sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358201
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with sigma(max_{k=1..n-1}a(k)).
[ "1", "2", "3", "4", "7", "6", "8", "5", "9", "13", "10", "12", "14", "15", "16", "31", "18", "20", "22", "24", "26", "28", "30", "32", "21", "27", "33", "34", "36", "35", "39", "38", "40", "25", "42", "44", "45", "46", "48", "50", "51", "52", "49", "54", "55", "56", "57", "58", "60", "62", "63", "64", "127", "66", "68", "70", "72", "74", "76", "78", "80", "82", "84", "86", "88", "90", "92", "94", "96", "98", "100", "102", "104", "106", "108" ]
[ "nonn", "look" ]
8
1
2
[ "A000203", "A064413", "A354960", "A356430", "A356851", "A358082", "A358176", "A358201" ]
null
Scott R. Shannon, Nov 03 2022
2023-01-16T09:10:46
oeisdata/seq/A358/A358201.seq
98b68fb46bb7ea1675ac78c7d0784599
A358202
Lower twin primes p such that 6*p-1 and 6*p+1 are twin primes and (p+1)/6 is prime.
[ "17", "137", "23537", "92957", "157217", "318677", "326657", "440177", "510617", "521537", "558497", "577937", "617717", "651017", "661097", "861437", "969257", "1093997", "1152077", "1168337", "1177157", "1260317", "1299917", "1356077", "1463177", "1514657", "1600097", "1617437", "1768757", "1773977", "1957937", "2065577", "2271497", "2335637", "2382557", "2450597" ]
[ "nonn" ]
16
1
1
[ "A060213", "A176131", "A358202" ]
null
J. M. Bergot and Robert Israel, Nov 03 2022
2023-01-29T17:30:38
oeisdata/seq/A358/A358202.seq
a910ff55aa91ecb99c184f90d7626cee
A358203
Decimal expansion of Sum_{n >= 1} 1/(2*n)^n.
[ "5", "6", "7", "3", "8", "4", "1", "1", "4", "8", "7", "7", "0", "2", "8", "3", "2", "2", "5", "4", "1", "2", "1", "4", "8", "3", "7", "5", "7", "0", "3", "2", "3", "9", "7", "4", "8", "8", "5", "8", "3", "9", "5", "0", "7", "8", "4", "7", "5", "4", "7", "1", "8", "0", "2", "1", "0", "0", "5", "5", "1", "4", "8", "7", "3", "7", "3", "0", "2", "5", "2", "8", "2", "5", "2", "4", "0", "5", "8", "8", "5", "8", "8", "4", "8", "2", "2", "1", "3", "2", "5", "8", "0", "1", "5", "7", "4", "5", "6", "8" ]
[ "cons", "nonn", "easy" ]
11
0
1
[ "A073009", "A098686", "A358191", "A358203", "A358204" ]
null
Peter Bala, Nov 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358203.seq
98279dabecfa553dd25783e4acd641c2
A358204
Decimal expansion of Sum_{n >= 1} (-1)^(n+1)/(2*n)^n.
[ "4", "4", "1", "8", "9", "5", "1", "6", "3", "3", "6", "5", "2", "1", "8", "3", "0", "7", "1", "9", "0", "3", "2", "1", "3", "0", "5", "6", "2", "0", "7", "0", "8", "6", "3", "7", "8", "7", "4", "7", "9", "9", "2", "8", "4", "7", "4", "3", "6", "9", "4", "8", "0", "4", "7", "7", "8", "3", "7", "8", "7", "0", "3", "9", "0", "7", "0", "7", "0", "5", "1", "7", "0", "5", "5", "7", "1", "7", "6", "2", "6", "4", "8", "7", "3", "1", "5", "9", "2", "1", "2", "7", "7", "0", "3", "4", "2", "6", "0", "9" ]
[ "cons", "nonn", "easy" ]
16
0
1
[ "A073009", "A098686", "A358191", "A358203", "A358204" ]
null
Peter Bala, Nov 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358204.seq
4cc966aaee4e7752f796a15310804195
A358205
a(n) is the least number k such that 1 + 2*k + 3*k^2 has exactly n prime divisors, counted with multiplicity.
[ "0", "2", "1", "13", "19", "7", "61", "331", "169", "1141", "6487", "898", "20581", "315826", "59947", "296143", "1890466", "6141994", "1359025", "49188715", "20490901", "264422320", "178328878", "1340590345", "9476420614", "5989636213", "72238539832", "103619599441", "668478672403", "794002910839", "417430195531" ]
[ "nonn" ]
41
0
2
[ "A001222", "A056109", "A086285", "A122488", "A358205" ]
null
Robert Israel, Nov 03 2022
2023-06-11T14:22:27
oeisdata/seq/A358/A358205.seq
72ef8e189097839c022b3059d1c9f056
A358206
Number of ways of making change for n cents using coins of 1, 2, 4, 10 and 20 cents.
[ "1", "1", "2", "2", "4", "4", "6", "6", "9", "9", "13", "13", "18", "18", "24", "24", "31", "31", "39", "39", "50", "50", "62", "62", "77", "77", "93", "93", "112", "112", "134", "134", "159", "159", "187", "187", "218", "218", "252", "252", "292", "292", "335", "335", "384", "384", "436", "436", "494", "494", "558", "558", "628", "628", "704", "704", "786", "786", "874", "874", "972", "972" ]
[ "nonn", "easy" ]
18
0
3
[ "A000064", "A001310", "A358206" ]
null
Daniel Checa, Nov 03 2022
2022-11-08T07:57:07
oeisdata/seq/A358/A358206.seq
3bb03c26aac2bd999c9464ee26799367
A358207
Numbers k such that k^2 + 2 is a palindrome.
[ "0", "1", "2", "3", "8", "13", "19", "85", "258", "393", "828", "1811", "2538", "2916", "2986", "3627", "4540", "10503", "140833", "268865", "298436", "423437", "902696", "1050503", "1845571", "2491032", "5513951", "14365940", "25809892", "26237622", "28559254", "61875091", "79094282", "186062629", "246553448", "451977320", "452357920", "620208559", "813448358", "849937635" ]
[ "nonn", "base" ]
22
1
3
[ "A002778", "A027719", "A059100", "A070253", "A358207", "A358237" ]
null
Robert Xiao, Nov 04 2022
2022-12-04T16:33:14
oeisdata/seq/A358/A358207.seq
40dab2de4a63b97c6334dc907bac6b19
A358208
a(1) = 1; a(2) = 2; a(3) = 3; for n > 3, a(n) is the smallest positive number not occurring earlier that shares a factor with Sum_{k=1..n-1} A001065(k), where A001065(k) is the sum of the proper divisors of k.
[ "1", "2", "3", "4", "5", "6", "8", "13", "10", "9", "12", "11", "7", "14", "15", "18", "16", "17", "20", "107", "21", "22", "24", "25", "191", "197", "27", "26", "28", "30", "33", "32", "35", "34", "36", "29", "38", "433", "39", "40", "42", "523", "577", "44", "45", "31", "677", "46", "48", "50", "23", "49", "52", "51", "54", "56", "55", "63", "43", "58", "37", "57", "53", "60", "66", "61", "62", "70", "68", "64", "65", "69", "71", "75", "80" ]
[ "nonn" ]
11
1
2
[ "A000203", "A001065", "A024916", "A064413", "A356851", "A358208", "A358209" ]
null
Scott R. Shannon, Nov 04 2022
2023-01-16T09:10:46
oeisdata/seq/A358/A358208.seq
a16a845236671038e4597be9935e2995
A358209
a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with A024916(n-1) = Sum_{k=1..n-1} sigma(k).
[ "1", "2", "4", "6", "3", "7", "9", "41", "8", "12", "15", "11", "127", "18", "5", "14", "10", "16", "277", "21", "24", "28", "22", "431", "491", "20", "26", "30", "25", "23", "27", "32", "857", "35", "42", "19", "33", "34", "13", "36", "38", "40", "37", "39", "44", "45", "46", "43", "48", "1987", "50", "52", "51", "54", "56", "57", "58", "60", "49", "62", "55", "64", "61", "63", "82", "66", "3631", "69", "17", "72", "65", "70", "68", "74" ]
[ "nonn" ]
11
1
2
[ "A000203", "A024916", "A064413", "A356851", "A358208", "A358209" ]
null
Scott R. Shannon, Nov 04 2022
2023-01-16T09:10:46
oeisdata/seq/A358/A358209.seq
41ee4e3c5a98927c75336b2f9217d3e1
A358210
Congruent number sequence starting from the Pythagorean triple (3,4,5).
[ "6", "15", "34", "353", "175234", "9045146753", "121609715057619333634", "4138643330264389621194448797227488932353", "27728719906622802548355602700962556264398170527494726660553210068191276023007234" ]
[ "nonn" ]
16
1
1
[ "A081465", "A358210" ]
null
Gerry Martens, Nov 04 2022
2022-12-21T21:59:03
oeisdata/seq/A358/A358210.seq
b3628788ec79f9bafa22b7324f209708
A358211
Self-locating strings within e: numbers k such that the string k is at position k (after the decimal point) in the decimal digits of e, where 7 is the 0th digit.
[ "1", "8", "215", "374", "614", "849", "4142", "7945", "5964055", "8008913", "7131377227", "8829981707" ]
[ "base", "nonn", "more" ]
24
0
2
[ "A001113", "A064810", "A205648", "A358211" ]
null
Chris Baumann, Nov 04 2022
2022-12-19T13:55:52
oeisdata/seq/A358/A358211.seq
ea5cc0d14548f7c4a0f951c5729c5405
A358212
a(n) is the maximal possible sum of squares of the side lengths of an n^2-gon supported on a subset 1 <= x,y <= n of an integer lattice.
