sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A358201 | a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with sigma(max_{k=1..n-1}a(k)). | [
"1",
"2",
"3",
"4",
"7",
"6",
"8",
"5",
"9",
"13",
"10",
"12",
"14",
"15",
"16",
"31",
"18",
"20",
"22",
"24",
"26",
"28",
"30",
"32",
"21",
"27",
"33",
"34",
"36",
"35",
"39",
"38",
"40",
"25",
"42",
"44",
"45",
"46",
"48",
"50",
"51",
"52",
"49",
"54",
"55",
"56",
"57",
"58",
"60",
"62",
"63",
"64",
"127",
"66",
"68",
"70",
"72",
"74",
"76",
"78",
"80",
"82",
"84",
"86",
"88",
"90",
"92",
"94",
"96",
"98",
"100",
"102",
"104",
"106",
"108"
] | [
"nonn",
"look"
] | 8 | 1 | 2 | [
"A000203",
"A064413",
"A354960",
"A356430",
"A356851",
"A358082",
"A358176",
"A358201"
] | null | Scott R. Shannon, Nov 03 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A358/A358201.seq | 98b68fb46bb7ea1675ac78c7d0784599 |
A358202 | Lower twin primes p such that 6*p-1 and 6*p+1 are twin primes and (p+1)/6 is prime. | [
"17",
"137",
"23537",
"92957",
"157217",
"318677",
"326657",
"440177",
"510617",
"521537",
"558497",
"577937",
"617717",
"651017",
"661097",
"861437",
"969257",
"1093997",
"1152077",
"1168337",
"1177157",
"1260317",
"1299917",
"1356077",
"1463177",
"1514657",
"1600097",
"1617437",
"1768757",
"1773977",
"1957937",
"2065577",
"2271497",
"2335637",
"2382557",
"2450597"
] | [
"nonn"
] | 16 | 1 | 1 | [
"A060213",
"A176131",
"A358202"
] | null | J. M. Bergot and Robert Israel, Nov 03 2022 | 2023-01-29T17:30:38 | oeisdata/seq/A358/A358202.seq | a910ff55aa91ecb99c184f90d7626cee |
A358203 | Decimal expansion of Sum_{n >= 1} 1/(2*n)^n. | [
"5",
"6",
"7",
"3",
"8",
"4",
"1",
"1",
"4",
"8",
"7",
"7",
"0",
"2",
"8",
"3",
"2",
"2",
"5",
"4",
"1",
"2",
"1",
"4",
"8",
"3",
"7",
"5",
"7",
"0",
"3",
"2",
"3",
"9",
"7",
"4",
"8",
"8",
"5",
"8",
"3",
"9",
"5",
"0",
"7",
"8",
"4",
"7",
"5",
"4",
"7",
"1",
"8",
"0",
"2",
"1",
"0",
"0",
"5",
"5",
"1",
"4",
"8",
"7",
"3",
"7",
"3",
"0",
"2",
"5",
"2",
"8",
"2",
"5",
"2",
"4",
"0",
"5",
"8",
"8",
"5",
"8",
"8",
"4",
"8",
"2",
"2",
"1",
"3",
"2",
"5",
"8",
"0",
"1",
"5",
"7",
"4",
"5",
"6",
"8"
] | [
"cons",
"nonn",
"easy"
] | 11 | 0 | 1 | [
"A073009",
"A098686",
"A358191",
"A358203",
"A358204"
] | null | Peter Bala, Nov 03 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358203.seq | 98279dabecfa553dd25783e4acd641c2 |
A358204 | Decimal expansion of Sum_{n >= 1} (-1)^(n+1)/(2*n)^n. | [
"4",
"4",
"1",
"8",
"9",
"5",
"1",
"6",
"3",
"3",
"6",
"5",
"2",
"1",
"8",
"3",
"0",
"7",
"1",
"9",
"0",
"3",
"2",
"1",
"3",
"0",
"5",
"6",
"2",
"0",
"7",
"0",
"8",
"6",
"3",
"7",
"8",
"7",
"4",
"7",
"9",
"9",
"2",
"8",
"4",
"7",
"4",
"3",
"6",
"9",
"4",
"8",
"0",
"4",
"7",
"7",
"8",
"3",
"7",
"8",
"7",
"0",
"3",
"9",
"0",
"7",
"0",
"7",
"0",
"5",
"1",
"7",
"0",
"5",
"5",
"7",
"1",
"7",
"6",
"2",
"6",
"4",
"8",
"7",
"3",
"1",
"5",
"9",
"2",
"1",
"2",
"7",
"7",
"0",
"3",
"4",
"2",
"6",
"0",
"9"
] | [
"cons",
"nonn",
"easy"
] | 16 | 0 | 1 | [
"A073009",
"A098686",
"A358191",
"A358203",
"A358204"
] | null | Peter Bala, Nov 03 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358204.seq | 4cc966aaee4e7752f796a15310804195 |
A358205 | a(n) is the least number k such that 1 + 2*k + 3*k^2 has exactly n prime divisors, counted with multiplicity. | [
"0",
"2",
"1",
"13",
"19",
"7",
"61",
"331",
"169",
"1141",
"6487",
"898",
"20581",
"315826",
"59947",
"296143",
"1890466",
"6141994",
"1359025",
"49188715",
"20490901",
"264422320",
"178328878",
"1340590345",
"9476420614",
"5989636213",
"72238539832",
"103619599441",
"668478672403",
"794002910839",
"417430195531"
] | [
"nonn"
] | 41 | 0 | 2 | [
"A001222",
"A056109",
"A086285",
"A122488",
"A358205"
] | null | Robert Israel, Nov 03 2022 | 2023-06-11T14:22:27 | oeisdata/seq/A358/A358205.seq | 72ef8e189097839c022b3059d1c9f056 |
A358206 | Number of ways of making change for n cents using coins of 1, 2, 4, 10 and 20 cents. | [
"1",
"1",
"2",
"2",
"4",
"4",
"6",
"6",
"9",
"9",
"13",
"13",
"18",
"18",
"24",
"24",
"31",
"31",
"39",
"39",
"50",
"50",
"62",
"62",
"77",
"77",
"93",
"93",
"112",
"112",
"134",
"134",
"159",
"159",
"187",
"187",
"218",
"218",
"252",
"252",
"292",
"292",
"335",
"335",
"384",
"384",
"436",
"436",
"494",
"494",
"558",
"558",
"628",
"628",
"704",
"704",
"786",
"786",
"874",
"874",
"972",
"972"
] | [
"nonn",
"easy"
] | 18 | 0 | 3 | [
"A000064",
"A001310",
"A358206"
] | null | Daniel Checa, Nov 03 2022 | 2022-11-08T07:57:07 | oeisdata/seq/A358/A358206.seq | 3bb03c26aac2bd999c9464ee26799367 |
A358207 | Numbers k such that k^2 + 2 is a palindrome. | [
"0",
"1",
"2",
"3",
"8",
"13",
"19",
"85",
"258",
"393",
"828",
"1811",
"2538",
"2916",
"2986",
"3627",
"4540",
"10503",
"140833",
"268865",
"298436",
"423437",
"902696",
"1050503",
"1845571",
"2491032",
"5513951",
"14365940",
"25809892",
"26237622",
"28559254",
"61875091",
"79094282",
"186062629",
"246553448",
"451977320",
"452357920",
"620208559",
"813448358",
"849937635"
] | [
"nonn",
"base"
] | 22 | 1 | 3 | [
"A002778",
"A027719",
"A059100",
"A070253",
"A358207",
"A358237"
] | null | Robert Xiao, Nov 04 2022 | 2022-12-04T16:33:14 | oeisdata/seq/A358/A358207.seq | 40dab2de4a63b97c6334dc907bac6b19 |
A358208 | a(1) = 1; a(2) = 2; a(3) = 3; for n > 3, a(n) is the smallest positive number not occurring earlier that shares a factor with Sum_{k=1..n-1} A001065(k), where A001065(k) is the sum of the proper divisors of k. | [
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"13",
"10",
"9",
"12",
"11",
"7",
"14",
"15",
"18",
"16",
"17",
"20",
"107",
"21",
"22",
"24",
"25",
"191",
"197",
"27",
"26",
"28",
"30",
"33",
"32",
"35",
"34",
"36",
"29",
"38",
"433",
"39",
"40",
"42",
"523",
"577",
"44",
"45",
"31",
"677",
"46",
"48",
"50",
"23",
"49",
"52",
"51",
"54",
"56",
"55",
"63",
"43",
"58",
"37",
"57",
"53",
"60",
"66",
"61",
"62",
"70",
"68",
"64",
"65",
"69",
"71",
"75",
"80"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A000203",
"A001065",
"A024916",
"A064413",
"A356851",
"A358208",
"A358209"
] | null | Scott R. Shannon, Nov 04 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A358/A358208.seq | a16a845236671038e4597be9935e2995 |
A358209 | a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with A024916(n-1) = Sum_{k=1..n-1} sigma(k). | [
"1",
"2",
"4",
"6",
"3",
"7",
"9",
"41",
"8",
"12",
"15",
"11",
"127",
"18",
"5",
"14",
"10",
"16",
"277",
"21",
"24",
"28",
"22",
"431",
"491",
"20",
"26",
"30",
"25",
"23",
"27",
"32",
"857",
"35",
"42",
"19",
"33",
"34",
"13",
"36",
"38",
"40",
"37",
"39",
"44",
"45",
"46",
"43",
"48",
"1987",
"50",
"52",
"51",
"54",
"56",
"57",
"58",
"60",
"49",
"62",
"55",
"64",
"61",
"63",
"82",
"66",
"3631",
"69",
"17",
"72",
"65",
"70",
"68",
"74"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A000203",
"A024916",
"A064413",
"A356851",
"A358208",
"A358209"
] | null | Scott R. Shannon, Nov 04 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A358/A358209.seq | 41ee4e3c5a98927c75336b2f9217d3e1 |
A358210 | Congruent number sequence starting from the Pythagorean triple (3,4,5). | [
"6",
"15",
"34",
"353",
"175234",
"9045146753",
"121609715057619333634",
"4138643330264389621194448797227488932353",
"27728719906622802548355602700962556264398170527494726660553210068191276023007234"
] | [
"nonn"
] | 16 | 1 | 1 | [
"A081465",
"A358210"
] | null | Gerry Martens, Nov 04 2022 | 2022-12-21T21:59:03 | oeisdata/seq/A358/A358210.seq | b3628788ec79f9bafa22b7324f209708 |
A358211 | Self-locating strings within e: numbers k such that the string k is at position k (after the decimal point) in the decimal digits of e, where 7 is the 0th digit. | [
"1",
"8",
"215",
"374",
"614",
"849",
"4142",
"7945",
"5964055",
"8008913",
"7131377227",
"8829981707"
] | [
"base",
"nonn",
"more"
] | 24 | 0 | 2 | [
"A001113",
"A064810",
"A205648",
"A358211"
] | null | Chris Baumann, Nov 04 2022 | 2022-12-19T13:55:52 | oeisdata/seq/A358/A358211.seq | ea5cc0d14548f7c4a0f951c5729c5405 |
A358212 | a(n) is the maximal possible sum of squares of the side lengths of an n^2-gon supported on a subset 1 <= x,y <= n of an integer lattice. | [
"4",
"10",
"36",
"98",
"232"
] | [
"nonn",
"hard",
"more"
] | 68 | 2 | 1 | [
"A064842",
"A110611",
"A209077",
"A226595",
"A226596",
"A358212"
