sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358301
Main diagonal of array in A358298.
[ "2", "6", "20", "60", "124", "252", "388", "652", "924", "1332", "1748", "2428", "2988", "3948", "4788", "5908", "7028", "8692", "9964", "12052", "13748", "16004", "18124", "21204", "23476", "26996", "29972", "33788", "37196", "42124", "45548", "51188", "55732", "61412", "66532", "73348", "78484", "86548", "92956", "100924", "107772", "117692", "124556", "135476", "144036" ]
[ "nonn" ]
11
0
1
[ "A358298", "A358301", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2023-04-19T09:04:56
oeisdata/seq/A358/A358301.seq
a2fddd371335b7bd44766de4199d404c
A358302
Number of triangular regions in the Farey Diagram Farey(n,n), divided by 4.
[ "1", "12", "100", "392", "1554", "3486", "9690", "18942", "38610", "65268", "125116", "186870", "324646", "472546", "713354", "1003888", "1531908", "2000638", "2920970", "3780950" ]
[ "nonn", "more" ]
7
1
2
[ "A358298", "A358302", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358302.seq
e5b93527d9402fa3da2bad0784cd663c
A358303
Number of 4-sided regions in the Farey Diagram Farey(n,n), divided by 8.
[ "1", "13", "57", "231", "532", "1497", "2935", "6031", "10273", "19680", "29441", "51261", "74473", "112721", "159299", "242763", "317155", "462930", "598755" ]
[ "nonn", "more" ]
11
1
2
[ "A358298", "A358303", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358303.seq
a92bc15647dbf52255bc17ca089f0b44
A358304
Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
[ "0", "0", "0", "0", "2", "0", "0", "5", "5", "0", "0", "9", "10", "9", "0", "0", "14", "19", "19", "14", "0", "0", "20", "27", "32", "27", "20", "0", "0", "27", "40", "47", "47", "40", "27", "0", "0", "35", "51", "68", "66", "68", "51", "35", "0", "0", "44", "68", "85", "96", "96", "85", "68", "44", "0", "0", "54", "82", "112", "118", "134", "118", "112", "82", "54", "0", "0", "65", "103", "137", "156", "167", "167", "156", "137", "103", "65", "0", "0", "77", "120", "166", "187", "217", "204", "217", "187", "166", "120", "77", "0" ]
[ "nonn", "tabl" ]
26
0
5
[ "A358298", "A358304", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2023-04-20T02:30:32
oeisdata/seq/A358/A358304.seq
f4d62344a30e1ddde9d0a89d701d8370
A358305
Triangle read by rows: T(n,k) (n>=0, 0 <= k <= n) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
[ "0", "0", "2", "0", "5", "10", "0", "9", "19", "32", "0", "14", "27", "47", "66", "0", "20", "40", "68", "96", "134", "0", "27", "51", "85", "118", "167", "204", "0", "35", "68", "112", "156", "217", "267", "342", "0", "44", "82", "137", "187", "261", "318", "408", "482", "0", "54", "103", "166", "229", "317", "384", "490", "581", "692", "0", "65", "120", "196", "266", "366", "441", "564", "664", "794", "904" ]
[ "nonn", "tabl" ]
15
0
3
[ "A358298", "A358305", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2023-04-19T09:04:49
oeisdata/seq/A358/A358305.seq
ed4ae4c6f640b9170c0bca4c05ba3879
A358306
Second row of array in A358304.
[ "0", "5", "10", "19", "27", "40", "51", "68", "82", "103", "120", "145", "165", "194", "217", "250", "276", "313", "342", "383", "415", "460", "495", "544", "582", "635", "676", "733", "777", "838", "885", "950", "1000", "1069", "1122", "1195", "1251", "1328", "1387", "1468", "1530", "1615", "1680", "1769", "1837", "1930", "2001", "2098", "2172", "2273", "2350", "2455", "2535", "2644", "2727", "2840", "2926", "3043", "3132", "3253", "3345" ]
[ "nonn" ]
8
0
2
[ "A358298", "A358306", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358306.seq
40fdae85bbc44113979d38d9bc36ac33
A358307
Main diagonal of array in A358304, divided by 2.
[ "0", "1", "5", "16", "33", "67", "102", "171", "241", "346", "452", "627", "769", "1015", "1228", "1512", "1796", "2220", "2541", "3072", "3500", "4070", "4605", "5386", "5958", "6848", "7598", "8561", "9419", "10665", "11525", "12950", "14094", "15524", "16812", "18528", "19818", "21852", "23463", "25467", "27187", "29687", "31409", "34160", "36310", "38890", "41255", "44544", "46840", "50347", "53037", "56477", "59489" ]
[ "nonn" ]
10
0
3
[ "A358298", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358307.seq
3bf88aeed3e937d4278d144879982862
A358308
Numbers k such that sigma(2*k) > 2*k*sqrt(gamma(2*k)), where sigma(k) = A000203(k) is the sum of the divisors of k and gamma(k) = A007947(k) is the greatest squarefree divisor of k.
[ "1", "2", "4", "8", "12", "16", "18", "24", "32", "36", "48", "54", "64", "72", "96", "108", "128", "144", "162", "192", "216", "256", "288", "324", "384", "432", "486", "512", "576", "648", "768", "864", "972", "1024", "1152", "1296", "1458", "1536", "1728", "1944", "2048", "2304", "2592", "2916", "3072", "3456", "3888", "4096", "4374", "4608", "5184", "5832", "6144", "6912", "7776", "8192", "8748", "9216" ]
[ "nonn" ]
17
1
2
[ "A000203", "A007947", "A358308", "A358309" ]
null
N. J. A. Sloane, Dec 09 2022
2024-04-25T05:18:26
oeisdata/seq/A358/A358308.seq
ed2a767193df3cd094416fda6b630ecd
A358309
a(n) = floor(n*sqrt(gamma(n))) - sigma(n), where sigma(n) = A000203(n) is the sum of the divisors of n and gamma(n) = A007947(n) is the greatest squarefree divisor of n.
[ "0", "-1", "1", "-2", "5", "2", "10", "-4", "2", "13", "24", "1", "32", "28", "34", "-9", "52", "5", "62", "21", "64", "67", "86", "-2", "24", "90", "6", "48", "126", "92", "140", "-18", "141", "144", "159", "-3", "187", "174", "187", "36", "220", "176", "237", "122", "96", "239", "274", "-7", "72", "65", "292", "167", "331", "12", "335", "89", "350", "351", "393", "160", "414", "392", "184", "-37", "440", "392", "480", "270", "477", "441", "526" ]
[ "sign" ]
19
1
4
[ "A000203", "A007947", "A358308", "A358309" ]
null
N. J. A. Sloane, Dec 09 2022
2024-04-25T05:18:37
oeisdata/seq/A358/A358309.seq
0b763774e155d7f1e490e8fb05cc5074
A358310
Index in A145985 where n-th odd prime p first appears, or -1 if p never appears.
[ "3", "2", "1", "13", "-1", "12", "-1", "59", "11", "-1", "-1", "10", "-1", "9", "8", "7", "-1", "-1", "6", "-1", "-1", "5", "4", "-1", "2528242167", "-1" ]
[ "sign", "more" ]
33
1
1
[ "A145985", "A358310" ]
null
Harvey P. Dale and N. J. A. Sloane, Dec 16 2022.
2022-12-18T15:26:02
oeisdata/seq/A358/A358310.seq
70b7ce74335055c893390fe5754449cd
A358311
Lucas numbers that are not the sum of two squares.
[ "3", "7", "11", "47", "76", "123", "199", "322", "843", "1364", "2207", "3571", "5778", "15127", "24476", "39603", "64079", "103682", "167761", "271443", "439204", "710647", "1149851", "4870847", "7881196", "12752043", "20633239", "33385282", "87403803", "141422324", "228826127", "370248451", "599074578", "1568397607", "2537720636" ]
[ "nonn" ]
24
1
1
[ "A000032", "A022544", "A356809", "A358311" ]
null
Chai Wah Wu, Jan 10 2023
2024-01-26T13:53:36
oeisdata/seq/A358/A358311.seq
f8b3246f7d355f345d624824396de2fe
A358312
Consider the graph of symmetric primes where p and q are connected if |p-q| = gcd(p-1,q-1). This sequence is an irregular table where the n-th row lists the first symmetric prime in a connected component with n vertices, with one representative for each nonisomorphic graph. Within a row, graphs are ordered by increasing size of its initial prime.
[ "3343", "42293", "461393", "70793", "72053", "268267", "8917219" ]
[ "nonn", "tabf", "hard", "more" ]
5
2
1
[ "A090190", "A358312" ]
null
Charles R Greathouse IV, Nov 08 2022
2022-11-17T07:20:26
oeisdata/seq/A358/A358312.seq
1d2d558e73ffbc5ae08bcdd00f7a3339
A358313
Primes p such that 24*p is the difference of two squares of primes in three different ways.
[ "5", "7", "13", "17", "23", "103", "6863", "7523", "11807", "11833", "22447", "91807", "100517", "144167", "204013", "221077", "478937", "531983", "571867", "752293", "1440253", "1647383", "1715717", "1727527", "1768667", "2193707", "2381963", "2539393", "2957237", "3215783", "3290647", "3873713", "4243997", "4512223", "4880963", "4895777", "5226107", "5345317", "5540063" ]
[ "nonn" ]
10
1
1
[ "A124865", "A358313" ]
null
J. M. Bergot and Robert Israel, Nov 08 2022
2022-11-10T07:43:04
oeisdata/seq/A358/A358313.seq
1c646cffa89043c2cf65eedf5cefb21c
A358314
Triangle T(n,k) read by rows where T(2m - 1,k) = (A051845(2m - 1,k))/(2m - 1) and T(2m,k) = A051845(2m,k)/m for m > 0, k > 0.
