sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A357901
a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n - 2*k,k)|.
[ "1", "0", "0", "1", "1", "2", "7", "27", "131", "771", "5320", "42119", "376174", "3740018", "40956593", "489749100", "6348744124", "88677555115", "1327628770657", "21208195526882", "360053293342379", "6473501562355779", "122874692176838047", "2455382300127368557", "51524333987938459606", "1132787775301639812263" ]
[ "nonn" ]
11
0
6
[ "A000142", "A343579", "A357901", "A357902" ]
null
Seiichi Manyama, Oct 19 2022
2022-10-19T13:40:45
oeisdata/seq/A357/A357901.seq
3640594f34e40cb71bd673fa33118e5e
A357902
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,k)|.
[ "1", "0", "0", "0", "1", "1", "2", "6", "25", "123", "731", "5090", "40595", "364650", "3641903", "40026609", "480029801", "6237662582", "87298953249", "1309161984315", "20942605407386", "355971044728635", "6406714801013007", "121715861296354116", "2434125806029297550", "51113325326999860554", "1124432395936987325868" ]
[ "nonn" ]
10
0
7
[ "A000142", "A343579", "A357901", "A357902" ]
null
Seiichi Manyama, Oct 19 2022
2022-10-19T13:40:39
oeisdata/seq/A357/A357902.seq
b6d91ff88dea2e5876d3b192e8055748
A357903
a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,k).
[ "1", "0", "0", "1", "1", "1", "2", "4", "8", "17", "38", "89", "219", "567", "1543", "4400", "13094", "40507", "129874", "430731", "1476030", "5222544", "19066758", "71764369", "278166767", "1108986222", "4541765652", "19085377108", "82211094414", "362717859475", "1638071537802", "7567876937002", "35748311794246", "172558399424154" ]
[ "nonn" ]
9
0
7
[ "A000110", "A171367", "A357903", "A357904" ]
null
Seiichi Manyama, Oct 19 2022
2022-10-19T13:40:31
oeisdata/seq/A357/A357903.seq
70210cf5b3b7b6b26b62838814d0d631
A357904
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,k).
[ "1", "0", "0", "0", "1", "1", "1", "1", "2", "4", "8", "16", "33", "70", "153", "346", "814", "2000", "5138", "13776", "38395", "110695", "328638", "1001306", "3124626", "9978906", "32620854", "109225582", "374875483", "1319392590", "4761630252", "17610041358", "66668257846", "258018795970", "1019440760020", "4106982942054" ]
[ "nonn" ]
9
0
9
[ "A000110", "A171367", "A357903", "A357904" ]
null
Seiichi Manyama, Oct 19 2022
2022-10-19T13:40:35
oeisdata/seq/A357/A357904.seq
8df5e4ec965a7b3d59f83f87a8a0b959
A357905
a(n) = log_3(A060839(n)).
[ "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "1", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "1", "2", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "2", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1" ]
[ "nonn", "easy" ]
21
1
63
[ "A060839", "A072273", "A357905", "A357906" ]
null
Jianing Song, Oct 19 2022
2023-10-05T04:11:03
oeisdata/seq/A357/A357905.seq
4a9617fb378c8ea11fd712e027708433
A357906
a(n) = log_2(A073103(n)).
[ "0", "0", "1", "1", "2", "1", "1", "2", "1", "2", "1", "2", "2", "1", "3", "3", "2", "1", "1", "3", "2", "1", "1", "3", "2", "2", "1", "2", "2", "3", "1", "3", "2", "2", "3", "2", "2", "1", "3", "4", "2", "2", "1", "2", "3", "1", "1", "4", "1", "2", "3", "3", "2", "1", "3", "3", "2", "2", "1", "4", "2", "1", "2", "3", "4", "2", "1", "3", "2", "3", "1", "3", "2", "2", "3", "2", "2", "3", "1", "5", "1", "2", "1", "3", "4", "1", "3", "3", "2", "3", "3", "2", "2", "1", "3", "4", "2", "1", "2", "3" ]
[ "nonn", "easy" ]
15
1
5
[ "A072273", "A073103", "A357905", "A357906" ]
null
Jianing Song, Oct 19 2022
2023-10-05T04:05:26
oeisdata/seq/A357/A357906.seq
48282c4d6927b0af2c950b741c494e30
A357907
The output of a Sinclair ZX81 random number generator.
[ "1", "149", "11249", "57305", "38044", "35283", "24819", "26463", "18689", "25472", "9901", "21742", "57836", "12332", "7456", "34978", "1944", "14800", "61482", "23634", "3125", "37838", "19833", "45735", "22275", "32274", "61292", "9384", "48504", "33339", "10093", "36142", "23707", "8600", "55241", "14318", "25332", "64938", "20686", "44173", "36199", "27982" ]
[ "nonn", "easy" ]
45
1
2
[ "A061364", "A096550", "A096561", "A260083", "A276820", "A357907" ]
null
Jacques Basaldúa, Oct 19 2022
2024-10-04T00:27:19
oeisdata/seq/A357/A357907.seq
b91a723874a98cf884bac6fe708065dd
A357908
Index of the first occurrence of n-th prime in Van Eck's sequence (A181391), or 0 if n-th prime never appears.
[ "5", "20", "12", "66", "44", "121", "41", "89", "101", "225", "72", "92", "548", "199", "297", "1486", "490", "1001", "735", "455", "420", "611", "772", "673", "187", "1612", "3690", "581", "417", "2584", "7574", "162", "1483", "1048", "689", "330", "1320", "4007", "3739", "2884", "528", "3376", "3045", "3658", "2869", "411", "935", "303", "1751", "1122", "376", "5506", "599", "13191", "494" ]
[ "nonn" ]
55
1
1
[ "A181391", "A357908" ]
null
G. L. Honaker, Jr., Nov 08 2022
2022-11-09T10:42:17
oeisdata/seq/A357/A357908.seq
5d5b65112f39313a8acfc0b7eaba4a0d
A357909
Primes p such that p+6, p+12, p+18, 4*p+37, 4*p+43, 4*p+49 and 4*p+55 are also all primes.
[ "408211", "6375751", "6433741", "6718471", "19134931", "25280791", "63908851", "67078801", "152418151", "159268561", "217697911", "236220991", "237943591", "334030981", "363246211", "392644921", "406249171", "410652031", "428032441", "476660281", "478441291", "502777111", "552727711", "552855001", "554201731", "693654721", "816050071", "877207141" ]
[ "nonn" ]
45
1
1
[ "A023271", "A357909" ]
null
J. M. Bergot and Robert Israel, Nov 09 2022
2022-11-10T07:44:19
oeisdata/seq/A357/A357909.seq
1cd44803d92fb794b91d85f0c8538be5
A357910
The natural numbers ordered lexicographically by their prime factorization, with prime factors written in decreasing order (see comments).
[ "1", "2", "4", "3", "6", "8", "9", "12", "5", "10", "15", "30", "16", "27", "18", "25", "20", "45", "60", "7", "14", "21", "42", "35", "70", "105", "210", "32", "81", "24", "125", "40", "75", "90", "49", "28", "63", "84", "175", "140", "315", "420", "11", "22", "33", "66", "55", "110", "165", "330", "77", "154", "231", "462", "385", "770", "1155", "2310", "64", "243", "36", "625", "50" ]
[ "nonn", "tabf" ]
13
0
2
[ "A000040", "A000079", "A002110", "A003586", "A003592", "A007947", "A019565", "A182944", "A357910" ]
null
Michael De Vlieger, Jan 23 2023
2023-05-31T11:20:55
oeisdata/seq/A357/A357910.seq
1980090cc2c5b7c7b2af55ea89e2da89
A357911
Expansion of Product_{k>=0} (1 - x^(11*k+1)) in powers of x.
[ "1", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "2", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "2", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "3", "-2", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "3", "-3", "1", "0", "0", "0", "0", "0", "0", "0", "-1", "4", "-4", "1", "0", "0", "0" ]
[ "sign", "look" ]
22
0
36
[ "A081362", "A284312", "A284313", "A284314", "A284499", "A284585", "A357911", "A357912" ]
null
Seiichi Manyama, Jan 17 2023
2023-01-18T04:51:24
oeisdata/seq/A357/A357911.seq
558990afc9357d932b6551d020869f55
A357912
a(n) = Sum_{d|n, d==1 (mod 11)} d.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "13", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "24", "13", "1", "1", "1", "1", "1", "1", "1", "1", "1", "35", "1", "13", "1", "1", "1", "1", "1", "1", "1", "1", "46", "24", "1", "13", "1", "1", "1", "1", "1", "1", "1", "57", "1", "1", "1", "13", "1", "1", "1", "1", "1", "1", "68", "35", "24", "1", "1", "13", "1", "1", "1", "1", "1", "79", "1", "1", "1", "1", "1", "13", "1" ]
[ "nonn" ]
22
1
12
[ "A000593", "A050449", "A078181", "A284097", "A284098", "A284099", "A284100", "A357911", "A357912" ]
null
Seiichi Manyama, Jan 17 2023
2023-08-09T00:52:58
oeisdata/seq/A357/A357912.seq
49bcbf0f2e793ae01e4f2e2f5ae82344
A357913
Inverse of 10 modulo prime(n).
[ "5", "10", "4", "12", "2", "7", "3", "28", "26", "37", "13", "33", "16", "6", "55", "47", "64", "22", "8", "25", "9", "68", "91", "31", "75", "11", "34", "89", "118", "96", "14", "15", "136", "110", "49", "117", "52", "18", "163", "172", "58", "138", "20", "190", "67", "159", "23", "70", "24", "217", "226", "180", "79", "27", "244", "194", "253", "85", "88", "215", "280", "94", "222", "298", "236", "243" ]
[ "nonn", "base" ]
54
4
1
[ "A078606", "A103876", "A114013", "A357913" ]
null
Nicholas Stefan Georgescu, Jan 18 2023
2025-02-07T15:55:04
oeisdata/seq/A357/A357913.seq
051deac707c1b00f8c897c60e88f45a4
A357914
Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals.
