sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358001
Numbers whose number of divisors is coprime to 210.
[ "1", "1024", "4096", "59049", "65536", "262144", "531441", "4194304", "9765625", "43046721", "60466176", "241864704", "244140625", "268435456", "282475249", "387420489", "544195584", "1073741824", "2176782336", "3869835264", "10000000000", "13841287201", "15479341056", "25937424601", "31381059609", "34828517376" ]
[ "nonn" ]
34
1
2
[ "A000005", "A000290", "A001694", "A008364", "A336590", "A352475", "A354178", "A358001" ]
null
Michael De Vlieger, Dec 03 2022
2022-12-08T08:56:17
oeisdata/seq/A358/A358001.seq
67130b3ae6c6da7097051f50165964ab
A358002
Numbers k such that one of k-A001414(k) and k+A001414(k) is a prime and the other is the square of a prime.
[ "135", "936", "1431", "3510", "5005", "5106", "5278", "9471", "10648", "10659", "22126", "26724", "27420", "27840", "37014", "37149", "39321", "40311", "54730", "59031", "62830", "87186", "124914", "128616", "129411", "133494", "187705", "196078", "208285", "209451", "212695", "309885", "322191", "325465", "375513", "410515", "412476", "433041", "459844", "466620", "595833", "622083" ]
[ "nonn" ]
17
1
1
[ "A001414", "A050703", "A050704", "A075254", "A358002" ]
null
J. M. Bergot and Robert Israel, Oct 23 2022
2022-10-25T20:04:57
oeisdata/seq/A358/A358002.seq
dc1aaf8bee88ca0043c63f3ab7a39f12
A358003
Least composite number k such that there are n digits in the intersection of the sets of digits of k and of the juxtaposition of prime factors of k (apart from multiplicity).
[ "4", "12", "95", "132", "1972", "12305", "104392", "1026934", "10298746", "102367895", "1023485967" ]
[ "nonn", "base", "fini", "full" ]
29
0
1
null
null
Jean-Marc Rebert, Oct 24 2022
2022-10-26T07:59:11
oeisdata/seq/A358/A358003.seq
c66702f666e1edb22cb6facd02a8bae8
A358004
Sum of the first n prime numbers with each term raised to the power of the corresponding n-th row of Pascal's triangle.
[ "2", "5", "16", "161", "18120", "292402183", "83969544989433334", "2810244063625364115255545874032279213" ]
[ "nonn" ]
12
1
1
[ "A000040", "A007318", "A007443", "A358004" ]
null
Philip Trett, Oct 24 2022
2022-11-22T22:49:22
oeisdata/seq/A358/A358004.seq
f7963730b502b105f162aa7ab9d59ab8
A358005
Number of partitions of n into 5 distinct positive Fibonacci numbers (with a single type of 1).
[ "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "1", "1", "2", "1", "3", "2", "2", "2", "1", "2", "2", "2", "2", "1", "2", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "2", "2", "3", "1", "2", "2", "1", "3", "2", "2", "2", "1", "2" ]
[ "nonn" ]
9
19
27
[ "A000045", "A000119", "A319398", "A357690", "A357722", "A357731", "A357732", "A358005", "A358006", "A358007", "A358008" ]
null
Ilya Gutkovskiy, Oct 24 2022
2023-01-06T10:42:15
oeisdata/seq/A358/A358005.seq
ab42b121f30001da46ba3b5a45381f47
A358006
Number of partitions of n into 6 distinct positive Fibonacci numbers (with a single type of 1).
[ "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "1", "0", "1", "1", "1", "2", "0", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "2", "0", "1", "1", "1", "2", "1", "1", "3", "1", "3", "2", "2" ]
[ "nonn" ]
5
32
43
[ "A000045", "A000119", "A319399", "A357691", "A357722", "A357731", "A357732", "A358005", "A358006", "A358007", "A358008" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-24T15:15:02
oeisdata/seq/A358/A358006.seq
385e0607fc5d1fada0c4e916bae09144
A358007
Number of partitions of n into 7 distinct positive Fibonacci numbers (with a single type of 1).
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "2", "0", "0", "1", "0", "1", "1", "1", "2", "0", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1" ]
[ "nonn" ]
5
53
69
[ "A000045", "A000119", "A319400", "A357694", "A357722", "A357731", "A357732", "A358005", "A358006", "A358007", "A358008" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-24T15:15:26
oeisdata/seq/A358/A358007.seq
2d00c9b9c7219a71f96027edc72aae92
A358008
Number of partitions of n into 8 distinct positive Fibonacci numbers (with a single type of 1).
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0" ]
[ "nonn" ]
14
87
null
[ "A000045", "A000119", "A319401", "A357716", "A357722", "A357731", "A357732", "A358005", "A358006", "A358007", "A358008" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-25T01:38:24
oeisdata/seq/A358/A358008.seq
e56bf1132820f2a122c7627940ae55bc
A358009
Number of partitions of n into at most 4 distinct prime parts.
[ "1", "0", "1", "1", "0", "2", "0", "2", "1", "1", "2", "1", "2", "2", "2", "2", "3", "2", "4", "3", "4", "4", "4", "5", "5", "5", "6", "5", "5", "7", "5", "9", "7", "9", "7", "9", "9", "11", "9", "12", "8", "13", "11", "14", "13", "13", "12", "16", "14", "18", "17", "16", "17", "20", "17", "23", "19", "21", "19", "24", "23", "28", "24", "26", "25", "26", "30", "30", "29", "29", "29", "32", "36", "37", "36", "32", "38", "35", "43", "41", "43", "20" ]
[ "nonn" ]
6
0
6
[ "A000040", "A000586", "A219180", "A219198", "A223893", "A347550", "A347578", "A347586", "A347741", "A358009", "A358010", "A358011" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-24T15:16:22
oeisdata/seq/A358/A358009.seq
0e21419037ae405bf9c84138ea6ca553
A358010
Number of partitions of n into at most 5 distinct prime parts.
[ "1", "0", "1", "1", "0", "2", "0", "2", "1", "1", "2", "1", "2", "2", "2", "2", "3", "2", "4", "3", "4", "4", "4", "5", "5", "5", "6", "5", "6", "7", "6", "9", "7", "9", "9", "9", "11", "11", "11", "13", "12", "13", "15", "15", "17", "15", "18", "17", "20", "20", "23", "20", "25", "22", "27", "28", "28", "27", "30", "29", "36", "34", "38", "36", "41", "35", "48", "41", "48", "44", "50", "46", "58", "53", "61", "54", "64", "55", "72", "66", "74" ]
[ "nonn" ]
5
0
6
[ "A000040", "A000586", "A219180", "A219199", "A223893", "A347550", "A347587", "A347609", "A347742", "A358009", "A358010", "A358011" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-24T15:17:07
oeisdata/seq/A358/A358010.seq
e9fb6e446191befdac9ab397a2b747bd
A358011
Number of partitions of n into at most 6 distinct prime parts.
[ "1", "0", "1", "1", "0", "2", "0", "2", "1", "1", "2", "1", "2", "2", "2", "2", "3", "2", "4", "3", "4", "4", "4", "5", "5", "5", "6", "5", "6", "7", "6", "9", "7", "9", "9", "9", "11", "11", "11", "13", "12", "14", "15", "15", "17", "16", "18", "19", "20", "21", "23", "22", "25", "26", "27", "30", "29", "32", "31", "35", "36", "39", "40", "42", "42", "45", "49", "50", "52", "55", "53", "61", "61", "67", "67", "70", "70", "77", "77", "86", "84" ]
[ "nonn" ]
6
0
6
[ "A000040", "A000586", "A219180", "A219200", "A223893", "A347550", "A347588", "A347610", "A347743", "A358009", "A358010", "A358011" ]
null
Ilya Gutkovskiy, Oct 24 2022
2022-10-24T15:15:18
oeisdata/seq/A358/A358011.seq
62c0b8ba1f54f61cc406b79315a5596e
A358012
Minimal number of coins needed to pay n cents using coins of denominations 1 and 5 cents.
[ "0", "1", "2", "3", "4", "1", "2", "3", "4", "5", "2", "3", "4", "5", "6", "3", "4", "5", "6", "7", "4", "5", "6", "7", "8", "5", "6", "7", "8", "9", "6", "7", "8", "9", "10", "7", "8", "9", "10", "11", "8", "9", "10", "11", "12", "9", "10", "11", "12", "13", "10", "11", "12", "13", "14", "11", "12", "13", "14", "15", "12", "13", "14", "15", "16", "13", "14", "15", "16", "17", "14", "15", "16", "17", "18", "15", "16" ]
[ "nonn", "easy" ]
34
0
3
[ "A002266", "A010874", "A053344", "A076314", "A358012" ]
null
Sandra Snan, Oct 24 2022
2022-11-08T08:07:08
oeisdata/seq/A358/A358012.seq
16477ea5a62fbce0228db0abcdf9b47a
A358013
Expansion of e.g.f. 1/(1 - x^2 * (exp(x) - 1)).
[ "1", "0", "0", "6", "12", "20", "750", "5082", "23576", "453672", "5755770", "50894030", "841270452", "14694142476", "201442729670", "3552604015170", "73814245552560", "1369932831933392", "27860865121662066", "655240785723048726", "15052226249248287500", "357713461766745539700", "9416426612423343023742" ]
[ "nonn" ]
14
0
4
[ "A052848", "A240989", "A351503", "A353998", "A358013", "A358014" ]
null
Seiichi Manyama, Oct 24 2022
2022-10-24T14:14:15
oeisdata/seq/A358/A358013.seq
db40e61759316fb1cf031a90bee13378
A358014
Expansion of e.g.f. 1/(1 - x^3 * (exp(x) - 1)).
[ "1", "0", "0", "0", "24", "60", "120", "210", "40656", "363384", "2117520", "9980190", "520250280", "9496208436", "109522054824", "982593614730", "28426015541280", "762523155318000", "14192088961120416", "204618562767970614", "4906638448867994040", "154037798077765359660", "4000484484370905087480" ]
[ "nonn" ]
15
0
5
[ "A052848", "A292891", "A351504", "A353999", "A358013", "A358014" ]
null
Seiichi Manyama, Oct 24 2022
2024-08-26T14:45:15
oeisdata/seq/A358/A358014.seq
c59142d893dc33a9be44e4a8accbef5b
A358015
a(n) = DedekindPsi(n*2^(-k))*2^(j-1) where k = valuation(n, 2) and j = k if 4 divides n and otherwise 0.