[ "1", "5", "7", "9", "10", "13", "15", "18", "19", "97", "99", "107", "111", "119", "121", "147", "149", "167", "173", "179", "183", "207", "211", "217", "223", "241", "243", "269", "271", "279", "283", "373", "374", "379", "381", "386", "387", "409", "410", "421", "424", "428", "430", "451", "453", "457", "460", "471" ]
[ "nonn", "tabf" ]
26
1
2
[ "A051845", "A221740", "A221741", "A358314" ]
null
Alexander R. Povolotsky, Nov 08 2022
2023-12-10T09:16:42
oeisdata/seq/A358/A358314.seq
bd25fccd89f2caf7a089e307f7054610
A358315
Primes p == 1 (mod 3) such that there exists 1 <= x <= p-2 such that (x+1)^p - x^p == 1 (mod p^2) and that p does not divide x^2 + x + 1.
[ "79", "193", "337", "421", "457", "547", "601", "619", "691", "757", "787", "907", "1039", "1093", "1231", "1237", "1303", "1489", "1531", "1657", "1993", "2089", "2113", "2251", "2311", "2377", "2389", "2437", "2539", "2647", "2659", "2713", "2731", "2749", "3001", "3037", "3109", "3229", "3319", "3331", "3511", "4003", "4177", "4243", "4273", "4339", "4447" ]
[ "nonn" ]
9
1
1
[ "A068209", "A320535", "A358315" ]
null
Jianing Song, Nov 08 2022
2022-11-08T18:25:11
oeisdata/seq/A358/A358315.seq
c3ecb5535774d6c49be2d9abcb5b01a4
A358316
Number of edge-4-critical graphs on n unlabeled vertices.
[ "1", "0", "1", "2", "5", "21", "150", "1221", "14581", "207969" ]
[ "nonn", "more" ]
9
4
4
null
null
Brendan McKay, Nov 08 2022
2022-11-09T19:06:08
oeisdata/seq/A358/A358316.seq
edb8052d6a04b8676a456748527a1983
A358317
Ordered squares of the chord lengths of the parabola y=x^2, where the chord ends are all possible points of the parabola with integer coordinates.
[ "0", "2", "4", "10", "16", "18", "20", "26", "36", "50", "64", "68", "80", "82", "90", "98", "100", "122", "144", "148", "162", "170", "180", "196", "226", "234", "242", "250", "256", "260", "272", "290", "320", "324", "338", "362", "400", "404", "442", "450", "484", "490", "500", "530", "576", "578", "580", "592", "612", "626", "650", "676", "720", "722", "730", "738", "784", "788", "810", "842", "882", "900", "962", "980" ]
[ "nonn" ]
55
1
2
[ "A001481", "A071253", "A358317" ]
null
Nicolay Avilov, Nov 09 2022
2022-11-24T18:27:27
oeisdata/seq/A358/A358317.seq
919fd4aaf631477b838fed0880d37e74
A358318
For n >= 5, a(n) is the number of zeros that need to be inserted to the left of the ones digit of the n-th prime so that the result is composite.
[ "2", "2", "2", "4", "1", "1", "1", "2", "3", "1", "1", "3", "3", "2", "3", "5", "1", "2", "1", "3", "5", "1", "1", "1", "3", "3", "1", "3", "3", "1", "4", "1", "1", "1", "3", "1", "2", "2", "3", "1", "2", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "5", "2", "2", "1", "1", "1", "1", "2", "2", "2", "1", "1", "1", "6", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "1", "1", "2", "3", "1", "2", "1", "1", "1", "1", "3" ]
[ "nonn", "base" ]
36
5
1
[ "A000040", "A344637", "A358318" ]
null
Rida Hamadani, Nov 09 2022
2022-12-08T07:37:14
oeisdata/seq/A358/A358318.seq
0a9dcf3de6113c0b2682eb23cdf83447
A358319
Multiplicative sequence a(n) with a(p^e) = ((p-2) - (p-1) * e) * p^(e-1) for prime p and e > 0.
[ "1", "-1", "-1", "-4", "-1", "1", "-1", "-12", "-9", "1", "-1", "4", "-1", "1", "1", "-32", "-1", "9", "-1", "4", "1", "1", "-1", "12", "-25", "1", "-45", "4", "-1", "-1", "-1", "-80", "1", "1", "1", "36", "-1", "1", "1", "12", "-1", "-1", "-1", "4", "9", "1", "-1", "32", "-49", "25", "1", "4", "-1", "45", "1", "12", "1", "1", "-1", "-4", "-1", "1", "9", "-192", "1", "-1", "-1", "4", "1", "-1", "-1", "108", "-1", "1", "25", "4", "1", "-1", "-1", "32" ]
[ "sign", "easy", "mult" ]
7
1
4
[ "A000010", "A076479", "A358319" ]
null
Werner Schulte, Nov 09 2022
2022-11-09T11:32:52
oeisdata/seq/A358/A358319.seq
5564e3c58b17f07cab92f8c2fad79878
A358320
Least odd number m such that m*2^n is a perfect, amicable or sociable number, and -1 if no such number exists.
[ "12285", "3", "7", "779", "31", "37", "127", "651", "2927269", "93", "25329329", "7230607", "8191", "66445153", "7613527", "18431675687", "131071", "264003743", "524287", "59592560831", "949755039781" ]
[ "nonn", "more" ]
108
0
1
[ "A000396", "A001065", "A002025", "A090748", "A259180", "A262625", "A347770", "A358320", "A358415" ]
null
Jean-Marc Rebert, Nov 09 2022
2022-11-19T19:20:06
oeisdata/seq/A358/A358320.seq
903561286a5f014c89fb9ad3dcac6ab9
A358321
a(n) is the index of the smallest n-gonal number with exactly n distinct prime factors.
[ "11", "210", "87", "228", "1155", "7854", "66612", "395646", "2193303", "8389010", "122574155", "630341910", "6066475415" ]
[ "nonn", "more" ]
67
3
1
[ "A358321", "A358862", "A359014" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358321.seq
928e41d50113dbe4ed4b3ad9f57b6017
A358322
Interlopers in sexy prime quadruples.
[ "7", "13", "19", "43", "71", "617", "643", "1093", "1483", "1489", "1609", "1871", "1877", "2381", "2687", "3919", "4003", "5441", "5651", "5657", "9463", "11831", "12109", "14629", "20357", "21491", "24107", "26683", "26713", "32059", "37571", "41957", "42407", "44533", "50591", "55217", "65717", "68899", "70001", "79813", "87557", "88811", "88817", "103993", "110923", "112573", "122029" ]
[ "nonn" ]
13
1
1
[ "A023271", "A358322" ]
null
J. M. Bergot and Robert Israel, Nov 09 2022
2022-11-10T07:39:01
oeisdata/seq/A358/A358322.seq
230897e7e1a8d6429b1dab861c556041
A358323
a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.
[ "1", "0", "-1", "-7", "-60", "-1210", "-34020", "-607332", "-30448441", "-1093612784", "-55400732937", "-2471079070511", "-197500419383964" ]
[ "sign", "hard", "more" ]
12
0
4
[ "A350953", "A358323", "A358324", "A358325", "A358326", "A358327" ]
null
Stefano Spezia, Nov 09 2022
2022-11-16T08:54:35
oeisdata/seq/A358/A358323.seq
a239d8d07f4049e05ae3551cde663b40
A358324
a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.
[ "1", "0", "1", "8", "63", "2090", "36875", "1123653", "34292912", "1246207300", "53002204560", "2418538080316", "215120941720912" ]
[ "nonn", "hard", "more" ]
11
0
4
[ "A350954", "A358323", "A358324", "A358325", "A358326", "A358327" ]
null
Stefano Spezia, Nov 09 2022
2022-11-19T21:07:23
oeisdata/seq/A358/A358324.seq
5719723d6fbe3cda272f5c443e4ef198
A358325
a(n) is the minimal absolute value of determinant of a nonsingular n X n symmetric Toeplitz matrix using the integers 0 to n - 1.
[ "1", "3", "12", "2", "11", "10", "5", "4", "1", "4", "1" ]
[ "nonn", "hard", "more" ]
12
2
2
[ "A356865", "A358323", "A358324", "A358325", "A358326", "A358327" ]
null
Stefano Spezia, Nov 09 2022
2022-11-19T21:07:48
oeisdata/seq/A358/A358325.seq
30843b0bd64a12fb47aa9ea6832d96d6
A358326
a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.
[ "1", "0", "1", "4", "34", "744", "17585", "688202", "33248174", "2144597292", "169696358796", "16521881847592" ]
[ "nonn", "hard", "more" ]
10
0
4
[ "A351019", "A358323", "A358324", "A358326", "A358327" ]
null
Stefano Spezia, Nov 09 2022
2022-11-16T09:41:17
oeisdata/seq/A358/A358326.seq
922ff888e51d20456e4fcd1c8b2aee9c
A358327
a(n) is the maximal permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.
[ "1", "0", "1", "12", "304", "12696", "778785", "64118596", "7014698888", "965862895732", "166105870928994", "34460169208369298" ]
[ "nonn", "hard", "more" ]
10
0
4
[ "A351020", "A358323", "A358324", "A358326", "A358327" ]
null
Stefano Spezia, Nov 09 2022
2022-11-16T09:41:24
oeisdata/seq/A358/A358327.seq
396c35070550d25c38875253c5065eaf
A358328
Triangle read by rows: T(n,k) is the number of polygons with 2*n sides, of which k run through the center of a circle, on the circumference of which the 2*n vertices of the polygon are arranged at equal spacing, up to rotation.
