), ((686, 699), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (692, 699), True, 'import numpy as np\n'), ((700, 711), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (706, 711), True, 'import numpy as np\n'), ((720, 733), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (726, 733), True, 'import numpy as np\n'), ((734, 745), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (740, 745), True, 'import numpy as np\n')]
import torch import torch.nn.functional as F from torch import nn class OrganDistanceLoss(nn.Module): def __init__(self, device, voxel_temperature: float, organ_temperature: float): super(OrganDistanceLoss, self).__init__() self.device = device self.voxel_temperature = voxel_temperature self.organ_temperature = organ_temperature def forward( self, predictions: torch.Tensor, anchors: torch.Tensor, lengths: torch.Tensor, ) -> torch.Tensor: """Computes the minimum distance to organ loss. Arguments: predictions: Tensor with shape [batch_size, 3] anchors: Tensor with shape [batch_size, max_organs_in_batch, num_sampled_points, 3] lengths: Tensor with shape [batch_size] devce: A torch device - either cpu or gpu """ mask = ( torch.arange(torch.max(lengths)) .expand(lengths.size()[0], torch.max(lengths)) .to(self.device) < lengths.unsqueeze(1) ).float() mask[torch.where(mask == 0)] = 1e15 mask = mask.unsqueeze(2) predictions = predictions.unsqueeze(1).unsqueeze(2) distances = (predictions - anchors).norm(p=2, dim=3) distances_masked = distances * mask distances_weights = F.softmin(distances_masked / self.voxel_temperature, dim=2) organ_distances_masked = (distances_masked * distances_weights).sum(dim=2) organ_distances_weights = F.softmin( organ_distances_masked / self.organ_temperature, dim=1 ) loss = (organ_distances_masked * organ_distances_weights).sum(dim=1).mean(dim=0) return loss class BaselineRegLoss(nn.Module): def __init__(self): super(BaselineRegLoss, self).__init__() self.mse = nn.MSELoss() def forward(self, predictions: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor: batch_size = predictions.size()[0] return self.mse(predictions, anchors.view(batch_size, -1, 3).mean(1))
[ "torch.nn.functional.softmin", "torch.max", "torch.nn.MSELoss", "torch.where" ]
[((1319, 1378), 'torch.nn.functional.softmin', 'F.softmin', (['(distances_masked / self.voxel_temperature)'], {'dim': '(2)'}), '(distances_masked / self.voxel_temperature, dim=2)\n', (1328, 1378), True, 'import torch.nn.functional as F\n'), ((1496, 1561), 'torch.nn.functional.softmin', 'F.softmin', (['(organ_distances_masked / self.organ_temperature)'], {'dim': '(1)'}), '(organ_distances_masked / self.organ_temperature, dim=1)\n', (1505, 1561), True, 'import torch.nn.functional as F\n'), ((1820, 1832), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (1830, 1832), False, 'from torch import nn\n'), ((1062, 1084), 'torch.where', 'torch.where', (['(mask == 0)'], {}), '(mask == 0)\n', (1073, 1084), False, 'import torch\n'), ((947, 965), 'torch.max', 'torch.max', (['lengths'], {}), '(lengths)\n', (956, 965), False, 'import torch\n'), ((888, 906), 'torch.max', 'torch.max', (['lengths'], {}), '(lengths)\n', (897, 906), False, 'import torch\n')]
"""Tests for the main paper-git command line application.""" import pytest from io import StringIO from unittest.mock import patch from papergit.bin.paper_git import main @pytest.mark.usefixtures('initialize_fixture') class TestPaperGitCommand(object): """Tests for the main paper-git command.""" def test_usage_with_no_arguments(self): # Test that the command runs without any arguments. testargs = ['paper-git'] output = StringIO() with patch('sys.argv', testargs), patch('sys.stdout', output): with pytest.raises(SystemExit): main() assert 'usage' in output.getvalue() def test_usage_with_bad_arguments(self): # Test that the command prints usage with wrong arguments. testargs = ['paper-git', 'badcommand'] output = StringIO() with patch('sys.argv', testargs), patch('sys.stderr', output): with pytest.raises(SystemExit): main() assert 'usage' in output.getvalue() def test_initialization(self): # Test paper-git with a valid command. testargs = ['paper-git', 'list'] output = StringIO() error = StringIO() with patch('sys.argv', testargs), \ patch('sys.stdout', output), patch('sys.stderr', error): main() assert output.getvalue() == '' assert error.getvalue() == ''
[ "pytest.raises", "pytest.mark.usefixtures", "unittest.mock.patch", "io.StringIO", "papergit.bin.paper_git.main" ]
[((176, 221), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""initialize_fixture"""'], {}), "('initialize_fixture')\n", (199, 221), False, 'import pytest\n'), ((460, 470), 'io.StringIO', 'StringIO', ([], {}), '()\n', (468, 470), False, 'from io import StringIO\n'), ((830, 840), 'io.StringIO', 'StringIO', ([], {}), '()\n', (838, 840), False, 'from io import StringIO\n'), ((1164, 1174), 'io.StringIO', 'StringIO', ([], {}), '()\n', (1172, 1174), False, 'from io import StringIO\n'), ((1191, 1201), 'io.StringIO', 'StringIO', ([], {}), '()\n', (1199, 1201), False, 'from io import StringIO\n'), ((484, 511), 'unittest.mock.patch', 'patch', (['"""sys.argv"""', 'testargs'], {}), "('sys.argv', testargs)\n", (489, 511), False, 'from unittest.mock import patch\n'), ((513, 540), 'unittest.mock.patch', 'patch', (['"""sys.stdout"""', 'output'], {}), "('sys.stdout', output)\n", (518, 540), False, 'from unittest.mock import patch\n'), ((854, 881), 'unittest.mock.patch', 'patch', (['"""sys.argv"""', 'testargs'], {}), "('sys.argv', testargs)\n", (859, 881), False, 'from unittest.mock import patch\n'), ((883, 910), 'unittest.mock.patch', 'patch', (['"""sys.stderr"""', 'output'], {}), "('sys.stderr', output)\n", (888, 910), False, 'from unittest.mock import patch\n'), ((1215, 1242), 'unittest.mock.patch', 'patch', (['"""sys.argv"""', 'testargs'], {}), "('sys.argv', testargs)\n", (1220, 1242), False, 'from unittest.mock import patch\n'), ((1262, 1289), 'unittest.mock.patch', 'patch', (['"""sys.stdout"""', 'output'], {}), "('sys.stdout', output)\n", (1267, 1289), False, 'from unittest.mock import patch\n'), ((1291, 1317), 'unittest.mock.patch', 'patch', (['"""sys.stderr"""', 'error'], {}), "('sys.stderr', error)\n", (1296, 1317), False, 'from unittest.mock import patch\n'), ((1331, 1337), 'papergit.bin.paper_git.main', 'main', ([], {}), '()\n', (1335, 1337), False, 'from papergit.bin.paper_git import main\n'), ((559, 584), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (572, 584), False, 'import pytest\n'), ((602, 608), 'papergit.bin.paper_git.main', 'main', ([], {}), '()\n', (606, 608), False, 'from papergit.bin.paper_git import main\n'), ((929, 954), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (942, 954), False, 'import pytest\n'), ((972, 978), 'papergit.bin.paper_git.main', 'main', ([], {}), '()\n', (976, 978), False, 'from papergit.bin.paper_git import main\n')]
# Licensed to CRATE Technology GmbH ("Crate") under one or more contributor # license agreements. See the NOTICE file distributed with this work for # additional information regarding copyright ownership. Crate licenses # this file to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may # obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # However, if you have executed another commercial license agreement # with Crate these terms will supersede the license and you may use the # software solely pursuant to the terms of the relevant commercial agreement. from argparse import Namespace from croud.api import Client from croud.config import get_output_format from croud.printer import print_response, print_warning def transform_roles_list(key): def _transform(field): return ",\n".join(f"{r[key]}: {r['role_fqn']}" for r in field) return _transform def users_list(args: Namespace) -> None: client = Client.from_args(args) if args.no_org: print_warning( "The --no-org argument is deprecated. Please use --no-roles instead." ) no_roles = {"no-roles": "1"} if (args.no_roles or args.no_org) else None data, errors = client.get("/api/v2/users/", params=no_roles) print_response( data=data, errors=errors, output_fmt=get_output_format(args), keys=["uid", "email", "username", "organization_roles", "project_roles"], transforms={ "organization_roles": transform_roles_list("organization_id"), "project_roles": transform_roles_list("project_id"), }, )
[ "croud.config.get_output_format", "croud.printer.print_warning", "croud.api.Client.from_args" ]
[((1366, 1388), 'croud.api.Client.from_args', 'Client.from_args', (['args'], {}), '(args)\n', (1382, 1388), False, 'from croud.api import Client\n'), ((1417, 1506), 'croud.printer.print_warning', 'print_warning', (['"""The --no-org argument is deprecated. Please use --no-roles instead."""'], {}), "(\n 'The --no-org argument is deprecated. Please use --no-roles instead.')\n", (1430, 1506), False, 'from croud.printer import print_response, print_warning\n'), ((1748, 1771), 'croud.config.get_output_format', 'get_output_format', (['args'], {}), '(args)\n', (1765, 1771), False, 'from croud.config import get_output_format\n')]
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. """ Simple but comprehensive toolset for transforming VCF output from raw scores (Conv1D or other GPU inferencing) to fields usable by VCFEval (and other upstream variant tools). -- threshold by model score -- threshold separately for SNP and Indel -- threshold called variants by hetero/homozygous -- output 0/1 or 1/1 in the VCF -- output a model confidence score, for ROC in VCFEval -- TODO: If 2+ variants per location (above threhold), choose top 2 [multi-allele] -- TODO: If single-allele and multi-allele predictions, threshold between those This is important, because VCFEval needs 0/1 type preditions. Probably a good idea to pre-filter the inputs -- since data will be processed in series, and stored in memory. Example command: python format_vcf.py --input_file f4xnp6dc_epoch3_output_HG02_ALL-multiAF-DVAR.vcf \ --output_file epoch3_output_multiAF_thresh_test.vcf \ --threshold 0.5 --indel_threshold 0.1 --zygo_threshold 0.4 @author: nyakovenko """ import argparse from argparse import RawTextHelpFormatter from collections import defaultdict import functools import multiprocessing from multiprocessing import Pool import os import tempfile import tqdm import logging import subprocess import time # Inline -- for now NONCE = 0.0000001 # We don't really need score bucket -- can use 50 but VCFEval will take longer SCORE_BUCKETS = 50 # Easier to parse def print_lines(lines): for l in lines: print(l) def filter_format_vcf(args): input_fname = args.input_file output_fname = args.output_file # Unnecessary way to get length for TQDM -- can't do it any faster num_lines = sum(1 for line in open(input_fname, 'r')) print('reading %d lines from %s' % (num_lines, input_fname)) print('writing to %s' % output_fname) #set thresholds snp_threshold = args.snp_threshold snp_hz_threshold = args.snp_zygo_threshold if args.indel_threshold > 0.: indel_threshold = args.indel_threshold indel_hz_threshold = args.indel_zygo_threshold if args.long_indel_threshold > 0.: long_indel_threshold = args.long_indel_threshold long_indel_hz_threshold = args. long_indel_zygo_threshold else: long_indel_threshold = indel_threshold long_indel_hz_threshold = indel_hz_threshold if args.delete_threshold > 0.: delete_threshold = args.delete_threshold delete_hz_threshold = args.delete_zygo_threshold else: delete_threshold = indel_threshold delete_hz_threshold = indel_hz_threshold else: indel_threshold = snp_threshold indel_hz_threshold = snp_hz_threshold long_indel_threshold = indel_threshold long_indel_hz_threshold = indel_hz_threshold debug = args.debug #initialize variables to store results curr_line = 0 curr_pos, curr_chrom = None, None curr_pos_lines = list() curr_pos_threshold_scores = list() curr_pos_gts = list() with open(input_fname, 'r') as fin: with open(output_fname, 'w') as fout: for line in tqdm.tqdm(fin, total=num_lines): curr_line += 1 if line[0] == '#': # copy header # TODO: Extend CVS columns? fout.write(line) else: items = line.strip('\n').split('\t') if debug: print(line) print(items) # should have 10-11 items (11th is appended "GT:1/1") assert len(items) == 10 or len(items) == 11, 'Line should have 10-11 items (11th is appended "GT:1/1")\n%s' % line scores = items[2].split(';') scores = {a:float(b) for a,b in [s.split('=') for s in scores]} if debug: print(scores) # Threshold on VT (variant type) score # TODO: Choose based on binary score? Command line option threshold_score = 1.0 - scores['NV'] ref_bases = items[3] var_bases = items[4] is_snp = (len(ref_bases) == 1 and len(var_bases) == 1) is_indel = ~is_snp is_long_indel = (len(ref_bases) >= 3 or len(var_bases) >= 3) is_delete = (len(ref_bases) > 1 and len(var_bases) == 1) and ~is_long_indel threshold = snp_threshold if is_snp else (long_indel_threshold if is_long_indel else (delete_threshold if is_delete else indel_threshold)) threshold_score_margin = threshold_score - threshold if threshold_score_margin >= 0.: # format this line # default = heterozygous gt_string = '0/1' hz_score = scores['OV'] # normalize -- TODO: Option? #hz_score = hz_score / (1.0 - scores['NV'] + NONCE) hz_score = hz_score hz_threshold = snp_hz_threshold if is_snp else (long_indel_hz_threshold if is_long_indel else (delete_hz_threshold if is_delete else indel_hz_threshold)) if hz_score >= hz_threshold: gt_string = '1/1' # Create a sort of quality score? # Arbitrary, so scale to min threshold(?) # NOTE: Binarize -- else too many endpoints for VCFEval q_score = threshold_score_margin / (1.0 - threshold) q_score = int(q_score * SCORE_BUCKETS) new_items = items[0:9] + ['%s:%s' % (gt_string, q_score)] new_line = '\t'.join(new_items) if debug: print(new_line) #if this is the first variant line: store results and move on to the next line if curr_pos is None: curr_chrom = items[0] curr_pos = items[1] curr_pos_lines = [new_line] curr_pos_threshold_scores = [threshold_score] curr_pos_gts = [gt_string] #if this position is the same as curr_pos - append results to previous ones and move on to the next line elif curr_chrom == items[0] and curr_pos == items[1]: if curr_pos == '182303657': print('appending') print(new_line) curr_pos_lines.append(new_line) curr_pos_threshold_scores.append(threshold_score) curr_pos_gts.append(gt_string) #if this is a new position - write the results for curr_pos to output, then overwrite with new results else: #if there is a homozygous variant - discard all others if '1/1' in curr_pos_gts: # TODO: Sort by OV score best_index = curr_pos_gts.index('1/1') if len(curr_pos_lines) > 1: print('----------------\nChoosing *single* homozygous var for possible multi-allele') print(curr_pos_lines[best_index]) print('discarding %d other lines:' % (len(curr_pos_lines)-1)) print_lines([curr_pos_lines[i] for i in (set(range(len(curr_pos_lines))) - set([best_index]))]) # Look at *second* position. Do not over-write if second best result is still very strong #top2 = [curr_pos_threshold_scores.index(i) for i in sorted(curr_pos_threshold_scores, reverse=True)[:2]] sorted_pair = sorted(list(zip(curr_pos_threshold_scores, curr_pos_lines)), reverse=True) #print(sorted_pair) top2 = [curr_pos_lines.index(j) for (i,j) in sorted_pair][:2] assert top2[0] != top2[1] if curr_pos_threshold_scores[top2[1]] >= args.multiallele_homozygous_second_threshold: print('A*Skipping* single homozygous because second result too good %.5f' % curr_pos_threshold_scores[top2[1]]) elif curr_pos_threshold_scores[top2[0]] >= args.multiallele_homozygous_second_threshold and curr_pos_gts[top2[0]] != '1/1': print('B*Skipping* single homozygous because second result too good %.5f' % curr_pos_threshold_scores[top2[0]]) else: curr_pos_lines = [curr_pos_lines[best_index]] #if curr_pos has >2 heterozygous variants, store 2 with highest threshold score if len(curr_pos_lines)>2: #top2 = [curr_pos_threshold_scores.index(i) for i in sorted(curr_pos_threshold_scores, reverse=True)[:2]] sorted_pair = sorted(list(zip(curr_pos_threshold_scores, curr_pos_lines)), reverse=True) #print(sorted_pair) top2 = [curr_pos_lines.index(j) for (i,j) in sorted_pair][:2] assert top2[0] != top2[1] if len(curr_pos_lines) > 2: print('----------------\nChoosing *two* hetero var for possible multi-allele') print_lines([curr_pos_lines[i] for i in top2]) # Discard second allele, if below threshold if curr_pos_threshold_scores[top2[1]] <= args.multiallele_second_threshold: print('C*Skipping* second allele because its not good enough.') print_lines([curr_pos_lines[i] for i in top2[1:]]) top2 = top2[:1] #time.sleep(2) print('discarding %d other lines:' % (len(curr_pos_lines)-2)) print_lines([curr_pos_lines[i] for i in (set(range(len(curr_pos_lines))) - set(top2))]) curr_pos_lines = [curr_pos_lines[i] for i in top2] #write to file for output_line in curr_pos_lines: fout.write(output_line+'\n') #overwrite with new position curr_chrom = items[0] curr_pos = items[1] curr_pos_lines = [new_line] curr_pos_threshold_scores = [threshold_score] curr_pos_gts = [gt_string] #if this is the last line in the file: write results if curr_line==num_lines: #if there is a homozygous variant - discard all others if '1/1' in curr_pos_gts: curr_pos_lines = [curr_pos_lines[curr_pos_gts.index('1/1')]] #if curr_pos has >2 heterozygous variants, store 2 with highest threshold score if(len(curr_pos_lines)>2): top2 = [curr_pos_threshold_scores.index(i) for i in sorted(curr_pos_threshold_scores)[-2:]] curr_pos_lines = [curr_pos_lines[i] for i in top2] #write to file for output_line in curr_pos_lines: fout.write(output_line+'\n') def main(): # Training settings print("Start program") parser = argparse.ArgumentParser(description='Context module') parser.add_argument('--input_file', type=str, default="", help='input vcf file') parser.add_argument('--output_file', type=str, default="", help='output vcf file') parser.add_argument('--snp_threshold', type=float, default=0.3, help='min variant call score') parser.add_argument('--indel_threshold', type=float, default=0., help='(optional) threshold for indel only') parser.add_argument('--long_indel_threshold', type=float, default=0., help='(optional) threshold for indel only') parser.add_argument('--delete_threshold', type=float, default=0., help='') parser.add_argument('--snp_zygo_threshold', type=float, default=0.5, help='min homozygous score for 1/1 predict') parser.add_argument('--indel_zygo_threshold', type=float, default=0.5, help='(optional) min homozygous score for 1/1 predict for indel only') parser.add_argument('--long_indel_zygo_threshold', type=float, default=0.5, help='(optional) min homozygous score for 1/1 predict for indel only') parser.add_argument('--delete_zygo_threshold', type=float, default=0.5, help='') parser.add_argument('--multiallele_second_threshold', type=float, default=0.7, help='Dont add *second* allele if low probability variant (can be way above basic threshold') parser.add_argument('--multiallele_homozygous_second_threshold', type=float, default=0.9, help='dont over-write multi-allele if first homozygous but second var very strong alsl') parser.add_argument('--debug', action='store_true', default=False, help='debug while conversion?') # NOTE: By default, all non-homozygous predictions (that still meet variant call threshold) treated as 0/1 args = parser.parse_args() print(args) # Perform all operations inline (while possible) filter_format_vcf(args) if __name__ == '__main__': main()
[ "tqdm.tqdm", "argparse.ArgumentParser" ]
[((12404, 12457), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Context module"""'}), "(description='Context module')\n", (12427, 12457), False, 'import argparse\n'), ((3167, 3198), 'tqdm.tqdm', 'tqdm.tqdm', (['fin'], {'total': 'num_lines'}), '(fin, total=num_lines)\n', (3176, 3198), False, 'import tqdm\n')]
from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, IntegerField, SelectField from satori.config import verbose class EditConfigurationForm(FlaskForm): flaskPort = IntegerField(verbose('flaskPort'), validators=[]) nodejsPort = IntegerField(verbose('nodejsPort'), validators=[]) dataPath = StringField(verbose('dataPath'), validators=[]) modelPath = StringField(verbose('modelPath'), validators=[]) defaultSource = SelectField(verbose('defaultSource'), validators=[], choices=['streamr', 'satori']) submit = SubmitField('Save')
[ "satori.config.verbose", "wtforms.SubmitField" ]
[((558, 577), 'wtforms.SubmitField', 'SubmitField', (['"""Save"""'], {}), "('Save')\n", (569, 577), False, 'from wtforms import StringField, SubmitField, IntegerField, SelectField\n'), ((208, 228), 'satori.config.verbose', 'verbose', (['"""flaskPort"""'], {}), "('flaskPort')\n", (215, 228), False, 'from satori.config import verbose\n'), ((275, 296), 'satori.config.verbose', 'verbose', (['"""nodejsPort"""'], {}), "('nodejsPort')\n", (282, 296), False, 'from satori.config import verbose\n'), ((340, 359), 'satori.config.verbose', 'verbose', (['"""dataPath"""'], {}), "('dataPath')\n", (347, 359), False, 'from satori.config import verbose\n'), ((404, 424), 'satori.config.verbose', 'verbose', (['"""modelPath"""'], {}), "('modelPath')\n", (411, 424), False, 'from satori.config import verbose\n'), ((473, 497), 'satori.config.verbose', 'verbose', (['"""defaultSource"""'], {}), "('defaultSource')\n", (480, 497), False, 'from satori.config import verbose\n')]
import os import toml import argparse from pprint import pprint import torch from torch.utils.data import DataLoader import utils from utils import CONFIG from trainer import Trainer from tester import Tester from dataloader.image_file import ImageFileTrain, ImageFileTest from dataloader.data_generator import DataGenerator from dataloader.prefetcher import Prefetcher def main(): # Train or Test if CONFIG.phase.lower() == "train": # set distributed training if CONFIG.dist: CONFIG.gpu = CONFIG.local_rank torch.cuda.set_device(CONFIG.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') CONFIG.world_size = torch.distributed.get_world_size() # Create directories if not exist. if CONFIG.local_rank == 0: utils.make_dir(CONFIG.log.logging_path) utils.make_dir(CONFIG.log.tensorboard_path) utils.make_dir(CONFIG.log.checkpoint_path) # Create a logger logger, tb_logger = utils.get_logger(CONFIG.log.logging_path, CONFIG.log.tensorboard_path, logging_level=CONFIG.log.logging_level) train_image_file = ImageFileTrain(alpha_dir=CONFIG.data.train_alpha, fg_dir=CONFIG.data.train_fg, bg_dir=CONFIG.data.train_bg) test_image_file = ImageFileTest(alpha_dir=CONFIG.data.test_alpha, merged_dir=CONFIG.data.test_merged, trimap_dir=CONFIG.data.test_trimap) train_dataset = DataGenerator(train_image_file, phase='train') test_dataset = DataGenerator(test_image_file, phase='val') if CONFIG.dist: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset) else: train_sampler = None test_sampler = None train_dataloader = DataLoader(train_dataset, batch_size=CONFIG.model.batch_size, shuffle=(train_sampler is None), num_workers=CONFIG.data.workers, pin_memory=True, sampler=train_sampler, drop_last=True) train_dataloader = Prefetcher(train_dataloader) test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=CONFIG.data.workers, sampler=test_sampler, drop_last=False) trainer = Trainer(train_dataloader=train_dataloader, test_dataloader=test_dataloader, logger=logger, tb_logger=tb_logger) trainer.train() elif CONFIG.phase.lower() == "test": CONFIG.log.logging_path += "_test" if CONFIG.test.alpha_path is not None: utils.make_dir(CONFIG.test.alpha_path) utils.make_dir(CONFIG.log.logging_path) # Create a logger logger = utils.get_logger(CONFIG.log.logging_path, logging_level=CONFIG.log.logging_level) test_image_file = ImageFileTest(alpha_dir=CONFIG.test.alpha, merged_dir=CONFIG.test.merged, trimap_dir=CONFIG.test.trimap) test_dataset = DataGenerator(test_image_file, phase='test', test_scale=CONFIG.test.scale) test_dataloader = DataLoader(test_dataset, batch_size=CONFIG.test.batch_size, shuffle=False, num_workers=CONFIG.data.workers, drop_last=False) tester = Tester(test_dataloader=test_dataloader) tester.test() else: raise NotImplementedError("Unknown Phase: {}".format(CONFIG.phase)) if __name__ == '__main__': print('Torch Version: ', torch.__version__) parser = argparse.ArgumentParser() parser.add_argument('--phase', type=str, default='train') parser.add_argument('--config', type=str, default='config/gca-dist.toml') parser.add_argument('--local_rank', type=int, default=0) # Parse configuration args = parser.parse_args() with open(args.config) as f: utils.load_config(toml.load(f)) # Check if toml config file is loaded if CONFIG.is_default: raise ValueError("No .toml config loaded.") CONFIG.phase = args.phase CONFIG.log.logging_path = os.path.join(CONFIG.log.logging_path, CONFIG.version) CONFIG.log.tensorboard_path = os.path.join(CONFIG.log.tensorboard_path, CONFIG.version) CONFIG.log.checkpoint_path = os.path.join(CONFIG.log.checkpoint_path, CONFIG.version) if CONFIG.test.alpha_path is not None: CONFIG.test.alpha_path = os.path.join(CONFIG.test.alpha_path, CONFIG.version) if args.local_rank == 0: print('CONFIG: ') pprint(CONFIG) CONFIG.local_rank = args.local_rank # Train or Test main()
[ "trainer.Trainer", "utils.get_logger", "argparse.ArgumentParser", "dataloader.image_file.ImageFileTest", "os.path.join", "torch.cuda.set_device", "dataloader.prefetcher.Prefetcher", "dataloader.data_generator.DataGenerator", "torch.utils.data.distributed.DistributedSampler", "torch.distributed.init_process_group", "toml.load", "utils.make_dir", "torch.utils.data.DataLoader", "utils.CONFIG.phase.lower", "dataloader.image_file.ImageFileTrain", "pprint.pprint", "tester.Tester", "torch.distributed.get_world_size" ]