[ "4", "10", "36", "98", "232" ]
[ "nonn", "hard", "more" ]
68
2
1
[ "A064842", "A110611", "A209077", "A226595", "A226596", "A358212" ]
null
Giedrius Alkauskas, Nov 04 2022
2024-06-17T15:27:34
oeisdata/seq/A358/A358212.seq
ef52b831316064323af5a69820d9f724
A358213
The index of the first occurrence of A002110(n) in A356309.
[ "1", "2", "3", "10", "35", "77", "286", "2431", "4199", "37145" ]
[ "nonn", "hard", "more" ]
24
0
2
[ "A002110", "A356302", "A356309", "A356314", "A356316", "A356318", "A358213", "A358214" ]
null
Antti Karttunen, Nov 05 2022
2022-11-07T21:47:13
oeisdata/seq/A358/A358213.seq
66dd25a14d425a3df57861795afd07e3
A358214
a(n) = A002110(n) - A358213(n).
[ "0", "0", "3", "20", "175", "2233", "29744", "508079", "9695491", "223055725" ]
[ "nonn", "hard", "more" ]
18
0
3
[ "A002110", "A276086", "A356302", "A356309", "A358213", "A358214" ]
null
Antti Karttunen, Nov 05 2022
2022-11-06T20:01:47
oeisdata/seq/A358/A358214.seq
6b9cf8ab310d8febaa70418901d727f0
A358215
Numbers k for which there is no prime p such that p^p divides the arithmetic derivative of k, A003415(k).
[ "2", "3", "5", "6", "7", "9", "10", "11", "13", "14", "17", "18", "19", "21", "22", "23", "25", "26", "29", "30", "31", "33", "34", "37", "38", "41", "42", "43", "45", "46", "47", "49", "50", "53", "57", "58", "59", "61", "62", "63", "65", "66", "67", "69", "70", "71", "73", "74", "75", "77", "78", "79", "82", "83", "85", "86", "89", "90", "93", "94", "97", "98", "99", "101", "102", "103", "105", "106", "107", "109", "110", "113", "114", "117", "118", "121", "122", "125" ]
[ "nonn" ]
21
1
1
[ "A003415", "A048103", "A099308", "A327929", "A327934", "A328393", "A341996", "A341997", "A351088", "A358215", "A358221", "A359550", "A368915" ]
null
Antti Karttunen, Nov 24 2022
2024-02-22T20:08:24
oeisdata/seq/A358/A358215.seq
9ba457d42147cdf8f06e8280a3da13b0
A358216
Inverse Möbius transform of A327936, where A327936 is multiplicative with a(p^e) = p if e >= p, otherwise 1.
[ "1", "2", "2", "4", "2", "4", "2", "6", "3", "4", "2", "8", "2", "4", "4", "8", "2", "6", "2", "8", "4", "4", "2", "12", "3", "4", "6", "8", "2", "8", "2", "10", "4", "4", "4", "12", "2", "4", "4", "12", "2", "8", "2", "8", "6", "4", "2", "16", "3", "6", "4", "8", "2", "12", "4", "12", "4", "4", "2", "16", "2", "4", "6", "12", "4", "8", "2", "8", "4", "8", "2", "18", "2", "4", "6", "8", "4", "8", "2", "16", "9", "4", "2", "16", "4", "4", "4", "12", "2", "12", "4", "8", "4", "4", "4", "20", "2", "6", "6", "12" ]
[ "nonn", "mult" ]
12
1
2
[ "A000005", "A276086", "A324655", "A327936", "A358216" ]
null
Antti Karttunen, Nov 30 2022
2022-12-01T08:56:50
oeisdata/seq/A358/A358216.seq
14c8645be2654d5b92935d528f6f137e
A358217
Number of prime factors (with multiplicity) in A319627(n).
[ "0", "0", "1", "0", "1", "0", "1", "0", "2", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "2", "1", "1", "0", "2", "1", "3", "1", "1", "0", "1", "0", "2", "1", "1", "0", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "0", "2", "2", "2", "1", "1", "2", "2", "1", "2", "1", "1", "0", "1", "1", "3", "0", "2", "1", "1", "1", "2", "1", "1", "0", "1", "1", "2", "1", "1", "1", "1", "1", "4", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "0", "1", "2", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "3", "1", "2", "0" ]
[ "nonn" ]
10
1
9
[ "A001222", "A025487", "A064989", "A319627", "A358217", "A358218", "A358219" ]
null
Antti Karttunen, Nov 04 2022
2022-11-05T12:34:20
oeisdata/seq/A358/A358217.seq
0720ff3402fa632e1aef7ed298107c0a
A358218
Number of prime factors (with multiplicity) in A328478(n).
[ "0", "0", "1", "0", "1", "0", "1", "0", "2", "1", "1", "0", "1", "1", "2", "0", "1", "1", "1", "1", "2", "1", "1", "0", "2", "1", "3", "1", "1", "0", "1", "0", "2", "1", "2", "0", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "0", "2", "2", "2", "1", "1", "2", "2", "1", "2", "1", "1", "0", "1", "1", "3", "0", "2", "1", "1", "1", "2", "2", "1", "0", "1", "1", "3", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "0", "1", "2", "3", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "3", "1", "2", "0" ]
[ "nonn" ]
9
1
9
[ "A001222", "A025487", "A328478", "A355930", "A358217", "A358218", "A358219" ]
null
Antti Karttunen, Nov 04 2022
2022-11-05T12:34:25
oeisdata/seq/A358/A358218.seq
0dfa5b048e1ce93abe0d284a1d1cbfe4
A358219
Indices k where A358217(k) != A358218(k).
[ "15", "35", "45", "70", "75", "77", "105", "135", "140", "143", "154", "165", "175", "195", "221", "225", "231", "245", "255", "280", "285", "286", "308", "315", "323", "345", "350", "375", "385", "405", "429", "435", "437", "442", "450", "455", "462", "465", "490", "495", "525", "539", "555", "560", "572", "585", "595", "615", "616", "645", "646", "663", "665", "667", "675", "693", "700", "705", "715", "735", "765", "770", "795", "805" ]
[ "nonn" ]
5
1
1
[ "A319627", "A328478", "A358217", "A358218", "A358219" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T19:26:12
oeisdata/seq/A358/A358219.seq
f1224871a1ff712e40698a4f0ce7b89d
A358220
a(n) = 1 if A276086(n) is a multiple of A003415(n), with a(0) = a(1) = 0. Here A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
10
0
null
[ "A003415", "A276086", "A328382", "A356310", "A358220", "A358221", "A358227" ]
null
Antti Karttunen, Nov 23 2022
2022-11-26T08:58:25
oeisdata/seq/A358/A358220.seq
395c2a9469b62399c84a419f26665cbb
A358221
Numbers k such that A003415(k) divides A276086(k), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "2", "3", "5", "6", "7", "9", "11", "13", "17", "19", "21", "23", "25", "26", "29", "31", "33", "37", "38", "41", "43", "46", "47", "49", "53", "59", "61", "65", "67", "71", "73", "77", "79", "83", "89", "94", "97", "101", "103", "107", "109", "113", "127", "131", "137", "139", "141", "146", "149", "151", "157", "161", "163", "167", "173", "179", "181", "185", "191", "193", "197", "199", "201", "206", "207", "209", "211", "221", "223", "227", "229", "233" ]
[ "nonn" ]
17
1
1
[ "A000040", "A003415", "A048103", "A276086", "A328382", "A328387", "A356311", "A356312", "A358215", "A358220", "A358221", "A358222", "A358229" ]
null
Antti Karttunen, Nov 23 2022
2024-02-22T20:08:36
oeisdata/seq/A358/A358221.seq
eb42f0229ce26debf5bb5a2aa9a869bb
A358222
Composite numbers k such that A003415(k) divides A276086(k), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "6", "9", "21", "25", "26", "33", "38", "46", "49", "65", "77", "94", "141", "146", "161", "185", "201", "206", "207", "209", "221", "305", "321", "326", "333", "341", "346", "375", "377", "406", "413", "453", "458", "531", "581", "589", "605", "615", "689", "717", "741", "745", "746", "766", "819", "869", "893", "965", "989", "1041", "1046", "1073", "1189", "1241", "1254", "1331", "1337", "1349", "1461", "1466", "1469", "1529", "1541", "1641" ]
[ "nonn" ]
8
1
1
[ "A003415", "A276086", "A358220", "A358221", "A358222" ]
null
Antti Karttunen, Nov 23 2022
2022-11-26T08:58:35
oeisdata/seq/A358/A358222.seq
be64a48e5b7cbf8d0183a13c9dcc0805
A358223
Inverse Möbius transform of A181819, prime shadow function.
[ "1", "3", "3", "6", "3", "9", "3", "11", "6", "9", "3", "18", "3", "9", "9", "18", "3", "18", "3", "18", "9", "9", "3", "33", "6", "9", "11", "18", "3", "27", "3", "29", "9", "9", "9", "36", "3", "9", "9", "33", "3", "27", "3", "18", "18", "9", "3", "54", "6", "18", "9", "18", "3", "33", "9", "33", "9", "9", "3", "54", "3", "9", "18", "42", "9", "27", "3", "18", "9", "27", "3", "66", "3", "9", "18", "18", "9", "27", "3", "54", "18", "9", "3", "54", "9", "9", "9", "33", "3", "54" ]
[ "nonn", "mult" ]
15
1
2
[ "A014284", "A046523", "A181819", "A358223" ]
null
Antti Karttunen, Nov 30 2022
2023-10-23T02:02:17
oeisdata/seq/A358/A358223.seq
56c6bc45d706aee96365917990461375
A358224
Parity of A328386(n), where A328386(n) = A276086(n) mod n, and A276086 is the primorial base exp-function.