[ "0", "0", "1", "1", "0", "1", "4", "4", "4", "2", "98", "120", "84", "24", "6", "5648", "6912", "4032", "1344", "288", "40", "532344", "631680", "351360", "118408", "26400", "3840", "322", "72724122", "84211200", "45907200", "15436800", "3513600", "552960", "57600", "3294", "13577195574", "15432560640", "8305920000", "2786273280", "643507200", "106122240", "12418560", "967680", "40320" ]
[ "nonn", "tabl" ]
22
0
7
[ "A094155", "A330662", "A358328" ]
null
Ludovic Schwob, Nov 09 2022
2022-12-05T04:40:53
oeisdata/seq/A358/A358328.seq
17c5f840cf2e473e524d4add34385576
A358329
Triangle read by rows: T(n,k) is the number of polygons with 2*n sides, of which k run through the center of a circle, on the circumference of which the 2*n vertices of the polygon are arranged at equal spacing, up to rotation and reflection.
[ "0", "0", "1", "1", "0", "1", "4", "3", "3", "2", "70", "60", "54", "12", "6", "2980", "3512", "2088", "704", "156", "28", "268444", "315840", "176928", "59204", "13488", "1920", "193", "36387789", "42112416", "22965696", "7722144", "1759104", "277344", "28992", "1743", "6789078267", "7716280320", "4153217280", "1393136640", "321814080", "53061120", "6216960", "483840", "20640" ]
[ "nonn", "tabl" ]
22
0
7
[ "A094157", "A330662", "A358329" ]
null
Ludovic Schwob, Nov 09 2022
2022-12-05T04:41:03
oeisdata/seq/A358/A358329.seq
317263d125a45b4be2136b30181faa20
A358330
By concatenating the standard compositions of each part of the a(n)-th standard composition, we get a weakly increasing sequence.
[ "0", "1", "2", "3", "4", "6", "7", "8", "9", "10", "12", "14", "15", "18", "19", "24", "25", "26", "28", "30", "31", "32", "36", "38", "39", "40", "42", "50", "51", "56", "57", "58", "60", "62", "63", "64", "72", "73", "74", "76", "78", "79", "96", "100", "102", "103", "104", "106", "114", "115", "120", "121", "122", "124", "126", "127", "128", "129", "130", "136", "146", "147" ]
[ "nonn" ]
10
1
3
[ "A000120", "A001511", "A029931", "A048896", "A058891", "A066099", "A070939", "A333766", "A335404", "A357134", "A357135", "A357137", "A357186", "A358330" ]
null
Gus Wiseman, Nov 10 2022
2022-11-11T08:08:49
oeisdata/seq/A358/A358330.seq
e115a7728346a83fd10b03b944cfae34
A358331
Number of integer partitions of n with arithmetic and geometric mean differing by one.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "2", "0", "2", "0", "1", "1", "0", "3", "3", "0", "0", "2", "2", "0", "4", "0", "0", "5", "0", "0", "4", "5", "4", "3", "2", "0", "3", "3", "10", "4", "0", "0", "7", "0", "0", "16", "2", "4", "4", "0", "0", "5", "24", "0", "6", "0", "0", "9", "0", "27", "10", "0", "7", "7", "1", "0", "44" ]
[ "nonn" ]
37
0
29
[ "A000041", "A067538", "A067539", "A078174", "A078175", "A102627", "A178832", "A271654", "A316413", "A320322", "A326027", "A326028", "A326623", "A326624", "A326625", "A326641", "A326645", "A357710", "A358331", "A358332" ]
null
Gus Wiseman, Nov 09 2022
2023-09-25T10:58:39
oeisdata/seq/A358/A358331.seq
446a9942d452aa82c6ebb1b1e73415c3
A358332
Numbers whose prime indices have arithmetic and geometric mean differing by one.
[ "57", "228", "1064", "1150", "1159", "2405", "3249", "7991", "29785", "29999", "30153", "35378", "51984", "82211", "133931", "185193", "187039", "232471", "242592", "374599", "404225", "431457", "685207", "715129", "927288", "1132096", "1165519", "1322500", "1343281", "1555073", "1872413", "2016546", "2873687", "3468319", "4266421", "4327344" ]
[ "nonn" ]
22
1
1
[ "A000040", "A000720", "A001221", "A001222", "A003963", "A051293", "A056239", "A067538", "A067539", "A078175", "A111233", "A215366", "A289508", "A289509", "A316413", "A320322", "A326027", "A326028", "A326623", "A326624", "A326645", "A357710", "A358331", "A358332" ]
null
Gus Wiseman, Nov 09 2022
2025-03-01T08:37:36
oeisdata/seq/A358/A358332.seq
6edcfa9f3359be474dfbc6196d9cc9f4
A358333
By concatenating the standard compositions for each part of the n-th standard composition, we get a sequence of length a(n). Row-lengths of A357135.
[ "0", "1", "1", "2", "2", "2", "2", "3", "1", "3", "2", "3", "3", "3", "3", "4", "2", "2", "3", "4", "3", "3", "3", "4", "2", "4", "3", "4", "4", "4", "4", "5", "2", "3", "2", "3", "4", "4", "4", "5", "2", "4", "3", "4", "4", "4", "4", "5", "3", "3", "4", "5", "4", "4", "4", "5", "3", "5", "4", "5", "5", "5", "5", "6", "3", "3", "3", "4", "3", "3", "3", "4", "3", "5", "4", "5", "5", "5", "5", "6", "3", "3", "4", "5", "4", "4", "4" ]
[ "nonn" ]
7
0
4
[ "A000120", "A001511", "A029931", "A048896", "A058891", "A066099", "A070939", "A096111", "A333766", "A357134", "A357135", "A357137", "A357139", "A357186", "A357187", "A358330", "A358333" ]
null
Gus Wiseman, Nov 10 2022
2022-11-11T08:08:22
oeisdata/seq/A358/A358333.seq
861757b307623a7c5cd540f4b0be7337
A358334
Number of twice-partitions of n into odd-length partitions.
[ "1", "1", "2", "4", "7", "13", "25", "43", "77", "137", "241", "410", "720", "1209", "2073", "3498", "5883", "9768", "16413", "26978", "44741", "73460", "120462", "196066", "320389", "518118", "839325", "1353283", "2178764", "3490105", "5597982", "8922963", "14228404", "22609823", "35875313", "56756240", "89761600", "141410896", "222675765" ]
[ "nonn" ]
12
0
3
[ "A000041", "A000219", "A001970", "A026424", "A027193", "A055922", "A063834", "A072233", "A078408", "A117958", "A270995", "A279374", "A296122", "A298118", "A300300", "A300301", "A300647", "A302243", "A321449", "A356932", "A356935", "A358334", "A358824", "A358825", "A358827", "A358834" ]
null
Gus Wiseman, Dec 01 2022
2022-12-30T21:38:28
oeisdata/seq/A358/A358334.seq
374778e436dab6da700ffe1d19283f64
A358335
Number of integer compositions of n whose parts have weakly decreasing numbers of prime factors (with multiplicity).
[ "1", "1", "2", "3", "5", "8", "12", "19", "29", "44", "68", "100", "153", "227", "342", "509", "759", "1129", "1678", "2492", "3699", "5477", "8121", "12015", "17795", "26313", "38924", "57541", "85065", "125712", "185758", "274431", "405420", "598815", "884465", "1306165", "1928943", "2848360", "4205979", "6210289", "9169540" ]
[ "nonn" ]
16
0
3
[ "A001221", "A001222", "A011782", "A056239", "A063834", "A141199", "A218482", "A300335", "A319071", "A319169", "A320324", "A358335", "A358831", "A358901", "A358902", "A358903", "A358904", "A358908", "A358909", "A358910", "A358911" ]
null
Gus Wiseman, Dec 05 2022
2024-02-12T17:24:53
oeisdata/seq/A358/A358335.seq
641fc0643e6a527c4bd02f1b54c94d1d
A358336
Multiplicative sequence with a(p^e) = ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1) for prime p and e > 0.
[ "1", "3", "5", "12", "9", "15", "13", "40", "30", "27", "21", "60", "25", "39", "45", "120", "33", "90", "37", "108", "65", "63", "45", "200", "90", "75", "153", "156", "57", "135", "61", "336", "105", "99", "117", "360", "73", "111", "125", "360", "81", "195", "85", "252", "270", "135", "93", "600", "182", "270", "165", "300", "105", "459", "189", "520", "185", "171", "117", "540", "121", "183", "390", "896" ]
[ "nonn", "easy", "mult" ]
17
1
2
[ "A000010", "A001620", "A002117", "A005361", "A013664", "A018804", "A112526", "A157289", "A244115", "A306016", "A358336" ]
null
Werner Schulte, Nov 09 2022
2024-12-13T10:25:16
oeisdata/seq/A358/A358336.seq
0e3953ce30453b9560169a45c6dacc05
A358337
Earliest infinite sequence of distinct integers on a square spiral such that every number equals the sum of its four adjacent neighbors. See the Comments.
[ "0", "1", "-1", "2", "-2", "3", "-3", "-6", "6", "4", "-4", "9", "-5", "-13", "5", "-17", "11", "10", "8", "-20", "-11", "20", "-9", "7", "-15", "-10", "17", "-18", "19", "-22", "-8", "21", "-12", "33", "-31", "-21", "-19", "39", "-7", "15", "-14", "14", "12", "-25", "43", "-30", "25", "-16", "22", "13", "-34", "41", "-50", "50", "-28", "26", "-24", "-33", "46", "-53", "71", "-26", "18", "23", "-27", "-60", "54", "-71", "28", "-23" ]
[ "sign" ]
18
0
4
[ "A344659", "A354435", "A354441", "A358048", "A358151", "A358254", "A358337" ]
null
Scott R. Shannon, Nov 10 2022
2022-11-13T09:33:35
oeisdata/seq/A358/A358337.seq
35846c77afeec004fdfe1708736d4a26
A358338
a(n) = abs(a(n-1) - count(a(n-1))) where count(a(n-1)) is the number of times a(n-1) has appeared so far in the sequence, a(1)=0.
