sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A358301 | Main diagonal of array in A358298. | [
"2",
"6",
"20",
"60",
"124",
"252",
"388",
"652",
"924",
"1332",
"1748",
"2428",
"2988",
"3948",
"4788",
"5908",
"7028",
"8692",
"9964",
"12052",
"13748",
"16004",
"18124",
"21204",
"23476",
"26996",
"29972",
"33788",
"37196",
"42124",
"45548",
"51188",
"55732",
"61412",
"66532",
"73348",
"78484",
"86548",
"92956",
"100924",
"107772",
"117692",
"124556",
"135476",
"144036"
] | [
"nonn"
] | 11 | 0 | 1 | [
"A358298",
"A358301",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2023-04-19T09:04:56 | oeisdata/seq/A358/A358301.seq | a2fddd371335b7bd44766de4199d404c |
A358302 | Number of triangular regions in the Farey Diagram Farey(n,n), divided by 4. | [
"1",
"12",
"100",
"392",
"1554",
"3486",
"9690",
"18942",
"38610",
"65268",
"125116",
"186870",
"324646",
"472546",
"713354",
"1003888",
"1531908",
"2000638",
"2920970",
"3780950"
] | [
"nonn",
"more"
] | 7 | 1 | 2 | [
"A358298",
"A358302",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358302.seq | e5b93527d9402fa3da2bad0784cd663c |
A358303 | Number of 4-sided regions in the Farey Diagram Farey(n,n), divided by 8. | [
"1",
"13",
"57",
"231",
"532",
"1497",
"2935",
"6031",
"10273",
"19680",
"29441",
"51261",
"74473",
"112721",
"159299",
"242763",
"317155",
"462930",
"598755"
] | [
"nonn",
"more"
] | 11 | 1 | 2 | [
"A358298",
"A358303",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358303.seq | a92bc15647dbf52255bc17ca089f0b44 |
A358304 | Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k). | [
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"5",
"5",
"0",
"0",
"9",
"10",
"9",
"0",
"0",
"14",
"19",
"19",
"14",
"0",
"0",
"20",
"27",
"32",
"27",
"20",
"0",
"0",
"27",
"40",
"47",
"47",
"40",
"27",
"0",
"0",
"35",
"51",
"68",
"66",
"68",
"51",
"35",
"0",
"0",
"44",
"68",
"85",
"96",
"96",
"85",
"68",
"44",
"0",
"0",
"54",
"82",
"112",
"118",
"134",
"118",
"112",
"82",
"54",
"0",
"0",
"65",
"103",
"137",
"156",
"167",
"167",
"156",
"137",
"103",
"65",
"0",
"0",
"77",
"120",
"166",
"187",
"217",
"204",
"217",
"187",
"166",
"120",
"77",
"0"
] | [
"nonn",
"tabl"
] | 26 | 0 | 5 | [
"A358298",
"A358304",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2023-04-20T02:30:32 | oeisdata/seq/A358/A358304.seq | f4d62344a30e1ddde9d0a89d701d8370 |
A358305 | Triangle read by rows: T(n,k) (n>=0, 0 <= k <= n) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k). | [
"0",
"0",
"2",
"0",
"5",
"10",
"0",
"9",
"19",
"32",
"0",
"14",
"27",
"47",
"66",
"0",
"20",
"40",
"68",
"96",
"134",
"0",
"27",
"51",
"85",
"118",
"167",
"204",
"0",
"35",
"68",
"112",
"156",
"217",
"267",
"342",
"0",
"44",
"82",
"137",
"187",
"261",
"318",
"408",
"482",
"0",
"54",
"103",
"166",
"229",
"317",
"384",
"490",
"581",
"692",
"0",
"65",
"120",
"196",
"266",
"366",
"441",
"564",
"664",
"794",
"904"
] | [
"nonn",
"tabl"
] | 15 | 0 | 3 | [
"A358298",
"A358305",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2023-04-19T09:04:49 | oeisdata/seq/A358/A358305.seq | ed4ae4c6f640b9170c0bca4c05ba3879 |
A358306 | Second row of array in A358304. | [
"0",
"5",
"10",
"19",
"27",
"40",
"51",
"68",
"82",
"103",
"120",
"145",
"165",
"194",
"217",
"250",
"276",
"313",
"342",
"383",
"415",
"460",
"495",
"544",
"582",
"635",
"676",
"733",
"777",
"838",
"885",
"950",
"1000",
"1069",
"1122",
"1195",
"1251",
"1328",
"1387",
"1468",
"1530",
"1615",
"1680",
"1769",
"1837",
"1930",
"2001",
"2098",
"2172",
"2273",
"2350",
"2455",
"2535",
"2644",
"2727",
"2840",
"2926",
"3043",
"3132",
"3253",
"3345"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A358298",
"A358306",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358306.seq | 40fdae85bbc44113979d38d9bc36ac33 |
A358307 | Main diagonal of array in A358304, divided by 2. | [
"0",
"1",
"5",
"16",
"33",
"67",
"102",
"171",
"241",
"346",
"452",
"627",
"769",
"1015",
"1228",
"1512",
"1796",
"2220",
"2541",
"3072",
"3500",
"4070",
"4605",
"5386",
"5958",
"6848",
"7598",
"8561",
"9419",
"10665",
"11525",
"12950",
"14094",
"15524",
"16812",
"18528",
"19818",
"21852",
"23463",
"25467",
"27187",
"29687",
"31409",
"34160",
"36310",
"38890",
"41255",
"44544",
"46840",
"50347",
"53037",
"56477",
"59489"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A358298",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358307.seq | 3bf88aeed3e937d4278d144879982862 |
A358308 | Numbers k such that sigma(2*k) > 2*k*sqrt(gamma(2*k)), where sigma(k) = A000203(k) is the sum of the divisors of k and gamma(k) = A007947(k) is the greatest squarefree divisor of k. | [
"1",
"2",
"4",
"8",
"12",
"16",
"18",
"24",
"32",
"36",
"48",
"54",
"64",
"72",
"96",
"108",
"128",
"144",
"162",
"192",
"216",
"256",
"288",
"324",
"384",
"432",
"486",
"512",
"576",
"648",
"768",
"864",
"972",
"1024",
"1152",
"1296",
"1458",
"1536",
"1728",
"1944",
"2048",
"2304",
"2592",
"2916",
"3072",
"3456",
"3888",
"4096",
"4374",
"4608",
"5184",
"5832",
"6144",
"6912",
"7776",
"8192",
"8748",
"9216"
] | [
"nonn"
] | 17 | 1 | 2 | [
"A000203",
"A007947",
"A358308",
"A358309"
] | null | N. J. A. Sloane, Dec 09 2022 | 2024-04-25T05:18:26 | oeisdata/seq/A358/A358308.seq | ed2a767193df3cd094416fda6b630ecd |
A358309 | a(n) = floor(n*sqrt(gamma(n))) - sigma(n), where sigma(n) = A000203(n) is the sum of the divisors of n and gamma(n) = A007947(n) is the greatest squarefree divisor of n. | [
"0",
"-1",
"1",
"-2",
"5",
"2",
"10",
"-4",
"2",
"13",
"24",
"1",
"32",
"28",
"34",
"-9",
"52",
"5",
"62",
"21",
"64",
"67",
"86",
"-2",
"24",
"90",
"6",
"48",
"126",
"92",
"140",
"-18",
"141",
"144",
"159",
"-3",
"187",
"174",
"187",
"36",
"220",
"176",
"237",
"122",
"96",
"239",
"274",
"-7",
"72",
"65",
"292",
"167",
"331",
"12",
"335",
"89",
"350",
"351",
"393",
"160",
"414",
"392",
"184",
"-37",
"440",
"392",
"480",
"270",
"477",
"441",
"526"
] | [
"sign"
] | 19 | 1 | 4 | [
"A000203",
"A007947",
"A358308",
"A358309"
] | null | N. J. A. Sloane, Dec 09 2022 | 2024-04-25T05:18:37 | oeisdata/seq/A358/A358309.seq | 0b763774e155d7f1e490e8fb05cc5074 |
A358310 | Index in A145985 where n-th odd prime p first appears, or -1 if p never appears. | [
"3",
"2",
"1",
"13",
"-1",
"12",
"-1",
"59",
"11",
"-1",
"-1",
"10",
"-1",
"9",
"8",
"7",
"-1",
"-1",
"6",
"-1",
"-1",
"5",
"4",
"-1",
"2528242167",
"-1"
] | [
"sign",
"more"
] | 33 | 1 | 1 | [
"A145985",
"A358310"
] | null | Harvey P. Dale and N. J. A. Sloane, Dec 16 2022. | 2022-12-18T15:26:02 | oeisdata/seq/A358/A358310.seq | 70b7ce74335055c893390fe5754449cd |
A358311 | Lucas numbers that are not the sum of two squares. | [
"3",
"7",
"11",
"47",
"76",
"123",
"199",
"322",
"843",
"1364",
"2207",
"3571",
"5778",
"15127",
"24476",
"39603",
"64079",
"103682",
"167761",
"271443",
"439204",
"710647",
"1149851",
"4870847",
"7881196",
"12752043",
"20633239",
"33385282",
"87403803",
"141422324",
"228826127",
"370248451",
"599074578",
"1568397607",
"2537720636"
] | [
"nonn"
] | 24 | 1 | 1 | [
"A000032",
"A022544",
"A356809",
"A358311"
] | null | Chai Wah Wu, Jan 10 2023 | 2024-01-26T13:53:36 | oeisdata/seq/A358/A358311.seq | f8b3246f7d355f345d624824396de2fe |
A358312 | Consider the graph of symmetric primes where p and q are connected if |p-q| = gcd(p-1,q-1). This sequence is an irregular table where the n-th row lists the first symmetric prime in a connected component with n vertices, with one representative for each nonisomorphic graph. Within a row, graphs are ordered by increasing size of its initial prime. | [
"3343",
"42293",
"461393",
"70793",
"72053",
"268267",
"8917219"
] | [
"nonn",
"tabf",
"hard",
"more"
] | 5 | 2 | 1 | [
"A090190",
"A358312"
] | null | Charles R Greathouse IV, Nov 08 2022 | 2022-11-17T07:20:26 | oeisdata/seq/A358/A358312.seq | 1d2d558e73ffbc5ae08bcdd00f7a3339 |
A358313 | Primes p such that 24*p is the difference of two squares of primes in three different ways. | [
"5",
"7",
"13",
"17",
"23",
"103",
"6863",
"7523",
"11807",
"11833",
"22447",
"91807",
"100517",
"144167",
"204013",
"221077",
"478937",
"531983",
"571867",
"752293",
"1440253",
"1647383",
"1715717",
"1727527",
"1768667",
"2193707",
"2381963",
"2539393",
"2957237",
