sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357901 | a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n - 2*k,k)|. | [
"1",
"0",
"0",
"1",
"1",
"2",
"7",
"27",
"131",
"771",
"5320",
"42119",
"376174",
"3740018",
"40956593",
"489749100",
"6348744124",
"88677555115",
"1327628770657",
"21208195526882",
"360053293342379",
"6473501562355779",
"122874692176838047",
"2455382300127368557",
"51524333987938459606",
"1132787775301639812263"
] | [
"nonn"
] | 11 | 0 | 6 | [
"A000142",
"A343579",
"A357901",
"A357902"
] | null | Seiichi Manyama, Oct 19 2022 | 2022-10-19T13:40:45 | oeisdata/seq/A357/A357901.seq | 3640594f34e40cb71bd673fa33118e5e |
A357902 | a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,k)|. | [
"1",
"0",
"0",
"0",
"1",
"1",
"2",
"6",
"25",
"123",
"731",
"5090",
"40595",
"364650",
"3641903",
"40026609",
"480029801",
"6237662582",
"87298953249",
"1309161984315",
"20942605407386",
"355971044728635",
"6406714801013007",
"121715861296354116",
"2434125806029297550",
"51113325326999860554",
"1124432395936987325868"
] | [
"nonn"
] | 10 | 0 | 7 | [
"A000142",
"A343579",
"A357901",
"A357902"
] | null | Seiichi Manyama, Oct 19 2022 | 2022-10-19T13:40:39 | oeisdata/seq/A357/A357902.seq | b6d91ff88dea2e5876d3b192e8055748 |
A357903 | a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,k). | [
"1",
"0",
"0",
"1",
"1",
"1",
"2",
"4",
"8",
"17",
"38",
"89",
"219",
"567",
"1543",
"4400",
"13094",
"40507",
"129874",
"430731",
"1476030",
"5222544",
"19066758",
"71764369",
"278166767",
"1108986222",
"4541765652",
"19085377108",
"82211094414",
"362717859475",
"1638071537802",
"7567876937002",
"35748311794246",
"172558399424154"
] | [
"nonn"
] | 9 | 0 | 7 | [
"A000110",
"A171367",
"A357903",
"A357904"
] | null | Seiichi Manyama, Oct 19 2022 | 2022-10-19T13:40:31 | oeisdata/seq/A357/A357903.seq | 70210cf5b3b7b6b26b62838814d0d631 |
A357904 | a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,k). | [
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"4",
"8",
"16",
"33",
"70",
"153",
"346",
"814",
"2000",
"5138",
"13776",
"38395",
"110695",
"328638",
"1001306",
"3124626",
"9978906",
"32620854",
"109225582",
"374875483",
"1319392590",
"4761630252",
"17610041358",
"66668257846",
"258018795970",
"1019440760020",
"4106982942054"
] | [
"nonn"
] | 9 | 0 | 9 | [
"A000110",
"A171367",
"A357903",
"A357904"
] | null | Seiichi Manyama, Oct 19 2022 | 2022-10-19T13:40:35 | oeisdata/seq/A357/A357904.seq | 8df5e4ec965a7b3d59f83f87a8a0b959 |
A357905 | a(n) = log_3(A060839(n)). | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"2",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"2",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1"
] | [
"nonn",
"easy"
] | 21 | 1 | 63 | [
"A060839",
"A072273",
"A357905",
"A357906"
] | null | Jianing Song, Oct 19 2022 | 2023-10-05T04:11:03 | oeisdata/seq/A357/A357905.seq | 4a9617fb378c8ea11fd712e027708433 |
A357906 | a(n) = log_2(A073103(n)). | [
"0",
"0",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"3",
"3",
"2",
"1",
"1",
"3",
"2",
"1",
"1",
"3",
"2",
"2",
"1",
"2",
"2",
"3",
"1",
"3",
"2",
"2",
"3",
"2",
"2",
"1",
"3",
"4",
"2",
"2",
"1",
"2",
"3",
"1",
"1",
"4",
"1",
"2",
"3",
"3",
"2",
"1",
"3",
"3",
"2",
"2",
"1",
"4",
"2",
"1",
"2",
"3",
"4",
"2",
"1",
"3",
"2",
"3",
"1",
"3",
"2",
"2",
"3",
"2",
"2",
"3",
"1",
"5",
"1",
"2",
"1",
"3",
"4",
"1",
"3",
"3",
"2",
"3",
"3",
"2",
"2",
"1",
"3",
"4",
"2",
"1",
"2",
"3"
] | [
"nonn",
"easy"
] | 15 | 1 | 5 | [
"A072273",
"A073103",
"A357905",
"A357906"
] | null | Jianing Song, Oct 19 2022 | 2023-10-05T04:05:26 | oeisdata/seq/A357/A357906.seq | 48282c4d6927b0af2c950b741c494e30 |
A357907 | The output of a Sinclair ZX81 random number generator. | [
"1",
"149",
"11249",
"57305",
"38044",
"35283",
"24819",
"26463",
"18689",
"25472",
"9901",
"21742",
"57836",
"12332",
"7456",
"34978",
"1944",
"14800",
"61482",
"23634",
"3125",
"37838",
"19833",
"45735",
"22275",
"32274",
"61292",
"9384",
"48504",
"33339",
"10093",
"36142",
"23707",
"8600",
"55241",
"14318",
"25332",
"64938",
"20686",
"44173",
"36199",
"27982"
] | [
"nonn",
"easy"
] | 45 | 1 | 2 | [
"A061364",
"A096550",
"A096561",
"A260083",
"A276820",
"A357907"
] | null | Jacques Basaldúa, Oct 19 2022 | 2024-10-04T00:27:19 | oeisdata/seq/A357/A357907.seq | b91a723874a98cf884bac6fe708065dd |
A357908 | Index of the first occurrence of n-th prime in Van Eck's sequence (A181391), or 0 if n-th prime never appears. | [
"5",
"20",
"12",
"66",
"44",
"121",
"41",
"89",
"101",
"225",
"72",
"92",
"548",
"199",
"297",
"1486",
"490",
"1001",
"735",
"455",
"420",
"611",
"772",
"673",
"187",
"1612",
"3690",
"581",
"417",
"2584",
"7574",
"162",
"1483",
"1048",
"689",
"330",
"1320",
"4007",
"3739",
"2884",
"528",
"3376",
"3045",
"3658",
"2869",
"411",
"935",
"303",
"1751",
"1122",
"376",
"5506",
"599",
"13191",
"494"
] | [
"nonn"
] | 55 | 1 | 1 | [
"A181391",
"A357908"
] | null | G. L. Honaker, Jr., Nov 08 2022 | 2022-11-09T10:42:17 | oeisdata/seq/A357/A357908.seq | 5d5b65112f39313a8acfc0b7eaba4a0d |
A357909 | Primes p such that p+6, p+12, p+18, 4*p+37, 4*p+43, 4*p+49 and 4*p+55 are also all primes. | [
"408211",
"6375751",
"6433741",
"6718471",
"19134931",
"25280791",
"63908851",
"67078801",
"152418151",
"159268561",
"217697911",
"236220991",
"237943591",
"334030981",
"363246211",
"392644921",
"406249171",
"410652031",
"428032441",
"476660281",
"478441291",
"502777111",
"552727711",
"552855001",
"554201731",
"693654721",
"816050071",
"877207141"
] | [
"nonn"
] | 45 | 1 | 1 | [
"A023271",
"A357909"
] | null | J. M. Bergot and Robert Israel, Nov 09 2022 | 2022-11-10T07:44:19 | oeisdata/seq/A357/A357909.seq | 1cd44803d92fb794b91d85f0c8538be5 |
A357910 | The natural numbers ordered lexicographically by their prime factorization, with prime factors written in decreasing order (see comments). | [
"1",
"2",
"4",
"3",
"6",
"8",
"9",
"12",
"5",
"10",
"15",
"30",
"16",
"27",
"18",
"25",
"20",
"45",
"60",
"7",
"14",
"21",
"42",
"35",
"70",
"105",
"210",
"32",
"81",
"24",
"125",
"40",
"75",
"90",
"49",
"28",
"63",
"84",
"175",
"140",
"315",
"420",
"11",
"22",
"33",
"66",
"55",
"110",
"165",
"330",
"77",
"154",
"231",
"462",
"385",
"770",
"1155",
"2310",
"64",
"243",
"36",
"625",
"50"
] | [
"nonn",
"tabf"
] | 13 | 0 | 2 | [
"A000040",
"A000079",
"A002110",
"A003586",
"A003592",
"A007947",
"A019565",
"A182944",
"A357910"
] | null | Michael De Vlieger, Jan 23 2023 | 2023-05-31T11:20:55 | oeisdata/seq/A357/A357910.seq | 1980090cc2c5b7c7b2af55ea89e2da89 |
A357911 | Expansion of Product_{k>=0} (1 - x^(11*k+1)) in powers of x. | [
"1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"2",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"2",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"3",
"-2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"3",
"-3",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"4",
"-4",
"1",
"0",
"0",
"0"
] | [
"sign",
"look"
] | 22 | 0 | 36 | [
"A081362",
"A284312",
"A284313",
"A284314",
"A284499",
"A284585",
"A357911",
"A357912"
] | null | Seiichi Manyama, Jan 17 2023 | 2023-01-18T04:51:24 | oeisdata/seq/A357/A357911.seq | 558990afc9357d932b6551d020869f55 |
A357912 | a(n) = Sum_{d|n, d==1 (mod 11)} d. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"24",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"35",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"46",
"24",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"57",
"1",
"1",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"68",
"35",
"24",
"1",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"79",
"1",
"1",
"1",
"1",
"1",
"13",
"1"
] | [
"nonn"
] | 22 | 1 | 12 | [
"A000593",
"A050449",
"A078181",
"A284097",
"A284098",
"A284099",
"A284100",
"A357911",
"A357912"
] | null | Seiichi Manyama, Jan 17 2023 | 2023-08-09T00:52:58 | oeisdata/seq/A357/A357912.seq | 49bcbf0f2e793ae01e4f2e2f5ae82344 |
A357913 | Inverse of 10 modulo prime(n). | [
"5",
"10",
"4",
"12",
"2",
"7",
"3",
"28",
"26",
"37",
"13",
"33",
"16",
"6",
"55",
"47",
"64",
"22",
"8",
"25",
"9",
"68",
"91",
"31",
"75",
"11",
"34",
"89",
"118",
"96",
"14",
"15",
"136",
"110",
"49",
"117",
"52",
"18",
"163",
"172",
"58",
"138",
"20",
"190",
"67",
"159",
"23",
"70",
"24",
"217",
"226",
"180",
"79",
"27",
"244",
"194",
"253",
"85",
"88",
"215",
"280",
"94",
"222",
"298",
"236",
"243"
] | [
"nonn",
"base"
] | 54 | 4 | 1 | [
"A078606",
"A103876",
"A114013",
"A357913"