[ "0", "1", "0", "2", "1", "1", "2", "0", "3", "2", "1", "3", "1", "4", "3", "0", "4", "2", "2", "3", "1", "5", "4", "1", "6", "5", "3", "2", "4", "0", "5", "2", "5", "1", "7", "6", "4", "1", "8", "7", "5", "0", "6", "3", "3", "4", "2", "6", "2", "7", "4", "3", "5", "1", "9", "8", "6", "1", "10", "9", "7", "3", "6", "0", "7", "2", "8", "5", "2", "9", "6", "1", "11", "10", "8", "4", "4", "5", "3", "7", "1", "12", "11", "9", "5", "4" ]
[ "nonn", "easy" ]
24
1
4
[ "A337835", "A340488", "A342585", "A358338" ]
null
Clément Vovard, Nov 10 2022
2023-12-10T09:15:27
oeisdata/seq/A358/A358338.seq
53c04dad14153a619cf5b30e73abcc3e
A358339
Array read by antidiagonals upwards: A(n,k) is the number of nonequivalent positions in the KRvK endgame on an n X n chessboard with DTM (distance to mate) k, n >= 3, k >= 0.
[ "2", "4", "5", "3", "15", "9", "5", "10", "36", "13", "9", "51", "21", "70", "20", "5", "30", "122", "36", "120", "27", "4", "40", "59", "231", "55", "189", "35", "0", "26", "97", "101", "384", "78", "280", "44", "0", "30", "39", "181", "165", "587", "105", "396", "54", "0", "31", "87", "53", "311", "246", "846", "136", "540", "65", "0", "22", "79", "134", "67", "484", "356", "1167", "171", "715", "77" ]
[ "nonn", "tabl" ]
71
3
1
[ "A000096", "A014105", "A077414", "A225552", "A357723", "A358339" ]
null
Nathan L. Skirrow, Nov 10 2022
2024-12-01T04:44:59
oeisdata/seq/A358/A358339.seq
d73bf45c1725a604dfc6974728117d68
A358340
a(n) is the smallest n-digit number whose fourth power is zeroless.
[ "1", "11", "104", "1027", "10267", "102674", "1026708", "10266908", "102669076", "1026690113", "10266901031", "102669009704", "1026690096087", "10266900960914", "102669009608176", "1026690096080369", "10266900960803447", "102669009608034434", "1026690096080341627", "10266900960803409734", "102669009608034097731", "1026690096080340972491" ]
[ "nonn", "base" ]
22
1
2
[ "A052040", "A052044", "A052382", "A124648", "A124649", "A252484", "A253643", "A253644", "A253647", "A358340" ]
null
Mohammed Yaseen, Nov 10 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358340.seq
2aa0a3a5d1aa4b679e1b7bcda8b024c1
A358341
Expansion of e.g.f. (exp(x)-1)*(exp(x)-x)*(exp(x)-x^2/2).
[ "0", "1", "3", "7", "31", "96", "314", "1072", "3693", "12556", "41800", "136236", "435923", "1374088", "4280358", "13211704", "40492633", "123440724", "374774660", "1134346228", "3425446335", "10326139696", "31088511778", "93507747360", "281053811141", "844319049436", "2535473717184", "7611873731452", "22847398782763", "68567563479576" ]
[ "nonn", "easy" ]
12
0
3
[ "A358341", "A360586" ]
null
Enrique Navarrete, Feb 22 2023
2023-03-12T15:39:22
oeisdata/seq/A358/A358341.seq
d5265b4da9b7b8a8c50299f9a7eae980
A358342
Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.
[ "3", "5", "17", "65537", "1927561217", "6015902625062501", "12370388895062501", "835920078368222501", "6448645485213008897", "50973659693056000001", "54332889713542767617", "64304984013657011717", "112112769248058062501", "147337258721536000001" ]
[ "nonn", "more" ]
18
1
1
[ "A000005", "A000203", "A001359", "A019434", "A064205", "A145824", "A272060", "A272061", "A358342" ]
null
Jaroslav Krizek, Nov 10 2022
2023-01-05T18:38:56
oeisdata/seq/A358/A358342.seq
feac31932dc4b3e94983985e9aba74e1
A358343
Primes p such that p + 6, p + 12, p + 18, (p+4)/5, (p+4)/5 + 6, (p+4)/5 + 12 and (p+4)/5 + 18 are also prime.
[ "213724201", "336987901", "791091901", "1940820901", "2454494551", "2525191051", "2675901751", "3490984201", "3571597951", "3702692551", "4045565851", "4531570951", "5698472701", "5928161251", "5953041001", "6589503751", "7073836201", "7360771801", "7811308951", "8282895451", "10242069451", "11049315751", "12392801251", "13062696001" ]
[ "nonn" ]
10
1
1
[ "A023271", "A358343" ]
null
J. M. Bergot and Robert Israel, Nov 10 2022
2022-11-21T09:50:04
oeisdata/seq/A358/A358343.seq
972a74e4fa55790ec2e1fd314355d549
A358344
a(1) = 0; a(n) = the smallest number such that the concatenation a(1)a(2)...a(n) is prime in the smallest allowed base; sequence terminates at index m if a(1)a(2)...a(m)k is composite in the smallest allowed base for all k.
[ "0", "2", "1", "2", "2", "3", "1", "5", "9", "7", "21", "5", "31", "49", "39", "104", "2", "34", "44", "74", "22", "64", "16", "107", "549", "81", "207", "273", "87", "497", "27", "556", "42", "150", "32", "44", "144", "340", "28", "198", "677", "13", "61", "209", "377", "893", "329", "391", "49", "83", "425", "197", "1017", "205", "191", "163", "1131", "291", "281", "295", "389" ]
[ "base", "nonn" ]
24
1
2
[ "A023107", "A024770", "A069603", "A358344" ]
null
Samuel Harkness, Nov 11 2022
2022-11-28T10:01:41
oeisdata/seq/A358/A358344.seq
51dcdbcd4276f630d040da70d68b0520
A358345
a(n) is the number of even square divisors of n.
[ "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "3", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "0", "2" ]
[ "nonn" ]
13
1
16
[ "A016742", "A046951", "A187941", "A222171", "A235127", "A298735", "A358345" ]
null
Amiram Eldar, Nov 11 2022
2022-11-12T06:35:33
oeisdata/seq/A358/A358345.seq
c9d12ec073b0df301c0fe15fa07e8482
A358346
a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).
[ "1", "3", "4", "1", "6", "12", "8", "9", "1", "18", "12", "4", "14", "24", "24", "1", "18", "3", "20", "6", "32", "36", "24", "36", "1", "42", "28", "8", "30", "72", "32", "33", "48", "54", "48", "1", "38", "60", "56", "54", "42", "96", "44", "12", "6", "72", "48", "4", "1", "3", "72", "14", "54", "84", "72", "72", "80", "90", "60", "24", "62", "96", "8", "1", "84", "144", "68", "18", "96", "144" ]
[ "nonn", "easy", "mult" ]
19
1
2
[ "A000290", "A005117", "A033634", "A034448", "A035316", "A055076", "A077610", "A268335", "A351569", "A358346", "A358347" ]
null
Amiram Eldar, Nov 11 2022
2024-07-09T00:53:51
oeisdata/seq/A358/A358346.seq
87f7467670935d27cdd27a4ab16af6b7
A358347
a(n) is the sum of the unitary divisors of n that are squares.
[ "1", "1", "1", "5", "1", "1", "1", "1", "10", "1", "1", "5", "1", "1", "1", "17", "1", "10", "1", "5", "1", "1", "1", "1", "26", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "50", "1", "1", "1", "1", "1", "1", "1", "5", "10", "1", "1", "17", "50", "26", "1", "5", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "10", "65", "1", "1", "1", "5", "1", "1", "1", "10", "1", "1", "26", "5", "1", "1", "1", "17", "82", "1" ]
[ "nonn", "easy", "mult" ]
20
1
4
[ "A033634", "A034448", "A035316", "A056624", "A077610", "A078434", "A247041", "A268335", "A350388", "A351568", "A358346", "A358347" ]
null
Amiram Eldar, Nov 11 2022
2023-09-09T06:49:35
oeisdata/seq/A358/A358347.seq
b041f9b0227aef1c4f02338127645d2a
A358348
Numbers k such that k == k^k (mod 9).
[ "1", "4", "7", "9", "10", "13", "16", "17", "18", "19", "22", "25", "27", "28", "31", "34", "35", "36", "37", "40", "43", "45", "46", "49", "52", "53", "54", "55", "58", "61", "63", "64", "67", "70", "71", "72", "73", "76", "79", "81", "82", "85", "88", "89", "90", "91", "94", "97", "99", "100", "103", "106", "107", "108", "109", "112", "115", "117", "118", "121", "124", "125", "126" ]
[ "nonn", "base", "easy" ]
48
1
2
[ "A007953", "A010888", "A082576", "A189510", "A358348" ]
null
Ivan Stoykov, Nov 11 2022
2023-03-29T06:37:36
oeisdata/seq/A358/A358348.seq
6094d1b12dea784fc518e7b8d4738218
A358349
A puzzle array read by antidiagonals.