] | null | Giedrius Alkauskas, Nov 04 2022 | 2024-06-17T15:27:34 | oeisdata/seq/A358/A358212.seq | ef52b831316064323af5a69820d9f724 |
A358213 | The index of the first occurrence of A002110(n) in A356309. | [
"1",
"2",
"3",
"10",
"35",
"77",
"286",
"2431",
"4199",
"37145"
] | [
"nonn",
"hard",
"more"
] | 24 | 0 | 2 | [
"A002110",
"A356302",
"A356309",
"A356314",
"A356316",
"A356318",
"A358213",
"A358214"
] | null | Antti Karttunen, Nov 05 2022 | 2022-11-07T21:47:13 | oeisdata/seq/A358/A358213.seq | 66dd25a14d425a3df57861795afd07e3 |
A358214 | a(n) = A002110(n) - A358213(n). | [
"0",
"0",
"3",
"20",
"175",
"2233",
"29744",
"508079",
"9695491",
"223055725"
] | [
"nonn",
"hard",
"more"
] | 18 | 0 | 3 | [
"A002110",
"A276086",
"A356302",
"A356309",
"A358213",
"A358214"
] | null | Antti Karttunen, Nov 05 2022 | 2022-11-06T20:01:47 | oeisdata/seq/A358/A358214.seq | 6b9cf8ab310d8febaa70418901d727f0 |
A358215 | Numbers k for which there is no prime p such that p^p divides the arithmetic derivative of k, A003415(k). | [
"2",
"3",
"5",
"6",
"7",
"9",
"10",
"11",
"13",
"14",
"17",
"18",
"19",
"21",
"22",
"23",
"25",
"26",
"29",
"30",
"31",
"33",
"34",
"37",
"38",
"41",
"42",
"43",
"45",
"46",
"47",
"49",
"50",
"53",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"69",
"70",
"71",
"73",
"74",
"75",
"77",
"78",
"79",
"82",
"83",
"85",
"86",
"89",
"90",
"93",
"94",
"97",
"98",
"99",
"101",
"102",
"103",
"105",
"106",
"107",
"109",
"110",
"113",
"114",
"117",
"118",
"121",
"122",
"125"
] | [
"nonn"
] | 21 | 1 | 1 | [
"A003415",
"A048103",
"A099308",
"A327929",
"A327934",
"A328393",
"A341996",
"A341997",
"A351088",
"A358215",
"A358221",
"A359550",
"A368915"
] | null | Antti Karttunen, Nov 24 2022 | 2024-02-22T20:08:24 | oeisdata/seq/A358/A358215.seq | 9ba457d42147cdf8f06e8280a3da13b0 |
A358216 | Inverse Möbius transform of A327936, where A327936 is multiplicative with a(p^e) = p if e >= p, otherwise 1. | [
"1",
"2",
"2",
"4",
"2",
"4",
"2",
"6",
"3",
"4",
"2",
"8",
"2",
"4",
"4",
"8",
"2",
"6",
"2",
"8",
"4",
"4",
"2",
"12",
"3",
"4",
"6",
"8",
"2",
"8",
"2",
"10",
"4",
"4",
"4",
"12",
"2",
"4",
"4",
"12",
"2",
"8",
"2",
"8",
"6",
"4",
"2",
"16",
"3",
"6",
"4",
"8",
"2",
"12",
"4",
"12",
"4",
"4",
"2",
"16",
"2",
"4",
"6",
"12",
"4",
"8",
"2",
"8",
"4",
"8",
"2",
"18",
"2",
"4",
"6",
"8",
"4",
"8",
"2",
"16",
"9",
"4",
"2",
"16",
"4",
"4",
"4",
"12",
"2",
"12",
"4",
"8",
"4",
"4",
"4",
"20",
"2",
"6",
"6",
"12"
] | [
"nonn",
"mult"
] | 12 | 1 | 2 | [
"A000005",
"A276086",
"A324655",
"A327936",
"A358216"
] | null | Antti Karttunen, Nov 30 2022 | 2022-12-01T08:56:50 | oeisdata/seq/A358/A358216.seq | 14c8645be2654d5b92935d528f6f137e |
A358217 | Number of prime factors (with multiplicity) in A319627(n). | [
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"2",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"0",
"1",
"1",
"3",
"0",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"0",
"1",
"2",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"0"
] | [
"nonn"
] | 10 | 1 | 9 | [
"A001222",
"A025487",
"A064989",
"A319627",
"A358217",
"A358218",
"A358219"
] | null | Antti Karttunen, Nov 04 2022 | 2022-11-05T12:34:20 | oeisdata/seq/A358/A358217.seq | 0720ff3402fa632e1aef7ed298107c0a |
A358218 | Number of prime factors (with multiplicity) in A328478(n). | [
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"1",
"2",
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"2",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"0",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"0",
"1",
"1",
"3",
"0",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"0",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"0",
"1",
"2",
"3",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"0"
] | [
"nonn"
] | 9 | 1 | 9 | [
"A001222",
"A025487",
"A328478",
"A355930",
"A358217",
"A358218",
"A358219"
] | null | Antti Karttunen, Nov 04 2022 | 2022-11-05T12:34:25 | oeisdata/seq/A358/A358218.seq | 0dfa5b048e1ce93abe0d284a1d1cbfe4 |
A358219 | Indices k where A358217(k) != A358218(k). | [
"15",
"35",
"45",
"70",
"75",
"77",
"105",
"135",
"140",
"143",
"154",
"165",
"175",
"195",
"221",
"225",
"231",
"245",
"255",
"280",
"285",
"286",
"308",
"315",
"323",
"345",
"350",
"375",
"385",
"405",
"429",
"435",
"437",
"442",
"450",
"455",
"462",
"465",
"490",
"495",
"525",
"539",
"555",
"560",
"572",
"585",
"595",
"615",
"616",
"645",
"646",
"663",
"665",
"667",
"675",
"693",
"700",
"705",
"715",
"735",
"765",
"770",
"795",
"805"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A319627",
"A328478",
"A358217",
"A358218",
"A358219"
] | null | Antti Karttunen, Nov 04 2022 | 2022-11-04T19:26:12 | oeisdata/seq/A358/A358219.seq | f1224871a1ff712e40698a4f0ce7b89d |
A358220 | a(n) = 1 if A276086(n) is a multiple of A003415(n), with a(0) = a(1) = 0. Here A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function. | [
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 10 | 0 | null | [
"A003415",
"A276086",
"A328382",
"A356310",
"A358220",
"A358221",
"A358227"
] | null | Antti Karttunen, Nov 23 2022 | 2022-11-26T08:58:25 | oeisdata/seq/A358/A358220.seq | 395c2a9469b62399c84a419f26665cbb |
A358221 | Numbers k such that A003415(k) divides A276086(k), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function. | [
"2",
"3",
"5",
"6",
"7",
"9",
"11",
"13",
"17",
"19",
"21",
"23",
"25",
"26",
"29",
"31",
"33",
"37",
"38",
"41",
"43",
"46",
"47",
"49",
"53",
"59",
"61",
"65",
"67",
"71",
"73",
"77",
"79",
"83",
"89",
"94",
"97",
"101",
"103",
"107",
"109",
"113",
"127",
"131",
"137",
"139",
"141",
"146",
"149",
"151",
"157",
"161",
"163",
"167",
"173",
"179",
"181",
"185",
"191",
"193",
"197",
"199",
"201",
"206",
"207",
"209",
"211",
"221",
"223",
"227",
"229",
"233"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A000040",
"A003415",
"A048103",
"A276086",
"A328382",
"A328387",
"A356311",
"A356312",
"A358215",
"A358220",
"A358221",
"A358222",
"A358229"
] | null | Antti Karttunen, Nov 23 2022 | 2024-02-22T20:08:36 | oeisdata/seq/A358/A358221.seq | eb42f0229ce26debf5bb5a2aa9a869bb |
A358222 | Composite numbers k such that A003415(k) divides A276086(k), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function. | [
"6",
"9",
"21",
"25",
"26",
"33",
"38",
"46",
"49",
"65",
"77",
"94",
"141",
"146",
"161",
"185",
"201",
"206",
"207",
"209",
"221",
"305",
"321",
"326",
"333",
"341",
"346",
"375",
"377",
"406",
"413",
"453",
"458",
"531",
"581",
"589",
"605",
"615",
"689",
"717",
"741",
"745",
"746",
"766",
"819",
"869",
"893",
"965",
"989",
"1041",
"1046",
"1073",
"1189",
"1241",
"1254",
"1331",
"1337",
"1349",
"1461",
"1466",
"1469",
"1529",
"1541",
"1641"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A003415",
"A276086",
"A358220",
"A358221",
"A358222"
] | null | Antti Karttunen, Nov 23 2022 | 2022-11-26T08:58:35 | oeisdata/seq/A358/A358222.seq | be64a48e5b7cbf8d0183a13c9dcc0805 |
A358223 | Inverse Möbius transform of A181819, prime shadow function. | [
"1",
"3",
"3",
"6",
"3",
"9",
"3",
"11",
"6",
"9",
"3",
"18",
"3",
"9",
"9",
"18",
"3",
"18",
"3",
"18",
"9",
"9",
"3",
"33",
"6",
"9",
"11",
"18",
"3",
"27",
"3",
"29",
"9",
"9",
"9",
"36",
"3",
"9",
"9",
"33",
"3",
"27",
"3",
"18",
"18",
"9",
"3",
"54",
"6",
"18",
"9",
"18",
"3",
"33",
"9",
"33",
"9",
"9",
"3",
"54",
"3",
"9",
"18",
"42",
"9",
"27",
"3",
"18",
"9",
"27",
"3",
"66",
"3",
"9",
"18",
"18",
"9",
"27",
"3",
"54",
"18",
"9",
"3",
"54",
"9",
"9",
"9",
"33",
"3",
"54"
] | [
"nonn",
"mult"
] | 15 | 1 | 2 | [
"A014284",
"A046523",
"A181819",
"A358223"
] | null | Antti Karttunen, Nov 30 2022 | 2023-10-23T02:02:17 | oeisdata/seq/A358/A358223.seq | 56c6bc45d706aee96365917990461375 |
A358224 | Parity of A328386(n), where A328386(n) = A276086(n) mod n, and A276086 is the primorial base exp-function. | [
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 8 | 1 | null | [
"A000035",
"A276086",
"A328386",
"A358224",
"A358225",
"A358226",
"A358227"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-26T08:58:40 | oeisdata/seq/A358/A358224.seq | 74ee921dfb530530e5cd18165407e440 |
A358225 | Numbers k such that A276086(k) mod k is an odd number, where A276086 is the primorial base exp-function. | [
"2",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"13",
"14",