[((4454, 4479), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4477, 4479), False, 'import argparse\n'), ((4994, 5047), 'os.path.join', 'os.path.join', (['CONFIG.log.logging_path', 'CONFIG.version'], {}), '(CONFIG.log.logging_path, CONFIG.version)\n', (5006, 5047), False, 'import os\n'), ((5082, 5139), 'os.path.join', 'os.path.join', (['CONFIG.log.tensorboard_path', 'CONFIG.version'], {}), '(CONFIG.log.tensorboard_path, CONFIG.version)\n', (5094, 5139), False, 'import os\n'), ((5173, 5229), 'os.path.join', 'os.path.join', (['CONFIG.log.checkpoint_path', 'CONFIG.version'], {}), '(CONFIG.log.checkpoint_path, CONFIG.version)\n', (5185, 5229), False, 'import os\n'), ((430, 450), 'utils.CONFIG.phase.lower', 'CONFIG.phase.lower', ([], {}), '()\n', (448, 450), False, 'from utils import CONFIG\n'), ((1061, 1175), 'utils.get_logger', 'utils.get_logger', (['CONFIG.log.logging_path', 'CONFIG.log.tensorboard_path'], {'logging_level': 'CONFIG.log.logging_level'}), '(CONFIG.log.logging_path, CONFIG.log.tensorboard_path,\n logging_level=CONFIG.log.logging_level)\n', (1077, 1175), False, 'import utils\n'), ((1289, 1401), 'dataloader.image_file.ImageFileTrain', 'ImageFileTrain', ([], {'alpha_dir': 'CONFIG.data.train_alpha', 'fg_dir': 'CONFIG.data.train_fg', 'bg_dir': 'CONFIG.data.train_bg'}), '(alpha_dir=CONFIG.data.train_alpha, fg_dir=CONFIG.data.\n train_fg, bg_dir=CONFIG.data.train_bg)\n', (1303, 1401), False, 'from dataloader.image_file import ImageFileTrain, ImageFileTest\n'), ((1507, 1631), 'dataloader.image_file.ImageFileTest', 'ImageFileTest', ([], {'alpha_dir': 'CONFIG.data.test_alpha', 'merged_dir': 'CONFIG.data.test_merged', 'trimap_dir': 'CONFIG.data.test_trimap'}), '(alpha_dir=CONFIG.data.test_alpha, merged_dir=CONFIG.data.\n test_merged, trimap_dir=CONFIG.data.test_trimap)\n', (1520, 1631), False, 'from dataloader.image_file import ImageFileTrain, ImageFileTest\n'), ((1732, 1778), 'dataloader.data_generator.DataGenerator', 'DataGenerator', (['train_image_file'], {'phase': '"""train"""'}), "(train_image_file, phase='train')\n", (1745, 1778), False, 'from dataloader.data_generator import DataGenerator\n'), ((1802, 1845), 'dataloader.data_generator.DataGenerator', 'DataGenerator', (['test_image_file'], {'phase': '"""val"""'}), "(test_image_file, phase='val')\n", (1815, 1845), False, 'from dataloader.data_generator import DataGenerator\n'), ((2158, 2348), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'CONFIG.model.batch_size', 'shuffle': '(train_sampler is None)', 'num_workers': 'CONFIG.data.workers', 'pin_memory': '(True)', 'sampler': 'train_sampler', 'drop_last': '(True)'}), '(train_dataset, batch_size=CONFIG.model.batch_size, shuffle=\n train_sampler is None, num_workers=CONFIG.data.workers, pin_memory=True,\n sampler=train_sampler, drop_last=True)\n', (2168, 2348), False, 'from torch.utils.data import DataLoader\n'), ((2597, 2625), 'dataloader.prefetcher.Prefetcher', 'Prefetcher', (['train_dataloader'], {}), '(train_dataloader)\n', (2607, 2625), False, 'from dataloader.prefetcher import Prefetcher\n'), ((2652, 2782), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': '(1)', 'shuffle': '(False)', 'num_workers': 'CONFIG.data.workers', 'sampler': 'test_sampler', 'drop_last': '(False)'}), '(test_dataset, batch_size=1, shuffle=False, num_workers=CONFIG.\n data.workers, sampler=test_sampler, drop_last=False)\n', (2662, 2782), False, 'from torch.utils.data import DataLoader\n'), ((2982, 3097), 'trainer.Trainer', 'Trainer', ([], {'train_dataloader': 'train_dataloader', 'test_dataloader': 'test_dataloader', 'logger': 'logger', 'tb_logger': 'tb_logger'}), '(train_dataloader=train_dataloader, test_dataloader=test_dataloader,\n logger=logger, tb_logger=tb_logger)\n', (2989, 3097), False, 'from trainer import Trainer\n'), ((5306, 5358), 'os.path.join', 'os.path.join', (['CONFIG.test.alpha_path', 'CONFIG.version'], {}), '(CONFIG.test.alpha_path, CONFIG.version)\n', (5318, 5358), False, 'import os\n'), ((5422, 5436), 'pprint.pprint', 'pprint', (['CONFIG'], {}), '(CONFIG)\n', (5428, 5436), False, 'from pprint import pprint\n'), ((577, 610), 'torch.cuda.set_device', 'torch.cuda.set_device', (['CONFIG.gpu'], {}), '(CONFIG.gpu)\n', (598, 610), False, 'import torch\n'), ((623, 697), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""', 'init_method': '"""env://"""'}), "(backend='nccl', init_method='env://')\n", (659, 697), False, 'import torch\n'), ((730, 764), 'torch.distributed.get_world_size', 'torch.distributed.get_world_size', ([], {}), '()\n', (762, 764), False, 'import torch\n'), ((856, 895), 'utils.make_dir', 'utils.make_dir', (['CONFIG.log.logging_path'], {}), '(CONFIG.log.logging_path)\n', (870, 895), False, 'import utils\n'), ((908, 951), 'utils.make_dir', 'utils.make_dir', (['CONFIG.log.tensorboard_path'], {}), '(CONFIG.log.tensorboard_path)\n', (922, 951), False, 'import utils\n'), ((964, 1006), 'utils.make_dir', 'utils.make_dir', (['CONFIG.log.checkpoint_path'], {}), '(CONFIG.log.checkpoint_path)\n', (978, 1006), False, 'import utils\n'), ((1899, 1961), 'torch.utils.data.distributed.DistributedSampler', 'torch.utils.data.distributed.DistributedSampler', (['train_dataset'], {}), '(train_dataset)\n', (1946, 1961), False, 'import torch\n'), ((1989, 2050), 'torch.utils.data.distributed.DistributedSampler', 'torch.utils.data.distributed.DistributedSampler', (['test_dataset'], {}), '(test_dataset)\n', (2036, 2050), False, 'import torch\n'), ((3206, 3226), 'utils.CONFIG.phase.lower', 'CONFIG.phase.lower', ([], {}), '()\n', (3224, 3226), False, 'from utils import CONFIG\n'), ((3387, 3426), 'utils.make_dir', 'utils.make_dir', (['CONFIG.log.logging_path'], {}), '(CONFIG.log.logging_path)\n', (3401, 3426), False, 'import utils\n'), ((3471, 3557), 'utils.get_logger', 'utils.get_logger', (['CONFIG.log.logging_path'], {'logging_level': 'CONFIG.log.logging_level'}), '(CONFIG.log.logging_path, logging_level=CONFIG.log.\n logging_level)\n', (3487, 3557), False, 'import utils\n'), ((3614, 3722), 'dataloader.image_file.ImageFileTest', 'ImageFileTest', ([], {'alpha_dir': 'CONFIG.test.alpha', 'merged_dir': 'CONFIG.test.merged', 'trimap_dir': 'CONFIG.test.trimap'}), '(alpha_dir=CONFIG.test.alpha, merged_dir=CONFIG.test.merged,\n trimap_dir=CONFIG.test.trimap)\n', (3627, 3722), False, 'from dataloader.image_file import ImageFileTrain, ImageFileTest\n'), ((3822, 3896), 'dataloader.data_generator.DataGenerator', 'DataGenerator', (['test_image_file'], {'phase': '"""test"""', 'test_scale': 'CONFIG.test.scale'}), "(test_image_file, phase='test', test_scale=CONFIG.test.scale)\n", (3835, 3896), False, 'from dataloader.data_generator import DataGenerator\n'), ((3923, 4051), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'CONFIG.test.batch_size', 'shuffle': '(False)', 'num_workers': 'CONFIG.data.workers', 'drop_last': '(False)'}), '(test_dataset, batch_size=CONFIG.test.batch_size, shuffle=False,\n num_workers=CONFIG.data.workers, drop_last=False)\n', (3933, 4051), False, 'from torch.utils.data import DataLoader\n'), ((4214, 4253), 'tester.Tester', 'Tester', ([], {'test_dataloader': 'test_dataloader'}), '(test_dataloader=test_dataloader)\n', (4220, 4253), False, 'from tester import Tester\n'), ((4798, 4810), 'toml.load', 'toml.load', (['f'], {}), '(f)\n', (4807, 4810), False, 'import toml\n'), ((3340, 3378), 'utils.make_dir', 'utils.make_dir', (['CONFIG.test.alpha_path'], {}), '(CONFIG.test.alpha_path)\n', (3354, 3378), False, 'import utils\n')]
#!/usr/bin/env python3 import click import yaml import re import pprint try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper pp = pprint.PrettyPrinter(indent=2) modRE = re.compile(r"https://www.curseforge.com/minecraft/mc-mods/([\w-]+)") resourceRE = re.compile(r"https://www.curseforge.com/minecraft/texture-packs/([\w-]+)") @click.command() @click.option('-i', '--input', default="mods.md", help='Input file') @click.option('-u', '--update', default="packmaker.yml", help='The packmaker yaml file to update') def update(input, update): with open(input, 'r', encoding="utf-8") as i_file: content = i_file.read() mods = set(modRE.findall(content)) resourcepacks = set(resourceRE.findall(content)) #pp.pprint(mods) #pp.pprint(resourcepacks) with open(update, 'r', encoding="utf-8") as u_file: manifest = yaml.load(u_file.read(), Loader=Loader) #pp.pprint(manifest) old_mods = {} for mod_entry in manifest['mods']: for (name, opts) in mod_entry.items(): if name in mods: old_mods[name] = opts else: print(f"filtering out mod {name}") # pp.pprint(old_mods) for m in mods: if m not in old_mods: old_mods[m] = {} print(f"added mod {m}") manifest['mods'] = [{k: v} for (k, v) in old_mods.items()] manifest['resourcepacks'] = [{r: {}} for r in resourcepacks] # pp.pprint(manifest) with open(update, 'w') as u_file: yaml.dump( manifest, u_file, Dumper=Dumper, explicit_start=True, width=100, indent=2, ) if __name__ == '__main__': update()
[ "yaml.dump", "click.option", "re.compile", "pprint.PrettyPrinter", "click.command" ]
[((200, 230), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {'indent': '(2)'}), '(indent=2)\n', (220, 230), False, 'import pprint\n'), ((240, 308), 're.compile', 're.compile', (['"""https://www.curseforge.com/minecraft/mc-mods/([\\\\w-]+)"""'], {}), "('https://www.curseforge.com/minecraft/mc-mods/([\\\\w-]+)')\n", (250, 308), False, 'import re\n'), ((322, 396), 're.compile', 're.compile', (['"""https://www.curseforge.com/minecraft/texture-packs/([\\\\w-]+)"""'], {}), "('https://www.curseforge.com/minecraft/texture-packs/([\\\\w-]+)')\n", (332, 396), False, 'import re\n'), ((399, 414), 'click.command', 'click.command', ([], {}), '()\n', (412, 414), False, 'import click\n'), ((416, 483), 'click.option', 'click.option', (['"""-i"""', '"""--input"""'], {'default': '"""mods.md"""', 'help': '"""Input file"""'}), "('-i', '--input', default='mods.md', help='Input file')\n", (428, 483), False, 'import click\n'), ((485, 587), 'click.option', 'click.option', (['"""-u"""', '"""--update"""'], {'default': '"""packmaker.yml"""', 'help': '"""The packmaker yaml file to update"""'}), "('-u', '--update', default='packmaker.yml', help=\n 'The packmaker yaml file to update')\n", (497, 587), False, 'import click\n'), ((1483, 1571), 'yaml.dump', 'yaml.dump', (['manifest', 'u_file'], {'Dumper': 'Dumper', 'explicit_start': '(True)', 'width': '(100)', 'indent': '(2)'}), '(manifest, u_file, Dumper=Dumper, explicit_start=True, width=100,\n indent=2)\n', (1492, 1571), False, 'import yaml\n')]
#!/usr/bin/env python """This module contains all the logic required to create and delete a CouchDB database for tor_async_councdb's basic sample. """ import os.path import sys from tor_async_couchdb import installer class CommandLineParser(installer.CommandLineParser): def __init__(self): description = ( "This utility used to create and/or delete the CouchDB " "database for tor_async_couchdb's basic sample." ) installer.CommandLineParser.__init__( self, description, "tor_async_couchdb_sample") if __name__ == "__main__": design_docs = os.path.join(os.path.abspath( os.path.dirname(__file__)), 'design_docs') seed_docs = os.path.join(os.path.abspath( os.path.dirname(__file__)), 'seed_docs') sys.exit(installer.main(CommandLineParser(), design_docs, seed_docs))
[ "tor_async_couchdb.installer.CommandLineParser.__init__" ]
[((472, 559), 'tor_async_couchdb.installer.CommandLineParser.__init__', 'installer.CommandLineParser.__init__', (['self', 'description', '"""tor_async_couchdb_sample"""'], {}), "(self, description,\n 'tor_async_couchdb_sample')\n", (508, 559), False, 'from tor_async_couchdb import installer\n')]
def leiaint(num): from termcolor import colored while True: n = input(str(num)) if n.isnumeric(): n = int(n) break else: print(colored('ERRO!! Digite um número inteiro válido.', 'red')) return n n = leiaint('Digite um número: ') print(f'Você acabou de digitar o número {n}.')
[ "termcolor.colored" ]
[((195, 252), 'termcolor.colored', 'colored', (['"""ERRO!! Digite um número inteiro válido."""', '"""red"""'], {}), "('ERRO!! Digite um número inteiro válido.', 'red')\n", (202, 252), False, 'from termcolor import colored\n')]
from typing import Collection import pytest from advent_of_code.utils import calc_product @pytest.mark.fast @pytest.mark.parametrize( ("input_list", "expected"), [((), 0), ((2,), 2), ((2, 2), 4), ((5, 3, 4), 60), ((-1, 10), -10)], ) def test_product_function_returns_correct_result( input_list: Collection[int], expected: int ) -> None: assert calc_product(input_list) == expected
[ "pytest.mark.parametrize", "advent_of_code.utils.calc_product" ]
[((113, 238), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('input_list', 'expected')", '[((), 0), ((2,), 2), ((2, 2), 4), ((5, 3, 4), 60), ((-1, 10), -10)]'], {}), "(('input_list', 'expected'), [((), 0), ((2,), 2), ((\n 2, 2), 4), ((5, 3, 4), 60), ((-1, 10), -10)])\n", (136, 238), False, 'import pytest\n'), ((364, 388), 'advent_of_code.utils.calc_product', 'calc_product', (['input_list'], {}), '(input_list)\n', (376, 388), False, 'from advent_of_code.utils import calc_product\n')]
# 2019-11-18 00:38:19(JST) import sys # import collections # import math # from string import ascii_lowercase, ascii_uppercase, digits # from bisect import bisect_left as bi_l, bisect_right as bi_r # import itertools # from functools import reduce # import operator as op # import re # import heapq # import array # from scipy.misc import comb # (default: exact=False) # import numpy as np def main(): n, *p = [int(x) for x in sys.stdin.read().split()] ans = 0 for l in range(n-1): if p[l] < p[l+1]: largest, second = p[l+1], p[l] else: largest, second = p[l], p[l+1] ans += second for r in range(l+2, n): if p[r] > largest: second, largest = largest, p[r] elif p[r] > second: second = p[r] ans += second print(ans) if __name__ == "__main__": main()
[ "sys.stdin.read" ]
[((452, 468), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (466, 468), False, 'import sys\n')]
import argparse import re import os from pathlib import Path from multiprocessing import Process import numpy as np # ensures Python 3.x assert sys.version_info >= (3, 0) RE_COORD = re.compile(r'-?\d+\.\d+') def process_batch(data_file, dimension, start, batch_size): done = 0 vocab_file = 'vocabulary-%05d.voc' % start matrix_file = 'matrix-%05d.npy' % start matrix = np.zeros((batch_size, dimension), dtype=np.float) with open(data_file) as fin, open(vocab_file, 'w') as fout: for i, line in enumerate(fin): if i < start: continue # begin job tokens = RE_COORD.findall(line) coords = tokens[-dimension:] word = line[:line.find(coords[0])] print(word, file=fout) vector = np.array([float(x) for x in coords], dtype=np.float) row = i - start matrix[row, :] = vector # end job done += 1 if done == batch_size: # finished batch break np.save(matrix_file, matrix) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Export embeddings from text to binary ' 'NumPy arrays') parser.add_argument('source', help='embeddings text file') parser.add_argument('dimension', help='embedding dimension', type=int) args = parser.parse_args() source = Path(args.source) # output files vocab_file = source.with_suffix('.voc').name matrix_file = source.with_suffix('.npy').name dimension = args.dimension print('computing matrix dimensions') with source.open() as fin: line = next(fin) n_lines = sum((1 for _ in fin), 1) batch_size = n_lines // os.cpu_count() print('starting workers...') start = 0 workers = [] batches = [] while start < n_lines: remaining = n_lines - start this_batch = batch_size if batch_size <= remaining else remaining p = Process(target=process_batch, args=(args.source, dimension, start, this_batch)) batches.append(start) p.start() workers.append(p) start += batch_size print('waiting...') for p in workers: p.join() print('concatenating vocabulary...') with open(vocab_file, 'w') as fout: for batch in batches: batch_file = Path('vocabulary-%05d.voc' % batch) # matrix_file = 'matrix-%05d.npy' % batch with batch_file.open() as fin: for line in fin: print(line.strip(), file=fout) batch_file.unlink() print('concatenating partial matrices...') matrix = np.zeros((n_lines, dimension), dtype=np.float) i = 0 for batch in batches: batch_file = Path('matrix-%05d.npy' % batch) partial = np.load(batch_file.as_posix()) matrix[i: i+len(partial), :] = partial i += len(partial) batch_file.unlink() print('saving matrix...') np.save(matrix_file, matrix) print('finished')
[ "argparse.ArgumentParser", "pathlib.Path", "re.compile", "multiprocessing.Process", "numpy.zeros", "os.cpu_count", "numpy.save" ]
[((187, 214), 're.compile', 're.compile', (['"""-?\\\\d+\\\\.\\\\d+"""'], {}), "('-?\\\\d+\\\\.\\\\d+')\n", (197, 214), False, 'import re\n'), ((392, 441), 'numpy.zeros', 'np.zeros', (['(batch_size, dimension)'], {'dtype': 'np.float'}), '((batch_size, dimension), dtype=np.float)\n', (400, 441), True, 'import numpy as np\n'), ((1048, 1076), 'numpy.save', 'np.save', (['matrix_file', 'matrix'], {}), '(matrix_file, matrix)\n', (1055, 1076), True, 'import numpy as np\n'), ((1119, 1213), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Export embeddings from text to binary NumPy arrays"""'}), "(description=\n 'Export embeddings from text to binary NumPy arrays')\n", (1142, 1213), False, 'import argparse\n'), ((1427, 1444), 'pathlib.Path', 'Path', (['args.source'], {}), '(args.source)\n', (1431, 1444), False, 'from pathlib import Path\n'), ((2722, 2768), 'numpy.zeros', 'np.zeros', (['(n_lines, dimension)'], {'dtype': 'np.float'}), '((n_lines, dimension), dtype=np.float)\n', (2730, 2768), True, 'import numpy as np\n'), ((3042, 3070), 'numpy.save', 'np.save', (['matrix_file', 'matrix'], {}), '(matrix_file, matrix)\n', (3049, 3070), True, 'import numpy as np\n'), ((1763, 1777), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (1775, 1777), False, 'import os\n'), ((2009, 2088), 'multiprocessing.Process', 'Process', ([], {'target': 'process_batch', 'args': '(args.source, dimension, start, this_batch)'}), '(target=process_batch, args=(args.source, dimension, start, this_batch))\n', (2016, 2088), False, 'from multiprocessing import Process\n'), ((2826, 2857), 'pathlib.Path', 'Path', (["('matrix-%05d.npy' % batch)"], {}), "('matrix-%05d.npy' % batch)\n", (2830, 2857), False, 'from pathlib import Path\n'), ((2412, 2447), 'pathlib.Path', 'Path', (["('vocabulary-%05d.voc' % batch)"], {}), "('vocabulary-%05d.voc' % batch)\n", (2416, 2447), False, 'from pathlib import Path\n')]
from django.db import models # Create your models here. class BlackPerson(models.Model): name = models.CharField(max_length=512, default=None) sex = models.CharField(max_length=512, default=None) age = models.CharField(max_length=512, default=None) native_place = models.CharField(max_length=512, default=None) political_outlook = models.CharField(max_length=512, default=None) email = models.CharField(max_length=512, default=None) telephone = models.CharField(max_length=512, default=None) id_card = models.CharField(max_length=512, default=None) address = models.CharField(max_length=512, default=None) domicile = models.CharField(max_length=512, default=None) is_fugitive = models.CharField(max_length=512, default=None) is_crime = models.CharField(max_length=512, default=None) comment = models.CharField(max_length=512, default=None)
[ "django.db.models.CharField" ]
[((109, 155), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (125, 155), False, 'from django.db import models\n'), ((167, 213), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (183, 213), False, 'from django.db import models\n'), ((225, 271), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (241, 271), False, 'from django.db import models\n'), ((292, 338), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (308, 338), False, 'from django.db import models\n'), ((364, 410), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (380, 410), False, 'from django.db import models\n'), ((424, 470), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (440, 470), False, 'from django.db import models\n'), ((488, 534), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (504, 534), False, 'from django.db import models\n'), ((550, 596), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (566, 596), False, 'from django.db import models\n'), ((612, 658), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (628, 658), False, 'from django.db import models\n'), ((675, 721), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (691, 721), False, 'from django.db import models\n'), ((741, 787), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (757, 787), False, 'from django.db import models\n'), ((804, 850), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (820, 850), False, 'from django.db import models\n'), ((866, 912), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(512)', 'default': 'None'}), '(max_length=512, default=None)\n', (882, 912), False, 'from django.db import models\n')]
from rest_framework.response import Response from rest_framework.request import Request from rest_framework.decorators import api_view from django.conf import settings import random import requests import json import opentracing import logging import six tracer = settings.OPENTRACING_TRACER logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @tracer.trace() @api_view(http_method_names=["GET"]) def get_shopping_menu(request): headers = {'host': 'localhost'} inject_as_headers(tracer, request, headers) res = requests.get("http://localhost:50051/style/", headers=headers) if res.status_code == 200: return Response(res.json(), status=200) else: tracer.get_span(request).set_tag("error", "true") return Response(status=res.status_code) @tracer.trace() @api_view(http_method_names=["POST"]) def order_shirts(request): if random.randint(1, 5) == 5: msg = "Random Service Unavailable!" logging.warning(msg) tracer.get_span(request).set_tag("error", "true") return Response(msg, status=503) data = json.loads(request.body) style_name = data.get("styleName", None) quantity = data.get("quantity", None) if style_name and quantity: res = requests.get( "http://localhost:50051/style/" + style_name + "/make", params={'quantity': quantity}, headers=inject_as_headers(tracer, request) ) if res.status_code == 200: return Response(res.json(), status=200) else: msg = "Failed to order shirts!" logging.warning(msg) tracer.get_span(request).set_tag("error", "true") return Response(msg, status=res.status_code) else: tracer.get_span(request).set_tag("error", "true") return Response("Missing field!", status=400) def inject_as_headers(tracer, request): headers = {} if isinstance(request, Request): request = request._request span = tracer.get_span(request) text_carrier = {} tracer._tracer.inject(span.context, opentracing.Format.TEXT_MAP, text_carrier) for k, v in six.iteritems(text_carrier): headers[k] = v
[ "logging.basicConfig", "logging.getLogger", "json.loads", "logging.warning", "requests.get", "rest_framework.response.Response", "six.iteritems", "rest_framework.decorators.api_view", "random.randint" ]
[((294, 333), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (313, 333), False, 'import logging\n'), ((343, 370), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (360, 370), False, 'import logging\n'), ((390, 425), 'rest_framework.decorators.api_view', 'api_view', ([], {'http_method_names': "['GET']"}), "(http_method_names=['GET'])\n", (398, 425), False, 'from rest_framework.decorators import api_view\n'), ((852, 888), 'rest_framework.decorators.api_view', 'api_view', ([], {'http_method_names': "['POST']"}), "(http_method_names=['POST'])\n", (860, 888), False, 'from rest_framework.decorators import api_view\n'), ((552, 614), 'requests.get', 'requests.get', (['"""http://localhost:50051/style/"""'], {'headers': 'headers'}), "('http://localhost:50051/style/', headers=headers)\n", (564, 614), False, 'import requests\n'), ((1133, 1157), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (1143, 1157), False, 'import json\n'), ((2214, 2241), 'six.iteritems', 'six.iteritems', (['text_carrier'], {}), '(text_carrier)\n', (2227, 2241), False, 'import six\n'), ((800, 832), 'rest_framework.response.Response', 'Response', ([], {'status': 'res.status_code'}), '(status=res.status_code)\n', (808, 832), False, 'from rest_framework.response import Response\n'), ((923, 943), 'random.randint', 'random.randint', (['(1)', '(5)'], {}), '(1, 5)\n', (937, 943), False, 'import random\n'), ((1002, 1022), 'logging.warning', 'logging.warning', (['msg'], {}), '(msg)\n', (1017, 1022), False, 'import logging\n'), ((1096, 1121), 'rest_framework.response.Response', 'Response', (['msg'], {'status': '(503)'}), '(msg, status=503)\n', (1104, 1121), False, 'from rest_framework.response import Response\n'), ((1861, 1899), 'rest_framework.response.Response', 'Response', (['"""Missing field!"""'], {'status': '(400)'}), "('Missing field!', status=400)\n", (1869, 1899), False, 'from rest_framework.response import Response\n'), ((1638, 1658), 'logging.warning', 'logging.warning', (['msg'], {}), '(msg)\n', (1653, 1658), False, 'import logging\n'), ((1740, 1777), 'rest_framework.response.Response', 'Response', (['msg'], {'status': 'res.status_code'}), '(msg, status=res.status_code)\n', (1748, 1777), False, 'from rest_framework.response import Response\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Normalize runs of characters to a single character Revision ID: 3<PASSWORD> Revises: <PASSWORD> Create Date: 2015-08-17 21:05:51.699639 """ from alembic import op revision = "3af8d0006ba" down_revision = "<PASSWORD>" def upgrade(): op.execute( r""" CREATE OR REPLACE FUNCTION normalize_pep426_name(text) RETURNS text AS $$ SELECT lower(regexp_replace($1, '(\.|_|-)+', '-', 'ig')) $$ LANGUAGE SQL IMMUTABLE RETURNS NULL ON NULL INPUT; """ ) op.execute("REINDEX INDEX project_name_pep426_normalized") def downgrade(): op.execute( r""" CREATE OR REPLACE FUNCTION normalize_pep426_name(text) RETURNS text AS $$ SELECT lower(regexp_replace($1, '(\.|_)', '-', 'ig')) $$ LANGUAGE SQL IMMUTABLE RETURNS NULL ON NULL INPUT; """ ) op.execute("REINDEX INDEX project_name_pep426_normalized")
[ "alembic.op.execute" ]