[ "1", "2", "1", "3", "3", "1", "4", "9", "4", "1", "5", "21", "31", "5", "1", "6", "41", "220", "129", "6", "1", "7", "71", "1081", "6949", "651", "7", "1", "8", "113", "3992", "244769", "897072", "3913", "8", "1", "9", "169", "12015", "4560121", "1701796853", "583997785", "27399", "9", "1", "10", "241", "31112", "52524001", "1117878053902", "1526634890512201" ]
[ "nonn", "easy", "tabl" ]
11
1
2
null
null
Sean A. Irvine, Dec 02 2022
2022-12-03T05:54:29
oeisdata/seq/A358/A358349.seq
10343f536f4f7393dbfada9317dcf48d
A358350
Numbers that can be written as (m + sum of digits of m + product of digits of m) for some m.
[ "3", "6", "9", "11", "12", "14", "15", "17", "18", "20", "21", "22", "23", "24", "26", "27", "29", "30", "32", "33", "34", "35", "38", "42", "43", "44", "46", "48", "50", "53", "54", "55", "56", "58", "62", "63", "66", "68", "69", "73", "74", "76", "77", "78", "80", "82", "83", "86", "88", "90", "92", "95", "97", "98", "99", "101", "103", "104", "105", "106", "107", "108", "109", "110" ]
[ "nonn", "base" ]
33
1
1
[ "A000533", "A161351", "A176995", "A336826", "A337718", "A358350" ]
null
Bernard Schott, Nov 11 2022
2022-12-19T15:05:18
oeisdata/seq/A358/A358350.seq
7103b79ce3100da2e59dfa7885d168c9
A358351
Number of values of m such that m + (sum of digits of m) + (product of digits of m) is n.
[ "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "0", "2", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "0", "3", "0", "0", "0", "1", "1", "1", "0", "1", "0", "1", "0", "2", "0", "0", "1", "1", "1", "1", "0", "2", "0", "0", "0", "2", "1", "0", "0", "1", "0", "2", "1", "0", "0", "0", "1", "2", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "2", "0" ]
[ "nonn", "base" ]
25
1
26
[ "A011540", "A161351", "A230093", "A230103", "A358350", "A358351" ]
null
Bernard Schott, Nov 16 2022
2022-11-21T02:58:50
oeisdata/seq/A358/A358351.seq
056dc11c77fbd9117b5a8fae520ace55
A358352
a(n) is the smallest number k such that A358351(k) = n.
[ "1", "3", "26", "38", "380", "1116", "12912", "95131", "342038", "3320210", "494204209", "773089018" ]
[ "nonn", "base", "more" ]
23
0
2
[ "A006064", "A007953", "A007954", "A161351", "A358350", "A358351", "A358352" ]
null
Bernard Schott, Nov 19 2022
2022-11-20T08:46:08
oeisdata/seq/A358/A358352.seq
4cd6cc5be3b9cf1cbb497fb292d16172
A358353
Numbers that are not of the form m + (sum of digits of m) + (product of digits of m) for any m.
[ "1", "2", "4", "5", "7", "8", "10", "13", "16", "19", "25", "28", "31", "36", "37", "39", "40", "41", "45", "47", "49", "51", "52", "57", "59", "60", "61", "64", "65", "67", "70", "71", "72", "75", "79", "81", "84", "85", "87", "89", "91", "93", "94", "96", "100", "102", "116", "120", "125", "126", "129", "137", "141", "142", "146", "150", "152", "153", "160", "161", "162", "166", "171", "172", "173", "180" ]
[ "nonn", "base" ]
30
1
2
[ "A003052", "A161351", "A230104", "A358350", "A358351", "A358352", "A358353" ]
null
Bernard Schott, Dec 19 2022
2023-01-16T08:30:44
oeisdata/seq/A358/A358353.seq
940b779a425268b2f52cd3818fb5f1ee
A358354
a(n) = n for n <= 3. Thereafter a(n) is the least m such that rad(m) = rad(rad(a(n-3)) + rad(a(n-1))) where rad is A007947.
[ "1", "2", "3", "4", "8", "5", "7", "9", "16", "27", "6", "32", "25", "11", "13", "12", "17", "30", "18", "23", "53", "59", "82", "15", "74", "78", "93", "167", "35", "64", "169", "24", "128", "45", "21", "529", "38", "3481", "164", "60", "89", "57", "87", "22", "79", "166", "94", "173", "339", "433", "606", "105", "538", "286", "391", "929", "75", "406", "1335", "90", "218", "1553" ]
[ "nonn" ]
12
1
2
[ "A007947", "A358093", "A358354" ]
null
David James Sycamore, Nov 11 2022
2022-11-30T17:26:30
oeisdata/seq/A358/A358354.seq
a33ad07eba254dca9a316225d17fafdf
A358355
Maximum length of an induced path (or chordless path) in the n-halved cube graph.
[ "0", "1", "1", "2", "3", "6", "11", "18" ]
[ "nonn", "more" ]
17
1
4
[ "A099155", "A357619", "A358355", "A358356", "A358357" ]
null
Pontus von Brömssen, Nov 12 2022
2022-12-23T16:23:08
oeisdata/seq/A358/A358355.seq
329fc01bf05562ff7f94eefaab313377
A358356
Maximum length of an induced cycle (or chordless cycle) in the n-halved cube graph.
[ "0", "0", "3", "4", "5", "8", "12", "20" ]
[ "nonn", "more" ]
6
1
3
[ "A000937", "A357620", "A358355", "A358356", "A358358" ]
null
Pontus von Brömssen, Nov 12 2022
2022-11-15T09:16:36
oeisdata/seq/A358/A358356.seq
09b029fea8f9536dfde007ccbdbac338
A358357
Maximum length of an induced path (or chordless path) in the n-folded cube graph.
[ "1", "1", "2", "4", "10", "22" ]
[ "nonn", "more" ]
14
2
3
[ "A099155", "A357619", "A358355", "A358357", "A358358" ]
null
Pontus von Brömssen, Nov 12 2022
2022-12-24T11:15:45
oeisdata/seq/A358/A358357.seq
e03faf9566e3892fd166b2ecf83db863
A358358
Maximum length of an induced cycle (or chordless cycle) in the n-folded cube graph.
[ "0", "3", "4", "6", "12", "24" ]
[ "nonn", "more" ]
6
2
2
[ "A000937", "A357620", "A358356", "A358357", "A358358" ]
null
Pontus von Brömssen, Nov 12 2022
2022-11-15T09:16:44
oeisdata/seq/A358/A358358.seq
bd811a2c50f2fe9d1da75a8983a2a2e1
A358359
a(n) = number of occurrences of n in A128440; i.e., as a number [k*r^m], where r = golden ratio = (1+sqrt(5))/2, k and m are positive integers, and [ ] = floor.
[ "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "2", "2", "2", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "1", "2", "1", "2", "1", "3", "1", "1", "1", "3", "2", "2", "1", "1", "2", "1", "1", "2", "2", "1", "2", "1", "3", "2", "1", "1", "2", "1", "1", "2", "2", "3", "1", "1", "2", "2", "1", "2", "1", "2", "1", "1", "2", "2", "2", "1", "1", "2", "2", "1", "1", "2", "3", "2", "1", "1", "2", "1", "2", "1", "2", "1", "1" ]
[ "nonn" ]
7
1
4
[ "A128440", "A358359" ]
null
Clark Kimberling, Nov 11 2022
2022-11-13T08:38:29
oeisdata/seq/A358/A358359.seq
f8c1402d51d7ffd0802be154ff03e9ba
A358360
The 3-adic valuation of the central Delannoy numbers (sequence A001850).
[ "0", "1", "0", "2", "1", "2", "0", "1", "0", "3", "2", "3", "1", "2", "1", "3", "2", "3", "0", "1", "0", "2", "1", "2", "0", "1", "0", "4", "3", "4", "2", "3", "2", "4", "3", "4", "1", "2", "1", "3", "2", "3", "1", "2", "1", "4", "3", "4", "2", "3", "2", "4", "3", "4", "0", "1", "0", "2", "1", "2", "0", "1", "0", "3", "2", "3", "1", "2", "1", "3", "2", "3", "0", "1", "0", "2", "1", "2", "0", "1", "0", "5", "4", "5", "3", "4", "3" ]
[ "nonn" ]
12
0
4
[ "A001850", "A007949", "A358360" ]
null
Jeffrey Shallit, Nov 12 2022
2022-11-12T11:34:12
oeisdata/seq/A358/A358360.seq
05ce43a2f4bf2713f36aa605eb3df9f6
A358361
Decimal expansion of the constant Sum_{j>=0} j!!/(2*j)!, where j!! indicates the double factorial of j.
[ "1", "5", "8", "7", "7", "0", "2", "6", "4", "7", "7", "2", "7", "6", "6", "0", "5", "0", "7", "9", "7", "1", "8", "0", "1", "2", "6", "6", "2", "8", "5", "5", "5", "3", "7", "3", "2", "2", "3", "5", "4", "8", "6", "2", "3", "2", "4", "6", "7", "7", "2", "1", "2", "5", "2", "7", "5", "1", "6", "3", "2", "0", "4", "7", "3", "5", "6", "6", "5", "1", "0", "4", "0", "4", "6", "7", "1", "8", "6", "9", "5", "4", "9", "5", "5", "2", "2" ]
[ "cons", "easy", "nonn" ]
25
1
2
[ "A006882", "A010050", "A143280", "A264152", "A358361" ]
null
Marco Ripà, Nov 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358361.seq
117242346e103b114b6b1c58425c2fd2
A358362
a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2.