"3215783",
"3290647",
"3873713",
"4243997",
"4512223",
"4880963",
"4895777",
"5226107",
"5345317",
"5540063"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A124865",
"A358313"
] | null | J. M. Bergot and Robert Israel, Nov 08 2022 | 2022-11-10T07:43:04 | oeisdata/seq/A358/A358313.seq | 1c646cffa89043c2cf65eedf5cefb21c |
A358314 | Triangle T(n,k) read by rows where T(2m - 1,k) = (A051845(2m - 1,k))/(2m - 1) and T(2m,k) = A051845(2m,k)/m for m > 0, k > 0. | [
"1",
"5",
"7",
"9",
"10",
"13",
"15",
"18",
"19",
"97",
"99",
"107",
"111",
"119",
"121",
"147",
"149",
"167",
"173",
"179",
"183",
"207",
"211",
"217",
"223",
"241",
"243",
"269",
"271",
"279",
"283",
"373",
"374",
"379",
"381",
"386",
"387",
"409",
"410",
"421",
"424",
"428",
"430",
"451",
"453",
"457",
"460",
"471"
] | [
"nonn",
"tabf"
] | 26 | 1 | 2 | [
"A051845",
"A221740",
"A221741",
"A358314"
] | null | Alexander R. Povolotsky, Nov 08 2022 | 2023-12-10T09:16:42 | oeisdata/seq/A358/A358314.seq | bd25fccd89f2caf7a089e307f7054610 |
A358315 | Primes p == 1 (mod 3) such that there exists 1 <= x <= p-2 such that (x+1)^p - x^p == 1 (mod p^2) and that p does not divide x^2 + x + 1. | [
"79",
"193",
"337",
"421",
"457",
"547",
"601",
"619",
"691",
"757",
"787",
"907",
"1039",
"1093",
"1231",
"1237",
"1303",
"1489",
"1531",
"1657",
"1993",
"2089",
"2113",
"2251",
"2311",
"2377",
"2389",
"2437",
"2539",
"2647",
"2659",
"2713",
"2731",
"2749",
"3001",
"3037",
"3109",
"3229",
"3319",
"3331",
"3511",
"4003",
"4177",
"4243",
"4273",
"4339",
"4447"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A068209",
"A320535",
"A358315"
] | null | Jianing Song, Nov 08 2022 | 2022-11-08T18:25:11 | oeisdata/seq/A358/A358315.seq | c3ecb5535774d6c49be2d9abcb5b01a4 |
A358316 | Number of edge-4-critical graphs on n unlabeled vertices. | [
"1",
"0",
"1",
"2",
"5",
"21",
"150",
"1221",
"14581",
"207969"
] | [
"nonn",
"more"
] | 9 | 4 | 4 | null | null | Brendan McKay, Nov 08 2022 | 2022-11-09T19:06:08 | oeisdata/seq/A358/A358316.seq | edb8052d6a04b8676a456748527a1983 |
A358317 | Ordered squares of the chord lengths of the parabola y=x^2, where the chord ends are all possible points of the parabola with integer coordinates. | [
"0",
"2",
"4",
"10",
"16",
"18",
"20",
"26",
"36",
"50",
"64",
"68",
"80",
"82",
"90",
"98",
"100",
"122",
"144",
"148",
"162",
"170",
"180",
"196",
"226",
"234",
"242",
"250",
"256",
"260",
"272",
"290",
"320",
"324",
"338",
"362",
"400",
"404",
"442",
"450",
"484",
"490",
"500",
"530",
"576",
"578",
"580",
"592",
"612",
"626",
"650",
"676",
"720",
"722",
"730",
"738",
"784",
"788",
"810",
"842",
"882",
"900",
"962",
"980"
] | [
"nonn"
] | 55 | 1 | 2 | [
"A001481",
"A071253",
"A358317"
] | null | Nicolay Avilov, Nov 09 2022 | 2022-11-24T18:27:27 | oeisdata/seq/A358/A358317.seq | 919fd4aaf631477b838fed0880d37e74 |
A358318 | For n >= 5, a(n) is the number of zeros that need to be inserted to the left of the ones digit of the n-th prime so that the result is composite. | [
"2",
"2",
"2",
"4",
"1",
"1",
"1",
"2",
"3",
"1",
"1",
"3",
"3",
"2",
"3",
"5",
"1",
"2",
"1",
"3",
"5",
"1",
"1",
"1",
"3",
"3",
"1",
"3",
"3",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"5",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"1",
"6",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"2",
"1",
"1",
"1",
"1",
"3"
] | [
"nonn",
"base"
] | 36 | 5 | 1 | [
"A000040",
"A344637",
"A358318"
] | null | Rida Hamadani, Nov 09 2022 | 2022-12-08T07:37:14 | oeisdata/seq/A358/A358318.seq | 0a9dcf3de6113c0b2682eb23cdf83447 |
A358319 | Multiplicative sequence a(n) with a(p^e) = ((p-2) - (p-1) * e) * p^(e-1) for prime p and e > 0. | [
"1",
"-1",
"-1",
"-4",
"-1",
"1",
"-1",
"-12",
"-9",
"1",
"-1",
"4",
"-1",
"1",
"1",
"-32",
"-1",
"9",
"-1",
"4",
"1",
"1",
"-1",
"12",
"-25",
"1",
"-45",
"4",
"-1",
"-1",
"-1",
"-80",
"1",
"1",
"1",
"36",
"-1",
"1",
"1",
"12",
"-1",
"-1",
"-1",
"4",
"9",
"1",
"-1",
"32",
"-49",
"25",
"1",
"4",
"-1",
"45",
"1",
"12",
"1",
"1",
"-1",
"-4",
"-1",
"1",
"9",
"-192",
"1",
"-1",
"-1",
"4",
"1",
"-1",
"-1",
"108",
"-1",
"1",
"25",
"4",
"1",
"-1",
"-1",
"32"
] | [
"sign",
"easy",
"mult"
] | 7 | 1 | 4 | [
"A000010",
"A076479",
"A358319"
] | null | Werner Schulte, Nov 09 2022 | 2022-11-09T11:32:52 | oeisdata/seq/A358/A358319.seq | 5564e3c58b17f07cab92f8c2fad79878 |
A358320 | Least odd number m such that m*2^n is a perfect, amicable or sociable number, and -1 if no such number exists. | [
"12285",
"3",
"7",
"779",
"31",
"37",
"127",
"651",
"2927269",
"93",
"25329329",
"7230607",
"8191",
"66445153",
"7613527",
"18431675687",
"131071",
"264003743",
"524287",
"59592560831",
"949755039781"
] | [
"nonn",
"more"
] | 108 | 0 | 1 | [
"A000396",
"A001065",
"A002025",
"A090748",
"A259180",
"A262625",
"A347770",
"A358320",
"A358415"
] | null | Jean-Marc Rebert, Nov 09 2022 | 2022-11-19T19:20:06 | oeisdata/seq/A358/A358320.seq | 903561286a5f014c89fb9ad3dcac6ab9 |
A358321 | a(n) is the index of the smallest n-gonal number with exactly n distinct prime factors. | [
"11",
"210",
"87",
"228",
"1155",
"7854",
"66612",
"395646",
"2193303",
"8389010",
"122574155",
"630341910",
"6066475415"
] | [
"nonn",
"more"
] | 67 | 3 | 1 | [
"A358321",
"A358862",
"A359014"
] | null | Ilya Gutkovskiy, Dec 12 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358321.seq | 928e41d50113dbe4ed4b3ad9f57b6017 |
A358322 | Interlopers in sexy prime quadruples. | [
"7",
"13",
"19",
"43",
"71",
"617",
"643",
"1093",
"1483",
"1489",
"1609",
"1871",
"1877",
"2381",
"2687",
"3919",
"4003",
"5441",
"5651",
"5657",
"9463",
"11831",
"12109",
"14629",
"20357",
"21491",
"24107",
"26683",
"26713",
"32059",
"37571",
"41957",
"42407",
"44533",
"50591",
"55217",
"65717",
"68899",
"70001",
"79813",
"87557",
"88811",
"88817",
"103993",
"110923",
"112573",
"122029"
] | [
"nonn"
] | 13 | 1 | 1 | [
"A023271",
"A358322"
] | null | J. M. Bergot and Robert Israel, Nov 09 2022 | 2022-11-10T07:39:01 | oeisdata/seq/A358/A358322.seq | 230897e7e1a8d6429b1dab861c556041 |
A358323 | a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1. | [
"1",
"0",
"-1",
"-7",
"-60",
"-1210",
"-34020",
"-607332",
"-30448441",
"-1093612784",
"-55400732937",
"-2471079070511",
"-197500419383964"
] | [
"sign",
"hard",
"more"
] | 12 | 0 | 4 | [
"A350953",
"A358323",
"A358324",
"A358325",
"A358326",
"A358327"
] | null | Stefano Spezia, Nov 09 2022 | 2022-11-16T08:54:35 | oeisdata/seq/A358/A358323.seq | a239d8d07f4049e05ae3551cde663b40 |
A358324 | a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1. | [
"1",
"0",
"1",
"8",
"63",
"2090",
"36875",
"1123653",
"34292912",
"1246207300",
"53002204560",
"2418538080316",
"215120941720912"
] | [
"nonn",
"hard",
"more"
] | 11 | 0 | 4 | [
"A350954",
"A358323",
"A358324",
"A358325",
"A358326",
"A358327"
] | null | Stefano Spezia, Nov 09 2022 | 2022-11-19T21:07:23 | oeisdata/seq/A358/A358324.seq | 5719723d6fbe3cda272f5c443e4ef198 |
A358325 | a(n) is the minimal absolute value of determinant of a nonsingular n X n symmetric Toeplitz matrix using the integers 0 to n - 1. | [
"1",
"3",
"12",
"2",
"11",
"10",
"5",
"4",
"1",
"4",
"1"
] | [
"nonn",
"hard",
"more"
] | 12 | 2 | 2 | [
"A356865",
"A358323",
"A358324",
"A358325",
"A358326",
"A358327"
] | null | Stefano Spezia, Nov 09 2022 | 2022-11-19T21:07:48 | oeisdata/seq/A358/A358325.seq | 30843b0bd64a12fb47aa9ea6832d96d6 |
A358326 | a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1. | [
"1",
"0",
"1",
"4",
"34",
"744",
"17585",
"688202",
"33248174",
"2144597292",
"169696358796",
"16521881847592"
] | [
"nonn",
"hard",
"more"
] | 10 | 0 | 4 | [
"A351019",
"A358323",
"A358324",
"A358326",
"A358327"
] | null | Stefano Spezia, Nov 09 2022 | 2022-11-16T09:41:17 | oeisdata/seq/A358/A358326.seq | 922ff888e51d20456e4fcd1c8b2aee9c |
A358327 | a(n) is the maximal permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1. | [
"1",
"0",
"1",
"12",
"304",
"12696",
"778785",
"64118596",
"7014698888",
"965862895732",
"166105870928994",
"34460169208369298"
] | [
"nonn",
"hard",
"more"
] | 10 | 0 | 4 | [
"A351020",
"A358323",
"A358324",
"A358326",
"A358327"