[ "1", "1", "-1", "1", "0", "-1", "1", "1", "-1", "0", "1", "2", "0", "-1", "-1", "1", "3", "2", "-1", "-2", "1", "1", "4", "5", "1", "-3", "-1", "-1", "1", "5", "9", "6", "-2", "-4", "-2", "0", "1", "6", "14", "15", "4", "-6", "-6", "-2", "0", "1", "7", "20", "29", "19", "-2", "-12", "-8", "-2", "1", "1", "8", "27", "49", "48", "17", "-14", "-20", "-10", "-1", "-1", "1", "9", "35", "76", "97", "65", "3", "-34", "-30", "-11", "-2", "0" ]
[ "sign", "tabl" ]
31
1
12
[ "A000012", "A000096", "A001477", "A002321", "A005286", "A008683", "A091555", "A357914", "A368429" ]
null
Paolo Xausa, Jan 18 2023
2023-12-29T13:53:24
oeisdata/seq/A357/A357914.seq
64486f3e687f684348952b1f441603cc
A357915
Concatenation of the decimal digits of {n, 1..n}.
[ "11", "212", "3123", "41234", "512345", "6123456", "71234567", "812345678", "9123456789", "1012345678910", "111234567891011", "12123456789101112", "1312345678910111213", "141234567891011121314", "15123456789101112131415", "1612345678910111213141516" ]
[ "nonn", "base", "easy" ]
94
1
1
[ "A007908", "A078257", "A172495", "A357915" ]
null
Mikk Heidemaa, Jan 18 2023
2023-02-18T20:49:53
oeisdata/seq/A357/A357915.seq
2898d5c6ad07d31dd28cd8e6142a92ad
A357916
Primes p that can be written as phi(k) + d(k) for some k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.
[ "2", "3", "5", "13", "23", "59", "113", "137", "229", "457", "509", "523", "661", "1021", "2063", "3541", "3923", "4973", "5449", "5521", "9949", "10103", "10273", "12659", "14107", "15601", "16249", "17033", "22063", "25321", "29759", "32507", "34843", "36293", "37273", "52501", "54059", "62753", "68449", "68909", "89329", "99409", "103963", "111347", "125509", "139297", "146309", "157231" ]
[ "nonn" ]
14
1
1
[ "A000005", "A000010", "A061468", "A357916", "A357917" ]
null
J. M. Bergot and Robert Israel, Oct 19 2022
2024-02-29T13:45:32
oeisdata/seq/A357/A357916.seq
f6ae2a7a3fd0bd1ade863fa4d0fa96b5
A357917
a(n) is the least k such that phi(k) + d(k) = A357916(n), where phi(k) = A000010(k) is Euler's totient function, and d(k) = A000005(k) is the number of divisors of k.
[ "1", "2", "4", "16", "25", "81", "121", "256", "484", "1296", "529", "1024", "1600", "2116", "2401", "7744", "11664", "5041", "7225", "11236", "20164", "10201", "25600", "12769", "30976", "46656", "21025", "17161", "44944", "51076", "29929", "84100", "73984", "36481", "75076", "107584", "54289", "63001", "87025", "69169", "101761", "126025", "215296", "256036", "252004", "295936" ]
[ "nonn" ]
14
1
2
[ "A000005", "A000010", "A061468", "A225983", "A357916", "A357917" ]
null
J. M. Bergot and Robert Israel, Oct 19 2022
2022-10-25T20:04:48
oeisdata/seq/A357/A357917.seq
d0b97c5b59f1d511d701656cd2a864cb
A357918
Odd numbers that can be written as phi(k) + d(k) for more than one k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.
[ "2061", "4131", "36981", "78765", "14054589", "889978059", "110543990589" ]
[ "nonn", "more" ]
10
1
1
[ "A000005", "A000010", "A061468", "A357916", "A357918" ]
null
J. M. Bergot and Robert Israel, Oct 19 2022
2022-10-23T23:27:32
oeisdata/seq/A357/A357918.seq
2126bae20598606aaf9278ba55352b24
A357919
a(n) = Sum_{k=0..floor(n/3)} Stirling1(n - 2*k,k).
[ "1", "0", "0", "1", "-1", "2", "-5", "21", "-109", "671", "-4772", "38591", "-350036", "3520830", "-38903271", "468490350", "-6107642906", "85704534787", "-1288021805215", "20641247413120", "-351374756822383", "6332030169529731", "-120427840368046909", "2410627702030000447", "-50661193580285096086" ]
[ "sign" ]
9
0
6
[ "A357901", "A357919", "A357920" ]
null
Seiichi Manyama, Oct 20 2022
2023-03-13T16:10:19
oeisdata/seq/A357/A357919.seq
c3d41b5e9e7d05d0bde8561f45ebfc27
A357920
a(n) = Sum_{k=0..floor(n/5)} Stirling1(n - 4*k,k).
[ "1", "0", "0", "0", "0", "1", "-1", "2", "-6", "24", "-119", "717", "-5029", "40270", "-362606", "3627037", "-39903738", "478892051", "-6225994449", "87167664184", "-1307553837291", "20921303563234", "-355667626509575", "6402090252833481", "-121640761396741607", "2432831275825738669", "-51089718792714854191" ]
[ "sign" ]
8
0
8
[ "A357902", "A357919", "A357920" ]
null
Seiichi Manyama, Oct 20 2022
2022-10-20T12:44:40
oeisdata/seq/A357/A357920.seq
9c53b0b19e366dcca2b5646bfbfafb64
A357921
Primitive abundant numbers for which there is no smaller primitive abundant number having the same ordered prime signature.
[ "20", "70", "88", "272", "550", "572", "945", "1184", "1430", "1575", "2205", "3465", "4288", "5775", "7425", "8085", "12705", "15015", "16768", "24272", "28215", "47025", "49875", "65792", "69825", "78975", "81081", "103455", "131625", "152224", "153153", "182325", "189189", "266752", "297297", "342225", "351351", "363375", "387345", "392445", "474045" ]
[ "nonn" ]
10
1
1
[ "A025487", "A071395", "A083873", "A357921" ]
null
David A. Corneth, Oct 20 2022
2022-10-23T23:45:23
oeisdata/seq/A357/A357921.seq
9188cda86ebd13c2b7af5bf1f6c71c5c
A357922
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n - 4*k,k)|.
[ "1", "0", "0", "0", "0", "1", "1", "2", "6", "24", "121", "723", "5051", "40370", "363154", "3630565", "39929874", "479111219", "6228047601", "87188921464", "1307794924973", "20924276449014", "355707232027825", "6402657184129671", "121649439722758345", "2432972744390660437", "51092165603897459951" ]
[ "nonn" ]
8
0
8
[ "A000142", "A343579", "A357901", "A357902", "A357920", "A357922" ]
null
Seiichi Manyama, Oct 20 2022
2022-10-20T12:44:53
oeisdata/seq/A357/A357922.seq
4fcb3a5bd1e7d0020ef42232944d0b1e
A357923
a(n) is the least number of terms in the sum S = 1/(n+1) + 1/(n+2) + 1/(n+3) + ... such that S > n.
[ "1", "3", "17", "68", "242", "812", "2619", "8224", "25345", "77006", "231355", "688758", "2034965", "5973932", "17441201", "50678536", "146643235", "422769139", "1214857227", "3480786068", "9946872233", "28357093263", "80667175724", "229020154166", "649028530125", "1836242560272", "5187142333288", "14632132586005" ]
[ "nonn" ]
23
0
2
[ "A002387", "A357923", "A358464" ]
null
Gil Broussard, Oct 20 2022
2022-12-12T22:30:30
oeisdata/seq/A357/A357923.seq
8946cfc4306d21dac87d008a5b6239d7
A357924
Number of groups of order n with trivial center.
[ "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "2", "0", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "2", "0", "1", "1", "0", "0", "2", "0", "0", "0", "1", "0", "2", "0", "2", "0", "1", "0", "5", "1", "1", "1", "1", "0", "3", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "6", "0", "1", "1", "0", "0", "2", "0", "1", "0", "1", "0", "2", "0", "1", "0", "0", "0", "2", "0", "0", "1", "1", "0", "5", "0", "2", "0", "5" ]
[ "nonn", "hard" ]
4
1
18
[ "A060702", "A357900", "A357924" ]
null
Jianing Song, Oct 20 2022
2022-10-20T12:44:06
oeisdata/seq/A357/A357924.seq
ea5f20b3b1a049a7ec45c59a33746bd6
A357925
a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,n - 3*k).
[ "1", "1", "1", "1", "2", "4", "7", "12", "23", "47", "95", "192", "402", "869", "1898", "4181", "9379", "21431", "49556", "115770", "273919", "656476", "1590061", "3888783", "9608337", "23980678", "60402964", "153469477", "393325442", "1016628823", "2648842279", "6955029849", "18400676786", "49042936328", "131646082259" ]
[ "nonn" ]
12
0
5
[ "A024428", "A357903", "A357925", "A357926" ]
null
Seiichi Manyama, Oct 20 2022
2024-02-22T18:44:43
oeisdata/seq/A357/A357925.seq
ec08d0f95394afd95f33d80ae73ec102
A357926
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,n - 4*k).
[ "1", "1", "1", "1", "1", "2", "4", "7", "11", "17", "29", "54", "102", "187", "337", "619", "1179", "2298", "4488", "8733", "17085", "33931", "68407", "139030", "283474", "580477", "1198195", "2496661", "5241757", "11061986", "23453024", "50008919", "107338755", "231825945", "503294589", "1097731342", "2405837254", "5300147291" ]
[ "nonn" ]
10
0
6
[ "A024428", "A357904", "A357925", "A357926" ]
null
Seiichi Manyama, Oct 20 2022
2022-10-20T12:43:39
oeisdata/seq/A357/A357926.seq
c99e00588c04816401581532a275d3f2
A357927
Number of subsets of [n] in which exactly half of the elements are Fibonacci numbers.