[ "1", "12", "228", "3248", "56868", "846384", "14395920", "218556096", "3662534436", "56236646576", "933921124752", "14445103689408", "238434118702864", "3706773418885824", "60917716297733184", "950622015752780544", "15571249887287040804", "243694280206569964464", "3981466564018425521424" ]
[ "nonn" ]
18
0
2
[ "A358362", "A358363", "A358364", "A358365", "A367330" ]
null
Peter Luschny, Nov 12 2022
2023-11-15T03:12:00
oeisdata/seq/A358/A358362.seq
21c645c8ad40563d9d851346f774608a
A358363
a(n) = 16^n * Sum_{k=0..n} (-1)^k*binomial(1/2, k)^2.
[ "1", "12", "196", "3120", "50020", "799536", "12799632", "204724416", "3276326820", "52413049520", "838703348496", "13418125153472", "214703825630736", "3435088134123200", "54963617747611200", "879389273444524800", "14070604335190692900", "225124668703739770800", "3602061930346132909200" ]
[ "nonn" ]
20
0
2
[ "A358362", "A358363", "A358364", "A358365", "A367331" ]
null
Peter Luschny, Nov 12 2022
2023-11-15T03:12:34
oeisdata/seq/A358/A358363.seq
ea7e0be0e25d6f0624789bc307d0cb37
A358364
a(n) = 16^n * Sum_{k=0..n} binomial(1/2, k)^2.
[ "1", "20", "324", "5200", "83300", "1333584", "21344400", "341580096", "5466017700", "87464462800", "1399525960976", "22393543798080", "358310523944464", "5733141459080000", "91732470946920000", "1467748145667974400", "23484346290765886500", "375754541311565499600", "6012139892071344570000" ]
[ "nonn" ]
17
0
2
[ "A358362", "A358363", "A358364", "A358365", "A367332" ]
null
Peter Luschny, Nov 12 2022
2023-11-15T03:13:12
oeisdata/seq/A358/A358364.seq
a5618dcca017ad3f9ac252251aee6c4e
A358365
a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2.
[ "1", "20", "356", "6096", "102436", "1702480", "28093456", "461273920", "7546019620", "123100218320", "2003738272656", "32557446669120", "528231606378256", "8559878182412096", "138567392514153536", "2241139725237406976", "36219533239041063716", "584958249814679707856", "9441690077748181415696" ]
[ "nonn" ]
17
0
2
[ "A358362", "A358363", "A358364", "A358365", "A367333" ]
null
Peter Luschny, Nov 12 2022
2023-11-15T03:11:19
oeisdata/seq/A358/A358365.seq
6a430c04c9abaacb1aec9aab0ce5d777
A358366
Table read by rows. T(n, k) = [x^k] n! * Sum_{j=0..n} binomial(n*x, j).
[ "1", "1", "1", "2", "2", "4", "6", "15", "0", "27", "24", "56", "176", "-128", "256", "120", "470", "125", "3125", "-3125", "3125", "720", "2664", "10944", "-16200", "71280", "-69984", "46656", "5040", "26796", "17836", "376957", "-840350", "1882384", "-1647086", "823543", "40320", "204672", "1022720", "-2222080", "16257024", "-34865152", "55050240", "-41943040", "16777216" ]
[ "sign", "tabl" ]
8
0
4
[ "A000142", "A000165", "A000312", "A358366" ]
null
Peter Luschny, Nov 12 2022
2022-11-13T10:36:23
oeisdata/seq/A358/A358366.seq
876cc6612f5e2fd3edfb299ba5d9bbdc
A358367
a(n) = 8^n * binomial(n * 3/2, n).
[ "1", "12", "192", "3360", "61440", "1153152", "22020096", "425677824", "8304721920", "163176499200", "3224446697472", "64012657213440", "1275708366127104", "25506581874278400", "511404848311173120", "10278423735852072960", "207016682596362878976", "4177272328882468945920", "84430333294202899660800" ]
[ "nonn" ]
19
0
2
null
null
Peter Luschny, Nov 14 2022
2024-01-31T07:21:20
oeisdata/seq/A358/A358367.seq
66a7ae99e780ecb4d3ae4442359a9215
A358368
a(n) = Sum_{k=0..n} C(n)^2 * binomial(n + k, k), where C(n) is the n-th Catalan number.
[ "1", "3", "40", "875", "24696", "814968", "29899584", "1184303835", "49711519000", "2183727606632", "99503164453056", "4672502764108088", "225011739846443200", "11070183993903000000", "554749060302467136000", "28247778810831290434875", "1458696209123375067879000", "76266400563425844598365000" ]
[ "nonn" ]
11
0
2
[ "A000108", "A358368", "A358436", "A358437", "A367023" ]
null
Peter Luschny, Nov 16 2022
2024-02-19T04:36:24
oeisdata/seq/A358/A358368.seq
eab001885574bfa9a3c2ceda39a8f409
A358369
Euler transform of 2^floor(n/2), (A016116).
[ "1", "1", "3", "5", "12", "20", "43", "73", "146", "250", "475", "813", "1499", "2555", "4592", "7800", "13761", "23253", "40421", "67963", "116723", "195291", "332026", "552882", "932023", "1544943", "2585243", "4267081", "7094593", "11662769", "19281018", "31575874", "51937608", "84753396", "138772038", "225693778", "368017636" ]
[ "nonn" ]
10
0
3
[ "A000009", "A000041", "A000712", "A001970", "A002513", "A010054", "A015128", "A016116", "A022567", "A034691", "A111317", "A111335", "A117410", "A156224", "A166861", "A200544", "A261031", "A261329", "A358369", "A358449" ]
null
Peter Luschny, Nov 17 2022
2022-11-18T18:17:26
oeisdata/seq/A358/A358369.seq
aa66d374439c1427feb76ebb2a52e77c
A358370
a(n) is the size of the largest 3-independent set in the cyclic group Zn.
[ "0", "0", "0", "1", "1", "1", "1", "2", "1", "2", "2", "3", "2", "3", "3", "4", "3", "4", "3", "5", "3", "5", "4", "6", "5", "6", "4", "7", "5", "7", "5", "8", "6", "8", "7", "9", "6", "9", "6", "10", "7", "10", "7", "11", "9", "11", "8", "12", "8", "12", "9", "13", "9", "13", "11", "14", "9", "14", "10", "15", "10", "15", "10", "16", "13", "16", "11", "17", "12", "17", "12", "18", "12", "18", "15", "19", "14" ]
[ "nonn", "easy" ]
7
1
8
[ "A002265", "A007528", "A027750", "A152467", "A358370" ]
null
Stefano Spezia, Nov 12 2022
2022-11-13T12:27:25
oeisdata/seq/A358/A358370.seq
bde269b05c02ee3b05a332effce8766b
A358371
Number of leaves in the n-th standard ordered rooted tree.
[ "1", "1", "1", "2", "1", "2", "2", "3", "2", "2", "2", "3", "2", "3", "3", "4", "1", "3", "2", "3", "2", "3", "3", "4", "3", "3", "3", "4", "3", "4", "4", "5", "2", "2", "3", "4", "2", "3", "3", "4", "3", "3", "3", "4", "3", "4", "4", "5", "2", "4", "3", "4", "3", "4", "4", "5", "4", "4", "4", "5", "4", "5", "5", "6", "2", "3", "2", "3", "3", "4", "4", "5", "3", "3", "3", "4", "3", "4", "4", "5", "2", "4", "3", "4", "3", "4" ]
[ "nonn" ]
10
1
4
[ "A000081", "A000108", "A001263", "A004249", "A005043", "A032027", "A055277", "A061775", "A063895", "A109129", "A126120", "A187306", "A196050", "A284778", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 13 2022
2022-11-14T09:57:35
oeisdata/seq/A358/A358371.seq
113f28aebf05d8dea60f5a304495edc8
A358372
Number of nodes in the n-th standard ordered rooted tree.
[ "1", "2", "3", "3", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "5", "6", "6", "6", "6", "6", "6", "6", "5", "6", "6", "6", "7", "7", "7", "7", "6", "7", "7", "7", "7", "7", "7", "7", "6", "6", "7", "7", "7", "7", "7", "7", "6", "7", "7", "7", "7", "7", "7", "7", "5", "6", "7", "7", "7", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "7", "7", "8", "8", "8", "8", "8" ]
[ "nonn" ]
5
1
2
[ "A000081", "A001263", "A001678", "A004249", "A005043", "A032027", "A055277", "A061775", "A063895", "A109129", "A126120", "A196050", "A284778", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T15:38:01
oeisdata/seq/A358/A358372.seq
a94cff2a75ea9d9817573da0e6830c5c
A358373
Triangle read by rows where row n lists the sorted standard ordered rooted tree-numbers of all unlabeled ordered rooted trees with n vertices.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "25", "33", "65", "129", "257", "19", "20", "21", "22", "23", "24", "26", "27", "28", "29", "30", "31", "32", "34", "35", "36", "41", "49", "50", "57", "66", "97", "130", "193", "258", "385", "513", "514", "769", "1025", "2049", "4097", "8193", "16385", "32769", "65537", "131073" ]
[ "nonn", "tabf" ]
6
1
2
[ "A000027", "A000081", "A000108", "A001263", "A004249", "A005043", "A061773", "A061775", "A109129", "A215366", "A284778", "A358371", "A358372", "A358373", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T16:06:46
oeisdata/seq/A358/A358373.seq
6584cb011efbe289cb3257bb3af6e834
A358374
Numbers k such that the k-th standard ordered rooted tree is an identity tree (counted by A032027).
[ "1", "2", "3", "5", "6", "7", "10", "13", "17", "19", "21", "33", "34", "38", "39", "42", "45", "49", "51", "53", "65", "66", "67", "81", "97", "130", "131", "133", "134", "135", "145", "161", "162", "177", "193", "195", "209", "259", "261", "262", "263", "266", "269", "289", "290", "305", "321", "322", "353", "387", "389", "401", "417", "513", "517", "518", "519", "522" ]
[ "nonn" ]
5
1
2
[ "A000081", "A001263", "A004111", "A004249", "A005043", "A032027", "A063895", "A126120", "A276625", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T20:01:14
oeisdata/seq/A358/A358374.seq
c817bcf41b385d5c8e46c42cee06a41e
A358375
Numbers k such that the k-th standard ordered rooted tree is binary.