[ "2", "2", "3", "2", "4", "4", "6", "3", "6", "8", "7", "4", "12", "8", "9", "6", "10", "12", "16", "6", "12", "16", "15", "7", "18", "16", "15", "12", "16", "16", "24", "9", "24", "24", "19", "10", "28", "24", "21", "16", "22", "24", "36", "12", "24", "32", "28", "15", "36", "28", "27", "18", "36", "32", "40", "15", "30", "48", "31", "16", "48", "32", "42", "24", "34", "36", "48", "24", "36", "48", "37", "19", "60" ]
[ "nonn" ]
47
3
1
[ "A000265", "A001615", "A003586", "A006519", "A007814", "A358015" ]
null
F Cellarosi, Oct 24 2022
2023-12-09T07:07:30
oeisdata/seq/A358/A358015.seq
7808385a491d2565b95edf0f37300eb2
A358016
a(n) is the largest k <= n-2 such that k^2 == 1 (mod n).
[ "1", "1", "1", "1", "1", "5", "1", "1", "1", "7", "1", "1", "11", "9", "1", "1", "1", "11", "13", "1", "1", "19", "1", "1", "1", "15", "1", "19", "1", "17", "23", "1", "29", "19", "1", "1", "25", "31", "1", "29", "1", "23", "26", "1", "1", "41", "1", "1", "35", "27", "1", "1", "34", "43", "37", "1", "1", "49", "1", "1", "55", "33", "51", "43", "1", "35", "47", "41", "1", "55", "1", "1", "49", "39", "43", "53" ]
[ "nonn" ]
55
3
6
[ "A033948", "A060594", "A228179", "A277777", "A358016" ]
null
Darío Clavijo, Oct 24 2022
2023-09-01T14:11:50
oeisdata/seq/A358/A358016.seq
649a78a7d2fba5067bdc7ac071eab081
A358017
Numbers m such that the factorizations of m..m+8 have the same number of primes (including multiplicities).
[ "3405122", "12788342", "17521382", "21991382", "22715270", "22841702", "22914722", "23553171", "27451669", "27793334", "49361762", "49799889", "49799890", "50727123", "51359029", "52154450", "53758502", "57379970", "60975410", "60975411", "75638644", "76502870", "76724630", "85432322" ]
[ "nonn" ]
8
1
1
[ "A045920", "A045939", "A045940", "A045941", "A045942", "A123103", "A123201", "A358017", "A358018", "A358019" ]
null
Charles R Greathouse IV, Oct 24 2022
2023-02-11T22:40:37
oeisdata/seq/A358/A358017.seq
ad2cfcfdb531950026a8297f93ae7e95
A358018
Numbers m such that the factorizations of m..m+9 have the same number of primes (including multiplicities).
[ "49799889", "60975410", "92017202", "202536181", "202536182", "249221990", "284007602", "314623105", "326857970", "331212422", "405263521", "421980949", "476360643", "506580949", "520309427", "532896662", "572636822", "666966962", "703401061", "749908502", "816533270" ]
[ "nonn" ]
7
1
1
[ "A045920", "A045939", "A045940", "A045941", "A045942", "A123103", "A123201", "A358017", "A358018", "A358019" ]
null
Charles R Greathouse IV, Oct 24 2022
2023-02-11T22:40:41
oeisdata/seq/A358/A358018.seq
92f02fad8a7179d4a2081e0734cd6098
A358019
Numbers m such that the factorizations of m..m+10 have the same number of primes (including multiplicities).
[ "202536181", "913535284", "1124342785", "1443929905", "1587749041", "1688485665", "1733574769", "2090053141", "2308638625", "2403102228", "2751673525", "2841766801", "2898584161", "2936217602", "3195380868", "3195380869", "3324630612", "3423884341", "3520752468" ]
[ "nonn" ]
14
1
1
[ "A045920", "A045939", "A045940", "A045941", "A045942", "A123103", "A123201", "A358017", "A358018", "A358019" ]
null
Charles R Greathouse IV, Oct 24 2022
2024-06-28T09:29:22
oeisdata/seq/A358/A358019.seq
6bea176d5afd2b25c54d37d837a99be3
A358020
Least prime number > prime(n) (n >= 5) whose set of decimal digits coincides with the set of decimal digits of prime(n), or -1 if no such prime exists.
[ "1111111111111111111", "31", "71", "191", "223", "229", "113", "73", "4111", "433", "4447", "353", "599", "661", "677", "1117", "337", "97", "383", "8999", "797", "10111", "1013", "701", "1009", "131", "271", "311", "173", "193", "419", "1151", "571", "613", "617", "317", "197", "811", "199", "1193", "719", "911", "2111", "233", "277", "929", "2333", "293", "421", "521", "2557" ]
[ "nonn", "base" ]
22
5
1
[ "A000040", "A004022", "A004023", "A020451", "A020455", "A050288", "A166681", "A357096", "A358020" ]
null
Jean-Marc Rebert, Oct 24 2022
2022-10-25T20:05:21
oeisdata/seq/A358/A358020.seq
8b0fb31808563d7794f4bd3194242a68
A358021
Lexicographically earliest sequence of distinct nonnegative integers on a square spiral such that no number shares a digit with any of its eight surrounding neighbors.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "30", "44", "10", "55", "11", "20", "13", "66", "12", "33", "14", "22", "15", "23", "16", "24", "57", "18", "25", "36", "27", "48", "26", "34", "56", "47", "28", "50", "49", "58", "60", "29", "35", "67", "38", "40", "77", "59", "37", "19", "68", "39", "46", "70", "41", "80", "31", "65", "90", "17", "88", "21", "93", "51", "43", "69", "71", "32", "111", "73", "81", "64", "72", "89", "42", "91" ]
[ "nonn", "base", "fini" ]
12
0
3
[ "A343530", "A344325", "A344367", "A354111", "A358021", "A358048" ]
null
Scott R. Shannon and Eric Angelini, Oct 24 2022
2022-10-27T10:13:58
oeisdata/seq/A358/A358021.seq
fe78e488c9690683d9feab867914cb0a
A358022
Least odd number m such that m*2^n is an amicable number, and -1 if no such number exists.
[ "12285", "605", "55", "779", "1081", "37", "119957", "73153", "2927269", "239", "25329329", "7230607", "964119281", "66445153", "7613527", "18431675687", "328796066369", "264003743", "11298797322497", "59592560831", "949755039781", "2759891672513" ]
[ "nonn", "more" ]
27
0
1
[ "A001065", "A002025", "A259180", "A262625", "A358022", "A358320" ]
null
Michel Marcus, Nov 17 2022
2022-11-17T16:44:09
oeisdata/seq/A358/A358022.seq
4190b16afb703981e393c7368e51ecce
A358023
Number of partitions of n into at most 2 distinct squarefree parts.
[ "1", "1", "1", "2", "1", "2", "2", "3", "3", "2", "2", "3", "3", "4", "3", "4", "5", "5", "4", "4", "5", "5", "5", "5", "7", "5", "5", "5", "6", "6", "5", "6", "8", "7", "7", "7", "11", "8", "7", "8", "11", "9", "8", "10", "12", "10", "8", "9", "13", "10", "8", "8", "13", "11", "10", "8", "13", "11", "11", "10", "14", "12", "11", "11", "15", "12", "11", "12", "17", "13", "13", "12", "21", "14", "14", "13", "19", "15", "13", "15", "20" ]
[ "nonn" ]
5
0
4
[ "A005117", "A087188", "A098236", "A347648", "A347777", "A358023", "A358024", "A358025" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:43
oeisdata/seq/A358/A358023.seq
0beec12800fe0d04c2c0937a8f545606
A358024
Number of partitions of n into at most 3 distinct squarefree parts.
[ "1", "1", "1", "2", "1", "2", "3", "3", "4", "4", "5", "5", "5", "7", "8", "8", "9", "10", "13", "12", "13", "14", "17", "16", "18", "17", "21", "20", "21", "23", "26", "25", "26", "27", "32", "31", "33", "36", "40", "40", "39", "42", "48", "47", "47", "50", "58", "56", "55", "58", "66", "64", "61", "67", "75", "74", "70", "74", "84", "83", "79", "82", "93", "91", "89", "93", "103", "102", "97", "105", "115" ]
[ "nonn" ]
5
0
4
[ "A005117", "A087188", "A307835", "A347649", "A347778", "A358023", "A358024", "A358025" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:52
oeisdata/seq/A358/A358024.seq
899e0a626ab3f6c5331079c7c12c40d2
A358025
Number of partitions of n into at most 4 distinct squarefree parts.
[ "1", "1", "1", "2", "1", "2", "3", "3", "4", "4", "5", "6", "6", "8", "9", "10", "13", "13", "15", "17", "20", "22", "24", "27", "31", "32", "34", "37", "41", "46", "47", "53", "59", "61", "64", "71", "77", "83", "84", "95", "102", "108", "110", "122", "131", "137", "139", "154", "165", "173", "175", "191", "205", "215", "215", "233", "250", "260", "261", "282", "299", "313", "310", "332", "353", "368" ]
[ "nonn" ]
5
0
4
[ "A005117", "A087188", "A341073", "A347586", "A347655", "A347779", "A358023", "A358024", "A358025" ]
null
Ilya Gutkovskiy, Oct 25 2022
2022-11-19T21:15:59
oeisdata/seq/A358/A358025.seq
1f1a72322bd3b7c6aa2042fc134ab78e
A358026
Let G(n) = gcd(a(n-2),a(n-1)), a(1)=1, a(2)=2, a(3)=3. Thereafter if G(n) = 1, a(n) is the least novel m sharing a divisor with both a(n-2) and a(n-1). If G(n) > 1 and every prime divisor of a(n-1) also divides a(n-2), a(n) is the least m prime to both a(n-1) and a(n-2). Otherwise a(n) is the least novel multiple of any prime divisor of a(n-1) which does not divide a(n-2).