] | null | Stefano Spezia, Nov 09 2022 | 2022-11-16T09:41:24 | oeisdata/seq/A358/A358327.seq | 396c35070550d25c38875253c5065eaf |
A358328 | Triangle read by rows: T(n,k) is the number of polygons with 2*n sides, of which k run through the center of a circle, on the circumference of which the 2*n vertices of the polygon are arranged at equal spacing, up to rotation. | [
"0",
"0",
"1",
"1",
"0",
"1",
"4",
"4",
"4",
"2",
"98",
"120",
"84",
"24",
"6",
"5648",
"6912",
"4032",
"1344",
"288",
"40",
"532344",
"631680",
"351360",
"118408",
"26400",
"3840",
"322",
"72724122",
"84211200",
"45907200",
"15436800",
"3513600",
"552960",
"57600",
"3294",
"13577195574",
"15432560640",
"8305920000",
"2786273280",
"643507200",
"106122240",
"12418560",
"967680",
"40320"
] | [
"nonn",
"tabl"
] | 22 | 0 | 7 | [
"A094155",
"A330662",
"A358328"
] | null | Ludovic Schwob, Nov 09 2022 | 2022-12-05T04:40:53 | oeisdata/seq/A358/A358328.seq | 17c5f840cf2e473e524d4add34385576 |
A358329 | Triangle read by rows: T(n,k) is the number of polygons with 2*n sides, of which k run through the center of a circle, on the circumference of which the 2*n vertices of the polygon are arranged at equal spacing, up to rotation and reflection. | [
"0",
"0",
"1",
"1",
"0",
"1",
"4",
"3",
"3",
"2",
"70",
"60",
"54",
"12",
"6",
"2980",
"3512",
"2088",
"704",
"156",
"28",
"268444",
"315840",
"176928",
"59204",
"13488",
"1920",
"193",
"36387789",
"42112416",
"22965696",
"7722144",
"1759104",
"277344",
"28992",
"1743",
"6789078267",
"7716280320",
"4153217280",
"1393136640",
"321814080",
"53061120",
"6216960",
"483840",
"20640"
] | [
"nonn",
"tabl"
] | 22 | 0 | 7 | [
"A094157",
"A330662",
"A358329"
] | null | Ludovic Schwob, Nov 09 2022 | 2022-12-05T04:41:03 | oeisdata/seq/A358/A358329.seq | 317263d125a45b4be2136b30181faa20 |
A358330 | By concatenating the standard compositions of each part of the a(n)-th standard composition, we get a weakly increasing sequence. | [
"0",
"1",
"2",
"3",
"4",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"15",
"18",
"19",
"24",
"25",
"26",
"28",
"30",
"31",
"32",
"36",
"38",
"39",
"40",
"42",
"50",
"51",
"56",
"57",
"58",
"60",
"62",
"63",
"64",
"72",
"73",
"74",
"76",
"78",
"79",
"96",
"100",
"102",
"103",
"104",
"106",
"114",
"115",
"120",
"121",
"122",
"124",
"126",
"127",
"128",
"129",
"130",
"136",
"146",
"147"
] | [
"nonn"
] | 10 | 1 | 3 | [
"A000120",
"A001511",
"A029931",
"A048896",
"A058891",
"A066099",
"A070939",
"A333766",
"A335404",
"A357134",
"A357135",
"A357137",
"A357186",
"A358330"
] | null | Gus Wiseman, Nov 10 2022 | 2022-11-11T08:08:49 | oeisdata/seq/A358/A358330.seq | e115a7728346a83fd10b03b944cfae34 |
A358331 | Number of integer partitions of n with arithmetic and geometric mean differing by one. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"0",
"2",
"0",
"1",
"1",
"0",
"3",
"3",
"0",
"0",
"2",
"2",
"0",
"4",
"0",
"0",
"5",
"0",
"0",
"4",
"5",
"4",
"3",
"2",
"0",
"3",
"3",
"10",
"4",
"0",
"0",
"7",
"0",
"0",
"16",
"2",
"4",
"4",
"0",
"0",
"5",
"24",
"0",
"6",
"0",
"0",
"9",
"0",
"27",
"10",
"0",
"7",
"7",
"1",
"0",
"44"
] | [
"nonn"
] | 37 | 0 | 29 | [
"A000041",
"A067538",
"A067539",
"A078174",
"A078175",
"A102627",
"A178832",
"A271654",
"A316413",
"A320322",
"A326027",
"A326028",
"A326623",
"A326624",
"A326625",
"A326641",
"A326645",
"A357710",
"A358331",
"A358332"
] | null | Gus Wiseman, Nov 09 2022 | 2023-09-25T10:58:39 | oeisdata/seq/A358/A358331.seq | 446a9942d452aa82c6ebb1b1e73415c3 |
A358332 | Numbers whose prime indices have arithmetic and geometric mean differing by one. | [
"57",
"228",
"1064",
"1150",
"1159",
"2405",
"3249",
"7991",
"29785",
"29999",
"30153",
"35378",
"51984",
"82211",
"133931",
"185193",
"187039",
"232471",
"242592",
"374599",
"404225",
"431457",
"685207",
"715129",
"927288",
"1132096",
"1165519",
"1322500",
"1343281",
"1555073",
"1872413",
"2016546",
"2873687",
"3468319",
"4266421",
"4327344"
] | [
"nonn"
] | 22 | 1 | 1 | [
"A000040",
"A000720",
"A001221",
"A001222",
"A003963",
"A051293",
"A056239",
"A067538",
"A067539",
"A078175",
"A111233",
"A215366",
"A289508",
"A289509",
"A316413",
"A320322",
"A326027",
"A326028",
"A326623",
"A326624",
"A326645",
"A357710",
"A358331",
"A358332"
] | null | Gus Wiseman, Nov 09 2022 | 2025-03-01T08:37:36 | oeisdata/seq/A358/A358332.seq | 6edcfa9f3359be474dfbc6196d9cc9f4 |
A358333 | By concatenating the standard compositions for each part of the n-th standard composition, we get a sequence of length a(n). Row-lengths of A357135. | [
"0",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"3",
"2",
"3",
"3",
"3",
"3",
"4",
"2",
"2",
"3",
"4",
"3",
"3",
"3",
"4",
"2",
"4",
"3",
"4",
"4",
"4",
"4",
"5",
"2",
"3",
"2",
"3",
"4",
"4",
"4",
"5",
"2",
"4",
"3",
"4",
"4",
"4",
"4",
"5",
"3",
"3",
"4",
"5",
"4",
"4",
"4",
"5",
"3",
"5",
"4",
"5",
"5",
"5",
"5",
"6",
"3",
"3",
"3",
"4",
"3",
"3",
"3",
"4",
"3",
"5",
"4",
"5",
"5",
"5",
"5",
"6",
"3",
"3",
"4",
"5",
"4",
"4",
"4"
] | [
"nonn"
] | 7 | 0 | 4 | [
"A000120",
"A001511",
"A029931",
"A048896",
"A058891",
"A066099",
"A070939",
"A096111",
"A333766",
"A357134",
"A357135",
"A357137",
"A357139",
"A357186",
"A357187",
"A358330",
"A358333"
] | null | Gus Wiseman, Nov 10 2022 | 2022-11-11T08:08:22 | oeisdata/seq/A358/A358333.seq | 861757b307623a7c5cd540f4b0be7337 |
A358334 | Number of twice-partitions of n into odd-length partitions. | [
"1",
"1",
"2",
"4",
"7",
"13",
"25",
"43",
"77",
"137",
"241",
"410",
"720",
"1209",
"2073",
"3498",
"5883",
"9768",
"16413",
"26978",
"44741",
"73460",
"120462",
"196066",
"320389",
"518118",
"839325",
"1353283",
"2178764",
"3490105",
"5597982",
"8922963",
"14228404",
"22609823",
"35875313",
"56756240",
"89761600",
"141410896",
"222675765"
] | [
"nonn"
] | 12 | 0 | 3 | [
"A000041",
"A000219",
"A001970",
"A026424",
"A027193",
"A055922",
"A063834",
"A072233",
"A078408",
"A117958",
"A270995",
"A279374",
"A296122",
"A298118",
"A300300",
"A300301",
"A300647",
"A302243",
"A321449",
"A356932",
"A356935",
"A358334",
"A358824",
"A358825",
"A358827",
"A358834"
] | null | Gus Wiseman, Dec 01 2022 | 2022-12-30T21:38:28 | oeisdata/seq/A358/A358334.seq | 374778e436dab6da700ffe1d19283f64 |
A358335 | Number of integer compositions of n whose parts have weakly decreasing numbers of prime factors (with multiplicity). | [
"1",
"1",
"2",
"3",
"5",
"8",
"12",
"19",
"29",
"44",
"68",
"100",
"153",
"227",
"342",
"509",
"759",
"1129",
"1678",
"2492",
"3699",
"5477",
"8121",
"12015",
"17795",
"26313",
"38924",
"57541",
"85065",
"125712",
"185758",
"274431",
"405420",
"598815",
"884465",
"1306165",
"1928943",
"2848360",
"4205979",
"6210289",
"9169540"
] | [
"nonn"
] | 16 | 0 | 3 | [
"A001221",
"A001222",
"A011782",
"A056239",
"A063834",
"A141199",
"A218482",
"A300335",
"A319071",
"A319169",
"A320324",
"A358335",
"A358831",
"A358901",
"A358902",
"A358903",
"A358904",
"A358908",
"A358909",
"A358910",
"A358911"
] | null | Gus Wiseman, Dec 05 2022 | 2024-02-12T17:24:53 | oeisdata/seq/A358/A358335.seq | 641fc0643e6a527c4bd02f1b54c94d1d |
A358336 | Multiplicative sequence with a(p^e) = ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1) for prime p and e > 0. | [
"1",
"3",
"5",
"12",
"9",
"15",
"13",
"40",
"30",
"27",
"21",
"60",
"25",
"39",
"45",
"120",
"33",
"90",
"37",
"108",
"65",
"63",
"45",
"200",
"90",
"75",
"153",
"156",
"57",
"135",
"61",
"336",
"105",
"99",
"117",
"360",
"73",
"111",
"125",
"360",
"81",
"195",
"85",
"252",
"270",
"135",
"93",
"600",
"182",
"270",
"165",
"300",
"105",
"459",
"189",
"520",
"185",
"171",
"117",
"540",
"121",
"183",
"390",
"896"
] | [
"nonn",
"easy",
"mult"
] | 17 | 1 | 2 | [
"A000010",
"A001620",
"A002117",
"A005361",
"A013664",
"A018804",
"A112526",
"A157289",
"A244115",
"A306016",
"A358336"
] | null | Werner Schulte, Nov 09 2022 | 2024-12-13T10:25:16 | oeisdata/seq/A358/A358336.seq | 0e3953ce30453b9560169a45c6dacc05 |
A358337 | Earliest infinite sequence of distinct integers on a square spiral such that every number equals the sum of its four adjacent neighbors. See the Comments. | [
"0",
"1",
"-1",
"2",
"-2",
"3",
"-3",
"-6",
"6",
"4",
"-4",
"9",
"-5",
"-13",
"5",
"-17",
"11",
"10",
"8",
"-20",
"-11",
"20",
"-9",
"7",
"-15",
"-10",
"17",
"-18",
"19",