"16",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"26",
"28",
"29",
"30",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"52",
"53",
"54",
"55",
"56",
"58",
"60",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"72",
"73",
"74",
"76",
"78",
"79",
"80",
"81",
"82",
"84",
"86",
"88",
"89",
"90",
"91",
"92",
"94",
"96",
"97",
"98",
"99",
"100",
"101"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A000035",
"A005843",
"A276086",
"A328386",
"A358225",
"A358226",
"A358228",
"A358231"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-25T11:10:35 | oeisdata/seq/A358/A358225.seq | b7234ad9fba2fdc6cb481b6c157acf14 |
A358226 | Numbers k such that A276086(k) mod k is an even number, where A276086 is the primorial base exp-function. | [
"1",
"3",
"11",
"15",
"17",
"25",
"27",
"31",
"43",
"51",
"57",
"59",
"63",
"71",
"75",
"77",
"83",
"85",
"87",
"93",
"95",
"103",
"105",
"107",
"109",
"115",
"119",
"129",
"133",
"137",
"139",
"145",
"147",
"151",
"157",
"167",
"169",
"171",
"173",
"175",
"177",
"185",
"189",
"191",
"199",
"201",
"207",
"211",
"213",
"215",
"217",
"221",
"223",
"229",
"233",
"235",
"237",
"241",
"257",
"259",
"263",
"269",
"281",
"289",
"299",
"303",
"305",
"307"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A276086",
"A328386",
"A328387",
"A358224",
"A358225",
"A358226",
"A358229"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-25T11:10:39 | oeisdata/seq/A358/A358226.seq | fe98b2d6889bb289427b31b20236d2e8 |
A358227 | Parity of A328382(n), where A328382(n) = A276086(n) mod A003415(n), with A003415 the arithmetic derivative and A276086 the primorial base exp-function. | [
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 9 | 2 | null | [
"A000035",
"A003415",
"A276086",
"A328382",
"A358220",
"A358224",
"A358227",
"A358228",
"A358229"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-26T08:58:59 | oeisdata/seq/A358/A358227.seq | 0947bbc701e64b47faf9643b0355998d |
A358228 | Numbers k such that A276086(k) mod A003415(k) is an odd number, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function. | [
"4",
"8",
"10",
"12",
"14",
"16",
"20",
"22",
"24",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"48",
"50",
"52",
"54",
"56",
"58",
"60",
"62",
"63",
"64",
"66",
"68",
"72",
"74",
"75",
"76",
"78",
"80",
"84",
"88",
"90",
"92",
"96",
"98",
"99",
"100",
"102",
"104",
"108",
"110",
"112",
"114",
"116",
"120",
"122",
"124",
"126",
"128",
"132",
"136",
"138",
"140",
"144",
"148",
"150",
"152",
"154",
"156",
"158",
"160",
"162",
"164",
"168",
"171",
"172",
"176"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A003415",
"A276086",
"A328382",
"A358225",
"A358228",
"A358229",
"A358232"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-25T11:10:27 | oeisdata/seq/A358/A358228.seq | 73642403da1d7aecaeca225a0f53648d |
A358229 | Numbers k such that A276086(k) mod A003415(k) is an even number, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function. | [
"2",
"3",
"5",
"6",
"7",
"9",
"11",
"13",
"15",
"17",
"18",
"19",
"21",
"23",
"25",
"26",
"27",
"29",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"43",
"45",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"59",
"61",
"65",
"67",
"69",
"70",
"71",
"73",
"77",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"101",
"103",
"105",
"106",
"107",
"109",
"111",
"113",
"115",
"117",
"118",
"119",
"121",
"123",
"125",
"127",
"129",
"130",
"131"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A003415",
"A276086",
"A328382",
"A358221",
"A358226",
"A358227",
"A358228",
"A358229"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-25T11:10:49 | oeisdata/seq/A358/A358229.seq | 244de36711f0cb16b3dfc582a91b02a6 |
A358230 | Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j), A007949(i) = A007949(j) and A046523(i) = A046523(j), for all i, j, where A007814 and A007949 give the 2-adic and 3-adic valuation, and A046523 gives the prime signature of its argument. | [
"1",
"2",
"3",
"4",
"5",
"6",
"5",
"7",
"8",
"9",
"5",
"10",
"5",
"9",
"11",
"12",
"5",
"13",
"5",
"14",
"11",
"9",
"5",
"15",
"16",
"9",
"17",
"14",
"5",
"18",
"5",
"19",
"11",
"9",
"20",
"21",
"5",
"9",
"11",
"22",
"5",
"18",
"5",
"14",
"23",
"9",
"5",
"24",
"16",
"25",
"11",
"14",
"5",
"26",
"20",
"22",
"11",
"9",
"5",
"27",
"5",
"9",
"23",
"28",
"20",
"18",
"5",
"14",
"11",
"29",
"5",
"30",
"5",
"9",
"31",
"14",
"20",
"18",
"5",
"32",
"33",
"9",
"5",
"27",
"20",
"9",
"11",
"22",
"5",
"34",
"20",
"14",
"11",
"9",
"20",
"35",
"5",
"25",
"23",
"36",
"5",
"18",
"5",
"22",
"37"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A007814",
"A007949",
"A046523",
"A065333",
"A072078",
"A305891",
"A305893",
"A322026",
"A358230",
"A358747"
] | null | Antti Karttunen, Dec 01 2022 | 2022-12-01T22:30:49 | oeisdata/seq/A358/A358230.seq | 805927766416964acd2736f26825c85f |
A358231 | Numbers k for which A276086(k) == 1 (mod k), where A276086 is the primorial base exp-function. | [
"2",
"4",
"12",
"16",
"24",
"47",
"54",
"72",
"120",
"142",
"144",
"432",
"540",
"864",
"972",
"1049",
"1260",
"1916",
"2628",
"10152",
"12798",
"19024",
"20304",
"100565",
"152668",
"209760",
"445362",
"2071560",
"2759034",
"3344269",
"85167240",
"92667148",
"111135679",
"118344316",
"162716506",
"264678868",
"599478496"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A276086",
"A328386",
"A328387",
"A358231"
] | null | Antti Karttunen, Nov 24 2022 | 2022-11-24T19:52:10 | oeisdata/seq/A358/A358231.seq | 2d31a1b610b1c1d02019478210d62170 |
A358232 | Numbers k for which A276086(k) == 1 mod A003415(k), where A276086 is the primorial base exp-function, and A003415 is the arithmetic derivative. | [
"4",
"16",
"54",
"66",
"864",
"1710",
"18900",
"71254",
"120731",
"492943",
"625081",
"700149",
"1489459",
"3564419",
"44995876",
"219794251",
"297776323",
"596506003",
"642171139",
"972082711",
"1065608507",
"1252704562",
"1385872853",
"1416187590",
"1799971549",
"1818740449"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A003415",
"A276086",
"A328382",
"A358228",
"A358231",
"A358232"
] | null | Antti Karttunen, Nov 25 2022 | 2022-11-25T19:07:52 | oeisdata/seq/A358/A358232.seq | 58e218afd96e0367ac4d98d7737d30ff |
A358233 | Number of ways n can be expressed as an unordered product of two natural numbers that do not generate any carries when added together in the primorial base. | [
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"1",
"0",
"4",
"0",
"2",
"0",
"3",
"0",
"3",
"0",
"1",
"0",
"1",
"0",
"4",
"0",
"2",
"0",
"2",
"0",
"4",
"0",
"1",
"0",
"1",
"0",
"4",
"0",
"2",
"0",
"3",
"0",
"4",
"0",
"2",
"0",
"1",
"0",
"5",
"0",
"2",
"0",
"3",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"6",
"0",
"2",
"0",
"3",
"0",
"4",
"0",
"1",
"0",
"1",
"0",
"4",
"0",
"2",
"0",
"2",
"0",
"5",
"0",
"1",
"0",
"1",
"0",
"6",
"0",
"3",
"0",
"3",
"0",
"3",
"0",
"2",
"0"
] | [
"nonn",
"base"
] | 25 | 1 | 4 | [
"A038548",
"A049345",
"A100484",
"A276086",
"A329041",
"A358233",
"A358234",
"A358235",
"A358236",
"A358671"
] | null | Antti Karttunen, Nov 26 2022 | 2023-09-02T19:27:55 | oeisdata/seq/A358/A358233.seq | 38f50562ea0bb7c35491ede1a2cd1c0c |
A358234 | Number of ways 2n can be expressed as an unordered product of two natural numbers that do not generate any carries when added together in the primorial base. | [
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"3",
"1",
"1",
"4",
"2",
"3",
"3",
"1",
"1",
"4",
"2",
"2",
"4",
"1",
"1",
"4",
"2",
"3",
"4",
"2",
"1",
"5",
"2",
"3",
"3",
"1",
"2",
"6",
"2",
"3",
"4",
"1",
"1",
"4",
"2",
"2",
"5",
"1",
"1",
"6",
"3",
"3",
"3",
"2",
"1",
"5",
"2",
"4",
"4",
"1",
"1",
"7",
"2",
"3",
"6",
"1",
"2",
"5",
"2",
"2",
"3",
"2",
"1",
"6",
"2",
"3",
"4",
"2",
"2",
"3",
"2",
"3",
"4",
"1",
"1",
"6",
"2",
"3",
"2",
"1",
"1",
"8",
"3",
"2",
"4",
"1",
"2",
"5",
"2",
"4",
"5",
"1",
"1",
"5",
"2",
"3",
"6"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A358233",
"A358234"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-29T12:52:38 | oeisdata/seq/A358/A358234.seq | cbd52cec5a5dec2a98abe159721ba189 |
A358235 | Number of ways n' (the arithmetic derivative of n) can be formed as a sum (x * y') + (x' * y) from two factors x and y of n, with x <= y, so that the said sum does not involve any carries when the addition is done in the primorial base. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"3",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"2"