] | null | Nicholas Stefan Georgescu, Jan 18 2023 | 2025-02-07T15:55:04 | oeisdata/seq/A357/A357913.seq | 051deac707c1b00f8c897c60e88f45a4 |
A357914 | Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals. | [
"1",
"1",
"-1",
"1",
"0",
"-1",
"1",
"1",
"-1",
"0",
"1",
"2",
"0",
"-1",
"-1",
"1",
"3",
"2",
"-1",
"-2",
"1",
"1",
"4",
"5",
"1",
"-3",
"-1",
"-1",
"1",
"5",
"9",
"6",
"-2",
"-4",
"-2",
"0",
"1",
"6",
"14",
"15",
"4",
"-6",
"-6",
"-2",
"0",
"1",
"7",
"20",
"29",
"19",
"-2",
"-12",
"-8",
"-2",
"1",
"1",
"8",
"27",
"49",
"48",
"17",
"-14",
"-20",
"-10",
"-1",
"-1",
"1",
"9",
"35",
"76",
"97",
"65",
"3",
"-34",
"-30",
"-11",
"-2",
"0"
] | [
"sign",
"tabl"
] | 31 | 1 | 12 | [
"A000012",
"A000096",
"A001477",
"A002321",
"A005286",
"A008683",
"A091555",
"A357914",
"A368429"
] | null | Paolo Xausa, Jan 18 2023 | 2023-12-29T13:53:24 | oeisdata/seq/A357/A357914.seq | 64486f3e687f684348952b1f441603cc |
A357915 | Concatenation of the decimal digits of {n, 1..n}. | [
"11",
"212",
"3123",
"41234",
"512345",
"6123456",
"71234567",
"812345678",
"9123456789",
"1012345678910",
"111234567891011",
"12123456789101112",
"1312345678910111213",
"141234567891011121314",
"15123456789101112131415",
"1612345678910111213141516"
] | [
"nonn",
"base",
"easy"
] | 94 | 1 | 1 | [
"A007908",
"A078257",
"A172495",
"A357915"
] | null | Mikk Heidemaa, Jan 18 2023 | 2023-02-18T20:49:53 | oeisdata/seq/A357/A357915.seq | 2898d5c6ad07d31dd28cd8e6142a92ad |
A357916 | Primes p that can be written as phi(k) + d(k) for some k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k. | [
"2",
"3",
"5",
"13",
"23",
"59",
"113",
"137",
"229",
"457",
"509",
"523",
"661",
"1021",
"2063",
"3541",
"3923",
"4973",
"5449",
"5521",
"9949",
"10103",
"10273",
"12659",
"14107",
"15601",
"16249",
"17033",
"22063",
"25321",
"29759",
"32507",
"34843",
"36293",
"37273",
"52501",
"54059",
"62753",
"68449",
"68909",
"89329",
"99409",
"103963",
"111347",
"125509",
"139297",
"146309",
"157231"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A000005",
"A000010",
"A061468",
"A357916",
"A357917"
] | null | J. M. Bergot and Robert Israel, Oct 19 2022 | 2024-02-29T13:45:32 | oeisdata/seq/A357/A357916.seq | f6ae2a7a3fd0bd1ade863fa4d0fa96b5 |
A357917 | a(n) is the least k such that phi(k) + d(k) = A357916(n), where phi(k) = A000010(k) is Euler's totient function, and d(k) = A000005(k) is the number of divisors of k. | [
"1",
"2",
"4",
"16",
"25",
"81",
"121",
"256",
"484",
"1296",
"529",
"1024",
"1600",
"2116",
"2401",
"7744",
"11664",
"5041",
"7225",
"11236",
"20164",
"10201",
"25600",
"12769",
"30976",
"46656",
"21025",
"17161",
"44944",
"51076",
"29929",
"84100",
"73984",
"36481",
"75076",
"107584",
"54289",
"63001",
"87025",
"69169",
"101761",
"126025",
"215296",
"256036",
"252004",
"295936"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A000005",
"A000010",
"A061468",
"A225983",
"A357916",
"A357917"
] | null | J. M. Bergot and Robert Israel, Oct 19 2022 | 2022-10-25T20:04:48 | oeisdata/seq/A357/A357917.seq | d0b97c5b59f1d511d701656cd2a864cb |
A357918 | Odd numbers that can be written as phi(k) + d(k) for more than one k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k. | [
"2061",
"4131",
"36981",
"78765",
"14054589",
"889978059",
"110543990589"
] | [
"nonn",
"more"
] | 10 | 1 | 1 | [
"A000005",
"A000010",
"A061468",
"A357916",
"A357918"
] | null | J. M. Bergot and Robert Israel, Oct 19 2022 | 2022-10-23T23:27:32 | oeisdata/seq/A357/A357918.seq | 2126bae20598606aaf9278ba55352b24 |
A357919 | a(n) = Sum_{k=0..floor(n/3)} Stirling1(n - 2*k,k). | [
"1",
"0",
"0",
"1",
"-1",
"2",
"-5",
"21",
"-109",
"671",
"-4772",
"38591",
"-350036",
"3520830",
"-38903271",
"468490350",
"-6107642906",
"85704534787",
"-1288021805215",
"20641247413120",
"-351374756822383",
"6332030169529731",
"-120427840368046909",
"2410627702030000447",
"-50661193580285096086"
] | [
"sign"
] | 9 | 0 | 6 | [
"A357901",
"A357919",
"A357920"
] | null | Seiichi Manyama, Oct 20 2022 | 2023-03-13T16:10:19 | oeisdata/seq/A357/A357919.seq | c3d41b5e9e7d05d0bde8561f45ebfc27 |
A357920 | a(n) = Sum_{k=0..floor(n/5)} Stirling1(n - 4*k,k). | [
"1",
"0",
"0",
"0",
"0",
"1",
"-1",
"2",
"-6",
"24",
"-119",
"717",
"-5029",
"40270",
"-362606",
"3627037",
"-39903738",
"478892051",
"-6225994449",
"87167664184",
"-1307553837291",
"20921303563234",
"-355667626509575",
"6402090252833481",
"-121640761396741607",
"2432831275825738669",
"-51089718792714854191"
] | [
"sign"
] | 8 | 0 | 8 | [
"A357902",
"A357919",
"A357920"
] | null | Seiichi Manyama, Oct 20 2022 | 2022-10-20T12:44:40 | oeisdata/seq/A357/A357920.seq | 9c53b0b19e366dcca2b5646bfbfafb64 |
A357921 | Primitive abundant numbers for which there is no smaller primitive abundant number having the same ordered prime signature. | [
"20",
"70",
"88",
"272",
"550",
"572",
"945",
"1184",
"1430",
"1575",
"2205",
"3465",
"4288",
"5775",
"7425",
"8085",
"12705",
"15015",
"16768",
"24272",
"28215",
"47025",
"49875",
"65792",
"69825",
"78975",
"81081",
"103455",
"131625",
"152224",
"153153",
"182325",
"189189",
"266752",
"297297",
"342225",
"351351",
"363375",
"387345",
"392445",
"474045"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A025487",
"A071395",
"A083873",
"A357921"
] | null | David A. Corneth, Oct 20 2022 | 2022-10-23T23:45:23 | oeisdata/seq/A357/A357921.seq | 9188cda86ebd13c2b7af5bf1f6c71c5c |
A357922 | a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n - 4*k,k)|. | [
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"2",
"6",
"24",
"121",
"723",
"5051",
"40370",
"363154",
"3630565",
"39929874",
"479111219",
"6228047601",
"87188921464",
"1307794924973",
"20924276449014",
"355707232027825",
"6402657184129671",
"121649439722758345",
"2432972744390660437",
"51092165603897459951"
] | [
"nonn"
] | 8 | 0 | 8 | [
"A000142",
"A343579",
"A357901",
"A357902",
"A357920",
"A357922"
] | null | Seiichi Manyama, Oct 20 2022 | 2022-10-20T12:44:53 | oeisdata/seq/A357/A357922.seq | 4fcb3a5bd1e7d0020ef42232944d0b1e |
A357923 | a(n) is the least number of terms in the sum S = 1/(n+1) + 1/(n+2) + 1/(n+3) + ... such that S > n. | [
"1",
"3",
"17",
"68",
"242",
"812",
"2619",
"8224",
"25345",
"77006",
"231355",
"688758",
"2034965",
"5973932",
"17441201",
"50678536",
"146643235",
"422769139",
"1214857227",
"3480786068",
"9946872233",
"28357093263",
"80667175724",
"229020154166",
"649028530125",
"1836242560272",
"5187142333288",
"14632132586005"
] | [
"nonn"
] | 23 | 0 | 2 | [
"A002387",
"A357923",
"A358464"
] | null | Gil Broussard, Oct 20 2022 | 2022-12-12T22:30:30 | oeisdata/seq/A357/A357923.seq | 8946cfc4306d21dac87d008a5b6239d7 |
A357924 | Number of groups of order n with trivial center. | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"1",
"0",
"5",
"1",
"1",
"1",
"1",
"0",
"3",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"6",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"5",
"0",
"2",
"0",
"5"
] | [
"nonn",
"hard"
] | 4 | 1 | 18 | [
"A060702",
"A357900",
"A357924"
] | null | Jianing Song, Oct 20 2022 | 2022-10-20T12:44:06 | oeisdata/seq/A357/A357924.seq | ea5f20b3b1a049a7ec45c59a33746bd6 |
A357925 | a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,n - 3*k). | [
"1",
"1",
"1",
"1",
"2",
"4",
"7",
"12",
"23",
"47",
"95",
"192",
"402",
"869",
"1898",
"4181",
"9379",
"21431",
"49556",
"115770",
"273919",
"656476",
"1590061",
"3888783",
"9608337",
"23980678",
"60402964",
"153469477",
"393325442",
"1016628823",
"2648842279",
"6955029849",
"18400676786",
"49042936328",
"131646082259"
] | [
"nonn"
] | 12 | 0 | 5 | [
"A024428",
"A357903",
"A357925",
"A357926"
] | null | Seiichi Manyama, Oct 20 2022 | 2024-02-22T18:44:43 | oeisdata/seq/A357/A357925.seq | ec08d0f95394afd95f33d80ae73ec102 |
A357926 | a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,n - 4*k). | [
"1",
"1",
"1",
"1",
"1",
"2",
"4",
"7",
"11",
"17",
"29",
"54",
"102",
"187",
"337",
"619",
"1179",
"2298",
"4488",
"8733",
"17085",
"33931",
"68407",
"139030",
"283474",
"580477",
"1198195",
"2496661",
"5241757",
"11061986",
"23453024",
"50008919",
"107338755",
"231825945",
"503294589",
"1097731342",
"2405837254",
"5300147291"
] | [
"nonn"
] | 10 | 0 | 6 | [
"A024428",
"A357904",
"A357925",
"A357926"
] | null | Seiichi Manyama, Oct 20 2022 | 2022-10-20T12:43:39 | oeisdata/seq/A357/A357926.seq | c99e00588c04816401581532a275d3f2 |
A357927 | Number of subsets of [n] in which exactly half of the elements are Fibonacci numbers. | [
"1",
"1",
"1",
"1",
"4",
"5",
"15",
"35",
"56",
"126",
"252",
"462",
"792",
"1716",
"3003",
"5005",
"8008",
"12376",