"-22",
"-8",
"21",
"-12",
"33",
"-31",
"-21",
"-19",
"39",
"-7",
"15",
"-14",
"14",
"12",
"-25",
"43",
"-30",
"25",
"-16",
"22",
"13",
"-34",
"41",
"-50",
"50",
"-28",
"26",
"-24",
"-33",
"46",
"-53",
"71",
"-26",
"18",
"23",
"-27",
"-60",
"54",
"-71",
"28",
"-23"
] | [
"sign"
] | 18 | 0 | 4 | [
"A344659",
"A354435",
"A354441",
"A358048",
"A358151",
"A358254",
"A358337"
] | null | Scott R. Shannon, Nov 10 2022 | 2022-11-13T09:33:35 | oeisdata/seq/A358/A358337.seq | 35846c77afeec004fdfe1708736d4a26 |
A358338 | a(n) = abs(a(n-1) - count(a(n-1))) where count(a(n-1)) is the number of times a(n-1) has appeared so far in the sequence, a(1)=0. | [
"0",
"1",
"0",
"2",
"1",
"1",
"2",
"0",
"3",
"2",
"1",
"3",
"1",
"4",
"3",
"0",
"4",
"2",
"2",
"3",
"1",
"5",
"4",
"1",
"6",
"5",
"3",
"2",
"4",
"0",
"5",
"2",
"5",
"1",
"7",
"6",
"4",
"1",
"8",
"7",
"5",
"0",
"6",
"3",
"3",
"4",
"2",
"6",
"2",
"7",
"4",
"3",
"5",
"1",
"9",
"8",
"6",
"1",
"10",
"9",
"7",
"3",
"6",
"0",
"7",
"2",
"8",
"5",
"2",
"9",
"6",
"1",
"11",
"10",
"8",
"4",
"4",
"5",
"3",
"7",
"1",
"12",
"11",
"9",
"5",
"4"
] | [
"nonn",
"easy"
] | 24 | 1 | 4 | [
"A337835",
"A340488",
"A342585",
"A358338"
] | null | Clément Vovard, Nov 10 2022 | 2023-12-10T09:15:27 | oeisdata/seq/A358/A358338.seq | 53c04dad14153a619cf5b30e73abcc3e |
A358339 | Array read by antidiagonals upwards: A(n,k) is the number of nonequivalent positions in the KRvK endgame on an n X n chessboard with DTM (distance to mate) k, n >= 3, k >= 0. | [
"2",
"4",
"5",
"3",
"15",
"9",
"5",
"10",
"36",
"13",
"9",
"51",
"21",
"70",
"20",
"5",
"30",
"122",
"36",
"120",
"27",
"4",
"40",
"59",
"231",
"55",
"189",
"35",
"0",
"26",
"97",
"101",
"384",
"78",
"280",
"44",
"0",
"30",
"39",
"181",
"165",
"587",
"105",
"396",
"54",
"0",
"31",
"87",
"53",
"311",
"246",
"846",
"136",
"540",
"65",
"0",
"22",
"79",
"134",
"67",
"484",
"356",
"1167",
"171",
"715",
"77"
] | [
"nonn",
"tabl"
] | 71 | 3 | 1 | [
"A000096",
"A014105",
"A077414",
"A225552",
"A357723",
"A358339"
] | null | Nathan L. Skirrow, Nov 10 2022 | 2024-12-01T04:44:59 | oeisdata/seq/A358/A358339.seq | d73bf45c1725a604dfc6974728117d68 |
A358340 | a(n) is the smallest n-digit number whose fourth power is zeroless. | [
"1",
"11",
"104",
"1027",
"10267",
"102674",
"1026708",
"10266908",
"102669076",
"1026690113",
"10266901031",
"102669009704",
"1026690096087",
"10266900960914",
"102669009608176",
"1026690096080369",
"10266900960803447",
"102669009608034434",
"1026690096080341627",
"10266900960803409734",
"102669009608034097731",
"1026690096080340972491"
] | [
"nonn",
"base"
] | 22 | 1 | 2 | [
"A052040",
"A052044",
"A052382",
"A124648",
"A124649",
"A252484",
"A253643",
"A253644",
"A253647",
"A358340"
] | null | Mohammed Yaseen, Nov 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358340.seq | 2aa0a3a5d1aa4b679e1b7bcda8b024c1 |
A358341 | Expansion of e.g.f. (exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2). | [
"0",
"1",
"3",
"7",
"31",
"96",
"314",
"1072",
"3693",
"12556",
"41800",
"136236",
"435923",
"1374088",
"4280358",
"13211704",
"40492633",
"123440724",
"374774660",
"1134346228",
"3425446335",
"10326139696",
"31088511778",
"93507747360",
"281053811141",
"844319049436",
"2535473717184",
"7611873731452",
"22847398782763",
"68567563479576"
] | [
"nonn",
"easy"
] | 12 | 0 | 3 | [
"A358341",
"A360586"
] | null | Enrique Navarrete, Feb 22 2023 | 2023-03-12T15:39:22 | oeisdata/seq/A358/A358341.seq | d5265b4da9b7b8a8c50299f9a7eae980 |
A358342 | Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime. | [
"3",
"5",
"17",
"65537",
"1927561217",
"6015902625062501",
"12370388895062501",
"835920078368222501",
"6448645485213008897",
"50973659693056000001",
"54332889713542767617",
"64304984013657011717",
"112112769248058062501",
"147337258721536000001"
] | [
"nonn",
"more"
] | 18 | 1 | 1 | [
"A000005",
"A000203",
"A001359",
"A019434",
"A064205",
"A145824",
"A272060",
"A272061",
"A358342"
] | null | Jaroslav Krizek, Nov 10 2022 | 2023-01-05T18:38:56 | oeisdata/seq/A358/A358342.seq | feac31932dc4b3e94983985e9aba74e1 |
A358343 | Primes p such that p + 6, p + 12, p + 18, (p+4)/5, (p+4)/5 + 6, (p+4)/5 + 12 and (p+4)/5 + 18 are also prime. | [
"213724201",
"336987901",
"791091901",
"1940820901",
"2454494551",
"2525191051",
"2675901751",
"3490984201",
"3571597951",
"3702692551",
"4045565851",
"4531570951",
"5698472701",
"5928161251",
"5953041001",
"6589503751",
"7073836201",
"7360771801",
"7811308951",
"8282895451",
"10242069451",
"11049315751",
"12392801251",
"13062696001"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A023271",
"A358343"
] | null | J. M. Bergot and Robert Israel, Nov 10 2022 | 2022-11-21T09:50:04 | oeisdata/seq/A358/A358343.seq | 972a74e4fa55790ec2e1fd314355d549 |
A358344 | a(1) = 0; a(n) = the smallest number such that the concatenation a(1)a(2)...a(n) is prime in the smallest allowed base; sequence terminates at index m if a(1)a(2)...a(m)k is composite in the smallest allowed base for all k. | [
"0",
"2",
"1",
"2",
"2",
"3",
"1",
"5",
"9",
"7",
"21",
"5",
"31",
"49",
"39",
"104",
"2",
"34",
"44",
"74",
"22",
"64",
"16",
"107",
"549",
"81",
"207",
"273",
"87",
"497",
"27",
"556",
"42",
"150",
"32",
"44",
"144",
"340",
"28",
"198",
"677",
"13",
"61",
"209",
"377",
"893",
"329",
"391",
"49",
"83",
"425",
"197",
"1017",
"205",
"191",
"163",
"1131",
"291",
"281",
"295",
"389"
] | [
"base",
"nonn"
] | 24 | 1 | 2 | [
"A023107",
"A024770",
"A069603",
"A358344"
] | null | Samuel Harkness, Nov 11 2022 | 2022-11-28T10:01:41 | oeisdata/seq/A358/A358344.seq | 51dcdbcd4276f630d040da70d68b0520 |
A358345 | a(n) is the number of even square divisors of n. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2"
] | [
"nonn"
] | 13 | 1 | 16 | [
"A016742",
"A046951",
"A187941",
"A222171",
"A235127",
"A298735",
"A358345"
] | null | Amiram Eldar, Nov 11 2022 | 2022-11-12T06:35:33 | oeisdata/seq/A358/A358345.seq | c9d12ec073b0df301c0fe15fa07e8482 |
A358346 | a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335). | [
"1",
"3",
"4",
"1",
"6",
"12",
"8",
"9",
"1",
"18",
"12",
"4",
"14",
"24",
"24",
"1",
"18",
"3",
"20",
"6",
"32",
"36",
"24",
"36",
"1",
"42",
"28",
"8",
"30",
"72",
"32",
"33",
"48",
"54",
"48",
"1",
"38",
"60",
"56",
"54",
"42",
"96",
"44",
"12",
"6",
"72",
"48",
"4",
"1",
"3",
"72",
"14",
"54",
"84",
"72",
"72",
"80",
"90",
"60",
"24",
"62",
"96",
"8",
"1",
"84",
"144",
"68",
"18",
"96",
"144"
] | [
"nonn",
"easy",
"mult"
] | 19 | 1 | 2 | [
"A000290",
"A005117",
"A033634",
"A034448",
"A035316",
"A055076",
"A077610",
"A268335",
"A351569",
"A358346",
"A358347"
] | null | Amiram Eldar, Nov 11 2022 | 2024-07-09T00:53:51 | oeisdata/seq/A358/A358346.seq | 87f7467670935d27cdd27a4ab16af6b7 |
A358347 | a(n) is the sum of the unitary divisors of n that are squares. | [
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"10",
"1",
"1",
"5",
"1",
"1",
"1",
"17",
"1",
"10",
"1",
"5",
"1",
"1",
"1",
"1",
"26",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"50",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"10",
"1",
"1",
"17",
"50",
"26",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"10",
"65",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"10",
"1",
"1",
"26",
"5",
"1",
"1",
"1",
"17",
"82",
"1"
] | [
"nonn",
"easy",
"mult"
] | 20 | 1 | 4 | [
"A033634",
"A034448",
"A035316",
"A056624",
"A077610",
"A078434",
"A247041",
"A268335",
"A350388",
"A351568",
"A358346",
"A358347"
] | null | Amiram Eldar, Nov 11 2022 | 2023-09-09T06:49:35 | oeisdata/seq/A358/A358347.seq | b041f9b0227aef1c4f02338127645d2a |
A358348 | Numbers k such that k == k^k (mod 9). | [
"1",
"4",
"7",
"9",
"10",
"13",
"16",
"17",
"18",
"19",
"22",
"25",
"27",
"28",
"31",
"34",
"35",
"36",
"37",
"40",
"43",
"45",
"46",
"49",
"52",
"53",
"54",
"55",
"58",
"61",
"63",
"64",
"67",
"70",
"71",
"72",
"73",
"76",
"79",
"81",
"82",
"85",
"88",
"89",
"90",
"91",
"94",
"97",
"99",
"100",
"103",
"106",
"107",
"108",
"109",
"112",
"115",
"117",
"118",
"121",
"124",
"125",
"126"
] | [
"nonn",
"base",
"easy"
] | 48 | 1 | 2 | [
"A007953",
"A010888",
"A082576",
"A189510",
"A358348"