[((786, 1097), 'alembic.op.execute', 'op.execute', (['""" CREATE OR REPLACE FUNCTION normalize_pep426_name(text)\n RETURNS text AS\n $$\n SELECT lower(regexp_replace($1, \'(\\\\.|_|-)+\', \'-\', \'ig\'))\n $$\n LANGUAGE SQL\n IMMUTABLE\n RETURNS NULL ON NULL INPUT;\n """'], {}), '(\n """ CREATE OR REPLACE FUNCTION normalize_pep426_name(text)\n RETURNS text AS\n $$\n SELECT lower(regexp_replace($1, \'(\\\\.|_|-)+\', \'-\', \'ig\'))\n $$\n LANGUAGE SQL\n IMMUTABLE\n RETURNS NULL ON NULL INPUT;\n """\n )\n', (796, 1097), False, 'from alembic import op\n'), ((1106, 1164), 'alembic.op.execute', 'op.execute', (['"""REINDEX INDEX project_name_pep426_normalized"""'], {}), "('REINDEX INDEX project_name_pep426_normalized')\n", (1116, 1164), False, 'from alembic import op\n'), ((1188, 1496), 'alembic.op.execute', 'op.execute', (['""" CREATE OR REPLACE FUNCTION normalize_pep426_name(text)\n RETURNS text AS\n $$\n SELECT lower(regexp_replace($1, \'(\\\\.|_)\', \'-\', \'ig\'))\n $$\n LANGUAGE SQL\n IMMUTABLE\n RETURNS NULL ON NULL INPUT;\n """'], {}), '(\n """ CREATE OR REPLACE FUNCTION normalize_pep426_name(text)\n RETURNS text AS\n $$\n SELECT lower(regexp_replace($1, \'(\\\\.|_)\', \'-\', \'ig\'))\n $$\n LANGUAGE SQL\n IMMUTABLE\n RETURNS NULL ON NULL INPUT;\n """\n )\n', (1198, 1496), False, 'from alembic import op\n'), ((1505, 1563), 'alembic.op.execute', 'op.execute', (['"""REINDEX INDEX project_name_pep426_normalized"""'], {}), "('REINDEX INDEX project_name_pep426_normalized')\n", (1515, 1563), False, 'from alembic import op\n')]
from django.contrib import admin from django.urls import path, include from . import views urlpatterns = [ path('', views.index, name='index_map'), path('help/', views.help, name='help'), path('settings-configuration/', views.settings_config, name='settings_config'), path('covid19-dashboard/', views.dashboard, name='dashboard'), path('add-to-file-new-and-expire-old-covid19-locations/', views.Add_To_File_New_And_Expire_Old_Covid19_Locations, name='Add_To_File_New_And_Expire_Old_Covid19_Locations'), path('cache-empty-add-geospatial-data-into-cache/', views.Cache_Failed_Add_Geospatial_Data_Into_Cache, name='Cache_Failed_Add_Geospatial_Data_Into_Cache'), path('ajax-request/', views.AJAX_find_covid19_near_you, name='AJAX_find_covid19_near_you'), ]
[ "django.urls.path" ]
[((117, 156), 'django.urls.path', 'path', (['""""""', 'views.index'], {'name': '"""index_map"""'}), "('', views.index, name='index_map')\n", (121, 156), False, 'from django.urls import path, include\n'), ((166, 204), 'django.urls.path', 'path', (['"""help/"""', 'views.help'], {'name': '"""help"""'}), "('help/', views.help, name='help')\n", (170, 204), False, 'from django.urls import path, include\n'), ((214, 292), 'django.urls.path', 'path', (['"""settings-configuration/"""', 'views.settings_config'], {'name': '"""settings_config"""'}), "('settings-configuration/', views.settings_config, name='settings_config')\n", (218, 292), False, 'from django.urls import path, include\n'), ((302, 363), 'django.urls.path', 'path', (['"""covid19-dashboard/"""', 'views.dashboard'], {'name': '"""dashboard"""'}), "('covid19-dashboard/', views.dashboard, name='dashboard')\n", (306, 363), False, 'from django.urls import path, include\n'), ((373, 553), 'django.urls.path', 'path', (['"""add-to-file-new-and-expire-old-covid19-locations/"""', 'views.Add_To_File_New_And_Expire_Old_Covid19_Locations'], {'name': '"""Add_To_File_New_And_Expire_Old_Covid19_Locations"""'}), "('add-to-file-new-and-expire-old-covid19-locations/', views.\n Add_To_File_New_And_Expire_Old_Covid19_Locations, name=\n 'Add_To_File_New_And_Expire_Old_Covid19_Locations')\n", (377, 553), False, 'from django.urls import path, include\n'), ((553, 717), 'django.urls.path', 'path', (['"""cache-empty-add-geospatial-data-into-cache/"""', 'views.Cache_Failed_Add_Geospatial_Data_Into_Cache'], {'name': '"""Cache_Failed_Add_Geospatial_Data_Into_Cache"""'}), "('cache-empty-add-geospatial-data-into-cache/', views.\n Cache_Failed_Add_Geospatial_Data_Into_Cache, name=\n 'Cache_Failed_Add_Geospatial_Data_Into_Cache')\n", (557, 717), False, 'from django.urls import path, include\n'), ((717, 812), 'django.urls.path', 'path', (['"""ajax-request/"""', 'views.AJAX_find_covid19_near_you'], {'name': '"""AJAX_find_covid19_near_you"""'}), "('ajax-request/', views.AJAX_find_covid19_near_you, name=\n 'AJAX_find_covid19_near_you')\n", (721, 812), False, 'from django.urls import path, include\n')]
import string from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.graph_objs as go import plotly.offline as py import regex as re import seaborn as sns from gensim import corpora, models from plotly import tools from wordcloud import STOPWORDS, ImageColorGenerator, WordCloud from previs.data.badwords import BAD_WORDS from previs.processors.TextProcessor import tag_part_of_speech from previs.util.TextProcessingUtils import (CLEANED_TEXT_COL_NAME, convert_text_col_to_corpus, get_stopwords) color = sns.color_palette() py.init_notebook_mode(connected=True) pd.options.mode.chained_assignment = None pd.options.display.max_columns = 999 def plot_wordcloud(text, mask=None, max_words=200, max_font_size=100, figure_size=(24.0, 16.0), title=None, title_size=40, image_color=False): """This method plots the word cloud for the text column in the dataframe @param text: This is the dataframe['text_col_name'] @param mask: This is not required. @param max_words: The maximum number fo words which we will plot @param max_font_size: The max font size @param figure_size: Fig size @param title: Title of the plot @param title_size: Size of the title @param image_color: Colour of the image """ stopwords = get_stopwords() wordcloud = WordCloud(background_color='black', stopwords=stopwords, max_words=max_words, max_font_size=max_font_size, random_state=42, width=800, height=400, mask=mask) wordcloud.generate(str(text)) plt.figure(figsize=figure_size) if image_color: image_colors = ImageColorGenerator(mask) plt.imshow(wordcloud.recolor(color_func=image_colors), interpolation="bilinear") plt.title(title, fontdict={'size': title_size, 'verticalalignment': 'bottom'}) else: plt.imshow(wordcloud) plt.title(title, fontdict={'size': title_size, 'color': 'black', 'verticalalignment': 'bottom'}) plt.axis('off') plt.tight_layout() def generate_lsi_features(dataframe, text_col_name, num_topics, batchsize): """This method cleans the dataset and generates the LSI features using Gensim. Refer to README.md for more details on this. @param dataframe: Dataframe name @param text_col_name: Name of the text data column @param num_topics: Number of topics which it will generate (10-20) @param batchsize: Batchsize it will use to generate per iteration. @return: the cleaned dataframe along with the topics and the lsi model """ res_lists = {} for i in range(num_topics): res_lists[i] = [] corpus, texts, dictionary = convert_text_col_to_corpus(dataframe, text_col_name, batchsize) tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] lsi_model = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=num_topics) corpus_lsi = lsi_model[corpus_tfidf] for i in range(num_topics): for attr in corpus_lsi: res_lists[i].append(attr[i][1]) for i in range(batchsize, len(texts), batchsize): text = texts[i: i + batchsize] dictionary = corpora.Dictionary(text) corpus = [dictionary.doc2bow(txt) for txt in text] tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] lsi_model.add_documents(corpus_tfidf) corpus_lsi = lsi_model[corpus_tfidf] for i in range(num_topics): for attr in corpus_lsi: res_lists[i].append(attr[i][1]) for i in range(num_topics): dataframe[text_col_name + 'attr_' + str(i + 1)] = res_lists[i] return dataframe, lsi_model def generate_ngrams(text, n_gram=1): """This method id used to genrate the n-grams which are used to plot in the plot_n_grams method @param text: The string text @param n_gram: Number of grams (1,2,3..) @return: List of n-grams """ token = [token for token in text.lower().split(" ") if token != "" if token not in STOPWORDS] ngrams = zip(*[token[i:] for i in range(n_gram)]) return [" ".join(ngram) for ngram in ngrams] def horizontal_bar_chart(df, color): """Plots a bar chart of the word and word count. This is used by the plotting the n-grams of a dataframe text column. @param df: The dataframe name @param color: The color used @return: Trace which will be used to plot the graph """ trace = go.Bar( y=df["word"].values[::-1], x=df["wordcount"].values[::-1], showlegend=False, orientation='h', marker=dict( color=color, ), ) return trace def plot_n_grams(dataframe, text_col_name, plot_title, n_gram): """This method plots the different n-grams for visualisation purpose. @param dataframe: The name of the dataframe @param text_col_name: The text column name @param plot_title: The title plot @param n_gram: The number of the n-grma (1,2,3...) """ freq_dict = defaultdict(int) for sent in dataframe[text_col_name]: for word in generate_ngrams(sent, n_gram): freq_dict[word] += 1 fd_sorted = pd.DataFrame(sorted(freq_dict.items(), key=lambda x: x[1])[::-1]) fd_sorted.columns = ["word", "wordcount"] trace = horizontal_bar_chart(fd_sorted.head(50), 'blue') fig = tools.make_subplots(rows=1, cols=1, vertical_spacing=0.04, subplot_titles=[plot_title]) fig.append_trace(trace, 1, 1) fig['layout'].update(height=1200, width=900, paper_bgcolor='rgb(233,233,233)', title="Word Count Plots") py.iplot(fig, filename='word-plots') def word_count(text): """Returns the number of words in a text string after removing the stopwords from it. @param text: The string of text @return: Length of the string in int """ try: text = text.lower() regex = re.compile('[' + re.escape(string.punctuation) + '0-9\\r\\t\\n]') txt = regex.sub(" ", text) words = [w for w in txt.split(" ") if w not in STOPWORDS and len(w) > 3] return len(words) finally: return 0 def generate_features_from_text_column(dataframe, text_col_name): """This method performs the many processing and feature generation tasks for the textual dataset. Please refer to README.md for the operations and how to use this method. @param dataframe: The name of the dataframe. @param text_col_name: The columns name of the textual data """ dataframe["num_stopwords"] = dataframe[text_col_name].apply( lambda x: len([w for w in str(x).lower().split() if w in STOPWORDS])) dataframe["num_punctuations"] = dataframe[text_col_name].apply( lambda x: len([c for c in str(x) if c in string.punctuation])) dataframe["num_words_upper"] = dataframe[text_col_name].apply( lambda x: len([w for w in str(x).split() if w.isupper()])) dataframe["num_words_title"] = dataframe[text_col_name].apply( lambda x: len([w for w in str(x).split() if w.istitle()])) dataframe["mean_word_len"] = dataframe[text_col_name].apply( lambda x: np.mean([len(w) for w in str(x).split()])) dataframe['num_exclamation_marks'] = dataframe[text_col_name].apply( lambda x: x.count('!')) dataframe['num_question_marks'] = dataframe[text_col_name].apply( lambda x: x.count('?')) dataframe['num_symbols'] = dataframe[text_col_name].apply( lambda x: sum(x.count(w) for w in '*&$%')) dataframe['num_unique_words'] = dataframe[text_col_name].apply( lambda x: len(set(w for w in x.split()))) dataframe, _ = generate_lsi_features(dataframe, text_col_name, 3, 50) text_col_name = CLEANED_TEXT_COL_NAME dataframe["num_words"] = dataframe[text_col_name].apply( lambda x: word_count(x)) dataframe["num_unique_words"] = dataframe[text_col_name].apply( lambda x: len(set(str(x).split()))) dataframe["num_chars"] = dataframe[text_col_name].apply( lambda x: len(str(x))) dataframe['words_vs_unique'] = dataframe['num_unique_words'] / dataframe['num_words'] dataframe["badwordcount"] = dataframe[text_col_name].apply( lambda x: sum(x.count(w) for w in BAD_WORDS)) dataframe["normword_badwords"] = dataframe["badwordcount"] / dataframe['num_words'] dataframe['nouns'], dataframe['adjectives'], dataframe['verbs'] = zip(*dataframe[text_col_name].apply( lambda text: tag_part_of_speech(text))) dataframe['nouns_vs_length'] = dataframe['nouns'] / dataframe['num_words'] dataframe['adjectives_vs_length'] = dataframe['adjectives'] / dataframe['num_words'] dataframe['verbs_vs_length'] = dataframe['verbs'] / dataframe['num_words'] dataframe['nouns_vs_words'] = dataframe['nouns'] / dataframe['num_words'] dataframe['adjectives_vs_words'] = dataframe['adjectives'] / dataframe['num_words'] dataframe['verbs_vs_words'] = dataframe['verbs'] / dataframe['num_words']
[ "gensim.models.LsiModel", "plotly.offline.iplot", "previs.util.TextProcessingUtils.convert_text_col_to_corpus", "wordcloud.ImageColorGenerator", "matplotlib.pyplot.imshow", "plotly.tools.make_subplots", "seaborn.color_palette", "gensim.corpora.Dictionary", "plotly.offline.init_notebook_mode", "matplotlib.pyplot.axis", "gensim.models.TfidfModel", "regex.escape", "previs.processors.TextProcessor.tag_part_of_speech", "previs.util.TextProcessingUtils.get_stopwords", "matplotlib.pyplot.title", "wordcloud.WordCloud", "matplotlib.pyplot.figure", "collections.defaultdict", "matplotlib.pyplot.tight_layout" ]
[((663, 682), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (680, 682), True, 'import seaborn as sns\n'), ((684, 721), 'plotly.offline.init_notebook_mode', 'py.init_notebook_mode', ([], {'connected': '(True)'}), '(connected=True)\n', (705, 721), True, 'import plotly.offline as py\n'), ((1433, 1448), 'previs.util.TextProcessingUtils.get_stopwords', 'get_stopwords', ([], {}), '()\n', (1446, 1448), False, 'from previs.util.TextProcessingUtils import CLEANED_TEXT_COL_NAME, convert_text_col_to_corpus, get_stopwords\n'), ((1465, 1631), 'wordcloud.WordCloud', 'WordCloud', ([], {'background_color': '"""black"""', 'stopwords': 'stopwords', 'max_words': 'max_words', 'max_font_size': 'max_font_size', 'random_state': '(42)', 'width': '(800)', 'height': '(400)', 'mask': 'mask'}), "(background_color='black', stopwords=stopwords, max_words=\n max_words, max_font_size=max_font_size, random_state=42, width=800,\n height=400, mask=mask)\n", (1474, 1631), False, 'from wordcloud import STOPWORDS, ImageColorGenerator, WordCloud\n'), ((1843, 1874), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figure_size'}), '(figsize=figure_size)\n', (1853, 1874), True, 'import matplotlib.pyplot as plt\n'), ((2269, 2284), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2277, 2284), True, 'import matplotlib.pyplot as plt\n'), ((2289, 2307), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2305, 2307), True, 'import matplotlib.pyplot as plt\n'), ((2970, 3033), 'previs.util.TextProcessingUtils.convert_text_col_to_corpus', 'convert_text_col_to_corpus', (['dataframe', 'text_col_name', 'batchsize'], {}), '(dataframe, text_col_name, batchsize)\n', (2996, 3033), False, 'from previs.util.TextProcessingUtils import CLEANED_TEXT_COL_NAME, convert_text_col_to_corpus, get_stopwords\n'), ((3046, 3071), 'gensim.models.TfidfModel', 'models.TfidfModel', (['corpus'], {}), '(corpus)\n', (3063, 3071), False, 'from gensim import corpora, models\n'), ((3121, 3193), 'gensim.models.LsiModel', 'models.LsiModel', (['corpus_tfidf'], {'id2word': 'dictionary', 'num_topics': 'num_topics'}), '(corpus_tfidf, id2word=dictionary, num_topics=num_topics)\n', (3136, 3193), False, 'from gensim import corpora, models\n'), ((5304, 5320), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (5315, 5320), False, 'from collections import defaultdict\n'), ((5647, 5739), 'plotly.tools.make_subplots', 'tools.make_subplots', ([], {'rows': '(1)', 'cols': '(1)', 'vertical_spacing': '(0.04)', 'subplot_titles': '[plot_title]'}), '(rows=1, cols=1, vertical_spacing=0.04, subplot_titles=[\n plot_title])\n', (5666, 5739), False, 'from plotly import tools\n'), ((5912, 5948), 'plotly.offline.iplot', 'py.iplot', (['fig'], {'filename': '"""word-plots"""'}), "(fig, filename='word-plots')\n", (5920, 5948), True, 'import plotly.offline as py\n'), ((1918, 1943), 'wordcloud.ImageColorGenerator', 'ImageColorGenerator', (['mask'], {}), '(mask)\n', (1937, 1943), False, 'from wordcloud import STOPWORDS, ImageColorGenerator, WordCloud\n'), ((2041, 2119), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontdict': "{'size': title_size, 'verticalalignment': 'bottom'}"}), "(title, fontdict={'size': title_size, 'verticalalignment': 'bottom'})\n", (2050, 2119), True, 'import matplotlib.pyplot as plt\n'), ((2138, 2159), 'matplotlib.pyplot.imshow', 'plt.imshow', (['wordcloud'], {}), '(wordcloud)\n', (2148, 2159), True, 'import matplotlib.pyplot as plt\n'), ((2168, 2268), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontdict': "{'size': title_size, 'color': 'black', 'verticalalignment': 'bottom'}"}), "(title, fontdict={'size': title_size, 'color': 'black',\n 'verticalalignment': 'bottom'})\n", (2177, 2268), True, 'import matplotlib.pyplot as plt\n'), ((3457, 3481), 'gensim.corpora.Dictionary', 'corpora.Dictionary', (['text'], {}), '(text)\n', (3475, 3481), False, 'from gensim import corpora, models\n'), ((3557, 3582), 'gensim.models.TfidfModel', 'models.TfidfModel', (['corpus'], {}), '(corpus)\n', (3574, 3582), False, 'from gensim import corpora, models\n'), ((6222, 6251), 'regex.escape', 're.escape', (['string.punctuation'], {}), '(string.punctuation)\n', (6231, 6251), True, 'import regex as re\n'), ((8770, 8794), 'previs.processors.TextProcessor.tag_part_of_speech', 'tag_part_of_speech', (['text'], {}), '(text)\n', (8788, 8794), False, 'from previs.processors.TextProcessor import tag_part_of_speech\n')]
"""Cobertura aggregator tests""" import os import unittest import urllib2 from mock import patch, MagicMock from base import CoberturaJSONAggregator API_SETTINGS = { CoberturaJSONAggregator.USERNAME_KEY: "test", CoberturaJSONAggregator.API_TOKEN_KEY: "test", CoberturaJSONAggregator.DOMAIN_KEY: "http://localhost", CoberturaJSONAggregator.JOBS_KEY: ["test"], CoberturaJSONAggregator.TARGETS_KEY: [ 'club', 'cron', ], } class CoberturaJSONAggregatorTests(unittest.TestCase): """Test cases for aggregating Cobertura JSON via Jenkins REST API""" def setUp(self): self.test_name = 'test' self.aggregator = CoberturaJSONAggregator(self.test_name, API_SETTINGS) fixture_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'fixtures/cobertura.json' ) with open(fixture_path) as fixture_file: self._cobertura_json = fixture_file.read() @patch('base.urllib2.urlopen') def test_report_generator(self, urlopen_mock): urlopen_mock().read.return_value = self._cobertura_json self.aggregator.generate_report() expected_result = [ ['club', '67.50%', '62.50%'], ['cron', '8.15%', '6.25%'] ] self.assertEqual(self.aggregator._report, expected_result) @patch('base.urllib2.urlopen') @patch('base.LOGGER') def test_http_error(self, logger_mock, urlopen_mock): """Test urllib2.HTTPError exceptions""" log = [] logger_mock.error.side_effect = log.append logger_mock.info.side_effect = log.append urlopen_mock.side_effect = urllib2.HTTPError( "test", 404, "test", {}, MagicMock() ) self.aggregator.generate_report() http_error_results = [ 'http://localhost/job/test/lastSuccessfulBuild/cobertura/api/json?depth=4\nHTTP error: HTTP Error 404: test' ] self.assertEqual(log, http_error_results) @patch('base.urllib2.urlopen') @patch('base.LOGGER') def test_url_error(self, logger_mock, urlopen_mock): """Test urllib2.URLError exceptions""" log = [] logger_mock.error.side_effect = log.append logger_mock.info.side_effect = log.append urlerror_results = [ 'http://localhost/job/test/lastSuccessfulBuild/cobertura/api/json?depth=4\nURL error: URL Error' ] urlopen_mock.side_effect = urllib2.URLError("URL Error") self.aggregator.generate_report() self.assertEqual(log, urlerror_results) @patch('base.urllib2.urlopen') @patch('base.LOGGER') def test_simplejson_error(self, logger_mock, urlopen_mock): """Test simplejson.loads error""" log = [] logger_mock.error.side_effect = log.append logger_mock.info.side_effect = log.append urlopen_mock().read.return_value = '{' self.aggregator.generate_report() simplejson_error = [ "{\nCobertura URL did not return valid json: Expecting property name enclosed in double quotes or '}': line 1 column 2 (char 1)" ] self.assertEqual(log, simplejson_error)
[ "mock.patch", "urllib2.URLError", "base.CoberturaJSONAggregator", "os.path.abspath", "mock.MagicMock" ]
[((974, 1003), 'mock.patch', 'patch', (['"""base.urllib2.urlopen"""'], {}), "('base.urllib2.urlopen')\n", (979, 1003), False, 'from mock import patch, MagicMock\n'), ((1353, 1382), 'mock.patch', 'patch', (['"""base.urllib2.urlopen"""'], {}), "('base.urllib2.urlopen')\n", (1358, 1382), False, 'from mock import patch, MagicMock\n'), ((1388, 1408), 'mock.patch', 'patch', (['"""base.LOGGER"""'], {}), "('base.LOGGER')\n", (1393, 1408), False, 'from mock import patch, MagicMock\n'), ((2055, 2084), 'mock.patch', 'patch', (['"""base.urllib2.urlopen"""'], {}), "('base.urllib2.urlopen')\n", (2060, 2084), False, 'from mock import patch, MagicMock\n'), ((2090, 2110), 'mock.patch', 'patch', (['"""base.LOGGER"""'], {}), "('base.LOGGER')\n", (2095, 2110), False, 'from mock import patch, MagicMock\n'), ((2643, 2672), 'mock.patch', 'patch', (['"""base.urllib2.urlopen"""'], {}), "('base.urllib2.urlopen')\n", (2648, 2672), False, 'from mock import patch, MagicMock\n'), ((2678, 2698), 'mock.patch', 'patch', (['"""base.LOGGER"""'], {}), "('base.LOGGER')\n", (2683, 2698), False, 'from mock import patch, MagicMock\n'), ((669, 722), 'base.CoberturaJSONAggregator', 'CoberturaJSONAggregator', (['self.test_name', 'API_SETTINGS'], {}), '(self.test_name, API_SETTINGS)\n', (692, 722), False, 'from base import CoberturaJSONAggregator\n'), ((2517, 2546), 'urllib2.URLError', 'urllib2.URLError', (['"""URL Error"""'], {}), "('URL Error')\n", (2533, 2546), False, 'import urllib2\n'), ((1773, 1784), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (1782, 1784), False, 'from mock import patch, MagicMock\n'), ((788, 813), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (803, 813), False, 'import os\n')]
from pyfenstein3d.engine import Server from pyfenstein3d.game import Command from pyfenstein3d.game import Screen from pyfenstein3d.game import Game from pyfenstein3d.game import Image command = Command() image = Image() screen = Screen(image) server = Server() game = Game(command, screen, server) game.start()
[ "pyfenstein3d.game.Game", "pyfenstein3d.engine.Server", "pyfenstein3d.game.Command", "pyfenstein3d.game.Image", "pyfenstein3d.game.Screen" ]
[((195, 204), 'pyfenstein3d.game.Command', 'Command', ([], {}), '()\n', (202, 204), False, 'from pyfenstein3d.game import Command\n'), ((213, 220), 'pyfenstein3d.game.Image', 'Image', ([], {}), '()\n', (218, 220), False, 'from pyfenstein3d.game import Image\n'), ((230, 243), 'pyfenstein3d.game.Screen', 'Screen', (['image'], {}), '(image)\n', (236, 243), False, 'from pyfenstein3d.game import Screen\n'), ((253, 261), 'pyfenstein3d.engine.Server', 'Server', ([], {}), '()\n', (259, 261), False, 'from pyfenstein3d.engine import Server\n'), ((269, 298), 'pyfenstein3d.game.Game', 'Game', (['command', 'screen', 'server'], {}), '(command, screen, server)\n', (273, 298), False, 'from pyfenstein3d.game import Game\n')]
import datetime import glob import os import os.path import pathlib import sqlite3 import sys import time from datetime import date from sqlite3 import Error from secondary import take_input_rider, take_input_horse, show_rider_data, show_horse_data ############################################## # _ _ _ # # __| | __ _| |_ __ _| |__ __ _ ___ ___ # # / _` |/ _` | __/ _` | '_ \ / _` / __|/ _ \ # #| (_| | (_| | || (_| | |_) | (_| \__ \ __/ # # \__,_|\__,_|\__\__,_|_.__/ \__,_|___/\___| # # # ############################################## ############################################################ # CHEAT SHEET OF DATA TYPES # #----------------------------------------------------------# # NULL - The Value is a null value (NULL) # # INTEGER - The Value is a numeric value (INT) # # REAL - The Value is a float value (FLOAT) # # TEXT - The Value is a text string (STR) # # BLOB - The Value is a blob of data i.e. Binary # # used to store images and files (BYTES) # ############################################################ def show_help_db(): print("\nYou can: ") print("1. Add a new database") print("2. List existing databases") print("3. Connect to an existing database") print("4. Delete a database") print("5. Quit") print("\n") def show_help_table(): print("\nYou can: ") print("1. Add a rider's data to the database") print("2. Add a horses' data to the database") print("3. Show rider data") print("4. Show horse data") print("5. Edit a rider's data") print("6. Edit a horse's data") print("7. Delete a row of data") print("8. Show data in the database") print("9. Return to the database selection") print("10. Show this help message") print("11. Quit") print("\n") def main(): db_path = pathlib.Path(sys.argv[0]).resolve() db_path = db_path.parent / ".." / "databases" if not db_path.exists(): db_path.mkdir() os.chdir(db_path) print("\nCurrent working directory: ") print(db_path) while True: db_connected = False while not db_connected: file_list = os.listdir(db_path) show_help_db() db = input("what do you want to do: ").lower() if db in ["create database", "1", "add database"]: dbname = input("What do you want to call the database: ") conn = sqlite3.connect(dbname + ".db") #connect to selected database print("successfully created database") db_connected = True elif db in ["2", "check", "check databases", "check db", "list databases", "list db"]: print("Databases: ") for file in file_list: path = pathlib.Path(file) if path.suffix == ".db": print(path.stem) #check the file list for the suffix .db and then prints it without the .db elif db in ["3", "connect to database"]: print("Databases: ") for file in file_list: path = pathlib.Path(file) if path.suffix == ".db": print(path.stem) dbname = input("\nWhich database do you want to connect to: ") dbname = (dbname + ".db") if dbname not in file_list: print ("No such database exists ") else: conn = sqlite3.connect(dbname) print("connecting...") time.sleep (0.5) print("Successfully connected to database") db_connected = True elif db in ["4", "delete", "delete database"]: print("Databases: ") for file in file_list: path = pathlib.Path(file) if path.suffix == ".db": print(path.stem) print("\nIf you would like to cancel your deletion, just hit return") base = input("which database would you like to delete: ") dbname = (base + ".db") if base in [""]: print("cancelling deletion") elif dbname not in file_list: print ("No such database exists ") else: print("deleting...") time.sleep(0.5) os.remove (base + ".db") print("Successfully deleted " + base + ".db") elif db in ["5", "quit", "exit", "q"]: sys.exit() else: print("Invalid command") print(dbname) show_help_table() do = input("What would you like to do? ").lower() if do in ["add rider", "1"]: take_input_rider(conn) elif do in ["add horse", "2"]: take_input_horse(conn) elif do in ["show rider data", "show rider", "3"]: show_rider_data(conn) elif do in ["show horse data", "show horse", "4"]: show_horse_data(conn) elif do in ["edit rider", "5"]: pass elif do in ["edit horse", "6"]: pass elif do in ["delete row", "delete data", "delete", "7"]: print("sorry, that feature doesn't yet exist") elif do in ["show row", "show data", "show", "8"]: print("sorry, that feature doesn't yet exist") elif do in ["return", "return to database list", "database list", "9"]: db_connected = False elif do in ["help", "10"]: show_help_table() elif do in ["quit", "11"]: sys.exit() else: print("Invalid command") if __name__ == '__main__': main()