"18564",
"27132",
"38760",
"116280",
"170544",
"245157",
"346104",
"480700",
"657800",
"888030",
"1184040",
"1560780",
"2035800",
"2629575",
"3365856",
"4272048",
"18156204",
"23535820",
"30260340",
"38608020",
"48903492"
] | [
"nonn"
] | 15 | 0 | 5 | [
"A000045",
"A037031",
"A072649",
"A102366",
"A180272",
"A357812",
"A357927"
] | null | Alois P. Heinz, Oct 20 2022 | 2022-11-17T06:24:50 | oeisdata/seq/A357/A357927.seq | da826ee190b96ae56b6117351df8367d |
A357928 | a(n) is the smallest c for which (s+c)^2-n is a square, where s = floor(sqrt(n)), or -1 if no such c exists. | [
"0",
"0",
"-1",
"1",
"0",
"1",
"-1",
"2",
"1",
"0",
"-1",
"3",
"1",
"4",
"-1",
"1",
"0",
"5",
"-1",
"6",
"2",
"1",
"-1",
"8",
"1",
"0",
"-1",
"1",
"3",
"10",
"-1",
"11",
"1",
"2",
"-1",
"1",
"0",
"13",
"-1",
"2",
"1",
"15",
"-1",
"16",
"6",
"1",
"-1",
"18",
"1",
"0",
"-1",
"3",
"7",
"20",
"-1",
"1",
"2",
"4",
"-1",
"23",
"1",
"24",
"-1",
"1",
"0",
"1",
"-1",
"26",
"10",
"5",
"-1",
"28",
"1",
"29",
"-1",
"2",
"12",
"1",
"-1",
"32"
] | [
"sign"
] | 161 | 0 | 8 | [
"A037074",
"A177713",
"A357928"
] | null | Darío Clavijo, Oct 20 2022 | 2022-10-27T07:35:06 | oeisdata/seq/A357/A357928.seq | 09e3db9e338ca42a4e7fe6e4f9d2a73e |
A357929 | Numbers that share a (decimal) digit with at least 1 of their proper divisors. | [
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"24",
"25",
"26",
"28",
"30",
"31",
"32",
"33",
"35",
"36",
"39",
"40",
"41",
"42",
"44",
"45",
"48",
"50",
"51",
"52",
"55",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"70",
"71",
"72",
"74",
"75",
"77",
"80",
"81",
"82",
"84",
"85",
"88",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"98",
"99",
"100",
"101",
"102",
"103"
] | [
"nonn",
"base"
] | 5 | 1 | 1 | [
"A038770",
"A357929"
] | null | Wesley Ivan Hurt, Oct 21 2022 | 2022-10-21T01:34:16 | oeisdata/seq/A357/A357929.seq | cba27b59d4d2d19e21afc15967c1c764 |
A357930 | a(0) = 0; for n > 0, let S = concatenation of a(0)..a(n-1); a(n) is the number of times the digit at a(n-1) digits back from the end of S appears in S. | [
"0",
"1",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"10",
"7",
"7",
"8",
"8",
"7",
"7",
"8",
"8",
"7",
"13",
"7",
"14",
"7",
"13",
"13",
"15",
"15",
"13",
"15",
"15",
"6",
"17",
"16",
"19",
"8",
"10",
"10",
"22",
"10",
"23"
] | [
"nonn",
"base",
"look"
] | 29 | 0 | 4 | [
"A000217",
"A117707",
"A351753",
"A356348",
"A357930"
] | null | Scott R. Shannon, Oct 21 2022 | 2022-10-21T21:59:23 | oeisdata/seq/A357/A357930.seq | 68fcd50fa1edda155782c7a6a30edae9 |
A357931 | a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n - 2*k,n - 3*k)|. | [
"1",
"1",
"1",
"1",
"2",
"4",
"7",
"13",
"27",
"57",
"120",
"262",
"593",
"1361",
"3171",
"7559",
"18356",
"45186",
"112927",
"286689",
"737641",
"1921639",
"5070154",
"13540352",
"36566737",
"99830013",
"275459693",
"767798853",
"2160953618",
"6139721116",
"17604534427",
"50924095081",
"148570523479",
"437071675997"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A124380",
"A353223",
"A357901",
"A357925",
"A357931",
"A357932",
"A357933"
] | null | Seiichi Manyama, Oct 21 2022 | 2023-11-01T04:12:57 | oeisdata/seq/A357/A357931.seq | 5f43369c4a673e72c6ef6692af8e981e |
A357932 | a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,n - 4*k)|. | [
"1",
"1",
"1",
"1",
"1",
"2",
"4",
"7",
"11",
"18",
"33",
"64",
"122",
"227",
"428",
"838",
"1684",
"3396",
"6841",
"13912",
"28787",
"60398",
"127559",
"270687",
"579055",
"1251706",
"2730345",
"5994501",
"13238058",
"29436628",
"65951104",
"148777927",
"337606123",
"770418129",
"1768566987",
"4084504483",
"9486890220"
] | [
"nonn"
] | 10 | 0 | 6 | [
"A124380",
"A353225",
"A357902",
"A357926",
"A357931",
"A357932",
"A357933"
] | null | Seiichi Manyama, Oct 21 2022 | 2022-10-21T10:12:01 | oeisdata/seq/A357/A357932.seq | 67bc11c72f13f2b4fcc71b0f78353e49 |
A357933 | a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n - 4*k,n - 5*k)|. | [
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"4",
"7",
"11",
"16",
"24",
"40",
"72",
"131",
"231",
"395",
"675",
"1187",
"2161",
"4006",
"7414",
"13609",
"24951",
"46210",
"86930",
"165528",
"316682",
"606047",
"1161343",
"2237329",
"4345777",
"8507103",
"16738587",
"33030166",
"65352308",
"129821251",
"259254283",
"520531422",
"1049771054",
"2124315222"
] | [
"nonn"
] | 9 | 0 | 7 | [
"A124380",
"A357931",
"A357932",
"A357933"
] | null | Seiichi Manyama, Oct 21 2022 | 2022-10-21T10:12:12 | oeisdata/seq/A357/A357933.seq | 598885302aab21e359fd6eaa17b9c2fe |
A357934 | Products of two distinct lesser twin primes A001359. | [
"15",
"33",
"51",
"55",
"85",
"87",
"123",
"145",
"177",
"187",
"205",
"213",
"295",
"303",
"319",
"321",
"355",
"411",
"447",
"451",
"493",
"505",
"535",
"537",
"573",
"591",
"649",
"681",
"685",
"697",
"717",
"745",
"781",
"807",
"843",
"895",
"933",
"955",
"985",
"1003",
"1041",
"1111",
"1135",
"1177",
"1189",
"1195",
"1207",
"1257",
"1293",
"1345",
"1383",
"1405",
"1507",
"1555",
"1563"
] | [
"nonn"
] | 22 | 1 | 1 | [
"A001359",
"A006881",
"A357934"
] | null | Artur Jasinski, Oct 21 2022 | 2025-02-13T07:40:35 | oeisdata/seq/A357/A357934.seq | 946e3e8c63ab40414816b02378416c14 |
A357935 | Primes p such that the sum of digits of 11*p is 11. | [
"19",
"37",
"73",
"919",
"937",
"991",
"1873",
"2791",
"3637",
"3673",
"3691",
"4591",
"6373",
"8191",
"91837",
"91873",
"92737",
"92791",
"93637",
"94573",
"181837",
"181873",
"181891",
"182773",
"183637",
"183691",
"185491",
"186391",
"187273",
"272737",
"274591",
"275491",
"276373",
"277273",
"278191",
"363691",
"365473",
"367273",
"455473",
"455491",
"458191",
"459091"
] | [
"nonn",
"base"
] | 11 | 1 | 1 | [
"A166311",
"A279771",
"A357935"
] | null | J. M. Bergot and Robert Israel, Oct 21 2022 | 2022-10-24T08:11:44 | oeisdata/seq/A357/A357935.seq | bdb45e02ce2010799eae5e4dd0e068f4 |
A357936 | a(n) is the least multiple of n that is a Niven (or Harshad) number. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"110",
"12",
"117",
"42",
"30",
"48",
"102",
"18",
"114",
"20",
"21",
"110",
"207",
"24",
"50",
"156",
"27",
"84",
"261",
"30",
"372",
"192",
"132",
"102",
"70",
"36",
"111",
"114",
"117",
"40",
"410",
"42",
"516",
"132",
"45",
"230",
"423",
"48",
"392",
"50",
"102",
"156",
"954",
"54",
"110",
"112",
"114",
"522",
"531",
"60"
] | [
"nonn",
"base",
"easy"
] | 12 | 1 | 2 | [
"A005349",
"A144261",
"A357936",
"A357937"
] | null | Rémy Sigrist, Oct 21 2022 | 2022-10-22T09:51:04 | oeisdata/seq/A357/A357936.seq | 57c5df1afb5adc630e72b746a9ce6063 |
A357937 | a(n) is the least multiple of n that is not a Niven (or Harshad) number. | [
"11",
"14",
"15",
"16",
"15",
"66",
"14",
"16",
"99",
"130",
"11",
"96",
"13",
"14",
"15",
"16",
"17",
"2898",
"19",
"160",
"105",
"22",
"23",
"96",
"25",
"26",
"189",
"28",
"29",
"390",
"31",
"32",
"33",
"34",
"35",
"2988",
"37",
"38",
"39",
"160",
"41",
"168",
"43",
"44",
"495",
"46",
"47",
"96",
"49",
"250",
"51",
"52",
"53",
"28998",
"55",
"56",
"57",
"58",
"59",
"4980",
"61"
] | [
"nonn",
"base"
] | 9 | 1 | 1 | [
"A005349",
"A144262",
"A357936",
"A357937"
] | null | Rémy Sigrist, Oct 21 2022 | 2022-10-22T09:51:08 | oeisdata/seq/A357/A357937.seq | a05b1a3ef19b34c2b1b5a6bf26765786 |
A357938 | Inverse Moebius transform of n * 2^omega(n). | [
"1",
"5",
"7",
"13",
"11",
"35",
"15",
"29",
"25",
"55",
"23",
"91",
"27",
"75",
"77",
"61",
"35",
"125",
"39",
"143",
"105",
"115",
"47",
"203",
"61",
"135",
"79",
"195",
"59",
"385",
"63",
"125",
"161",
"175",
"165",
"325",
"75",
"195",
"189",
"319",
"83",
"525",
"87",
"299",
"275",
"235",
"95",
"427",
"113",
"305",
"245",
"351",
"107",
"395",
"253",
"435",
"273",
"295",
"119",
"1001"
] | [
"nonn",
"easy",
"mult"
] | 26 | 1 | 2 | [
"A001221",
"A008683",
"A298473",
"A357938"
] | null | Werner Schulte, Oct 24 2022 | 2022-11-01T07:14:44 | oeisdata/seq/A357/A357938.seq | d00556df92e8432ecd32c53cbe533041 |
A357939 | a(n) = Sum_{k=0..floor(n/2)} Stirling2(k,n - 2*k). | [
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"3",
"2",
"7",
"7",
"16",
"26",
"41",
"92",
"128",
"317",
"478",
"1107",
"1977",
"4077",
"8547",
"16310",
"37775",
"71489",
"170660",
"339138",
"795833",
"1705058",
"3876254",
"8926023",
"19888522",
"48187837",
"107726407",
"267597455",
"613509355",
"1531527270",
"3646775589",
"9066267823"
] | [
"nonn"
] | 11 | 0 | 9 | [
"A357903",
"A357939",
"A357940",
"A357941"
] | null | Seiichi Manyama, Oct 21 2022 | 2022-10-22T14:01:57 | oeisdata/seq/A357/A357939.seq | 2022498fe1b79fcc21aecda25dd18b7d |