] | null | Ivan Stoykov, Nov 11 2022 | 2023-03-29T06:37:36 | oeisdata/seq/A358/A358348.seq | 6094d1b12dea784fc518e7b8d4738218 |
A358349 | A puzzle array read by antidiagonals. | [
"1",
"2",
"1",
"3",
"3",
"1",
"4",
"9",
"4",
"1",
"5",
"21",
"31",
"5",
"1",
"6",
"41",
"220",
"129",
"6",
"1",
"7",
"71",
"1081",
"6949",
"651",
"7",
"1",
"8",
"113",
"3992",
"244769",
"897072",
"3913",
"8",
"1",
"9",
"169",
"12015",
"4560121",
"1701796853",
"583997785",
"27399",
"9",
"1",
"10",
"241",
"31112",
"52524001",
"1117878053902",
"1526634890512201"
] | [
"nonn",
"easy",
"tabl"
] | 11 | 1 | 2 | null | null | Sean A. Irvine, Dec 02 2022 | 2022-12-03T05:54:29 | oeisdata/seq/A358/A358349.seq | 10343f536f4f7393dbfada9317dcf48d |
A358350 | Numbers that can be written as (m + sum of digits of m + product of digits of m) for some m. | [
"3",
"6",
"9",
"11",
"12",
"14",
"15",
"17",
"18",
"20",
"21",
"22",
"23",
"24",
"26",
"27",
"29",
"30",
"32",
"33",
"34",
"35",
"38",
"42",
"43",
"44",
"46",
"48",
"50",
"53",
"54",
"55",
"56",
"58",
"62",
"63",
"66",
"68",
"69",
"73",
"74",
"76",
"77",
"78",
"80",
"82",
"83",
"86",
"88",
"90",
"92",
"95",
"97",
"98",
"99",
"101",
"103",
"104",
"105",
"106",
"107",
"108",
"109",
"110"
] | [
"nonn",
"base"
] | 33 | 1 | 1 | [
"A000533",
"A161351",
"A176995",
"A336826",
"A337718",
"A358350"
] | null | Bernard Schott, Nov 11 2022 | 2022-12-19T15:05:18 | oeisdata/seq/A358/A358350.seq | 7103b79ce3100da2e59dfa7885d168c9 |
A358351 | Number of values of m such that m + (sum of digits of m) + (product of digits of m) is n. | [
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"2",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"3",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"2",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"1",
"0",
"2",
"1",
"0",
"0",
"0",
"1",
"2",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"0"
] | [
"nonn",
"base"
] | 25 | 1 | 26 | [
"A011540",
"A161351",
"A230093",
"A230103",
"A358350",
"A358351"
] | null | Bernard Schott, Nov 16 2022 | 2022-11-21T02:58:50 | oeisdata/seq/A358/A358351.seq | 056dc11c77fbd9117b5a8fae520ace55 |
A358352 | a(n) is the smallest number k such that A358351(k) = n. | [
"1",
"3",
"26",
"38",
"380",
"1116",
"12912",
"95131",
"342038",
"3320210",
"494204209",
"773089018"
] | [
"nonn",
"base",
"more"
] | 23 | 0 | 2 | [
"A006064",
"A007953",
"A007954",
"A161351",
"A358350",
"A358351",
"A358352"
] | null | Bernard Schott, Nov 19 2022 | 2022-11-20T08:46:08 | oeisdata/seq/A358/A358352.seq | 4cd6cc5be3b9cf1cbb497fb292d16172 |
A358353 | Numbers that are not of the form m + (sum of digits of m) + (product of digits of m) for any m. | [
"1",
"2",
"4",
"5",
"7",
"8",
"10",
"13",
"16",
"19",
"25",
"28",
"31",
"36",
"37",
"39",
"40",
"41",
"45",
"47",
"49",
"51",
"52",
"57",
"59",
"60",
"61",
"64",
"65",
"67",
"70",
"71",
"72",
"75",
"79",
"81",
"84",
"85",
"87",
"89",
"91",
"93",
"94",
"96",
"100",
"102",
"116",
"120",
"125",
"126",
"129",
"137",
"141",
"142",
"146",
"150",
"152",
"153",
"160",
"161",
"162",
"166",
"171",
"172",
"173",
"180"
] | [
"nonn",
"base"
] | 30 | 1 | 2 | [
"A003052",
"A161351",
"A230104",
"A358350",
"A358351",
"A358352",
"A358353"
] | null | Bernard Schott, Dec 19 2022 | 2023-01-16T08:30:44 | oeisdata/seq/A358/A358353.seq | 940b779a425268b2f52cd3818fb5f1ee |
A358354 | a(n) = n for n <= 3. Thereafter a(n) is the least m such that rad(m) = rad(rad(a(n-3)) + rad(a(n-1))) where rad is A007947. | [
"1",
"2",
"3",
"4",
"8",
"5",
"7",
"9",
"16",
"27",
"6",
"32",
"25",
"11",
"13",
"12",
"17",
"30",
"18",
"23",
"53",
"59",
"82",
"15",
"74",
"78",
"93",
"167",
"35",
"64",
"169",
"24",
"128",
"45",
"21",
"529",
"38",
"3481",
"164",
"60",
"89",
"57",
"87",
"22",
"79",
"166",
"94",
"173",
"339",
"433",
"606",
"105",
"538",
"286",
"391",
"929",
"75",
"406",
"1335",
"90",
"218",
"1553"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A007947",
"A358093",
"A358354"
] | null | David James Sycamore, Nov 11 2022 | 2022-11-30T17:26:30 | oeisdata/seq/A358/A358354.seq | a33ad07eba254dca9a316225d17fafdf |
A358355 | Maximum length of an induced path (or chordless path) in the n-halved cube graph. | [
"0",
"1",
"1",
"2",
"3",
"6",
"11",
"18"
] | [
"nonn",
"more"
] | 17 | 1 | 4 | [
"A099155",
"A357619",
"A358355",
"A358356",
"A358357"
] | null | Pontus von Brömssen, Nov 12 2022 | 2022-12-23T16:23:08 | oeisdata/seq/A358/A358355.seq | 329fc01bf05562ff7f94eefaab313377 |
A358356 | Maximum length of an induced cycle (or chordless cycle) in the n-halved cube graph. | [
"0",
"0",
"3",
"4",
"5",
"8",
"12",
"20"
] | [
"nonn",
"more"
] | 6 | 1 | 3 | [
"A000937",
"A357620",
"A358355",
"A358356",
"A358358"
] | null | Pontus von Brömssen, Nov 12 2022 | 2022-11-15T09:16:36 | oeisdata/seq/A358/A358356.seq | 09b029fea8f9536dfde007ccbdbac338 |
A358357 | Maximum length of an induced path (or chordless path) in the n-folded cube graph. | [
"1",
"1",
"2",
"4",
"10",
"22"
] | [
"nonn",
"more"
] | 14 | 2 | 3 | [
"A099155",
"A357619",
"A358355",
"A358357",
"A358358"
] | null | Pontus von Brömssen, Nov 12 2022 | 2022-12-24T11:15:45 | oeisdata/seq/A358/A358357.seq | e03faf9566e3892fd166b2ecf83db863 |
A358358 | Maximum length of an induced cycle (or chordless cycle) in the n-folded cube graph. | [
"0",
"3",
"4",
"6",
"12",
"24"
] | [
"nonn",
"more"
] | 6 | 2 | 2 | [
"A000937",
"A357620",
"A358356",
"A358357",
"A358358"
] | null | Pontus von Brömssen, Nov 12 2022 | 2022-11-15T09:16:44 | oeisdata/seq/A358/A358358.seq | bd811a2c50f2fe9d1da75a8983a2a2e1 |
A358359 | a(n) = number of occurrences of n in A128440; i.e., as a number [k*r^m], where r = golden ratio = (1+sqrt(5))/2, k and m are positive integers, and [ ] = floor. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"3",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"3",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"3",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1"
] | [
"nonn"
] | 7 | 1 | 4 | [
"A128440",
"A358359"
] | null | Clark Kimberling, Nov 11 2022 | 2022-11-13T08:38:29 | oeisdata/seq/A358/A358359.seq | f8c1402d51d7ffd0802be154ff03e9ba |
A358360 | The 3-adic valuation of the central Delannoy numbers (sequence A001850). | [
"0",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"3",
"2",
"3",
"1",
"2",
"1",
"3",
"2",
"3",
"0",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"4",
"3",
"4",
"2",
"3",
"2",
"4",
"3",
"4",
"1",
"2",
"1",
"3",
"2",
"3",
"1",
"2",
"1",
"4",
"3",
"4",
"2",
"3",
"2",
"4",
"3",
"4",
"0",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"3",
"2",
"3",
"1",
"2",
"1",
"3",
"2",
"3",
"0",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"5",
"4",
"5",
"3",
"4",
"3"
] | [
"nonn"
] | 12 | 0 | 4 | [
"A001850",
"A007949",
"A358360"
] | null | Jeffrey Shallit, Nov 12 2022 | 2022-11-12T11:34:12 | oeisdata/seq/A358/A358360.seq | 05ce43a2f4bf2713f36aa605eb3df9f6 |
A358361 | Decimal expansion of the constant Sum_{j>=0} j!!/(2*j)!, where j!! indicates the double factorial of j. | [
"1",
"5",
"8",
"7",
"7",
"0",
"2",
"6",
"4",
"7",
"7",
"2",
"7",
"6",
"6",
"0",
"5",
"0",
"7",
"9",
"7",
"1",
"8",
"0",
"1",
"2",
"6",
"6",
"2",
"8",
"5",
"5",
"5",
"3",
"7",
"3",
"2",
"2",
"3",
"5",
"4",
"8",
"6",
"2",
"3",
"2",
"4",
"6",
"7",
"7",
"2",
"1",
"2",
"5",
"2",
"7",
"5",
"1",
"6",
"3",
"2",
"0",
"4",
"7",
"3",
"5",
"6",
"6",
"5",
"1",
"0",
"4",
"0",
"4",
"6",
"7",
"1",
"8",
"6",
"9",
"5",
"4",
"9",
"5",
"5",
"2",
"2"
] | [
"cons",
"easy",
"nonn"
] | 25 | 1 | 2 | [
"A006882",
"A010050",
"A143280",
"A264152",
"A358361"
] | null | Marco Ripà, Nov 12 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358361.seq | 117242346e103b114b6b1c58425c2fd2 |
A358362 | a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2. | [
"1",
"12",
"228",
"3248",
"56868",
"846384",
"14395920",
"218556096",
"3662534436",
"56236646576",
"933921124752",
"14445103689408",
"238434118702864",
"3706773418885824",
"60917716297733184",
"950622015752780544",
"15571249887287040804",
"243694280206569964464",
"3981466564018425521424"
] | [
"nonn"
] | 18 | 0 | 2 | [
"A358362",
"A358363",
"A358364",
"A358365",
"A367330"
] | null | Peter Luschny, Nov 12 2022 | 2023-11-15T03:12:00 | oeisdata/seq/A358/A358362.seq | 21c645c8ad40563d9d851346f774608a |