[ "os.listdir", "sqlite3.connect", "secondary.show_rider_data", "pathlib.Path", "secondary.take_input_rider", "secondary.show_horse_data", "time.sleep", "os.chdir", "sys.exit", "secondary.take_input_horse", "os.remove" ]
[((2140, 2157), 'os.chdir', 'os.chdir', (['db_path'], {}), '(db_path)\n', (2148, 2157), False, 'import os\n'), ((1997, 2022), 'pathlib.Path', 'pathlib.Path', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (2009, 2022), False, 'import pathlib\n'), ((2322, 2341), 'os.listdir', 'os.listdir', (['db_path'], {}), '(db_path)\n', (2332, 2341), False, 'import os\n'), ((5022, 5044), 'secondary.take_input_rider', 'take_input_rider', (['conn'], {}), '(conn)\n', (5038, 5044), False, 'from secondary import take_input_rider, take_input_horse, show_rider_data, show_horse_data\n'), ((2589, 2620), 'sqlite3.connect', 'sqlite3.connect', (["(dbname + '.db')"], {}), "(dbname + '.db')\n", (2604, 2620), False, 'import sqlite3\n'), ((5096, 5118), 'secondary.take_input_horse', 'take_input_horse', (['conn'], {}), '(conn)\n', (5112, 5118), False, 'from secondary import take_input_rider, take_input_horse, show_rider_data, show_horse_data\n'), ((5190, 5211), 'secondary.show_rider_data', 'show_rider_data', (['conn'], {}), '(conn)\n', (5205, 5211), False, 'from secondary import take_input_rider, take_input_horse, show_rider_data, show_horse_data\n'), ((2946, 2964), 'pathlib.Path', 'pathlib.Path', (['file'], {}), '(file)\n', (2958, 2964), False, 'import pathlib\n'), ((5283, 5304), 'secondary.show_horse_data', 'show_horse_data', (['conn'], {}), '(conn)\n', (5298, 5304), False, 'from secondary import take_input_rider, take_input_horse, show_rider_data, show_horse_data\n'), ((3283, 3301), 'pathlib.Path', 'pathlib.Path', (['file'], {}), '(file)\n', (3295, 3301), False, 'import pathlib\n'), ((3657, 3680), 'sqlite3.connect', 'sqlite3.connect', (['dbname'], {}), '(dbname)\n', (3672, 3680), False, 'import sqlite3\n'), ((3744, 3759), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (3754, 3759), False, 'import time\n'), ((4028, 4046), 'pathlib.Path', 'pathlib.Path', (['file'], {}), '(file)\n', (4040, 4046), False, 'import pathlib\n'), ((4794, 4804), 'sys.exit', 'sys.exit', ([], {}), '()\n', (4802, 4804), False, 'import sys\n'), ((4599, 4614), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (4609, 4614), False, 'import time\n'), ((4635, 4658), 'os.remove', 'os.remove', (["(base + '.db')"], {}), "(base + '.db')\n", (4644, 4658), False, 'import os\n'), ((5886, 5896), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5894, 5896), False, 'import sys\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2017-01-27 15:37 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('views', '0004_refactoring'), ] operations = [ migrations.AlterModelOptions( name='view', options={'ordering': ('key',), 'verbose_name': 'View', 'verbose_name_plural': 'Views'}, ), migrations.AlterField( model_name='view', name='comment', field=models.TextField(blank=True, help_text='Additional information about this view.', null=True, verbose_name='Comment'), ), migrations.AlterField( model_name='view', name='key', field=models.SlugField(blank=True, help_text='The internal identifier of this view. The URI will be generated from this key.', max_length=128, null=True, verbose_name='Key'), ), migrations.AlterField( model_name='view', name='uri', field=models.URLField(blank=True, help_text='The Uniform Resource Identifier of this view (auto-generated).', max_length=640, null=True, verbose_name='URI'), ), migrations.AlterField( model_name='view', name='uri_prefix', field=models.URLField(blank=True, help_text='The prefix for the URI of this view.', max_length=256, null=True, verbose_name='URI Prefix'), ), ]
[ "django.db.migrations.AlterModelOptions", "django.db.models.SlugField", "django.db.models.URLField", "django.db.models.TextField" ]
[((288, 421), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""view"""', 'options': "{'ordering': ('key',), 'verbose_name': 'View', 'verbose_name_plural': 'Views'}"}), "(name='view', options={'ordering': ('key',),\n 'verbose_name': 'View', 'verbose_name_plural': 'Views'})\n", (316, 421), False, 'from django.db import migrations, models\n'), ((562, 688), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'help_text': '"""Additional information about this view."""', 'null': '(True)', 'verbose_name': '"""Comment"""'}), "(blank=True, help_text=\n 'Additional information about this view.', null=True, verbose_name=\n 'Comment')\n", (578, 688), False, 'from django.db import migrations, models\n'), ((795, 972), 'django.db.models.SlugField', 'models.SlugField', ([], {'blank': '(True)', 'help_text': '"""The internal identifier of this view. The URI will be generated from this key."""', 'max_length': '(128)', 'null': '(True)', 'verbose_name': '"""Key"""'}), "(blank=True, help_text=\n 'The internal identifier of this view. The URI will be generated from this key.'\n , max_length=128, null=True, verbose_name='Key')\n", (811, 972), False, 'from django.db import migrations, models\n'), ((1079, 1238), 'django.db.models.URLField', 'models.URLField', ([], {'blank': '(True)', 'help_text': '"""The Uniform Resource Identifier of this view (auto-generated)."""', 'max_length': '(640)', 'null': '(True)', 'verbose_name': '"""URI"""'}), "(blank=True, help_text=\n 'The Uniform Resource Identifier of this view (auto-generated).',\n max_length=640, null=True, verbose_name='URI')\n", (1094, 1238), False, 'from django.db import migrations, models\n'), ((1353, 1493), 'django.db.models.URLField', 'models.URLField', ([], {'blank': '(True)', 'help_text': '"""The prefix for the URI of this view."""', 'max_length': '(256)', 'null': '(True)', 'verbose_name': '"""URI Prefix"""'}), "(blank=True, help_text=\n 'The prefix for the URI of this view.', max_length=256, null=True,\n verbose_name='URI Prefix')\n", (1368, 1493), False, 'from django.db import migrations, models\n')]
try: from StringIO import StringIO except ImportError: from io import StringIO try: from ConfigParser import SafeConfigParser except ImportError: from configparser import ConfigParser as SafeConfigParser import unittest from confirm import validator from confirm.utils import load_config_file import yaml def _call_validate(config_string, schema_string, **kwargs): """ Small wrapper to use the standard interface. """ config_parser = SafeConfigParser() config_parser.readfp(StringIO(config_string)) schema = yaml.load(StringIO(schema_string)) config = load_config_file('.ini', config_string) validation = validator.Validation(config, schema) validation.validate(**kwargs) return validation class ValidatorTestCase(unittest.TestCase): def test_required_field_in_missing_section(self): config = "[sectiona]\noptiona = valuea" schema = """ "sectionb": "optionb": "required": true "sectiona": "optiona": "type": "int" """ result = _call_validate(config, schema) self.assertIn("Missing required section sectionb.", result.errors()) def test_missing_required_field(self): config = "[section]\noption1 = value1" schema = """ "section": "option2": "required": true "option1": "description": "This is a description." """ result = _call_validate(config, schema) self.assertIn("Missing required option option2 in section section.", result.errors()) def test_empty_required_field(self): config = "[section]\noption1 =" schema = """ "section": "option1": "required": true """ result = _call_validate(config, schema) self.assertIn("Missing required option option1 in section section.", result.errors()) def test_invalid_int(self): config = "[section]\noption1 =not an int!" schema = """ "section": "option1": "required": true "type": "int" """ result = _call_validate(config, schema) self.assertIn("Invalid value for type int : not an int!.", result.errors()) def test_invalid_bool(self): config = "[section]\noption1 =not a bool!" schema = """ "section": "option1": "required": true "type": "bool" """ result = _call_validate(config, schema) self.assertIn("Invalid value for type bool : not a bool!.", result.errors()) def test_invalid_float(self): config = "[section]\noption1 =not a float!" schema = """ "section": "option1": "required": true "type": "float" """ result = _call_validate(config, schema) self.assertIn("Invalid value for type float : not a float!.", result.errors()) def test_invalid_type(self): config = "[section]\noption1 =We don't care about the type here." schema = """ "section": "option1": "required": true "type": "invalid" """ result = _call_validate(config, schema) self.assertIn("Invalid expected type for option option1 : invalid.", result.errors()) def test_typo_option_warning(self): config = "[section]\noption13=14." schema = """ "section": "option1": "required": false "type": "int" """ result = _call_validate(config, schema) self.assertIn("Possible typo for option option1 : option13.", result.warnings()) def test_typo_section_warning(self): config = "[section13]\nrandom_option=random_value." schema = """ "section1": "option1": "required": false "type": "int" """ result = _call_validate(config, schema) self.assertIn("Possible typo for section section1 : section13.", result.warnings()) def test_deprecated_section(self): config = "[section1]\nrandom_option=random_value." schema = """ "section1": "option1": "deprecated": true "required": false "type": "int" """ result = _call_validate(config, schema) self.assertIn("Deprecated section section1 is present!", result.warnings()) result = _call_validate(config, schema, error_on_deprecated=True) self.assertIn("Deprecated section section1 is present!", result.errors()) def test_is_valid(self): config = "[section1]\nrandom_option=14" schema = """ "section1": "random_option": "required": false "type": "int" """ result = _call_validate(config, schema) self.assertEqual(result.errors(), [], "There should be no errors for this validation!") self.assertTrue(result.is_valid()) def test_is_invalid(self): config = "[section1]\nrandom_option=not an int" schema = """ "section1": "random_option": "required": false "type": "int" """ result = _call_validate(config, schema) self.assertNotEqual(result.errors(), [], "There should be errors for this validation!") self.assertFalse(result.is_valid()) def test_is_valid_warnings(self): config = "[section1]\nrandom_option=14" schema = """ "section1": "random_option": "required": false "deprecated": true "type": "int" """ result = _call_validate(config, schema) self.assertNotEqual(result.warnings(), [], "There should be deprecation warnings for this validation!") self.assertTrue(result.is_valid()) def test_deprecated_option(self): config = "[section1]\noption1=random_value." schema = """ "section1": "option1": "deprecated": true "required": false "type": "str" "option2": "deprecated": false "required": false "type": "int" """ result = _call_validate(config, schema) self.assertIn("Deprecated option option1 is present in section section1!", result.warnings()) result = _call_validate(config, schema, error_on_deprecated=True) self.assertIn("Deprecated option option1 is present in section section1!", result.errors()) def test_undefined_section(self): config = "[section1]\noption1=random_value\n[section2]\noption=value" schema = """ "section1": "option1": "required": false "type": "str" """.strip() result = _call_validate(config, schema) self.assertIn("Section section2 is not defined in the schema file.", result.warnings()) def test_undefined_option(self): config = "[section1]\noption1=random_value\noption2=random_value2" schema = """ "section1": "option1": "required": false "type": "str" """.strip() result = _call_validate(config, schema) self.assertIn("Option option2 of section section1 is not defined in the schema file.", result.warnings())
[ "confirm.utils.load_config_file", "io.StringIO", "configparser.ConfigParser", "confirm.validator.Validation" ]
[((470, 488), 'configparser.ConfigParser', 'SafeConfigParser', ([], {}), '()\n', (486, 488), True, 'from configparser import ConfigParser as SafeConfigParser\n'), ((601, 640), 'confirm.utils.load_config_file', 'load_config_file', (['""".ini"""', 'config_string'], {}), "('.ini', config_string)\n", (617, 640), False, 'from confirm.utils import load_config_file\n'), ((659, 695), 'confirm.validator.Validation', 'validator.Validation', (['config', 'schema'], {}), '(config, schema)\n', (679, 695), False, 'from confirm import validator\n'), ((514, 537), 'io.StringIO', 'StringIO', (['config_string'], {}), '(config_string)\n', (522, 537), False, 'from io import StringIO\n'), ((563, 586), 'io.StringIO', 'StringIO', (['schema_string'], {}), '(schema_string)\n', (571, 586), False, 'from io import StringIO\n')]
from marshmallow import Schema, fields from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field from pf_sqlalchemy.db.orm import BaseModel class PfOnlySchema(Schema): pass class PfBaseSchema(SQLAlchemySchema): pass class PfDetailBaseSchema(PfBaseSchema): class Meta: model = BaseModel id = auto_field() created = auto_field() updated = auto_field() uuid = auto_field() class ModelViewSort(Schema): id = fields.Integer(required=True, error_messages={"required": "Please enter entity id."}) viewOrder = fields.Integer(required=True, error_messages={"required": "Please enter view order."}) def common_exclude(): exclude = ["id", "created", "updated", "uuid"] return exclude def update_exclude(): exclude = ("created", "updated", "uuid") return exclude def common_exclude_append(*args): list_args = list(args) list_args.extend(common_exclude()) return list_args def update_exclude_append(*args): list_args = list(args) list_args.extend(update_exclude()) return list_args
[ "marshmallow_sqlalchemy.auto_field", "marshmallow.fields.Integer" ]
[((328, 340), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (338, 340), False, 'from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field\n'), ((355, 367), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (365, 367), False, 'from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field\n'), ((382, 394), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (392, 394), False, 'from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field\n'), ((406, 418), 'marshmallow_sqlalchemy.auto_field', 'auto_field', ([], {}), '()\n', (416, 418), False, 'from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field\n'), ((459, 548), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'error_messages': "{'required': 'Please enter entity id.'}"}), "(required=True, error_messages={'required':\n 'Please enter entity id.'})\n", (473, 548), False, 'from marshmallow import Schema, fields\n'), ((561, 651), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'error_messages': "{'required': 'Please enter view order.'}"}), "(required=True, error_messages={'required':\n 'Please enter view order.'})\n", (575, 651), False, 'from marshmallow import Schema, fields\n')]
#!/usr/bin/env python3 import tensorflow as tf import numpy as np W = tf.constant([[1.74481176], [-0.7612069], [0.3190391]]) B = tf.constant([-0.24937038]) @tf.function def perceptron(X, W, B): layer = tf.add(tf.matmul(X, W), B) act = tf.nn.sigmoid(layer) return act X1 = tf.constant([[1.62434536, -0.52817175, 0.86540763]]) Y1 = perceptron(X1, W, B) print(Y1[0][0].numpy()) X2 = tf.constant([[-0.61175641, -1.07296862, -2.3015387]]) Y2 = perceptron(X2, W, B) print(Y2[0][0].numpy())
[ "tensorflow.nn.sigmoid", "tensorflow.constant", "tensorflow.matmul" ]
[((72, 126), 'tensorflow.constant', 'tf.constant', (['[[1.74481176], [-0.7612069], [0.3190391]]'], {}), '([[1.74481176], [-0.7612069], [0.3190391]])\n', (83, 126), True, 'import tensorflow as tf\n'), ((131, 157), 'tensorflow.constant', 'tf.constant', (['[-0.24937038]'], {}), '([-0.24937038])\n', (142, 157), True, 'import tensorflow as tf\n'), ((290, 342), 'tensorflow.constant', 'tf.constant', (['[[1.62434536, -0.52817175, 0.86540763]]'], {}), '([[1.62434536, -0.52817175, 0.86540763]])\n', (301, 342), True, 'import tensorflow as tf\n'), ((399, 452), 'tensorflow.constant', 'tf.constant', (['[[-0.61175641, -1.07296862, -2.3015387]]'], {}), '([[-0.61175641, -1.07296862, -2.3015387]])\n', (410, 452), True, 'import tensorflow as tf\n'), ((247, 267), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['layer'], {}), '(layer)\n', (260, 267), True, 'import tensorflow as tf\n'), ((217, 232), 'tensorflow.matmul', 'tf.matmul', (['X', 'W'], {}), '(X, W)\n', (226, 232), True, 'import tensorflow as tf\n')]
from dataclasses import dataclass from typing import Optional from collections import defaultdict, Counter core_noun = ["NNG", "NNP"] core_pos = core_noun + ["VV", "VA"] neighbor_pos = core_pos + ["NNBC", "MM", "MAG", "XPN", "XSN", "XSV", "XSA", "XR"] single_possible_token = core_noun + ['SL'] entity_last_pos = single_possible_token + ["NNB","NNBC","NR","NP","VV","VA","MM","MAG","IC", "ETN","ETM","XPN","XSN","XR","SY","SH","SN",] forbidden_words = ['’'] @dataclass class Category: large: str small: str class MecabTokenStorage: def __init__(self): self.core_key_word = defaultdict(dict) self.core_pos_word = Counter() # core pos에 반드시 들어가야 하는 단어. self.neighbor_word = Counter() # 가능한 pos 범위만 저장한다. ("가", "XPN") class CategorySaveStorage: def __init__(self): self.pos_dict = defaultdict(set) # 포맷과 마지막 값을 확인 self.word_dict = set() # 마지막 값을 확인 self.counter_dict = Counter() # 검색용 점수 스코어 단어 self.counter_near_dict = Counter() # 검색용 점수 스코어 단어 class CategoryLoadStorage: def __init__(self): self.pos_dict = defaultdict(dict) self.word_dict = list() self.counter_dict = Counter() self.counter_near_dict = Counter() @dataclass class MecabWordCategory: category: Category start_idx: Optional[int] = None end_idx: Optional[int] = None entity: Optional[str] = None @dataclass class MecabPatternData: category: Category dictionary_data: str pattern: str sentence: list min_meaning: int = 0 parse_character: bool = False @dataclass class MecabWordFeature: word: str pos: str semantic: str has_jongseong: bool reading: str type : str start_pos: str end_pos: str expression: str space: Optional[int] = None mecab_token: Optional[int] = None mecab_compound: Optional[int] = None begin: Optional[int] = None end: Optional[int] = None label: Optional[str] = "O" @dataclass class MecabNerFeature: word: str pos: str start_idx: int end_idx: int category: Optional[Category] = None @dataclass class NerFeature: word: str pos: str category: Optional[Category] = None
[ "collections.Counter", "collections.defaultdict" ]
[((600, 617), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (611, 617), False, 'from collections import defaultdict, Counter\n'), ((647, 656), 'collections.Counter', 'Counter', ([], {}), '()\n', (654, 656), False, 'from collections import defaultdict, Counter\n'), ((714, 723), 'collections.Counter', 'Counter', ([], {}), '()\n', (721, 723), False, 'from collections import defaultdict, Counter\n'), ((834, 850), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (845, 850), False, 'from collections import defaultdict, Counter\n'), ((938, 947), 'collections.Counter', 'Counter', ([], {}), '()\n', (945, 947), False, 'from collections import defaultdict, Counter\n'), ((997, 1006), 'collections.Counter', 'Counter', ([], {}), '()\n', (1004, 1006), False, 'from collections import defaultdict, Counter\n'), ((1101, 1118), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1112, 1118), False, 'from collections import defaultdict, Counter\n'), ((1179, 1188), 'collections.Counter', 'Counter', ([], {}), '()\n', (1186, 1188), False, 'from collections import defaultdict, Counter\n'), ((1222, 1231), 'collections.Counter', 'Counter', ([], {}), '()\n', (1229, 1231), False, 'from collections import defaultdict, Counter\n')]
from tkinter import * from tkinter import ttk, font import getpass # Gestor de geometría (pack) class Aplicacion(): def __init__(self): self.raiz = Tk() self.raiz.title("Acceso") # Cambia el formato de la fuente actual a negrita para # resaltar las dos etiquetas que acompañan a las cajas # de entrada. (Para este cambio se ha importado el # módulo 'font' al comienzo del programa): fuente = font.Font(weight='bold') # Define las etiquetas que acompañan a las cajas de # entrada y asigna el formato de fuente anterior: self.etiq1 = ttk.Label(self.raiz, text="Usuario:", font=fuente) self.etiq2 = ttk.Label(self.raiz, text="Contraseña:", font=fuente) # Declara dos variables de tipo cadena para contener # el usuario y la contraseña: self.usuario = StringVar() self.clave = StringVar() # Realiza una lectura del nombre de usuario que # inició sesión en el sistema y lo asigna a la # variable 'self.usuario' (Para capturar esta # información se ha importando el módulo getpass # al comienzo del programa): self.usuario.set(getpass.getuser()) # Define dos cajas de entrada que aceptarán cadenas # de una longitud máxima de 30 caracteres. # A la primera de ellas 'self.ctext1' que contendrá # el nombre del usuario, se le asigna la variable # 'self.usuario' a la opción 'textvariable'. Cualquier # valor que tome la variable durante la ejecución del # programa quedará reflejada en la caja de entrada. # En la segunda caja de entrada, la de la contraseña, # se hace lo mismo. Además, se establece la opción # 'show' con un "*" (asterisco) para ocultar la # escritura de las contraseñas: self.ctext1 = ttk.Entry(self.raiz, textvariable=self.usuario, width=30) self.ctext2 = ttk.Entry(self.raiz, textvariable=self.clave, width=30, show="*") self.separ1 = ttk.Separator(self.raiz, orient=HORIZONTAL) # Se definen dos botones con dos métodos: El botón # 'Aceptar' llamará al método 'self.aceptar' cuando # sea presionado para validar la contraseña; y el botón # 'Cancelar' finalizará la aplicación si se llega a # presionar: self.boton1 = ttk.Button(self.raiz, text="Aceptar", command=self.aceptar) self.boton2 = ttk.Button(self.raiz, text="Cancelar", command=quit) # Se definen las posiciones de los widgets dentro de # la ventana. Todos los controles se van colocando # hacia el lado de arriba, excepto, los dos últimos, # los botones, que se situarán debajo del último 'TOP': # el primer botón hacia el lado de la izquierda y el # segundo a su derecha. # Los valores posibles para la opción 'side' son: # TOP (arriba), BOTTOM (abajo), LEFT (izquierda) # y RIGHT (derecha). Si se omite, el valor será TOP # La opción 'fill' se utiliza para indicar al gestor # cómo expandir/reducir el widget si la ventana cambia # de tamaño. Tiene tres posibles valores: BOTH # (Horizontal y Verticalmente), X (Horizontalmente) e # Y (Verticalmente). Funcionará si el valor de la opción # 'expand' es True. # Por último, las opciones 'padx' y 'pady' se utilizan # para añadir espacio extra externo horizontal y/o # vertical a los widgets para separarlos entre sí y de # los bordes de la ventana. Hay otras equivalentes que # añaden espacio extra interno: 'ipàdx' y 'ipady': self.etiq1.pack(side=TOP, fill=BOTH, expand=True, padx=5, pady=5) self.ctext1.pack(side=TOP, fill=X, expand=True, padx=5, pady=5) self.etiq2.pack(side=TOP, fill=BOTH, expand=True, padx=5, pady=5) self.ctext2.pack(side=TOP, fill=X, expand=True, padx=5, pady=5) self.separ1.pack(side=TOP, fill=BOTH, expand=True, padx=5, pady=5) self.boton1.pack(side=LEFT, fill=BOTH, expand=True, padx=5, pady=5) self.boton2.pack(side=RIGHT, fill=BOTH, expand=True, padx=5, pady=5) # Cuando se inicia el programa se asigna el foco # a la caja de entrada de la contraseña para que se # pueda empezar a escribir directamente: self.ctext2.focus_set() self.raiz.mainloop() # El método 'aceptar' se emplea para validar la # contraseña introducida. Será llamado cuando se # presione el botón 'Aceptar'. Si la contraseña # coincide con la cadena '<PASSWORD>' se imprimirá # el mensaje 'Acceso permitido' y los valores # aceptados. En caso contrario, se mostrará el # mensaje 'Acceso denegado' y el foco volverá al # mismo lugar. def aceptar(self): if self.clave.get() == 'tkinter': print("Acceso permitido\n" f"Usuario: {self.ctext1.get()}\n" f"Contraseña: {self.ctext2.get()}") else: print("Acceso denegado") # Se inicializa la variable 'self.clave' para # que el widget 'self.ctext2' quede limpio. # Por último, se vuelve a asignar el foco # a este widget para poder escribir una nueva # contraseña. self.clave.set("") self.ctext2.focus_set() def main(): Aplicacion() return 0 if __name__ == '__main__': main()
[ "tkinter.ttk.Button", "tkinter.ttk.Entry", "tkinter.ttk.Label", "tkinter.font.Font", "getpass.getuser", "tkinter.ttk.Separator" ]