[ "1", "1", "1", "1", "4", "5", "15", "35", "56", "126", "252", "462", "792", "1716", "3003", "5005", "8008", "12376", "18564", "27132", "38760", "116280", "170544", "245157", "346104", "480700", "657800", "888030", "1184040", "1560780", "2035800", "2629575", "3365856", "4272048", "18156204", "23535820", "30260340", "38608020", "48903492" ]
[ "nonn" ]
15
0
5
[ "A000045", "A037031", "A072649", "A102366", "A180272", "A357812", "A357927" ]
null
Alois P. Heinz, Oct 20 2022
2022-11-17T06:24:50
oeisdata/seq/A357/A357927.seq
da826ee190b96ae56b6117351df8367d
A357928
a(n) is the smallest c for which (s+c)^2-n is a square, where s = floor(sqrt(n)), or -1 if no such c exists.
[ "0", "0", "-1", "1", "0", "1", "-1", "2", "1", "0", "-1", "3", "1", "4", "-1", "1", "0", "5", "-1", "6", "2", "1", "-1", "8", "1", "0", "-1", "1", "3", "10", "-1", "11", "1", "2", "-1", "1", "0", "13", "-1", "2", "1", "15", "-1", "16", "6", "1", "-1", "18", "1", "0", "-1", "3", "7", "20", "-1", "1", "2", "4", "-1", "23", "1", "24", "-1", "1", "0", "1", "-1", "26", "10", "5", "-1", "28", "1", "29", "-1", "2", "12", "1", "-1", "32" ]
[ "sign" ]
161
0
8
[ "A037074", "A177713", "A357928" ]
null
Darío Clavijo, Oct 20 2022
2022-10-27T07:35:06
oeisdata/seq/A357/A357928.seq
09e3db9e338ca42a4e7fe6e4f9d2a73e
A357929
Numbers that share a (decimal) digit with at least 1 of their proper divisors.
[ "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "30", "31", "32", "33", "35", "36", "39", "40", "41", "42", "44", "45", "48", "50", "51", "52", "55", "60", "61", "62", "63", "64", "65", "66", "70", "71", "72", "74", "75", "77", "80", "81", "82", "84", "85", "88", "90", "91", "92", "93", "94", "95", "96", "98", "99", "100", "101", "102", "103" ]
[ "nonn", "base" ]
5
1
1
[ "A038770", "A357929" ]
null
Wesley Ivan Hurt, Oct 21 2022
2022-10-21T01:34:16
oeisdata/seq/A357/A357929.seq
cba27b59d4d2d19e21afc15967c1c764
A357930
a(0) = 0; for n > 0, let S = concatenation of a(0)..a(n-1); a(n) is the number of times the digit at a(n-1) digits back from the end of S appears in S.
[ "0", "1", "1", "2", "2", "2", "3", "3", "3", "3", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "7", "7", "8", "8", "7", "7", "8", "8", "7", "13", "7", "14", "7", "13", "13", "15", "15", "13", "15", "15", "6", "17", "16", "19", "8", "10", "10", "22", "10", "23" ]
[ "nonn", "base", "look" ]
29
0
4
[ "A000217", "A117707", "A351753", "A356348", "A357930" ]
null
Scott R. Shannon, Oct 21 2022
2022-10-21T21:59:23
oeisdata/seq/A357/A357930.seq
68fcd50fa1edda155782c7a6a30edae9
A357931
a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n - 2*k,n - 3*k)|.
[ "1", "1", "1", "1", "2", "4", "7", "13", "27", "57", "120", "262", "593", "1361", "3171", "7559", "18356", "45186", "112927", "286689", "737641", "1921639", "5070154", "13540352", "36566737", "99830013", "275459693", "767798853", "2160953618", "6139721116", "17604534427", "50924095081", "148570523479", "437071675997" ]
[ "nonn" ]
13
0
5
[ "A124380", "A353223", "A357901", "A357925", "A357931", "A357932", "A357933" ]
null
Seiichi Manyama, Oct 21 2022
2023-11-01T04:12:57
oeisdata/seq/A357/A357931.seq
5f43369c4a673e72c6ef6692af8e981e
A357932
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,n - 4*k)|.
[ "1", "1", "1", "1", "1", "2", "4", "7", "11", "18", "33", "64", "122", "227", "428", "838", "1684", "3396", "6841", "13912", "28787", "60398", "127559", "270687", "579055", "1251706", "2730345", "5994501", "13238058", "29436628", "65951104", "148777927", "337606123", "770418129", "1768566987", "4084504483", "9486890220" ]
[ "nonn" ]
10
0
6
[ "A124380", "A353225", "A357902", "A357926", "A357931", "A357932", "A357933" ]
null
Seiichi Manyama, Oct 21 2022
2022-10-21T10:12:01
oeisdata/seq/A357/A357932.seq
67bc11c72f13f2b4fcc71b0f78353e49
A357933
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n - 4*k,n - 5*k)|.
[ "1", "1", "1", "1", "1", "1", "2", "4", "7", "11", "16", "24", "40", "72", "131", "231", "395", "675", "1187", "2161", "4006", "7414", "13609", "24951", "46210", "86930", "165528", "316682", "606047", "1161343", "2237329", "4345777", "8507103", "16738587", "33030166", "65352308", "129821251", "259254283", "520531422", "1049771054", "2124315222" ]
[ "nonn" ]
9
0
7
[ "A124380", "A357931", "A357932", "A357933" ]
null
Seiichi Manyama, Oct 21 2022
2022-10-21T10:12:12
oeisdata/seq/A357/A357933.seq
598885302aab21e359fd6eaa17b9c2fe
A357934
Products of two distinct lesser twin primes A001359.
[ "15", "33", "51", "55", "85", "87", "123", "145", "177", "187", "205", "213", "295", "303", "319", "321", "355", "411", "447", "451", "493", "505", "535", "537", "573", "591", "649", "681", "685", "697", "717", "745", "781", "807", "843", "895", "933", "955", "985", "1003", "1041", "1111", "1135", "1177", "1189", "1195", "1207", "1257", "1293", "1345", "1383", "1405", "1507", "1555", "1563" ]
[ "nonn" ]
22
1
1
[ "A001359", "A006881", "A357934" ]
null
Artur Jasinski, Oct 21 2022
2025-02-13T07:40:35
oeisdata/seq/A357/A357934.seq
946e3e8c63ab40414816b02378416c14
A357935
Primes p such that the sum of digits of 11*p is 11.
[ "19", "37", "73", "919", "937", "991", "1873", "2791", "3637", "3673", "3691", "4591", "6373", "8191", "91837", "91873", "92737", "92791", "93637", "94573", "181837", "181873", "181891", "182773", "183637", "183691", "185491", "186391", "187273", "272737", "274591", "275491", "276373", "277273", "278191", "363691", "365473", "367273", "455473", "455491", "458191", "459091" ]
[ "nonn", "base" ]
11
1
1
[ "A166311", "A279771", "A357935" ]
null
J. M. Bergot and Robert Israel, Oct 21 2022
2022-10-24T08:11:44
oeisdata/seq/A357/A357935.seq
bdb45e02ce2010799eae5e4dd0e068f4
A357936
a(n) is the least multiple of n that is a Niven (or Harshad) number.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "110", "12", "117", "42", "30", "48", "102", "18", "114", "20", "21", "110", "207", "24", "50", "156", "27", "84", "261", "30", "372", "192", "132", "102", "70", "36", "111", "114", "117", "40", "410", "42", "516", "132", "45", "230", "423", "48", "392", "50", "102", "156", "954", "54", "110", "112", "114", "522", "531", "60" ]
[ "nonn", "base", "easy" ]
12
1
2
[ "A005349", "A144261", "A357936", "A357937" ]
null
Rémy Sigrist, Oct 21 2022
2022-10-22T09:51:04
oeisdata/seq/A357/A357936.seq
57c5df1afb5adc630e72b746a9ce6063
A357937
a(n) is the least multiple of n that is not a Niven (or Harshad) number.
[ "11", "14", "15", "16", "15", "66", "14", "16", "99", "130", "11", "96", "13", "14", "15", "16", "17", "2898", "19", "160", "105", "22", "23", "96", "25", "26", "189", "28", "29", "390", "31", "32", "33", "34", "35", "2988", "37", "38", "39", "160", "41", "168", "43", "44", "495", "46", "47", "96", "49", "250", "51", "52", "53", "28998", "55", "56", "57", "58", "59", "4980", "61" ]
[ "nonn", "base" ]
9
1
1
[ "A005349", "A144262", "A357936", "A357937" ]
null
Rémy Sigrist, Oct 21 2022
2022-10-22T09:51:08
oeisdata/seq/A357/A357937.seq
a05b1a3ef19b34c2b1b5a6bf26765786
A357938
Inverse Moebius transform of n * 2^omega(n).
[ "1", "5", "7", "13", "11", "35", "15", "29", "25", "55", "23", "91", "27", "75", "77", "61", "35", "125", "39", "143", "105", "115", "47", "203", "61", "135", "79", "195", "59", "385", "63", "125", "161", "175", "165", "325", "75", "195", "189", "319", "83", "525", "87", "299", "275", "235", "95", "427", "113", "305", "245", "351", "107", "395", "253", "435", "273", "295", "119", "1001" ]
[ "nonn", "easy", "mult" ]
26
1
2
[ "A001221", "A008683", "A298473", "A357938" ]
null
Werner Schulte, Oct 24 2022
2022-11-01T07:14:44
oeisdata/seq/A357/A357938.seq
d00556df92e8432ecd32c53cbe533041
A357939
a(n) = Sum_{k=0..floor(n/2)} Stirling2(k,n - 2*k).
[ "1", "0", "0", "1", "0", "1", "1", "1", "3", "2", "7", "7", "16", "26", "41", "92", "128", "317", "478", "1107", "1977", "4077", "8547", "16310", "37775", "71489", "170660", "339138", "795833", "1705058", "3876254", "8926023", "19888522", "48187837", "107726407", "267597455", "613509355", "1531527270", "3646775589", "9066267823" ]
[ "nonn" ]
11
0
9
[ "A357903", "A357939", "A357940", "A357941" ]
null
Seiichi Manyama, Oct 21 2022
2022-10-22T14:01:57
oeisdata/seq/A357/A357939.seq
2022498fe1b79fcc21aecda25dd18b7d
A357940
a(n) = Sum_{k=0..floor(n/3)} Stirling2(k,n - 3*k).