A357940 | a(n) = Sum_{k=0..floor(n/3)} Stirling2(k,n - 3*k). | [
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"3",
"1",
"1",
"7",
"6",
"2",
"15",
"25",
"11",
"32",
"90",
"66",
"78",
"302",
"351",
"267",
"987",
"1703",
"1305",
"3291",
"7799",
"7463",
"11976",
"34568",
"43584",
"51329",
"151631",
"249527",
"266058",
"675490",
"1395375",
"1586432",
"3159982",
"7675720",
"10132557",
"16108875",
"41991096",
"66170977",
"91724556"
] | [
"nonn"
] | 13 | 0 | 12 | [
"A357904",
"A357925",
"A357939",
"A357940",
"A357941"
] | null | Seiichi Manyama, Oct 21 2022 | 2022-10-22T14:02:03 | oeisdata/seq/A357/A357940.seq | 0967301dd72af5b86d72b6faebc876bd |
A357941 | a(n) = Sum_{k=0..floor(n/4)} Stirling2(k,n - 4*k). | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"3",
"1",
"0",
"1",
"7",
"6",
"1",
"1",
"15",
"25",
"10",
"2",
"31",
"90",
"65",
"16",
"64",
"301",
"350",
"141",
"148",
"967",
"1701",
"1051",
"521",
"3053",
"7771",
"6952",
"3157",
"9792",
"34141",
"42527",
"23850",
"34381",
"146500",
"246776",
"181535",
"150513",
"623381",
"1380556",
"1327802",
"889022",
"2691557",
"7530777"
] | [
"nonn"
] | 11 | 0 | 15 | [
"A357926",
"A357939",
"A357940",
"A357941"
] | null | Seiichi Manyama, Oct 21 2022 | 2022-10-22T14:01:51 | oeisdata/seq/A357/A357941.seq | 56f7f04c06f6b74584dcc1a90b28966c |
A357942 | a(1)=1, a(2)=2. Thereafter, if there are prime divisors p | a(n-1) that are coprime to a(n-2), a(n) is the least novel multiple of the product of these primes. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). See comments. | [
"1",
"2",
"4",
"6",
"3",
"9",
"12",
"8",
"10",
"5",
"15",
"18",
"14",
"7",
"21",
"24",
"16",
"20",
"25",
"30",
"36",
"42",
"28",
"56",
"70",
"35",
"105",
"27",
"33",
"11",
"22",
"26",
"13",
"39",
"45",
"40",
"32",
"34",
"17",
"51",
"48",
"38",
"19",
"57",
"54",
"44",
"55",
"50",
"46",
"23",
"69",
"60",
"80",
"90",
"63",
"49",
"77",
"66",
"72",
"78",
"52",
"104",
"130",
"65",
"195",
"75",
"120"
] | [
"nonn"
] | 22 | 1 | 2 | [
"A007947",
"A064413",
"A357942",
"A357963"
] | null | Michael De Vlieger, Oct 22 2022 | 2022-11-18T03:38:46 | oeisdata/seq/A357/A357942.seq | ec26cb2cfff7153418a1a1c0be276f40 |
A357943 | a(0) = 0; a(1) = 1, a(2) = 2; for n > 2, a(n) is the number of times the term a(n - 1 - a(n-1)) has appeared in the sequence. | [
"0",
"1",
"2",
"1",
"1",
"3",
"1",
"1",
"5",
"5",
"5",
"1",
"3",
"3",
"3",
"6",
"3",
"5",
"5",
"5",
"5",
"1",
"7",
"1",
"1",
"9",
"5",
"9",
"8",
"8",
"9",
"9",
"1",
"4",
"2",
"10",
"4",
"10",
"4",
"2",
"2",
"3",
"3",
"4",
"4",
"4",
"7",
"4",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"7",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"4",
"11",
"4",
"11",
"9",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"9",
"13",
"2",
"13",
"2",
"6",
"8",
"8",
"8",
"13",
"8",
"6",
"3",
"3",
"8",
"9",
"9"
] | [
"nonn",
"look"
] | 34 | 0 | 3 | [
"A003056",
"A181391",
"A342585",
"A357930",
"A357943",
"A357944"
] | null | Scott R. Shannon, Oct 22 2022 | 2022-10-23T11:59:34 | oeisdata/seq/A357/A357943.seq | 64778e02f8a4c0fe9987258c01967c00 |
A357944 | If n appears in A357943, a(n) is the smallest k such that A357943(k) = n, otherwise a(n) = -1. | [
"0",
"1",
"2",
"5",
"33",
"8",
"15",
"22",
"28",
"25",
"35",
"65",
"69",
"78",
"123",
"165",
"180",
"97",
"105",
"203",
"115",
"294",
"199",
"373",
"326",
"238",
"300",
"506",
"350",
"354",
"361",
"367",
"380",
"388",
"392",
"408",
"491",
"573",
"628",
"498",
"502",
"509",
"513",
"516",
"744",
"615",
"683",
"763",
"1201",
"1072",
"906",
"1083",
"872",
"1100",
"1113",
"1364",
"1385",
"1438",
"1274",
"1387"
] | [
"nonn"
] | 25 | 0 | 3 | [
"A357943",
"A357944"
] | null | Scott R. Shannon, Oct 22 2022 | 2022-10-23T11:59:37 | oeisdata/seq/A357/A357944.seq | 61213ecd8c79e347be533cf040ac0c98 |
A357945 | Numbers k which are not square but D = (b+c)^2 - k is square, where b = floor(sqrt(k)) and c = k - b^2. | [
"5",
"13",
"28",
"65",
"69",
"76",
"125",
"128",
"189",
"205",
"300",
"305",
"325",
"352",
"413",
"425",
"532",
"533",
"544",
"565",
"693",
"725",
"793",
"828",
"860",
"1025",
"1036",
"1045",
"1105",
"1141",
"1248",
"1449",
"1469",
"1504",
"1525",
"1708",
"1885",
"1917",
"1965",
"2125",
"2240",
"2353",
"2380",
"2501",
"2533",
"2548",
"2812",
"2816",
"2825",
"2829",
"2844",
"2873",
"2893"
] | [
"nonn"
] | 111 | 1 | 1 | [
"A000037",
"A042965",
"A053186",
"A177713",
"A211412",
"A357945"
] | null | Darío Clavijo, Oct 21 2022 | 2023-03-21T05:20:39 | oeisdata/seq/A357/A357945.seq | 420d681d182d25975aaeabec30d448fe |
A357946 | a(n) is the number in the infinite multiplication table that the chess knight reaches in n moves, starting from the number 1, the angle between adjacent segments being 90 degrees alternately changing direction to the left and to the right. | [
"1",
"6",
"8",
"20",
"21",
"40",
"40",
"66",
"65",
"98",
"96",
"136",
"133",
"180",
"176",
"230",
"225",
"286",
"280",
"348",
"341",
"416",
"408",
"490",
"481",
"570",
"560",
"656",
"645",
"748",
"736",
"846",
"833",
"950",
"936",
"1060",
"1045",
"1176",
"1160",
"1298",
"1281",
"1426",
"1408",
"1560",
"1541",
"1700",
"1680",
"1846",
"1825",
"1998",
"1976"
] | [
"nonn",
"easy"
] | 57 | 0 | 2 | [
"A000567",
"A001651",
"A003991",
"A052938",
"A357946"
] | null | Nicolay Avilov, Oct 21 2022 | 2023-09-01T03:58:23 | oeisdata/seq/A357/A357946.seq | 4d86b667ea5a973c1cca15040d56a55c |
A357947 | Number of "tertian" musical chords generated by stacking m minor or major thirds with no allowance of repetition of notes. | [
"1",
"2",
"4",
"7",
"12",
"21",
"36",
"35",
"35",
"37",
"21",
"4",
"0"
] | [
"nonn",
"fini",
"full"
] | 28 | 0 | 2 | null | null | Micah Roberts, Oct 22 2022 | 2023-01-16T14:49:47 | oeisdata/seq/A357/A357947.seq | 18ad1df02c52a7271547a87a9e565a77 |
A357948 | Expansion of e.g.f. exp( x * exp(-x^2) ). | [
"1",
"1",
"1",
"-5",
"-23",
"1",
"601",
"2731",
"-13775",
"-219743",
"-313199",
"15383611",
"125451481",
"-811558175",
"-20767068503",
"-37852036949",
"2898343066081",
"28990920216001",
"-313289894357855",
"-8634009894555653",
"-3214642669500599",
"2108734127922999361",
"20183394611962437241"
] | [
"sign",
"easy"
] | 29 | 0 | 4 | [
"A003725",
"A216688",
"A357948",
"A358063"
] | null | Seiichi Manyama, Oct 29 2022 | 2022-10-29T09:37:59 | oeisdata/seq/A357/A357948.seq | b076dd6f72c4d82d411141db8a824d0b |
A357949 | a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/k!. | [
"1",
"1",
"2",
"6",
"25",
"122",
"726",
"5064",
"40441",
"363603",
"3633852",
"39957180",
"479364841",
"6230652124",
"87218228180",
"1308153551160",
"20929018724041",
"355774626352325",
"6403681619657310",
"121666026312835410",
"2433257739200536081",
"51097345199332200726",
"1124122383340449444042"
] | [
"nonn",
"easy"
] | 31 | 0 | 3 | [
"A000522",
"A003470",
"A357949",
"A358493",
"A358494"
] | null | Seiichi Manyama, Nov 19 2022 | 2024-02-26T10:11:09 | oeisdata/seq/A357/A357949.seq | 944ef620bc02830f700940474a9b7066 |
A357950 | Maximum period of an elementary cellular automaton in a cyclic universe of width n. | [
"2",
"2",
"6",
"8",
"30",
"18",
"126",
"40",
"504",
"430",
"979",
"240",
"1105",
"2198",
"6820",
"6016",
"78812",
"7812",
"183920",
"142580",
"352884",
"122870",
"3459591",
"421188",
"10828525",
"334308",
"81688176",
"989212",
"463347935",
"5921860",
"1211061438",
"26636800",
"3315517623",
"187950912",
"24752893585"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A334499",
"A357950"
] | null | Pontus von Brömssen, Oct 22 2022 | 2022-11-11T07:04:50 | oeisdata/seq/A357/A357950.seq | 9ed15e30250907902fedfbf19e5f7a76 |
A357951 | Maximum period of an outer totalistic cellular automaton on a connected graph with n nodes. | [
"2",
"2",
"4",
"6",
"16",
"26",
"66"
] | [
"nonn",
"more",
"hard"
] | 11 | 1 | 1 | [
"A357951",
"A357952",
"A357953"
] | null | Pontus von Brömssen, Oct 22 2022 | 2022-10-23T13:42:18 | oeisdata/seq/A357/A357951.seq | e9f4c335b265189a0a0f8b01e33abd3d |
A357952 | Maximum period of a totalistic cellular automaton on a connected graph with n nodes (counting the state of the updated node itself). | [
"2",
"2",
"4",
"6",
"8",
"18",
"42",
"112"
] | [
"nonn",
"more",
"hard"
] | 12 | 1 | 1 | [
"A357951",
"A357952",
"A357953"
] | null | Pontus von Brömssen, Oct 22 2022 | 2022-10-23T13:42:22 | oeisdata/seq/A357/A357952.seq | 45ac7bebe7bd4e6ca06758febbe9735a |
A357953 | Maximum period of a totalistic cellular automaton on a connected graph with n nodes (not counting the state of the updated node itself). | [
"1",
"2",
"2",
"6",
"7",
"18",
"38",
"96"
] | [
"nonn",
"more",