[((457, 481), 'tkinter.font.Font', 'font.Font', ([], {'weight': '"""bold"""'}), "(weight='bold')\n", (466, 481), False, 'from tkinter import ttk, font\n'), ((623, 673), 'tkinter.ttk.Label', 'ttk.Label', (['self.raiz'], {'text': '"""Usuario:"""', 'font': 'fuente'}), "(self.raiz, text='Usuario:', font=fuente)\n", (632, 673), False, 'from tkinter import ttk, font\n'), ((695, 748), 'tkinter.ttk.Label', 'ttk.Label', (['self.raiz'], {'text': '"""Contraseña:"""', 'font': 'fuente'}), "(self.raiz, text='Contraseña:', font=fuente)\n", (704, 748), False, 'from tkinter import ttk, font\n'), ((1878, 1935), 'tkinter.ttk.Entry', 'ttk.Entry', (['self.raiz'], {'textvariable': 'self.usuario', 'width': '(30)'}), '(self.raiz, textvariable=self.usuario, width=30)\n', (1887, 1935), False, 'from tkinter import ttk, font\n'), ((1958, 2023), 'tkinter.ttk.Entry', 'ttk.Entry', (['self.raiz'], {'textvariable': 'self.clave', 'width': '(30)', 'show': '"""*"""'}), "(self.raiz, textvariable=self.clave, width=30, show='*')\n", (1967, 2023), False, 'from tkinter import ttk, font\n'), ((2078, 2121), 'tkinter.ttk.Separator', 'ttk.Separator', (['self.raiz'], {'orient': 'HORIZONTAL'}), '(self.raiz, orient=HORIZONTAL)\n', (2091, 2121), False, 'from tkinter import ttk, font\n'), ((2410, 2469), 'tkinter.ttk.Button', 'ttk.Button', (['self.raiz'], {'text': '"""Aceptar"""', 'command': 'self.aceptar'}), "(self.raiz, text='Aceptar', command=self.aceptar)\n", (2420, 2469), False, 'from tkinter import ttk, font\n'), ((2525, 2577), 'tkinter.ttk.Button', 'ttk.Button', (['self.raiz'], {'text': '"""Cancelar"""', 'command': 'quit'}), "(self.raiz, text='Cancelar', command=quit)\n", (2535, 2577), False, 'from tkinter import ttk, font\n'), ((1204, 1221), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (1219, 1221), False, 'import getpass\n')]
# Copyright 2019 kubeflow.org. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from unittest.mock import MagicMock from unittest.mock import Mock from unittest.mock import call from unittest.mock import patch import kfserving class TestS3Storage(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.whole_bucket_download_calls = [ call('kfserving-storage-test', 'file1', unittest.mock.ANY), call('kfserving-storage-test', 'file2', unittest.mock.ANY), call('kfserving-storage-test', 'subdir1/file1', unittest.mock.ANY), call('kfserving-storage-test', 'subdir1/file2', unittest.mock.ANY), call('kfserving-storage-test', 'subdir2/file1', unittest.mock.ANY), call('kfserving-storage-test', 'subdir2/file2', unittest.mock.ANY) ] self.under_prefix_download_calls = [ call('kfserving-storage-test', 'model-prefix/file1', unittest.mock.ANY), call('kfserving-storage-test', 'model-prefix/file2', unittest.mock.ANY), call('kfserving-storage-test', 'model-prefix/subdir1/file1', unittest.mock.ANY), call('kfserving-storage-test', 'model-prefix/subdir1/file2', unittest.mock.ANY), call('kfserving-storage-test', 'model-prefix/subdir2/file1', unittest.mock.ANY), call('kfserving-storage-test', 'model-prefix/subdir2/file2', unittest.mock.ANY) ] @patch('boto3.client') def testDownloadWholeS3Bucket(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock(return_value=TestS3Storage._generate_s3_list_objects_response()) storage.download('s3://kfserving-storage-test', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test') s3client.download_fileobj.assert_has_calls(self.whole_bucket_download_calls, any_order=True) self._verify_download(tmpdir) @patch('boto3.client') def testDownloadWholeBucketTrailingSlash(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock(return_value=TestS3Storage._generate_s3_list_objects_response()) storage.download('s3://kfserving-storage-test/', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test') s3client.download_fileobj.assert_has_calls(self.whole_bucket_download_calls, any_order=True) self._verify_download(tmpdir) @patch('boto3.client') def testDownloadUnderPrefix(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock( return_value=TestS3Storage._generate_s3_list_objects_response(prefix='model-prefix')) storage.download('s3://kfserving-storage-test/model-prefix', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test', Prefix='model-prefix') s3client.download_fileobj.assert_has_calls(self.under_prefix_download_calls, any_order=True) self._verify_download(tmpdir) @patch('boto3.client') def testDownloadUnderPrefixTrailingSlash(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock( return_value=TestS3Storage._generate_s3_list_objects_response(prefix='model-prefix')) storage.download('s3://kfserving-storage-test/model-prefix/', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test', Prefix='model-prefix/') s3client.download_fileobj.assert_has_calls(self.under_prefix_download_calls, any_order=True) self._verify_download(tmpdir) @patch('boto3.client') def testDownloadNonExistentPrefix(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() with self.assertRaises(RuntimeError): s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock( return_value=TestS3Storage._generate_s3_list_objects_response(nfiles=0, ndirs=0, depth=0)) storage.download('s3://kfserving-storage-test/nonexistent', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test', Prefix='nonexistent') s3client.download_fileobj.assert_not_called() self.assertListEqual([(tmpdir, [], [])], list(os.walk(tmpdir))) @patch('boto3.client') def testContinuation(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = TestS3Storage._generate_truncated_response storage.download('s3://kfserving-storage-test', tmpdir) s3client.download_fileobj.assert_has_calls(self.whole_bucket_download_calls, any_order=True) self._verify_download(tmpdir) @patch('boto3.client') def testEmptyDir(self, client): storage = kfserving.Storage() with tempfile.TemporaryDirectory() as tmpdir: s3client = MagicMock() s3client.download_fileobj = MagicMock() client.return_value = s3client s3client.list_objects_v2 = Mock( return_value=TestS3Storage._generate_s3_list_objects_response(nfiles=1, ndirs=1, depth=0, empty_dirs=True)) storage.download('s3://kfserving-storage-test', tmpdir) s3client.list_objects_v2.assert_called_with(Bucket='kfserving-storage-test') s3client.download_fileobj.assert_called_with('kfserving-storage-test', 'file1', unittest.mock.ANY) self.assertListEqual([(tmpdir, ['subdir1'], ['file1']), (os.path.join(tmpdir, 'subdir1'), [], [])], list(os.walk(tmpdir))) def _verify_download(self, tmpdir, prefix=None): if prefix: tmpdir = os.path.join(tmpdir, prefix) for root, dirs, files in os.walk(tmpdir): if root == tmpdir: self.assertListEqual(sorted(['subdir1', 'subdir2']), sorted(dirs)) self.assertListEqual(sorted(['file1', 'file2']), sorted(files)) elif root == os.path.join(tmpdir, 'subdir1') or root == os.path.join(tmpdir, 'subdir2'): self.assertListEqual([], dirs) self.assertListEqual(sorted(['file1', 'file2']), sorted(files)) else: self.fail('Unexpected download directory: {}'.format(root)) @staticmethod def _generate_keys(prefix, nfiles, ndirs, depth, empty_dirs): keys = [] for file_index in range(1, nfiles + 1): key = 'file{}'.format(file_index) if prefix: key = '{}/{}'.format(prefix, key) keys.append(key) if depth > 1: for dir_index in range(1, ndirs + 1): r_prefix = 'subdir{}'.format(dir_index) if prefix: r_prefix = '{}/{}'.format(prefix, r_prefix) keys += TestS3Storage._generate_keys(r_prefix, nfiles, ndirs, depth - 1, empty_dirs) elif ndirs > 0 and empty_dirs: for dir_index in range(1, ndirs + 1): key = 'subdir{}/'.format(dir_index) if prefix: key = '{}/{}'.format(prefix, key) keys.append(key) return keys @staticmethod def _generate_s3_list_objects_response(prefix='', nfiles=2, ndirs=2, depth=2, empty_dirs=False): keys = TestS3Storage._generate_keys(prefix, nfiles, ndirs, depth, empty_dirs) return {'Contents': [{'ETag': None, 'Key': key, 'LastModified': None, 'Size': None, 'StorageClass': 'STANDARD'} for key in keys], 'EncodingType': 'url', 'IsTruncated': False, 'KeyCount': len(keys), 'MaxKeys': 1000, 'Name': 'kfserving-storage-test', 'Prefix': prefix, 'ResponseMetadata': {'HTTPHeaders': {'content-type': 'application/xml', 'date': None, 'server': None, 'transfer-encoding': None, 'x-amz-bucket-region': None, 'x-amz-id-2': None, 'x-amz-request-id': None}, 'HTTPStatusCode': 200, 'HostId': None, 'RequestId': None, 'RetryAttempts': 0}} @staticmethod def _generate_truncated_response(Bucket, Prefix='', ContinuationToken=0): response = TestS3Storage._generate_s3_list_objects_response(prefix=Prefix) response['MaxKeys'] = 1 if ContinuationToken < len(response['Contents']) - 1: response['IsTruncated'] = True response['NextContinuationToken'] = ContinuationToken + 1 response['Contents'] = [response['Contents'][ContinuationToken]] return response if __name__ == '__main__': unittest.main()
[ "tempfile.TemporaryDirectory", "kfserving.Storage", "unittest.mock.MagicMock", "unittest.mock.call", "os.path.join", "unittest.main", "unittest.mock.patch", "os.walk" ]
[((2015, 2036), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (2020, 2036), False, 'from unittest.mock import patch\n'), ((2727, 2748), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (2732, 2748), False, 'from unittest.mock import patch\n'), ((3451, 3472), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (3456, 3472), False, 'from unittest.mock import patch\n'), ((4235, 4256), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (4240, 4256), False, 'from unittest.mock import patch\n'), ((5034, 5055), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (5039, 5055), False, 'from unittest.mock import patch\n'), ((5940, 5961), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (5945, 5961), False, 'from unittest.mock import patch\n'), ((6527, 6548), 'unittest.mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (6532, 6548), False, 'from unittest.mock import patch\n'), ((11056, 11071), 'unittest.main', 'unittest.main', ([], {}), '()\n', (11069, 11071), False, 'import unittest\n'), ((2104, 2123), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (2121, 2123), False, 'import kfserving\n'), ((2827, 2846), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (2844, 2846), False, 'import kfserving\n'), ((3538, 3557), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (3555, 3557), False, 'import kfserving\n'), ((4335, 4354), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (4352, 4354), False, 'import kfserving\n'), ((5127, 5146), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (5144, 5146), False, 'import kfserving\n'), ((6020, 6039), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (6037, 6039), False, 'import kfserving\n'), ((6603, 6622), 'kfserving.Storage', 'kfserving.Storage', ([], {}), '()\n', (6620, 6622), False, 'import kfserving\n'), ((7646, 7661), 'os.walk', 'os.walk', (['tmpdir'], {}), '(tmpdir)\n', (7653, 7661), False, 'import os\n'), ((951, 1009), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'file1', unittest.mock.ANY)\n", (955, 1009), False, 'from unittest.mock import call\n'), ((1023, 1081), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'file2', unittest.mock.ANY)\n", (1027, 1081), False, 'from unittest.mock import call\n'), ((1095, 1161), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""subdir1/file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'subdir1/file1', unittest.mock.ANY)\n", (1099, 1161), False, 'from unittest.mock import call\n'), ((1175, 1241), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""subdir1/file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'subdir1/file2', unittest.mock.ANY)\n", (1179, 1241), False, 'from unittest.mock import call\n'), ((1255, 1321), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""subdir2/file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'subdir2/file1', unittest.mock.ANY)\n", (1259, 1321), False, 'from unittest.mock import call\n'), ((1335, 1401), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""subdir2/file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'subdir2/file2', unittest.mock.ANY)\n", (1339, 1401), False, 'from unittest.mock import call\n'), ((1470, 1541), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/file1', unittest.mock.ANY)\n", (1474, 1541), False, 'from unittest.mock import call\n'), ((1555, 1626), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/file2', unittest.mock.ANY)\n", (1559, 1626), False, 'from unittest.mock import call\n'), ((1640, 1719), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/subdir1/file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/subdir1/file1', unittest.mock.ANY)\n", (1644, 1719), False, 'from unittest.mock import call\n'), ((1733, 1812), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/subdir1/file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/subdir1/file2', unittest.mock.ANY)\n", (1737, 1812), False, 'from unittest.mock import call\n'), ((1826, 1905), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/subdir2/file1"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/subdir2/file1', unittest.mock.ANY)\n", (1830, 1905), False, 'from unittest.mock import call\n'), ((1919, 1998), 'unittest.mock.call', 'call', (['"""kfserving-storage-test"""', '"""model-prefix/subdir2/file2"""', 'unittest.mock.ANY'], {}), "('kfserving-storage-test', 'model-prefix/subdir2/file2', unittest.mock.ANY)\n", (1923, 1998), False, 'from unittest.mock import call\n'), ((2137, 2166), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2164, 2166), False, 'import tempfile\n'), ((2201, 2212), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2210, 2212), False, 'from unittest.mock import MagicMock\n'), ((2253, 2264), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2262, 2264), False, 'from unittest.mock import MagicMock\n'), ((2860, 2889), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2887, 2889), False, 'import tempfile\n'), ((2924, 2935), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2933, 2935), False, 'from unittest.mock import MagicMock\n'), ((2976, 2987), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2985, 2987), False, 'from unittest.mock import MagicMock\n'), ((3571, 3600), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (3598, 3600), False, 'import tempfile\n'), ((3635, 3646), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (3644, 3646), False, 'from unittest.mock import MagicMock\n'), ((3687, 3698), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (3696, 3698), False, 'from unittest.mock import MagicMock\n'), ((4368, 4397), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (4395, 4397), False, 'import tempfile\n'), ((4432, 4443), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (4441, 4443), False, 'from unittest.mock import MagicMock\n'), ((4484, 4495), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (4493, 4495), False, 'from unittest.mock import MagicMock\n'), ((5160, 5189), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (5187, 5189), False, 'import tempfile\n'), ((5224, 5235), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (5233, 5235), False, 'from unittest.mock import MagicMock\n'), ((6053, 6082), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (6080, 6082), False, 'import tempfile\n'), ((6117, 6128), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (6126, 6128), False, 'from unittest.mock import MagicMock\n'), ((6169, 6180), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (6178, 6180), False, 'from unittest.mock import MagicMock\n'), ((6636, 6665), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (6663, 6665), False, 'import tempfile\n'), ((6700, 6711), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (6709, 6711), False, 'from unittest.mock import MagicMock\n'), ((6752, 6763), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (6761, 6763), False, 'from unittest.mock import MagicMock\n'), ((7584, 7612), 'os.path.join', 'os.path.join', (['tmpdir', 'prefix'], {}), '(tmpdir, prefix)\n', (7596, 7612), False, 'import os\n'), ((5330, 5341), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (5339, 5341), False, 'from unittest.mock import MagicMock\n'), ((5916, 5931), 'os.walk', 'os.walk', (['tmpdir'], {}), '(tmpdir)\n', (5923, 5931), False, 'import os\n'), ((7472, 7487), 'os.walk', 'os.walk', (['tmpdir'], {}), '(tmpdir)\n', (7479, 7487), False, 'import os\n'), ((7391, 7422), 'os.path.join', 'os.path.join', (['tmpdir', '"""subdir1"""'], {}), "(tmpdir, 'subdir1')\n", (7403, 7422), False, 'import os\n'), ((7882, 7913), 'os.path.join', 'os.path.join', (['tmpdir', '"""subdir1"""'], {}), "(tmpdir, 'subdir1')\n", (7894, 7913), False, 'import os\n'), ((7925, 7956), 'os.path.join', 'os.path.join', (['tmpdir', '"""subdir2"""'], {}), "(tmpdir, 'subdir2')\n", (7937, 7956), False, 'import os\n')]
#!/usr/bin/env python3 from fuseq.option import Option from fuseq.genomon import Genomon from fuseq.pipeline import Pipeline def main(): opt = Option() genomon = Genomon(opt.refer()) for mf_dir, mf_path in genomon.mf_dic.items(): params = opt.copy() # Paths work_dir = f'{params.fuseq_root_dir}/{mf_dir}/{params.work_dirname}' swork_dir = f'{params.fuseq_root_dir}/{mf_dir}/{params.work_dirname}/{params.swork_dirname}' fuseq_path = f'{params.fuseq_root_dir}/{mf_dir}/{params.fuseq_filename}' inputs = {'mf_path': mf_path, 'star_dir': genomon.star_dir} # Add to params params.work_dir = work_dir params.swork_dir = swork_dir params.fuseq_path = fuseq_path params.inputs = inputs # Run pipeline = Pipeline(params) pipeline.run() if __name__ == '__main__': main()
[ "fuseq.pipeline.Pipeline", "fuseq.option.Option" ]
[((151, 159), 'fuseq.option.Option', 'Option', ([], {}), '()\n', (157, 159), False, 'from fuseq.option import Option\n'), ((820, 836), 'fuseq.pipeline.Pipeline', 'Pipeline', (['params'], {}), '(params)\n', (828, 836), False, 'from fuseq.pipeline import Pipeline\n')]
#!/usr/bin/env python3 from termcolor import * import colorama colorama.init() def start(): cprint('\n------------------ START -----------------\n', 'green') def end(): cprint('\n------------------- END ------------------\n', 'red')
[ "colorama.init" ]
[((63, 78), 'colorama.init', 'colorama.init', ([], {}), '()\n', (76, 78), False, 'import colorama\n')]
import numpy as np import torch class Dataset(torch.utils.data.Dataset): def __init__(self, data, device="cpu"): mesh = np.stack(np.meshgrid(*data), -1).reshape(-1, len(data)) self.X = torch.from_numpy(mesh).float().to(device) def __len__(self): return len(self.X) def __getitem__(self, ix): return self.X[ix] class Mesh(): def __init__(self, data, device="cpu"): assert isinstance(data, dict), "you must pass a dict with your data" self.vars, data = tuple(data.keys()), data.values() self.dataset = Dataset(data, device) self.device = device def build_dataloader(self, batch_size=None, shuffle=True): if batch_size == None: batch_size = len(self.dataset) return torch.utils.data.DataLoader( self.dataset, batch_size=batch_size, shuffle=shuffle)
[ "numpy.meshgrid", "torch.from_numpy", "torch.utils.data.DataLoader" ]
[((810, 896), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['self.dataset'], {'batch_size': 'batch_size', 'shuffle': 'shuffle'}), '(self.dataset, batch_size=batch_size, shuffle=\n shuffle)\n', (837, 896), False, 'import torch\n'), ((149, 167), 'numpy.meshgrid', 'np.meshgrid', (['*data'], {}), '(*data)\n', (160, 167), True, 'import numpy as np\n'), ((214, 236), 'torch.from_numpy', 'torch.from_numpy', (['mesh'], {}), '(mesh)\n', (230, 236), False, 'import torch\n')]
import matplotlib.pyplot as plt from visualization_utils.base_functions import annotate_heatmap, heatmap def plot_confusion_matrix( confusion_matrix, classes, figure_path="confusion_matrix.png" ): """Plots a given confusion matrix. This function plots a given confusion matrix and saves it as a figure. Parameters ---------- confusion_matrix : array-like of shape (n_classes, n_classes) Confusion matrix. classes : array-like of shape (n_classes,) Classes. figure_path : str, default=confusion_matrix.png Figure path. Returns ------- None """ fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6, 5),) fig.tight_layout() im = heatmap( confusion_matrix, classes, classes, x_label="True Class", y_label="Predicted Class", ax=ax, vmin=0, vmax=0, ) annotate_heatmap(im, valfmt="{x:d}", size=20, textcolors=["black", "white"]) fig.tight_layout() plt.savefig(figure_path, dpi=300, bbox_inches="tight")
[ "visualization_utils.base_functions.heatmap", "visualization_utils.base_functions.annotate_heatmap", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((642, 688), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(1)', 'figsize': '(6, 5)'}), '(nrows=1, ncols=1, figsize=(6, 5))\n', (654, 688), True, 'import matplotlib.pyplot as plt\n'), ((723, 843), 'visualization_utils.base_functions.heatmap', 'heatmap', (['confusion_matrix', 'classes', 'classes'], {'x_label': '"""True Class"""', 'y_label': '"""Predicted Class"""', 'ax': 'ax', 'vmin': '(0)', 'vmax': '(0)'}), "(confusion_matrix, classes, classes, x_label='True Class', y_label=\n 'Predicted Class', ax=ax, vmin=0, vmax=0)\n", (730, 843), False, 'from visualization_utils.base_functions import annotate_heatmap, heatmap\n'), ((914, 990), 'visualization_utils.base_functions.annotate_heatmap', 'annotate_heatmap', (['im'], {'valfmt': '"""{x:d}"""', 'size': '(20)', 'textcolors': "['black', 'white']"}), "(im, valfmt='{x:d}', size=20, textcolors=['black', 'white'])\n", (930, 990), False, 'from visualization_utils.base_functions import annotate_heatmap, heatmap\n'), ((1019, 1073), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figure_path'], {'dpi': '(300)', 'bbox_inches': '"""tight"""'}), "(figure_path, dpi=300, bbox_inches='tight')\n", (1030, 1073), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np def knn_graph(X, k, threshold): ''' KNN_GRAPH Construct W using KNN graph Input: X - data point features, n-by-p maxtirx. k - number of nn. threshold Output: W - adjacency matrix, n-by-n matrix. ''' # YOUR CODE HERE # begin answer N, P = X.shape sigma = 0.1 W = np.zeros((N, N)) for i in range(N): L2 = np.linalg.norm(X - X[i, :], axis=1) Idx = np.argsort(L2)[1:k+1] for j in Idx: similarity = np.exp(-np.sum(np.square(X[i, :] - X[j, :]))/(2*sigma**2)) W[i, j] = W[j, i] = similarity if similarity > threshold else 0 return W # end answer
[ "numpy.argsort", "numpy.zeros", "numpy.square", "numpy.linalg.norm" ]
[((380, 396), 'numpy.zeros', 'np.zeros', (['(N, N)'], {}), '((N, N))\n', (388, 396), True, 'import numpy as np\n'), ((433, 468), 'numpy.linalg.norm', 'np.linalg.norm', (['(X - X[i, :])'], {'axis': '(1)'}), '(X - X[i, :], axis=1)\n', (447, 468), True, 'import numpy as np\n'), ((483, 497), 'numpy.argsort', 'np.argsort', (['L2'], {}), '(L2)\n', (493, 497), True, 'import numpy as np\n'), ((567, 595), 'numpy.square', 'np.square', (['(X[i, :] - X[j, :])'], {}), '(X[i, :] - X[j, :])\n', (576, 595), True, 'import numpy as np\n')]
import logging from unittest import mock import pytest from datahub.email_ingestion.validation import was_email_sent_by_dit @pytest.mark.parametrize( 'email,authentication_results,expected_result,expected_warning', ( # Valid trade.gov.uk email - authentication exempt ( '<EMAIL>', None, True, None, ), # Valid digital.trade.gov.uk email, ensure whitelist is case insensitive ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk', 'compauth=pass (reason=109)', ]), True, None, ), # Invalid authentication results - dkim ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=fail header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', ( 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk' ), 'compauth=pass (reason=109)', ]), False, None, ), # Invalid authentication results - spf ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=fail (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', ( 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk' ), 'compauth=pass (reason=109)', ]), False, None, ), # Invalid authentication results - dmarc ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ', 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', ( 'dmarc=fail (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk' ), 'compauth=pass (reason=109)', ]), False, None, ), # Missing authentication results for spf ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', ( 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk' ), 'compauth=pass (reason=109)', ]), False, None, ), # Extra unknown auth method - still passes ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk;', 'sender-id=fail header.from=example.com', 'compauth=pass (reason=109)', ]), True, None, ), # Domain which is not on DIT_EMAIL_DOMAINS setting, fails validation ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk;', 'compauth=pass (reason=109)', ]), False, ( 'Domain "other.trade.gov.uk" not present in DIT_EMAIL_DOMAINS setting.' ), ), # Domain which is not on DIT_EMAIL_DOMAINS setting, fails validation ( '<EMAIL>', '\n'.join([ 'mx.google.com;', 'dkim=pass header.i=<EMAIL> header.s=selector1 header.b=foobar;', 'spf=pass (google.com: domain of <EMAIL> designates ' 'XX.XXX.XX.XX as permitted sender) smtp.mailfrom=<EMAIL>;', 'dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) ' 'header.from=digital.trade.gov.uk;', ]), False, ( 'Domain "gmail.com" not present in DIT_EMAIL_DOMAINS setting.' ), ), # Blacklisted email ( '<EMAIL>', None, False, None, ), ), ) def test_email_sent_by_dit( caplog, email, authentication_results, expected_result, expected_warning, ): """ Tests for was_email_sent_by_dit validator. """ caplog.set_level(logging.ERROR) message = mock.Mock() message.from_ = [['<NAME>', email]] message.authentication_results = authentication_results result = was_email_sent_by_dit(message) assert result == expected_result if expected_warning: expected_log = ( 'datahub.email_ingestion.validation', 40, expected_warning, ) assert expected_log in caplog.record_tuples def test_bad_from_returns_false(): """ Test was_email_sent_by_dit validator when the from_ attribute is malformed. """ message = mock.Mock() # This should be an iterable of pairs - simulate a malformed from attribute message.from_ = [] result = was_email_sent_by_dit(message) assert result is False
[ "datahub.email_ingestion.validation.was_email_sent_by_dit", "unittest.mock.Mock" ]
[((5864, 5875), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (5873, 5875), False, 'from unittest import mock\n'), ((5989, 6019), 'datahub.email_ingestion.validation.was_email_sent_by_dit', 'was_email_sent_by_dit', (['message'], {}), '(message)\n', (6010, 6019), False, 'from datahub.email_ingestion.validation import was_email_sent_by_dit\n'), ((6412, 6423), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (6421, 6423), False, 'from unittest import mock\n'), ((6540, 6570), 'datahub.email_ingestion.validation.was_email_sent_by_dit', 'was_email_sent_by_dit', (['message'], {}), '(message)\n', (6561, 6570), False, 'from datahub.email_ingestion.validation import was_email_sent_by_dit\n')]