[ "1", "2", "3", "6", "4", "5", "10", "8", "7", "14", "12", "9", "11", "33", "15", "20", "16", "13", "26", "18", "21", "28", "22", "44", "17", "34", "24", "27", "19", "57", "30", "25", "23", "115", "35", "42", "32", "29", "58", "36", "39", "52", "38", "76", "31", "62", "40", "45", "48", "46", "69", "51", "68", "50", "55", "66", "54", "37", "74", "56", "49", "41", "287", "63", "60", "64", "43" ]
[ "nonn" ]
12
1
2
[ "A064413", "A336957", "A352187", "A357963", "A358026" ]
null
David James Sycamore, Oct 25 2022
2022-11-14T00:34:53
oeisdata/seq/A358/A358026.seq
f255bff8101b06e557e6d3eaa21b3845
A358027
Expansion of g.f.: (1 + x - 2*x^2 + 2*x^4)/((1-x)*(1-3*x^2)).
[ "1", "2", "3", "6", "11", "20", "35", "62", "107", "188", "323", "566", "971", "1700", "2915", "5102", "8747", "15308", "26243", "45926", "78731", "137780", "236195", "413342", "708587", "1240028", "2125763", "3720086", "6377291", "11160260", "19131875", "33480782", "57395627" ]
[ "easy", "nonn" ]
33
0
2
[ "A052993", "A062318", "A164123", "A254006", "A358027" ]
null
G. C. Greubel, Oct 31 2022
2025-03-24T04:11:35
oeisdata/seq/A358/A358027.seq
68ed6ab652607e87428ee26d39c0adfc
A358028
Primes p = prime(9*t+1) such that the 9 consecutive primes prime(9*t+1) .. prime(9*t+9) arranged in a 3 X 3 array have at least 2 equal sums along the rows, columns or main diagonals.
[ "2", "29", "67", "107", "157", "257", "311", "367", "541", "599", "709", "769", "829", "967", "1021", "1549", "1741", "1811", "1879", "1973", "2609", "2677", "3019", "3541", "3677", "4051", "4217", "4271", "4517", "4597", "4663", "4931", "5227", "5303", "5399", "5449", "5623", "5683", "5839", "6079", "6229", "6301", "6361", "6451", "6949", "7253", "7351", "7477", "7537", "7589", "7673" ]
[ "nonn" ]
66
1
1
[ "A031918", "A105093", "A358028" ]
null
Saish S. Kambali, Nov 12 2022
2024-10-06T12:24:21
oeisdata/seq/A358/A358028.seq
b30a1b10154ca9344ad1cbfae55aa1a1
A358029
Decimal expansion of the ratio between step sizes of the diatonic and chromatic semitones produced by a circle of 12 perfect fifths in Pythagorean tuning.
[ "1", "2", "6", "0", "0", "1", "6", "7", "5", "2", "6", "7", "0", "8", "2", "4", "5", "3", "5", "9", "3", "1", "2", "7", "6", "1", "2", "2", "6", "0", "3", "9", "2", "4", "2", "3", "3", "7", "1", "8", "1", "1", "5", "5", "7", "9", "2", "3", "2", "7", "6", "7", "8", "3", "3", "4", "1", "0", "6", "5", "2", "0", "1", "6", "1", "6", "2", "0", "8", "7", "4", "8", "0", "0", "8", "3", "1", "2", "2", "7", "8", "4", "6", "8", "8", "1", "4" ]
[ "nonn", "cons" ]
32
1
2
[ "A131071", "A221363", "A229943", "A229948", "A257811", "A258054", "A358029" ]
null
Eliora Ben-Gurion, Oct 25 2022
2023-06-21T06:37:49
oeisdata/seq/A358/A358029.seq
9e527fc8487ccff7c9226325c114d4ac
A358030
Decimal expansion of the constant Sum_{j>=0} j!!/prime(j)#, where prime(j)# indicates the j-th primorial number and j!! is the double factorial of j.
[ "1", "9", "7", "9", "7", "7", "0", "6", "3", "3", "0", "6", "8", "0", "2", "8", "6", "8", "1", "9", "7", "0", "0", "0", "6", "0", "7", "5", "4", "1", "5", "6", "5", "4", "5", "0", "0", "6", "9", "3", "1", "1", "9", "3", "1", "7", "9", "8", "3", "8", "7", "9", "5", "6", "2", "4", "2", "0", "6", "4", "0", "0", "3", "4", "6", "5", "4", "7", "6", "1", "5", "6", "3", "1", "4", "5", "1", "2", "5", "0", "1", "0", "2", "0", "2", "2", "6" ]
[ "cons", "easy", "nonn" ]
18
1
2
[ "A002110", "A006882", "A357969", "A358030" ]
null
Marco Ripà, Nov 12 2022
2022-12-15T14:22:54
oeisdata/seq/A358/A358030.seq
35317c1efedb6fae2cc143a502755553
A358031
Expansion of e.g.f. (1 - log(1-x))/(1 + log(1-x) * (1 - log(1-x))).
[ "1", "2", "8", "52", "450", "4878", "63474", "963744", "16724016", "326497632", "7082393136", "168995017200", "4399028766192", "124051494462816", "3767315220903072", "122581568808533760", "4254486275273419008", "156890997080103149568", "6125936704495619486976", "252480641031903073955328" ]
[ "nonn" ]
18
0
2
[ "A000557", "A354013", "A354018", "A358031", "A358032" ]
null
Seiichi Manyama, Oct 25 2022
2024-01-25T19:10:09
oeisdata/seq/A358/A358031.seq
c6c3ba5ce9cd6bf93a754c3f449a6304
A358032
Expansion of e.g.f. (1 + log(1+x))/(1 - log(1+x) * (1 + log(1+x))).
[ "1", "2", "4", "16", "66", "438", "2694", "25296", "204576", "2509728", "24912816", "381010320", "4440815472", "82150191264", "1089159690912", "23879423005440", "351430312958208", "9005004020293632", "144184020764472576", "4277182103330660352", "73227226213747521792", "2499666592623881921280" ]
[ "nonn" ]
14
0
2
[ "A000557", "A005444", "A005445", "A358031", "A358032" ]
null
Seiichi Manyama, Oct 25 2022
2022-10-26T12:52:45
oeisdata/seq/A358/A358032.seq
0a8c28f730cdf38d9761002eac37b9e0
A358033
a(1) = 2; a(n) - a(n-1) = A093803(a(n-1)), the largest odd proper divisor of a(n-1).
[ "2", "3", "4", "5", "6", "9", "12", "15", "20", "25", "30", "45", "60", "75", "100", "125", "150", "225", "300", "375", "500", "625", "750", "1125", "1500", "1875", "2500", "3125", "3750", "5625", "7500", "9375", "12500", "15625", "18750", "28125", "37500", "46875", "62500", "78125", "93750", "140625", "187500", "234375", "312500", "390625", "468750" ]
[ "nonn", "easy" ]
35
1
1
[ "A000792", "A027750", "A038754", "A056487", "A093803", "A356639", "A358033" ]
null
Eric Angelini and Gavin Lupo, Oct 25 2022
2022-10-27T12:49:23
oeisdata/seq/A358/A358033.seq
09e2147c0c8eaa3e72999abe893066a8
A358034
Numbers k such that A234575(k,s) = s^2 where s = A007953(k).
[ "1", "113", "313", "331", "512", "1271", "2065", "2137", "2173", "2705", "3291", "3931", "4066", "4913", "5832", "6535", "6553", "6571", "6607", "6625", "6643", "6661", "6715", "6733", "6751", "6805", "6823", "6841", "7715", "13479", "13686", "15289", "15577", "17576", "19449", "19683", "21898", "23969", "49789", "49897", "49969" ]
[ "nonn", "base", "fini", "full" ]
10
1
2
[ "A007953", "A234575", "A358034" ]
null
J. M. Bergot and Robert Israel, Oct 25 2022
2022-10-26T13:40:42
oeisdata/seq/A358/A358034.seq
288eea9a608d79665857eaff04c6dc32
A358035
a(n) = (8*n^3 + 12*n^2 + 4*n - 9)/3.
[ "5", "37", "109", "237", "437", "725", "1117", "1629", "2277", "3077", "4045", "5197", "6549", "8117", "9917", "11965", "14277", "16869", "19757", "22957", "26485", "30357", "34589", "39197", "44197", "49605", "55437", "61709", "68437", "75637", "83325", "91517", "100229", "109477", "119277", "129645", "140597", "152149", "164317" ]
[ "nonn", "easy" ]
25
1
1
[ "A354528", "A358035" ]
null
Sela Fried, Oct 26 2022
2022-11-20T19:18:21
oeisdata/seq/A358/A358035.seq
4504cf53b929e450eda6ca0a4c571895
A358036
Number of n-step self-avoiding walks on a 2D square lattice where the first visited lattice point is directly visible from the last visited lattice point, and were both the visited lattice points and the path between these points are considered when determining the visibility of points.
[ "0", "8", "24", "48", "144", "336", "992", "2344", "6760", "16336", "46432", "113904", "320864", "793136", "2222824", "5524040", "15409704", "38493560", "106895408", "268253720", "742053704", "1869175480", "5154271008", "13022699248", "35816428904", "90722285632", "248960813992", "631978627880", "1730939615552" ]
[ "nonn", "walk" ]
21
1
2
[ "A001411", "A334877", "A336262", "A337353", "A347506", "A347990", "A358036", "A358046" ]
null
Scott R. Shannon, Oct 26 2022
2022-10-30T23:04:12
oeisdata/seq/A358/A358036.seq
b872d2336ce47e56b49a3f2728ba17ac
A358037
a(n) is the number of possible standard CMOS cells with a maximum of n stages.
[ "1", "6", "80", "3434" ]
[ "nonn", "more" ]
18
1
2
null
null
Philipp Gühring, Oct 26 2022
2022-12-15T14:21:53
oeisdata/seq/A358/A358037.seq
6bb639764e6a59e694d71e007ec96569
A358038
Partial sums of the cubefree numbers.
[ "1", "3", "6", "10", "15", "21", "28", "37", "47", "58", "70", "83", "97", "112", "129", "147", "166", "186", "207", "229", "252", "277", "303", "331", "360", "390", "421", "454", "488", "523", "559", "596", "634", "673", "714", "756", "799", "843", "888", "934", "981", "1030", "1080", "1131", "1183", "1236", "1291", "1348", "1406", "1465", "1525", "1586", "1648", "1711" ]
[ "nonn" ]
20
1
2
[ "A002117", "A004709", "A025706", "A025730", "A173143", "A358038" ]
null
Amiram Eldar, Oct 29 2022
2024-01-02T07:45:54
oeisdata/seq/A358/A358038.seq
379f500a57c65424d3c47dbe18eaed3b
A358039
a(n) is the Euler totient function phi applied to the n-th cubefree number.