[ "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "3", "1", "1", "7", "6", "2", "15", "25", "11", "32", "90", "66", "78", "302", "351", "267", "987", "1703", "1305", "3291", "7799", "7463", "11976", "34568", "43584", "51329", "151631", "249527", "266058", "675490", "1395375", "1586432", "3159982", "7675720", "10132557", "16108875", "41991096", "66170977", "91724556" ]
[ "nonn" ]
13
0
12
[ "A357904", "A357925", "A357939", "A357940", "A357941" ]
null
Seiichi Manyama, Oct 21 2022
2022-10-22T14:02:03
oeisdata/seq/A357/A357940.seq
0967301dd72af5b86d72b6faebc876bd
A357941
a(n) = Sum_{k=0..floor(n/4)} Stirling2(k,n - 4*k).
[ "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "3", "1", "0", "1", "7", "6", "1", "1", "15", "25", "10", "2", "31", "90", "65", "16", "64", "301", "350", "141", "148", "967", "1701", "1051", "521", "3053", "7771", "6952", "3157", "9792", "34141", "42527", "23850", "34381", "146500", "246776", "181535", "150513", "623381", "1380556", "1327802", "889022", "2691557", "7530777" ]
[ "nonn" ]
11
0
15
[ "A357926", "A357939", "A357940", "A357941" ]
null
Seiichi Manyama, Oct 21 2022
2022-10-22T14:01:51
oeisdata/seq/A357/A357941.seq
56f7f04c06f6b74584dcc1a90b28966c
A357942
a(1)=1, a(2)=2. Thereafter, if there are prime divisors p | a(n-1) that are coprime to a(n-2), a(n) is the least novel multiple of the product of these primes. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). See comments.
[ "1", "2", "4", "6", "3", "9", "12", "8", "10", "5", "15", "18", "14", "7", "21", "24", "16", "20", "25", "30", "36", "42", "28", "56", "70", "35", "105", "27", "33", "11", "22", "26", "13", "39", "45", "40", "32", "34", "17", "51", "48", "38", "19", "57", "54", "44", "55", "50", "46", "23", "69", "60", "80", "90", "63", "49", "77", "66", "72", "78", "52", "104", "130", "65", "195", "75", "120" ]
[ "nonn" ]
22
1
2
[ "A007947", "A064413", "A357942", "A357963" ]
null
Michael De Vlieger, Oct 22 2022
2022-11-18T03:38:46
oeisdata/seq/A357/A357942.seq
ec26cb2cfff7153418a1a1c0be276f40
A357943
a(0) = 0; a(1) = 1, a(2) = 2; for n > 2, a(n) is the number of times the term a(n - 1 - a(n-1)) has appeared in the sequence.
[ "0", "1", "2", "1", "1", "3", "1", "1", "5", "5", "5", "1", "3", "3", "3", "6", "3", "5", "5", "5", "5", "1", "7", "1", "1", "9", "5", "9", "8", "8", "9", "9", "1", "4", "2", "10", "4", "10", "4", "2", "2", "3", "3", "4", "4", "4", "7", "4", "7", "7", "7", "7", "7", "7", "8", "8", "7", "9", "9", "9", "9", "9", "9", "9", "4", "11", "4", "11", "9", "12", "12", "12", "12", "12", "12", "12", "12", "9", "13", "2", "13", "2", "6", "8", "8", "8", "13", "8", "6", "3", "3", "8", "9", "9" ]
[ "nonn", "look" ]
34
0
3
[ "A003056", "A181391", "A342585", "A357930", "A357943", "A357944" ]
null
Scott R. Shannon, Oct 22 2022
2022-10-23T11:59:34
oeisdata/seq/A357/A357943.seq
64778e02f8a4c0fe9987258c01967c00
A357944
If n appears in A357943, a(n) is the smallest k such that A357943(k) = n, otherwise a(n) = -1.
[ "0", "1", "2", "5", "33", "8", "15", "22", "28", "25", "35", "65", "69", "78", "123", "165", "180", "97", "105", "203", "115", "294", "199", "373", "326", "238", "300", "506", "350", "354", "361", "367", "380", "388", "392", "408", "491", "573", "628", "498", "502", "509", "513", "516", "744", "615", "683", "763", "1201", "1072", "906", "1083", "872", "1100", "1113", "1364", "1385", "1438", "1274", "1387" ]
[ "nonn" ]
25
0
3
[ "A357943", "A357944" ]
null
Scott R. Shannon, Oct 22 2022
2022-10-23T11:59:37
oeisdata/seq/A357/A357944.seq
61213ecd8c79e347be533cf040ac0c98
A357945
Numbers k which are not square but D = (b+c)^2 - k is square, where b = floor(sqrt(k)) and c = k - b^2.
[ "5", "13", "28", "65", "69", "76", "125", "128", "189", "205", "300", "305", "325", "352", "413", "425", "532", "533", "544", "565", "693", "725", "793", "828", "860", "1025", "1036", "1045", "1105", "1141", "1248", "1449", "1469", "1504", "1525", "1708", "1885", "1917", "1965", "2125", "2240", "2353", "2380", "2501", "2533", "2548", "2812", "2816", "2825", "2829", "2844", "2873", "2893" ]
[ "nonn" ]
111
1
1
[ "A000037", "A042965", "A053186", "A177713", "A211412", "A357945" ]
null
Darío Clavijo, Oct 21 2022
2023-03-21T05:20:39
oeisdata/seq/A357/A357945.seq
420d681d182d25975aaeabec30d448fe
A357946
a(n) is the number in the infinite multiplication table that the chess knight reaches in n moves, starting from the number 1, the angle between adjacent segments being 90 degrees alternately changing direction to the left and to the right.
[ "1", "6", "8", "20", "21", "40", "40", "66", "65", "98", "96", "136", "133", "180", "176", "230", "225", "286", "280", "348", "341", "416", "408", "490", "481", "570", "560", "656", "645", "748", "736", "846", "833", "950", "936", "1060", "1045", "1176", "1160", "1298", "1281", "1426", "1408", "1560", "1541", "1700", "1680", "1846", "1825", "1998", "1976" ]
[ "nonn", "easy" ]
57
0
2
[ "A000567", "A001651", "A003991", "A052938", "A357946" ]
null
Nicolay Avilov, Oct 21 2022
2023-09-01T03:58:23
oeisdata/seq/A357/A357946.seq
4d86b667ea5a973c1cca15040d56a55c
A357947
Number of "tertian" musical chords generated by stacking m minor or major thirds with no allowance of repetition of notes.
[ "1", "2", "4", "7", "12", "21", "36", "35", "35", "37", "21", "4", "0" ]
[ "nonn", "fini", "full" ]
28
0
2
null
null
Micah Roberts, Oct 22 2022
2023-01-16T14:49:47
oeisdata/seq/A357/A357947.seq
18ad1df02c52a7271547a87a9e565a77
A357948
Expansion of e.g.f. exp( x * exp(-x^2) ).
[ "1", "1", "1", "-5", "-23", "1", "601", "2731", "-13775", "-219743", "-313199", "15383611", "125451481", "-811558175", "-20767068503", "-37852036949", "2898343066081", "28990920216001", "-313289894357855", "-8634009894555653", "-3214642669500599", "2108734127922999361", "20183394611962437241" ]
[ "sign", "easy" ]
29
0
4
[ "A003725", "A216688", "A357948", "A358063" ]
null
Seiichi Manyama, Oct 29 2022
2022-10-29T09:37:59
oeisdata/seq/A357/A357948.seq
b076dd6f72c4d82d411141db8a824d0b
A357949
a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/k!.
[ "1", "1", "2", "6", "25", "122", "726", "5064", "40441", "363603", "3633852", "39957180", "479364841", "6230652124", "87218228180", "1308153551160", "20929018724041", "355774626352325", "6403681619657310", "121666026312835410", "2433257739200536081", "51097345199332200726", "1124122383340449444042" ]
[ "nonn", "easy" ]
31
0
3
[ "A000522", "A003470", "A357949", "A358493", "A358494" ]
null
Seiichi Manyama, Nov 19 2022
2024-02-26T10:11:09
oeisdata/seq/A357/A357949.seq
944ef620bc02830f700940474a9b7066
A357950
Maximum period of an elementary cellular automaton in a cyclic universe of width n.
[ "2", "2", "6", "8", "30", "18", "126", "40", "504", "430", "979", "240", "1105", "2198", "6820", "6016", "78812", "7812", "183920", "142580", "352884", "122870", "3459591", "421188", "10828525", "334308", "81688176", "989212", "463347935", "5921860", "1211061438", "26636800", "3315517623", "187950912", "24752893585" ]
[ "nonn" ]
23
1
1
[ "A334499", "A357950" ]
null
Pontus von Brömssen, Oct 22 2022
2022-11-11T07:04:50
oeisdata/seq/A357/A357950.seq
9ed15e30250907902fedfbf19e5f7a76
A357951
Maximum period of an outer totalistic cellular automaton on a connected graph with n nodes.
[ "2", "2", "4", "6", "16", "26", "66" ]
[ "nonn", "more", "hard" ]
11
1
1
[ "A357951", "A357952", "A357953" ]
null
Pontus von Brömssen, Oct 22 2022
2022-10-23T13:42:18
oeisdata/seq/A357/A357951.seq
e9f4c335b265189a0a0f8b01e33abd3d
A357952
Maximum period of a totalistic cellular automaton on a connected graph with n nodes (counting the state of the updated node itself).
[ "2", "2", "4", "6", "8", "18", "42", "112" ]
[ "nonn", "more", "hard" ]
12
1
1
[ "A357951", "A357952", "A357953" ]
null
Pontus von Brömssen, Oct 22 2022
2022-10-23T13:42:22
oeisdata/seq/A357/A357952.seq
45ac7bebe7bd4e6ca06758febbe9735a
A357953
Maximum period of a totalistic cellular automaton on a connected graph with n nodes (not counting the state of the updated node itself).
[ "1", "2", "2", "6", "7", "18", "38", "96" ]
[ "nonn", "more", "hard" ]
13
1
2
[ "A357951", "A357952", "A357953" ]
null
Pontus von Brömssen, Oct 22 2022
2022-10-24T14:14:10
oeisdata/seq/A357/A357953.seq
e33366ec785fdb00c4a3ea523a188665
A357954
Integers k that are periodic points for some iterations of k->A357143(k).