import os from pathlib import Path import numpy as np class MarkovText: def __init__(self, text_path, first_word=False, raw_output=False, remake_dict=False, sentence_mode=True): self.text_path = text_path self.raw_output = raw_output self.remake_dict = remake_dict self.dict_path = Path(os.getenv('APPDATA') + '\\Markov_TextGen\\Dicts\\') self.dict_list = self.get_existing_dicts() self.sentence_mode = sentence_mode self.first_word = first_word # self.start_words = get_start_words def get_existing_dicts(self): dict_list = [] if self.dict_path.exists(): for i in os.listdir(self.dict_path): if self.dict_path.suffix == '.json' and 'dict_' in self.dict_path.stem: dict_list.append(Path(i)) return dict_list else: os.makedirs(self.dict_path) return dict_list def make_pairs(self): text = open(self.text_path).read().split() for i in range(len(text) - 1): yield text[i], text[i + 1] def make_dict(self): word_dict = {} for word_1, word_2 in self.make_pairs(): if word_1 in word_dict.keys(): word_dict[word_1].append(word_2) else: word_dict[word_1] = [word_2] return word_dict # def get_dict(self): def generate_text(self, word_dict): if not self.first_word: chain = [np.random.choice(open(self.text_path).read.split())] else: chain = [self.first_word] while True: curr_word = np.random.choice(word_dict[chain[-1]]) chain.append(curr_word) if any(x in curr_word for x in ('!', '?', '.')) and not any(x in curr_word for x in ('Mr.', 'Ms.', 'Mrs.')): return chain def generate_sentences(self, word_dict, num_sentences): sentences = [] for i in range(num_sentences): if self.first_word == 'NullNull': chain = [np.random.choice(open(self.text_path).read.split())] else: chain = [self.first_word] while True: curr_word = np.random.choice(word_dict[chain[-1]]) chain.append(curr_word) if any(x in curr_word for x in ('!', '?', '.')) and not any( x in curr_word for x in ('Mr.', 'Ms.', 'Mrs.')): sentences.append(chain) break return sentences
[ "os.listdir", "os.makedirs", "pathlib.Path", "numpy.random.choice", "os.getenv" ]
[((670, 696), 'os.listdir', 'os.listdir', (['self.dict_path'], {}), '(self.dict_path)\n', (680, 696), False, 'import os\n'), ((887, 914), 'os.makedirs', 'os.makedirs', (['self.dict_path'], {}), '(self.dict_path)\n', (898, 914), False, 'import os\n'), ((1649, 1687), 'numpy.random.choice', 'np.random.choice', (['word_dict[chain[-1]]'], {}), '(word_dict[chain[-1]])\n', (1665, 1687), True, 'import numpy as np\n'), ((326, 346), 'os.getenv', 'os.getenv', (['"""APPDATA"""'], {}), "('APPDATA')\n", (335, 346), False, 'import os\n'), ((2234, 2272), 'numpy.random.choice', 'np.random.choice', (['word_dict[chain[-1]]'], {}), '(word_dict[chain[-1]])\n', (2250, 2272), True, 'import numpy as np\n'), ((823, 830), 'pathlib.Path', 'Path', (['i'], {}), '(i)\n', (827, 830), False, 'from pathlib import Path\n')]
import json import boto3 import os ddb = boto3.resource('dynamodb') table = ddb.Table(os.environ['CHARACTER_TABLE']) def handler(event, context): print('request: {}'.format(json.dumps(event))) response = table.scan(Select='ALL_ATTRIBUTES') return { 'statusCode': 200, 'headers': { 'Content-Type': 'text/plain' }, 'body': json.dumps(response['Items']) }
[ "boto3.resource", "json.dumps" ]
[((42, 68), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {}), "('dynamodb')\n", (56, 68), False, 'import boto3\n'), ((379, 408), 'json.dumps', 'json.dumps', (["response['Items']"], {}), "(response['Items'])\n", (389, 408), False, 'import json\n'), ((179, 196), 'json.dumps', 'json.dumps', (['event'], {}), '(event)\n', (189, 196), False, 'import json\n')]
import pygame import os import src white = pygame.Color(255, 255, 255) black = pygame.Color(0, 0, 0) red = pygame.Color(255, 0, 0) button_colour = pygame.Color(75, 0, 130) hover_colour = pygame.Color(255,105,180) def Button(name, x, y, w, dist, action=None): ''' this function creates the button on the screen. it takes the positions, fonts, colours and sizes and what to do when clicked ''' pos = pygame.mouse.get_pos() # pygame methods to recognize that the mouse is clicked click = pygame.mouse.get_pressed() # pygame methods to recognize that the mouse is clicked if x < pos[0] < x+w and y < pos[1] < y+40: # it is the x and y positions of the mouse # the pygame.draw.rect x,y,w, and 40 are the dimensions. pygame.draw.rect(src.display, hover_colour, [x, y, w, 40]) # change the hover colour # if someone clicked and there is an action associated with that button if click[0] == 1 and action != None: action() # do that action else: # or pygame.draw.rect(src.display, button_colour, [x, y, w, 40]) # just draw and hold it font = pygame.font.Font(src.bitterfont, 15) # font object # renders the text on the secreen text = font.render(name, True, white) text_rect = text.get_rect(center=((x+ (x+w)) /2, (y + (y+40))/2)) src.display.blit(text, text_rect) def ButtonWithReturn(name, x, y, w, dist, val=None): ''' this function creates the button on the screen but with a return value same as the function above essentially ''' pos = pygame.mouse.get_pos() # pygame method for mouse. it gets the mouse's position (x,y) on the screen click = pygame.mouse.get_pressed() # pygame method to see if it is pressed if x < pos[0] < x+w and y < pos[1] < y+40: # if mouse is on the button pygame.draw.rect(src.display, hover_colour, [x, y, w, 40]) # change the hover colour if click[0] == 1: # if clicked while it is on return val # do what the button calls for else: # if not pygame.draw.rect(src.display, button_colour, [x, y, w, 40]) # just draw it font = pygame.font.Font(src.bitterfont, 14) # font object # renders the text on the secreen text = font.render(name, True, white) text_rect = text.get_rect(center=((x+ (x+w)) /2, (y + (y+40))/2)) src.display.blit(text, text_rect) # shows the text return 0 # return 0 from the button function def AddText(text, pos, color=white): ''' add texts to the screen takes text which is a string object as an argument ''' font = pygame.font.Font(src.bitterfont, 16) # creating font with size # creating font pygame text object with size, colour and text renderedText = font.render(text, True, color) # displaying text on the screen, pos is the position of where it should appear src.display.blit(renderedText, pos) def InsertSecret(text): ''' this function takes an input of string for the algorithm efficieny function. ''' pygame.display.set_caption(text) inpText = "" # empty placeholder enter = True # enable enter while enter: # starting the algorithm # pygame method to fill the screen, takes colours and a display object src.display.fill(black) src.display.blit(src.bg,(0,0)) # pygame method, iterates over the events in pygame to determine what we are doing with every event for event in pygame.event.get(): # again iterating as an important pygame method to set the features. if event.type == pygame.QUIT: # this one quits pygame.quit() # putting the quit pygame method exit() # takes the user from GUI to the script for exiting if event.type == pygame.KEYUP: # Here is to tell the computer to recognise if a keybord key is pressed. if event.key == pygame.K_ESCAPE: # if that keyboard key is ESC exit() # call for the exit function. if event.type == pygame.KEYDOWN: # if a key is pressed if event.key == pygame.K_RETURN: # and if this key is enter enter = False # enter changes the status of true to false and ends the loop, you entered what you wanted elif event.key == pygame.K_BACKSPACE: # if backspace is pressed # backspace deletes the last letter of the input. this [:-1] called slicing inpText = inpText[:-1] else: # if none of this happened inpText += event.unicode # takes care of capslocks and shiftkeys AddText("Press \"ENTER\" to continue...!", (128, 270), white) AddText(text, (128, 220), white) # displaying the text pygame.draw.rect(src.display, white, (290, 215, 250, 40)) # displaying the text AddText(inpText, (295, 225), black) # displaying the text # updates the screen every turn pygame.display.flip() # will not run more than 15 frames per second src.clock.tick(60) # 15 frames per second return inpText
[ "src.clock.tick", "pygame.mouse.get_pressed", "pygame.quit", "pygame.event.get", "pygame.display.flip", "pygame.mouse.get_pos", "pygame.draw.rect", "src.display.fill", "pygame.display.set_caption", "pygame.Color", "pygame.font.Font", "src.display.blit" ]
[((44, 71), 'pygame.Color', 'pygame.Color', (['(255)', '(255)', '(255)'], {}), '(255, 255, 255)\n', (56, 71), False, 'import pygame\n'), ((80, 101), 'pygame.Color', 'pygame.Color', (['(0)', '(0)', '(0)'], {}), '(0, 0, 0)\n', (92, 101), False, 'import pygame\n'), ((108, 131), 'pygame.Color', 'pygame.Color', (['(255)', '(0)', '(0)'], {}), '(255, 0, 0)\n', (120, 131), False, 'import pygame\n'), ((148, 172), 'pygame.Color', 'pygame.Color', (['(75)', '(0)', '(130)'], {}), '(75, 0, 130)\n', (160, 172), False, 'import pygame\n'), ((188, 215), 'pygame.Color', 'pygame.Color', (['(255)', '(105)', '(180)'], {}), '(255, 105, 180)\n', (200, 215), False, 'import pygame\n'), ((421, 443), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (441, 443), False, 'import pygame\n'), ((513, 539), 'pygame.mouse.get_pressed', 'pygame.mouse.get_pressed', ([], {}), '()\n', (537, 539), False, 'import pygame\n'), ((1131, 1167), 'pygame.font.Font', 'pygame.font.Font', (['src.bitterfont', '(15)'], {}), '(src.bitterfont, 15)\n', (1147, 1167), False, 'import pygame\n'), ((1337, 1370), 'src.display.blit', 'src.display.blit', (['text', 'text_rect'], {}), '(text, text_rect)\n', (1353, 1370), False, 'import src\n'), ((1570, 1592), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (1590, 1592), False, 'import pygame\n'), ((1682, 1708), 'pygame.mouse.get_pressed', 'pygame.mouse.get_pressed', ([], {}), '()\n', (1706, 1708), False, 'import pygame\n'), ((2145, 2181), 'pygame.font.Font', 'pygame.font.Font', (['src.bitterfont', '(14)'], {}), '(src.bitterfont, 14)\n', (2161, 2181), False, 'import pygame\n'), ((2351, 2384), 'src.display.blit', 'src.display.blit', (['text', 'text_rect'], {}), '(text, text_rect)\n', (2367, 2384), False, 'import src\n'), ((2605, 2641), 'pygame.font.Font', 'pygame.font.Font', (['src.bitterfont', '(16)'], {}), '(src.bitterfont, 16)\n', (2621, 2641), False, 'import pygame\n'), ((2872, 2907), 'src.display.blit', 'src.display.blit', (['renderedText', 'pos'], {}), '(renderedText, pos)\n', (2888, 2907), False, 'import src\n'), ((3035, 3067), 'pygame.display.set_caption', 'pygame.display.set_caption', (['text'], {}), '(text)\n', (3061, 3067), False, 'import pygame\n'), ((761, 819), 'pygame.draw.rect', 'pygame.draw.rect', (['src.display', 'hover_colour', '[x, y, w, 40]'], {}), '(src.display, hover_colour, [x, y, w, 40])\n', (777, 819), False, 'import pygame\n'), ((1035, 1094), 'pygame.draw.rect', 'pygame.draw.rect', (['src.display', 'button_colour', '[x, y, w, 40]'], {}), '(src.display, button_colour, [x, y, w, 40])\n', (1051, 1094), False, 'import pygame\n'), ((1834, 1892), 'pygame.draw.rect', 'pygame.draw.rect', (['src.display', 'hover_colour', '[x, y, w, 40]'], {}), '(src.display, hover_colour, [x, y, w, 40])\n', (1850, 1892), False, 'import pygame\n'), ((2058, 2117), 'pygame.draw.rect', 'pygame.draw.rect', (['src.display', 'button_colour', '[x, y, w, 40]'], {}), '(src.display, button_colour, [x, y, w, 40])\n', (2074, 2117), False, 'import pygame\n'), ((3269, 3292), 'src.display.fill', 'src.display.fill', (['black'], {}), '(black)\n', (3285, 3292), False, 'import src\n'), ((3301, 3333), 'src.display.blit', 'src.display.blit', (['src.bg', '(0, 0)'], {}), '(src.bg, (0, 0))\n', (3317, 3333), False, 'import src\n'), ((3461, 3479), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (3477, 3479), False, 'import pygame\n'), ((4773, 4830), 'pygame.draw.rect', 'pygame.draw.rect', (['src.display', 'white', '(290, 215, 250, 40)'], {}), '(src.display, white, (290, 215, 250, 40))\n', (4789, 4830), False, 'import pygame\n'), ((4969, 4990), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (4988, 4990), False, 'import pygame\n'), ((5053, 5071), 'src.clock.tick', 'src.clock.tick', (['(60)'], {}), '(60)\n', (5067, 5071), False, 'import src\n'), ((3627, 3640), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (3638, 3640), False, 'import pygame\n')]
from django.shortcuts import redirect from django.views.generic import CreateView import users.forms from django.contrib.auth import login from core.views import TitleMixin from django.contrib.auth.views import LoginView, LogoutView from django.urls import reverse class UserLoginView(TitleMixin, LoginView): title = 'Вход' template_name = 'users/login.html' def get_success_url(self): return reverse('core:home') class UserLogoutView(LogoutView): next_page = 'core:home' class UserRegisterView(TitleMixin, CreateView): title = 'Регистрация' form_class = users.forms.UserRegisterForm template_name = 'users/register.html' def dispatch(self, request, *args, **kwargs): if request.user.is_authenticated: return redirect('core:home') return super(UserRegisterView, self).dispatch(request, *args, **kwargs) def form_valid(self, form): user = form.save(commit=False) user.set_password(form.cleaned_data['<PASSWORD>']) user.save() login(self.request, user) return redirect('core:home')
[ "django.shortcuts.redirect", "django.contrib.auth.login", "django.urls.reverse" ]
[((416, 436), 'django.urls.reverse', 'reverse', (['"""core:home"""'], {}), "('core:home')\n", (423, 436), False, 'from django.urls import reverse\n'), ((1038, 1063), 'django.contrib.auth.login', 'login', (['self.request', 'user'], {}), '(self.request, user)\n', (1043, 1063), False, 'from django.contrib.auth import login\n'), ((1079, 1100), 'django.shortcuts.redirect', 'redirect', (['"""core:home"""'], {}), "('core:home')\n", (1087, 1100), False, 'from django.shortcuts import redirect\n'), ((777, 798), 'django.shortcuts.redirect', 'redirect', (['"""core:home"""'], {}), "('core:home')\n", (785, 798), False, 'from django.shortcuts import redirect\n')]
""" This file contains the code for commands that target a bonsai imported model in version 2 of the bonsai command line. """ __author__ = "<NAME>" __copyright__ = "Copyright 2021, Microsoft Corp." from typing import Any, Dict, List import click import os import time from json import dumps from bonsai_cli.exceptions import AuthenticationError, BrainServerError from bonsai_cli.utils import ( api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception, ) @click.group(hidden=True) def importedmodel(): """Imported model operations.""" pass @click.command("create", short_help="Create a imported model.") @click.option("--name", "-n", help="[Required] Name of the imported model.") @click.option("--modelfilepath", "-m", help="[Required] ModelFilePath on local system.") @click.option("--display-name", help="Display name of the imported model.") @click.option("--description", help="Description for the imported model.") @click.option( "--workspace-id", "-w", help="Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.", ) @click.option( "--no-wait", default=False, is_flag=True, help="If set to true, do not wait for the imported model operation that may be long-running to complete.", ) @click.option( "--debug", default=False, is_flag=True, help="Verbose logging for request." ) @click.option("--output", "-o", help="Set output, only json supported.") @click.option( "--test", default=False, is_flag=True, help="Enhanced response for testing.", hidden=True, ) @click.pass_context def create_importedmodel( ctx: click.Context, name: str, modelfilepath: str, display_name: str, description: str, workspace_id: str, no_wait: bool, debug: bool, output: str, test: bool, ): version_checker = get_version_checker(ctx, interactive=not output) error_msg = "" required_options_provided = True if not name: required_options_provided = False error_msg += "\nImported model name is required" if not modelfilepath: required_options_provided = False error_msg += "\nModelfilepath is required" if not required_options_provided: raise_as_click_exception(error_msg) try: tic = time.perf_counter() response = api(use_aad=True).upload_importedmodel( name, modelfilepath, debug=debug ) toc = time.perf_counter() size = os.path.getsize(modelfilepath) print( f"step 1: Uploading {modelfilepath} of size:{size*0.000001} MB is successful in {toc - tic:0.4f} seconds." ) response = api(use_aad=True).create_importedmodel( name=name, uploaded_file_path=response["modelFileStoragePath"], display_name=display_name, description=description, workspace=workspace_id, debug=debug, output=output, ) if not no_wait: print("step 2: Imported model creation may take a while. Please wait...") while response["operationStatus"] not in ["Succeeded", "Failed"]: print( "step 3: Finalizing the imported model. The current status is " + response["operationStatus"] + ". Please wait..." ) response = api(use_aad=True).get_importedmodel( name=name, workspace=workspace_id ) time.sleep(10) if response["operationStatus"] == "Succeeded": statusMessage = "Created new imported model {} successfully.".format( response["name"] ) else: raise_as_click_exception(response["operationStatusMessage"]) if output == "json": json_response = { "status": response["operationStatus"], "statusCode": response["statusCode"], "statusMessage": statusMessage, } click.echo(dumps(json_response, indent=4)) else: click.echo(statusMessage) else: click.echo( "imported model creation is still in progress. Please use bonsai importedmodel show -n <importedmodelname> to check the status." ) except BrainServerError as e: if "Unique index constraint violation" in str(e): raise_unique_constraint_violation_as_click_exception( debug, output, "Imported model", name, test, e ) else: raise_as_click_exception(e) except AuthenticationError as e: raise_as_click_exception(e) version_checker.check_cli_version(wait=True, print_up_to_date=False) @click.command("show", short_help="Show information about imported model.") @click.option( "--name", "-n", help="[Required] The name of the imported model to show.", ) @click.option( "--workspace-id", "-w", help="Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.", ) @click.option( "--debug", default=False, is_flag=True, help="Verbose logging for request." ) @click.option("--output", "-o", help="Set output, only json supported.") @click.option( "--test", default=False, is_flag=True, help="Enhanced response for testing.", hidden=True, ) @click.pass_context def show_importedmodel( ctx: click.Context, name: str, workspace_id: str, debug: bool, output: str, test: bool, ): version_checker = get_version_checker(ctx, interactive=not output) if not name: raise_as_click_exception("\nName of the imported model is required") try: response = api(use_aad=True).get_importedmodel( name, workspace=workspace_id, debug=debug, output=output ) except BrainServerError as e: if e.exception["statusCode"] == 404: raise_not_found_as_click_exception( debug, output, "Show imported model", "Imported model", name, test, e, ) else: raise_brain_server_error_as_click_exception(debug, output, test, e) except AuthenticationError as e: raise_as_click_exception(e) if output == "json": json_response = { "name": response["name"], "displayName": response["displayName"], "description": response["description"], "importedModelType": response["importedModelType"], "createdOn": response["createdTimeStamp"], "modifiedOn": response["createdTimeStamp"], "Status": response["operationStatus"], "StatusMessage": response["operationStatusMessage"], } click.echo(dumps(json_response, indent=4)) else: click.echo("Name: {}".format(response["name"])) click.echo("Display Name: {}".format(response["displayName"])) click.echo("Description: {}".format(response["description"])) click.echo("Imported Model Type: {}".format(response["importedModelType"])) click.echo("Created On: {}".format(response["createdTimeStamp"])) click.echo("Modified On: {}".format(response["createdTimeStamp"])) click.echo("Status: {}".format(response["operationStatus"])) version_checker.check_cli_version(wait=True, print_up_to_date=False) @click.command("update", short_help="Update information about a imported model") @click.option("--name", "-n", help="[Required] Name of the imported model.") @click.option("--display-name", help="Display name of the imported model.") @click.option("--description", help="Description for the imported model.") @click.option( "--workspace-id", "-w", help="Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.", ) @click.option( "--debug", default=False, is_flag=True, help="Verbose logging for request." ) @click.option("--output", "-o", help="Set output, only json supported.") @click.option( "--test", default=False, is_flag=True, help="Enhanced response for testing.", hidden=True, ) @click.pass_context def update_importedmodel( ctx: click.Context, name: str, display_name: str, description: str, workspace_id: str, debug: bool, output: str, test: bool, ): version_checker = get_version_checker(ctx, interactive=not output) if not name: raise_as_click_exception("\nName of the imported model is required") if not (display_name or description): raise_as_click_exception( "\nDisplay Name or description for the imported model must be updated." ) try: response = api(use_aad=True).update_importedmodel( name=name, display_name=display_name, description=description, workspace=workspace_id, debug=debug, output=output, ) except BrainServerError as e: if e.exception["statusCode"] == 404: raise_not_found_as_click_exception( debug, output, "Update imported model", "ImportedModel", name, test, e, ) else: raise_brain_server_error_as_click_exception(debug, output, test, e) except AuthenticationError as e: raise_as_click_exception(e) status_message = "Updated {}.".format(response["name"]) if output == "json": json_response = { "status": response["operationStatus"], "statusCode": response["statusCode"], "statusMessage": status_message, } if test: json_response["elapsed"] = str(response["elapsed"]) json_response["timeTaken"] = str(response["timeTaken"]) click.echo(dumps(json_response, indent=4)) else: click.echo(status_message) version_checker.check_cli_version(wait=True, print_up_to_date=False) @click.command("list", short_help="Lists imported model owned by current user.") @click.option( "--workspace-id", "-w", help="Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.", ) @click.option( "--debug", default=False, is_flag=True, help="Verbose logging for request." ) @click.option("--output", "-o", help="Set output, only json supported.") @click.option( "--test", default=False, is_flag=True, help="Enhanced response for testing.", hidden=True, ) @click.pass_context def list_importedmodel( ctx: click.Context, workspace_id: str, debug: bool, output: str, test: bool ): version_checker = get_version_checker(ctx, interactive=not output) try: response = api(use_aad=True).list_importedmodels( workspace=workspace_id, debug=debug ) except BrainServerError as e: raise_brain_server_error_as_click_exception(debug, output, test, e) except AuthenticationError as e: raise_as_click_exception(e) if len(response["value"]) == 0: click.echo("No imported models exist for the current user") ctx.exit() if output == "json": dict_rows: List[Dict[str, Any]] = [] for imported_model in response["value"]: dict_rows.append(imported_model["name"]) json_response = { "value": dict_rows, "status": response["operationStatus"], "statusCode": response["statusCode"], "statusMessage": "", } if test: json_response["elapsed"] = str(response["elapsed"]) json_response["timeTaken"] = str(response["timeTaken"]) click.echo(dumps(json_response, indent=4)) else: for imported_model in response["value"]: click.echo(imported_model["name"]) version_checker.check_cli_version(wait=True, print_up_to_date=False) @click.command("delete", short_help="Delete a imported model.") @click.option( "--name", "-n", help="[Required] The name of the imported model to delete.", ) @click.option( "--yes", "-y", default=False, is_flag=True, help="Do not prompt for confirmation." ) @click.option( "--workspace-id", "-w", help="Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.", ) @click.option( "--debug", default=False, is_flag=True, help="Increase logging verbosity to show all logs.", ) @click.option("--output", "-o", help="Set output, only json supported.") @click.option( "--test", default=False, is_flag=True, help="Enhanced response for testing.", hidden=True, ) @click.pass_context def delete_importedmodel( ctx: click.Context, name: str, yes: bool, workspace_id: str, debug: bool, output: str, test: bool, ): version_checker = get_version_checker(ctx, interactive=True) if not name: raise_as_click_exception("\nName of the imported model is required") is_delete = False if yes: is_delete = True if not yes: click.echo( "Are you sure you want to delete imported model {} (y/n?).".format(name) ) choice = input().lower() yes_set = {"yes", "y"} no_set = {"no", "n"} if choice in yes_set: is_delete = True elif choice in no_set: is_delete = False else: raise_as_click_exception("\nPlease respond with 'y' or 'n'") if is_delete: try: response = api(use_aad=True).delete_importedmodel( name, workspace=workspace_id, debug=debug ) if response["statusCode"] == 204: raise_204_click_exception( debug, output, test, 204, "Imported model '{}' not found".format(name), response, ) except BrainServerError as e: raise_brain_server_error_as_click_exception(debug, output, test, e) except AuthenticationError as e: raise_as_click_exception(e) status_message = "Deleted {}.".format(name) if output == "json": json_response = { "status": response["operationStatus"], "statusCode": response["statusCode"], "statusMessage": status_message, } if test: json_response["elapsed"] = str(response["elapsed"]) json_response["timeTaken"] = str(response["timeTaken"]) click.echo(dumps(json_response, indent=4)) else: click.echo(status_message) version_checker.check_cli_version(wait=True, print_up_to_date=False) importedmodel.add_command(create_importedmodel) importedmodel.add_command(show_importedmodel) importedmodel.add_command(update_importedmodel) importedmodel.add_command(list_importedmodel) importedmodel.add_command(delete_importedmodel)