] | [
"nonn",
"base"
] | 27 | 1 | 4 | [
"A003415",
"A049345",
"A100484",
"A276086",
"A329041",
"A358233",
"A358235",
"A358672",
"A358673",
"A358674"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-29T12:52:43 | oeisdata/seq/A358/A358235.seq | 8c000249faf2df8c557a4e043c61e96b |
A358236 | Number of factorizations of n where the sum of the factors is carryfree when the addition is done in the primorial base. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"4",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"4",
"1",
"4",
"1",
"2",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"9",
"1",
"2",
"1",
"4",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"2",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"8",
"1",
"3",
"1",
"4",
"1",
"3",
"1",
"2",
"1"
] | [
"nonn",
"base"
] | 14 | 1 | 4 | [
"A001055",
"A049345",
"A276086",
"A317836",
"A327936",
"A358233",
"A358236"
] | null | Antti Karttunen, Nov 29 2022 | 2022-11-30T16:10:54 | oeisdata/seq/A358/A358236.seq | 0861a08ff5640ba953218249125b2a68 |
A358237 | Palindromes of the form k^2 + 2. | [
"2",
"3",
"6",
"11",
"66",
"171",
"363",
"7227",
"66566",
"154451",
"685586",
"3279723",
"6441446",
"8503058",
"8916198",
"13155131",
"20611602",
"110313011",
"19833933891",
"72288388227",
"89064046098",
"179298892971",
"814860068418",
"1103556553011",
"3406132316043",
"6205240425026",
"30403655630403",
"206380232083602",
"666150525051666"
] | [
"nonn",
"base"
] | 11 | 1 | 1 | [
"A002779",
"A059100",
"A070254",
"A358207",
"A358237"
] | null | Robert Xiao, Nov 04 2022 | 2024-09-01T14:00:22 | oeisdata/seq/A358/A358237.seq | 78989cd03028ba5cbe593d4ed7b86cdc |
A358238 | a(n) is the least prime p such that the primes from prime(n) to p contain a complete set of residues modulo prime(n). | [
"3",
"7",
"19",
"29",
"71",
"103",
"103",
"191",
"233",
"317",
"577",
"439",
"587",
"467",
"967",
"659",
"709",
"1511",
"1013",
"1321",
"1789",
"1319",
"1663",
"2029",
"1499",
"2143",
"1973",
"2459",
"2333",
"2203",
"3697",
"3089",
"3923",
"4793",
"3449",
"4517",
"3539",
"4451",
"3923",
"4801",
"5501",
"4799",
"4793",
"7121",
"5651",
"4969",
"6359",
"4793",
"6581",
"9371",
"6043",
"9769",
"5813"
] | [
"nonn"
] | 48 | 1 | 1 | [
"A358238",
"A360228"
] | null | Robert Israel, Jan 31 2023 | 2023-02-12T10:07:08 | oeisdata/seq/A358/A358238.seq | bd64b974612cd80bb75f6f76fd8afe12 |
A358239 | Numbers k such that the aliquot sequence of 2^k ends with the prime 3. | [
"2",
"4",
"55",
"164",
"305",
"317"
] | [
"nonn",
"hard",
"more"
] | 29 | 1 | 1 | [
"A127163",
"A358239",
"A358266"
] | null | Jean Luc Garambois, Nov 04 2022 | 2022-11-13T04:11:49 | oeisdata/seq/A358/A358239.seq | d6c44f2b5d9704d9e9c35af3515e7ea2 |
A358240 | Consider all invertible residues mod n. For each residue, find the smallest product of three primes (A014612) which is in that residue class mod n. a(n) is the greatest of these. | [
"8",
"27",
"28",
"45",
"66",
"175",
"45",
"105",
"76",
"171",
"102",
"325",
"165",
"261",
"124",
"273",
"230",
"385",
"188",
"369",
"268",
"255",
"175",
"475",
"284",
"549",
"436",
"477",
"285",
"1309",
"332",
"385",
"430",
"927",
"318",
"1127",
"442",
"639",
"610",
"657",
"595",
"1075",
"742",
"805",
"724",
"637",
"646",
"1705",
"642",
"741",
"670",
"1005",
"885",
"1435",
"801",
"1705",
"1105",
"873",
"1004",
"2821",
"938",
"873",
"844"
] | [
"nonn"
] | 20 | 1 | 1 | [
"A014612",
"A038026",
"A085420",
"A358240"
] | null | Charles R Greathouse IV, Jan 18 2023 | 2024-01-08T23:56:43 | oeisdata/seq/A358/A358240.seq | c21f03c62e922d2178703188069dba72 |
A358241 | Number of connected Dynkin diagrams with n nodes. | [
"1",
"3",
"3",
"5",
"4",
"5",
"5",
"5",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4"
] | [
"nonn",
"easy"
] | 27 | 1 | 2 | [
"A060296",
"A358241",
"A374624"
] | null | Simon Burton, Jan 18 2023 | 2024-07-24T09:23:12 | oeisdata/seq/A358/A358241.seq | 5946dbb1b33363922413b2968841a262 |
A358242 | Consider all invertible residues k mod n. For each such k, find the product of three primes p*q*r = k (mod n) with the smallest max {p, q, r}. Then a(n) is the largest such p over the considered k. | [
"2",
"3",
"7",
"5",
"11",
"7",
"5",
"7",
"7",
"11",
"7",
"11",
"11",
"11",
"13",
"11",
"13",
"11",
"11",
"13",
"17",
"13",
"13",
"13",
"19",
"17",
"17",
"17",
"13",
"17",
"17",
"17",
"19",
"19",
"29",
"17",
"17",
"13",
"23",
"19",
"23",
"19",
"23",
"17",
"29",
"17",
"23",
"23",
"23",
"19",
"23",
"19",
"23",
"17",
"31",
"23",
"29",
"19",
"29",
"29",
"29",
"19",
"23"
] | [
"nonn"
] | 39 | 1 | 1 | [
"A014612",
"A038026",
"A085420",
"A358240",
"A358242"
] | null | Charles R Greathouse IV, Jan 18 2023 | 2024-07-04T09:21:16 | oeisdata/seq/A358/A358242.seq | 7078d5af598f43b298cef740fb08ff4b |
A358243 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 3, up to isomorphism. | [
"1",
"4",
"9",
"15",
"21",
"28",
"34",
"41",
"47",
"54",
"60",
"67",
"73",
"80",
"86",
"93",
"99",
"106",
"112",
"119",
"125",
"132",
"138",
"145",
"151",
"158",
"164",
"171",
"177",
"184",
"190",
"197",
"203",
"210",
"216",
"223",
"229",
"236",
"242",
"249",
"255",
"262",
"268",
"275",
"281",
"288",
"294",
"301",
"307",
"314",
"320",
"327",
"333",
"340",
"346",
"353"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A258589",
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2022-12-02T13:29:04 | oeisdata/seq/A358/A358243.seq | 5ac271d03c7a78ced22973e6e57a1a42 |
A358244 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 4, up to isomorphism. | [
"1",
"6",
"13",
"27",
"38",
"55",
"67",
"85",
"97",
"115",
"127",
"145",
"157",
"175",
"187",
"205",
"217",
"235",
"247",
"265",
"277",
"295",
"307",
"325",
"337",
"355",
"367",
"385",
"397",
"415",
"427",
"445",
"457",
"475",
"487",
"505",
"517",
"535",
"547",
"565",
"577",
"595",
"607",
"625",
"637",
"655",
"667",
"685",
"697",
"715",
"727",
"745",
"757",
"775"
] | [
"nonn"
] | 42 | 1 | 2 | [
"A047209",
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2023-01-03T05:52:46 | oeisdata/seq/A358/A358244.seq | 7eccbb797bbf625f40e0546a95cd0364 |
A358245 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 5, up to isomorphism. | [
"1",
"6",
"17",
"36",
"59",
"87",
"114",
"145",
"173",
"205",
"233",
"265",
"293",
"325",
"353",
"385",
"413",
"445",
"473",
"505",
"533",
"565",
"593",
"625",
"653",
"685",
"713",
"745",
"773",
"805",
"833",
"865",
"893",
"925",
"953",
"985",
"1013",
"1045",
"1073",
"1105",
"1133",
"1165",
"1193",
"1225",
"1253",
"1285",
"1313",
"1345",
"1373",
"1405",
"1433"
] | [
"nonn"
] | 26 | 1 | 2 | [
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2023-01-01T15:58:27 | oeisdata/seq/A358/A358245.seq | fe4280f0776ba3a99844c6eb99e9a4de |
A358246 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 6, up to isomorphism. | [
"1",
"8",
"23",
"55",
"92",
"147",
"196",
"260",
"313",
"380",
"434",
"502",
"556",
"624",
"678",
"746",
"800",
"868",
"922",
"990",
"1044",
"1112",
"1166",
"1234",
"1288",
"1356",
"1410",
"1478",
"1532",
"1600",
"1654",
"1722",
"1776",
"1844",
"1898",
"1966",
"2020",
"2088",
"2142",
"2210",
"2264",
"2332",
"2386",
"2454",
"2508",
"2576",
"2630",
"2698"
] | [
"nonn"
] | 19 | 1 | 2 | [
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2023-01-01T15:59:20 | oeisdata/seq/A358/A358246.seq | fa511541acfaa06cc184c70d53e9a34e |
A358247 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 7, up to isomorphism. | [
"1",
"8",
"28",
"71",
"132",
"217",
"309",
"417",
"521",
"638",
"746",
"866",
"975",
"1096",
"1205",
"1326",
"1435",
"1556",
"1665",
"1786",
"1895",
"2016",
"2125",
"2246",
"2355",
"2476",
"2585",
"2706",
"2815",
"2936",
"3045",
"3166",
"3275",
"3396",
"3505",
"3626",
"3735",
"3856",
"3965",
"4086",
"4195",
"4316",
"4425",
"4546",
"4655"
] | [
"nonn"
] | 21 | 1 | 2 | [
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2022-12-01T10:22:51 | oeisdata/seq/A358/A358247.seq | 80a7b00e700fc1e5c2c321f286902110 |
A358248 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 8, up to isomorphism. | [
"1",
"10",
"35",
"99",
"190",
"332",
"484",
"680",
"863",
"1082",
"1277",
"1505",
"1704",
"1935",
"2135",
"2367",
"2567",
"2799",
"2999",