A358363 | a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(1/2, k)^2. | [
"1",
"12",
"196",
"3120",
"50020",
"799536",
"12799632",
"204724416",
"3276326820",
"52413049520",
"838703348496",
"13418125153472",
"214703825630736",
"3435088134123200",
"54963617747611200",
"879389273444524800",
"14070604335190692900",
"225124668703739770800",
"3602061930346132909200"
] | [
"nonn"
] | 20 | 0 | 2 | [
"A358362",
"A358363",
"A358364",
"A358365",
"A367331"
] | null | Peter Luschny, Nov 12 2022 | 2023-11-15T03:12:34 | oeisdata/seq/A358/A358363.seq | ea7e0be0e25d6f0624789bc307d0cb37 |
A358364 | a(n) = 16^n * Sum_{k=0..n} binomial(1/2, k)^2. | [
"1",
"20",
"324",
"5200",
"83300",
"1333584",
"21344400",
"341580096",
"5466017700",
"87464462800",
"1399525960976",
"22393543798080",
"358310523944464",
"5733141459080000",
"91732470946920000",
"1467748145667974400",
"23484346290765886500",
"375754541311565499600",
"6012139892071344570000"
] | [
"nonn"
] | 17 | 0 | 2 | [
"A358362",
"A358363",
"A358364",
"A358365",
"A367332"
] | null | Peter Luschny, Nov 12 2022 | 2023-11-15T03:13:12 | oeisdata/seq/A358/A358364.seq | a5618dcca017ad3f9ac252251aee6c4e |
A358365 | a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2. | [
"1",
"20",
"356",
"6096",
"102436",
"1702480",
"28093456",
"461273920",
"7546019620",
"123100218320",
"2003738272656",
"32557446669120",
"528231606378256",
"8559878182412096",
"138567392514153536",
"2241139725237406976",
"36219533239041063716",
"584958249814679707856",
"9441690077748181415696"
] | [
"nonn"
] | 17 | 0 | 2 | [
"A358362",
"A358363",
"A358364",
"A358365",
"A367333"
] | null | Peter Luschny, Nov 12 2022 | 2023-11-15T03:11:19 | oeisdata/seq/A358/A358365.seq | 6a430c04c9abaacb1aec9aab0ce5d777 |
A358366 | Table read by rows. T(n, k) = [x^k] n! * Sum_{j=0..n} binomial(n*x, j). | [
"1",
"1",
"1",
"2",
"2",
"4",
"6",
"15",
"0",
"27",
"24",
"56",
"176",
"-128",
"256",
"120",
"470",
"125",
"3125",
"-3125",
"3125",
"720",
"2664",
"10944",
"-16200",
"71280",
"-69984",
"46656",
"5040",
"26796",
"17836",
"376957",
"-840350",
"1882384",
"-1647086",
"823543",
"40320",
"204672",
"1022720",
"-2222080",
"16257024",
"-34865152",
"55050240",
"-41943040",
"16777216"
] | [
"sign",
"tabl"
] | 8 | 0 | 4 | [
"A000142",
"A000165",
"A000312",
"A358366"
] | null | Peter Luschny, Nov 12 2022 | 2022-11-13T10:36:23 | oeisdata/seq/A358/A358366.seq | 876cc6612f5e2fd3edfb299ba5d9bbdc |
A358367 | a(n) = 8^n * binomial(n * 3/2, n). | [
"1",
"12",
"192",
"3360",
"61440",
"1153152",
"22020096",
"425677824",
"8304721920",
"163176499200",
"3224446697472",
"64012657213440",
"1275708366127104",
"25506581874278400",
"511404848311173120",
"10278423735852072960",
"207016682596362878976",
"4177272328882468945920",
"84430333294202899660800"
] | [
"nonn"
] | 19 | 0 | 2 | null | null | Peter Luschny, Nov 14 2022 | 2024-01-31T07:21:20 | oeisdata/seq/A358/A358367.seq | 66a7ae99e780ecb4d3ae4442359a9215 |
A358368 | a(n) = Sum_{k=0..n} C(n)^2 * binomial(n + k, k), where C(n) is the n-th Catalan number. | [
"1",
"3",
"40",
"875",
"24696",
"814968",
"29899584",
"1184303835",
"49711519000",
"2183727606632",
"99503164453056",
"4672502764108088",
"225011739846443200",
"11070183993903000000",
"554749060302467136000",
"28247778810831290434875",
"1458696209123375067879000",
"76266400563425844598365000"
] | [
"nonn"
] | 11 | 0 | 2 | [
"A000108",
"A358368",
"A358436",
"A358437",
"A367023"
] | null | Peter Luschny, Nov 16 2022 | 2024-02-19T04:36:24 | oeisdata/seq/A358/A358368.seq | eab001885574bfa9a3c2ceda39a8f409 |
A358369 | Euler transform of 2^floor(n/2), (A016116). | [
"1",
"1",
"3",
"5",
"12",
"20",
"43",
"73",
"146",
"250",
"475",
"813",
"1499",
"2555",
"4592",
"7800",
"13761",
"23253",
"40421",
"67963",
"116723",
"195291",
"332026",
"552882",
"932023",
"1544943",
"2585243",
"4267081",
"7094593",
"11662769",
"19281018",
"31575874",
"51937608",
"84753396",
"138772038",
"225693778",
"368017636"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A000009",
"A000041",
"A000712",
"A001970",
"A002513",
"A010054",
"A015128",
"A016116",
"A022567",
"A034691",
"A111317",
"A111335",
"A117410",
"A156224",
"A166861",
"A200544",
"A261031",
"A261329",
"A358369",
"A358449"
] | null | Peter Luschny, Nov 17 2022 | 2022-11-18T18:17:26 | oeisdata/seq/A358/A358369.seq | aa66d374439c1427feb76ebb2a52e77c |
A358370 | a(n) is the size of the largest 3-independent set in the cyclic group Zn. | [
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"3",
"4",
"3",
"5",
"3",
"5",
"4",
"6",
"5",
"6",
"4",
"7",
"5",
"7",
"5",
"8",
"6",
"8",
"7",
"9",
"6",
"9",
"6",
"10",
"7",
"10",
"7",
"11",
"9",
"11",
"8",
"12",
"8",
"12",
"9",
"13",
"9",
"13",
"11",
"14",
"9",
"14",
"10",
"15",
"10",
"15",
"10",
"16",
"13",
"16",
"11",
"17",
"12",
"17",
"12",
"18",
"12",
"18",
"15",
"19",
"14"
] | [
"nonn",
"easy"
] | 7 | 1 | 8 | [
"A002265",
"A007528",
"A027750",
"A152467",
"A358370"
] | null | Stefano Spezia, Nov 12 2022 | 2022-11-13T12:27:25 | oeisdata/seq/A358/A358370.seq | bde269b05c02ee3b05a332effce8766b |
A358371 | Number of leaves in the n-th standard ordered rooted tree. | [
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"1",
"3",
"2",
"3",
"2",
"3",
"3",
"4",
"3",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"2",
"2",
"3",
"4",
"2",
"3",
"3",
"4",
"3",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"2",
"4",
"3",
"4",
"3",
"4",
"4",
"5",
"4",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"2",
"3",
"2",
"3",
"3",
"4",
"4",
"5",
"3",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"2",
"4",
"3",
"4",
"3",
"4"
] | [
"nonn"
] | 10 | 1 | 4 | [
"A000081",
"A000108",
"A001263",
"A004249",
"A005043",
"A032027",
"A055277",
"A061775",
"A063895",
"A109129",
"A126120",
"A187306",
"A196050",
"A284778",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 13 2022 | 2022-11-14T09:57:35 | oeisdata/seq/A358/A358371.seq | 113f28aebf05d8dea60f5a304495edc8 |
A358372 | Number of nodes in the n-th standard ordered rooted tree. | [
"1",
"2",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"6",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"5",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"7",
"7",
"8",
"8",
"8",
"8",
"8"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000081",
"A001263",
"A001678",
"A004249",
"A005043",
"A032027",
"A055277",
"A061775",
"A063895",
"A109129",
"A126120",
"A196050",
"A284778",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T15:38:01 | oeisdata/seq/A358/A358372.seq | a94cff2a75ea9d9817573da0e6830c5c |
A358373 | Triangle read by rows where row n lists the sorted standard ordered rooted tree-numbers of all unlabeled ordered rooted trees with n vertices. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"25",
"33",
"65",
"129",
"257",
"19",
"20",
"21",
"22",
"23",
"24",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"34",
"35",
"36",
"41",
"49",
"50",
"57",
"66",
"97",
"130",
"193",
"258",
"385",
"513",
"514",
"769",
"1025",
"2049",
"4097",
"8193",
"16385",
"32769",
"65537",
"131073"
] | [
"nonn",
"tabf"
] | 6 | 1 | 2 | [
"A000027",
"A000081",
"A000108",
"A001263",
"A004249",
"A005043",
"A061773",
"A061775",
"A109129",
"A215366",
"A284778",
"A358371",
"A358372",
"A358373",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T16:06:46 | oeisdata/seq/A358/A358373.seq | 6584cb011efbe289cb3257bb3af6e834 |
A358374 | Numbers k such that the k-th standard ordered rooted tree is an identity tree (counted by A032027). | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"13",
"17",
"19",
"21",
"33",
"34",
"38",
"39",
"42",
"45",
"49",
"51",
"53",
"65",
"66",
"67",
"81",
"97",
"130",
"131",
"133",
"134",
"135",
"145",
"161",
"162",
"177",
"193",
"195",
"209",
"259",
"261",
"262",
"263",
"266",
"269",
"289",
"290",
"305",
"321",
"322",
"353",
"387",
"389",
"401",
"417",
"513",
"517",
"518",
"519",
"522"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000081",
"A001263",
"A004111",
"A004249",
"A005043",
"A032027",
"A063895",
"A126120",
"A276625",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T20:01:14 | oeisdata/seq/A358/A358374.seq | c817bcf41b385d5c8e46c42cee06a41e |