"hard"
] | 13 | 1 | 2 | [
"A357951",
"A357952",
"A357953"
] | null | Pontus von Brömssen, Oct 22 2022 | 2022-10-24T14:14:10 | oeisdata/seq/A357/A357953.seq | e33366ec785fdb00c4a3ea523a188665 |
A357954 | Integers k that are periodic points for some iterations of k->A357143(k). | [
"1",
"2",
"3",
"4",
"13",
"18",
"28",
"118",
"194",
"289",
"338",
"353",
"354",
"419",
"489",
"528",
"609",
"769",
"1269",
"1299",
"2081",
"4890",
"4891",
"9113",
"18575",
"18702",
"20759",
"35084",
"1874374",
"338749352",
"2415951874"
] | [
"nonn",
"base",
"fini",
"full"
] | 63 | 1 | 2 | [
"A010346",
"A101337",
"A110592",
"A151544",
"A157714",
"A357143",
"A357954"
] | null | Francesco A. Catalanotti, Oct 22 2022 | 2022-12-02T07:05:28 | oeisdata/seq/A357/A357954.seq | b14ac75b87f1197531be6f9f27c71d52 |
A357955 | a(n) = 3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n). | [
"37",
"60",
"108",
"60",
"-660",
"60",
"82404",
"1411848",
"17540460",
"191318820",
"1952058108",
"19175376324",
"184118073828",
"1743153802320",
"16359157606200",
"152693295412560",
"1420516291306860",
"13190159377278324",
"122358232382484420",
"1134645084249344400",
"10522118980232969340"
] | [
"sign",
"easy"
] | 47 | 0 | 1 | [
"A000984",
"A005809",
"A005810",
"A268590",
"A357509",
"A357567",
"A357568",
"A357569",
"A357955"
] | null | Peter Bala, Oct 22 2022 | 2025-03-23T20:51:56 | oeisdata/seq/A357/A357955.seq | dd4f124a85fc50735ae3ec5c21f3b8c4 |
A357956 | a(n) = 5*A005259(n) - 2*A005258(n). | [
"3",
"19",
"327",
"6931",
"162503",
"4072519",
"107094207",
"2919528211",
"81819974343",
"2343260407519",
"68285241342827",
"2018360803903111",
"60366625228511423",
"1823565812734012639",
"55557838850469305327",
"1705172303553678726931",
"52672608711829111519943",
"1636296668756812403477839",
"51088496012515356589705107"
] | [
"nonn",
"easy"
] | 13 | 0 | 1 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A357567",
"A357568",
"A357569",
"A357956",
"A357957",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 24 2022 | 2022-11-03T04:51:27 | oeisdata/seq/A357/A357956.seq | 268269f4d7ed8e85c3b0815e0877368a |
A357957 | a(n) = A005259(n)^5 - A005258(n)^2. | [
"0",
"3116",
"2073071232",
"6299980938881516",
"39141322964380888600000",
"368495989505416178203682748116",
"4552312485541626792249211584618373944",
"68109360474242016374599574592870648425552876",
"1174806832391451114413440151405736019461523615095744"
] | [
"nonn",
"easy"
] | 13 | 0 | 2 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A357567",
"A357568",
"A357569",
"A357956",
"A357957",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 24 2022 | 2022-11-03T04:51:38 | oeisdata/seq/A357/A357957.seq | de9949fe4ac00eb417efbb127cf45da6 |
A357958 | a(n) = 5*A005259(n) + 14*A005258(n-1). | [
"39",
"407",
"7491",
"167063",
"4112539",
"107461667",
"2923006251",
"81853622423",
"2343591359499",
"68288538877907",
"2018394003648391",
"60366962358086243",
"1823569260750104179",
"55557874330437332267",
"1705172670555862322491",
"52672612525369663916183"
] | [
"nonn",
"easy"
] | 9 | 1 | 1 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A357567",
"A357956",
"A357957",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 25 2022 | 2022-11-06T07:50:09 | oeisdata/seq/A357/A357958.seq | fc3f5a8662e3d9e032b965bd7d5ed93f |
A357959 | a(n) = 5*A005259(n-1) + 2*A005258(n). | [
"11",
"63",
"659",
"9727",
"187511",
"4304943",
"109312739",
"2941124607",
"82033399631",
"2345394917563",
"68306797052879",
"2018580243252847",
"60368874298729631",
"1823588997226603663",
"55558079041172790659",
"1705174802761490321407",
"52672634815976274443711",
"1636296942340074307669443"
] | [
"nonn",
"easy"
] | 9 | 1 | 1 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A356957",
"A357567",
"A357956",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 25 2022 | 2022-11-06T07:50:25 | oeisdata/seq/A357/A357959.seq | a2fc554efff947a5e76ae3f38c988a69 |
A357960 | a(n) = A005259(n-1)^5 * A005258(n)^6. | [
"729",
"147018378125",
"20917910914764786689697",
"24148107115850058575342740485778125",
"79477722547796770983047586179643766765851375729",
"492664048531500749211923278756418311980637289373757041378125",
"4671227340507161302417161873394448514470099313382652883508175438056640625"
] | [
"nonn",
"easy"
] | 7 | 1 | 1 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A357567",
"A357956",
"A357957",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 25 2022 | 2022-11-06T07:50:49 | oeisdata/seq/A357/A357960.seq | bb4fe5119c0061dc92eef7625d27611a |
A357961 | a(1) = 1, and for any n > 0, a(n+1) is the k-th positive number not yet in the sequence, where k is the Hamming weight of a(n). | [
"1",
"2",
"3",
"5",
"6",
"7",
"9",
"8",
"4",
"10",
"12",
"13",
"15",
"17",
"14",
"18",
"16",
"11",
"21",
"22",
"23",
"25",
"24",
"20",
"26",
"28",
"29",
"31",
"33",
"27",
"34",
"30",
"36",
"32",
"19",
"38",
"39",
"41",
"40",
"37",
"43",
"45",
"46",
"47",
"49",
"44",
"48",
"42",
"51",
"53",
"54",
"55",
"57",
"56",
"52",
"58",
"60",
"61",
"63",
"65",
"50",
"62",
"67",
"64",
"35",
"68",
"66"
] | [
"nonn",
"base"
] | 36 | 1 | 2 | [
"A000120",
"A000523",
"A132753",
"A217122",
"A357961",
"A357993",
"A358057"
] | null | Rémy Sigrist, Oct 22 2022 | 2022-10-30T15:08:45 | oeisdata/seq/A357/A357961.seq | 5e8ae547c8a3a210d4491bf25bea89a3 |
A357962 | Expansion of e.g.f. exp( (exp(x^2) - 1)/x ). | [
"1",
"1",
"1",
"4",
"13",
"51",
"271",
"1366",
"8849",
"58717",
"432541",
"3530176",
"29787781",
"279974839",
"2715912291",
"28415168146",
"312503079841",
"3600714035321",
"43979791574809",
"556150585730140",
"7417561518005341",
"102438949373356891",
"1476634705941320311",
"22102618328057267694"
] | [
"nonn"
] | 12 | 0 | 4 | [
"A121452",
"A357962",
"A357964",
"A357965",
"A357966"
] | null | Seiichi Manyama, Oct 22 2022 | 2024-10-19T16:15:18 | oeisdata/seq/A357/A357962.seq | 28bc306d2135ddd0252169683503b1ae |
A357963 | a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). See comments. | [
"1",
"2",
"4",
"6",
"3",
"9",
"12",
"8",
"10",
"5",
"15",
"18",
"14",
"7",
"21",
"24",
"16",
"20",
"25",
"30",
"22",
"11",
"33",
"27",
"36",
"26",
"13",
"39",
"42",
"28",
"56",
"70",
"35",
"105",
"45",
"60",
"32",
"34",
"17",
"51",
"48",
"38",
"19",
"57",
"54",
"40",
"50",
"80",
"90",
"63",
"49",
"77",
"44",
"46",
"23",
"69",
"66",
"52",
"65",
"55",
"88",
"58",
"29",
"87",
"72",
"62",
"31",
"93"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A001221",
"A064413",
"A336957",
"A352187",
"A357963"
] | null | David James Sycamore, Oct 22 2022 | 2022-10-23T01:05:38 | oeisdata/seq/A357/A357963.seq | b6b52a632a0e637a5377012104aa8895 |
A357964 | Expansion of e.g.f. exp( (exp(x^3) - 1)/x^2 ). | [
"1",
"1",
"1",
"1",
"13",
"61",
"181",
"1261",
"12601",
"77113",
"481321",
"6102361",
"63041221",
"492260341",
"6041807773",
"87670198981",
"945716793841",
"11365316711281",
"193962371184721",
"2824572189001393",
"36983289122143741",
"658584258052917421",
"12073641790111934341",
"185876257572349699741"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A353223",
"A357962",
"A357964",
"A357965"
] | null | Seiichi Manyama, Oct 22 2022 | 2022-10-22T14:02:22 | oeisdata/seq/A357/A357964.seq | eaaa07955af722cbcbcc3d43be1e8ab9 |
A357965 | Expansion of e.g.f. exp( (exp(x^4) - 1)/x^3 ). | [
"1",
"1",
"1",
"1",
"1",
"61",
"361",
"1261",
"3361",
"68041",
"1073521",
"8343721",
"43290721",
"432509221",
"11472541081",
"165124339381",
"1457296102081",
"12237047593681",
"322364521392481",
"7462073325643921",
"103362225413048641",
"1051987428484484941",
"21127644716862970441"
] | [
"nonn"
] | 8 | 0 | 6 | [
"A353225",
"A357962",
"A357964",
"A357965"
] | null | Seiichi Manyama, Oct 22 2022 | 2022-10-22T14:02:18 | oeisdata/seq/A357/A357965.seq | afee898bfcbe814aa8dea8b5845ae9c4 |
A357966 | Expansion of e.g.f. exp( x * (exp(x^2) - 1) ). | [
"1",
"0",
"0",
"6",
"0",
"60",
"360",
"840",
"20160",
"75600",
"1058400",
"10311840",
"79833600",
"1305944640",
"11018367360",
"174616041600",
"2150397849600",
"28661419987200",
"473667677683200",
"6293779652160000",
"114484773731328000",
"1766543101087564800",
"31640707215390873600"
] | [
"nonn"
] | 14 | 0 | 4 | [
"A353226",
"A357966",
"A357967",
"A357968"
] | null | Seiichi Manyama, Oct 22 2022 | 2022-10-22T14:02:14 | oeisdata/seq/A357/A357966.seq | 1a9b002715acc1845a79c83013ca5b13 |
A357967 | Expansion of e.g.f. exp( x * (exp(x^3) - 1) ). | [
"1",
"0",
"0",
"0",
"24",
"0",
"0",
"2520",
"20160",
"0",
"604800",
"19958400",
"79833600",
"259459200",
"25427001600",
"326918592000",