"3231",
"3431",
"3663",
"3863",
"4095",
"4295",
"4527",
"4727",
"4959",
"5159",
"5391",
"5591",
"5823",
"6023",
"6255",
"6455",
"6687",
"6887",
"7119",
"7319",
"7551",
"7751",
"7983",
"8183",
"8415",
"8615",
"8847"
] | [
"nonn"
] | 18 | 1 | 2 | [
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2022-12-01T10:23:33 | oeisdata/seq/A358/A358248.seq | ec33b8b7e9643b3ac903ded5bbecb394 |
A358249 | Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 9, up to isomorphism. | [
"1",
"10",
"42",
"123",
"259",
"469",
"721",
"1034",
"1359",
"1726",
"2082",
"2472",
"2840",
"3239",
"3611",
"4013",
"4386",
"4789",
"5162",
"5565",
"5938",
"6341",
"6714",
"7117",
"7490",
"7893",
"8266",
"8669",
"9042",
"9445",
"9818",
"10221",
"10594",
"10997",
"11370",
"11773",
"12146",
"12549",
"12922",
"13325",
"13698",
"14101",
"14474"
] | [
"nonn"
] | 18 | 1 | 2 | [
"A358243",
"A358244",
"A358245",
"A358246",
"A358247",
"A358248",
"A358249"
] | null | Lars Göttgens, Nov 04 2022 | 2022-12-01T10:23:28 | oeisdata/seq/A358/A358249.seq | 77ecbac144902d79ae2c8710ec0448e0 |
A358250 | Numbers whose square has a number of divisors coprime to 210. | [
"1",
"32",
"64",
"243",
"256",
"512",
"729",
"2048",
"3125",
"6561",
"7776",
"15552",
"15625",
"16384",
"16807",
"19683",
"23328",
"32768",
"46656",
"62208",
"100000",
"117649",
"124416",
"161051",
"177147",
"186624",
"200000",
"209952",
"262144",
"371293",
"373248",
"390625",
"419904",
"497664",
"500000",
"537824",
"629856",
"759375"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A000005",
"A000290",
"A001694",
"A008364",
"A036966",
"A036967",
"A069492",
"A350014",
"A354179",
"A358250"
] | null | Michael De Vlieger, Dec 03 2022 | 2022-12-08T09:55:02 | oeisdata/seq/A358/A358250.seq | 3b45cdfa50aa1a030a1791bd84a44d76 |
A358251 | a(n) is the minimum number of peeling sequences for a set of n points in the plane, no three of which are collinear. | [
"1",
"2",
"6",
"18",
"60",
"180"
] | [
"nonn",
"more"
] | 22 | 1 | 2 | null | null | Adrian Dumitrescu, Nov 04 2022 | 2022-12-21T22:16:07 | oeisdata/seq/A358/A358251.seq | 7fed27789c93a799b512752f0d5a2f81 |
A358252 | a(n) is the least number with exactly n non-unitary square divisors. | [
"1",
"8",
"32",
"128",
"288",
"864",
"1152",
"2592",
"4608",
"13824",
"10368",
"20736",
"28800",
"41472",
"64800",
"279936",
"115200",
"331776",
"345600",
"663552",
"259200",
"1679616",
"518400",
"1620000",
"1166400",
"4860000",
"1036800",
"17915904",
"2073600",
"15552000",
"6998400",
"26873856",
"4147200",
"53747712",
"8294400"
] | [
"nonn"
] | 14 | 0 | 2 | [
"A005179",
"A025487",
"A038547",
"A056626",
"A085629",
"A130279",
"A187941",
"A309181",
"A340232",
"A340233",
"A357450",
"A358252",
"A358253"
] | null | Amiram Eldar, Nov 05 2022 | 2022-11-06T03:17:06 | oeisdata/seq/A358/A358252.seq | 23b56041a0093435963f2baaff04ac31 |
A358253 | Numbers with a record number of non-unitary square divisors. | [
"1",
"8",
"32",
"128",
"288",
"864",
"1152",
"2592",
"4608",
"10368",
"20736",
"28800",
"41472",
"64800",
"115200",
"259200",
"518400",
"1036800",
"2073600",
"4147200",
"8294400",
"9331200",
"12700800",
"25401600",
"50803200",
"101606400",
"203212800",
"406425600",
"457228800",
"635040000",
"812851200",
"914457600",
"1270080000"
] | [
"nonn"
] | 20 | 1 | 2 | [
"A002110",
"A002182",
"A025487",
"A037992",
"A046952",
"A053624",
"A056626",
"A293185",
"A309141",
"A318278",
"A358252",
"A358253"
] | null | Amiram Eldar, Nov 05 2022 | 2022-11-06T03:17:11 | oeisdata/seq/A358/A358253.seq | cffe95d603e0b67bbf6bf03a8c433fa8 |
A358254 | Lexicographically earliest sequence of distinct nonnegative integers on a square spiral such that the sum of the eight numbers around any chosen number ends in the chosen number. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"12",
"8",
"9",
"10",
"11",
"13",
"15",
"23",
"14",
"16",
"18",
"21",
"17",
"19",
"29",
"25",
"33",
"20",
"22",
"26",
"28",
"120",
"24",
"27",
"87",
"58",
"125",
"88",
"30",
"31",
"97",
"124",
"45",
"187",
"32",
"34",
"73",
"132",
"55",
"49",
"42",
"35",
"36",
"95",
"195",
"59",
"98",
"863",
"37",
"38",
"130",
"104",
"129",
"62",
"736",
"67",
"39",
"40",
"115",
"131",
"48",
"748",
"82",
"208",
"41"
] | [
"nonn",
"base"
] | 11 | 0 | 3 | [
"A343530",
"A344325",
"A344367",
"A354111",
"A358021",
"A358048",
"A358254"
] | null | Eric Angelini and Scott R. Shannon, Nov 05 2022 | 2022-11-06T07:37:18 | oeisdata/seq/A358/A358254.seq | 860ebecd7b69dd34699a3bdd05c929b7 |
A358255 | Primitive Niven numbers ending with zero. | [
"110",
"140",
"150",
"190",
"220",
"230",
"280",
"320",
"330",
"370",
"410",
"440",
"460",
"510",
"550",
"640",
"660",
"690",
"730",
"770",
"780",
"820",
"870",
"880",
"910",
"960",
"990",
"1010",
"1040",
"1050",
"1090",
"1130",
"1160",
"1180",
"1220",
"1230",
"1270",
"1300",
"1310",
"1360",
"1380",
"1410",
"1450",
"1540",
"1590",
"1630",
"1680",
"1720",
"1740",
"1770",
"1810",
"1860",
"1890",
"2020"
] | [
"nonn",
"base"
] | 20 | 1 | 1 | [
"A002275",
"A005349",
"A008592",
"A356349",
"A358255"
] | null | Bernard Schott, Nov 05 2022 | 2022-11-06T07:47:53 | oeisdata/seq/A358/A358255.seq | b236ce3ea2b8bfad6864a34c3be503f8 |
A358256 | a(n) is the smallest primitive Niven number ending with n zeros. | [
"1",
"110",
"1300",
"17000",
"790000",
"59900000",
"19999999000000",
"2999999999999990000000",
"4999999999999999999999999999900000000",
"899999999999999999999999999999999999999999999999999999999000000000"
] | [
"nonn",
"base"
] | 20 | 0 | 2 | [
"A005349",
"A051885",
"A358255",
"A358256"
] | null | Bernard Schott, Nov 05 2022 | 2022-11-06T07:49:08 | oeisdata/seq/A358/A358256.seq | 693810150883f9404c89efbae25e9d5d |
A358257 | The least significant digit of k such that 2^k, 5^k, 8^k start with the same digit. | [
"0",
"5",
"5",
"8",
"8",
"8",
"1",
"1",
"1",
"4",
"4",
"4",
"7",
"7",
"7",
"0",
"0",
"0",
"3",
"3",
"3",
"6",
"6",
"6",
"9",
"9",
"2",
"2",
"2",
"5",
"5",
"5",
"8",
"8",
"8",
"1",
"1",
"1",
"4",
"4",
"4",
"7",
"7",
"7",
"0",
"0",
"0",
"3",
"3",
"3",
"6",
"6",
"6",
"9",
"9",
"9",
"2",
"2",
"2",
"5",
"5",
"5",
"8",
"8",
"8",
"1",
"1",
"1",
"4",
"4",
"4",
"7",
"7",
"7",
"0",
"0",
"0",
"3",
"3",
"3",
"6",
"6",
"6",
"9",
"9",
"9",
"2",
"2",
"2",
"5",
"5",
"8",
"8",
"8",
"1",
"1",
"1",
"4",
"4",
"4",
"7",
"7",
"7",
"0",
"0"
] | [
"nonn",
"base"
] | 19 | 1 | 2 | [
"A010879",
"A358197",
"A358257"
] | null | Alexander M. Domashenko, Nov 05 2022 | 2022-12-25T15:04:36 | oeisdata/seq/A358/A358257.seq | aec76485816b1410a25d1b704e98217c |
A358258 | First n-bit number to appear in Van Eck's sequence (A181391). | [
"0",
"2",
"6",
"9",
"17",
"42",
"92",
"131",
"307",
"650",
"1024",
"2238",
"4164",
"8226",
"17384",
"33197",
"67167",
"133549",
"269119",
"525974",
"1055175",
"2111641",
"4213053",
"8444257",
"16783217",
"33601813",
"67405064",
"134239260",
"268711604",
"538400994",
"1076155844",
"2152693259",
"4299075300",
"8594396933",
"17203509931"
] | [
"nonn",
"base"
] | 21 | 1 | 2 | [
"A181391",
"A358168",
"A358180",
"A358258",
"A358259"
] | null | Michael De Vlieger, Nov 05 2022 | 2022-11-07T02:10:12 | oeisdata/seq/A358/A358258.seq | be87560cc1a48367e675add41ec76dd5 |
A358259 | Positions of the first n-bit number to appear in Van Eck's sequence (A181391). | [
"1",
"5",
"10",
"24",
"41",
"52",
"152",
"162",
"364",
"726",
"1150",
"2451",
"4626",
"9847",
"18131",
"36016",
"71709",
"143848",
"276769",
"551730",
"1086371",
"2158296",
"4297353",
"8607525",
"17159741",
"34152001",
"68194361",
"136211839",
"271350906",
"541199486",
"1084811069",
"2165421369",
"4331203801",
"8643518017",
"17303787585"
] | [
"nonn",
"base"
] | 21 | 1 | 2 | [
"A181391",
"A358168",
"A358180",
"A358258",
"A358259"
] | null | Michael De Vlieger, Nov 05 2022 | 2022-11-07T02:10:07 | oeisdata/seq/A358/A358259.seq | a260266312d404d5063d70099e9e33ca |
A358260 | a(n) is the number of infinitary square divisors of n. | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"4",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1"
] | [
"nonn",
"mult"
] | 12 | 1 | 4 | [
"A000120",
"A007424",
"A037445",
"A046951",
"A048881",
"A056624",
"A056626",
"A077609",
"A278908",
"A307848",
"A323308",
"A358260",
"A358261"
] | null | Amiram Eldar, Nov 06 2022 | 2022-11-07T02:10:42 | oeisdata/seq/A358/A358260.seq | f810c33b746972466b2676055c53a5b0 |