[ "1", "1", "2", "2", "4", "2", "6", "6", "4", "10", "4", "12", "6", "8", "16", "6", "18", "8", "12", "10", "22", "20", "12", "12", "28", "8", "30", "20", "16", "24", "12", "36", "18", "24", "40", "12", "42", "20", "24", "22", "46", "42", "20", "32", "24", "52", "40", "36", "28", "58", "16", "60", "30", "36", "48", "20", "66", "32", "44", "24", "70", "72", "36", "40", "36", "60", "24", "78", "40" ]
[ "nonn" ]
26
1
3
[ "A000010", "A002117", "A004709", "A049200", "A358039", "A358040" ]
null
Amiram Eldar, Oct 29 2022
2024-08-06T02:11:46
oeisdata/seq/A358/A358039.seq
0cfa265f0a7389910d5e997469e3d19b
A358040
a(n) is the number of divisors of the n-th cubefree number.
[ "1", "2", "2", "3", "2", "4", "2", "3", "4", "2", "6", "2", "4", "4", "2", "6", "2", "6", "4", "4", "2", "3", "4", "6", "2", "8", "2", "4", "4", "4", "9", "2", "4", "4", "2", "8", "2", "6", "6", "4", "2", "3", "6", "4", "6", "2", "4", "4", "4", "2", "12", "2", "4", "6", "4", "8", "2", "6", "4", "8", "2", "2", "4", "6", "6", "4", "8", "2", "4", "2", "12", "4", "4", "4", "2", "12", "4", "6", "4", "4", "4", "2", "6", "6", "9", "2" ]
[ "nonn" ]
22
1
2
[ "A000005", "A001620", "A004709", "A072048", "A073002", "A147533", "A358039", "A358040" ]
null
Amiram Eldar, Oct 29 2022
2024-08-06T02:10:28
oeisdata/seq/A358/A358040.seq
635639f9afb1b9f6c332002aa5815407
A358041
The number of maximal antichains in the lattice of set partitions of an n-element set.
[ "1", "2", "3", "32", "14094" ]
[ "nonn", "hard", "more" ]
22
1
2
[ "A302250", "A326358", "A358041" ]
null
Dmitry I. Ignatov, Oct 29 2022
2023-08-20T10:50:04
oeisdata/seq/A358/A358041.seq
f4ced173be515ec9ae8ead92fd80cb79
A358042
Partial sums of A071619.
[ "0", "1", "4", "10", "21", "38", "62", "95", "138", "192", "259", "340", "436", "549", "680", "830", "1001", "1194", "1410", "1651", "1918", "2212", "2535", "2888", "3272", "3689", "4140", "4626", "5149", "5710", "6310", "6951", "7634", "8360", "9131", "9948", "10812", "11725", "12688", "13702", "14769", "15890", "17066", "18299", "19590", "20940", "22351" ]
[ "nonn", "easy" ]
12
0
3
[ "A005898", "A042968", "A049347", "A071619", "A143976", "A358042" ]
null
Stefano Spezia, Oct 26 2022
2022-11-02T07:36:56
oeisdata/seq/A358/A358042.seq
43ac957366305bae6638e72dbcd87883
A358043
Numbers k such that phi(k) is a multiple of 8.
[ "15", "16", "17", "20", "24", "30", "32", "34", "35", "39", "40", "41", "45", "48", "51", "52", "55", "56", "60", "64", "65", "68", "70", "72", "73", "75", "78", "80", "82", "84", "85", "87", "88", "89", "90", "91", "95", "96", "97", "100", "102", "104", "105", "110", "111", "112", "113", "115", "116", "117", "119", "120", "123", "128", "130", "132", "135", "136", "137", "140", "143" ]
[ "nonn" ]
34
1
1
[ "A000010", "A037074", "A053574", "A066498", "A066500", "A066502", "A172019", "A332512", "A358043" ]
null
Darío Clavijo, Oct 26 2022
2022-11-18T02:42:18
oeisdata/seq/A358/A358043.seq
b721e722f32ab86f048413c8ad6a6752
A358044
a(n) is the smallest number k such that n consecutive integers starting at k have the same number of triangular divisors (A007862).
[ "1", "1", "55", "5402", "2515069" ]
[ "nonn", "more", "hard" ]
11
1
3
[ "A000217", "A006558", "A007862", "A045983", "A045984", "A324593", "A324594", "A338628", "A358044" ]
null
Ilya Gutkovskiy, Oct 26 2022
2023-01-06T10:41:37
oeisdata/seq/A358/A358044.seq
6f86a3c2397a63294d0eff27c16fe553
A358045
Decimal expansion of 2*(gamma + Re(Psi(i))).
[ "1", "3", "4", "3", "7", "3", "1", "9", "7", "1", "0", "4", "8", "0", "1", "9", "6", "7", "5", "7", "5", "6", "7", "8", "1", "1", "4", "5", "6", "0", "8", "6", "2", "6", "3", "0", "7", "0", "3", "6", "8", "4", "4", "6", "1", "5", "4", "0", "6", "9", "3", "0", "4", "4", "4", "0", "7", "7", "5", "1", "3", "9", "1", "8", "0", "0", "7", "5", "4", "5", "6", "8", "3", "0", "7", "3", "8", "9", "0", "6", "4", "8", "6", "4", "0", "8", "3" ]
[ "nonn", "cons" ]
52
1
2
[ "A001620", "A006003", "A248177", "A340012", "A358045" ]
null
Martin Renner, Dec 20 2022
2023-06-25T08:09:56
oeisdata/seq/A358/A358045.seq
49e11b43033eef39d1b769b90e951955
A358046
Number of n-step self-avoiding walks on a 2D square lattice where the first visited lattice point is directly visible from the last visited lattice point, and were only visited lattice points are considered when determining the visibility of points.
[ "4", "8", "32", "64", "240", "480", "1904", "3832", "13992", "29304", "103088", "219416", "765600", "1609176", "5611680", "11785240", "40641032", "86254960", "293015872", "628547128", "2108574592", "4556118936", "15143701888", "32875906992", "108521571624", "236390241280", "776007097296", "1695412485136", "5538287862344" ]
[ "nonn", "walk" ]
27
1
1
[ "A001411", "A334877", "A336262", "A337353", "A347506", "A347990", "A358036", "A358046" ]
null
Scott R. Shannon, Oct 26 2022
2022-10-30T15:09:37
oeisdata/seq/A358/A358046.seq
53968622f6d3d564dacd62a0ccb40497
A358047
a(1) = 2; afterwards a(n) is the least new prime such that 2*a(n-1) + a(n) is a prime.
[ "2", "3", "5", "7", "17", "13", "11", "19", "23", "37", "29", "31", "41", "67", "47", "43", "53", "61", "59", "73", "83", "97", "89", "79", "71", "109", "113", "127", "167", "157", "107", "103", "101", "151", "131", "139", "179", "163", "137", "193", "191", "181", "239", "199", "149", "211", "197", "223", "173", "241", "227", "229", "233", "277", "257", "283", "263", "271", "269", "349", "293" ]
[ "nonn" ]
14
1
1
null
null
Zak Seidov, Oct 27 2022
2022-11-14T09:54:31
oeisdata/seq/A358/A358047.seq
4b9b7d7bdcac18dccd1ebc08013a1ee5
A358048
Lexicographically earliest sequence of distinct nonnegative integers on a square spiral such that every number shares a digit with each of its eight surrounding neighbors.
[ "0", "10", "20", "30", "40", "50", "60", "70", "80", "18", "100", "12", "2", "23", "102", "90", "49", "104", "101", "103", "16", "105", "106", "107", "78", "8", "81", "1", "21", "22", "24", "25", "26", "29", "19", "9", "39", "91", "14", "11", "13", "15", "17", "31", "41", "51", "71", "87", "28", "38", "48", "108", "61", "112", "27", "32", "34", "42", "52", "62", "69", "59", "79", "89", "83", "93", "94", "109", "110", "111", "113" ]
[ "nonn", "base" ]
17
0
2
[ "A343530", "A344325", "A344367", "A354111", "A358021", "A358048" ]
null
Eric Angelini and Scott R. Shannon, Oct 27 2022
2022-10-27T10:13:52
oeisdata/seq/A358/A358048.seq
4bd18b5357be11dce0e65872b7aec2ae
A358049
a(1) = 2, a(2) = 3; afterwards a(n) is least new prime > a(n-1) such that a(n-2) + a(n) and a(n-1) + a(n) are semiprimes.
[ "2", "3", "7", "19", "67", "127", "151", "271", "463", "823", "883", "991", "1051", "1087", "2011", "2251", "2311", "2371", "2383", "2731", "2803", "2971", "3271", "3391", "3643", "3823", "4111", "4483", "6343", "6379", "6763", "7879", "8443", "9199", "9283", "9643", "10159", "10639", "10867", "10939", "11047", "11299", "11467", "11587", "11971", "12511", "12583", "14071" ]
[ "nonn" ]
18
1
1
[ "A001358", "A068229", "A358049" ]
null
Zak Seidov, Oct 27 2022
2022-12-07T15:00:26
oeisdata/seq/A358/A358049.seq
44aaa7ef2828d26b99e975842719cfe8
A358050
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j) * binomial(k*(n-j),n-j).
[ "1", "1", "0", "1", "2", "0", "1", "4", "3", "0", "1", "6", "16", "4", "0", "1", "8", "39", "64", "5", "0", "1", "10", "72", "258", "256", "6", "0", "1", "12", "115", "664", "1719", "1024", "7", "0", "1", "14", "168", "1360", "6184", "11496", "4096", "8", "0", "1", "16", "231", "2424", "16265", "57888", "77052", "16384", "9", "0", "1", "18", "304", "3934", "35400", "195660", "543544", "517194", "65536", "10", "0" ]
[ "nonn", "tabl" ]
48
0
5
[ "A000007", "A000302", "A001477", "A006256", "A078995", "A079563", "A079678", "A079679", "A358050", "A358145", "A358146" ]
null
Seiichi Manyama, Oct 31 2022
2022-10-31T15:24:16
oeisdata/seq/A358/A358050.seq
405273f9423759121b6aa5ff12b78bbe
A358051
Squares k such that phi(k) is a cube.