[ "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1" ]
[ "nonn" ]
8
1
null
[ "A000035", "A276086", "A328386", "A358224", "A358225", "A358226", "A358227" ]
null
Antti Karttunen, Nov 25 2022
2022-11-26T08:58:40
oeisdata/seq/A358/A358224.seq
74ee921dfb530530e5cd18165407e440
A358225
Numbers k such that A276086(k) mod k is an odd number, where A276086 is the primorial base exp-function.
[ "2", "4", "5", "6", "7", "8", "9", "10", "12", "13", "14", "16", "18", "19", "20", "21", "22", "23", "24", "26", "28", "29", "30", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "44", "45", "46", "47", "48", "49", "50", "52", "53", "54", "55", "56", "58", "60", "61", "62", "64", "65", "66", "67", "68", "69", "70", "72", "73", "74", "76", "78", "79", "80", "81", "82", "84", "86", "88", "89", "90", "91", "92", "94", "96", "97", "98", "99", "100", "101" ]
[ "nonn" ]
8
1
1
[ "A000035", "A005843", "A276086", "A328386", "A358225", "A358226", "A358228", "A358231" ]
null
Antti Karttunen, Nov 25 2022
2022-11-25T11:10:35
oeisdata/seq/A358/A358225.seq
b7234ad9fba2fdc6cb481b6c157acf14
A358226
Numbers k such that A276086(k) mod k is an even number, where A276086 is the primorial base exp-function.
[ "1", "3", "11", "15", "17", "25", "27", "31", "43", "51", "57", "59", "63", "71", "75", "77", "83", "85", "87", "93", "95", "103", "105", "107", "109", "115", "119", "129", "133", "137", "139", "145", "147", "151", "157", "167", "169", "171", "173", "175", "177", "185", "189", "191", "199", "201", "207", "211", "213", "215", "217", "221", "223", "229", "233", "235", "237", "241", "257", "259", "263", "269", "281", "289", "299", "303", "305", "307" ]
[ "nonn" ]
7
1
2
[ "A276086", "A328386", "A328387", "A358224", "A358225", "A358226", "A358229" ]
null
Antti Karttunen, Nov 25 2022
2022-11-25T11:10:39
oeisdata/seq/A358/A358226.seq
fe98b2d6889bb289427b31b20236d2e8
A358227
Parity of A328382(n), where A328382(n) = A276086(n) mod A003415(n), with A003415 the arithmetic derivative and A276086 the primorial base exp-function.
[ "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1" ]
[ "nonn" ]
9
2
null
[ "A000035", "A003415", "A276086", "A328382", "A358220", "A358224", "A358227", "A358228", "A358229" ]
null
Antti Karttunen, Nov 25 2022
2022-11-26T08:58:59
oeisdata/seq/A358/A358227.seq
0947bbc701e64b47faf9643b0355998d
A358228
Numbers k such that A276086(k) mod A003415(k) is an odd number, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
[ "4", "8", "10", "12", "14", "16", "20", "22", "24", "28", "30", "32", "36", "40", "42", "44", "48", "50", "52", "54", "56", "58", "60", "62", "63", "64", "66", "68", "72", "74", "75", "76", "78", "80", "84", "88", "90", "92", "96", "98", "99", "100", "102", "104", "108", "110", "112", "114", "116", "120", "122", "124", "126", "128", "132", "136", "138", "140", "144", "148", "150", "152", "154", "156", "158", "160", "162", "164", "168", "171", "172", "176" ]
[ "nonn" ]
7
1
1
[ "A003415", "A276086", "A328382", "A358225", "A358228", "A358229", "A358232" ]
null
Antti Karttunen, Nov 25 2022
2022-11-25T11:10:27
oeisdata/seq/A358/A358228.seq
73642403da1d7aecaeca225a0f53648d
A358229
Numbers k such that A276086(k) mod A003415(k) is an even number, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
[ "2", "3", "5", "6", "7", "9", "11", "13", "15", "17", "18", "19", "21", "23", "25", "26", "27", "29", "31", "33", "34", "35", "37", "38", "39", "41", "43", "45", "46", "47", "49", "51", "53", "55", "57", "59", "61", "65", "67", "69", "70", "71", "73", "77", "79", "81", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "103", "105", "106", "107", "109", "111", "113", "115", "117", "118", "119", "121", "123", "125", "127", "129", "130", "131" ]
[ "nonn" ]
6
1
1
[ "A003415", "A276086", "A328382", "A358221", "A358226", "A358227", "A358228", "A358229" ]
null
Antti Karttunen, Nov 25 2022
2022-11-25T11:10:49
oeisdata/seq/A358/A358229.seq
244de36711f0cb16b3dfc582a91b02a6
A358230
Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j), A007949(i) = A007949(j) and A046523(i) = A046523(j), for all i, j, where A007814 and A007949 give the 2-adic and 3-adic valuation, and A046523 gives the prime signature of its argument.
[ "1", "2", "3", "4", "5", "6", "5", "7", "8", "9", "5", "10", "5", "9", "11", "12", "5", "13", "5", "14", "11", "9", "5", "15", "16", "9", "17", "14", "5", "18", "5", "19", "11", "9", "20", "21", "5", "9", "11", "22", "5", "18", "5", "14", "23", "9", "5", "24", "16", "25", "11", "14", "5", "26", "20", "22", "11", "9", "5", "27", "5", "9", "23", "28", "20", "18", "5", "14", "11", "29", "5", "30", "5", "9", "31", "14", "20", "18", "5", "32", "33", "9", "5", "27", "20", "9", "11", "22", "5", "34", "20", "14", "11", "9", "20", "35", "5", "25", "23", "36", "5", "18", "5", "22", "37" ]
[ "nonn" ]
9
1
2
[ "A007814", "A007949", "A046523", "A065333", "A072078", "A305891", "A305893", "A322026", "A358230", "A358747" ]
null
Antti Karttunen, Dec 01 2022
2022-12-01T22:30:49
oeisdata/seq/A358/A358230.seq
805927766416964acd2736f26825c85f
A358231
Numbers k for which A276086(k) == 1 (mod k), where A276086 is the primorial base exp-function.
[ "2", "4", "12", "16", "24", "47", "54", "72", "120", "142", "144", "432", "540", "864", "972", "1049", "1260", "1916", "2628", "10152", "12798", "19024", "20304", "100565", "152668", "209760", "445362", "2071560", "2759034", "3344269", "85167240", "92667148", "111135679", "118344316", "162716506", "264678868", "599478496" ]
[ "nonn" ]
5
1
1
[ "A276086", "A328386", "A328387", "A358231" ]
null
Antti Karttunen, Nov 24 2022
2022-11-24T19:52:10
oeisdata/seq/A358/A358231.seq
2d31a1b610b1c1d02019478210d62170
A358232
Numbers k for which A276086(k) == 1 mod A003415(k), where A276086 is the primorial base exp-function, and A003415 is the arithmetic derivative.
[ "4", "16", "54", "66", "864", "1710", "18900", "71254", "120731", "492943", "625081", "700149", "1489459", "3564419", "44995876", "219794251", "297776323", "596506003", "642171139", "972082711", "1065608507", "1252704562", "1385872853", "1416187590", "1799971549", "1818740449" ]
[ "nonn" ]
6
1
1
[ "A003415", "A276086", "A328382", "A358228", "A358231", "A358232" ]
null
Antti Karttunen, Nov 25 2022
2022-11-25T19:07:52
oeisdata/seq/A358/A358232.seq
58e218afd96e0367ac4d98d7737d30ff
A358233
Number of ways n can be expressed as an unordered product of two natural numbers that do not generate any carries when added together in the primorial base.
[ "0", "1", "0", "2", "0", "2", "0", "1", "0", "1", "0", "2", "0", "2", "0", "2", "0", "3", "0", "1", "0", "1", "0", "4", "0", "2", "0", "3", "0", "3", "0", "1", "0", "1", "0", "4", "0", "2", "0", "2", "0", "4", "0", "1", "0", "1", "0", "4", "0", "2", "0", "3", "0", "4", "0", "2", "0", "1", "0", "5", "0", "2", "0", "3", "0", "3", "0", "1", "0", "2", "0", "6", "0", "2", "0", "3", "0", "4", "0", "1", "0", "1", "0", "4", "0", "2", "0", "2", "0", "5", "0", "1", "0", "1", "0", "6", "0", "3", "0", "3", "0", "3", "0", "2", "0" ]
[ "nonn", "base" ]
25
1
4
[ "A038548", "A049345", "A100484", "A276086", "A329041", "A358233", "A358234", "A358235", "A358236", "A358671" ]
null
Antti Karttunen, Nov 26 2022
2023-09-02T19:27:55
oeisdata/seq/A358/A358233.seq
38f50562ea0bb7c35491ede1a2cd1c0c
A358234
Number of ways 2n can be expressed as an unordered product of two natural numbers that do not generate any carries when added together in the primorial base.
[ "1", "2", "2", "1", "1", "2", "2", "2", "3", "1", "1", "4", "2", "3", "3", "1", "1", "4", "2", "2", "4", "1", "1", "4", "2", "3", "4", "2", "1", "5", "2", "3", "3", "1", "2", "6", "2", "3", "4", "1", "1", "4", "2", "2", "5", "1", "1", "6", "3", "3", "3", "2", "1", "5", "2", "4", "4", "1", "1", "7", "2", "3", "6", "1", "2", "5", "2", "2", "3", "2", "1", "6", "2", "3", "4", "2", "2", "3", "2", "3", "4", "1", "1", "6", "2", "3", "2", "1", "1", "8", "3", "2", "4", "1", "2", "5", "2", "4", "5", "1", "1", "5", "2", "3", "6" ]
[ "nonn", "base" ]
9
1
2
[ "A358233", "A358234" ]
null
Antti Karttunen, Nov 26 2022
2022-11-29T12:52:38
oeisdata/seq/A358/A358234.seq
cbd52cec5a5dec2a98abe159721ba189
A358235
Number of ways n' (the arithmetic derivative of n) can be formed as a sum (x * y') + (x' * y) from two factors x and y of n, with x <= y, so that the said sum does not involve any carries when the addition is done in the primorial base.