"1046139494400",
"44460928512000",
"1333827855360000",
"10306043229081600",
"125024130975744000",
"6386367771463680000",
"101695303941783552000",
"861733891296165888000"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A353227",
"A357966",
"A357967",
"A357968"
] | null | Seiichi Manyama, Oct 22 2022 | 2022-10-22T14:02:10 | oeisdata/seq/A357/A357967.seq | e684f223fcce923495a6545e544306aa |
A357968 | Expansion of e.g.f. exp( x * (exp(x^4) - 1) ). | [
"1",
"0",
"0",
"0",
"0",
"120",
"0",
"0",
"0",
"181440",
"1814400",
"0",
"0",
"1037836800",
"43589145600",
"217945728000",
"0",
"14820309504000",
"1867358997504000",
"30411275102208000",
"101370917007360000",
"425757851430912000",
"140500090972200960000",
"5385836820601036800000"
] | [
"nonn"
] | 10 | 0 | 6 | [
"A357966",
"A357967",
"A357968"
] | null | Seiichi Manyama, Oct 22 2022 | 2022-10-22T14:02:07 | oeisdata/seq/A357/A357968.seq | 763d853fdea5209964b44efefd6e3516 |
A357969 | Decimal expansion of the constant Sum_{j>=0} j!/prime(j)#, where prime(j)# indicates the j-th primorial number. | [
"2",
"2",
"4",
"0",
"0",
"5",
"3",
"6",
"5",
"2",
"6",
"8",
"9",
"0",
"5",
"0",
"1",
"1",
"0",
"2",
"5",
"7",
"2",
"0",
"6",
"4",
"2",
"7",
"6",
"2",
"5",
"8",
"0",
"9",
"4",
"4",
"3",
"9",
"1",
"8",
"3",
"9",
"3",
"1",
"4",
"3",
"0",
"1",
"5",
"9",
"5",
"5",
"4",
"6",
"6",
"8",
"3",
"6",
"4",
"6",
"9",
"9",
"5",
"9",
"2",
"3",
"3",
"9",
"8",
"6",
"1",
"3",
"6",
"6",
"8",
"6",
"6",
"7",
"4",
"6",
"0",
"1",
"9",
"4",
"6",
"5",
"7"
] | [
"cons",
"easy",
"nonn"
] | 28 | 1 | 1 | [
"A000142",
"A002110",
"A064648",
"A357969"
] | null | Marco Ripà, Oct 22 2022 | 2022-10-28T02:39:59 | oeisdata/seq/A357/A357969.seq | 09e443eb064c5043a29a764efb92ed90 |
A357970 | a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 3 and 6 segments, respectively. | [
"24",
"20",
"23",
"23",
"22",
"23",
"24",
"21",
"25",
"24",
"20",
"16",
"19",
"19",
"18",
"19",
"20",
"17",
"21",
"20",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"23",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"23",
"22",
"18",
"21",
"21",
"20",
"21",
"22",
"19",
"23",
"22",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"23",
"20",
"16",
"19",
"19",
"18",
"19",
"20"
] | [
"nonn",
"base",
"easy"
] | 21 | 0 | 1 | [
"A006942",
"A008588",
"A055642",
"A055643",
"A357970",
"A357971",
"A357972",
"A357973",
"A357974"
] | null | Stefano Spezia, Oct 22 2022 | 2022-10-23T09:19:17 | oeisdata/seq/A357/A357970.seq | 5fbdf9c5cc5cd9f9157b9a2176e9d0fd |
A357971 | a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 4 and 6 segments, respectively. | [
"24",
"20",
"23",
"23",
"22",
"23",
"24",
"22",
"25",
"24",
"20",
"16",
"19",
"19",
"18",
"19",
"20",
"18",
"21",
"20",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"23",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"23",
"22",
"18",
"21",
"21",
"20",
"21",
"22",
"20",
"23",
"22",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"23",
"20",
"16",
"19",
"19",
"18",
"19",
"20"
] | [
"nonn",
"base",
"easy"
] | 19 | 0 | 1 | [
"A008588",
"A010371",
"A055642",
"A055643",
"A357970",
"A357971",
"A357972",
"A357973",
"A357974"
] | null | Stefano Spezia, Oct 22 2022 | 2022-10-23T09:19:12 | oeisdata/seq/A357/A357971.seq | 754f1eb974f8d52e4cf00bf03229d71b |
A357972 | a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 5, 3 and 5 segments, respectively. | [
"24",
"20",
"23",
"23",
"22",
"23",
"23",
"21",
"25",
"23",
"20",
"16",
"19",
"19",
"18",
"19",
"19",
"17",
"21",
"19",
"23",
"19",
"22",
"22",
"21",
"22",
"22",
"20",
"24",
"22",
"23",
"19",
"22",
"22",
"21",
"22",
"22",
"20",
"24",
"22",
"22",
"18",
"21",
"21",
"20",
"21",
"21",
"19",
"23",
"21",
"23",
"19",
"22",
"22",
"21",
"22",
"22",
"20",
"24",
"22",
"20",
"16",
"19",
"19",
"18",
"19",
"19"
] | [
"nonn",
"base",
"easy"
] | 20 | 0 | 1 | [
"A008588",
"A055642",
"A055643",
"A063720",
"A357970",
"A357971",
"A357972",
"A357973",
"A357974"
] | null | Stefano Spezia, Oct 22 2022 | 2022-10-23T09:19:03 | oeisdata/seq/A357/A357972.seq | 18f7ff0570f2edd5a97ec65429b7ea6c |
A357973 | a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 4 and 5 segments, respectively. | [
"24",
"20",
"23",
"23",
"22",
"23",
"24",
"22",
"25",
"23",
"20",
"16",
"19",
"19",
"18",
"19",
"20",
"18",
"21",
"19",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"22",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"22",
"22",
"18",
"21",
"21",
"20",
"21",
"22",
"20",
"23",
"21",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"21",
"24",
"22",
"20",
"16",
"19",
"19",
"18",
"19",
"20"
] | [
"nonn",
"base",
"easy"
] | 21 | 0 | 1 | [
"A008588",
"A055642",
"A055643",
"A074458",
"A357970",
"A357971",
"A357972",
"A357973",
"A357974"
] | null | Stefano Spezia, Oct 22 2022 | 2022-10-24T22:05:39 | oeisdata/seq/A357/A357973.seq | 248d05557144c04562a392896689874d |
A357974 | a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 3 and 5 segments, respectively. | [
"24",
"20",
"23",
"23",
"22",
"23",
"24",
"21",
"25",
"23",
"20",
"16",
"19",
"19",
"18",
"19",
"20",
"17",
"21",
"19",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"22",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"22",
"22",
"18",
"21",
"21",
"20",
"21",
"22",
"19",
"23",
"21",
"23",
"19",
"22",
"22",
"21",
"22",
"23",
"20",
"24",
"22",
"20",
"16",
"19",
"19",
"18",
"19",
"20"
] | [
"nonn",
"base",
"easy"
] | 18 | 0 | 1 | [
"A008588",
"A055642",
"A055643",
"A277116",
"A357970",
"A357971",
"A357972",
"A357973",
"A357974"
] | null | Stefano Spezia, Oct 22 2022 | 2022-10-23T09:19:32 | oeisdata/seq/A357/A357974.seq | 211e9d3f0f8a40800f3f2f8f5cd38946 |
A357975 | Divide all prime indices by 2, round down, and take the number with those prime indices, assuming prime(0) = 1. | [
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"4",
"2",
"3",
"2",
"5",
"3",
"4",
"1",
"5",
"4",
"7",
"2",
"6",
"3",
"7",
"2",
"4",
"5",
"8",
"3",
"11",
"4",
"11",
"1",
"6",
"5",
"6",
"4",
"13",
"7",
"10",
"2",
"13",
"6",
"17",
"3",
"8",
"7",
"17",
"2",
"9",
"4",
"10",
"5",
"19",
"8",
"6",
"3",
"14",
"11",
"19",
"4",
"23",
"11",
"12",
"1",
"10",
"6",
"23",
"5",
"14",
"6",
"29",
"4",
"29",
"13",
"8",
"7",
"9",
"10",
"31"
] | [
"nonn"
] | 14 | 1 | 3 | [
"A000079",
"A003961",
"A004526",
"A056239",
"A064988",
"A064989",
"A066207",
"A076610",
"A109763",
"A112798",
"A164095",
"A215366",
"A248601",
"A297002",
"A357975",
"A357980"
] | null | Gus Wiseman, Oct 23 2022 | 2023-02-12T17:29:44 | oeisdata/seq/A357/A357975.seq | fd4f314f762073a9d05c18453c2b32c7 |
A357976 | Numbers with a divisor having the same sum of prime indices as their quotient. | [
"1",
"4",
"9",
"12",
"16",
"25",
"30",
"36",
"40",
"48",
"49",
"63",
"64",
"70",
"81",
"84",
"90",
"100",
"108",
"112",
"120",
"121",
"144",
"154",
"160",
"165",
"169",
"192",
"196",
"198",
"210",
"220",
"225",
"252",
"256",
"264",
"270",
"273",
"280",
"286",
"289",
"300",
"324",
"325",
"336",
"351",
"352",
"360",
"361",
"364",
"390",
"400",
"432",
"441",
"442",
"448"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A001221",
"A001222",
"A002219",
"A033879",
"A033880",
"A056239",
"A064914",
"A112798",
"A181819",
"A213086",
"A235130",
"A237194",
"A237258",
"A276107",
"A300061",
"A300273",
"A321144",
"A357854",
"A357879",
"A357975",
"A357976"
] | null | Gus Wiseman, Oct 26 2022 | 2023-10-26T20:16:18 | oeisdata/seq/A357/A357976.seq | f89ac1c618254a43c49756e3694eaf35 |
A357977 | Replace prime(k) with prime(A000041(k)) in the prime factorization of n. | [
"1",
"2",
"3",
"4",
"5",
"6",
"11",
"8",
"9",
"10",
"17",
"12",
"31",
"22",
"15",
"16",
"47",
"18",
"79",
"20",
"33",
"34",
"113",
"24",
"25",
"62",
"27",
"44",
"181",
"30",
"263",
"32",
"51",
"94",
"55",
"36",
"389",
"158",
"93",
"40",
"547",
"66",
"761",
"68",
"45",
"226",
"1049",
"48",
"121",
"50",
"141",
"124",
"1453",
"54",
"85",
"88",
"237",
"362",
"1951",
"60",
"2659",
"526"
] | [
"nonn",
"mult"
] | 19 | 1 | 2 | [
"A000040",
"A000041",
"A000720",
"A003961",
"A003964",
"A056239",
"A063834",
"A064988",
"A064989",
"A076610",
"A112798",
"A215366",
"A296150",
"A299201",
"A299202",
"A357852",
"A357975",
"A357977",
"A357978",
"A357979",
"A357980",
"A357983"
] | null | Gus Wiseman, Oct 23 2022 | 2024-10-04T08:51:33 | oeisdata/seq/A357/A357977.seq | 081e67d02b875dd1f6ab8c188d34d44b |
A357978 | Replace prime(k) with prime(A000009(k)) in the prime factorization of n. | [
"1",
"2",
"2",
"4",
"3",
"4",
"3",
"8",
"4",
"6",
"5",
"8",
"7",
"6",
"6",
"16",
"11",
"8",
"13",
"12",
"6",
"10",
"19",
"16",
"9",
"14",
"8",
"12",