A358375 | Numbers k such that the k-th standard ordered rooted tree is binary. | [
"1",
"4",
"18",
"25",
"137",
"262146",
"393217",
"2097161",
"2228225"
] | [
"nonn",
"more"
] | 6 | 1 | 2 | [
"A000081",
"A001190",
"A001263",
"A004249",
"A005043",
"A063895",
"A111299",
"A126120",
"A245824",
"A284778",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T16:06:42 | oeisdata/seq/A358/A358375.seq | 17aebc9b03c7a345bb7e7809a8d1eed4 |
A358376 | Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043). | [
"1",
"4",
"8",
"16",
"18",
"25",
"32",
"36",
"50",
"57",
"64",
"72",
"100",
"114",
"121",
"128",
"137",
"144",
"200",
"228",
"242",
"249",
"256",
"258",
"274",
"281",
"288",
"385",
"393",
"400",
"456",
"484",
"498",
"505",
"512",
"516",
"548",
"562",
"569",
"576",
"770",
"786",
"793",
"800",
"897",
"905",
"912",
"968",
"996",
"1010",
"1017",
"1024",
"1032",
"1096"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000014",
"A000081",
"A001263",
"A001678",
"A001679",
"A004249",
"A005043",
"A032027",
"A061775",
"A063895",
"A126120",
"A187306",
"A284778",
"A291636",
"A331489",
"A331490",
"A331934",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T20:00:52 | oeisdata/seq/A358/A358376.seq | 042eec09c2f00a379b134c3a11812330 |
A358377 | Numbers k such that the k-th standard ordered rooted tree is a generalized Bethe tree (counted by A003238). | [
"1",
"2",
"3",
"4",
"5",
"8",
"9",
"11",
"16",
"17",
"32",
"37",
"43",
"64",
"128",
"129",
"137",
"171",
"256",
"257",
"293",
"512",
"529",
"683",
"1024",
"1025",
"2048",
"2185",
"2341",
"2731",
"4096",
"8192",
"10923",
"16384",
"16913",
"18725",
"32768",
"32769",
"32897",
"34953",
"43691",
"65536",
"65537",
"131072",
"131329",
"149797",
"174763"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000081",
"A001263",
"A003238",
"A004111",
"A004249",
"A005043",
"A032027",
"A063895",
"A214577",
"A276625",
"A331490",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-14T20:00:41 | oeisdata/seq/A358/A358377.seq | 236f28882aafc568ddb3f4ae63683878 |
A358378 | Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081). | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"13",
"15",
"16",
"17",
"21",
"25",
"27",
"29",
"31",
"32",
"37",
"41",
"43",
"49",
"53",
"57",
"59",
"61",
"63",
"64",
"65",
"73",
"81",
"85",
"101",
"105",
"107",
"113",
"117",
"121",
"123",
"125",
"127",
"128",
"129",
"137",
"145",
"165",
"169",
"171",
"193",
"201",
"209",
"213",
"229",
"233",
"235",
"241",
"245",
"249",
"251"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000081",
"A001263",
"A004249",
"A005043",
"A032027",
"A063895",
"A276625",
"A358371",
"A358372",
"A358373",
"A358377",
"A358378"
] | null | Gus Wiseman, Nov 14 2022 | 2022-11-15T10:12:45 | oeisdata/seq/A358/A358378.seq | f7f7acfaae0361b42c3568a51e273aa7 |
A358379 | Edge-height (or depth) of the n-th standard ordered rooted tree. | [
"0",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"1",
"4",
"2",
"3",
"3",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"1",
"3",
"4",
"2",
"2",
"3",
"3",
"3",
"3",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"2",
"4",
"2",
"3",
"3",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"1",
"3",
"3",
"4",
"4",
"3",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"2",
"3",
"3",
"3",
"2",
"2"
] | [
"nonn"
] | 11 | 1 | 3 | [
"A000081",
"A000108",
"A001263",
"A004249",
"A005043",
"A034781",
"A055277",
"A061775",
"A080936",
"A109082",
"A109129",
"A187306",
"A196050",
"A358371",
"A358372",
"A358373",
"A358374",
"A358375",
"A358376",
"A358377",
"A358378",
"A358379",
"A358552"
] | null | Gus Wiseman, Nov 16 2022 | 2022-11-27T10:33:45 | oeisdata/seq/A358/A358379.seq | 748518ca32a2484488759eb3291ca873 |
A358380 | a(n) = Sum_{d|n} tau(d^5), where tau(n) = number of divisors of n, cf. A000005. | [
"1",
"7",
"7",
"18",
"7",
"49",
"7",
"34",
"18",
"49",
"7",
"126",
"7",
"49",
"49",
"55",
"7",
"126",
"7",
"126",
"49",
"49",
"7",
"238",
"18",
"49",
"34",
"126",
"7",
"343",
"7",
"81",
"49",
"49",
"49",
"324",
"7",
"49",
"49",
"238",
"7",
"343",
"7",
"126",
"126",
"49",
"7",
"385",
"18",
"126",
"49",
"126",
"7",
"238",
"49",
"238",
"49",
"49",
"7",
"882",
"7",
"49",
"126",
"112",
"49",
"343",
"7",
"126",
"49",
"343",
"7",
"612",
"7",
"49",
"126",
"126"
] | [
"nonn",
"mult",
"easy"
] | 33 | 1 | 2 | [
"A000005",
"A007425",
"A035116",
"A061391",
"A321348",
"A356574",
"A358380",
"A359037",
"A359038"
] | null | Seiichi Manyama, Dec 13 2022 | 2022-12-14T09:08:45 | oeisdata/seq/A358/A358380.seq | e96e28a7111a1c66ddd6d119f031a0ef |
A358381 | Primes p such that q1=6*p-1 and q2=6*p+1 are also primes (twin primes) and q1 is a Sophie Germain prime (i.e., 2*q1+1 is prime). | [
"2",
"5",
"7",
"47",
"107",
"907",
"2137",
"2347",
"3407",
"4547",
"4597",
"8377",
"9067",
"9277",
"9767",
"14537",
"16427",
"18307",
"19507",
"19997",
"23447",
"23917",
"26927",
"27437",
"28837",
"29297",
"33037",
"37307",
"38327",
"45127",
"46457",
"50957",
"52957",
"55897",
"59077",
"59407",
"60317",
"63667",
"65497",
"69767",
"74377",
"77527",
"86587",
"86837"
] | [
"nonn"
] | 21 | 1 | 1 | [
"A005384",
"A060212",
"A358381"
] | null | Tamas Nagy, Nov 12 2022 | 2022-12-24T03:42:47 | oeisdata/seq/A358/A358381.seq | 8d696e3086ea310ba95c960f345c25ed |
A358382 | First of three consecutive primes p,q,r such that r*(p+q) + p*q and r*(p+q) - p*q are prime. | [
"2",
"3",
"5",
"7",
"29",
"43",
"277",
"283",
"773",
"967",
"2801",
"3391",
"3701",
"5189",
"5233",
"5531",
"5591",
"6869",
"6949",
"7043",
"7753",
"9419",
"9787",
"10091",
"10957",
"11173",
"11551",
"13577",
"13729",
"13781",
"15319",
"15383",
"17489",
"17509",
"18583",
"19141",
"22091",
"23029",
"23669",
"25523",
"25601",
"25693",
"26249",
"27077",
"31151",
"31469",
"31891",
"32257"
] | [
"nonn"
] | 11 | 1 | 1 | null | null | J. M. Bergot and Robert Israel, Nov 12 2022 | 2022-11-22T22:19:28 | oeisdata/seq/A358/A358382.seq | 89f1f6f61bc3b95edbdfe66ac735fdcc |
A358383 | Number of regular triangulations of the vertex set of the n-dimensional cube. | [
"1",
"1",
"2",
"74",
"87959448"
] | [
"nonn",
"hard",
"more"
] | 10 | 0 | 3 | [
"A238820",
"A238821",
"A358383",
"A358384",
"A358385"
] | null | Stefano Spezia, Nov 13 2022 | 2022-11-13T12:27:45 | oeisdata/seq/A358/A358383.seq | 5ab900fffd7e0a8c74eab1315f8ac76b |
A358384 | Number of symmetric group Sym(n)-orbits of regular triangulations of the vertex set of the n-dimensional cube. | [
"1",
"1",
"2",
"23",
"3706261"
] | [
"nonn",
"hard",
"more"
] | 7 | 0 | 3 | [
"A238820",
"A238821",
"A358383",
"A358384",
"A358385"
] | null | Stefano Spezia, Nov 13 2022 | 2022-11-13T12:27:37 | oeisdata/seq/A358/A358384.seq | 5bd06513557c9c9c0e3f1433daae950e |
A358385 | Number of automorphism group Gamma(n)-orbits of regular triangulations of the vertex set of the n-dimensional cube. | [
"1",
"1",
"1",
"6",
"235277"
] | [
"nonn",
"hard",
"more"
] | 8 | 0 | 4 | [
"A238820",
"A238821",
"A358383",
"A358385",
"A359384"
] | null | Stefano Spezia, Nov 13 2022 | 2022-11-13T12:27:32 | oeisdata/seq/A358/A358385.seq | 54c5ebcfd26fd67fa8dcc0db82e01961 |
A358386 | Distinct values of A030717 in order of appearance. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"10",
"15",
"18",
"14",
"12",
"20",
"17",
"23",
"16",
"25",
"30",
"19",
"27",
"38",
"29",
"49",
"26",
"31",
"62",
"35",
"13",
"77",
"39",
"94",
"32",
"42",
"110",
"45",
"129",
"43",
"48",
"149",
"51",
"172",
"56",
"195",
"61",
"218",
"63",
"64",
"241",
"71",
"67",
"266",
"79",
"70",
"293",
"87",
"73",
"21",
"323",
"75",
"356",
"101",
"78",
"389",
"109",
"82",
"28",
"424",
"116",
"88",
"461",
"125",
"40",
"33",
"34",
"22",
"500"
] | [
"nonn"
] | 28 | 1 | 2 | [
"A030717",
"A030720",
"A358386"
] | null | Seiichi Manyama, Nov 13 2022 | 2022-11-19T05:39:13 | oeisdata/seq/A358/A358386.seq | e9b047066e3196f8d10f9d8f6ae34c84 |
A358387 | a(n) = 3 * h(n - 1) * h(n) for n >= 1, where h(n) = hypergeom([-n, -n], [1], 2), and a(0) = 1. | [
"1",
"9",
"117",
"2457",
"60669",
"1620729",
"45385461",
"1311647913",
"38774378493",
"1165936210281",
"35529105456117",
"1094291069720121",
"34000718751227133",
"1064200845293945433",
"33516300131277352821",
"1061218377653812515657",