[ "os.path.getsize", "click.group", "click.option", "bonsai_cli.utils.api", "json.dumps", "bonsai_cli.utils.raise_not_found_as_click_exception", "time.perf_counter", "time.sleep", "bonsai_cli.utils.raise_unique_constraint_violation_as_click_exception", "bonsai_cli.utils.raise_as_click_exception", "click.echo", "bonsai_cli.utils.raise_brain_server_error_as_click_exception", "bonsai_cli.utils.get_version_checker", "click.command" ]
[((644, 668), 'click.group', 'click.group', ([], {'hidden': '(True)'}), '(hidden=True)\n', (655, 668), False, 'import click\n'), ((739, 801), 'click.command', 'click.command', (['"""create"""'], {'short_help': '"""Create a imported model."""'}), "('create', short_help='Create a imported model.')\n", (752, 801), False, 'import click\n'), ((803, 878), 'click.option', 'click.option', (['"""--name"""', '"""-n"""'], {'help': '"""[Required] Name of the imported model."""'}), "('--name', '-n', help='[Required] Name of the imported model.')\n", (815, 878), False, 'import click\n'), ((880, 972), 'click.option', 'click.option', (['"""--modelfilepath"""', '"""-m"""'], {'help': '"""[Required] ModelFilePath on local system."""'}), "('--modelfilepath', '-m', help=\n '[Required] ModelFilePath on local system.')\n", (892, 972), False, 'import click\n'), ((969, 1043), 'click.option', 'click.option', (['"""--display-name"""'], {'help': '"""Display name of the imported model."""'}), "('--display-name', help='Display name of the imported model.')\n", (981, 1043), False, 'import click\n'), ((1045, 1118), 'click.option', 'click.option', (['"""--description"""'], {'help': '"""Description for the imported model."""'}), "('--description', help='Description for the imported model.')\n", (1057, 1118), False, 'import click\n'), ((1120, 1416), 'click.option', 'click.option', (['"""--workspace-id"""', '"""-w"""'], {'help': '"""Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure."""'}), "('--workspace-id', '-w', help=\n 'Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.'\n )\n", (1132, 1416), False, 'import click\n'), ((1423, 1594), 'click.option', 'click.option', (['"""--no-wait"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""If set to true, do not wait for the imported model operation that may be long-running to complete."""'}), "('--no-wait', default=False, is_flag=True, help=\n 'If set to true, do not wait for the imported model operation that may be long-running to complete.'\n )\n", (1435, 1594), False, 'import click\n'), ((1605, 1699), 'click.option', 'click.option', (['"""--debug"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Verbose logging for request."""'}), "('--debug', default=False, is_flag=True, help=\n 'Verbose logging for request.')\n", (1617, 1699), False, 'import click\n'), ((1702, 1773), 'click.option', 'click.option', (['"""--output"""', '"""-o"""'], {'help': '"""Set output, only json supported."""'}), "('--output', '-o', help='Set output, only json supported.')\n", (1714, 1773), False, 'import click\n'), ((1775, 1883), 'click.option', 'click.option', (['"""--test"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enhanced response for testing."""', 'hidden': '(True)'}), "('--test', default=False, is_flag=True, help=\n 'Enhanced response for testing.', hidden=True)\n", (1787, 1883), False, 'import click\n'), ((5185, 5259), 'click.command', 'click.command', (['"""show"""'], {'short_help': '"""Show information about imported model."""'}), "('show', short_help='Show information about imported model.')\n", (5198, 5259), False, 'import click\n'), ((5261, 5353), 'click.option', 'click.option', (['"""--name"""', '"""-n"""'], {'help': '"""[Required] The name of the imported model to show."""'}), "('--name', '-n', help=\n '[Required] The name of the imported model to show.')\n", (5273, 5353), False, 'import click\n'), ((5365, 5661), 'click.option', 'click.option', (['"""--workspace-id"""', '"""-w"""'], {'help': '"""Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure."""'}), "('--workspace-id', '-w', help=\n 'Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.'\n )\n", (5377, 5661), False, 'import click\n'), ((5668, 5762), 'click.option', 'click.option', (['"""--debug"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Verbose logging for request."""'}), "('--debug', default=False, is_flag=True, help=\n 'Verbose logging for request.')\n", (5680, 5762), False, 'import click\n'), ((5765, 5836), 'click.option', 'click.option', (['"""--output"""', '"""-o"""'], {'help': '"""Set output, only json supported."""'}), "('--output', '-o', help='Set output, only json supported.')\n", (5777, 5836), False, 'import click\n'), ((5838, 5946), 'click.option', 'click.option', (['"""--test"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enhanced response for testing."""', 'hidden': '(True)'}), "('--test', default=False, is_flag=True, help=\n 'Enhanced response for testing.', hidden=True)\n", (5850, 5946), False, 'import click\n'), ((8060, 8139), 'click.command', 'click.command', (['"""update"""'], {'short_help': '"""Update information about a imported model"""'}), "('update', short_help='Update information about a imported model')\n", (8073, 8139), False, 'import click\n'), ((8141, 8216), 'click.option', 'click.option', (['"""--name"""', '"""-n"""'], {'help': '"""[Required] Name of the imported model."""'}), "('--name', '-n', help='[Required] Name of the imported model.')\n", (8153, 8216), False, 'import click\n'), ((8218, 8292), 'click.option', 'click.option', (['"""--display-name"""'], {'help': '"""Display name of the imported model."""'}), "('--display-name', help='Display name of the imported model.')\n", (8230, 8292), False, 'import click\n'), ((8294, 8367), 'click.option', 'click.option', (['"""--description"""'], {'help': '"""Description for the imported model."""'}), "('--description', help='Description for the imported model.')\n", (8306, 8367), False, 'import click\n'), ((8369, 8665), 'click.option', 'click.option', (['"""--workspace-id"""', '"""-w"""'], {'help': '"""Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure."""'}), "('--workspace-id', '-w', help=\n 'Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.'\n )\n", (8381, 8665), False, 'import click\n'), ((8672, 8766), 'click.option', 'click.option', (['"""--debug"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Verbose logging for request."""'}), "('--debug', default=False, is_flag=True, help=\n 'Verbose logging for request.')\n", (8684, 8766), False, 'import click\n'), ((8769, 8840), 'click.option', 'click.option', (['"""--output"""', '"""-o"""'], {'help': '"""Set output, only json supported."""'}), "('--output', '-o', help='Set output, only json supported.')\n", (8781, 8840), False, 'import click\n'), ((8842, 8950), 'click.option', 'click.option', (['"""--test"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enhanced response for testing."""', 'hidden': '(True)'}), "('--test', default=False, is_flag=True, help=\n 'Enhanced response for testing.', hidden=True)\n", (8854, 8950), False, 'import click\n'), ((10866, 10945), 'click.command', 'click.command', (['"""list"""'], {'short_help': '"""Lists imported model owned by current user."""'}), "('list', short_help='Lists imported model owned by current user.')\n", (10879, 10945), False, 'import click\n'), ((10947, 11243), 'click.option', 'click.option', (['"""--workspace-id"""', '"""-w"""'], {'help': '"""Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure."""'}), "('--workspace-id', '-w', help=\n 'Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.'\n )\n", (10959, 11243), False, 'import click\n'), ((11250, 11344), 'click.option', 'click.option', (['"""--debug"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Verbose logging for request."""'}), "('--debug', default=False, is_flag=True, help=\n 'Verbose logging for request.')\n", (11262, 11344), False, 'import click\n'), ((11347, 11418), 'click.option', 'click.option', (['"""--output"""', '"""-o"""'], {'help': '"""Set output, only json supported."""'}), "('--output', '-o', help='Set output, only json supported.')\n", (11359, 11418), False, 'import click\n'), ((11420, 11528), 'click.option', 'click.option', (['"""--test"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enhanced response for testing."""', 'hidden': '(True)'}), "('--test', default=False, is_flag=True, help=\n 'Enhanced response for testing.', hidden=True)\n", (11432, 11528), False, 'import click\n'), ((12942, 13004), 'click.command', 'click.command', (['"""delete"""'], {'short_help': '"""Delete a imported model."""'}), "('delete', short_help='Delete a imported model.')\n", (12955, 13004), False, 'import click\n'), ((13006, 13100), 'click.option', 'click.option', (['"""--name"""', '"""-n"""'], {'help': '"""[Required] The name of the imported model to delete."""'}), "('--name', '-n', help=\n '[Required] The name of the imported model to delete.')\n", (13018, 13100), False, 'import click\n'), ((13112, 13213), 'click.option', 'click.option', (['"""--yes"""', '"""-y"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Do not prompt for confirmation."""'}), "('--yes', '-y', default=False, is_flag=True, help=\n 'Do not prompt for confirmation.')\n", (13124, 13213), False, 'import click\n'), ((13216, 13512), 'click.option', 'click.option', (['"""--workspace-id"""', '"""-w"""'], {'help': '"""Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure."""'}), "('--workspace-id', '-w', help=\n 'Please provide the workspace id if you would like to override the default target workspace. If your current Azure Active Directory login does not have access to this workspace, you will need to configure the workspace using bonsai configure.'\n )\n", (13228, 13512), False, 'import click\n'), ((13519, 13629), 'click.option', 'click.option', (['"""--debug"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Increase logging verbosity to show all logs."""'}), "('--debug', default=False, is_flag=True, help=\n 'Increase logging verbosity to show all logs.')\n", (13531, 13629), False, 'import click\n'), ((13645, 13716), 'click.option', 'click.option', (['"""--output"""', '"""-o"""'], {'help': '"""Set output, only json supported."""'}), "('--output', '-o', help='Set output, only json supported.')\n", (13657, 13716), False, 'import click\n'), ((13718, 13826), 'click.option', 'click.option', (['"""--test"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enhanced response for testing."""', 'hidden': '(True)'}), "('--test', default=False, is_flag=True, help=\n 'Enhanced response for testing.', hidden=True)\n", (13730, 13826), False, 'import click\n'), ((2173, 2221), 'bonsai_cli.utils.get_version_checker', 'get_version_checker', (['ctx'], {'interactive': '(not output)'}), '(ctx, interactive=not output)\n', (2192, 2221), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((6146, 6194), 'bonsai_cli.utils.get_version_checker', 'get_version_checker', (['ctx'], {'interactive': '(not output)'}), '(ctx, interactive=not output)\n', (6165, 6194), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((9197, 9245), 'bonsai_cli.utils.get_version_checker', 'get_version_checker', (['ctx'], {'interactive': '(not output)'}), '(ctx, interactive=not output)\n', (9216, 9245), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((11696, 11744), 'bonsai_cli.utils.get_version_checker', 'get_version_checker', (['ctx'], {'interactive': '(not output)'}), '(ctx, interactive=not output)\n', (11715, 11744), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((14043, 14085), 'bonsai_cli.utils.get_version_checker', 'get_version_checker', (['ctx'], {'interactive': '(True)'}), '(ctx, interactive=True)\n', (14062, 14085), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((2563, 2598), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['error_msg'], {}), '(error_msg)\n', (2587, 2598), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((2623, 2642), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2640, 2642), False, 'import time\n'), ((2771, 2790), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2788, 2790), False, 'import time\n'), ((2806, 2836), 'os.path.getsize', 'os.path.getsize', (['modelfilepath'], {}), '(modelfilepath)\n', (2821, 2836), False, 'import os\n'), ((6221, 6292), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['"""\nName of the imported model is required"""'], {}), '("""\nName of the imported model is required""")\n', (6245, 6292), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((9272, 9343), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['"""\nName of the imported model is required"""'], {}), '("""\nName of the imported model is required""")\n', (9296, 9343), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((9392, 9497), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['"""\nDisplay Name or description for the imported model must be updated."""'], {}), '(\n """\nDisplay Name or description for the imported model must be updated.""")\n', (9416, 9497), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((10762, 10788), 'click.echo', 'click.echo', (['status_message'], {}), '(status_message)\n', (10772, 10788), False, 'import click\n'), ((12101, 12160), 'click.echo', 'click.echo', (['"""No imported models exist for the current user"""'], {}), "('No imported models exist for the current user')\n", (12111, 12160), False, 'import click\n'), ((14112, 14183), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['"""\nName of the imported model is required"""'], {}), '("""\nName of the imported model is required""")\n', (14136, 14183), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((4573, 4723), 'click.echo', 'click.echo', (['"""imported model creation is still in progress. Please use bonsai importedmodel show -n <importedmodelname> to check the status."""'], {}), "(\n 'imported model creation is still in progress. Please use bonsai importedmodel show -n <importedmodelname> to check the status.'\n )\n", (4583, 4723), False, 'import click\n'), ((5080, 5107), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (5104, 5107), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((6899, 6926), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (6923, 6926), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((7442, 7472), 'json.dumps', 'dumps', (['json_response'], {'indent': '(4)'}), '(json_response, indent=4)\n', (7447, 7472), False, 'from json import dumps\n'), ((10244, 10271), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (10268, 10271), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((10711, 10741), 'json.dumps', 'dumps', (['json_response'], {'indent': '(4)'}), '(json_response, indent=4)\n', (10716, 10741), False, 'from json import dumps\n'), ((11914, 11981), 'bonsai_cli.utils.raise_brain_server_error_as_click_exception', 'raise_brain_server_error_as_click_exception', (['debug', 'output', 'test', 'e'], {}), '(debug, output, test, e)\n', (11957, 11981), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((12028, 12055), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (12052, 12055), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((12726, 12756), 'json.dumps', 'dumps', (['json_response'], {'indent': '(4)'}), '(json_response, indent=4)\n', (12731, 12756), False, 'from json import dumps\n'), ((12830, 12864), 'click.echo', 'click.echo', (["imported_model['name']"], {}), "(imported_model['name'])\n", (12840, 12864), False, 'import click\n'), ((15884, 15910), 'click.echo', 'click.echo', (['status_message'], {}), '(status_message)\n', (15894, 15910), False, 'import click\n'), ((2662, 2679), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (2665, 2679), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((3002, 3019), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (3005, 3019), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((3862, 3876), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (3872, 3876), False, 'import time\n'), ((4112, 4172), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (["response['operationStatusMessage']"], {}), "(response['operationStatusMessage'])\n", (4136, 4172), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((4521, 4546), 'click.echo', 'click.echo', (['statusMessage'], {}), '(statusMessage)\n', (4531, 4546), False, 'import click\n'), ((4849, 4953), 'bonsai_cli.utils.raise_unique_constraint_violation_as_click_exception', 'raise_unique_constraint_violation_as_click_exception', (['debug', 'output', '"""Imported model"""', 'name', 'test', 'e'], {}), "(debug, output,\n 'Imported model', name, test, e)\n", (4901, 4953), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((5006, 5033), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (5030, 5033), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((6319, 6336), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (6322, 6336), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((6527, 6636), 'bonsai_cli.utils.raise_not_found_as_click_exception', 'raise_not_found_as_click_exception', (['debug', 'output', '"""Show imported model"""', '"""Imported model"""', 'name', 'test', 'e'], {}), "(debug, output, 'Show imported model',\n 'Imported model', name, test, e)\n", (6561, 6636), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((6786, 6853), 'bonsai_cli.utils.raise_brain_server_error_as_click_exception', 'raise_brain_server_error_as_click_exception', (['debug', 'output', 'test', 'e'], {}), '(debug, output, test, e)\n', (6829, 6853), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((9541, 9558), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (9544, 9558), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((9870, 9980), 'bonsai_cli.utils.raise_not_found_as_click_exception', 'raise_not_found_as_click_exception', (['debug', 'output', '"""Update imported model"""', '"""ImportedModel"""', 'name', 'test', 'e'], {}), "(debug, output, 'Update imported model',\n 'ImportedModel', name, test, e)\n", (9904, 9980), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((10130, 10197), 'bonsai_cli.utils.raise_brain_server_error_as_click_exception', 'raise_brain_server_error_as_click_exception', (['debug', 'output', 'test', 'e'], {}), '(debug, output, test, e)\n', (10173, 10197), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((11774, 11791), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (11777, 11791), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((14615, 14678), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['"""\nPlease respond with \'y\' or \'n\'"""'], {}), '("""\nPlease respond with \'y\' or \'n\'""")\n', (14639, 14678), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((15204, 15271), 'bonsai_cli.utils.raise_brain_server_error_as_click_exception', 'raise_brain_server_error_as_click_exception', (['debug', 'output', 'test', 'e'], {}), '(debug, output, test, e)\n', (15247, 15271), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((15326, 15353), 'bonsai_cli.utils.raise_as_click_exception', 'raise_as_click_exception', (['e'], {}), '(e)\n', (15350, 15353), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((15825, 15855), 'json.dumps', 'dumps', (['json_response'], {'indent': '(4)'}), '(json_response, indent=4)\n', (15830, 15855), False, 'from json import dumps\n'), ((4455, 4485), 'json.dumps', 'dumps', (['json_response'], {'indent': '(4)'}), '(json_response, indent=4)\n', (4460, 4485), False, 'from json import dumps\n'), ((14731, 14748), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (14734, 14748), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n'), ((3737, 3754), 'bonsai_cli.utils.api', 'api', ([], {'use_aad': '(True)'}), '(use_aad=True)\n', (3740, 3754), False, 'from bonsai_cli.utils import api, get_version_checker, raise_204_click_exception, raise_as_click_exception, raise_brain_server_error_as_click_exception, raise_not_found_as_click_exception, raise_unique_constraint_violation_as_click_exception\n')]
#!/usr/bin/env python from __future__ import annotations import unittest from pytheos import utils from pytheos.utils import CHARACTER_REPLACE_MAP class TestUtils(unittest.TestCase): def test_extract_ip(self): self.assertEqual(utils.extract_host('http://127.0.0.1'), '127.0.0.1') self.assertEqual(utils.extract_host('http://127.0.0.1/'), '127.0.0.1') self.assertEqual(utils.extract_host('http://127.0.0.1/testing'), '127.0.0.1') self.assertEqual(utils.extract_host('http://127.0.0.1:1234'), '127.0.0.1') self.assertEqual(utils.extract_host('http://127.0.0.1:1234/'), '127.0.0.1') self.assertEqual(utils.extract_host('http://127.0.0.1:1234/testing'), '127.0.0.1') self.assertEqual(utils.extract_host('https://127.0.0.1'), '127.0.0.1') self.assertIsNone(utils.extract_host('hxxp://127.0.0.1')) def test_build_command_string(self): self.assertEqual(utils.build_command_string("group", "command"), "heos://group/command\n") self.assertEqual(utils.build_command_string("group", "command", arg1="hello", other_arg="world", stop=True), "heos://group/command?arg1=hello&other_arg=world&stop=True\n") def test_build_command_string_replacers(self): input_str = '' output_str = '' for invalid_char, replacement_char in CHARACTER_REPLACE_MAP.items(): input_str += invalid_char output_str += replacement_char self.assertEqual(utils.build_command_string("group", "command", test=input_str), f"heos://group/command?test={output_str}\n") def test_parse_var_string(self): self.assertEqual(utils.parse_var_string('pid=12345678&un=someone'), {'pid': '12345678', 'un': 'someone'}) self.assertEqual(utils.parse_var_string('signed_in&un=username'), {'signed_in': 'signed_in', 'un': 'username'}) def test_parse_var_string_replacers(self): input_str = '' output_str = '' for invalid_char, replacement_char in CHARACTER_REPLACE_MAP.items(): input_str += replacement_char output_str += invalid_char self.assertEqual(utils.parse_var_string(f'test={input_str}'), {'test': output_str}) if __name__ == '__main__': unittest.main()
[ "pytheos.utils.parse_var_string", "pytheos.utils.CHARACTER_REPLACE_MAP.items", "unittest.main", "pytheos.utils.extract_host", "pytheos.utils.build_command_string" ]
[((2278, 2293), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2291, 2293), False, 'import unittest\n'), ((1355, 1384), 'pytheos.utils.CHARACTER_REPLACE_MAP.items', 'CHARACTER_REPLACE_MAP.items', ([], {}), '()\n', (1382, 1384), False, 'from pytheos.utils import CHARACTER_REPLACE_MAP\n'), ((2040, 2069), 'pytheos.utils.CHARACTER_REPLACE_MAP.items', 'CHARACTER_REPLACE_MAP.items', ([], {}), '()\n', (2067, 2069), False, 'from pytheos.utils import CHARACTER_REPLACE_MAP\n'), ((243, 281), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1"""'], {}), "('http://127.0.0.1')\n", (261, 281), False, 'from pytheos import utils\n'), ((321, 360), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1/"""'], {}), "('http://127.0.0.1/')\n", (339, 360), False, 'from pytheos import utils\n'), ((400, 446), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1/testing"""'], {}), "('http://127.0.0.1/testing')\n", (418, 446), False, 'from pytheos import utils\n'), ((486, 529), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1:1234"""'], {}), "('http://127.0.0.1:1234')\n", (504, 529), False, 'from pytheos import utils\n'), ((569, 613), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1:1234/"""'], {}), "('http://127.0.0.1:1234/')\n", (587, 613), False, 'from pytheos import utils\n'), ((653, 704), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""http://127.0.0.1:1234/testing"""'], {}), "('http://127.0.0.1:1234/testing')\n", (671, 704), False, 'from pytheos import utils\n'), ((744, 783), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""https://127.0.0.1"""'], {}), "('https://127.0.0.1')\n", (762, 783), False, 'from pytheos import utils\n'), ((824, 862), 'pytheos.utils.extract_host', 'utils.extract_host', (['"""hxxp://127.0.0.1"""'], {}), "('hxxp://127.0.0.1')\n", (842, 862), False, 'from pytheos import utils\n'), ((931, 977), 'pytheos.utils.build_command_string', 'utils.build_command_string', (['"""group"""', '"""command"""'], {}), "('group', 'command')\n", (957, 977), False, 'from pytheos import utils\n'), ((1030, 1125), 'pytheos.utils.build_command_string', 'utils.build_command_string', (['"""group"""', '"""command"""'], {'arg1': '"""hello"""', 'other_arg': '"""world"""', 'stop': '(True)'}), "('group', 'command', arg1='hello', other_arg=\n 'world', stop=True)\n", (1056, 1125), False, 'from pytheos import utils\n'), ((1493, 1555), 'pytheos.utils.build_command_string', 'utils.build_command_string', (['"""group"""', '"""command"""'], {'test': 'input_str'}), "('group', 'command', test=input_str)\n", (1519, 1555), False, 'from pytheos import utils\n'), ((1690, 1739), 'pytheos.utils.parse_var_string', 'utils.parse_var_string', (['"""pid=12345678&un=someone"""'], {}), "('pid=12345678&un=someone')\n", (1712, 1739), False, 'from pytheos import utils\n'), ((1804, 1851), 'pytheos.utils.parse_var_string', 'utils.parse_var_string', (['"""signed_in&un=username"""'], {}), "('signed_in&un=username')\n", (1826, 1851), False, 'from pytheos import utils\n'), ((2178, 2221), 'pytheos.utils.parse_var_string', 'utils.parse_var_string', (['f"""test={input_str}"""'], {}), "(f'test={input_str}')\n", (2200, 2221), False, 'from pytheos import utils\n')]
import card_repository from card import Card from new_card import new_card from user_colors import print_info def new_cards(conn, cursor, two_way_card, single_line_mode, editor_mode): while True: card, two_way_card, single_line_mode, editor_mode = \ new_card(two_way_card, single_line_mode, editor_mode) if card == None: break card_repository.insert(conn, cursor, card) if two_way_card: flipped_card = Card( card.back, card.front, card.score, card.last_viewed ) card_repository.insert(conn, cursor, flipped_card) print_info('Saved.')