[ "1", "16", "1024", "2500", "5184", "50625", "65536", "160000", "331776", "810000", "3779136", "4194304", "4691556", "5345344", "7001316", "10240000", "16867449", "20820969", "21233664", "27060804", "36905625", "39062500", "51840000", "52200625", "228765625", "241864704", "268435456", "269879184", "300259584", "333135504" ]
[ "nonn" ]
19
1
2
[ "A000010", "A114076", "A358051" ]
null
Darío Clavijo, Oct 27 2022
2022-12-04T16:32:44
oeisdata/seq/A358/A358051.seq
ed94c2a1b9c810b733b66c34424c7d8d
A358052
Triangular array read by rows. For T(n,k) where 1 <= k <= n, start with x = k and repeat the map x -> floor(n/x) + (n mod x) until an x occurs that has already appeared. The number of applications of the map is T(n,k).
[ "1", "2", "2", "2", "1", "2", "2", "1", "2", "2", "2", "2", "1", "3", "2", "2", "2", "2", "3", "3", "2", "2", "2", "1", "1", "2", "3", "2", "2", "2", "3", "2", "3", "4", "3", "2", "2", "2", "1", "2", "1", "3", "2", "3", "2", "2", "2", "2", "1", "2", "3", "2", "3", "3", "2", "2", "2", "2", "3", "2", "1", "3", "4", "3", "3", "2", "2", "2", "2", "2", "3", "2", "3", "4", "3", "3", "3", "2", "2", "2", "2", "1", "1", "3", "1", "4", "2", "2", "3", "3", "2", "2", "2", "4", "3", "3", "3", "2", "3" ]
[ "nonn", "tabl" ]
21
1
2
[ "A234575", "A357554", "A358052" ]
null
J. M. Bergot and Robert Israel, Oct 27 2022
2023-01-29T04:38:33
oeisdata/seq/A358/A358052.seq
11142c7766b5174ef505bf87e650e629
A358053
a(n) = 14*n - 1.
[ "13", "27", "41", "55", "69", "83", "97", "111", "125", "139", "153", "167", "181", "195", "209", "223", "237", "251", "265", "279", "293", "307", "321", "335", "349", "363", "377", "391", "405", "419", "433", "447", "461", "475", "489", "503", "517", "531", "545", "559", "573", "587", "601", "615", "629", "643", "657", "671", "685", "699", "713", "727", "741", "755", "769", "783", "797" ]
[ "nonn", "easy" ]
42
1
1
[ "A003154", "A008596", "A017053", "A045473", "A045944", "A202804", "A358053" ]
null
Leo Tavares, Oct 27 2022
2025-04-03T17:16:28
oeisdata/seq/A358/A358053.seq
567802df252854d9d252f257ece113d9
A358054
Starting with 0, smallest integer not yet in the sequence such that no two neighboring digits differ by 1.
[ "0", "2", "4", "1", "3", "5", "7", "9", "6", "8", "11", "13", "14", "15", "16", "17", "18", "19", "20", "22", "24", "25", "26", "27", "28", "29", "30", "31", "33", "35", "36", "37", "38", "39", "40", "41", "42", "44", "46", "47", "48", "49", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "64", "66", "68", "69", "70", "71", "72", "73", "74", "75", "77", "79", "90", "80" ]
[ "nonn", "base", "easy" ]
39
0
2
[ "A082927", "A219250", "A358054" ]
null
Gavin Lupo and Eric Angelini, Oct 28 2022
2022-11-07T17:02:58
oeisdata/seq/A358/A358054.seq
d41e9dc95a70f0fcce203e533098000c
A358055
a(n) is the least m such that A358052(m,k) = n for some k.
[ "1", "2", "5", "8", "14", "20", "32", "38", "59", "59", "63", "116", "122", "158", "158", "218", "278", "278", "402", "548", "642", "642", "642", "642", "642", "1062", "1062", "1668", "2474", "2690", "2690", "2690", "2690", "2690", "3170", "3170", "3170", "3170", "3170", "3170", "3170", "9260", "9260", "9260", "9788", "9788", "11772", "11942", "11942", "11942", "11942", "11942" ]
[ "nonn" ]
13
1
2
[ "A234575", "A358052", "A358055" ]
null
J. M. Bergot and Robert Israel, Oct 27 2022
2024-03-12T13:37:09
oeisdata/seq/A358/A358055.seq
fe491745fdb2e61489e36e721b45654a
A358056
Given a row of n payphones (or phone booths), all initially unused, how many ways are there for n people to choose the payphones, assuming each always chooses one of the most distant payphones from those in use already? We consider here only the distance to the closest neighbor (in contrast to A095236).
[ "1", "1", "2", "4", "8", "20", "48", "216", "576", "1392", "7200", "43200", "184320", "1065600", "4314240", "21611520", "150958080", "573834240", "2293401600", "32107622400", "236017152000", "2798762803200", "22493915136000", "189837914112000", "1165284436377600", "13260174468710400", "148874616963072000" ]
[ "nonn" ]
63
0
3
[ "A095236", "A095239", "A095698", "A095912", "A166079", "A358056", "A361294", "A361295", "A361296", "A362192" ]
null
Thomas Scheuerle, Oct 28 2022
2023-07-08T18:59:36
oeisdata/seq/A358/A358056.seq
4a39ea8ae499b2d1178816b400d5c080
A358057
Inverse permutation to A357961.
[ "1", "2", "3", "9", "4", "5", "6", "8", "7", "10", "18", "11", "12", "15", "13", "17", "14", "16", "35", "24", "19", "20", "21", "23", "22", "25", "30", "26", "27", "32", "28", "34", "29", "31", "65", "33", "40", "36", "37", "39", "38", "48", "41", "46", "42", "43", "44", "47", "45", "61", "49", "55", "50", "51", "52", "54", "53", "56", "130", "57", "58", "62", "59", "64", "60", "67", "63" ]
[ "nonn", "base" ]
11
1
2
[ "A357961", "A358057" ]
null
Rémy Sigrist, Oct 28 2022
2022-10-30T15:09:04
oeisdata/seq/A358/A358057.seq
e84c05dbede9e458b4c1636549a59c09
A358058
a(n) is the index of the smallest n-gonal number divisible by exactly n n-gonal numbers.
[ "3", "6", "12", "48", "51", "330", "1100", "702", "8120", "980", "5499", "110880", "10472", "2688", "2127411", "517104", "710640", "396480", "2761803", "4254120", "13347975", "707000", "3655827" ]
[ "nonn", "more" ]
25
3
1
[ "A358058", "A358859" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358058.seq
0318f831c2009dbba2d39bfefab9266e
A358059
a(n) is the index of the smallest n-gonal pyramidal number divisible by exactly n n-gonal pyramidal numbers.
[ "6", "7", "20", "79", "90", "203", "972", "3135", "374", "283815", "31824", "2232", "10240", "144584", "70784" ]
[ "nonn", "more" ]
37
3
1
[ "A358059", "A358860" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358059.seq
dd2d8fdf79d5b33ee142b6a509b1193c
A358060
Perfect squares that are the sum of a perfect square and a factorial number.
[ "1", "25", "49", "121", "169", "289", "729", "784", "841", "961", "1296", "1681", "2401", "3969", "5041", "5184", "5329", "6561", "6889", "7744", "8464", "9801", "10816", "13689", "18496", "22201", "32761", "34969", "40401", "40804", "41616", "42436", "44944", "45796", "46656", "49729", "51984", "55696", "66049", "66564", "72361", "79524", "85264" ]
[ "nonn" ]
26
1
2
[ "A000142", "A000290", "A358060" ]
null
Walter Robinson, Oct 28 2022
2022-12-11T00:46:32
oeisdata/seq/A358/A358060.seq
1e213cb03e323849cb5efaa9aa924150
A358061
a(n) = phi(n) mod tau(n).
[ "0", "1", "0", "2", "0", "2", "0", "0", "0", "0", "0", "4", "0", "2", "0", "3", "0", "0", "0", "2", "0", "2", "0", "0", "2", "0", "2", "0", "0", "0", "0", "4", "0", "0", "0", "3", "0", "2", "0", "0", "0", "4", "0", "2", "0", "2", "0", "6", "0", "2", "0", "0", "0", "2", "0", "0", "0", "0", "0", "4", "0", "2", "0", "4", "0", "4", "0", "2", "0", "0", "0", "0", "0", "0", "4", "0", "0", "0", "0", "2", "4", "0", "0", "0", "0", "2", "0", "0", "0", "0" ]
[ "nonn" ]
18
1
4
[ "A000005", "A000010", "A015733", "A020491", "A358061" ]
null
Ctibor O. Zizka, Oct 28 2022
2022-10-30T03:52:45
oeisdata/seq/A358/A358061.seq
e18a173cece9cd5bc44f92bcffc15727
A358062
a(n) is the diagonal domination number for the queen graph on an n X n chessboard.
[ "1", "1", "1", "2", "3", "4", "4", "5", "5", "6", "7", "8", "9", "10", "11", "12", "12", "13", "14", "15", "15", "16", "17", "18", "18", "19", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "30", "31", "32", "33", "34", "35", "36", "37", "37", "38", "39", "40", "40", "41", "42", "43", "44", "45", "46", "47", "47", "48" ]
[ "nonn" ]
38
1
4
[ "A003002", "A358062", "A373394", "A381091" ]
null
Tanya Khovanova and PRIMES STEP junior group, Oct 28 2022
2025-03-27T09:30:30
oeisdata/seq/A358/A358062.seq
2133f71d76ec5ef1d114847f1206653d
A358063
Expansion of e.g.f. exp( x * exp(-x^3) ).
[ "1", "1", "1", "1", "-23", "-119", "-359", "1681", "38641", "269137", "599761", "-22461119", "-347288039", "-2477852519", "13993475497", "670329026641", "8887630708321", "29011883003041", "-1682765787379679", "-40673626173010943", "-409560067877703479", "4061870252008891561", "235100528524188216121" ]
[ "sign", "easy" ]
8
0
5
[ "A003725", "A354553", "A357948", "A358063" ]
null
Seiichi Manyama, Oct 29 2022
2022-10-29T09:37:55
oeisdata/seq/A358/A358063.seq
21292e00019dab49b09137b6ae60a329
A358064
Expansion of e.g.f. 1/(1 - x * exp(x^2)).