[ "1", "2", "3", "4", "13", "18", "28", "118", "194", "289", "338", "353", "354", "419", "489", "528", "609", "769", "1269", "1299", "2081", "4890", "4891", "9113", "18575", "18702", "20759", "35084", "1874374", "338749352", "2415951874" ]
[ "nonn", "base", "fini", "full" ]
63
1
2
[ "A010346", "A101337", "A110592", "A151544", "A157714", "A357143", "A357954" ]
null
Francesco A. Catalanotti, Oct 22 2022
2022-12-02T07:05:28
oeisdata/seq/A357/A357954.seq
b14ac75b87f1197531be6f9f27c71d52
A357955
a(n) = 3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n).
[ "37", "60", "108", "60", "-660", "60", "82404", "1411848", "17540460", "191318820", "1952058108", "19175376324", "184118073828", "1743153802320", "16359157606200", "152693295412560", "1420516291306860", "13190159377278324", "122358232382484420", "1134645084249344400", "10522118980232969340" ]
[ "sign", "easy" ]
47
0
1
[ "A000984", "A005809", "A005810", "A268590", "A357509", "A357567", "A357568", "A357569", "A357955" ]
null
Peter Bala, Oct 22 2022
2025-03-23T20:51:56
oeisdata/seq/A357/A357955.seq
dd4f124a85fc50735ae3ec5c21f3b8c4
A357956
a(n) = 5*A005259(n) - 2*A005258(n).
[ "3", "19", "327", "6931", "162503", "4072519", "107094207", "2919528211", "81819974343", "2343260407519", "68285241342827", "2018360803903111", "60366625228511423", "1823565812734012639", "55557838850469305327", "1705172303553678726931", "52672608711829111519943", "1636296668756812403477839", "51088496012515356589705107" ]
[ "nonn", "easy" ]
13
0
1
[ "A005258", "A005259", "A212334", "A352655", "A357567", "A357568", "A357569", "A357956", "A357957", "A357958", "A357959", "A357960" ]
null
Peter Bala, Oct 24 2022
2022-11-03T04:51:27
oeisdata/seq/A357/A357956.seq
268269f4d7ed8e85c3b0815e0877368a
A357957
a(n) = A005259(n)^5 - A005258(n)^2.
[ "0", "3116", "2073071232", "6299980938881516", "39141322964380888600000", "368495989505416178203682748116", "4552312485541626792249211584618373944", "68109360474242016374599574592870648425552876", "1174806832391451114413440151405736019461523615095744" ]
[ "nonn", "easy" ]
13
0
2
[ "A005258", "A005259", "A212334", "A352655", "A357567", "A357568", "A357569", "A357956", "A357957", "A357958", "A357959", "A357960" ]
null
Peter Bala, Oct 24 2022
2022-11-03T04:51:38
oeisdata/seq/A357/A357957.seq
de9949fe4ac00eb417efbb127cf45da6
A357958
a(n) = 5*A005259(n) + 14*A005258(n-1).
[ "39", "407", "7491", "167063", "4112539", "107461667", "2923006251", "81853622423", "2343591359499", "68288538877907", "2018394003648391", "60366962358086243", "1823569260750104179", "55557874330437332267", "1705172670555862322491", "52672612525369663916183" ]
[ "nonn", "easy" ]
9
1
1
[ "A005258", "A005259", "A212334", "A352655", "A357567", "A357956", "A357957", "A357958", "A357959", "A357960" ]
null
Peter Bala, Oct 25 2022
2022-11-06T07:50:09
oeisdata/seq/A357/A357958.seq
fc3f5a8662e3d9e032b965bd7d5ed93f
A357959
a(n) = 5*A005259(n-1) + 2*A005258(n).
[ "11", "63", "659", "9727", "187511", "4304943", "109312739", "2941124607", "82033399631", "2345394917563", "68306797052879", "2018580243252847", "60368874298729631", "1823588997226603663", "55558079041172790659", "1705174802761490321407", "52672634815976274443711", "1636296942340074307669443" ]
[ "nonn", "easy" ]
9
1
1
[ "A005258", "A005259", "A212334", "A352655", "A356957", "A357567", "A357956", "A357958", "A357959", "A357960" ]
null
Peter Bala, Oct 25 2022
2022-11-06T07:50:25
oeisdata/seq/A357/A357959.seq
a2fc554efff947a5e76ae3f38c988a69
A357960
a(n) = A005259(n-1)^5 * A005258(n)^6.
[ "729", "147018378125", "20917910914764786689697", "24148107115850058575342740485778125", "79477722547796770983047586179643766765851375729", "492664048531500749211923278756418311980637289373757041378125", "4671227340507161302417161873394448514470099313382652883508175438056640625" ]
[ "nonn", "easy" ]
7
1
1
[ "A005258", "A005259", "A212334", "A352655", "A357567", "A357956", "A357957", "A357958", "A357959", "A357960" ]
null
Peter Bala, Oct 25 2022
2022-11-06T07:50:49
oeisdata/seq/A357/A357960.seq
bb4fe5119c0061dc92eef7625d27611a
A357961
a(1) = 1, and for any n > 0, a(n+1) is the k-th positive number not yet in the sequence, where k is the Hamming weight of a(n).
[ "1", "2", "3", "5", "6", "7", "9", "8", "4", "10", "12", "13", "15", "17", "14", "18", "16", "11", "21", "22", "23", "25", "24", "20", "26", "28", "29", "31", "33", "27", "34", "30", "36", "32", "19", "38", "39", "41", "40", "37", "43", "45", "46", "47", "49", "44", "48", "42", "51", "53", "54", "55", "57", "56", "52", "58", "60", "61", "63", "65", "50", "62", "67", "64", "35", "68", "66" ]
[ "nonn", "base" ]
36
1
2
[ "A000120", "A000523", "A132753", "A217122", "A357961", "A357993", "A358057" ]
null
Rémy Sigrist, Oct 22 2022
2022-10-30T15:08:45
oeisdata/seq/A357/A357961.seq
5e8ae547c8a3a210d4491bf25bea89a3
A357962
Expansion of e.g.f. exp( (exp(x^2) - 1)/x ).
[ "1", "1", "1", "4", "13", "51", "271", "1366", "8849", "58717", "432541", "3530176", "29787781", "279974839", "2715912291", "28415168146", "312503079841", "3600714035321", "43979791574809", "556150585730140", "7417561518005341", "102438949373356891", "1476634705941320311", "22102618328057267694" ]
[ "nonn" ]
12
0
4
[ "A121452", "A357962", "A357964", "A357965", "A357966" ]
null
Seiichi Manyama, Oct 22 2022
2024-10-19T16:15:18
oeisdata/seq/A357/A357962.seq
28bc306d2135ddd0252169683503b1ae
A357963
a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). See comments.
[ "1", "2", "4", "6", "3", "9", "12", "8", "10", "5", "15", "18", "14", "7", "21", "24", "16", "20", "25", "30", "22", "11", "33", "27", "36", "26", "13", "39", "42", "28", "56", "70", "35", "105", "45", "60", "32", "34", "17", "51", "48", "38", "19", "57", "54", "40", "50", "80", "90", "63", "49", "77", "44", "46", "23", "69", "66", "52", "65", "55", "88", "58", "29", "87", "72", "62", "31", "93" ]
[ "nonn" ]
13
1
2
[ "A001221", "A064413", "A336957", "A352187", "A357963" ]
null
David James Sycamore, Oct 22 2022
2022-10-23T01:05:38
oeisdata/seq/A357/A357963.seq
b6b52a632a0e637a5377012104aa8895
A357964
Expansion of e.g.f. exp( (exp(x^3) - 1)/x^2 ).
[ "1", "1", "1", "1", "13", "61", "181", "1261", "12601", "77113", "481321", "6102361", "63041221", "492260341", "6041807773", "87670198981", "945716793841", "11365316711281", "193962371184721", "2824572189001393", "36983289122143741", "658584258052917421", "12073641790111934341", "185876257572349699741" ]
[ "nonn" ]
11
0
5
[ "A353223", "A357962", "A357964", "A357965" ]
null
Seiichi Manyama, Oct 22 2022
2022-10-22T14:02:22
oeisdata/seq/A357/A357964.seq
eaaa07955af722cbcbcc3d43be1e8ab9
A357965
Expansion of e.g.f. exp( (exp(x^4) - 1)/x^3 ).
[ "1", "1", "1", "1", "1", "61", "361", "1261", "3361", "68041", "1073521", "8343721", "43290721", "432509221", "11472541081", "165124339381", "1457296102081", "12237047593681", "322364521392481", "7462073325643921", "103362225413048641", "1051987428484484941", "21127644716862970441" ]
[ "nonn" ]
8
0
6
[ "A353225", "A357962", "A357964", "A357965" ]
null
Seiichi Manyama, Oct 22 2022
2022-10-22T14:02:18
oeisdata/seq/A357/A357965.seq
afee898bfcbe814aa8dea8b5845ae9c4
A357966
Expansion of e.g.f. exp( x * (exp(x^2) - 1) ).
[ "1", "0", "0", "6", "0", "60", "360", "840", "20160", "75600", "1058400", "10311840", "79833600", "1305944640", "11018367360", "174616041600", "2150397849600", "28661419987200", "473667677683200", "6293779652160000", "114484773731328000", "1766543101087564800", "31640707215390873600" ]
[ "nonn" ]
14
0
4
[ "A353226", "A357966", "A357967", "A357968" ]
null
Seiichi Manyama, Oct 22 2022
2022-10-22T14:02:14
oeisdata/seq/A357/A357966.seq
1a9b002715acc1845a79c83013ca5b13
A357967
Expansion of e.g.f. exp( x * (exp(x^3) - 1) ).
[ "1", "0", "0", "0", "24", "0", "0", "2520", "20160", "0", "604800", "19958400", "79833600", "259459200", "25427001600", "326918592000", "1046139494400", "44460928512000", "1333827855360000", "10306043229081600", "125024130975744000", "6386367771463680000", "101695303941783552000", "861733891296165888000" ]
[ "nonn" ]
9
0
5
[ "A353227", "A357966", "A357967", "A357968" ]
null
Seiichi Manyama, Oct 22 2022
2022-10-22T14:02:10
oeisdata/seq/A357/A357967.seq
e684f223fcce923495a6545e544306aa
A357968
Expansion of e.g.f. exp( x * (exp(x^4) - 1) ).