"29",
"12",
"37",
"32",
"10",
"22",
"9",
"16",
"47",
"26",
"14",
"24",
"61",
"12",
"79",
"20",
"12",
"38",
"103",
"32",
"9",
"18",
"22",
"28",
"131",
"16",
"15",
"24",
"26",
"58",
"163",
"24",
"199",
"74",
"12",
"64",
"21",
"20",
"251",
"44",
"38"
] | [
"nonn",
"mult"
] | 13 | 1 | 2 | [
"A000040",
"A000041",
"A000720",
"A003961",
"A003964",
"A056239",
"A063834",
"A064988",
"A064989",
"A076610",
"A112798",
"A215366",
"A296150",
"A299201",
"A299202",
"A357852",
"A357975",
"A357977",
"A357978",
"A357979",
"A357980",
"A357983"
] | null | Gus Wiseman, Oct 24 2022 | 2024-10-04T08:51:25 | oeisdata/seq/A357/A357978.seq | ae3ebfb93b6f3618ca8d82b8517bd221 |
A357979 | Second MTF-transform of A000041. Replace prime(k) with prime(A357977(k)) in the prime factorization of n. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"31",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"59",
"32",
"33",
"62",
"35",
"36",
"37",
"38",
"39",
"40",
"127",
"42",
"79",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"93",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"211",
"60",
"61",
"118",
"63",
"64",
"65",
"66"
] | [
"nonn",
"mult"
] | 10 | 1 | 2 | [
"A000040",
"A000041",
"A000720",
"A003961",
"A003964",
"A056239",
"A063834",
"A064988",
"A064989",
"A076610",
"A112798",
"A215366",
"A296150",
"A299201",
"A299202",
"A357852",
"A357975",
"A357977",
"A357978",
"A357979",
"A357980",
"A357983"
] | null | Gus Wiseman, Oct 24 2022 | 2024-10-04T08:51:21 | oeisdata/seq/A357/A357979.seq | 3fd257c88d146b654d381ffa2f0e78d1 |
A357980 | Replace prime(k) with prime(A000720(k)) in the prime factorization of n, assuming prime(0) = 1. | [
"1",
"1",
"2",
"1",
"3",
"2",
"3",
"1",
"4",
"3",
"5",
"2",
"5",
"3",
"6",
"1",
"7",
"4",
"7",
"3",
"6",
"5",
"7",
"2",
"9",
"5",
"8",
"3",
"7",
"6",
"11",
"1",
"10",
"7",
"9",
"4",
"11",
"7",
"10",
"3",
"13",
"6",
"13",
"5",
"12",
"7",
"13",
"2",
"9",
"9",
"14",
"5",
"13",
"8",
"15",
"3",
"14",
"7",
"17",
"6",
"17",
"11",
"12",
"1",
"15",
"10",
"19",
"7",
"14",
"9",
"19",
"4",
"19",
"11",
"18",
"7",
"15",
"10"
] | [
"nonn",
"mult"
] | 13 | 1 | 3 | [
"A000040",
"A000720",
"A003961",
"A056239",
"A063834",
"A064988",
"A064989",
"A066207",
"A076610",
"A112798",
"A215366",
"A296150",
"A357852",
"A357975",
"A357977",
"A357978",
"A357980",
"A357983",
"A357984"
] | null | Gus Wiseman, Oct 24 2022 | 2024-10-04T08:51:37 | oeisdata/seq/A357/A357980.seq | 22507d2a9f0e7bf87b9feb2ae04e8de2 |
A357981 | Numbers whose prime indices have only prime numbers as their own prime indices. | [
"1",
"2",
"4",
"5",
"8",
"10",
"11",
"16",
"20",
"22",
"23",
"25",
"31",
"32",
"40",
"44",
"46",
"47",
"50",
"55",
"59",
"62",
"64",
"80",
"88",
"92",
"94",
"97",
"100",
"103",
"110",
"115",
"118",
"121",
"124",
"125",
"127",
"128",
"137",
"155",
"160",
"176",
"179",
"184",
"188",
"194",
"197",
"200",
"206",
"220",
"230",
"233",
"235",
"236",
"242",
"248",
"250",
"253",
"254"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A000040",
"A000079",
"A003961",
"A045966",
"A056239",
"A064988",
"A066207",
"A076610",
"A112798",
"A215366",
"A357977",
"A357980",
"A357981",
"A357983"
] | null | Gus Wiseman, Oct 23 2022 | 2022-10-25T09:03:42 | oeisdata/seq/A357/A357981.seq | f0f82510c05ee8fbc92cedc461cd607c |
A357982 | Replace prime(k) with A000009(k) in the prime factorization of n. | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"4",
"2",
"2",
"1",
"5",
"1",
"6",
"2",
"2",
"3",
"8",
"1",
"4",
"4",
"1",
"2",
"10",
"2",
"12",
"1",
"3",
"5",
"4",
"1",
"15",
"6",
"4",
"2",
"18",
"2",
"22",
"3",
"2",
"8",
"27",
"1",
"4",
"4",
"5",
"4",
"32",
"1",
"6",
"2",
"6",
"10",
"38",
"2",
"46",
"12",
"2",
"1",
"8",
"3",
"54",
"5",
"8",
"4",
"64",
"1",
"76",
"15",
"4",
"6",
"6",
"4",
"89",
"2",
"1"
] | [
"nonn",
"mult"
] | 19 | 1 | 5 | [
"A000040",
"A000041",
"A000720",
"A003586",
"A003961",
"A003964",
"A056239",
"A059485",
"A063834",
"A064988",
"A064989",
"A076610",
"A112798",
"A215366",
"A273873",
"A296150",
"A299200",
"A299201",
"A299203",
"A357852",
"A357975",
"A357977",
"A357978",
"A357979",
"A357980",
"A357982",
"A357983"
] | null | Gus Wiseman, Oct 25 2022 | 2024-10-04T08:51:16 | oeisdata/seq/A357/A357982.seq | ccab3abeec77c6515cedfed1d214f41e |
A357983 | Second MTF-transform of the primes (A000040). Replace prime(k) with prime(A064988(k)) in the prime factorization of n. | [
"1",
"2",
"5",
"4",
"11",
"10",
"23",
"8",
"25",
"22",
"31",
"20",
"47",
"46",
"55",
"16",
"59",
"50",
"103",
"44",
"115",
"62",
"97",
"40",
"121",
"94",
"125",
"92",
"137",
"110",
"127",
"32",
"155",
"118",
"253",
"100",
"197",
"206",
"235",
"88",
"179",
"230",
"233",
"124",
"275",
"194",
"257",
"80",
"529",
"242",
"295",
"188",
"419",
"250",
"341",
"184",
"515",
"274"
] | [
"nonn",
"mult"
] | 11 | 1 | 2 | [
"A000040",
"A000720",
"A003961",
"A003964",
"A056239",
"A063834",
"A064988",
"A064989",
"A076610",
"A112798",
"A215366",
"A296150",
"A299201",
"A299202",
"A357852",
"A357975",
"A357977",
"A357979",
"A357980",
"A357983"
] | null | Gus Wiseman, Oct 24 2022 | 2024-10-04T08:51:29 | oeisdata/seq/A357/A357983.seq | 0f92a171398b3ac57da9cf8ce2c7c5d5 |
A357984 | Replace prime(k) with A000720(k) in the prime factorization of n. | [
"1",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"3",
"0",
"2",
"0",
"4",
"0",
"4",
"0",
"2",
"0",
"4",
"0",
"4",
"0",
"1",
"0",
"4",
"0",
"5",
"0",
"3",
"0",
"4",
"0",
"5",
"0",
"3",
"0",
"6",
"0",
"6",
"0",
"2",
"0",
"6",
"0",
"4",
"0",
"4",
"0",
"6",
"0",
"6",
"0",
"4",
"0",
"7",
"0",
"7",
"0",
"2",
"0",
"6",
"0",
"8",
"0",
"4",
"0",
"8",
"0",
"8",
"0",
"4",
"0",
"6",
"0",
"8",
"0",
"1",
"0",
"9",
"0",
"8",
"0",
"4"
] | [
"nonn",
"mult"
] | 9 | 1 | 5 | [
"A000040",
"A000720",
"A003961",
"A033879",
"A033880",
"A056239",
"A063834",
"A064988",
"A064989",
"A066207",
"A076610",
"A112798",
"A296150",
"A299200",
"A355741",
"A355742",
"A357852",
"A357975",
"A357977",
"A357980",
"A357982",
"A357983",
"A357984"
] | null | Gus Wiseman, Oct 25 2022 | 2024-10-04T08:51:12 | oeisdata/seq/A357/A357984.seq | 638a19a29c6e4f89e02f490264cc4c59 |
A357985 | Counterclockwise square spiral constructed using the integers so that a(n) plus all other numbers currently visible from the current number equals n; start with a(0) = 0. | [
"0",
"1",
"1",
"1",
"2",
"1",
"3",
"-1",
"6",
"-2",
"-1",
"0",
"1",
"9",
"-8",
"15",
"-5",
"-7",
"-10",
"14",
"-29",
"58",
"-78",
"101",
"-118",
"150",
"-61",
"309",
"-307",
"553",
"-494",
"-186",
"-644",
"315",
"-1177",
"731",
"-1458",
"3480",
"-5183",
"7096",
"-8328",
"9735",
"-10882",
"7200",
"-29452",
"31322",
"-52670",
"51401",
"-65210",
"61001",
"11318",
"135012",
"-109687",
"259226",
"-221542"
] | [
"sign"
] | 43 | 0 | 5 | [
"A274640",
"A275609",
"A307834",
"A355270",
"A357985",
"A357991"
] | null | Scott R. Shannon, Oct 23 2022 | 2023-04-13T06:08:55 | oeisdata/seq/A357/A357985.seq | 5a34006212ca8858dbbe48e647a8fc3a |
A357986 | a(n) is the unique k such that A357579(k) = A007916(n), or -1 if no such k exists. | [
"1",
"2",
"4",
"5",
"3",
"7",
"8",
"6",
"12",
"14",
"11",
"9",
"10",
"16",
"13",
"20",
"19",
"15",
"25",
"18",
"17",
"21",
"27",
"26",
"22",
"29",
"23",
"24",
"28",
"31",
"32",
"30",
"36",
"34",
"33",
"38",
"35",
"43",
"41",
"44",
"37",
"46",
"40",
"39",
"49",
"51",
"42",
"48",
"45",
"50",
"47",
"55",
"57",
"54",
"52",
"53",
"63",
"58",
"56",
"67",
"60",
"59",
"62",
"65",
"61",
"69",
"66"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A007916",
"A357579",
"A357986"
] | null | Rémy Sigrist, Oct 23 2022 | 2022-10-23T13:42:55 | oeisdata/seq/A357/A357986.seq | c6037872e7a32ed2a905b6297ad205cf |
A357987 | Lexicographically earliest sequence of positive integers such that no sum of consecutive terms is a square or higher power of an integer. | [
"2",
"3",
"2",
"5",
"5",
"2",
"3",
"2",
"21",
"5",
"2",
"5",
"5",
"5",
"7",
"6",
"5",
"6",
"6",
"7",
"11",
"24",
"2",
"13",
"5",
"6",
"35",
"7",
"10",
"34",
"6",
"15",
"2",
"28",
"10",
"2",
"5",
"14",
"19",
"2",
"5",
"28",
"2",
"3",
"2",
"35",
"2",
"18",
"6",
"11",
"3",
"3",
"37",
"2",
"5",
"26",
"29",
"33",
"42",
"13",
"5",
"5",
"10",
"11",
"13",
"21",
"18",
"5",
"10",
"5",
"6",
"7",
"24",
"20",
"3",
"15"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A001597",
"A007916",
"A357579",
"A357987"
] | null | Rémy Sigrist, Oct 23 2022 | 2022-10-24T11:13:35 | oeisdata/seq/A357/A357987.seq | 54979a731e95cfabed214dff7e30996b |
A357988 | a(n) is the unique k such that A357579(k) = prime(n) (the n-th prime number), or -1 if no such k exists. | [
"1",
"2",
"4",
"3",
"8",
"12",
"9",