[ "1", "1", "2", "12", "72", "540", "5040", "53760", "658560", "9087120", "139104000", "2343781440", "43078210560", "857676980160", "18390744852480", "422504399116800", "10353592759910400", "269576216304595200", "7431814422621388800", "216266552026593868800", "6624610236968435712000" ]
[ "nonn", "easy" ]
20
0
3
[ "A216688", "A358064", "A358065" ]
null
Seiichi Manyama, Oct 29 2022
2024-02-14T15:39:36
oeisdata/seq/A358/A358064.seq
411442dba03793a0c5f726c7e0a7e38f
A358065
Expansion of e.g.f. 1/(1 - x * exp(x^3)).
[ "1", "1", "2", "6", "48", "360", "2880", "27720", "322560", "4173120", "58665600", "911433600", "15567552000", "287740252800", "5710178073600", "121450256928000", "2758495490150400", "66563938106265600", "1699990278213427200", "45828946821385728000", "1300703752243703808000" ]
[ "nonn", "easy" ]
17
0
3
[ "A354553", "A358064", "A358065" ]
null
Seiichi Manyama, Oct 29 2022
2022-11-01T12:16:34
oeisdata/seq/A358/A358065.seq
3c0ed3b26e86555f99d1aa648fa0741c
A358066
Inventory sequence: record where the 1's, 2's, etc. are located starting with a(1) = 1, a(2) = 1 (see example).
[ "1", "1", "1", "2", "1", "2", "3", "4", "1", "2", "3", "5", "4", "6", "7", "1", "2", "3", "5", "9", "4", "6", "10", "7", "11", "8", "13", "1", "2", "3", "5", "9", "16", "4", "6", "10", "17", "7", "11", "18", "8", "13", "21", "12", "19", "1", "2", "3", "5", "9", "16", "28", "4", "6", "10", "17", "29", "7", "11", "18", "30", "8", "13", "21", "34", "12", "19", "31", "14", "22", "35", "1", "2", "3", "5", "9", "16", "28", "46", "4", "6", "10", "17", "29", "47", "7", "11", "18", "30", "48" ]
[ "nonn", "tabf" ]
46
1
4
[ "A030717", "A055187", "A217780", "A342585", "A356784", "A357317", "A357443", "A358066" ]
null
Ctibor O. Zizka, Oct 29 2022
2022-11-08T09:44:13
oeisdata/seq/A358/A358066.seq
084e823ff92839bb78d3c077bcf083ff
A358067
a(n) is the smallest m such that A144261(m) = n.
[ "1", "15", "14", "33", "22", "17", "73", "49", "13", "11", "529", "31", "397", "293", "241", "199", "1633", "53", "3727", "761", "331", "491", "4343", "431", "1943", "887", "383", "3659", "3809", "377", "15863", "9419", "2713", "2993", "26753", "1583", "30311", "5297", "8971", "2753", "5363", "983", "11603", "4919", "18314", "14657", "59303", "1499", "99179" ]
[ "nonn", "base" ]
26
1
2
[ "A005349", "A144261", "A358067" ]
null
Bernard Schott, Oct 29 2022
2022-11-04T10:48:15
oeisdata/seq/A358/A358067.seq
7ee30e323bd96ba17b37713dac1f9ae4
A358068
Numbers that share a (decimal) digit with the sum of their proper divisors.
[ "6", "11", "12", "13", "14", "16", "17", "18", "19", "20", "21", "26", "28", "31", "32", "35", "40", "41", "42", "44", "46", "51", "56", "60", "61", "64", "68", "70", "71", "72", "74", "76", "80", "84", "86", "91", "93", "95", "96", "100", "101", "102", "103", "104", "106", "107", "108", "109", "110", "111", "112", "113", "114", "120", "121", "124", "125", "126", "127", "128", "130", "131", "132", "135", "136" ]
[ "nonn", "base" ]
13
1
1
[ "A001065", "A357929", "A358068" ]
null
Wesley Ivan Hurt, Oct 29 2022
2022-10-30T23:05:40
oeisdata/seq/A358/A358068.seq
b9ab00f795a75893690cf1f12211401f
A358069
Number of configurations of the 20 Vertex model on a square grid n X n with domain wall boundary conditions.
[ "1", "3", "23", "433", "19705", "2151843", "561696335", "349667866305", "518369549769169", "1828200035691135203", "15328648070256551849383", "305390661137273761896820529", "14451387790147329024372260663689", "1623803344366103974773282069705064899", "433134712202745984875469054553527204825375" ]
[ "nonn" ]
53
1
2
null
null
Philippe Di Francesco, Dec 17 2022
2025-02-19T12:12:07
oeisdata/seq/A358/A358069.seq
d5842d396ae14d6dbb92da97b5002301
A358070
Largest order of element in direct product S_n * S_n where S_n is the symmetric group.
[ "1", "1", "2", "6", "12", "30", "30", "84", "120", "210", "420", "420", "840", "1260", "2310", "4620", "5460", "5460", "13860", "13860", "27720", "32760", "60060", "60060", "120120", "180180", "180180", "360360", "360360", "510510", "1021020", "1141140", "2042040", "3063060", "3423420", "6126120", "6846840", "6846840", "8953560", "12252240" ]
[ "nonn" ]
22
0
3
[ "A000793", "A063183", "A358070" ]
null
Jack Zhang, Oct 29 2022
2023-01-04T18:47:13
oeisdata/seq/A358/A358070.seq
74a062430ddc0a6a3f080398b885f62b
A358071
Numbers k that can be written as the sum of a perfect square and a factorial in at least 2 distinct ways.
[ "2", "6", "10", "124", "145", "220", "649", "745", "1081", "1249", "1345", "2929", "3601", "3745", "5065", "5076", "5161", "5209", "5481", "6049", "6196", "6265", "6804", "7249", "7945", "8289", "9529", "11124", "14644", "15649", "17361", "17809", "21169", "22921", "30649", "35316", "40321", "40384", "40720", "40761", "43456", "43569", "43801" ]
[ "nonn" ]
28
1
1
[ "A000142", "A000290", "A358071" ]
null
Walter Robinson, Oct 30 2022
2022-12-11T00:47:35
oeisdata/seq/A358/A358071.seq
c9cee2e926ca155803b1bfd68879bbe6
A358072
a(n) is the number of "merger histories" of n elements (see A256006) where at most 3 elements can merge at the same time.
[ "1", "1", "4", "28", "320", "5360", "123760", "3765440", "145951680", "7019678400", "410164339200", "28615175635200", "2349290700556800", "224201377681881600", "24610071925350912000", "3078761402543963136000", "435446399655217606656000" ]
[ "nonn" ]
31
1
3
[ "A256006", "A358072" ]
null
Johannes Wirtz, Oct 29 2022
2022-11-14T20:03:07
oeisdata/seq/A358/A358072.seq
889ee09dbe42f8421785b58b500cced0
A358073
a(n) is the row position of the n-th number n after adding the number n, n times to the preceding triangle. A variant of A357261, see Comments and Examples for more details.
[ "1", "2", "3", "3", "4", "6", "4", "3", "3", "4", "6", "9", "13", "6", "21", "16", "33", "15", "34", "18", "3", "25", "12", "36", "25", "51", "18", "46", "15", "45", "16", "48", "21", "55", "30", "6", "43", "21", "60", "40", "81", "24", "67", "12", "57", "4", "51", "99", "49", "99", "3", "55", "108", "15", "70", "126", "36", "94", "6", "66", "127", "42", "105", "22", "87", "6", "73", "141", "63" ]
[ "nonn", "easy", "look" ]
31
1
2
[ "A002024", "A057176", "A064434", "A096535", "A104647", "A275204", "A357261", "A358073" ]
null
John Tyler Rascoe, Oct 29 2022
2023-01-13T18:59:09
oeisdata/seq/A358/A358073.seq
79dd57f66641e9f30f7856a12d4fd75c
A358074
a(n) is the number of distinct ways n can be written as the sum of a perfect square and factorial.
[ "1", "2", "1", "0", "1", "2", "1", "0", "0", "2", "1", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
14
1
2
[ "A000142", "A000290", "A358074" ]
null
Walter Robinson, Oct 29 2022
2022-12-11T00:48:24
oeisdata/seq/A358/A358074.seq
6a1887b8c16eaa61e32c503f35b02e1d
A358075
a(1) = 1; a(n+1) is the smallest integer > 0 that cannot be obtained from the integers {a(1), ..., a(n)} using each number exactly once and the operators +, -, *, /, where intermediate subexpressions must be integers.
[ "1", "2", "4", "11", "34", "152", "1007", "6703", "56837", "766478" ]
[ "nonn", "hard", "more" ]
32
1
2
[ "A071115", "A357891", "A358075" ]
null
Rainer Rosenthal, Oct 29 2022
2022-11-10T04:58:52
oeisdata/seq/A358/A358075.seq
ec299c4a92553f23a6b89972ca176299
A358076
Numbers that share at least 1 (decimal) digit with their largest proper divisor.
[ "11", "13", "15", "17", "19", "20", "24", "25", "31", "39", "40", "41", "42", "45", "48", "50", "51", "52", "60", "61", "71", "74", "75", "80", "84", "91", "93", "94", "95", "98", "100", "101", "102", "103", "105", "107", "109", "113", "119", "120", "121", "122", "123", "124", "125", "126", "127", "131", "133", "135", "136", "137", "139", "140", "141", "142", "143", "147", "148", "149", "150" ]
[ "nonn", "base" ]
12
1
1
[ "A032742", "A357929", "A358076" ]
null
Wesley Ivan Hurt, Oct 29 2022
2023-03-10T14:46:22
oeisdata/seq/A358/A358076.seq
279a0301fe4743bb611c2d5b845942ec
A358077
Sum of the nonprime divisors of n whose divisor complement is squarefree.
[ "1", "1", "1", "4", "1", "7", "1", "12", "9", "11", "1", "22", "1", "15", "16", "24", "1", "33", "1", "34", "22", "23", "1", "48", "25", "27", "36", "46", "1", "62", "1", "48", "34", "35", "36", "72", "1", "39", "40", "72", "1", "84", "1", "70", "69", "47", "1", "96", "49", "85", "52", "82", "1", "108", "56", "96", "58", "59", "1", "142", "1", "63", "93", "96", "66", "128", "1", "106", "70", "130", "1", "144", "1", "75" ]
[ "nonn" ]
15
1
4
[ "A005117", "A284118", "A358077" ]
null
Wesley Ivan Hurt, Oct 29 2022
2025-01-22T15:41:39
oeisdata/seq/A358/A358077.seq
29d81d17951a854183b3cfa76de076ab
A358078
a(n) is the number of squarefree semiprimes <= 2^n.