[ "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "3", "1", "2", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "2", "1", "1", "4", "1", "1", "1", "2", "1", "3", "1", "1", "1", "1", "1", "3", "1", "2", "3", "2", "1", "1", "1", "1", "1", "4", "1", "3", "1", "2", "2", "2", "1", "3", "1", "3", "1", "1", "1", "1", "1", "2", "1", "3", "1", "3", "1", "1", "1", "1", "1", "2", "1", "2", "3", "3", "1", "1", "1", "3", "2", "1", "1", "1", "1", "2" ]
[ "nonn", "base" ]
27
1
4
[ "A003415", "A049345", "A100484", "A276086", "A329041", "A358233", "A358235", "A358672", "A358673", "A358674" ]
null
Antti Karttunen, Nov 26 2022
2022-11-29T12:52:43
oeisdata/seq/A358/A358235.seq
8c000249faf2df8c557a4e043c61e96b
A358236
Number of factorizations of n where the sum of the factors is carryfree when the addition is done in the primorial base.
[ "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "3", "1", "1", "1", "1", "1", "5", "1", "2", "1", "4", "1", "3", "1", "1", "1", "1", "1", "5", "1", "2", "1", "2", "1", "4", "1", "1", "1", "1", "1", "5", "1", "2", "1", "4", "1", "4", "1", "2", "1", "1", "1", "5", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "9", "1", "2", "1", "4", "1", "4", "1", "1", "1", "1", "1", "5", "1", "2", "1", "2", "1", "5", "1", "1", "1", "1", "1", "8", "1", "3", "1", "4", "1", "3", "1", "2", "1" ]
[ "nonn", "base" ]
14
1
4
[ "A001055", "A049345", "A276086", "A317836", "A327936", "A358233", "A358236" ]
null
Antti Karttunen, Nov 29 2022
2022-11-30T16:10:54
oeisdata/seq/A358/A358236.seq
0861a08ff5640ba953218249125b2a68
A358237
Palindromes of the form k^2 + 2.
[ "2", "3", "6", "11", "66", "171", "363", "7227", "66566", "154451", "685586", "3279723", "6441446", "8503058", "8916198", "13155131", "20611602", "110313011", "19833933891", "72288388227", "89064046098", "179298892971", "814860068418", "1103556553011", "3406132316043", "6205240425026", "30403655630403", "206380232083602", "666150525051666" ]
[ "nonn", "base" ]
11
1
1
[ "A002779", "A059100", "A070254", "A358207", "A358237" ]
null
Robert Xiao, Nov 04 2022
2024-09-01T14:00:22
oeisdata/seq/A358/A358237.seq
78989cd03028ba5cbe593d4ed7b86cdc
A358238
a(n) is the least prime p such that the primes from prime(n) to p contain a complete set of residues modulo prime(n).
[ "3", "7", "19", "29", "71", "103", "103", "191", "233", "317", "577", "439", "587", "467", "967", "659", "709", "1511", "1013", "1321", "1789", "1319", "1663", "2029", "1499", "2143", "1973", "2459", "2333", "2203", "3697", "3089", "3923", "4793", "3449", "4517", "3539", "4451", "3923", "4801", "5501", "4799", "4793", "7121", "5651", "4969", "6359", "4793", "6581", "9371", "6043", "9769", "5813" ]
[ "nonn" ]
48
1
1
[ "A358238", "A360228" ]
null
Robert Israel, Jan 31 2023
2023-02-12T10:07:08
oeisdata/seq/A358/A358238.seq
bd64b974612cd80bb75f6f76fd8afe12
A358239
Numbers k such that the aliquot sequence of 2^k ends with the prime 3.
[ "2", "4", "55", "164", "305", "317" ]
[ "nonn", "hard", "more" ]
29
1
1
[ "A127163", "A358239", "A358266" ]
null
Jean Luc Garambois, Nov 04 2022
2022-11-13T04:11:49
oeisdata/seq/A358/A358239.seq
d6c44f2b5d9704d9e9c35af3515e7ea2
A358240
Consider all invertible residues mod n. For each residue, find the smallest product of three primes (A014612) which is in that residue class mod n. a(n) is the greatest of these.
[ "8", "27", "28", "45", "66", "175", "45", "105", "76", "171", "102", "325", "165", "261", "124", "273", "230", "385", "188", "369", "268", "255", "175", "475", "284", "549", "436", "477", "285", "1309", "332", "385", "430", "927", "318", "1127", "442", "639", "610", "657", "595", "1075", "742", "805", "724", "637", "646", "1705", "642", "741", "670", "1005", "885", "1435", "801", "1705", "1105", "873", "1004", "2821", "938", "873", "844" ]
[ "nonn" ]
20
1
1
[ "A014612", "A038026", "A085420", "A358240" ]
null
Charles R Greathouse IV, Jan 18 2023
2024-01-08T23:56:43
oeisdata/seq/A358/A358240.seq
c21f03c62e922d2178703188069dba72
A358241
Number of connected Dynkin diagrams with n nodes.
[ "1", "3", "3", "5", "4", "5", "5", "5", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4" ]
[ "nonn", "easy" ]
27
1
2
[ "A060296", "A358241", "A374624" ]
null
Simon Burton, Jan 18 2023
2024-07-24T09:23:12
oeisdata/seq/A358/A358241.seq
5946dbb1b33363922413b2968841a262
A358242
Consider all invertible residues k mod n. For each such k, find the product of three primes p*q*r = k (mod n) with the smallest max {p, q, r}. Then a(n) is the largest such p over the considered k.
[ "2", "3", "7", "5", "11", "7", "5", "7", "7", "11", "7", "11", "11", "11", "13", "11", "13", "11", "11", "13", "17", "13", "13", "13", "19", "17", "17", "17", "13", "17", "17", "17", "19", "19", "29", "17", "17", "13", "23", "19", "23", "19", "23", "17", "29", "17", "23", "23", "23", "19", "23", "19", "23", "17", "31", "23", "29", "19", "29", "29", "29", "19", "23" ]
[ "nonn" ]
39
1
1
[ "A014612", "A038026", "A085420", "A358240", "A358242" ]
null
Charles R Greathouse IV, Jan 18 2023
2024-07-04T09:21:16
oeisdata/seq/A358/A358242.seq
7078d5af598f43b298cef740fb08ff4b
A358243
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 3, up to isomorphism.
[ "1", "4", "9", "15", "21", "28", "34", "41", "47", "54", "60", "67", "73", "80", "86", "93", "99", "106", "112", "119", "125", "132", "138", "145", "151", "158", "164", "171", "177", "184", "190", "197", "203", "210", "216", "223", "229", "236", "242", "249", "255", "262", "268", "275", "281", "288", "294", "301", "307", "314", "320", "327", "333", "340", "346", "353" ]
[ "nonn" ]
14
1
2
[ "A258589", "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2022-12-02T13:29:04
oeisdata/seq/A358/A358243.seq
5ac271d03c7a78ced22973e6e57a1a42
A358244
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 4, up to isomorphism.
[ "1", "6", "13", "27", "38", "55", "67", "85", "97", "115", "127", "145", "157", "175", "187", "205", "217", "235", "247", "265", "277", "295", "307", "325", "337", "355", "367", "385", "397", "415", "427", "445", "457", "475", "487", "505", "517", "535", "547", "565", "577", "595", "607", "625", "637", "655", "667", "685", "697", "715", "727", "745", "757", "775" ]
[ "nonn" ]
42
1
2
[ "A047209", "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2023-01-03T05:52:46
oeisdata/seq/A358/A358244.seq
7eccbb797bbf625f40e0546a95cd0364
A358245
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 5, up to isomorphism.
[ "1", "6", "17", "36", "59", "87", "114", "145", "173", "205", "233", "265", "293", "325", "353", "385", "413", "445", "473", "505", "533", "565", "593", "625", "653", "685", "713", "745", "773", "805", "833", "865", "893", "925", "953", "985", "1013", "1045", "1073", "1105", "1133", "1165", "1193", "1225", "1253", "1285", "1313", "1345", "1373", "1405", "1433" ]
[ "nonn" ]
26
1
2
[ "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2023-01-01T15:58:27
oeisdata/seq/A358/A358245.seq
fe4280f0776ba3a99844c6eb99e9a4de
A358246
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 6, up to isomorphism.
[ "1", "8", "23", "55", "92", "147", "196", "260", "313", "380", "434", "502", "556", "624", "678", "746", "800", "868", "922", "990", "1044", "1112", "1166", "1234", "1288", "1356", "1410", "1478", "1532", "1600", "1654", "1722", "1776", "1844", "1898", "1966", "2020", "2088", "2142", "2210", "2264", "2332", "2386", "2454", "2508", "2576", "2630", "2698" ]
[ "nonn" ]
19
1
2
[ "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2023-01-01T15:59:20
oeisdata/seq/A358/A358246.seq
fa511541acfaa06cc184c70d53e9a34e
A358247
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 7, up to isomorphism.
[ "1", "8", "28", "71", "132", "217", "309", "417", "521", "638", "746", "866", "975", "1096", "1205", "1326", "1435", "1556", "1665", "1786", "1895", "2016", "2125", "2246", "2355", "2476", "2585", "2706", "2815", "2936", "3045", "3166", "3275", "3396", "3505", "3626", "3735", "3856", "3965", "4086", "4195", "4316", "4425", "4546", "4655" ]
[ "nonn" ]
21
1
2
[ "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2022-12-01T10:22:51
oeisdata/seq/A358/A358247.seq
80a7b00e700fc1e5c2c321f286902110
A358248
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 8, up to isomorphism.