[ "1", "0", "0", "0", "0", "120", "0", "0", "0", "181440", "1814400", "0", "0", "1037836800", "43589145600", "217945728000", "0", "14820309504000", "1867358997504000", "30411275102208000", "101370917007360000", "425757851430912000", "140500090972200960000", "5385836820601036800000" ]
[ "nonn" ]
10
0
6
[ "A357966", "A357967", "A357968" ]
null
Seiichi Manyama, Oct 22 2022
2022-10-22T14:02:07
oeisdata/seq/A357/A357968.seq
763d853fdea5209964b44efefd6e3516
A357969
Decimal expansion of the constant Sum_{j>=0} j!/prime(j)#, where prime(j)# indicates the j-th primorial number.
[ "2", "2", "4", "0", "0", "5", "3", "6", "5", "2", "6", "8", "9", "0", "5", "0", "1", "1", "0", "2", "5", "7", "2", "0", "6", "4", "2", "7", "6", "2", "5", "8", "0", "9", "4", "4", "3", "9", "1", "8", "3", "9", "3", "1", "4", "3", "0", "1", "5", "9", "5", "5", "4", "6", "6", "8", "3", "6", "4", "6", "9", "9", "5", "9", "2", "3", "3", "9", "8", "6", "1", "3", "6", "6", "8", "6", "6", "7", "4", "6", "0", "1", "9", "4", "6", "5", "7" ]
[ "cons", "easy", "nonn" ]
28
1
1
[ "A000142", "A002110", "A064648", "A357969" ]
null
Marco Ripà, Oct 22 2022
2022-10-28T02:39:59
oeisdata/seq/A357/A357969.seq
09e443eb064c5043a29a764efb92ed90
A357970
a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 3 and 6 segments, respectively.
[ "24", "20", "23", "23", "22", "23", "24", "21", "25", "24", "20", "16", "19", "19", "18", "19", "20", "17", "21", "20", "23", "19", "22", "22", "21", "22", "23", "20", "24", "23", "23", "19", "22", "22", "21", "22", "23", "20", "24", "23", "22", "18", "21", "21", "20", "21", "22", "19", "23", "22", "23", "19", "22", "22", "21", "22", "23", "20", "24", "23", "20", "16", "19", "19", "18", "19", "20" ]
[ "nonn", "base", "easy" ]
21
0
1
[ "A006942", "A008588", "A055642", "A055643", "A357970", "A357971", "A357972", "A357973", "A357974" ]
null
Stefano Spezia, Oct 22 2022
2022-10-23T09:19:17
oeisdata/seq/A357/A357970.seq
5fbdf9c5cc5cd9f9157b9a2176e9d0fd
A357971
a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 4 and 6 segments, respectively.
[ "24", "20", "23", "23", "22", "23", "24", "22", "25", "24", "20", "16", "19", "19", "18", "19", "20", "18", "21", "20", "23", "19", "22", "22", "21", "22", "23", "21", "24", "23", "23", "19", "22", "22", "21", "22", "23", "21", "24", "23", "22", "18", "21", "21", "20", "21", "22", "20", "23", "22", "23", "19", "22", "22", "21", "22", "23", "21", "24", "23", "20", "16", "19", "19", "18", "19", "20" ]
[ "nonn", "base", "easy" ]
19
0
1
[ "A008588", "A010371", "A055642", "A055643", "A357970", "A357971", "A357972", "A357973", "A357974" ]
null
Stefano Spezia, Oct 22 2022
2022-10-23T09:19:12
oeisdata/seq/A357/A357971.seq
754f1eb974f8d52e4cf00bf03229d71b
A357972
a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 5, 3 and 5 segments, respectively.
[ "24", "20", "23", "23", "22", "23", "23", "21", "25", "23", "20", "16", "19", "19", "18", "19", "19", "17", "21", "19", "23", "19", "22", "22", "21", "22", "22", "20", "24", "22", "23", "19", "22", "22", "21", "22", "22", "20", "24", "22", "22", "18", "21", "21", "20", "21", "21", "19", "23", "21", "23", "19", "22", "22", "21", "22", "22", "20", "24", "22", "20", "16", "19", "19", "18", "19", "19" ]
[ "nonn", "base", "easy" ]
20
0
1
[ "A008588", "A055642", "A055643", "A063720", "A357970", "A357971", "A357972", "A357973", "A357974" ]
null
Stefano Spezia, Oct 22 2022
2022-10-23T09:19:03
oeisdata/seq/A357/A357972.seq
18f7ff0570f2edd5a97ec65429b7ea6c
A357973
a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 4 and 5 segments, respectively.
[ "24", "20", "23", "23", "22", "23", "24", "22", "25", "23", "20", "16", "19", "19", "18", "19", "20", "18", "21", "19", "23", "19", "22", "22", "21", "22", "23", "21", "24", "22", "23", "19", "22", "22", "21", "22", "23", "21", "24", "22", "22", "18", "21", "21", "20", "21", "22", "20", "23", "21", "23", "19", "22", "22", "21", "22", "23", "21", "24", "22", "20", "16", "19", "19", "18", "19", "20" ]
[ "nonn", "base", "easy" ]
21
0
1
[ "A008588", "A055642", "A055643", "A074458", "A357970", "A357971", "A357972", "A357973", "A357974" ]
null
Stefano Spezia, Oct 22 2022
2022-10-24T22:05:39
oeisdata/seq/A357/A357973.seq
248d05557144c04562a392896689874d
A357974
a(n) is the number of segments used to represent the time of n minutes past midnight in the format hh:mm on a 7-segment calculator display; version where the digits '6', '7' and '9' use 6, 3 and 5 segments, respectively.
[ "24", "20", "23", "23", "22", "23", "24", "21", "25", "23", "20", "16", "19", "19", "18", "19", "20", "17", "21", "19", "23", "19", "22", "22", "21", "22", "23", "20", "24", "22", "23", "19", "22", "22", "21", "22", "23", "20", "24", "22", "22", "18", "21", "21", "20", "21", "22", "19", "23", "21", "23", "19", "22", "22", "21", "22", "23", "20", "24", "22", "20", "16", "19", "19", "18", "19", "20" ]
[ "nonn", "base", "easy" ]
18
0
1
[ "A008588", "A055642", "A055643", "A277116", "A357970", "A357971", "A357972", "A357973", "A357974" ]
null
Stefano Spezia, Oct 22 2022
2022-10-23T09:19:32
oeisdata/seq/A357/A357974.seq
211e9d3f0f8a40800f3f2f8f5cd38946
A357975
Divide all prime indices by 2, round down, and take the number with those prime indices, assuming prime(0) = 1.
[ "1", "1", "2", "1", "2", "2", "3", "1", "4", "2", "3", "2", "5", "3", "4", "1", "5", "4", "7", "2", "6", "3", "7", "2", "4", "5", "8", "3", "11", "4", "11", "1", "6", "5", "6", "4", "13", "7", "10", "2", "13", "6", "17", "3", "8", "7", "17", "2", "9", "4", "10", "5", "19", "8", "6", "3", "14", "11", "19", "4", "23", "11", "12", "1", "10", "6", "23", "5", "14", "6", "29", "4", "29", "13", "8", "7", "9", "10", "31" ]
[ "nonn" ]
14
1
3
[ "A000079", "A003961", "A004526", "A056239", "A064988", "A064989", "A066207", "A076610", "A109763", "A112798", "A164095", "A215366", "A248601", "A297002", "A357975", "A357980" ]
null
Gus Wiseman, Oct 23 2022
2023-02-12T17:29:44
oeisdata/seq/A357/A357975.seq
fd4f314f762073a9d05c18453c2b32c7
A357976
Numbers with a divisor having the same sum of prime indices as their quotient.
[ "1", "4", "9", "12", "16", "25", "30", "36", "40", "48", "49", "63", "64", "70", "81", "84", "90", "100", "108", "112", "120", "121", "144", "154", "160", "165", "169", "192", "196", "198", "210", "220", "225", "252", "256", "264", "270", "273", "280", "286", "289", "300", "324", "325", "336", "351", "352", "360", "361", "364", "390", "400", "432", "441", "442", "448" ]
[ "nonn" ]
12
1
2
[ "A001221", "A001222", "A002219", "A033879", "A033880", "A056239", "A064914", "A112798", "A181819", "A213086", "A235130", "A237194", "A237258", "A276107", "A300061", "A300273", "A321144", "A357854", "A357879", "A357975", "A357976" ]
null
Gus Wiseman, Oct 26 2022
2023-10-26T20:16:18
oeisdata/seq/A357/A357976.seq
f89ac1c618254a43c49756e3694eaf35
A357977
Replace prime(k) with prime(A000041(k)) in the prime factorization of n.
[ "1", "2", "3", "4", "5", "6", "11", "8", "9", "10", "17", "12", "31", "22", "15", "16", "47", "18", "79", "20", "33", "34", "113", "24", "25", "62", "27", "44", "181", "30", "263", "32", "51", "94", "55", "36", "389", "158", "93", "40", "547", "66", "761", "68", "45", "226", "1049", "48", "121", "50", "141", "124", "1453", "54", "85", "88", "237", "362", "1951", "60", "2659", "526" ]
[ "nonn", "mult" ]
19
1
2
[ "A000040", "A000041", "A000720", "A003961", "A003964", "A056239", "A063834", "A064988", "A064989", "A076610", "A112798", "A215366", "A296150", "A299201", "A299202", "A357852", "A357975", "A357977", "A357978", "A357979", "A357980", "A357983" ]
null
Gus Wiseman, Oct 23 2022
2024-10-04T08:51:33
oeisdata/seq/A357/A357977.seq
081e67d02b875dd1f6ab8c188d34d44b
A357978
Replace prime(k) with prime(A000009(k)) in the prime factorization of n.