"33757038339556757274621",
"1078167326486278065165513"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A358387",
"A358388"
] | null | Peter Luschny, Nov 15 2022 | 2024-01-08T05:24:07 | oeisdata/seq/A358/A358387.seq | d43b67dae3c7a08d3f59cf35242d3d5b |
A358388 | a(n) = hypergeom([n, -n, 1/2], [1, 1], -8). | [
"1",
"5",
"89",
"2069",
"53505",
"1467765",
"41817305",
"1223277221",
"36488826881",
"1104851215205",
"33853917808089",
"1047387818876085",
"32664869254856961",
"1025606670801743061",
"32387641973278794585",
"1027864812983545977669",
"32762392278424747311105",
"1048268251830512324353221"
] | [
"nonn"
] | 22 | 0 | 2 | [
"A001850",
"A243949",
"A358387",
"A358388"
] | null | Peter Luschny, Nov 13 2022 | 2024-01-08T05:19:07 | oeisdata/seq/A358/A358388.seq | 34565275af974b428dc1ca91f295d021 |
A358389 | a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!. | [
"1",
"3",
"7",
"29",
"121",
"745",
"5041",
"40425",
"362917",
"3629411",
"39916801",
"479006233",
"6227020801",
"87178326495",
"1307674369891",
"20922790211057",
"355687428096001",
"6402373709009185",
"121645100408832001",
"2432902008212933061",
"51090942171709581289",
"1124000727778046764823"
] | [
"nonn",
"easy"
] | 17 | 1 | 2 | [
"A038507",
"A343573",
"A358389"
] | null | Seiichi Manyama, Nov 13 2022 | 2022-11-13T10:36:18 | oeisdata/seq/A358/A358389.seq | 1781f34ecb7d5db3fe490a69d445a010 |
A358390 | The number of maximal antichains in the Kreweras lattice of non-crossing set partitions of an n-element set. | [
"1",
"2",
"3",
"25",
"2117",
"22581637702"
] | [
"nonn",
"hard",
"more"
] | 17 | 1 | 2 | [
"A000108",
"A302250",
"A326358",
"A358390"
] | null | Dmitry I. Ignatov, Nov 13 2022 | 2022-11-22T11:55:56 | oeisdata/seq/A358/A358390.seq | 9e33565bb50662b62304364ae8083db7 |
A358391 | The number of antichains in the Kreweras lattice of non-crossing set partitions of an n-element set. | [
"2",
"3",
"10",
"234",
"2342196"
] | [
"nonn",
"hard",
"more"
] | 14 | 1 | 1 | [
"A000372",
"A143673",
"A302250",
"A358391"
] | null | Dmitry I. Ignatov, Nov 13 2022 | 2022-11-22T22:27:32 | oeisdata/seq/A358/A358391.seq | a812af3baa79965c1971b5259beecc1a |
A358392 | Number of nonempty subsets of {1, 2, ..., n} with GCD equal to 1 and containing the sum of any two elements whenever it is at most n. | [
"1",
"1",
"2",
"3",
"7",
"9",
"19",
"27",
"46",
"63",
"113",
"148",
"253",
"345",
"539",
"734",
"1198",
"1580",
"2540",
"3417",
"5233",
"7095",
"11190",
"14720",
"22988",
"31057",
"47168",
"63331",
"98233",
"129836",
"200689",
"269165",
"406504",
"546700",
"838766",
"1108583",
"1700025",
"2281517",
"3437422",
"4597833",
"7023543",
"9308824",
"14198257",
"18982014",
"28556962"
] | [
"nonn"
] | 11 | 1 | 3 | [
"A007865",
"A050291",
"A051026",
"A085489",
"A103580",
"A139384",
"A151897",
"A308546",
"A326020",
"A326076",
"A326080",
"A326083",
"A326114",
"A358392"
] | null | Max Alekseyev, Nov 13 2022 | 2022-11-14T11:47:41 | oeisdata/seq/A358/A358392.seq | 5e3a99c11a1b779e490b8cfcc23abc7a |
A358393 | First of three consecutive primes p,q,r such that p*q + p*r - q*r, p*q - p*r + q*r and -p*q + p*r + q*r are all prime. | [
"261977",
"496163",
"1943101",
"2204273",
"2502827",
"2632627",
"2822381",
"2878543",
"3291593",
"3431891",
"4122043",
"4269679",
"5205671",
"5224361",
"5565139",
"6248881",
"6600989",
"6881291",
"7568963",
"8181317",
"8251277",
"8377777",
"9005561",
"9644911",
"10226233",
"11096753",
"11767801",
"12252271",
"13197361",
"13574489",
"13730263",
"14064901"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A054643",
"A358393"
] | null | J. M. Bergot and Robert Israel, Nov 13 2022 | 2022-11-21T09:49:45 | oeisdata/seq/A358/A358393.seq | 54befbd1df6244b7648b1bfc2e7387f4 |
A358394 | Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n. | [
"1",
"0",
"0",
"10",
"7",
"0",
"8"
] | [
"nonn",
"more",
"hard"
] | 41 | 1 | 4 | [
"A000041",
"A274171",
"A287649",
"A287650",
"A293777",
"A357473",
"A358394",
"A358515",
"A358891"
] | null | Eduard I. Vatutin, Nov 20 2022 | 2025-02-24T13:35:09 | oeisdata/seq/A358/A358394.seq | a3827c9cf517d78265fcf83c2dabb33a |
A358395 | Odd numbers k such that sigma(k) + sigma(k+2) > 2*sigma(k+1); odd terms in A053228. | [
"1125",
"1573",
"1953",
"2205",
"2385",
"3465",
"5185",
"5353",
"5773",
"6433",
"6613",
"6825",
"7245",
"7425",
"7665",
"7693",
"8505",
"8925",
"9133",
"9205",
"9405",
"9945",
"10393",
"10773",
"11473",
"11653",
"12285",
"12493",
"12705",
"13473",
"13585",
"13725",
"14025",
"15013",
"15145",
"15433",
"16065",
"16245",
"16905",
"17253",
"17325",
"17953"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A000203",
"A053223",
"A053228",
"A358395",
"A358396",
"A358412",
"A358413"
] | null | Jianing Song, Nov 13 2022 | 2022-11-17T14:12:20 | oeisdata/seq/A358/A358395.seq | 06a71094975091f66607d810cb8a5fdc |
A358396 | Even numbers k such that sigma(k) + sigma(k+2) < 2*sigma(k+1); even terms in A053229. | [
"104",
"134",
"164",
"314",
"404",
"494",
"524",
"554",
"566",
"584",
"674",
"692",
"734",
"764",
"854",
"944",
"974",
"1124",
"1154",
"1196",
"1214",
"1304",
"1322",
"1364",
"1394",
"1484",
"1574",
"1682",
"1724",
"1754",
"1784",
"1814",
"1826",
"1844",
"1994",
"2024",
"2144",
"2204",
"2384",
"2414",
"2456",
"2474",
"2564",
"2624",
"2654",
"2804",
"2834",
"3002"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A000203",
"A053223",
"A053229",
"A358395",
"A358396"
] | null | Jianing Song, Nov 13 2022 | 2022-11-17T14:12:24 | oeisdata/seq/A358/A358396.seq | cbfd7026b53c1bfc957b392b9c88e62b |
A358397 | Number of pairs of partitions (A<=B, that is, A is a refinement of B) of [n] such that A is noncrossing and its nontrivial blocks are of type {a,b} with a <= n and b > n. | [
"1",
"1",
"3",
"9",
"37",
"157",
"811",
"4309",
"26327",
"164947",
"1151477",
"8224863",
"64158567",
"511177515",
"4386520201",
"38389960685",
"358214414675",
"3404632390971",
"34234771676473",
"350261221644771",
"3768281045014927",
"41210302324325919",
"471585931164213345",
"5480984322433817771",
"66388136273738685321"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A000110",
"A358397"
] | null | Francesca Aicardi, Nov 13 2022 | 2022-12-21T21:47:18 | oeisdata/seq/A358/A358397.seq | 38ea153b06c3d402611a4b114f476359 |
A358398 | a(n) is the number of reducible monic cubic polynomials x^3 + r*x^2 + s*x + t with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t) <= n). | [
"15",
"53",
"117",
"215",
"329",
"493",
"657",
"877",
"1103",
"1383",
"1643",
"2017",
"2325",
"2721",
"3131",
"3601",
"4009",
"4575",
"5031",
"5647",
"6221",
"6849",
"7409",
"8211",
"8849",
"9593",
"10335",
"11199",
"11899",
"12915",
"13671",
"14655",
"15559",
"16535",
"17473",
"18711",
"19619",
"20711",
"21787",
"23099",
"24095",
"25507",
"26571",
"27931",
"29259"
] | [
"nonn"
] | 41 | 1 | 1 | [
"A067274",
"A358398"
] | null | Lorenz H. Menke, Jr., Nov 13 2022 | 2022-12-21T21:00:02 | oeisdata/seq/A358/A358398.seq | 43a9c5a3be6febf75f3f8454ce9ffe03 |
A358399 | a(n) is the number of reducible monic quartic polynomials (x^4 + r*x^3 + s*x^2 + t*x + u) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u) <= n). | [
"47",
"271",
"810",
"1849",
"3395",
"5832",
"8915",
"13242",
"18465",
"25267",
"32874",
"43023",
"53662",
"66957",
"81770",
"99374",
"117564",
"140303",
"163048",
"190757",
"219702",
"252465",
"285820",
"326853",
"366732"
] | [
"nonn",
"more"
] | 31 | 1 | 1 | [
"A067274",
"A358398",
"A358399",
"A358400"
] | null | Lorenz H. Menke, Jr., Nov 13 2022 | 2023-01-02T09:01:55 | oeisdata/seq/A358/A358399.seq | 36425b9b8531a9d311483200d2d51a99 |
A358400 | a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n). | [
"139",
"1313",
"5359",
"15365",
"34229",
"68385",
"120421",
"200839",
"312057",
"468827",
"669591",
"943175",
"1274089",
"1701441",
"2216841",
"2856379",
"3594651",
"4510437",
"5541135",
"6788823",
"8195941",
"9845089",
"11670925",
"13842429",
"16191555"
] | [
"nonn",
"more"
] | 26 | 1 | 1 | [
"A067274",
"A358398",
"A358399",
"A358400"
] | null | Lorenz H. Menke, Jr., Nov 13 2022 | 2023-01-02T09:01:48 | oeisdata/seq/A358/A358400.seq | 67c7a3f08ac959d52de80e81bde89cfc |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.