[ "1", "10", "35", "99", "190", "332", "484", "680", "863", "1082", "1277", "1505", "1704", "1935", "2135", "2367", "2567", "2799", "2999", "3231", "3431", "3663", "3863", "4095", "4295", "4527", "4727", "4959", "5159", "5391", "5591", "5823", "6023", "6255", "6455", "6687", "6887", "7119", "7319", "7551", "7751", "7983", "8183", "8415", "8615", "8847" ]
[ "nonn" ]
18
1
2
[ "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2022-12-01T10:23:33
oeisdata/seq/A358/A358248.seq
ec33b8b7e9643b3ac903ded5bbecb394
A358249
Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 9, up to isomorphism.
[ "1", "10", "42", "123", "259", "469", "721", "1034", "1359", "1726", "2082", "2472", "2840", "3239", "3611", "4013", "4386", "4789", "5162", "5565", "5938", "6341", "6714", "7117", "7490", "7893", "8266", "8669", "9042", "9445", "9818", "10221", "10594", "10997", "11370", "11773", "12146", "12549", "12922", "13325", "13698", "14101", "14474" ]
[ "nonn" ]
18
1
2
[ "A358243", "A358244", "A358245", "A358246", "A358247", "A358248", "A358249" ]
null
Lars Göttgens, Nov 04 2022
2022-12-01T10:23:28
oeisdata/seq/A358/A358249.seq
77ecbac144902d79ae2c8710ec0448e0
A358250
Numbers whose square has a number of divisors coprime to 210.
[ "1", "32", "64", "243", "256", "512", "729", "2048", "3125", "6561", "7776", "15552", "15625", "16384", "16807", "19683", "23328", "32768", "46656", "62208", "100000", "117649", "124416", "161051", "177147", "186624", "200000", "209952", "262144", "371293", "373248", "390625", "419904", "497664", "500000", "537824", "629856", "759375" ]
[ "nonn" ]
14
1
2
[ "A000005", "A000290", "A001694", "A008364", "A036966", "A036967", "A069492", "A350014", "A354179", "A358250" ]
null
Michael De Vlieger, Dec 03 2022
2022-12-08T09:55:02
oeisdata/seq/A358/A358250.seq
3b45cdfa50aa1a030a1791bd84a44d76
A358251
a(n) is the minimum number of peeling sequences for a set of n points in the plane, no three of which are collinear.
[ "1", "2", "6", "18", "60", "180" ]
[ "nonn", "more" ]
22
1
2
null
null
Adrian Dumitrescu, Nov 04 2022
2022-12-21T22:16:07
oeisdata/seq/A358/A358251.seq
7fed27789c93a799b512752f0d5a2f81
A358252
a(n) is the least number with exactly n non-unitary square divisors.
[ "1", "8", "32", "128", "288", "864", "1152", "2592", "4608", "13824", "10368", "20736", "28800", "41472", "64800", "279936", "115200", "331776", "345600", "663552", "259200", "1679616", "518400", "1620000", "1166400", "4860000", "1036800", "17915904", "2073600", "15552000", "6998400", "26873856", "4147200", "53747712", "8294400" ]
[ "nonn" ]
14
0
2
[ "A005179", "A025487", "A038547", "A056626", "A085629", "A130279", "A187941", "A309181", "A340232", "A340233", "A357450", "A358252", "A358253" ]
null
Amiram Eldar, Nov 05 2022
2022-11-06T03:17:06
oeisdata/seq/A358/A358252.seq
23b56041a0093435963f2baaff04ac31
A358253
Numbers with a record number of non-unitary square divisors.
[ "1", "8", "32", "128", "288", "864", "1152", "2592", "4608", "10368", "20736", "28800", "41472", "64800", "115200", "259200", "518400", "1036800", "2073600", "4147200", "8294400", "9331200", "12700800", "25401600", "50803200", "101606400", "203212800", "406425600", "457228800", "635040000", "812851200", "914457600", "1270080000" ]
[ "nonn" ]
20
1
2
[ "A002110", "A002182", "A025487", "A037992", "A046952", "A053624", "A056626", "A293185", "A309141", "A318278", "A358252", "A358253" ]
null
Amiram Eldar, Nov 05 2022
2022-11-06T03:17:11
oeisdata/seq/A358/A358253.seq
cffe95d603e0b67bbf6bf03a8c433fa8
A358254
Lexicographically earliest sequence of distinct nonnegative integers on a square spiral such that the sum of the eight numbers around any chosen number ends in the chosen number.
[ "0", "1", "2", "3", "4", "5", "6", "7", "12", "8", "9", "10", "11", "13", "15", "23", "14", "16", "18", "21", "17", "19", "29", "25", "33", "20", "22", "26", "28", "120", "24", "27", "87", "58", "125", "88", "30", "31", "97", "124", "45", "187", "32", "34", "73", "132", "55", "49", "42", "35", "36", "95", "195", "59", "98", "863", "37", "38", "130", "104", "129", "62", "736", "67", "39", "40", "115", "131", "48", "748", "82", "208", "41" ]
[ "nonn", "base" ]
11
0
3
[ "A343530", "A344325", "A344367", "A354111", "A358021", "A358048", "A358254" ]
null
Eric Angelini and Scott R. Shannon, Nov 05 2022
2022-11-06T07:37:18
oeisdata/seq/A358/A358254.seq
860ebecd7b69dd34699a3bdd05c929b7
A358255
Primitive Niven numbers ending with zero.
[ "110", "140", "150", "190", "220", "230", "280", "320", "330", "370", "410", "440", "460", "510", "550", "640", "660", "690", "730", "770", "780", "820", "870", "880", "910", "960", "990", "1010", "1040", "1050", "1090", "1130", "1160", "1180", "1220", "1230", "1270", "1300", "1310", "1360", "1380", "1410", "1450", "1540", "1590", "1630", "1680", "1720", "1740", "1770", "1810", "1860", "1890", "2020" ]
[ "nonn", "base" ]
20
1
1
[ "A002275", "A005349", "A008592", "A356349", "A358255" ]
null
Bernard Schott, Nov 05 2022
2022-11-06T07:47:53
oeisdata/seq/A358/A358255.seq
b236ce3ea2b8bfad6864a34c3be503f8
A358256
a(n) is the smallest primitive Niven number ending with n zeros.
[ "1", "110", "1300", "17000", "790000", "59900000", "19999999000000", "2999999999999990000000", "4999999999999999999999999999900000000", "899999999999999999999999999999999999999999999999999999999000000000" ]
[ "nonn", "base" ]
20
0
2
[ "A005349", "A051885", "A358255", "A358256" ]
null
Bernard Schott, Nov 05 2022
2022-11-06T07:49:08
oeisdata/seq/A358/A358256.seq
693810150883f9404c89efbae25e9d5d
A358257
The least significant digit of k such that 2^k, 5^k, 8^k start with the same digit.
[ "0", "5", "5", "8", "8", "8", "1", "1", "1", "4", "4", "4", "7", "7", "7", "0", "0", "0", "3", "3", "3", "6", "6", "6", "9", "9", "2", "2", "2", "5", "5", "5", "8", "8", "8", "1", "1", "1", "4", "4", "4", "7", "7", "7", "0", "0", "0", "3", "3", "3", "6", "6", "6", "9", "9", "9", "2", "2", "2", "5", "5", "5", "8", "8", "8", "1", "1", "1", "4", "4", "4", "7", "7", "7", "0", "0", "0", "3", "3", "3", "6", "6", "6", "9", "9", "9", "2", "2", "2", "5", "5", "8", "8", "8", "1", "1", "1", "4", "4", "4", "7", "7", "7", "0", "0" ]
[ "nonn", "base" ]
19
1
2
[ "A010879", "A358197", "A358257" ]
null
Alexander M. Domashenko, Nov 05 2022
2022-12-25T15:04:36
oeisdata/seq/A358/A358257.seq
aec76485816b1410a25d1b704e98217c
A358258
First n-bit number to appear in Van Eck's sequence (A181391).
[ "0", "2", "6", "9", "17", "42", "92", "131", "307", "650", "1024", "2238", "4164", "8226", "17384", "33197", "67167", "133549", "269119", "525974", "1055175", "2111641", "4213053", "8444257", "16783217", "33601813", "67405064", "134239260", "268711604", "538400994", "1076155844", "2152693259", "4299075300", "8594396933", "17203509931" ]
[ "nonn", "base" ]
21
1
2
[ "A181391", "A358168", "A358180", "A358258", "A358259" ]
null
Michael De Vlieger, Nov 05 2022
2022-11-07T02:10:12
oeisdata/seq/A358/A358258.seq
be87560cc1a48367e675add41ec76dd5
A358259
Positions of the first n-bit number to appear in Van Eck's sequence (A181391).
[ "1", "5", "10", "24", "41", "52", "152", "162", "364", "726", "1150", "2451", "4626", "9847", "18131", "36016", "71709", "143848", "276769", "551730", "1086371", "2158296", "4297353", "8607525", "17159741", "34152001", "68194361", "136211839", "271350906", "541199486", "1084811069", "2165421369", "4331203801", "8643518017", "17303787585" ]
[ "nonn", "base" ]
21
1
2
[ "A181391", "A358168", "A358180", "A358258", "A358259" ]
null
Michael De Vlieger, Nov 05 2022
2022-11-07T02:10:07
oeisdata/seq/A358/A358259.seq
a260266312d404d5063d70099e9e33ca
A358260
a(n) is the number of infinitary square divisors of n.