A358261 | a(n) is the number of noninfinitary square divisors of n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 9 | 1 | null | [
"A037445",
"A046951",
"A056624",
"A056626",
"A077609",
"A295884",
"A358260",
"A358261",
"A358262"
] | null | Amiram Eldar, Nov 06 2022 | 2022-11-07T02:10:38 | oeisdata/seq/A358/A358261.seq | 380207da81e90da830a1d502de0bf47f |
A358262 | a(n) is the least number with exactly n noninfinitary square divisors. | [
"1",
"16",
"144",
"256",
"3600",
"1296",
"2304",
"65536",
"129600",
"16777216",
"32400",
"20736",
"57600",
"331776",
"589824",
"4294967296",
"6350400",
"1099511627776",
"150994944",
"810000",
"1587600",
"1679616",
"518400",
"5308416",
"2822400",
"84934656",
"8294400",
"26873856",
"14745600",
"21743271936",
"38654705664"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A005179",
"A025487",
"A038547",
"A085629",
"A130279",
"A187941",
"A309181",
"A340232",
"A340233",
"A357450",
"A358252",
"A358261",
"A358262",
"A358263"
] | null | Amiram Eldar, Nov 06 2022 | 2022-11-07T02:10:35 | oeisdata/seq/A358/A358262.seq | ed50836f919d21827227be5aacb3ad37 |
A358263 | Numbers with a record number of noninfinitary square divisors. | [
"1",
"16",
"144",
"256",
"1296",
"2304",
"20736",
"57600",
"331776",
"518400",
"2822400",
"8294400",
"12960000",
"25401600",
"132710400",
"207360000",
"228614400",
"406425600",
"635040000",
"2057529600",
"3073593600",
"6502809600",
"10160640000",
"27662342400",
"31116960000",
"51438240000",
"76839840000",
"248961081600"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A002110",
"A002182",
"A025487",
"A037992",
"A293185",
"A306736",
"A307845",
"A309141",
"A318278",
"A322484",
"A335386",
"A348632",
"A358253",
"A358261",
"A358262",
"A358263"
] | null | Amiram Eldar, Nov 06 2022 | 2022-11-07T02:10:32 | oeisdata/seq/A358/A358263.seq | 1f3e9ee8b53577d0735e3f21ae4621a3 |
A358264 | Expansion of e.g.f. 1/(1 - x * exp(x^2/2)). | [
"1",
"1",
"2",
"9",
"48",
"315",
"2520",
"23415",
"248640",
"2972025",
"39463200",
"576413145",
"9184855680",
"158550787395",
"2947473809280",
"58707685211175",
"1247293022976000",
"28156003910859825",
"672972205556851200",
"16978695795089253225",
"450907982644863744000",
"12573634144960773960075"
] | [
"nonn",
"easy"
] | 10 | 0 | 3 | [
"A006153",
"A354550",
"A358064",
"A358264",
"A358265"
] | null | Seiichi Manyama, Nov 06 2022 | 2022-11-13T04:41:27 | oeisdata/seq/A358/A358264.seq | 2c815a5f6dc0634e7068965d24dac5d9 |
A358265 | Expansion of e.g.f. 1/(1 - x * exp(x^3/6)). | [
"1",
"1",
"2",
"6",
"28",
"160",
"1080",
"8470",
"76160",
"771120",
"8671600",
"107245600",
"1446984000",
"21150929800",
"332950217600",
"5615507898000",
"101024594070400",
"1931055071545600",
"39082823446867200",
"834945681049480000",
"18776164188349568000",
"443348081412556320000"
] | [
"nonn",
"easy"
] | 14 | 0 | 3 | [
"A006153",
"A354551",
"A358065",
"A358264",
"A358265"
] | null | Seiichi Manyama, Nov 06 2022 | 2023-03-13T16:04:03 | oeisdata/seq/A358/A358265.seq | 6acb0a1419b9a381e04478431dc3399a |
A358266 | Numbers k such that the aliquot sequence of 2^k ends with the prime 7. | [
"3",
"10",
"12",
"141",
"278",
"387",
"421"
] | [
"nonn",
"hard",
"more"
] | 9 | 1 | 1 | [
"A127164",
"A358239",
"A358266"
] | null | Jean Luc Garambois, Nov 06 2022 | 2022-11-06T07:33:37 | oeisdata/seq/A358/A358266.seq | 030646aec7b685d1ec12a34be6b83bdc |
A358267 | a(1) = 1, a(2) = 2. Thereafter:(i). If no prime divisor of a(n-1) divides a(n-2), a(n) is the least novel multiple of the squarefree kernel of a(n-1). (ii). If some (but not all) prime divisors of a(n-1) do not divide a(n-2), a(n) is the least of the least novel multiples of all such primes. (iii). If every prime divisor of a(n-1) also divides a(n-2), a(n) = u, the least unused number. | [
"1",
"2",
"4",
"3",
"6",
"8",
"5",
"10",
"12",
"9",
"7",
"14",
"16",
"11",
"22",
"18",
"15",
"20",
"24",
"21",
"28",
"26",
"13",
"17",
"34",
"30",
"25",
"19",
"38",
"32",
"23",
"46",
"36",
"27",
"29",
"58",
"40",
"35",
"42",
"33",
"44",
"48",
"39",
"52",
"50",
"45",
"51",
"68",
"54",
"57",
"76",
"56",
"49",
"31",
"62",
"60",
"55",
"66",
"63",
"70",
"64",
"37",
"74",
"72",
"69",
"92",
"78",
"65"
] | [
"nonn"
] | 17 | 1 | 2 | [
"A280864",
"A280866",
"A352187",
"A357963",
"A358267"
] | null | David James Sycamore, Nov 06 2022 | 2022-11-14T00:34:49 | oeisdata/seq/A358/A358267.seq | 254b63669c18d560c1db9353c72b9d51 |
A358268 | a(n) is the least number k > 0 such that the binary weight of k^n is n times the binary weight of k. | [
"1",
"21",
"5",
"21",
"17",
"17",
"9",
"113",
"17",
"49",
"665",
"37",
"149",
"17",
"275",
"163",
"33",
"41",
"97",
"67",
"141",
"67",
"135",
"197",
"49",
"267",
"81",
"81",
"69",
"779",
"1163",
"69",
"325",
"49",
"587",
"837",
"281",
"197",
"293",
"49",
"147",
"677",
"67",
"651",
"647",
"67",
"793",
"277",
"353",
"49",
"1233",
"1177",
"165",
"775",
"721",
"353",
"817",
"69",
"647",
"709",
"209",
"1233",
"69",
"67",
"263"
] | [
"nonn",
"base",
"look"
] | 33 | 1 | 2 | [
"A000120",
"A083567",
"A212314",
"A358268"
] | null | Robert Israel, Nov 06 2022 | 2025-01-20T18:50:54 | oeisdata/seq/A358/A358268.seq | eb80c63cd3f3bdac1f020ef2a47dc46b |
A358269 | a(n) is the position m of the last prime term in the sequence {b(m)} defined by b(1) = n, if b(m) is prime then b(m+1) = b(m) - m, else b(m+1) = b(m) + m. | [
"3",
"1004",
"3",
"1004",
"3",
"1004",
"30",
"349",
"30",
"5",
"19",
"5",
"30",
"1004",
"30",
"8",
"11",
"8",
"30",
"5",
"86",
"17",
"67",
"17",
"15",
"9",
"19",
"9",
"15",
"9",
"19",
"484",
"19",
"13",
"30",
"9",
"19",
"9",
"19",
"13",
"374",
"13",
"19",
"13",
"11",
"484",
"86",
"484",
"19",
"13",
"67",
"16",
"19",
"16",
"19",
"484",
"374",
"484",
"19",
"484",
"374",
"24",
"19",
"13"
] | [
"nonn"
] | 16 | 0 | 1 | [
"A055999",
"A074171",
"A212427",
"A358166",
"A358269"
] | null | Samuel Harkness, Nov 06 2022 | 2022-11-27T12:13:22 | oeisdata/seq/A358/A358269.seq | c87520b96ca80aa6a3797ab0980477a3 |
A358270 | Numbers whose sum of digits is even and that have an even number of even digits. | [
"11",
"13",
"15",
"17",
"19",
"20",
"22",
"24",
"26",
"28",
"31",
"33",
"35",
"37",
"39",
"40",
"42",
"44",
"46",
"48",
"51",
"53",
"55",
"57",
"59",
"60",
"62",
"64",
"66",
"68",
"71",
"73",
"75",
"77",
"79",
"80",
"82",
"84",
"86",
"88",
"91",
"93",
"95",
"97",
"99",
"1001",
"1003",
"1005",
"1007",
"1009",
"1010",
"1012",
"1014",
"1016",
"1018",
"1021",
"1023",
"1025",
"1027",
"1029",
"1030"
] | [
"nonn",
"base",
"easy"
] | 48 | 1 | 1 | [
"A001637",
"A014263",
"A054683",
"A054684",
"A137233",
"A179081",
"A356929",
"A358270"
] | null | Bernard Schott, Nov 06 2022 | 2022-11-12T02:10:16 | oeisdata/seq/A358/A358270.seq | fe407adcea453451ba94fb78a4c1444f |
A358271 | Product of the digits of 3^n. | [
"1",
"3",
"9",
"14",
"8",
"24",
"126",
"112",
"180",
"1296",
"0",
"1372",
"240",
"3240",
"217728",
"0",
"0",
"0",
"0",
"24192",
"0",
"0",
"0",
"2709504",
"6635520",
"0",
"66355200",
"8534937600",
"731566080",
"0",
"0",
"10369949184",
"0",
"0",
"399983754240",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"6243870843076608000"
] | [
"nonn",
"base"
] | 33 | 0 | 2 | [
"A000244",
"A007954",
"A014257",
"A030700",
"A238939",
"A358271"
] | null | Joseph Caliendo, Nov 06 2022 | 2022-11-08T07:40:20 | oeisdata/seq/A358/A358271.seq | 650459dcb2a18348f407cbf050ac1d27 |
A358272 | Multiplicative sequence with a(p^e) = (-1)^e * p^(2*floor(e/2)) for prime p and e >= 0. | [
"1",
"-1",
"-1",
"4",
"-1",
"1",
"-1",
"-4",
"9",
"1",
"-1",
"-4",
"-1",
"1",
"1",
"16",
"-1",
"-9",
"-1",
"-4",
"1",
"1",
"-1",
"4",
"25",
"1",
"-9",
"-4",
"-1",
"-1",
"-1",
"-16",
"1",
"1",
"1",
"36",
"-1",
"1",
"1",
"4",
"-1",
"-1",
"-1",
"-4",
"-9",
"1",
"-1",
"-16",
"49",
"-25",
"1",
"-4",
"-1",
"9",
"1",
"4",
"1",
"1",
"-1",
"4",
"-1",
"1",
"-9",
"64",
"1",
"-1",
"-1",
"-4",
"1",
"-1",
"-1",
"-36",
"-1",
"1",
"-25",
"-4",
"1",
"-1",
"-1",
"-16"
] | [
"sign",
"easy",
"mult"
] | 15 | 1 | 4 | [
"A000010",
"A008833",
"A008836",
"A034444",
"A061019",
"A358272"
] | null | Werner Schulte, Nov 07 2022 | 2023-01-17T18:30:11 | oeisdata/seq/A358/A358272.seq | f1e5b4ec8da9961a328630002320ca92 |
A358273 | Number of binary digits of A007442(n). | [
"2",
"1",
"1",
"1",
"2",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"11",