[ "card_repository.insert", "card.Card", "new_card.new_card", "user_colors.print_info" ]
[((277, 330), 'new_card.new_card', 'new_card', (['two_way_card', 'single_line_mode', 'editor_mode'], {}), '(two_way_card, single_line_mode, editor_mode)\n', (285, 330), False, 'from new_card import new_card\n'), ((384, 426), 'card_repository.insert', 'card_repository.insert', (['conn', 'cursor', 'card'], {}), '(conn, cursor, card)\n', (406, 426), False, 'import card_repository\n'), ((690, 710), 'user_colors.print_info', 'print_info', (['"""Saved."""'], {}), "('Saved.')\n", (700, 710), False, 'from user_colors import print_info\n'), ((481, 538), 'card.Card', 'Card', (['card.back', 'card.front', 'card.score', 'card.last_viewed'], {}), '(card.back, card.front, card.score, card.last_viewed)\n', (485, 538), False, 'from card import Card\n'), ((630, 680), 'card_repository.insert', 'card_repository.insert', (['conn', 'cursor', 'flipped_card'], {}), '(conn, cursor, flipped_card)\n', (652, 680), False, 'import card_repository\n')]
""" Redis Instances module """ import logging import re import redis # Constants ip_pattern = '(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])' hostname_pattern = '(([a-zA-Z0-9]|[a-zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9])\.)*([A-Za-z]|[A-Za-z][A-Za-z\-]*[A-Za-z])' port_pattern = '([0-9]{1,4}|[1-5][0-9]{4}|6[0-4][0-9]{3}|65[0-4][0-9]{2}|655[0-2][0-9]|6553[0-5])' endpoint_pattern = '^({}|{}):{}$'.format(ip_pattern, hostname_pattern, port_pattern) class RedisInstance(object): """ Redis instance """ def __init__(self, endpoint): """ Initialize a Redis instance """ # Validate redis endpoint format if re.match(endpoint_pattern, endpoint): self._endpoint = endpoint hostname, port = self._endpoint.split(':') self._hostname = hostname self._port = port logging.debug('Redis hostname: {0}'.format(self._hostname)) logging.debug('Redis port: {0}'.format(self._port)) self._redis = redis.StrictRedis(host=hostname, port=port, db=0) else: logging.info('ERROR: {} is not a valid endpoint (ip:port or fqdn:port)'.format(endpoint)) exit(1) def get_endpoint(self): """ Get Redis endpoint """ logging.debug('Redis endpoint: {0}'.format(self._endpoint)) return self._endpoint def list_keys(self, namespace): """ List Redis keys matching specified namespace """ logging.info('Get redis keys starting by namespace "{0}" for redis endpoint "{1}'.format( namespace, self._endpoint)) # Create iterator to scan all keys matching namespace keys_iter = self._redis.scan_iter(match=namespace) # Using set type for list of keys will help us to compare list of keys more efficiently keys = set() for k in keys_iter: logging.debug('Add key {0} to list'.format(k)) keys.add(k) logging.debug('Keys: {0}'.format(keys)) return keys def get_keys(self, keys): """ Get Redis keys detail """ keys_detailed = [] for k in keys: # Get key name, value and ttl key = {'key': k, 'value': self._redis.get(k), 'ttl': self._redis.ttl(k)} logging.debug('Key: {}, Value: {}, TTL: {}'.format(key['key'], key['value'], key['ttl'])) keys_detailed.append(key) logging.debug('Keys: {0}'.format(keys_detailed)) return keys_detailed def set_keys(self, keys): """ Insert Redis keys from list """ # Use pipeline for performance (https://github.com/andymccurdy/redis-py/blob/master/README.rst#pipelines) pipe = self._redis.pipeline() for k in keys: # Get key name, value and ttl name, value, ttl = k.values() # Add key to pipeline logging.debug('Add to pipeline: key: {}, value: {}'.format(name, value)) pipe.set(name, value) # Add expire to pipeline if ttl > 0: logging.debug('Add to pipeline: key: {}, ttl: {}'.format(name, ttl)) pipe.expire(name, ttl) # Execute pipeline if pipe.__len__() > 0: logging.info('Execute pipeline with {0} tasks'.format(pipe.__len__())) pipe.execute() else: logging.info('Pipeline empty, nothing to execute')
[ "logging.info", "re.match", "redis.StrictRedis" ]
[((715, 751), 're.match', 're.match', (['endpoint_pattern', 'endpoint'], {}), '(endpoint_pattern, endpoint)\n', (723, 751), False, 'import re\n'), ((1078, 1127), 'redis.StrictRedis', 'redis.StrictRedis', ([], {'host': 'hostname', 'port': 'port', 'db': '(0)'}), '(host=hostname, port=port, db=0)\n', (1095, 1127), False, 'import redis\n'), ((3495, 3545), 'logging.info', 'logging.info', (['"""Pipeline empty, nothing to execute"""'], {}), "('Pipeline empty, nothing to execute')\n", (3507, 3545), False, 'import logging\n')]
import time import torch import pandas as pd from sklearn.metrics import classification_report from model import VanillaClassifier from utils import create_data_loader, train_epoch, eval_model, epoch_time import torch.nn as nn from transformers import AdamW, AutoTokenizer, get_linear_schedule_with_warmup from collections import defaultdict from get_predictions import get_predictions # Set the path of the Kannada Hope speech dataset here # Reading the previously split train, test, and validation dataframes train = pd.read_csv('train_hope.csv') val = pd.read_csv('val_hope.csv') test = pd.read_csv('test_hope.csv') pretrained_models = ['distilbert-base-multilingual-cased', 'bert-base-multilingual-cased', 'xlm-roberta-base'] # pretrained_model_kan_mal = 'bert-base-multilingual-cased' device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizers = [AutoTokenizer.from_pretrained(model_name) for model_name in pretrained_models] BATCH_SIZE = 32 MAX_LEN = 128 loss_fn = nn.CrossEntropyLoss.to(device) classification_reports = [] for tokenizer, pretrained_model in zip(tokenizers, pretrained_models): train_data_loader = create_data_loader(train, tokenizer, MAX_LEN, BATCH_SIZE) val_data_loader = create_data_loader(val, tokenizer, MAX_LEN, BATCH_SIZE) test_data_loader = create_data_loader(test, tokenizer, MAX_LEN, BATCH_SIZE) model = VanillaClassifier(pretrained_model, 1) model = model.to(device) EPOCHS = 5 optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False) scheduler = get_linear_schedule_with_warmup() history = defaultdict(list) best_accuracy = 0 for epoch in range(EPOCHS): start_time = time.time() train_acc, train_loss = train_epoch( model, train_data_loader, loss_fn, optimizer, scheduler, train.shape[0] ) end_time = time.time() epoch_min, epoch_secs = epoch_time(start_time, end_time) print(f'Epoch: {epoch + 1:02} | Epoch Time: {epoch_min}m {epoch_secs}s') print(f'Train Acc1 {train_acc} Train loss {train_loss}') print() history['train_acc'].append(train_acc) history['train_loss'].append(train_loss) val_acc, val_loss = eval_model( model, val_data_loader, loss_fn, val.shape[0] ) print(f'Val Acc1 {val_acc} Val Loss {val_loss}') y_review_texts, y_pred1, y_pred_probs1, y_test1 = get_predictions( model, test_data_loader ) classes = ['Not-hope', 'Hope'] classification_reports.append(classification_report(y_test1, y_pred1, target_names=classes, zero_division=0))
[ "torch.nn.CrossEntropyLoss.to", "utils.create_data_loader", "pandas.read_csv", "sklearn.metrics.classification_report", "transformers.get_linear_schedule_with_warmup", "utils.train_epoch", "torch.cuda.is_available", "collections.defaultdict", "utils.eval_model", "transformers.AutoTokenizer.from_pretrained", "get_predictions.get_predictions", "utils.epoch_time", "time.time", "model.VanillaClassifier" ]
[((520, 549), 'pandas.read_csv', 'pd.read_csv', (['"""train_hope.csv"""'], {}), "('train_hope.csv')\n", (531, 549), True, 'import pandas as pd\n'), ((556, 583), 'pandas.read_csv', 'pd.read_csv', (['"""val_hope.csv"""'], {}), "('val_hope.csv')\n", (567, 583), True, 'import pandas as pd\n'), ((591, 619), 'pandas.read_csv', 'pd.read_csv', (['"""test_hope.csv"""'], {}), "('test_hope.csv')\n", (602, 619), True, 'import pandas as pd\n'), ((983, 1013), 'torch.nn.CrossEntropyLoss.to', 'nn.CrossEntropyLoss.to', (['device'], {}), '(device)\n', (1005, 1013), True, 'import torch.nn as nn\n'), ((812, 837), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (835, 837), False, 'import torch\n'), ((863, 904), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['model_name'], {}), '(model_name)\n', (892, 904), False, 'from transformers import AdamW, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((1137, 1194), 'utils.create_data_loader', 'create_data_loader', (['train', 'tokenizer', 'MAX_LEN', 'BATCH_SIZE'], {}), '(train, tokenizer, MAX_LEN, BATCH_SIZE)\n', (1155, 1194), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((1217, 1272), 'utils.create_data_loader', 'create_data_loader', (['val', 'tokenizer', 'MAX_LEN', 'BATCH_SIZE'], {}), '(val, tokenizer, MAX_LEN, BATCH_SIZE)\n', (1235, 1272), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((1296, 1352), 'utils.create_data_loader', 'create_data_loader', (['test', 'tokenizer', 'MAX_LEN', 'BATCH_SIZE'], {}), '(test, tokenizer, MAX_LEN, BATCH_SIZE)\n', (1314, 1352), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((1366, 1404), 'model.VanillaClassifier', 'VanillaClassifier', (['pretrained_model', '(1)'], {}), '(pretrained_model, 1)\n', (1383, 1404), False, 'from model import VanillaClassifier\n'), ((1538, 1571), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', ([], {}), '()\n', (1569, 1571), False, 'from transformers import AdamW, AutoTokenizer, get_linear_schedule_with_warmup\n'), ((1586, 1603), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1597, 1603), False, 'from collections import defaultdict\n'), ((2503, 2543), 'get_predictions.get_predictions', 'get_predictions', (['model', 'test_data_loader'], {}), '(model, test_data_loader)\n', (2518, 2543), False, 'from get_predictions import get_predictions\n'), ((1679, 1690), 'time.time', 'time.time', ([], {}), '()\n', (1688, 1690), False, 'import time\n'), ((1723, 1812), 'utils.train_epoch', 'train_epoch', (['model', 'train_data_loader', 'loss_fn', 'optimizer', 'scheduler', 'train.shape[0]'], {}), '(model, train_data_loader, loss_fn, optimizer, scheduler, train.\n shape[0])\n', (1734, 1812), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((1910, 1921), 'time.time', 'time.time', ([], {}), '()\n', (1919, 1921), False, 'import time\n'), ((1954, 1986), 'utils.epoch_time', 'epoch_time', (['start_time', 'end_time'], {}), '(start_time, end_time)\n', (1964, 1986), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((2275, 2332), 'utils.eval_model', 'eval_model', (['model', 'val_data_loader', 'loss_fn', 'val.shape[0]'], {}), '(model, val_data_loader, loss_fn, val.shape[0])\n', (2285, 2332), False, 'from utils import create_data_loader, train_epoch, eval_model, epoch_time\n'), ((2635, 2713), 'sklearn.metrics.classification_report', 'classification_report', (['y_test1', 'y_pred1'], {'target_names': 'classes', 'zero_division': '(0)'}), '(y_test1, y_pred1, target_names=classes, zero_division=0)\n', (2656, 2713), False, 'from sklearn.metrics import classification_report\n')]
# Softmax classifier loss function import numpy as np from random import shuffle import linear_classifier def softmax_loss_naive(W, X, y, reg): """Softmax loss function, naive implementation (with loops) Important dimensions: K is number of classes we classify samples to. D is the dimensionality of data (for example, 32x32x3 images have D=3072). Note that bias is often folded into the sample as "1", so the actual dimensionality may be +1 (or 3073 for those images). N is simply the number of samples we're working with. Inputs: - W: K x D array of weights. - X: D x N array of data. Each datum is a (D-dimensional) column. - y: 1-dimensional array of length N with labels 0...K-1, for K classes. y[i] is the correct classification of sample i. - reg: (float) regularization strength Returns a tuple of: - loss as single float - gradient with respect to weights W; an array of same shape as W """ # Note: this code is from the internet, since I couldn't find an explanation # of how to compute the softmax gradient in lecture notes. # Initialize the loss and gradient to zero. loss = 0.0 dW = np.zeros_like(W) for i in range(X.shape[1]): scores = W.dot(X[:, i]) # Shift down by max to improve numerical stability -- now the highest # number is 0. scores -= np.max(scores) prob = 0.0 loss -= scores[y[i]] for curr_score in scores: prob += np.exp(curr_score) for j in range(W.shape[0]): prob_ji = np.exp(scores[j]) / prob margin = -prob_ji * X[:, i].T if j == y[i]: margin = (1 - prob_ji) * X[:, i].T dW[j, :] += -margin loss += np.log(prob) loss /= X.shape[1] dW /= X.shape[1] # Regularization loss += 0.5 * reg * np.sum(W * W) dW += reg * W return loss, dW class Softmax(linear_classifier.LinearClassifier): """ A subclass that uses the Softmax + cross entropy loss function """ def loss(self, X_batch, y_batch, reg): return softmax_loss_naive(self.W, X_batch, y_batch, reg)
[ "numpy.log", "numpy.max", "numpy.exp", "numpy.sum", "numpy.zeros_like" ]
[((1206, 1222), 'numpy.zeros_like', 'np.zeros_like', (['W'], {}), '(W)\n', (1219, 1222), True, 'import numpy as np\n'), ((1408, 1422), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (1414, 1422), True, 'import numpy as np\n'), ((1798, 1810), 'numpy.log', 'np.log', (['prob'], {}), '(prob)\n', (1804, 1810), True, 'import numpy as np\n'), ((1902, 1915), 'numpy.sum', 'np.sum', (['(W * W)'], {}), '(W * W)\n', (1908, 1915), True, 'import numpy as np\n'), ((1526, 1544), 'numpy.exp', 'np.exp', (['curr_score'], {}), '(curr_score)\n', (1532, 1544), True, 'import numpy as np\n'), ((1604, 1621), 'numpy.exp', 'np.exp', (['scores[j]'], {}), '(scores[j])\n', (1610, 1621), True, 'import numpy as np\n')]
from dd import run if __name__=="__main__": run.main()
[ "dd.run.main" ]
[((50, 60), 'dd.run.main', 'run.main', ([], {}), '()\n', (58, 60), False, 'from dd import run\n')]
# coding: utf-8 """ Created on Mon May 17 00:00:00 2017 @author: DIP """ # # Import necessary dependencies and settings # In[1]: import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import scipy.stats as spstats get_ipython().magic('matplotlib inline') mpl.style.reload_library() mpl.style.use('classic') mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0) mpl.rcParams['figure.figsize'] = [6.0, 4.0] mpl.rcParams['figure.dpi'] = 100 # # Raw Measures # ## Values # In[2]: poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8') poke_df.head() # In[3]: poke_df[['HP', 'Attack', 'Defense']].head() # In[4]: poke_df[['HP', 'Attack', 'Defense']].describe() # ## Counts # In[5]: popsong_df = pd.read_csv('datasets/song_views.csv', encoding='utf-8') popsong_df.head(10) # # Binarization # In[6]: watched = np.array(popsong_df['listen_count']) watched[watched >= 1] = 1 popsong_df['watched'] = watched popsong_df.head(10) # In[7]: from sklearn.preprocessing import Binarizer bn = Binarizer(threshold=0.9) pd_watched = bn.transform([popsong_df['listen_count']])[0] popsong_df['pd_watched'] = pd_watched popsong_df.head(11) # # Rounding # In[8]: items_popularity = pd.read_csv('datasets/item_popularity.csv', encoding='utf-8') items_popularity # In[9]: items_popularity['popularity_scale_10'] = np.array(np.round((items_popularity['pop_percent'] * 10)), dtype='int') items_popularity['popularity_scale_100'] = np.array(np.round((items_popularity['pop_percent'] * 100)), dtype='int') items_popularity # # Interactions # In[10]: atk_def = poke_df[['Attack', 'Defense']] atk_def.head() # In[11]: from sklearn.preprocessing import PolynomialFeatures pf = PolynomialFeatures(degree=2, interaction_only=False, include_bias=False) res = pf.fit_transform(atk_def) res # In[12]: pd.DataFrame(pf.powers_, columns=['Attack_degree', 'Defense_degree']) # In[13]: intr_features = pd.DataFrame(res, columns=['Attack', 'Defense', 'Attack^2', 'Attack x Defense', 'Defense^2']) intr_features.head(5) # ## Transforming new data in the future (during predictions) # In[14]: new_df = pd.DataFrame([[95, 75],[121, 120], [77, 60]], columns=['Attack', 'Defense']) new_df # In[15]: new_res = pf.transform(new_df) new_intr_features = pd.DataFrame(new_res, columns=['Attack', 'Defense', 'Attack^2', 'Attack x Defense', 'Defense^2']) new_intr_features # # Binning # In[16]: fcc_survey_df = pd.read_csv('datasets/fcc_2016_coder_survey_subset.csv', encoding='utf-8') fcc_survey_df[['ID.x', 'EmploymentField', 'Age', 'Income']].head() # ## Fixed-width binning # ### Developer age distribution # In[17]: fig, ax = plt.subplots() fcc_survey_df['Age'].hist(color='#A9C5D3') ax.set_title('Developer Age Histogram', fontsize=12) ax.set_xlabel('Age', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) # ### Binning based on rounding # # ``` # Age Range: Bin # --------------- # 0 - 9 : 0 # 10 - 19 : 1 # 20 - 29 : 2 # 30 - 39 : 3 # 40 - 49 : 4 # 50 - 59 : 5 # 60 - 69 : 6 # ... and so on # ``` # In[18]: fcc_survey_df['Age_bin_round'] = np.array(np.floor(np.array(fcc_survey_df['Age']) / 10.)) fcc_survey_df[['ID.x', 'Age', 'Age_bin_round']].iloc[1071:1076] # ### Binning based on custom ranges # # ``` # Age Range : Bin # --------------- # 0 - 15 : 1 # 16 - 30 : 2 # 31 - 45 : 3 # 46 - 60 : 4 # 61 - 75 : 5 # 75 - 100 : 6 # ``` # In[19]: bin_ranges = [0, 15, 30, 45, 60, 75, 100] bin_names = [1, 2, 3, 4, 5, 6] fcc_survey_df['Age_bin_custom_range'] = pd.cut(np.array(fcc_survey_df['Age']), bins=bin_ranges) fcc_survey_df['Age_bin_custom_label'] = pd.cut(np.array(fcc_survey_df['Age']), bins=bin_ranges, labels=bin_names) fcc_survey_df[['ID.x', 'Age', 'Age_bin_round', 'Age_bin_custom_range', 'Age_bin_custom_label']].iloc[1071:1076] # ## Quantile based binning # In[20]: fcc_survey_df[['ID.x', 'Age', 'Income']].iloc[4:9] # In[21]: fig, ax = plt.subplots() fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3') ax.set_title('Developer Income Histogram', fontsize=12) ax.set_xlabel('Developer Income', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) # In[22]: quantile_list = [0, .25, .5, .75, 1.] quantiles = fcc_survey_df['Income'].quantile(quantile_list) quantiles # In[23]: fig, ax = plt.subplots() fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3') for quantile in quantiles: qvl = plt.axvline(quantile, color='r') ax.legend([qvl], ['Quantiles'], fontsize=10) ax.set_title('Developer Income Histogram with Quantiles', fontsize=12) ax.set_xlabel('Developer Income', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) # In[24]: quantile_labels = ['0-25Q', '25-50Q', '50-75Q', '75-100Q'] fcc_survey_df['Income_quantile_range'] = pd.qcut(fcc_survey_df['Income'], q=quantile_list) fcc_survey_df['Income_quantile_label'] = pd.qcut(fcc_survey_df['Income'], q=quantile_list, labels=quantile_labels) fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_quantile_range', 'Income_quantile_label']].iloc[4:9] # # Mathematical Transformations # ## Log transform # In[25]: fcc_survey_df['Income_log'] = np.log((1+ fcc_survey_df['Income'])) fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_log']].iloc[4:9] # In[26]: income_log_mean = np.round(np.mean(fcc_survey_df['Income_log']), 2) fig, ax = plt.subplots() fcc_survey_df['Income_log'].hist(bins=30, color='#A9C5D3') plt.axvline(income_log_mean, color='r') ax.set_title('Developer Income Histogram after Log Transform', fontsize=12) ax.set_xlabel('Developer Income (log scale)', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) ax.text(11.5, 450, r'$\mu$='+str(income_log_mean), fontsize=10) # ## Box–Cox transform # In[27]: # get optimal lambda value from non null income values income = np.array(fcc_survey_df['Income']) income_clean = income[~np.isnan(income)] l, opt_lambda = spstats.boxcox(income_clean) print('Optimal lambda value:', opt_lambda) # In[28]: fcc_survey_df['Income_boxcox_lambda_0'] = spstats.boxcox((1+fcc_survey_df['Income']), lmbda=0) fcc_survey_df['Income_boxcox_lambda_opt'] = spstats.boxcox(fcc_survey_df['Income'], lmbda=opt_lambda) fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_log', 'Income_boxcox_lambda_0', 'Income_boxcox_lambda_opt']].iloc[4:9] # In[29]: income_boxcox_mean = np.round(np.mean(fcc_survey_df['Income_boxcox_lambda_opt']), 2) fig, ax = plt.subplots() fcc_survey_df['Income_boxcox_lambda_opt'].hist(bins=30, color='#A9C5D3') plt.axvline(income_boxcox_mean, color='r') ax.set_title('Developer Income Histogram after Box–Cox Transform', fontsize=12) ax.set_xlabel('Developer Income (Box–Cox transform)', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) ax.text(24, 450, r'$\mu$='+str(income_boxcox_mean), fontsize=10)
[ "numpy.mean", "sklearn.preprocessing.PolynomialFeatures", "matplotlib.style.reload_library", "sklearn.preprocessing.Binarizer", "pandas.read_csv", "pandas.qcut", "scipy.stats.boxcox", "numpy.log", "numpy.array", "matplotlib.pyplot.axvline", "matplotlib.style.use", "numpy.isnan", "pandas.DataFrame", "matplotlib.pyplot.subplots", "numpy.round" ]
[((302, 328), 'matplotlib.style.reload_library', 'mpl.style.reload_library', ([], {}), '()\n', (326, 328), True, 'import matplotlib as mpl\n'), ((329, 353), 'matplotlib.style.use', 'mpl.style.use', (['"""classic"""'], {}), "('classic')\n", (342, 353), True, 'import matplotlib as mpl\n'), ((532, 585), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/Pokemon.csv"""'], {'encoding': '"""utf-8"""'}), "('datasets/Pokemon.csv', encoding='utf-8')\n", (543, 585), True, 'import pandas as pd\n'), ((755, 811), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/song_views.csv"""'], {'encoding': '"""utf-8"""'}), "('datasets/song_views.csv', encoding='utf-8')\n", (766, 811), True, 'import pandas as pd\n'), ((872, 908), 'numpy.array', 'np.array', (["popsong_df['listen_count']"], {}), "(popsong_df['listen_count'])\n", (880, 908), True, 'import numpy as np\n'), ((1050, 1074), 'sklearn.preprocessing.Binarizer', 'Binarizer', ([], {'threshold': '(0.9)'}), '(threshold=0.9)\n', (1059, 1074), False, 'from sklearn.preprocessing import Binarizer\n'), ((1237, 1298), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/item_popularity.csv"""'], {'encoding': '"""utf-8"""'}), "('datasets/item_popularity.csv', encoding='utf-8')\n", (1248, 1298), True, 'import pandas as pd\n'), ((1734, 1806), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': '(2)', 'interaction_only': '(False)', 'include_bias': '(False)'}), '(degree=2, interaction_only=False, include_bias=False)\n', (1752, 1806), False, 'from sklearn.preprocessing import PolynomialFeatures\n'), ((1856, 1925), 'pandas.DataFrame', 'pd.DataFrame', (['pf.powers_'], {'columns': "['Attack_degree', 'Defense_degree']"}), "(pf.powers_, columns=['Attack_degree', 'Defense_degree'])\n", (1868, 1925), True, 'import pandas as pd\n'), ((1955, 2052), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'columns': "['Attack', 'Defense', 'Attack^2', 'Attack x Defense', 'Defense^2']"}), "(res, columns=['Attack', 'Defense', 'Attack^2',\n 'Attack x Defense', 'Defense^2'])\n", (1967, 2052), True, 'import pandas as pd\n'), ((2158, 2235), 'pandas.DataFrame', 'pd.DataFrame', (['[[95, 75], [121, 120], [77, 60]]'], {'columns': "['Attack', 'Defense']"}), "([[95, 75], [121, 120], [77, 60]], columns=['Attack', 'Defense'])\n", (2170, 2235), True, 'import pandas as pd\n'), ((2329, 2430), 'pandas.DataFrame', 'pd.DataFrame', (['new_res'], {'columns': "['Attack', 'Defense', 'Attack^2', 'Attack x Defense', 'Defense^2']"}), "(new_res, columns=['Attack', 'Defense', 'Attack^2',\n 'Attack x Defense', 'Defense^2'])\n", (2341, 2430), True, 'import pandas as pd\n'), ((2564, 2638), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/fcc_2016_coder_survey_subset.csv"""'], {'encoding': '"""utf-8"""'}), "('datasets/fcc_2016_coder_survey_subset.csv', encoding='utf-8')\n", (2575, 2638), True, 'import pandas as pd\n'), ((2789, 2803), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2801, 2803), True, 'import matplotlib.pyplot as plt\n'), ((4170, 4184), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4182, 4184), True, 'import matplotlib.pyplot as plt\n'), ((4527, 4541), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4539, 4541), True, 'import matplotlib.pyplot as plt\n'), ((4985, 5034), 'pandas.qcut', 'pd.qcut', (["fcc_survey_df['Income']"], {'q': 'quantile_list'}), "(fcc_survey_df['Income'], q=quantile_list)\n", (4992, 5034), True, 'import pandas as pd\n'), ((5126, 5199), 'pandas.qcut', 'pd.qcut', (["fcc_survey_df['Income']"], {'q': 'quantile_list', 'labels': 'quantile_labels'}), "(fcc_survey_df['Income'], q=quantile_list, labels=quantile_labels)\n", (5133, 5199), True, 'import pandas as pd\n'), ((5464, 5499), 'numpy.log', 'np.log', (["(1 + fcc_survey_df['Income'])"], {}), "(1 + fcc_survey_df['Income'])\n", (5470, 5499), True, 'import numpy as np\n'), ((5658, 5672), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5670, 5672), True, 'import matplotlib.pyplot as plt\n'), ((5732, 5771), 'matplotlib.pyplot.axvline', 'plt.axvline', (['income_log_mean'], {'color': '"""r"""'}), "(income_log_mean, color='r')\n", (5743, 5771), True, 'import matplotlib.pyplot as plt\n'), ((6112, 6145), 'numpy.array', 'np.array', (["fcc_survey_df['Income']"], {}), "(fcc_survey_df['Income'])\n", (6120, 6145), True, 'import numpy as np\n'), ((6203, 6231), 'scipy.stats.boxcox', 'spstats.boxcox', (['income_clean'], {}), '(income_clean)\n', (6217, 6231), True, 'import scipy.stats as spstats\n'), ((6330, 6382), 'scipy.stats.boxcox', 'spstats.boxcox', (["(1 + fcc_survey_df['Income'])"], {'lmbda': '(0)'}), "(1 + fcc_survey_df['Income'], lmbda=0)\n", (6344, 6382), True, 'import scipy.stats as spstats\n'), ((6485, 6542), 'scipy.stats.boxcox', 'spstats.boxcox', (["fcc_survey_df['Income']"], {'lmbda': 'opt_lambda'}), "(fcc_survey_df['Income'], lmbda=opt_lambda)\n", (6499, 6542), True, 'import scipy.stats as spstats\n'), ((6847, 6861), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6859, 6861), True, 'import matplotlib.pyplot as plt\n'), ((6935, 6977), 'matplotlib.pyplot.axvline', 'plt.axvline', (['income_boxcox_mean'], {'color': '"""r"""'}), "(income_boxcox_mean, color='r')\n", (6946, 6977), True, 'import matplotlib.pyplot as plt\n'), ((1379, 1425), 'numpy.round', 'np.round', (["(items_popularity['pop_percent'] * 10)"], {}), "(items_popularity['pop_percent'] * 10)\n", (1387, 1425), True, 'import numpy as np\n'), ((1494, 1541), 'numpy.round', 'np.round', (["(items_popularity['pop_percent'] * 100)"], {}), "(items_popularity['pop_percent'] * 100)\n", (1502, 1541), True, 'import numpy as np\n'), ((3667, 3697), 'numpy.array', 'np.array', (["fcc_survey_df['Age']"], {}), "(fcc_survey_df['Age'])\n", (3675, 3697), True, 'import numpy as np\n'), ((3811, 3841), 'numpy.array', 'np.array', (["fcc_survey_df['Age']"], {}), "(fcc_survey_df['Age'])\n", (3819, 3841), True, 'import numpy as np\n'), ((4635, 4667), 'matplotlib.pyplot.axvline', 'plt.axvline', (['quantile'], {'color': '"""r"""'}), "(quantile, color='r')\n", (4646, 4667), True, 'import matplotlib.pyplot as plt\n'), ((5606, 5642), 'numpy.mean', 'np.mean', (["fcc_survey_df['Income_log']"], {}), "(fcc_survey_df['Income_log'])\n", (5613, 5642), True, 'import numpy as np\n'), ((6781, 6831), 'numpy.mean', 'np.mean', (["fcc_survey_df['Income_boxcox_lambda_opt']"], {}), "(fcc_survey_df['Income_boxcox_lambda_opt'])\n", (6788, 6831), True, 'import numpy as np\n'), ((6169, 6185), 'numpy.isnan', 'np.isnan', (['income'], {}), '(income)\n', (6177, 6185), True, 'import numpy as np\n'), ((3245, 3275), 'numpy.array', 'np.array', (["fcc_survey_df['Age']"], {}), "(fcc_survey_df['Age'])\n", (3253, 3275), True, 'import numpy as np\n')]