"16",
"15",
"21",
"26",
"24",
"30",
"34",
"43",
"40",
"45",
"47",
"53",
"67",
"59",
"64",
"70",
"74",
"84",
"94",
"89",
"96",
"93",
"107",
"110",
"112",
"120",
"128",
"124",
"134",
"137",
"148",
"156",
"150",
"163",
"161",
"170",
"174",
"180",
"186",
"189",
"208",
"201",
"209",
"213",
"207",
"222",
"219",
"240",
"244",
"245",
"247",
"250"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A357579",
"A357986",
"A357988"
] | null | Rémy Sigrist, Oct 23 2022 | 2022-10-23T13:42:51 | oeisdata/seq/A357/A357988.seq | 1153f7914713068e979283c1b304fb9f |
A357989 | Lexicographically earliest sequence of distinct numbers such that every sum of consecutive terms is an evil number (A001969). | [
"0",
"3",
"6",
"9",
"15",
"24",
"29",
"43",
"58",
"53",
"18",
"68",
"298",
"399",
"71",
"373",
"2628",
"444",
"768",
"2304",
"6144",
"2631",
"441",
"3072",
"1604",
"10684",
"33348",
"1212",
"3908",
"11452",
"836",
"3075",
"1209",
"43264",
"98304",
"33351",
"3513",
"1607",
"10681",
"1675",
"3001",
"44476",
"4676",
"12288",
"3516",
"176128",
"524868"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A000069",
"A001969",
"A357579",
"A357989"
] | null | Rémy Sigrist, Oct 23 2022 | 2022-10-25T03:35:10 | oeisdata/seq/A357/A357989.seq | 066c5e8cd3c7e5c6d827fb409b61c0cb |
A357990 | Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1). | [
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"1",
"7",
"1",
"7",
"1",
"1",
"3",
"19",
"1",
"9",
"1",
"1",
"7",
"5",
"37",
"1",
"11",
"1",
"1",
"1",
"11",
"7",
"61",
"1",
"13",
"1",
"1",
"15",
"1",
"15",
"9",
"91",
"1",
"15",
"1",
"1",
"7",
"65",
"1",
"19",
"11",
"127",
"1",
"17",
"1",
"1",
"17",
"19",
"175",
"1",
"23",
"13",
"169",
"1",
"19",
"1",
"1",
"3",
"43",
"37",
"369",
"1",
"27",
"15",
"217",
"1",
"21"
] | [
"nonn",
"base",
"tabl"
] | 38 | 0 | 4 | [
"A000120",
"A053645",
"A290255",
"A329369",
"A357990"
] | null | Mikhail Kurkov, Nov 20 2022 | 2024-05-27T23:15:12 | oeisdata/seq/A357/A357990.seq | a150ffdad93f814efe2f12f54a781e46 |
A357991 | Lexicographically earliest counterclockwise square spiral constructed using the nonnegative integers so that a(n) plus all other numbers currently visible from the current number form a distinct sum; start with a(0) = 0. | [
"0",
"1",
"1",
"1",
"2",
"1",
"3",
"0",
"4",
"0",
"0",
"0",
"1",
"5",
"0",
"6",
"0",
"0",
"1",
"0",
"2",
"4",
"0",
"7",
"0",
"8",
"0",
"7",
"0",
"7",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"12",
"0",
"13",
"0",
"16",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"12",
"0",
"22",
"0",
"19",
"0",
"20",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"17",
"0",
"25",
"0",
"24",
"0",
"20",
"1",
"26",
"0",
"28",
"0",
"26",
"0",
"31",
"0",
"31",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 10 | 0 | 5 | [
"A274640",
"A275609",
"A307834",
"A355270",
"A357985",
"A357991"
] | null | Scott R. Shannon, Oct 23 2022 | 2022-10-24T11:11:58 | oeisdata/seq/A357/A357991.seq | 5f8c8f7959a820626b820a6ce5959739 |
A357992 | a(1)=1,a(2)=2,a(3)=3. Thereafter, if there are prime divisors p of a(n-2) which do not divide a(n-1), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-2). | [
"1",
"2",
"3",
"4",
"6",
"8",
"9",
"10",
"12",
"5",
"14",
"15",
"7",
"18",
"21",
"16",
"24",
"20",
"27",
"22",
"30",
"11",
"25",
"33",
"35",
"36",
"28",
"39",
"26",
"42",
"13",
"32",
"52",
"34",
"65",
"17",
"40",
"51",
"38",
"45",
"19",
"48",
"57",
"44",
"54",
"55",
"46",
"50",
"23",
"56",
"69",
"49",
"60",
"63",
"58",
"66",
"29",
"62",
"87",
"31",
"72",
"93",
"64",
"75",
"68",
"70",
"85",
"74"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A001221",
"A064413",
"A352187",
"A357963",
"A357992"
] | null | David James Sycamore, Oct 23 2022 | 2022-10-23T23:37:17 | oeisdata/seq/A357/A357992.seq | 41b31f4ee4626035db247a8b31341b68 |
A357993 | a(n) is the unique k such that A357961(k) = 2^n. | [
"1",
"2",
"9",
"8",
"17",
"34",
"64",
"129",
"252",
"515",
"1026",
"2044",
"4091",
"8184",
"16375",
"32758",
"65525",
"131060",
"262131",
"524279",
"1048566",
"2097167",
"4194322",
"8388590",
"16777203",
"33554450",
"67108877",
"134217712",
"268435473",
"536870929",
"1073741807",
"2147483622",
"4294967278",
"8589934615"
] | [
"nonn",
"base"
] | 12 | 0 | 2 | [
"A357961",
"A357993"
] | null | Rémy Sigrist, Oct 23 2022 | 2022-10-30T11:01:59 | oeisdata/seq/A357/A357993.seq | 3291f7de588f02127c0dd855e704beb8 |
A357994 | a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the greatest least multiple of any such p which has not already occurred. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). (see comments). | [
"1",
"2",
"4",
"6",
"3",
"9",
"12",
"8",
"10",
"5",
"15",
"18",
"14",
"7",
"21",
"24",
"16",
"20",
"25",
"30",
"27",
"33",
"11",
"22",
"26",
"13",
"39",
"36",
"28",
"35",
"40",
"32",
"34",
"17",
"51",
"42",
"49",
"56",
"38",
"19",
"57",
"45",
"50",
"44",
"55",
"60",
"48",
"54",
"66",
"77",
"63",
"69",
"23",
"46",
"52",
"65",
"70",
"84",
"72",
"78",
"91",
"98",
"58",
"29",
"87",
"75",
"80",
"62"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A001221",
"A064413",
"A352187",
"A357963",
"A357994"
] | null | David James Sycamore, Oct 23 2022 | 2025-03-24T04:11:51 | oeisdata/seq/A357/A357994.seq | 16188fdd28f049b54411540feb8cd5f0 |
A357995 | Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2. | [
"1",
"5",
"11",
"13",
"11",
"20",
"31",
"24",
"27",
"29",
"43",
"37",
"49",
"52",
"63",
"58",
"69",
"53",
"75",
"61",
"65",
"84",
"95",
"98",
"85",
"96",
"107",
"115",
"88",
"121",
"127",
"122",
"130",
"136",
"139",
"134",
"145",
"148",
"159",
"151",
"154",
"157",
"171",
"174",
"169",
"180",
"191",
"194",
"178",
"181",
"203",
"198",
"201",
"212",
"223",
"210",
"221",
"232",
"235",
"214"
] | [
"nonn"
] | 13 | 2 | 2 | [
"A059100",
"A087475",
"A114949",
"A117619",
"A117950",
"A117951",
"A189833",
"A189834",
"A357995"
] | null | Michel Marcus, Oct 23 2022 | 2022-10-30T10:00:57 | oeisdata/seq/A357/A357995.seq | ae5a35cd47ee3a956422d71f662e9c67 |
A357996 | a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A006942). | [
"1",
"2",
"4",
"14",
"25",
"37",
"70",
"105",
"123",
"153",
"186",
"182",
"156",
"139",
"119",
"79",
"35",
"9",
"1"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 6 | 8 | 2 | [
"A006942",
"A008588",
"A055642",
"A055643",
"A357970",
"A357996",
"A357997",
"A357998",
"A357999",
"A358000"
] | null | Stefano Spezia, Oct 23 2022 | 2022-10-23T23:30:08 | oeisdata/seq/A357/A357996.seq | e5b1f2a1b05b62808b94771034f3a915 |
A357997 | a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A010371). | [
"1",
"0",
"5",
"10",
"16",
"35",
"66",
"88",
"119",
"166",
"187",
"177",
"161",
"154",
"129",
"81",
"35",
"9",
"1"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 5 | 8 | 3 | [
"A008588",
"A010371",
"A055642",
"A055643",
"A357971",
"A357996",
"A357997",
"A357998",
"A357999",
"A358000"
] | null | Stefano Spezia, Oct 23 2022 | 2022-10-23T23:30:20 | oeisdata/seq/A357/A357997.seq | 796944721900affd12075c22975c586a |
A357998 | a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A063720). | [
"1",
"2",
"4",
"18",
"25",
"41",
"96",
"103",
"133",
"189",
"188",
"154",
"158",
"155",
"95",
"53",
"19",
"5",
"1"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 5 | 8 | 2 | [
"A008588",
"A055642",
"A055643",
"A063720",
"A357972",
"A357996",
"A357997",
"A357998",
"A357999",
"A358000"
] | null | Stefano Spezia, Oct 23 2022 | 2022-10-23T23:30:31 | oeisdata/seq/A357/A357998.seq | 616cb1dffa51037c04255974a835001e |
A357999 | a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A074458). | [
"1",
"0",
"5",
"12",
"14",
"41",
"74",
"87",
"128",
"185",
"185",
"162",
"167",
"159",
"119",
"67",
"26",
"7",
"1"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 5 | 8 | 3 | [
"A008588",
"A055642",
"A055643",
"A074458",
"A357973",
"A357996",
"A357997",
"A357998",
"A357999",
"A358000"
] | null | Stefano Spezia, Oct 23 2022 | 2022-10-23T23:30:45 | oeisdata/seq/A357/A357999.seq | 784b2d0b2202f0efc3f7cd52694ebcbb |
A358000 | a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A277116). | [
"1",
"2",
"4",
"16",
"25",
"39",
"82",
"106",
"126",
"170",
"190",
"169",
"154",
"146",
"111",
"65",
"26",
"7",
"1"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 5 | 8 | 2 | [
"A008588",
"A055642",
"A055643",
"A277116",
"A357974",
"A357996",
"A357997",
"A357998",
"A357999",
"A358000"
] | null | Stefano Spezia, Oct 23 2022 | 2022-10-23T23:31:58 | oeisdata/seq/A358/A358000.seq | 2e2abe89f477fd11638e94383eaaf048 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.