[ "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "2", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "2", "4", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "2", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "mult" ]
12
1
4
[ "A000120", "A007424", "A037445", "A046951", "A048881", "A056624", "A056626", "A077609", "A278908", "A307848", "A323308", "A358260", "A358261" ]
null
Amiram Eldar, Nov 06 2022
2022-11-07T02:10:42
oeisdata/seq/A358/A358260.seq
f810c33b746972466b2676055c53a5b0
A358261
a(n) is the number of noninfinitary square divisors of n.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0" ]
[ "nonn" ]
9
1
null
[ "A037445", "A046951", "A056624", "A056626", "A077609", "A295884", "A358260", "A358261", "A358262" ]
null
Amiram Eldar, Nov 06 2022
2022-11-07T02:10:38
oeisdata/seq/A358/A358261.seq
380207da81e90da830a1d502de0bf47f
A358262
a(n) is the least number with exactly n noninfinitary square divisors.
[ "1", "16", "144", "256", "3600", "1296", "2304", "65536", "129600", "16777216", "32400", "20736", "57600", "331776", "589824", "4294967296", "6350400", "1099511627776", "150994944", "810000", "1587600", "1679616", "518400", "5308416", "2822400", "84934656", "8294400", "26873856", "14745600", "21743271936", "38654705664" ]
[ "nonn" ]
10
0
2
[ "A005179", "A025487", "A038547", "A085629", "A130279", "A187941", "A309181", "A340232", "A340233", "A357450", "A358252", "A358261", "A358262", "A358263" ]
null
Amiram Eldar, Nov 06 2022
2022-11-07T02:10:35
oeisdata/seq/A358/A358262.seq
ed50836f919d21827227be5aacb3ad37
A358263
Numbers with a record number of noninfinitary square divisors.
[ "1", "16", "144", "256", "1296", "2304", "20736", "57600", "331776", "518400", "2822400", "8294400", "12960000", "25401600", "132710400", "207360000", "228614400", "406425600", "635040000", "2057529600", "3073593600", "6502809600", "10160640000", "27662342400", "31116960000", "51438240000", "76839840000", "248961081600" ]
[ "nonn" ]
10
1
2
[ "A002110", "A002182", "A025487", "A037992", "A293185", "A306736", "A307845", "A309141", "A318278", "A322484", "A335386", "A348632", "A358253", "A358261", "A358262", "A358263" ]
null
Amiram Eldar, Nov 06 2022
2022-11-07T02:10:32
oeisdata/seq/A358/A358263.seq
1f3e9ee8b53577d0735e3f21ae4621a3
A358264
Expansion of e.g.f. 1/(1 - x * exp(x^2/2)).
[ "1", "1", "2", "9", "48", "315", "2520", "23415", "248640", "2972025", "39463200", "576413145", "9184855680", "158550787395", "2947473809280", "58707685211175", "1247293022976000", "28156003910859825", "672972205556851200", "16978695795089253225", "450907982644863744000", "12573634144960773960075" ]
[ "nonn", "easy" ]
10
0
3
[ "A006153", "A354550", "A358064", "A358264", "A358265" ]
null
Seiichi Manyama, Nov 06 2022
2022-11-13T04:41:27
oeisdata/seq/A358/A358264.seq
2c815a5f6dc0634e7068965d24dac5d9
A358265
Expansion of e.g.f. 1/(1 - x * exp(x^3/6)).
[ "1", "1", "2", "6", "28", "160", "1080", "8470", "76160", "771120", "8671600", "107245600", "1446984000", "21150929800", "332950217600", "5615507898000", "101024594070400", "1931055071545600", "39082823446867200", "834945681049480000", "18776164188349568000", "443348081412556320000" ]
[ "nonn", "easy" ]
14
0
3
[ "A006153", "A354551", "A358065", "A358264", "A358265" ]
null
Seiichi Manyama, Nov 06 2022
2023-03-13T16:04:03
oeisdata/seq/A358/A358265.seq
6acb0a1419b9a381e04478431dc3399a
A358266
Numbers k such that the aliquot sequence of 2^k ends with the prime 7.
[ "3", "10", "12", "141", "278", "387", "421" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A127164", "A358239", "A358266" ]
null
Jean Luc Garambois, Nov 06 2022
2022-11-06T07:33:37
oeisdata/seq/A358/A358266.seq
030646aec7b685d1ec12a34be6b83bdc
A358267
a(1) = 1, a(2) = 2. Thereafter:(i). If no prime divisor of a(n-1) divides a(n-2), a(n) is the least novel multiple of the squarefree kernel of a(n-1). (ii). If some (but not all) prime divisors of a(n-1) do not divide a(n-2), a(n) is the least of the least novel multiples of all such primes. (iii). If every prime divisor of a(n-1) also divides a(n-2), a(n) = u, the least unused number.
[ "1", "2", "4", "3", "6", "8", "5", "10", "12", "9", "7", "14", "16", "11", "22", "18", "15", "20", "24", "21", "28", "26", "13", "17", "34", "30", "25", "19", "38", "32", "23", "46", "36", "27", "29", "58", "40", "35", "42", "33", "44", "48", "39", "52", "50", "45", "51", "68", "54", "57", "76", "56", "49", "31", "62", "60", "55", "66", "63", "70", "64", "37", "74", "72", "69", "92", "78", "65" ]
[ "nonn" ]
17
1
2
[ "A280864", "A280866", "A352187", "A357963", "A358267" ]
null
David James Sycamore, Nov 06 2022
2022-11-14T00:34:49
oeisdata/seq/A358/A358267.seq
254b63669c18d560c1db9353c72b9d51
A358268
a(n) is the least number k > 0 such that the binary weight of k^n is n times the binary weight of k.
[ "1", "21", "5", "21", "17", "17", "9", "113", "17", "49", "665", "37", "149", "17", "275", "163", "33", "41", "97", "67", "141", "67", "135", "197", "49", "267", "81", "81", "69", "779", "1163", "69", "325", "49", "587", "837", "281", "197", "293", "49", "147", "677", "67", "651", "647", "67", "793", "277", "353", "49", "1233", "1177", "165", "775", "721", "353", "817", "69", "647", "709", "209", "1233", "69", "67", "263" ]
[ "nonn", "base", "look" ]
33
1
2
[ "A000120", "A083567", "A212314", "A358268" ]
null
Robert Israel, Nov 06 2022
2025-01-20T18:50:54
oeisdata/seq/A358/A358268.seq
eb80c63cd3f3bdac1f020ef2a47dc46b
A358269
a(n) is the position m of the last prime term in the sequence {b(m)} defined by b(1) = n, if b(m) is prime then b(m+1) = b(m) - m, else b(m+1) = b(m) + m.
[ "3", "1004", "3", "1004", "3", "1004", "30", "349", "30", "5", "19", "5", "30", "1004", "30", "8", "11", "8", "30", "5", "86", "17", "67", "17", "15", "9", "19", "9", "15", "9", "19", "484", "19", "13", "30", "9", "19", "9", "19", "13", "374", "13", "19", "13", "11", "484", "86", "484", "19", "13", "67", "16", "19", "16", "19", "484", "374", "484", "19", "484", "374", "24", "19", "13" ]
[ "nonn" ]
16
0
1
[ "A055999", "A074171", "A212427", "A358166", "A358269" ]
null
Samuel Harkness, Nov 06 2022
2022-11-27T12:13:22
oeisdata/seq/A358/A358269.seq
c87520b96ca80aa6a3797ab0980477a3
A358270
Numbers whose sum of digits is even and that have an even number of even digits.
[ "11", "13", "15", "17", "19", "20", "22", "24", "26", "28", "31", "33", "35", "37", "39", "40", "42", "44", "46", "48", "51", "53", "55", "57", "59", "60", "62", "64", "66", "68", "71", "73", "75", "77", "79", "80", "82", "84", "86", "88", "91", "93", "95", "97", "99", "1001", "1003", "1005", "1007", "1009", "1010", "1012", "1014", "1016", "1018", "1021", "1023", "1025", "1027", "1029", "1030" ]
[ "nonn", "base", "easy" ]
48
1
1
[ "A001637", "A014263", "A054683", "A054684", "A137233", "A179081", "A356929", "A358270" ]
null
Bernard Schott, Nov 06 2022
2022-11-12T02:10:16
oeisdata/seq/A358/A358270.seq
fe407adcea453451ba94fb78a4c1444f
A358271
Product of the digits of 3^n.
[ "1", "3", "9", "14", "8", "24", "126", "112", "180", "1296", "0", "1372", "240", "3240", "217728", "0", "0", "0", "0", "24192", "0", "0", "0", "2709504", "6635520", "0", "66355200", "8534937600", "731566080", "0", "0", "10369949184", "0", "0", "399983754240", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "6243870843076608000" ]
[ "nonn", "base" ]
33
0
2
[ "A000244", "A007954", "A014257", "A030700", "A238939", "A358271" ]
null
Joseph Caliendo, Nov 06 2022
2022-11-08T07:40:20
oeisdata/seq/A358/A358271.seq
650459dcb2a18348f407cbf050ac1d27
A358272
Multiplicative sequence with a(p^e) = (-1)^e * p^(2*floor(e/2)) for prime p and e >= 0.
[ "1", "-1", "-1", "4", "-1", "1", "-1", "-4", "9", "1", "-1", "-4", "-1", "1", "1", "16", "-1", "-9", "-1", "-4", "1", "1", "-1", "4", "25", "1", "-9", "-4", "-1", "-1", "-1", "-16", "1", "1", "1", "36", "-1", "1", "1", "4", "-1", "-1", "-1", "-4", "-9", "1", "-1", "-16", "49", "-25", "1", "-4", "-1", "9", "1", "4", "1", "1", "-1", "4", "-1", "1", "-9", "64", "1", "-1", "-1", "-4", "1", "-1", "-1", "-36", "-1", "1", "-25", "-4", "1", "-1", "-1", "-16" ]
[ "sign", "easy", "mult" ]
15
1
4
[ "A000010", "A008833", "A008836", "A034444", "A061019", "A358272" ]
null
Werner Schulte, Nov 07 2022
2023-01-17T18:30:11
oeisdata/seq/A358/A358272.seq
f1e5b4ec8da9961a328630002320ca92
A358273
Number of binary digits of A007442(n).