"9",
"12",
"14",
"16",
"17",
"18",
"19",
"20",
"21",
"21",
"21",
"21",
"21",
"24",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"32",
"33",
"33",
"31",
"34",
"36",
"38",
"39",
"40",
"41",
"41",
"41",
"41",
"44",
"46",
"48",
"49",
"51",
"52",
"53",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"80"
] | [
"base",
"easy",
"nonn"
] | 24 | 1 | 1 | [
"A007442",
"A358273",
"A358618",
"A358619"
] | null | Clark Kimberling and Robert G. Wilson v, Oct 31 2022 | 2022-12-04T20:32:32 | oeisdata/seq/A358/A358273.seq | b3bad1757318e1b130ea8ae7da5d07c0 |
A358274 | a(n) is the prime before A262275(n). | [
"2",
"7",
"13",
"37",
"61",
"79",
"107",
"113",
"151",
"181",
"199",
"239",
"271",
"281",
"349",
"359",
"397",
"457",
"503",
"541",
"557",
"577",
"613",
"733",
"769",
"787",
"857",
"863",
"953",
"983",
"1021",
"1061",
"1069",
"1163",
"1193",
"1213",
"1399",
"1429",
"1439",
"1459",
"1493",
"1583",
"1619",
"1667",
"1721",
"1733",
"1811",
"1907",
"2017",
"2053"
] | [
"nonn"
] | 33 | 1 | 1 | [
"A151799",
"A262275",
"A348677",
"A358274"
] | null | Michael P. May, Nov 11 2022 | 2022-12-21T21:38:36 | oeisdata/seq/A358/A358274.seq | c81cac3ab4aa670500da734d0795cc04 |
A358275 | Least prime factor of A098129(n). | [
"2",
"71",
"2",
"5",
"2",
"1141871",
"2",
"3",
"2",
"58728589",
"2",
"3",
"2",
"5",
"2",
"3",
"2",
"277",
"2",
"4643",
"2",
"29",
"2",
"5",
"2",
"3",
"2",
"37",
"2",
"3",
"2",
"13",
"2",
"3",
"2",
"264439098646852541",
"2",
"7",
"2",
"53",
"2",
"7",
"2",
"3",
"2",
"587",
"2",
"3",
"2",
"45307",
"2",
"3",
"2",
"5",
"2",
"11",
"2",
"7",
"2",
"13",
"2",
"3",
"2",
"5",
"2",
"3",
"2",
"17",
"2",
"3",
"2",
"983",
"2",
"5",
"2",
"53",
"2",
"11"
] | [
"nonn"
] | 49 | 2 | 1 | [
"A020639",
"A098129",
"A358275"
] | null | David Cleaver, Mar 26 2023 | 2023-04-16T13:40:56 | oeisdata/seq/A358/A358275.seq | 48b23547af780254c537e4fd8105133d |
A358276 | a(1) = 1; a(n) = n * Sum_{d|n, d < n} (-1)^(n/d - 1) * a(d) / d. | [
"1",
"-2",
"3",
"0",
"5",
"-18",
"7",
"0",
"18",
"-30",
"11",
"24",
"13",
"-42",
"45",
"0",
"17",
"-144",
"19",
"40",
"63",
"-66",
"23",
"0",
"50",
"-78",
"108",
"56",
"29",
"-390",
"31",
"0",
"99",
"-102",
"105",
"360",
"37",
"-114",
"117",
"0",
"41",
"-546",
"43",
"88",
"360",
"-138",
"47",
"0",
"98",
"-400",
"153",
"104",
"53",
"-1080",
"165",
"0",
"171",
"-174",
"59",
"1080",
"61",
"-186",
"504",
"0",
"195",
"-858",
"67",
"136"
] | [
"sign",
"easy"
] | 70 | 1 | 2 | [
"A050369",
"A055615",
"A308077",
"A332793",
"A358276"
] | null | Seiichi Manyama, Mar 30 2023 | 2023-07-31T02:25:42 | oeisdata/seq/A358/A358276.seq | 3016c7e543d4bb11ab951b165699b0f3 |
A358277 | a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that a(n) is coprime to the previous Omega(a(n-1)) terms. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"11",
"9",
"10",
"13",
"12",
"17",
"14",
"15",
"19",
"16",
"23",
"18",
"25",
"29",
"20",
"21",
"31",
"22",
"27",
"35",
"26",
"33",
"37",
"24",
"41",
"28",
"43",
"30",
"47",
"32",
"53",
"34",
"39",
"49",
"38",
"45",
"59",
"36",
"61",
"40",
"67",
"42",
"71",
"44",
"65",
"51",
"46",
"55",
"57",
"52",
"73",
"48",
"79",
"50",
"77",
"69",
"58",
"83",
"54",
"85",
"89",
"56",
"97",
"60",
"101",
"62",
"63",
"95"
] | [
"nonn"
] | 15 | 1 | 2 | [
"A000040",
"A001222",
"A093714",
"A336957",
"A356850",
"A356851",
"A356903",
"A358277"
] | null | Scott R. Shannon, Nov 08 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A358/A358277.seq | c9f218035cd7718213fddb83bf3dde70 |
A358278 | Squares visited by a knight moving on a square-spiral numbered board where the knight moves to the smallest numbered unvisited square and where the square is on a different square ring of numbers than the current square. | [
"1",
"10",
"3",
"16",
"33",
"4",
"11",
"8",
"19",
"38",
"5",
"14",
"29",
"2",
"13",
"28",
"9",
"12",
"27",
"24",
"7",
"18",
"35",
"60",
"15",
"6",
"17",
"34",
"59",
"30",
"53",
"26",
"79",
"46",
"21",
"40",
"67",
"36",
"61",
"32",
"55",
"86",
"51",
"48",
"23",
"44",
"71",
"20",
"39",
"66",
"99",
"62",
"37",
"68",
"41",
"22",
"43",
"70",
"105",
"148",
"65",
"98",
"139",
"94",
"31",
"54",
"85",
"50",
"25",
"52",
"49",
"78",
"45",
"74"
] | [
"nonn",
"fini"
] | 7 | 1 | 2 | [
"A174344",
"A274923",
"A316667",
"A328909",
"A328929",
"A358150",
"A358278"
] | null | Scott R. Shannon and Eric Angelini, Nov 08 2022 | 2022-11-10T07:40:52 | oeisdata/seq/A358/A358278.seq | ff01af98d89c2dacfe12e0d4c42c9659 |
A358279 | a(n) = Sum_{d|n} (d-1)! * d^(n/d). | [
"1",
"3",
"7",
"29",
"121",
"747",
"5041",
"40433",
"362935",
"3629433",
"39916801",
"479006531",
"6227020801",
"87178326609",
"1307674371487",
"20922790212353",
"355687428096001",
"6402373709021811",
"121645100408832001",
"2432902008212950169",
"51090942171709691335",
"1124000727778046766849"
] | [
"nonn",
"easy"
] | 17 | 1 | 2 | [
"A038507",
"A062363",
"A078308",
"A217576",
"A321521",
"A358279",
"A358280"
] | null | Seiichi Manyama, Nov 08 2022 | 2023-08-30T02:00:43 | oeisdata/seq/A358/A358279.seq | e3ce422b04364170633a236293156b3d |
A358280 | a(n) = Sum_{d|n} (d-1)!. | [
"1",
"2",
"3",
"8",
"25",
"124",
"721",
"5048",
"40323",
"362906",
"3628801",
"39916930",
"479001601",
"6227021522",
"87178291227",
"1307674373048",
"20922789888001",
"355687428136444",
"6402373705728001",
"121645100409194912",
"2432902008176640723",
"51090942171713068802",
"1124000727777607680001"
] | [
"nonn",
"easy"
] | 19 | 1 | 2 | [
"A038507",
"A062363",
"A321875",
"A358279",
"A358280"
] | null | Seiichi Manyama, Nov 08 2022 | 2023-08-30T02:00:50 | oeisdata/seq/A358/A358280.seq | 2ed6e31e63509fa25d9a1fc4baa959f0 |
A358281 | Number of connected cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes. | [
"1",
"1",
"1",
"1",
"4",
"3",
"15",
"7",
"81",
"25",
"469",
"111",
"3132",
"588"
] | [
"nonn",
"more"
] | 10 | 2 | 5 | [
"A002851",
"A358281"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T13:59:49 | oeisdata/seq/A358/A358281.seq | 891583faf46cb5df885f8ecb37885669 |
A358282 | Number of connected bipartite cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class. | [
"0",
"1",
"0",
"2",
"1",
"6",
"4",
"24",
"28",
"140",
"244",
"1026"
] | [
"nonn",
"more"
] | 10 | 3 | 4 | [
"A006823",
"A358282"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T13:59:54 | oeisdata/seq/A358/A358282.seq | ca2a369ee697a48f18ea3eeabc1c5cdf |
A358283 | Number of connected bipartite cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes. | [
"1",
"1",
"1",
"1",
"3",
"2",
"7",
"13",
"25",
"67",
"111",
"453",
"588",
"3112",
"3469",
"22832"
] | [
"nonn",
"more"
] | 4 | 3 | 5 | [
"A006823",
"A358283"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T15:11:42 | oeisdata/seq/A358/A358283.seq | 01829fb7d9e44588e3f0ae9dfdec992a |
A358284 | Number of connected planar cubic graphs with 2*n nodes and zero edge-Kempe equivalence classes. | [
"0",
"0",
"0",
"1",
"3",
"19",
"98",
"583",
"3641",
"24584",
"174967"
] | [
"nonn",
"more"
] | 9 | 2 | 5 | [
"A005964",
"A358284"
] | null | N. J. A. Sloane, Nov 08 2022 | 2024-03-12T17:50:15 | oeisdata/seq/A358/A358284.seq | 717a81bca27a5aca088458f9aeb88645 |
A358285 | Number of connected planar cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class. | [
"1",
"1",
"1",
"8",
"28",
"111",
"556",
"3108",
"19368",
"128811",
"897475"
] | [
"nonn",
"more"
] | 5 | 2 | 4 | [
"A005964",
"A358285"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T15:33:34 | oeisdata/seq/A358/A358285.seq | 11dd97bd2883e374277c3f9680ceb9cc |
A358286 | Number of connected planar cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes. | [
"1",
"1",
"1",
"8",
"1",
"3",
"27",
"1",
"1",
"1",
"7",
"42",
"1",
"2"
] | [
"nonn",
"more"
] | 5 | 2 | 4 | [
"A005964",
"A358286"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T15:38:40 | oeisdata/seq/A358/A358286.seq | 5bc875db27313b9fcbac7fd4e93edfe0 |
A358287 | Number of 3-connected planar cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class. | [
"1",
"1",
"1",
"1",
"13",
"47",
"210",
"1096",
"6373",
"39860",
"260293",
"1753836"
] | [
"nonn",
"more"
] | 7 | 2 | 5 | [
"A000109",
"A358287"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T15:48:53 | oeisdata/seq/A358/A358287.seq | 76263a0273e9d7ab423c1a399f21834c |
A358288 | Number of 3-connected planer cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes. | [