[ "1", "2", "2", "4", "3", "4", "3", "8", "4", "6", "5", "8", "7", "6", "6", "16", "11", "8", "13", "12", "6", "10", "19", "16", "9", "14", "8", "12", "29", "12", "37", "32", "10", "22", "9", "16", "47", "26", "14", "24", "61", "12", "79", "20", "12", "38", "103", "32", "9", "18", "22", "28", "131", "16", "15", "24", "26", "58", "163", "24", "199", "74", "12", "64", "21", "20", "251", "44", "38" ]
[ "nonn", "mult" ]
13
1
2
[ "A000040", "A000041", "A000720", "A003961", "A003964", "A056239", "A063834", "A064988", "A064989", "A076610", "A112798", "A215366", "A296150", "A299201", "A299202", "A357852", "A357975", "A357977", "A357978", "A357979", "A357980", "A357983" ]
null
Gus Wiseman, Oct 24 2022
2024-10-04T08:51:25
oeisdata/seq/A357/A357978.seq
ae3ebfb93b6f3618ca8d82b8517bd221
A357979
Second MTF-transform of A000041. Replace prime(k) with prime(A357977(k)) in the prime factorization of n.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "31", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "59", "32", "33", "62", "35", "36", "37", "38", "39", "40", "127", "42", "79", "44", "45", "46", "47", "48", "49", "50", "93", "52", "53", "54", "55", "56", "57", "58", "211", "60", "61", "118", "63", "64", "65", "66" ]
[ "nonn", "mult" ]
10
1
2
[ "A000040", "A000041", "A000720", "A003961", "A003964", "A056239", "A063834", "A064988", "A064989", "A076610", "A112798", "A215366", "A296150", "A299201", "A299202", "A357852", "A357975", "A357977", "A357978", "A357979", "A357980", "A357983" ]
null
Gus Wiseman, Oct 24 2022
2024-10-04T08:51:21
oeisdata/seq/A357/A357979.seq
3fd257c88d146b654d381ffa2f0e78d1
A357980
Replace prime(k) with prime(A000720(k)) in the prime factorization of n, assuming prime(0) = 1.
[ "1", "1", "2", "1", "3", "2", "3", "1", "4", "3", "5", "2", "5", "3", "6", "1", "7", "4", "7", "3", "6", "5", "7", "2", "9", "5", "8", "3", "7", "6", "11", "1", "10", "7", "9", "4", "11", "7", "10", "3", "13", "6", "13", "5", "12", "7", "13", "2", "9", "9", "14", "5", "13", "8", "15", "3", "14", "7", "17", "6", "17", "11", "12", "1", "15", "10", "19", "7", "14", "9", "19", "4", "19", "11", "18", "7", "15", "10" ]
[ "nonn", "mult" ]
13
1
3
[ "A000040", "A000720", "A003961", "A056239", "A063834", "A064988", "A064989", "A066207", "A076610", "A112798", "A215366", "A296150", "A357852", "A357975", "A357977", "A357978", "A357980", "A357983", "A357984" ]
null
Gus Wiseman, Oct 24 2022
2024-10-04T08:51:37
oeisdata/seq/A357/A357980.seq
22507d2a9f0e7bf87b9feb2ae04e8de2
A357981
Numbers whose prime indices have only prime numbers as their own prime indices.
[ "1", "2", "4", "5", "8", "10", "11", "16", "20", "22", "23", "25", "31", "32", "40", "44", "46", "47", "50", "55", "59", "62", "64", "80", "88", "92", "94", "97", "100", "103", "110", "115", "118", "121", "124", "125", "127", "128", "137", "155", "160", "176", "179", "184", "188", "194", "197", "200", "206", "220", "230", "233", "235", "236", "242", "248", "250", "253", "254" ]
[ "nonn" ]
7
1
2
[ "A000040", "A000079", "A003961", "A045966", "A056239", "A064988", "A066207", "A076610", "A112798", "A215366", "A357977", "A357980", "A357981", "A357983" ]
null
Gus Wiseman, Oct 23 2022
2022-10-25T09:03:42
oeisdata/seq/A357/A357981.seq
f0f82510c05ee8fbc92cedc461cd607c
A357982
Replace prime(k) with A000009(k) in the prime factorization of n.
[ "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "3", "1", "4", "2", "2", "1", "5", "1", "6", "2", "2", "3", "8", "1", "4", "4", "1", "2", "10", "2", "12", "1", "3", "5", "4", "1", "15", "6", "4", "2", "18", "2", "22", "3", "2", "8", "27", "1", "4", "4", "5", "4", "32", "1", "6", "2", "6", "10", "38", "2", "46", "12", "2", "1", "8", "3", "54", "5", "8", "4", "64", "1", "76", "15", "4", "6", "6", "4", "89", "2", "1" ]
[ "nonn", "mult" ]
19
1
5
[ "A000040", "A000041", "A000720", "A003586", "A003961", "A003964", "A056239", "A059485", "A063834", "A064988", "A064989", "A076610", "A112798", "A215366", "A273873", "A296150", "A299200", "A299201", "A299203", "A357852", "A357975", "A357977", "A357978", "A357979", "A357980", "A357982", "A357983" ]
null
Gus Wiseman, Oct 25 2022
2024-10-04T08:51:16
oeisdata/seq/A357/A357982.seq
ccab3abeec77c6515cedfed1d214f41e
A357983
Second MTF-transform of the primes (A000040). Replace prime(k) with prime(A064988(k)) in the prime factorization of n.
[ "1", "2", "5", "4", "11", "10", "23", "8", "25", "22", "31", "20", "47", "46", "55", "16", "59", "50", "103", "44", "115", "62", "97", "40", "121", "94", "125", "92", "137", "110", "127", "32", "155", "118", "253", "100", "197", "206", "235", "88", "179", "230", "233", "124", "275", "194", "257", "80", "529", "242", "295", "188", "419", "250", "341", "184", "515", "274" ]
[ "nonn", "mult" ]
11
1
2
[ "A000040", "A000720", "A003961", "A003964", "A056239", "A063834", "A064988", "A064989", "A076610", "A112798", "A215366", "A296150", "A299201", "A299202", "A357852", "A357975", "A357977", "A357979", "A357980", "A357983" ]
null
Gus Wiseman, Oct 24 2022
2024-10-04T08:51:29
oeisdata/seq/A357/A357983.seq
0f92a171398b3ac57da9cf8ce2c7c5d5
A357984
Replace prime(k) with A000720(k) in the prime factorization of n.
[ "1", "0", "1", "0", "2", "0", "2", "0", "1", "0", "3", "0", "3", "0", "2", "0", "4", "0", "4", "0", "2", "0", "4", "0", "4", "0", "1", "0", "4", "0", "5", "0", "3", "0", "4", "0", "5", "0", "3", "0", "6", "0", "6", "0", "2", "0", "6", "0", "4", "0", "4", "0", "6", "0", "6", "0", "4", "0", "7", "0", "7", "0", "2", "0", "6", "0", "8", "0", "4", "0", "8", "0", "8", "0", "4", "0", "6", "0", "8", "0", "1", "0", "9", "0", "8", "0", "4" ]
[ "nonn", "mult" ]
9
1
5
[ "A000040", "A000720", "A003961", "A033879", "A033880", "A056239", "A063834", "A064988", "A064989", "A066207", "A076610", "A112798", "A296150", "A299200", "A355741", "A355742", "A357852", "A357975", "A357977", "A357980", "A357982", "A357983", "A357984" ]
null
Gus Wiseman, Oct 25 2022
2024-10-04T08:51:12
oeisdata/seq/A357/A357984.seq
638a19a29c6e4f89e02f490264cc4c59
A357985
Counterclockwise square spiral constructed using the integers so that a(n) plus all other numbers currently visible from the current number equals n; start with a(0) = 0.
[ "0", "1", "1", "1", "2", "1", "3", "-1", "6", "-2", "-1", "0", "1", "9", "-8", "15", "-5", "-7", "-10", "14", "-29", "58", "-78", "101", "-118", "150", "-61", "309", "-307", "553", "-494", "-186", "-644", "315", "-1177", "731", "-1458", "3480", "-5183", "7096", "-8328", "9735", "-10882", "7200", "-29452", "31322", "-52670", "51401", "-65210", "61001", "11318", "135012", "-109687", "259226", "-221542" ]
[ "sign" ]
43
0
5
[ "A274640", "A275609", "A307834", "A355270", "A357985", "A357991" ]
null
Scott R. Shannon, Oct 23 2022
2023-04-13T06:08:55
oeisdata/seq/A357/A357985.seq
5a34006212ca8858dbbe48e647a8fc3a
A357986
a(n) is the unique k such that A357579(k) = A007916(n), or -1 if no such k exists.
[ "1", "2", "4", "5", "3", "7", "8", "6", "12", "14", "11", "9", "10", "16", "13", "20", "19", "15", "25", "18", "17", "21", "27", "26", "22", "29", "23", "24", "28", "31", "32", "30", "36", "34", "33", "38", "35", "43", "41", "44", "37", "46", "40", "39", "49", "51", "42", "48", "45", "50", "47", "55", "57", "54", "52", "53", "63", "58", "56", "67", "60", "59", "62", "65", "61", "69", "66" ]
[ "nonn" ]
11
1
2
[ "A007916", "A357579", "A357986" ]
null
Rémy Sigrist, Oct 23 2022
2022-10-23T13:42:55
oeisdata/seq/A357/A357986.seq
c6037872e7a32ed2a905b6297ad205cf
A357987
Lexicographically earliest sequence of positive integers such that no sum of consecutive terms is a square or higher power of an integer.
[ "2", "3", "2", "5", "5", "2", "3", "2", "21", "5", "2", "5", "5", "5", "7", "6", "5", "6", "6", "7", "11", "24", "2", "13", "5", "6", "35", "7", "10", "34", "6", "15", "2", "28", "10", "2", "5", "14", "19", "2", "5", "28", "2", "3", "2", "35", "2", "18", "6", "11", "3", "3", "37", "2", "5", "26", "29", "33", "42", "13", "5", "5", "10", "11", "13", "21", "18", "5", "10", "5", "6", "7", "24", "20", "3", "15" ]
[ "nonn" ]
6
1
1
[ "A001597", "A007916", "A357579", "A357987" ]
null
Rémy Sigrist, Oct 23 2022
2022-10-24T11:13:35
oeisdata/seq/A357/A357987.seq
54979a731e95cfabed214dff7e30996b
A357988
a(n) is the unique k such that A357579(k) = prime(n) (the n-th prime number), or -1 if no such k exists.