[ "2", "1", "1", "1", "2", "4", "5", "6", "7", "8", "9", "10", "11", "11", "9", "12", "14", "16", "17", "18", "19", "20", "21", "21", "21", "21", "21", "24", "26", "27", "28", "29", "30", "31", "32", "32", "33", "33", "31", "34", "36", "38", "39", "40", "41", "41", "41", "41", "44", "46", "48", "49", "51", "52", "53", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80" ]
[ "base", "easy", "nonn" ]
24
1
1
[ "A007442", "A358273", "A358618", "A358619" ]
null
Clark Kimberling and Robert G. Wilson v, Oct 31 2022
2022-12-04T20:32:32
oeisdata/seq/A358/A358273.seq
b3bad1757318e1b130ea8ae7da5d07c0
A358274
a(n) is the prime before A262275(n).
[ "2", "7", "13", "37", "61", "79", "107", "113", "151", "181", "199", "239", "271", "281", "349", "359", "397", "457", "503", "541", "557", "577", "613", "733", "769", "787", "857", "863", "953", "983", "1021", "1061", "1069", "1163", "1193", "1213", "1399", "1429", "1439", "1459", "1493", "1583", "1619", "1667", "1721", "1733", "1811", "1907", "2017", "2053" ]
[ "nonn" ]
33
1
1
[ "A151799", "A262275", "A348677", "A358274" ]
null
Michael P. May, Nov 11 2022
2022-12-21T21:38:36
oeisdata/seq/A358/A358274.seq
c81cac3ab4aa670500da734d0795cc04
A358275
Least prime factor of A098129(n).
[ "2", "71", "2", "5", "2", "1141871", "2", "3", "2", "58728589", "2", "3", "2", "5", "2", "3", "2", "277", "2", "4643", "2", "29", "2", "5", "2", "3", "2", "37", "2", "3", "2", "13", "2", "3", "2", "264439098646852541", "2", "7", "2", "53", "2", "7", "2", "3", "2", "587", "2", "3", "2", "45307", "2", "3", "2", "5", "2", "11", "2", "7", "2", "13", "2", "3", "2", "5", "2", "3", "2", "17", "2", "3", "2", "983", "2", "5", "2", "53", "2", "11" ]
[ "nonn" ]
49
2
1
[ "A020639", "A098129", "A358275" ]
null
David Cleaver, Mar 26 2023
2023-04-16T13:40:56
oeisdata/seq/A358/A358275.seq
48b23547af780254c537e4fd8105133d
A358276
a(1) = 1; a(n) = n * Sum_{d|n, d < n} (-1)^(n/d - 1) * a(d) / d.
[ "1", "-2", "3", "0", "5", "-18", "7", "0", "18", "-30", "11", "24", "13", "-42", "45", "0", "17", "-144", "19", "40", "63", "-66", "23", "0", "50", "-78", "108", "56", "29", "-390", "31", "0", "99", "-102", "105", "360", "37", "-114", "117", "0", "41", "-546", "43", "88", "360", "-138", "47", "0", "98", "-400", "153", "104", "53", "-1080", "165", "0", "171", "-174", "59", "1080", "61", "-186", "504", "0", "195", "-858", "67", "136" ]
[ "sign", "easy" ]
70
1
2
[ "A050369", "A055615", "A308077", "A332793", "A358276" ]
null
Seiichi Manyama, Mar 30 2023
2023-07-31T02:25:42
oeisdata/seq/A358/A358276.seq
3016c7e543d4bb11ab951b165699b0f3
A358277
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that a(n) is coprime to the previous Omega(a(n-1)) terms.
[ "1", "2", "3", "4", "5", "6", "7", "8", "11", "9", "10", "13", "12", "17", "14", "15", "19", "16", "23", "18", "25", "29", "20", "21", "31", "22", "27", "35", "26", "33", "37", "24", "41", "28", "43", "30", "47", "32", "53", "34", "39", "49", "38", "45", "59", "36", "61", "40", "67", "42", "71", "44", "65", "51", "46", "55", "57", "52", "73", "48", "79", "50", "77", "69", "58", "83", "54", "85", "89", "56", "97", "60", "101", "62", "63", "95" ]
[ "nonn" ]
15
1
2
[ "A000040", "A001222", "A093714", "A336957", "A356850", "A356851", "A356903", "A358277" ]
null
Scott R. Shannon, Nov 08 2022
2023-01-16T09:10:46
oeisdata/seq/A358/A358277.seq
c9f218035cd7718213fddb83bf3dde70
A358278
Squares visited by a knight moving on a square-spiral numbered board where the knight moves to the smallest numbered unvisited square and where the square is on a different square ring of numbers than the current square.
[ "1", "10", "3", "16", "33", "4", "11", "8", "19", "38", "5", "14", "29", "2", "13", "28", "9", "12", "27", "24", "7", "18", "35", "60", "15", "6", "17", "34", "59", "30", "53", "26", "79", "46", "21", "40", "67", "36", "61", "32", "55", "86", "51", "48", "23", "44", "71", "20", "39", "66", "99", "62", "37", "68", "41", "22", "43", "70", "105", "148", "65", "98", "139", "94", "31", "54", "85", "50", "25", "52", "49", "78", "45", "74" ]
[ "nonn", "fini" ]
7
1
2
[ "A174344", "A274923", "A316667", "A328909", "A328929", "A358150", "A358278" ]
null
Scott R. Shannon and Eric Angelini, Nov 08 2022
2022-11-10T07:40:52
oeisdata/seq/A358/A358278.seq
ff01af98d89c2dacfe12e0d4c42c9659
A358279
a(n) = Sum_{d|n} (d-1)! * d^(n/d).
[ "1", "3", "7", "29", "121", "747", "5041", "40433", "362935", "3629433", "39916801", "479006531", "6227020801", "87178326609", "1307674371487", "20922790212353", "355687428096001", "6402373709021811", "121645100408832001", "2432902008212950169", "51090942171709691335", "1124000727778046766849" ]
[ "nonn", "easy" ]
17
1
2
[ "A038507", "A062363", "A078308", "A217576", "A321521", "A358279", "A358280" ]
null
Seiichi Manyama, Nov 08 2022
2023-08-30T02:00:43
oeisdata/seq/A358/A358279.seq
e3ce422b04364170633a236293156b3d
A358280
a(n) = Sum_{d|n} (d-1)!.
[ "1", "2", "3", "8", "25", "124", "721", "5048", "40323", "362906", "3628801", "39916930", "479001601", "6227021522", "87178291227", "1307674373048", "20922789888001", "355687428136444", "6402373705728001", "121645100409194912", "2432902008176640723", "51090942171713068802", "1124000727777607680001" ]
[ "nonn", "easy" ]
19
1
2
[ "A038507", "A062363", "A321875", "A358279", "A358280" ]
null
Seiichi Manyama, Nov 08 2022
2023-08-30T02:00:50
oeisdata/seq/A358/A358280.seq
2ed6e31e63509fa25d9a1fc4baa959f0
A358281
Number of connected cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes.
[ "1", "1", "1", "1", "4", "3", "15", "7", "81", "25", "469", "111", "3132", "588" ]
[ "nonn", "more" ]
10
2
5
[ "A002851", "A358281" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T13:59:49
oeisdata/seq/A358/A358281.seq
891583faf46cb5df885f8ecb37885669
A358282
Number of connected bipartite cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class.
[ "0", "1", "0", "2", "1", "6", "4", "24", "28", "140", "244", "1026" ]
[ "nonn", "more" ]
10
3
4
[ "A006823", "A358282" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T13:59:54
oeisdata/seq/A358/A358282.seq
ca2a369ee697a48f18ea3eeabc1c5cdf
A358283
Number of connected bipartite cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes.
[ "1", "1", "1", "1", "3", "2", "7", "13", "25", "67", "111", "453", "588", "3112", "3469", "22832" ]
[ "nonn", "more" ]
4
3
5
[ "A006823", "A358283" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T15:11:42
oeisdata/seq/A358/A358283.seq
01829fb7d9e44588e3f0ae9dfdec992a
A358284
Number of connected planar cubic graphs with 2*n nodes and zero edge-Kempe equivalence classes.
[ "0", "0", "0", "1", "3", "19", "98", "583", "3641", "24584", "174967" ]
[ "nonn", "more" ]
9
2
5
[ "A005964", "A358284" ]
null
N. J. A. Sloane, Nov 08 2022
2024-03-12T17:50:15
oeisdata/seq/A358/A358284.seq
717a81bca27a5aca088458f9aeb88645
A358285
Number of connected planar cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class.
[ "1", "1", "1", "8", "28", "111", "556", "3108", "19368", "128811", "897475" ]
[ "nonn", "more" ]
5
2
4
[ "A005964", "A358285" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T15:33:34
oeisdata/seq/A358/A358285.seq
11dd97bd2883e374277c3f9680ceb9cc
A358286
Number of connected planar cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes.
[ "1", "1", "1", "8", "1", "3", "27", "1", "1", "1", "7", "42", "1", "2" ]
[ "nonn", "more" ]
5
2
4
[ "A005964", "A358286" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T15:38:40
oeisdata/seq/A358/A358286.seq
5bc875db27313b9fcbac7fd4e93edfe0
A358287
Number of 3-connected planar cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class.
[ "1", "1", "1", "1", "13", "47", "210", "1096", "6373", "39860", "260293", "1753836" ]
[ "nonn", "more" ]
7
2
5
[ "A000109", "A358287" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T15:48:53
oeisdata/seq/A358/A358287.seq
76263a0273e9d7ab423c1a399f21834c
A358288
Number of 3-connected planer cubic graphs with 2*n nodes and the maximum number of edge-Kempe equivalence classes.