[ "0", "0", "0", "1", "4", "7", "18", "37", "76", "149", "293", "575", "1106", "2162", "4161", "8068", "15604", "30181", "58449", "113179", "219587", "425951", "827393", "1608250", "3128647", "6090677", "11867571", "23139485", "45148817", "88155104", "172231561", "336713062", "658655523", "1289140675", "2524520079", "4946303842" ]
[ "nonn" ]
18
0
5
[ "A006881", "A007053", "A036351", "A358078" ]
null
Jon E. Schoenfield, Oct 29 2022
2023-04-02T09:02:13
oeisdata/seq/A358/A358078.seq
d30e99c9c0e84897228073601df131cd
A358079
Primes that can be written as 2^x + p where p is a prime and x is a multiple of p.
[ "11", "37", "67", "4099", "32771", "262147", "268435463", "1073741827", "36028797018963979", "18889465931478580854821", "151115727451828646838283", "19342813113834066795298819", "618970019642690137449562201", "316912650057057350374175801351", "85070591730234615865843651857942052871" ]
[ "nonn" ]
16
1
1
[ "A057664", "A228032", "A358079", "A358087" ]
null
J. M. Bergot and Robert Israel, Oct 30 2022
2022-11-10T07:44:14
oeisdata/seq/A358/A358079.seq
034534fe6406e69d50e612c1b2395f65
A358080
Expansion of e.g.f. 1/(1 - x^2 * exp(x)).
[ "1", "0", "2", "6", "36", "260", "2190", "21882", "248696", "3181320", "45229050", "707208590", "12063902532", "222939837276", "4436813677478", "94605994108290", "2151763873634160", "51999544476324752", "1330540380342907506", "35936656483848501654", "1021700660649312689660" ]
[ "nonn", "easy" ]
17
0
3
[ "A006153", "A216507", "A345747", "A358064", "A358080", "A358081" ]
null
Seiichi Manyama, Oct 30 2022
2023-05-01T09:25:20
oeisdata/seq/A358/A358080.seq
00113c5549b7e651246d726f6311ac26
A358081
Expansion of e.g.f. 1/(1 - x^3 * exp(x)).
[ "1", "0", "0", "6", "24", "60", "840", "10290", "80976", "847224", "13306320", "190271070", "2677088040", "46082426676", "874515884424", "16582066303530", "336875275380000", "7539189088358640", "176554878235711776", "4295134487197296054", "111114287924643309240", "3036073975138066955820" ]
[ "nonn", "easy" ]
19
0
4
[ "A006153", "A292889", "A355575", "A358065", "A358080", "A358081" ]
null
Seiichi Manyama, Oct 30 2022
2023-05-01T09:25:14
oeisdata/seq/A358/A358081.seq
dcc81c9430fa544e1183cf48c6aa62d0
A358082
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with Sum_{k=1..n-1} sigma(a(k)).
[ "1", "2", "4", "11", "23", "47", "5", "101", "7", "211", "3", "14", "22", "487", "6", "9", "8", "10", "1033", "12", "15", "13", "18", "16", "2203", "21", "46", "26", "29", "4583", "89", "9257", "20", "28", "35", "18661", "24", "17", "27", "37441", "30", "19", "25", "32", "33", "36", "34", "38", "39", "40", "42", "44", "45", "48", "37", "31", "50", "49", "52", "54", "56", "58", "60", "62", "63", "51", "57", "64", "55", "66", "69", "72" ]
[ "nonn" ]
34
1
2
[ "A000203", "A064413", "A354960", "A356430", "A356851", "A358082", "A358176", "A358201" ]
null
Scott R. Shannon, Nov 02 2022
2023-01-16T09:10:46
oeisdata/seq/A358/A358082.seq
ffca419628a027b4797b8973e1e17829
A358083
Sum of square end-to-end displacements over all n-step self-avoiding walks of A358046.
[ "4", "16", "128", "448", "2256", "5376", "29424", "69888", "302568", "741376", "3026448", "7216896", "29268352", "65785216", "263892736", "591065568", "2279452040", "5195776064", "19324558176", "44442289024", "161417689504", "371206519136", "1328055630144", "3044451252064", "10774811055304", "24625495784320", "86363375773808", "197092099990080" ]
[ "nonn", "walk" ]
13
1
1
[ "A001411", "A336448", "A358046", "A358083", "A358084" ]
null
Scott R. Shannon, Oct 30 2022
2022-11-02T07:15:42
oeisdata/seq/A358/A358083.seq
5ab799c87c242099f1b6e5cd4dabc99d
A358084
Sum of square end-to-end displacements over all n-step self-avoiding walks of A358036.
[ "0", "16", "88", "288", "1104", "3264", "12032", "34144", "115112", "323888", "1043360", "2903280", "9122592", "24993552", "77246888", "209811360", "637734248", "1726546928", "5170075216", "13965402144", "41331646184", "111361083152", "326576770784", "877687158464", "2554653282056", "6850500549888", "19812687702472", "53030550412576" ]
[ "nonn", "walk" ]
11
1
2
[ "A001411", "A336448", "A358036", "A358083", "A358084" ]
null
Scott R. Shannon, Oct 30 2022
2022-11-02T07:16:04
oeisdata/seq/A358/A358084.seq
f088768b27b31d7aa8ab47440dce862f
A358085
Inventory of positions ordered by binary lengths of terms, as an irregular table; the first row contains 1, subsequent rows contains the 1-based positions of terms with binary length 1, followed by positions of terms with binary length 2, 3, etc. in prior rows flattened.
[ "1", "1", "1", "2", "1", "2", "3", "4", "1", "2", "3", "5", "4", "6", "7", "8", "1", "2", "3", "5", "9", "4", "6", "7", "10", "11", "8", "12", "13", "14", "15", "16", "1", "2", "3", "5", "9", "17", "4", "6", "7", "10", "11", "18", "19", "8", "12", "13", "14", "15", "20", "22", "23", "24", "16", "21", "25", "26", "27", "28", "29", "30", "31", "32" ]
[ "nonn", "base", "tabf" ]
17
1
4
[ "A011782", "A070939", "A342585", "A356784", "A358085", "A358121" ]
null
Rémy Sigrist, Oct 30 2022
2022-11-03T10:06:43
oeisdata/seq/A358/A358085.seq
e5a31c1f0bb9acb2877ac0eb85800c8c
A358086
Inventory of positions ordered by odd parts of terms, as an irregular table; the first row contains 1, subsequent rows contains the 1-based positions of terms with odd part 1, followed by positions of terms with odd part 3, 5, etc. in prior rows flattened.
[ "1", "1", "1", "2", "1", "2", "3", "4", "1", "2", "3", "4", "5", "6", "8", "7", "1", "2", "3", "4", "5", "6", "8", "9", "10", "12", "15", "7", "11", "14", "13", "16", "1", "2", "3", "4", "5", "6", "8", "9", "10", "12", "15", "17", "18", "20", "23", "32", "7", "11", "14", "19", "22", "26", "13", "21", "25", "16", "28", "30", "24", "29", "31", "27" ]
[ "nonn", "tabf" ]
16
1
4
[ "A000265", "A011782", "A342585", "A356784", "A358085", "A358086", "A358122" ]
null
Rémy Sigrist, Oct 30 2022
2022-11-03T10:06:33
oeisdata/seq/A358/A358086.seq
835413b08211ebe6f3606f3a54b9e106
A358087
Primes that can be written as 2^x - p where p is a prime and x is a multiple of p.
[ "2", "5", "61", "509", "1019", "4093", "8179", "524269", "1048571", "16777213", "2596148429267413814265248164610011", "1361129467683753853853498429727072845819", "1427247692705959881058285969449495136382746619", "1427247692705959881058285969449495136382746621", "45671926166590716193865151022383844364247891937" ]
[ "nonn" ]
12
1
1
[ "A057678", "A358079", "A358087" ]
null
J. M. Bergot and Robert Israel, Oct 30 2022
2022-11-10T07:44:09
oeisdata/seq/A358/A358087.seq
47e69c6e82c7a403c490bf30a50d2a28
A358088
Number of pairs (s,t) with s and t squarefree, 1 <= s < t <= n and s | t.
[ "0", "1", "2", "2", "3", "6", "7", "7", "7", "10", "11", "11", "12", "15", "18", "18", "19", "19", "20", "20", "23", "26", "27", "27", "27", "30", "30", "30", "31", "38", "39", "39", "42", "45", "48", "48", "49", "52", "55", "55", "56", "63", "64", "64", "64", "67", "68", "68", "68", "68", "71", "71", "72", "72", "75", "75", "78", "81", "82", "82", "83", "86", "86", "86", "89", "96", "97", "97", "100", "107", "108" ]
[ "nonn" ]
8
1
3
null
null
Wesley Ivan Hurt, Oct 30 2022
2022-11-09T21:17:25
oeisdata/seq/A358/A358088.seq
e3602a247559a8ff05daa1829572f3c1
A358089
First differences of A126706.
[ "6", "2", "4", "4", "8", "4", "4", "1", "3", "2", "2", "2", "2", "4", "3", "5", "4", "3", "1", "4", "4", "4", "2", "2", "4", "2", "1", "1", "4", "4", "4", "4", "1", "3", "4", "2", "6", "3", "1", "4", "4", "3", "1", "2", "2", "1", "3", "4", "2", "2", "4", "3", "1", "3", "1", "4", "4", "4", "1", "3", "4", "2", "2", "4", "3", "1", "4", "4", "4", "4", "1", "3", "4", "2", "2", "4", "2", "2", "1", "3", "2", "2", "8", "1", "3", "4", "2" ]
[ "nonn", "easy" ]
17
1
1
[ "A126706", "A355447", "A356322", "A358089" ]
null
Michael De Vlieger, Oct 31 2022
2024-08-15T02:02:13
oeisdata/seq/A358/A358089.seq
8ba5a309844f752b4528b3d82cf37fb5
A358090
Partial inventory of positions as an irregular table; rows 1 and 2 contain 1, for n > 2, row n contains the 1-based positions of 1's, followed by the positions of 2's, 3's, etc. in rows n-2 and n-1 flattened.