"1",
"1",
"1",
"1",
"1",
"3",
"23",
"1",
"1",
"1",
"6",
"31",
"1",
"2",
"55",
"1",
"1",
"1"
] | [
"nonn",
"more"
] | 7 | 2 | 6 | [
"A000109",
"A358288"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-08T15:52:38 | oeisdata/seq/A358/A358288.seq | e9c5601c6ce58e3332ded0f1cac96919 |
A358289 | Generalized Gerrymander sequence: number of ordered ways to divide an n X n square into two connected regions, both of area n^2/2 if n is even, or of areas (n^2-1)/2 and (n^2+1)/2 if n is odd. | [
"0",
"4",
"16",
"140",
"2804",
"161036",
"27803749",
"14314228378",
"21838347160809",
"99704315229167288",
"1367135978051264146578",
"56578717186086829451888706",
"7065692298178203128922479762418",
"2670113158846160742372913777087464324",
"3052313665715695874527667027409186333152556"
] | [
"nonn"
] | 33 | 1 | 2 | [
"A348456",
"A358289"
] | null | N. J. A. Sloane, Nov 25 2022 | 2022-11-29T01:34:07 | oeisdata/seq/A358/A358289.seq | f39c67b21681a5c9d677cdd935d952dd |
A358290 | Erroneous version of A191783. | [
"1",
"2",
"3",
"5",
"6",
"12",
"61"
] | [
"dead"
] | 5 | 1 | 2 | [
"A191783",
"A358290"
] | null | null | 2022-11-30T07:46:23 | oeisdata/seq/A358/A358290.seq | e781a8b6f6bb46fa3cbb87fa3395e38c |
A358291 | a(n) = smallest k not already in the sequence such that OEIS entry Ak contains n. | [
"1",
"2",
"3",
"5",
"6",
"8",
"9",
"15",
"10",
"11",
"13",
"19",
"17",
"18",
"14",
"26",
"16",
"21",
"20",
"27",
"22",
"25",
"37",
"28",
"56",
"62",
"47",
"36",
"48",
"32",
"29",
"40",
"61",
"51",
"44",
"69",
"24",
"59",
"113",
"46",
"33",
"52",
"41",
"57",
"73",
"70",
"68",
"55",
"80",
"134",
"53",
"115",
"93",
"49",
"50",
"45",
"78",
"98",
"66",
"54",
"31",
"43",
"64",
"83",
"79",
"94",
"84"
] | [
"nonn",
"dumb",
"less"
] | 26 | 0 | 2 | [
"A051070",
"A053169",
"A053873",
"A358291"
] | null | N. J. A. Sloane, Nov 30 2022 | 2022-12-27T03:27:16 | oeisdata/seq/A358/A358291.seq | 2bb5d6c2796f911e4804286522f3fe67 |
A358292 | Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=0, k>=0. | [
"0",
"0",
"0",
"0",
"4",
"0",
"0",
"72",
"72",
"0",
"0",
"432",
"1024",
"432",
"0",
"0",
"1600",
"5400",
"5400",
"1600",
"0",
"0",
"4500",
"18432",
"26244",
"18432",
"4500",
"0",
"0",
"10584",
"49000",
"84672",
"84672",
"49000",
"10584",
"0",
"0",
"21952",
"110592",
"216000",
"262144",
"216000",
"110592",
"21952",
"0",
"0",
"41472",
"222264",
"472392",
"648000",
"648000",
"472392",
"222264",
"41472",
"0"
] | [
"nonn",
"tabl"
] | 15 | 0 | 5 | [
"A358292",
"A358293",
"A358295"
] | null | N. J. A. Sloane, Dec 03 2022 | 2023-03-19T20:11:33 | oeisdata/seq/A358/A358292.seq | 0bf999b077d9862ba515fdd872c4b574 |
A358293 | Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=1, k>=1. | [
"4",
"72",
"72",
"432",
"1024",
"432",
"1600",
"5400",
"5400",
"1600",
"4500",
"18432",
"26244",
"18432",
"4500",
"10584",
"49000",
"84672",
"84672",
"49000",
"10584",
"21952",
"110592",
"216000",
"262144",
"216000",
"110592",
"21952",
"41472",
"222264",
"472392",
"648000",
"648000",
"472392",
"222264",
"41472",
"72900",
"409600",
"926100",
"1382400",
"1562500",
"1382400",
"926100",
"409600",
"72900"
] | [
"nonn",
"tabl"
] | 13 | 1 | 1 | [
"A358292",
"A358293",
"A358295"
] | null | N. J. A. Sloane, Dec 03 2022 | 2023-03-19T20:12:38 | oeisdata/seq/A358/A358293.seq | ea8efb6f2270ebae7a43ba04c02c6e90 |
A358294 | Triangle read by rows: T(n,k) = n^3*k*3*(n+k)^2, n>=0, 0 <= k <= n. | [
"0",
"0",
"4",
"0",
"72",
"1024",
"0",
"432",
"5400",
"26244",
"0",
"1600",
"18432",
"84672",
"262144",
"0",
"4500",
"49000",
"216000",
"648000",
"1562500",
"0",
"10584",
"110592",
"472392",
"1382400",
"3267000",
"6718464",
"0",
"21952",
"222264",
"926100",
"2656192",
"6174000",
"12520872",
"23059204",
"0",
"41472",
"409600",
"1672704",
"4718592",
"10816000",
"21676032",
"39513600",
"67108864"
] | [
"nonn",
"tabl"
] | 13 | 0 | 3 | [
"A358292",
"A358294",
"A358295"
] | null | N. J. A. Sloane, Dec 03 2022 | 2023-03-19T20:12:59 | oeisdata/seq/A358/A358294.seq | f5ddcd9024e8b06436be7924cb6de036 |
A358295 | Triangle read by rows: T(n,k) = n^3*k*3*(n+k)^2, n>=1, 1 <= k <= n. | [
"4",
"72",
"1024",
"432",
"5400",
"26244",
"1600",
"18432",
"84672",
"262144",
"4500",
"49000",
"216000",
"648000",
"1562500",
"10584",
"110592",
"472392",
"1382400",
"3267000",
"6718464",
"21952",
"222264",
"926100",
"2656192",
"6174000",
"12520872",
"23059204",
"41472",
"409600",
"1672704",
"4718592",
"10816000",
"21676032",
"39513600",
"67108864"
] | [
"nonn",
"tabl"
] | 8 | 1 | 1 | [
"A358292",
"A358294",
"A358295"
] | null | N. J. A. Sloane, Dec 03 2022 | 2023-03-19T20:11:09 | oeisdata/seq/A358/A358295.seq | 1a320d66b8a595e41978a3ef73e9b751 |
A358296 | Row 3 of the array in A115009. | [
"2",
"13",
"28",
"49",
"74",
"105",
"140",
"181",
"226",
"277",
"332",
"393",
"458",
"529",
"604",
"685",
"770",
"861",
"956",
"1057",
"1162",
"1273",
"1388",
"1509",
"1634",
"1765",
"1900",
"2041",
"2186",
"2337",
"2492",
"2653",
"2818",
"2989",
"3164",
"3345",
"3530",
"3721",
"3916",
"4117",
"4322",
"4533",
"4748",
"4969",
"5194",
"5425",
"5660",
"5901",
"6146",
"6397",
"6652",
"6913",
"7178",
"7449",
"7724",
"8005",
"8290",
"8581",
"8876",
"9177"
] | [
"nonn"
] | 3 | 1 | 1 | [
"A115009",
"A358296"
] | null | N. J. A. Sloane, Dec 05 2022 | 2022-12-05T20:33:17 | oeisdata/seq/A358/A358296.seq | fda7cb48746273cda44c07fe5f0d25d6 |
A358297 | Bisection of main diagonal of A115009. | [
"6",
"86",
"418",
"1282",
"3106",
"6394",
"11822",
"20074",
"32086",
"48934",
"71554",
"101250",
"139350",
"187254",
"246690",
"319346",
"407302",
"511714",
"634726",
"779074",
"946622",
"1140238",
"1362082",
"1614994",
"1901930",
"2224654",
"2587402",
"2992414",
"3441754",
"3941074",
"4493414",
"5102618",
"5770646",
"6501286",
"7300578",
"8170130",
"9117486",
"10145578",
"11256062",
"12454678",
"13746910",
"15140014",
"16634530"
] | [
"nonn"
] | 3 | 1 | 1 | [
"A114043",
"A115009",
"A141255",
"A358297"
] | null | N. J. A. Sloane, Dec 05 2022 | 2022-12-05T20:59:49 | oeisdata/seq/A358/A358297.seq | 98485c391334d7668e20db567d53f03a |
A358298 | Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of lines defining the Farey diagram Farey(n,k) of order (n,k). | [
"2",
"3",
"3",
"4",
"6",
"4",
"6",
"11",
"11",
"6",
"8",
"19",
"20",
"19",
"8",
"12",
"29",
"36",
"36",
"29",
"12",
"14",
"43",
"52",
"60",
"52",
"43",
"14",
"20",
"57",
"78",
"88",
"88",
"78",
"57",
"20",
"24",
"77",
"100",
"128",
"124",
"128",
"100",
"77",
"24",
"30",
"97",
"136",
"162",
"180",
"180",
"162",
"136",
"97",
"30",
"34",
"121",
"166",
"216",
"224",
"252",
"224",
"216",
"166",
"121",
"34"
] | [
"nonn",
"tabl"
] | 34 | 0 | 1 | [
"A225531",
"A358298",
"A358299",
"A358300",
"A358301",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2023-04-03T09:31:15 | oeisdata/seq/A358/A358298.seq | 09f59bc911d9d882d4b974d1c56e7d37 |
A358299 | Triangle read by antidiagonals: T(n,k) (n>=0, 0 <= k <= n) = number of lines defining the Farey diagram of order (n,k). | [
"2",
"3",
"6",
"4",
"11",
"20",
"6",
"19",
"36",
"60",
"8",
"29",
"52",
"88",
"124",
"12",
"43",
"78",
"128",
"180",
"252",
"14",
"57",
"100",
"162",
"224",
"316",
"388",
"20",
"77",
"136",
"216",
"298",
"412",
"508",
"652",
"24",
"97",
"166",
"266",
"360",
"498",
"608",
"780",
"924",
"30",
"121",
"210",
"326",
"444",
"608",
"738",
"940",
"1116",
"1332",
"34",
"145",
"246",
"386",
"518",
"706",
"852",
"1086",
"1280",
"1532",
"1748"
] | [
"nonn",
"tabl"
] | 19 | 0 | 1 | [
"A358298",
"A358299",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358299.seq | 0f2acf419cf526cea525c129c937289d |
A358300 | Row 1 of array in A358298. | [
"3",
"6",
"11",
"19",
"29",
"43",
"57",
"77",
"97",
"121",
"145",
"177",
"205",
"243",
"277",
"315",
"355",
"405",
"447",
"503",
"551",
"605",
"659",
"727",
"783",
"853",
"917",
"989",
"1057",
"1143",
"1211",
"1303",
"1383",
"1469",
"1553",
"1647",
"1731",
"1841",
"1935",
"2037",
"2133",
"2255",
"2351",
"2479",
"2587",
"2701",
"2815",
"2955",
"3067",
"3207",
"3327",
"3461"
] | [
"nonn"
] | 9 | 0 | 1 | [
"A358298",
"A358300",
"A358307",
"A358882",
"A358885",
"A358886",
"A358889"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 06 2022 | 2022-12-06T19:33:37 | oeisdata/seq/A358/A358300.seq | d4b28eaecfef31a53d02a28414f89c18 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.