[ "1", "1", "1", "1", "1", "3", "23", "1", "1", "1", "6", "31", "1", "2", "55", "1", "1", "1" ]
[ "nonn", "more" ]
7
2
6
[ "A000109", "A358288" ]
null
N. J. A. Sloane, Nov 08 2022
2022-11-08T15:52:38
oeisdata/seq/A358/A358288.seq
e9c5601c6ce58e3332ded0f1cac96919
A358289
Generalized Gerrymander sequence: number of ordered ways to divide an n X n square into two connected regions, both of area n^2/2 if n is even, or of areas (n^2-1)/2 and (n^2+1)/2 if n is odd.
[ "0", "4", "16", "140", "2804", "161036", "27803749", "14314228378", "21838347160809", "99704315229167288", "1367135978051264146578", "56578717186086829451888706", "7065692298178203128922479762418", "2670113158846160742372913777087464324", "3052313665715695874527667027409186333152556" ]
[ "nonn" ]
33
1
2
[ "A348456", "A358289" ]
null
N. J. A. Sloane, Nov 25 2022
2022-11-29T01:34:07
oeisdata/seq/A358/A358289.seq
f39c67b21681a5c9d677cdd935d952dd
A358290
Erroneous version of A191783.
[ "1", "2", "3", "5", "6", "12", "61" ]
[ "dead" ]
5
1
2
[ "A191783", "A358290" ]
null
null
2022-11-30T07:46:23
oeisdata/seq/A358/A358290.seq
e781a8b6f6bb46fa3cbb87fa3395e38c
A358291
a(n) = smallest k not already in the sequence such that OEIS entry Ak contains n.
[ "1", "2", "3", "5", "6", "8", "9", "15", "10", "11", "13", "19", "17", "18", "14", "26", "16", "21", "20", "27", "22", "25", "37", "28", "56", "62", "47", "36", "48", "32", "29", "40", "61", "51", "44", "69", "24", "59", "113", "46", "33", "52", "41", "57", "73", "70", "68", "55", "80", "134", "53", "115", "93", "49", "50", "45", "78", "98", "66", "54", "31", "43", "64", "83", "79", "94", "84" ]
[ "nonn", "dumb", "less" ]
26
0
2
[ "A051070", "A053169", "A053873", "A358291" ]
null
N. J. A. Sloane, Nov 30 2022
2022-12-27T03:27:16
oeisdata/seq/A358/A358291.seq
2bb5d6c2796f911e4804286522f3fe67
A358292
Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=0, k>=0.
[ "0", "0", "0", "0", "4", "0", "0", "72", "72", "0", "0", "432", "1024", "432", "0", "0", "1600", "5400", "5400", "1600", "0", "0", "4500", "18432", "26244", "18432", "4500", "0", "0", "10584", "49000", "84672", "84672", "49000", "10584", "0", "0", "21952", "110592", "216000", "262144", "216000", "110592", "21952", "0", "0", "41472", "222264", "472392", "648000", "648000", "472392", "222264", "41472", "0" ]
[ "nonn", "tabl" ]
15
0
5
[ "A358292", "A358293", "A358295" ]
null
N. J. A. Sloane, Dec 03 2022
2023-03-19T20:11:33
oeisdata/seq/A358/A358292.seq
0bf999b077d9862ba515fdd872c4b574
A358293
Array read by antidiagonals: T(n,k) = n^3*k*3*(n+k)^2, n>=1, k>=1.
[ "4", "72", "72", "432", "1024", "432", "1600", "5400", "5400", "1600", "4500", "18432", "26244", "18432", "4500", "10584", "49000", "84672", "84672", "49000", "10584", "21952", "110592", "216000", "262144", "216000", "110592", "21952", "41472", "222264", "472392", "648000", "648000", "472392", "222264", "41472", "72900", "409600", "926100", "1382400", "1562500", "1382400", "926100", "409600", "72900" ]
[ "nonn", "tabl" ]
13
1
1
[ "A358292", "A358293", "A358295" ]
null
N. J. A. Sloane, Dec 03 2022
2023-03-19T20:12:38
oeisdata/seq/A358/A358293.seq
ea8efb6f2270ebae7a43ba04c02c6e90
A358294
Triangle read by rows: T(n,k) = n^3*k*3*(n+k)^2, n>=0, 0 <= k <= n.
[ "0", "0", "4", "0", "72", "1024", "0", "432", "5400", "26244", "0", "1600", "18432", "84672", "262144", "0", "4500", "49000", "216000", "648000", "1562500", "0", "10584", "110592", "472392", "1382400", "3267000", "6718464", "0", "21952", "222264", "926100", "2656192", "6174000", "12520872", "23059204", "0", "41472", "409600", "1672704", "4718592", "10816000", "21676032", "39513600", "67108864" ]
[ "nonn", "tabl" ]
13
0
3
[ "A358292", "A358294", "A358295" ]
null
N. J. A. Sloane, Dec 03 2022
2023-03-19T20:12:59
oeisdata/seq/A358/A358294.seq
f5ddcd9024e8b06436be7924cb6de036
A358295
Triangle read by rows: T(n,k) = n^3*k*3*(n+k)^2, n>=1, 1 <= k <= n.
[ "4", "72", "1024", "432", "5400", "26244", "1600", "18432", "84672", "262144", "4500", "49000", "216000", "648000", "1562500", "10584", "110592", "472392", "1382400", "3267000", "6718464", "21952", "222264", "926100", "2656192", "6174000", "12520872", "23059204", "41472", "409600", "1672704", "4718592", "10816000", "21676032", "39513600", "67108864" ]
[ "nonn", "tabl" ]
8
1
1
[ "A358292", "A358294", "A358295" ]
null
N. J. A. Sloane, Dec 03 2022
2023-03-19T20:11:09
oeisdata/seq/A358/A358295.seq
1a320d66b8a595e41978a3ef73e9b751
A358296
Row 3 of the array in A115009.
[ "2", "13", "28", "49", "74", "105", "140", "181", "226", "277", "332", "393", "458", "529", "604", "685", "770", "861", "956", "1057", "1162", "1273", "1388", "1509", "1634", "1765", "1900", "2041", "2186", "2337", "2492", "2653", "2818", "2989", "3164", "3345", "3530", "3721", "3916", "4117", "4322", "4533", "4748", "4969", "5194", "5425", "5660", "5901", "6146", "6397", "6652", "6913", "7178", "7449", "7724", "8005", "8290", "8581", "8876", "9177" ]
[ "nonn" ]
3
1
1
[ "A115009", "A358296" ]
null
N. J. A. Sloane, Dec 05 2022
2022-12-05T20:33:17
oeisdata/seq/A358/A358296.seq
fda7cb48746273cda44c07fe5f0d25d6
A358297
Bisection of main diagonal of A115009.
[ "6", "86", "418", "1282", "3106", "6394", "11822", "20074", "32086", "48934", "71554", "101250", "139350", "187254", "246690", "319346", "407302", "511714", "634726", "779074", "946622", "1140238", "1362082", "1614994", "1901930", "2224654", "2587402", "2992414", "3441754", "3941074", "4493414", "5102618", "5770646", "6501286", "7300578", "8170130", "9117486", "10145578", "11256062", "12454678", "13746910", "15140014", "16634530" ]
[ "nonn" ]
3
1
1
[ "A114043", "A115009", "A141255", "A358297" ]
null
N. J. A. Sloane, Dec 05 2022
2022-12-05T20:59:49
oeisdata/seq/A358/A358297.seq
98485c391334d7668e20db567d53f03a
A358298
Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of lines defining the Farey diagram Farey(n,k) of order (n,k).
[ "2", "3", "3", "4", "6", "4", "6", "11", "11", "6", "8", "19", "20", "19", "8", "12", "29", "36", "36", "29", "12", "14", "43", "52", "60", "52", "43", "14", "20", "57", "78", "88", "88", "78", "57", "20", "24", "77", "100", "128", "124", "128", "100", "77", "24", "30", "97", "136", "162", "180", "180", "162", "136", "97", "30", "34", "121", "166", "216", "224", "252", "224", "216", "166", "121", "34" ]
[ "nonn", "tabl" ]
34
0
1
[ "A225531", "A358298", "A358299", "A358300", "A358301", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2023-04-03T09:31:15
oeisdata/seq/A358/A358298.seq
09f59bc911d9d882d4b974d1c56e7d37
A358299
Triangle read by antidiagonals: T(n,k) (n>=0, 0 <= k <= n) = number of lines defining the Farey diagram of order (n,k).
[ "2", "3", "6", "4", "11", "20", "6", "19", "36", "60", "8", "29", "52", "88", "124", "12", "43", "78", "128", "180", "252", "14", "57", "100", "162", "224", "316", "388", "20", "77", "136", "216", "298", "412", "508", "652", "24", "97", "166", "266", "360", "498", "608", "780", "924", "30", "121", "210", "326", "444", "608", "738", "940", "1116", "1332", "34", "145", "246", "386", "518", "706", "852", "1086", "1280", "1532", "1748" ]
[ "nonn", "tabl" ]
19
0
1
[ "A358298", "A358299", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358299.seq
0f2acf419cf526cea525c129c937289d
A358300
Row 1 of array in A358298.
[ "3", "6", "11", "19", "29", "43", "57", "77", "97", "121", "145", "177", "205", "243", "277", "315", "355", "405", "447", "503", "551", "605", "659", "727", "783", "853", "917", "989", "1057", "1143", "1211", "1303", "1383", "1469", "1553", "1647", "1731", "1841", "1935", "2037", "2133", "2255", "2351", "2479", "2587", "2701", "2815", "2955", "3067", "3207", "3327", "3461" ]
[ "nonn" ]
9
0
1
[ "A358298", "A358300", "A358307", "A358882", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 06 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358300.seq
d4b28eaecfef31a53d02a28414f89c18