[ "1", "2", "4", "3", "8", "12", "9", "16", "15", "21", "26", "24", "30", "34", "43", "40", "45", "47", "53", "67", "59", "64", "70", "74", "84", "94", "89", "96", "93", "107", "110", "112", "120", "128", "124", "134", "137", "148", "156", "150", "163", "161", "170", "174", "180", "186", "189", "208", "201", "209", "213", "207", "222", "219", "240", "244", "245", "247", "250" ]
[ "nonn" ]
12
1
2
[ "A357579", "A357986", "A357988" ]
null
Rémy Sigrist, Oct 23 2022
2022-10-23T13:42:51
oeisdata/seq/A357/A357988.seq
1153f7914713068e979283c1b304fb9f
A357989
Lexicographically earliest sequence of distinct numbers such that every sum of consecutive terms is an evil number (A001969).
[ "0", "3", "6", "9", "15", "24", "29", "43", "58", "53", "18", "68", "298", "399", "71", "373", "2628", "444", "768", "2304", "6144", "2631", "441", "3072", "1604", "10684", "33348", "1212", "3908", "11452", "836", "3075", "1209", "43264", "98304", "33351", "3513", "1607", "10681", "1675", "3001", "44476", "4676", "12288", "3516", "176128", "524868" ]
[ "nonn", "base" ]
9
1
2
[ "A000069", "A001969", "A357579", "A357989" ]
null
Rémy Sigrist, Oct 23 2022
2022-10-25T03:35:10
oeisdata/seq/A357/A357989.seq
066c5e8cd3c7e5c6d827fb409b61c0cb
A357990
Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1).
[ "1", "1", "1", "3", "1", "1", "1", "5", "1", "1", "7", "1", "7", "1", "1", "3", "19", "1", "9", "1", "1", "7", "5", "37", "1", "11", "1", "1", "1", "11", "7", "61", "1", "13", "1", "1", "15", "1", "15", "9", "91", "1", "15", "1", "1", "7", "65", "1", "19", "11", "127", "1", "17", "1", "1", "17", "19", "175", "1", "23", "13", "169", "1", "19", "1", "1", "3", "43", "37", "369", "1", "27", "15", "217", "1", "21" ]
[ "nonn", "base", "tabl" ]
38
0
4
[ "A000120", "A053645", "A290255", "A329369", "A357990" ]
null
Mikhail Kurkov, Nov 20 2022
2024-05-27T23:15:12
oeisdata/seq/A357/A357990.seq
a150ffdad93f814efe2f12f54a781e46
A357991
Lexicographically earliest counterclockwise square spiral constructed using the nonnegative integers so that a(n) plus all other numbers currently visible from the current number form a distinct sum; start with a(0) = 0.
[ "0", "1", "1", "1", "2", "1", "3", "0", "4", "0", "0", "0", "1", "5", "0", "6", "0", "0", "1", "0", "2", "4", "0", "7", "0", "8", "0", "7", "0", "7", "0", "0", "0", "0", "0", "0", "0", "12", "0", "13", "0", "16", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "12", "0", "22", "0", "19", "0", "20", "1", "0", "0", "0", "0", "0", "0", "0", "0", "17", "0", "25", "0", "24", "0", "20", "1", "26", "0", "28", "0", "26", "0", "31", "0", "31", "0", "0", "0", "0" ]
[ "nonn" ]
10
0
5
[ "A274640", "A275609", "A307834", "A355270", "A357985", "A357991" ]
null
Scott R. Shannon, Oct 23 2022
2022-10-24T11:11:58
oeisdata/seq/A357/A357991.seq
5f8c8f7959a820626b820a6ce5959739
A357992
a(1)=1,a(2)=2,a(3)=3. Thereafter, if there are prime divisors p of a(n-2) which do not divide a(n-1), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-2).
[ "1", "2", "3", "4", "6", "8", "9", "10", "12", "5", "14", "15", "7", "18", "21", "16", "24", "20", "27", "22", "30", "11", "25", "33", "35", "36", "28", "39", "26", "42", "13", "32", "52", "34", "65", "17", "40", "51", "38", "45", "19", "48", "57", "44", "54", "55", "46", "50", "23", "56", "69", "49", "60", "63", "58", "66", "29", "62", "87", "31", "72", "93", "64", "75", "68", "70", "85", "74" ]
[ "nonn" ]
6
1
2
[ "A001221", "A064413", "A352187", "A357963", "A357992" ]
null
David James Sycamore, Oct 23 2022
2022-10-23T23:37:17
oeisdata/seq/A357/A357992.seq
41b31f4ee4626035db247a8b31341b68
A357993
a(n) is the unique k such that A357961(k) = 2^n.
[ "1", "2", "9", "8", "17", "34", "64", "129", "252", "515", "1026", "2044", "4091", "8184", "16375", "32758", "65525", "131060", "262131", "524279", "1048566", "2097167", "4194322", "8388590", "16777203", "33554450", "67108877", "134217712", "268435473", "536870929", "1073741807", "2147483622", "4294967278", "8589934615" ]
[ "nonn", "base" ]
12
0
2
[ "A357961", "A357993" ]
null
Rémy Sigrist, Oct 23 2022
2022-10-30T11:01:59
oeisdata/seq/A357/A357993.seq
3291f7de588f02127c0dd855e704beb8
A357994
a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the greatest least multiple of any such p which has not already occurred. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). (see comments).
[ "1", "2", "4", "6", "3", "9", "12", "8", "10", "5", "15", "18", "14", "7", "21", "24", "16", "20", "25", "30", "27", "33", "11", "22", "26", "13", "39", "36", "28", "35", "40", "32", "34", "17", "51", "42", "49", "56", "38", "19", "57", "45", "50", "44", "55", "60", "48", "54", "66", "77", "63", "69", "23", "46", "52", "65", "70", "84", "72", "78", "91", "98", "58", "29", "87", "75", "80", "62" ]
[ "nonn" ]
11
1
2
[ "A001221", "A064413", "A352187", "A357963", "A357994" ]
null
David James Sycamore, Oct 23 2022
2025-03-24T04:11:51
oeisdata/seq/A357/A357994.seq
16188fdd28f049b54411540feb8cd5f0
A357995
Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2.
[ "1", "5", "11", "13", "11", "20", "31", "24", "27", "29", "43", "37", "49", "52", "63", "58", "69", "53", "75", "61", "65", "84", "95", "98", "85", "96", "107", "115", "88", "121", "127", "122", "130", "136", "139", "134", "145", "148", "159", "151", "154", "157", "171", "174", "169", "180", "191", "194", "178", "181", "203", "198", "201", "212", "223", "210", "221", "232", "235", "214" ]
[ "nonn" ]
13
2
2
[ "A059100", "A087475", "A114949", "A117619", "A117950", "A117951", "A189833", "A189834", "A357995" ]
null
Michel Marcus, Oct 23 2022
2022-10-30T10:00:57
oeisdata/seq/A357/A357995.seq
ae5a35cd47ee3a956422d71f662e9c67
A357996
a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A006942).
[ "1", "2", "4", "14", "25", "37", "70", "105", "123", "153", "186", "182", "156", "139", "119", "79", "35", "9", "1" ]
[ "nonn", "base", "easy", "fini", "full" ]
6
8
2
[ "A006942", "A008588", "A055642", "A055643", "A357970", "A357996", "A357997", "A357998", "A357999", "A358000" ]
null
Stefano Spezia, Oct 23 2022
2022-10-23T23:30:08
oeisdata/seq/A357/A357996.seq
e5b1f2a1b05b62808b94771034f3a915
A357997
a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A010371).
[ "1", "0", "5", "10", "16", "35", "66", "88", "119", "166", "187", "177", "161", "154", "129", "81", "35", "9", "1" ]
[ "nonn", "base", "easy", "fini", "full" ]
5
8
3
[ "A008588", "A010371", "A055642", "A055643", "A357971", "A357996", "A357997", "A357998", "A357999", "A358000" ]
null
Stefano Spezia, Oct 23 2022
2022-10-23T23:30:20
oeisdata/seq/A357/A357997.seq
796944721900affd12075c22975c586a
A357998
a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A063720).
[ "1", "2", "4", "18", "25", "41", "96", "103", "133", "189", "188", "154", "158", "155", "95", "53", "19", "5", "1" ]
[ "nonn", "base", "easy", "fini", "full" ]
5
8
2
[ "A008588", "A055642", "A055643", "A063720", "A357972", "A357996", "A357997", "A357998", "A357999", "A358000" ]
null
Stefano Spezia, Oct 23 2022
2022-10-23T23:30:31
oeisdata/seq/A357/A357998.seq
616cb1dffa51037c04255974a835001e
A357999
a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A074458).
[ "1", "0", "5", "12", "14", "41", "74", "87", "128", "185", "185", "162", "167", "159", "119", "67", "26", "7", "1" ]
[ "nonn", "base", "easy", "fini", "full" ]
5
8
3
[ "A008588", "A055642", "A055643", "A074458", "A357973", "A357996", "A357997", "A357998", "A357999", "A358000" ]
null
Stefano Spezia, Oct 23 2022
2022-10-23T23:30:45
oeisdata/seq/A357/A357999.seq
784b2d0b2202f0efc3f7cd52694ebcbb
A358000
a(n) is the number of times in the format hh:mm that can be represented in a 7-segment display by using only n segments (version A277116).
[ "1", "2", "4", "16", "25", "39", "82", "106", "126", "170", "190", "169", "154", "146", "111", "65", "26", "7", "1" ]
[ "nonn", "base", "easy", "fini", "full" ]
5
8
2
[ "A008588", "A055642", "A055643", "A277116", "A357974", "A357996", "A357997", "A357998", "A357999", "A358000" ]
null
Stefano Spezia, Oct 23 2022
2022-10-23T23:31:58
oeisdata/seq/A358/A358000.seq
2e2abe89f477fd11638e94383eaaf048