[ "1", "4", "18", "25", "137", "262146", "393217", "2097161", "2228225" ]
[ "nonn", "more" ]
6
1
2
[ "A000081", "A001190", "A001263", "A004249", "A005043", "A063895", "A111299", "A126120", "A245824", "A284778", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T16:06:42
oeisdata/seq/A358/A358375.seq
17aebc9b03c7a345bb7e7809a8d1eed4
A358376
Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043).
[ "1", "4", "8", "16", "18", "25", "32", "36", "50", "57", "64", "72", "100", "114", "121", "128", "137", "144", "200", "228", "242", "249", "256", "258", "274", "281", "288", "385", "393", "400", "456", "484", "498", "505", "512", "516", "548", "562", "569", "576", "770", "786", "793", "800", "897", "905", "912", "968", "996", "1010", "1017", "1024", "1032", "1096" ]
[ "nonn" ]
8
1
2
[ "A000014", "A000081", "A001263", "A001678", "A001679", "A004249", "A005043", "A032027", "A061775", "A063895", "A126120", "A187306", "A284778", "A291636", "A331489", "A331490", "A331934", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T20:00:52
oeisdata/seq/A358/A358376.seq
042eec09c2f00a379b134c3a11812330
A358377
Numbers k such that the k-th standard ordered rooted tree is a generalized Bethe tree (counted by A003238).
[ "1", "2", "3", "4", "5", "8", "9", "11", "16", "17", "32", "37", "43", "64", "128", "129", "137", "171", "256", "257", "293", "512", "529", "683", "1024", "1025", "2048", "2185", "2341", "2731", "4096", "8192", "10923", "16384", "16913", "18725", "32768", "32769", "32897", "34953", "43691", "65536", "65537", "131072", "131329", "149797", "174763" ]
[ "nonn" ]
5
1
2
[ "A000081", "A001263", "A003238", "A004111", "A004249", "A005043", "A032027", "A063895", "A214577", "A276625", "A331490", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-14T20:00:41
oeisdata/seq/A358/A358377.seq
236f28882aafc568ddb3f4ae63683878
A358378
Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "13", "15", "16", "17", "21", "25", "27", "29", "31", "32", "37", "41", "43", "49", "53", "57", "59", "61", "63", "64", "65", "73", "81", "85", "101", "105", "107", "113", "117", "121", "123", "125", "127", "128", "129", "137", "145", "165", "169", "171", "193", "201", "209", "213", "229", "233", "235", "241", "245", "249", "251" ]
[ "nonn" ]
5
1
2
[ "A000081", "A001263", "A004249", "A005043", "A032027", "A063895", "A276625", "A358371", "A358372", "A358373", "A358377", "A358378" ]
null
Gus Wiseman, Nov 14 2022
2022-11-15T10:12:45
oeisdata/seq/A358/A358378.seq
f7f7acfaae0361b42c3568a51e273aa7
A358379
Edge-height (or depth) of the n-th standard ordered rooted tree.
[ "0", "1", "2", "1", "3", "2", "2", "1", "2", "3", "2", "2", "3", "2", "2", "1", "4", "2", "3", "3", "3", "2", "2", "2", "2", "3", "2", "2", "3", "2", "2", "1", "3", "4", "2", "2", "3", "3", "3", "3", "2", "3", "2", "2", "3", "2", "2", "2", "4", "2", "3", "3", "3", "2", "2", "2", "2", "3", "2", "2", "3", "2", "2", "1", "3", "3", "4", "4", "3", "2", "2", "2", "3", "3", "3", "3", "3", "3", "3", "3", "4", "2", "3", "3", "3", "2", "2" ]
[ "nonn" ]
11
1
3
[ "A000081", "A000108", "A001263", "A004249", "A005043", "A034781", "A055277", "A061775", "A080936", "A109082", "A109129", "A187306", "A196050", "A358371", "A358372", "A358373", "A358374", "A358375", "A358376", "A358377", "A358378", "A358379", "A358552" ]
null
Gus Wiseman, Nov 16 2022
2022-11-27T10:33:45
oeisdata/seq/A358/A358379.seq
748518ca32a2484488759eb3291ca873
A358380
a(n) = Sum_{d|n} tau(d^5), where tau(n) = number of divisors of n, cf. A000005.
[ "1", "7", "7", "18", "7", "49", "7", "34", "18", "49", "7", "126", "7", "49", "49", "55", "7", "126", "7", "126", "49", "49", "7", "238", "18", "49", "34", "126", "7", "343", "7", "81", "49", "49", "49", "324", "7", "49", "49", "238", "7", "343", "7", "126", "126", "49", "7", "385", "18", "126", "49", "126", "7", "238", "49", "238", "49", "49", "7", "882", "7", "49", "126", "112", "49", "343", "7", "126", "49", "343", "7", "612", "7", "49", "126", "126" ]
[ "nonn", "mult", "easy" ]
33
1
2
[ "A000005", "A007425", "A035116", "A061391", "A321348", "A356574", "A358380", "A359037", "A359038" ]
null
Seiichi Manyama, Dec 13 2022
2022-12-14T09:08:45
oeisdata/seq/A358/A358380.seq
e96e28a7111a1c66ddd6d119f031a0ef
A358381
Primes p such that q1=6*p-1 and q2=6*p+1 are also primes (twin primes) and q1 is a Sophie Germain prime (i.e., 2*q1+1 is prime).
[ "2", "5", "7", "47", "107", "907", "2137", "2347", "3407", "4547", "4597", "8377", "9067", "9277", "9767", "14537", "16427", "18307", "19507", "19997", "23447", "23917", "26927", "27437", "28837", "29297", "33037", "37307", "38327", "45127", "46457", "50957", "52957", "55897", "59077", "59407", "60317", "63667", "65497", "69767", "74377", "77527", "86587", "86837" ]
[ "nonn" ]
21
1
1
[ "A005384", "A060212", "A358381" ]
null
Tamas Nagy, Nov 12 2022
2022-12-24T03:42:47
oeisdata/seq/A358/A358381.seq
8d696e3086ea310ba95c960f345c25ed
A358382
First of three consecutive primes p,q,r such that r*(p+q) + p*q and r*(p+q) - p*q are prime.
[ "2", "3", "5", "7", "29", "43", "277", "283", "773", "967", "2801", "3391", "3701", "5189", "5233", "5531", "5591", "6869", "6949", "7043", "7753", "9419", "9787", "10091", "10957", "11173", "11551", "13577", "13729", "13781", "15319", "15383", "17489", "17509", "18583", "19141", "22091", "23029", "23669", "25523", "25601", "25693", "26249", "27077", "31151", "31469", "31891", "32257" ]
[ "nonn" ]
11
1
1
null
null
J. M. Bergot and Robert Israel, Nov 12 2022
2022-11-22T22:19:28
oeisdata/seq/A358/A358382.seq
89f1f6f61bc3b95edbdfe66ac735fdcc
A358383
Number of regular triangulations of the vertex set of the n-dimensional cube.
[ "1", "1", "2", "74", "87959448" ]
[ "nonn", "hard", "more" ]
10
0
3
[ "A238820", "A238821", "A358383", "A358384", "A358385" ]
null
Stefano Spezia, Nov 13 2022
2022-11-13T12:27:45
oeisdata/seq/A358/A358383.seq
5ab900fffd7e0a8c74eab1315f8ac76b
A358384
Number of symmetric group Sym(n)-orbits of regular triangulations of the vertex set of the n-dimensional cube.
[ "1", "1", "2", "23", "3706261" ]
[ "nonn", "hard", "more" ]
7
0
3
[ "A238820", "A238821", "A358383", "A358384", "A358385" ]
null
Stefano Spezia, Nov 13 2022
2022-11-13T12:27:37
oeisdata/seq/A358/A358384.seq
5bd06513557c9c9c0e3f1433daae950e
A358385
Number of automorphism group Gamma(n)-orbits of regular triangulations of the vertex set of the n-dimensional cube.
[ "1", "1", "1", "6", "235277" ]
[ "nonn", "hard", "more" ]
8
0
4
[ "A238820", "A238821", "A358383", "A358385", "A359384" ]
null
Stefano Spezia, Nov 13 2022
2022-11-13T12:27:32
oeisdata/seq/A358/A358385.seq
54c5ebcfd26fd67fa8dcc0db82e01961
A358386
Distinct values of A030717 in order of appearance.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "10", "15", "18", "14", "12", "20", "17", "23", "16", "25", "30", "19", "27", "38", "29", "49", "26", "31", "62", "35", "13", "77", "39", "94", "32", "42", "110", "45", "129", "43", "48", "149", "51", "172", "56", "195", "61", "218", "63", "64", "241", "71", "67", "266", "79", "70", "293", "87", "73", "21", "323", "75", "356", "101", "78", "389", "109", "82", "28", "424", "116", "88", "461", "125", "40", "33", "34", "22", "500" ]
[ "nonn" ]
28
1
2
[ "A030717", "A030720", "A358386" ]
null
Seiichi Manyama, Nov 13 2022
2022-11-19T05:39:13
oeisdata/seq/A358/A358386.seq
e9b047066e3196f8d10f9d8f6ae34c84
A358387
a(n) = 3 * h(n - 1) * h(n) for n >= 1, where h(n) = hypergeom([-n, -n], [1], 2), and a(0) = 1.