[ "1", "1", "1", "2", "1", "2", "3", "1", "3", "2", "4", "5", "1", "4", "2", "6", "3", "5", "7", "8", "1", "6", "3", "8", "2", "10", "4", "7", "5", "11", "9", "12", "13", "1", "9", "3", "13", "5", "11", "2", "15", "6", "17", "4", "10", "7", "16", "8", "12", "19", "14", "18", "20", "21", "1", "14", "5", "20", "3", "16", "7", "24", "9", "18", "2", "22", "8", "26", "4", "28", "11", "15", "6", "25", "10", "19", "12", "29", "13", "17", "31", "21", "27", "23", "32", "30", "33", "34" ]
[ "nonn", "tabf" ]
18
1
4
[ "A000045", "A001611", "A342585", "A356784", "A358090", "A358120", "A358123" ]
null
Rémy Sigrist, Oct 30 2022
2022-11-03T10:06:47
oeisdata/seq/A358/A358090.seq
e890e1665f40cde5c85561cbce2f924c
A358091
Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x).
[ "1", "5", "-6", "16", "-60", "48", "44", "-288", "660", "-440", "112", "-1056", "4032", "-7280", "4368", "272", "-3360", "17952", "-52224", "81600", "-45696", "640", "-9792", "67200", "-267520", "656640", "-930240", "496128", "1472", "-26880", "225216", "-1133440", "3740352", "-8160768", "10767680", "-5537664" ]
[ "sign", "tabl" ]
9
1
2
[ "A000309", "A062236", "A358091" ]
null
Peter Luschny, Oct 28 2022
2022-10-28T10:10:29
oeisdata/seq/A358/A358091.seq
bd712730a31ad68a347c31d2bdd176eb
A358092
Row sums of the convolution triangle of the Motzkin numbers (A202710).
[ "1", "1", "3", "9", "28", "88", "279", "889", "2843", "9115", "29279", "94183", "303294", "977522", "3152709", "10173671", "32844544", "106073200", "342671109", "1107278239", "3578704532", "11568322736", "37400611581", "120931966547", "391065616195", "1264729338163", "4090528413309", "13230930776769", "42798305388298" ]
[ "nonn" ]
14
0
3
[ "A001006", "A202710", "A358092" ]
null
Peter Luschny, Oct 29 2022
2022-10-30T03:06:26
oeisdata/seq/A358/A358092.seq
d6ecee7fc124bb4e2708142175807bc7
A358093
a(n) = n for 1 <= n <= 2; thereafter a(n) is the least unused m such that rad(m) = rad(rad(a(n-1)) + rad(a(n-2))), where rad(m) = A007947(m).
[ "1", "2", "3", "5", "4", "7", "9", "10", "13", "23", "6", "29", "35", "8", "37", "39", "38", "77", "115", "12", "11", "17", "14", "31", "15", "46", "61", "107", "42", "149", "191", "170", "19", "21", "20", "961", "41", "18", "47", "53", "40", "63", "29791", "26", "57", "83", "70", "51", "121", "62", "73", "45", "22", "1369", "59", "24", "65", "71", "34", "105", "139", "122", "87", "209", "74" ]
[ "nonn" ]
70
1
2
[ "A005117", "A007947", "A121369", "A354184", "A358093" ]
null
David James Sycamore, Nov 08 2022
2025-03-24T06:22:37
oeisdata/seq/A358/A358093.seq
ae07b99c39ca62d55c85603ced5caa8f
A358094
a(n) is the number of ways n can be reached in the following method: we start with 1, then add or multiply alternately, and each operand must be 2 or 3.
[ "1", "1", "2", "2", "2", "2", "0", "3", "2", "4", "3", "6", "2", "3", "5", "1", "2", "5", "1", "4", "2", "5", "2", "7", "3", "6", "5", "5", "3", "9", "3", "5", "8", "2", "3", "11", "2", "7", "8", "3", "3", "9", "2", "7", "8", "4", "5", "8", "2", "6", "5", "7", "5", "13", "4", "9", "8", "5", "3", "10", "3", "9", "8", "8", "5", "14", "5", "7", "9", "3", "2", "13", "3", "10", "11", "8", "5", "19", "6", "11" ]
[ "nonn", "easy" ]
72
1
3
[ "A005836", "A304387", "A358094", "A358095", "A358096" ]
null
Yifan Xie and Thomas Scheuerle, Oct 29 2022
2025-01-18T21:50:52
oeisdata/seq/A358/A358094.seq
1cdd914490cf5f7e41f85758b7bd8c75
A358095
a(n) is the number of ways n can be reached in the algorithm explained in A358094 if the last operation is summation.
[ "1", "0", "1", "2", "2", "1", "0", "1", "1", "2", "3", "3", "2", "3", "3", "0", "2", "3", "1", "2", "2", "2", "2", "3", "3", "4", "4", "2", "3", "4", "3", "5", "5", "0", "3", "5", "2", "6", "6", "1", "3", "4", "2", "5", "5", "2", "5", "5", "2", "3", "3", "3", "5", "6", "4", "7", "7", "2", "3", "4", "3", "6", "6", "3", "5", "7", "5", "7", "7", "0", "2", "5", "3", "8", "8", "2", "5", "9", "6", "10" ]
[ "nonn", "easy" ]
43
1
4
[ "A358094", "A358095", "A358096" ]
null
Yifan Xie, Nov 01 2022
2025-01-19T23:08:24
oeisdata/seq/A358/A358095.seq
c80cbddc0bb6c5629300dd9fa0ba3963
A358096
a(n) is the number of ways n can be reached in the algorithm explained in A358094 if the last operation is multiplication.
[ "1", "1", "1", "0", "0", "1", "0", "2", "1", "2", "0", "3", "0", "0", "2", "1", "0", "2", "0", "2", "0", "3", "0", "4", "0", "2", "1", "3", "0", "5", "0", "0", "3", "2", "0", "6", "0", "1", "2", "2", "0", "5", "0", "2", "3", "2", "0", "3", "0", "3", "2", "4", "0", "7", "0", "2", "1", "3", "0", "6", "0", "3", "2", "5", "0", "7", "0", "0", "2", "3", "0", "8", "0", "2", "3", "6", "0", "10", "0", "1" ]
[ "nonn", "easy" ]
30
1
8
[ "A358094", "A358095", "A358096" ]
null
Yifan Xie, Nov 01 2022
2023-12-31T13:24:56
oeisdata/seq/A358/A358096.seq
ed33f0ab50cb4ac8f8cbb80286c05960
A358097
a(n) is the smallest integer m > n such that m and n have no common digit, or -1 when such integer m does not exist.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "22", "20", "30", "20", "20", "20", "20", "20", "20", "20", "31", "30", "30", "40", "30", "30", "30", "30", "30", "30", "41", "40", "40", "40", "50", "40", "40", "40", "40", "40", "51", "50", "50", "50", "50", "60", "50", "50", "50", "50", "61", "60", "60", "60", "60", "60", "70", "60", "60", "60", "71", "70", "70", "70", "70", "70", "70", "80", "70", "70", "81", "80", "80", "80", "80" ]
[ "nonn", "base", "easy" ]
29
0
2
[ "A002275", "A030283", "A050278", "A050289", "A171102", "A358097", "A358098" ]
null
Bernard Schott, Oct 29 2022
2024-07-03T01:49:58
oeisdata/seq/A358/A358097.seq
b1d3a9b43daa24d3a661f019bd8310bc
A358098
a(n) is the largest integer m < n such that m and n have no common digit, or -1 when such integer m does not exist.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "9", "9", "9", "9", "9", "9", "9", "9", "8", "19", "9", "19", "19", "19", "19", "19", "19", "19", "18", "29", "29", "19", "29", "29", "29", "29", "29", "29", "28", "39", "39", "39", "29", "39", "39", "39", "39", "39", "38", "49", "49", "49", "49", "39", "49", "49", "49", "49", "48", "59", "59", "59", "59", "59", "49", "59", "59", "59", "58", "69", "69", "69", "69", "69", "69", "59", "69", "69", "68", "79" ]
[ "nonn", "base" ]
19
1
3
[ "A050278", "A050289", "A171102", "A358097", "A358098" ]
null
Bernard Schott, Oct 29 2022
2022-11-01T07:15:22
oeisdata/seq/A358/A358098.seq
f6fe3f8481b1a6252ed23855962c05f9
A358099
a(n) is the number of divisors of n whose digits are in strictly decreasing order (A009995).
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "1", "5", "1", "3", "3", "4", "1", "5", "1", "6", "4", "2", "1", "6", "2", "2", "3", "4", "1", "7", "2", "5", "2", "2", "3", "6", "1", "2", "2", "8", "2", "7", "2", "3", "4", "2", "1", "6", "2", "5", "3", "4", "2", "6", "2", "5", "2", "2", "1", "10", "2", "4", "6", "6", "3", "4", "1", "3", "2", "6", "2", "8", "2", "3", "4", "4", "2", "4", "1", "9", "4", "4", "2", "9", "3", "4", "3", "4", "1", "9", "3", "4", "4", "3", "3", "8", "2", "4", "3", "7" ]
[ "nonn", "base" ]
30
1
2
[ "A009995", "A086971", "A087990", "A190219", "A355593", "A357171", "A358099", "A358100", "A358101" ]
null
Bernard Schott, Oct 29 2022
2024-02-12T17:23:25
oeisdata/seq/A358/A358099.seq
92084480f3751b666b8e52558a80410b
A358100
a(n) is the smallest integer that has exactly n divisors whose decimal digits are in strictly decreasing order.
[ "1", "2", "4", "6", "12", "20", "30", "40", "80", "60", "252", "120", "240", "540", "360", "630", "420", "960", "1440", "840", "1260", "2880", "3360", "4320", "2520", "6720", "5040", "8640", "10080", "15120", "50400", "20160", "40320", "30240", "171360", "90720", "383040", "60480", "120960", "181440", "362880", "544320", "937440", "786240", "2056320" ]
[ "nonn", "base", "fini" ]
14
1
2
[ "A009995", "A087997", "A190219", "A355303", "A357172", "A358099", "A358100", "A358101" ]
null
Bernard Schott, Nov 01 2022
2022-11-03T03:57:44
oeisdata/seq/A358/A358100.seq
ba1c4e880357134173a114daa385120a