[ "1", "9", "117", "2457", "60669", "1620729", "45385461", "1311647913", "38774378493", "1165936210281", "35529105456117", "1094291069720121", "34000718751227133", "1064200845293945433", "33516300131277352821", "1061218377653812515657", "33757038339556757274621", "1078167326486278065165513" ]
[ "nonn" ]
8
0
2
[ "A358387", "A358388" ]
null
Peter Luschny, Nov 15 2022
2024-01-08T05:24:07
oeisdata/seq/A358/A358387.seq
d43b67dae3c7a08d3f59cf35242d3d5b
A358388
a(n) = hypergeom([n, -n, 1/2], [1, 1], -8).
[ "1", "5", "89", "2069", "53505", "1467765", "41817305", "1223277221", "36488826881", "1104851215205", "33853917808089", "1047387818876085", "32664869254856961", "1025606670801743061", "32387641973278794585", "1027864812983545977669", "32762392278424747311105", "1048268251830512324353221" ]
[ "nonn" ]
22
0
2
[ "A001850", "A243949", "A358387", "A358388" ]
null
Peter Luschny, Nov 13 2022
2024-01-08T05:19:07
oeisdata/seq/A358/A358388.seq
34565275af974b428dc1ca91f295d021
A358389
a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!.
[ "1", "3", "7", "29", "121", "745", "5041", "40425", "362917", "3629411", "39916801", "479006233", "6227020801", "87178326495", "1307674369891", "20922790211057", "355687428096001", "6402373709009185", "121645100408832001", "2432902008212933061", "51090942171709581289", "1124000727778046764823" ]
[ "nonn", "easy" ]
17
1
2
[ "A038507", "A343573", "A358389" ]
null
Seiichi Manyama, Nov 13 2022
2022-11-13T10:36:18
oeisdata/seq/A358/A358389.seq
1781f34ecb7d5db3fe490a69d445a010
A358390
The number of maximal antichains in the Kreweras lattice of non-crossing set partitions of an n-element set.
[ "1", "2", "3", "25", "2117", "22581637702" ]
[ "nonn", "hard", "more" ]
17
1
2
[ "A000108", "A302250", "A326358", "A358390" ]
null
Dmitry I. Ignatov, Nov 13 2022
2022-11-22T11:55:56
oeisdata/seq/A358/A358390.seq
9e33565bb50662b62304364ae8083db7
A358391
The number of antichains in the Kreweras lattice of non-crossing set partitions of an n-element set.
[ "2", "3", "10", "234", "2342196" ]
[ "nonn", "hard", "more" ]
14
1
1
[ "A000372", "A143673", "A302250", "A358391" ]
null
Dmitry I. Ignatov, Nov 13 2022
2022-11-22T22:27:32
oeisdata/seq/A358/A358391.seq
a812af3baa79965c1971b5259beecc1a
A358392
Number of nonempty subsets of {1, 2, ..., n} with GCD equal to 1 and containing the sum of any two elements whenever it is at most n.
[ "1", "1", "2", "3", "7", "9", "19", "27", "46", "63", "113", "148", "253", "345", "539", "734", "1198", "1580", "2540", "3417", "5233", "7095", "11190", "14720", "22988", "31057", "47168", "63331", "98233", "129836", "200689", "269165", "406504", "546700", "838766", "1108583", "1700025", "2281517", "3437422", "4597833", "7023543", "9308824", "14198257", "18982014", "28556962" ]
[ "nonn" ]
11
1
3
[ "A007865", "A050291", "A051026", "A085489", "A103580", "A139384", "A151897", "A308546", "A326020", "A326076", "A326080", "A326083", "A326114", "A358392" ]
null
Max Alekseyev, Nov 13 2022
2022-11-14T11:47:41
oeisdata/seq/A358/A358392.seq
5e3a99c11a1b779e490b8cfcc23abc7a
A358393
First of three consecutive primes p,q,r such that p*q + p*r - q*r, p*q - p*r + q*r and -p*q + p*r + q*r are all prime.
[ "261977", "496163", "1943101", "2204273", "2502827", "2632627", "2822381", "2878543", "3291593", "3431891", "4122043", "4269679", "5205671", "5224361", "5565139", "6248881", "6600989", "6881291", "7568963", "8181317", "8251277", "8377777", "9005561", "9644911", "10226233", "11096753", "11767801", "12252271", "13197361", "13574489", "13730263", "14064901" ]
[ "nonn" ]
12
1
1
[ "A054643", "A358393" ]
null
J. M. Bergot and Robert Israel, Nov 13 2022
2022-11-21T09:49:45
oeisdata/seq/A358/A358393.seq
54befbd1df6244b7648b1bfc2e7387f4
A358394
Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n.
[ "1", "0", "0", "10", "7", "0", "8" ]
[ "nonn", "more", "hard" ]
41
1
4
[ "A000041", "A274171", "A287649", "A287650", "A293777", "A357473", "A358394", "A358515", "A358891" ]
null
Eduard I. Vatutin, Nov 20 2022
2025-02-24T13:35:09
oeisdata/seq/A358/A358394.seq
a3827c9cf517d78265fcf83c2dabb33a
A358395
Odd numbers k such that sigma(k) + sigma(k+2) > 2*sigma(k+1); odd terms in A053228.
[ "1125", "1573", "1953", "2205", "2385", "3465", "5185", "5353", "5773", "6433", "6613", "6825", "7245", "7425", "7665", "7693", "8505", "8925", "9133", "9205", "9405", "9945", "10393", "10773", "11473", "11653", "12285", "12493", "12705", "13473", "13585", "13725", "14025", "15013", "15145", "15433", "16065", "16245", "16905", "17253", "17325", "17953" ]
[ "nonn" ]
17
1
1
[ "A000203", "A053223", "A053228", "A358395", "A358396", "A358412", "A358413" ]
null
Jianing Song, Nov 13 2022
2022-11-17T14:12:20
oeisdata/seq/A358/A358395.seq
06a71094975091f66607d810cb8a5fdc
A358396
Even numbers k such that sigma(k) + sigma(k+2) < 2*sigma(k+1); even terms in A053229.
[ "104", "134", "164", "314", "404", "494", "524", "554", "566", "584", "674", "692", "734", "764", "854", "944", "974", "1124", "1154", "1196", "1214", "1304", "1322", "1364", "1394", "1484", "1574", "1682", "1724", "1754", "1784", "1814", "1826", "1844", "1994", "2024", "2144", "2204", "2384", "2414", "2456", "2474", "2564", "2624", "2654", "2804", "2834", "3002" ]
[ "nonn" ]
10
1
1
[ "A000203", "A053223", "A053229", "A358395", "A358396" ]
null
Jianing Song, Nov 13 2022
2022-11-17T14:12:24
oeisdata/seq/A358/A358396.seq
cbfd7026b53c1bfc957b392b9c88e62b
A358397
Number of pairs of partitions (A<=B, that is, A is a refinement of B) of [n] such that A is noncrossing and its nontrivial blocks are of type {a,b} with a <= n and b > n.
[ "1", "1", "3", "9", "37", "157", "811", "4309", "26327", "164947", "1151477", "8224863", "64158567", "511177515", "4386520201", "38389960685", "358214414675", "3404632390971", "34234771676473", "350261221644771", "3768281045014927", "41210302324325919", "471585931164213345", "5480984322433817771", "66388136273738685321" ]
[ "nonn" ]
7
0
3
[ "A000110", "A358397" ]
null
Francesca Aicardi, Nov 13 2022
2022-12-21T21:47:18
oeisdata/seq/A358/A358397.seq
38ea153b06c3d402611a4b114f476359
A358398
a(n) is the number of reducible monic cubic polynomials x^3 + r*x^2 + s*x + t with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t) <= n).
[ "15", "53", "117", "215", "329", "493", "657", "877", "1103", "1383", "1643", "2017", "2325", "2721", "3131", "3601", "4009", "4575", "5031", "5647", "6221", "6849", "7409", "8211", "8849", "9593", "10335", "11199", "11899", "12915", "13671", "14655", "15559", "16535", "17473", "18711", "19619", "20711", "21787", "23099", "24095", "25507", "26571", "27931", "29259" ]
[ "nonn" ]
41
1
1
[ "A067274", "A358398" ]
null
Lorenz H. Menke, Jr., Nov 13 2022
2022-12-21T21:00:02
oeisdata/seq/A358/A358398.seq
43a9c5a3be6febf75f3f8454ce9ffe03
A358399
a(n) is the number of reducible monic quartic polynomials (x^4 + r*x^3 + s*x^2 + t*x + u) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u) <= n).
[ "47", "271", "810", "1849", "3395", "5832", "8915", "13242", "18465", "25267", "32874", "43023", "53662", "66957", "81770", "99374", "117564", "140303", "163048", "190757", "219702", "252465", "285820", "326853", "366732" ]
[ "nonn", "more" ]
31
1
1
[ "A067274", "A358398", "A358399", "A358400" ]
null
Lorenz H. Menke, Jr., Nov 13 2022
2023-01-02T09:01:55
oeisdata/seq/A358/A358399.seq
36425b9b8531a9d311483200d2d51a99
A358400
a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n).
[ "139", "1313", "5359", "15365", "34229", "68385", "120421", "200839", "312057", "468827", "669591", "943175", "1274089", "1701441", "2216841", "2856379", "3594651", "4510437", "5541135", "6788823", "8195941", "9845089", "11670925", "13842429", "16191555" ]
[ "nonn", "more" ]
26
1
1
[ "A067274", "A358398", "A358399", "A358400" ]
null
Lorenz H. Menke, Jr., Nov 13 2022
2023-01-02T09:01:48
oeisdata/seq/A358/A358400.seq
67c7a3f08ac959d52de80e81bde89cfc