sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357801 | Coefficients T(n,k) of x^(4*n)*r^(4*k)/(4*n)! in power series C(x,r) = 1 + Integral S(x,r)^3 * D(x,r)^3 dx such that C(x,r)^4 - S(x,r)^4 = 1 and D(x,r)^4 - r^4*S(x,r)^4 = 1, as a triangle read by rows. | [
"1",
"6",
"0",
"2268",
"6048",
"0",
"7434504",
"56282688",
"35126784",
"0",
"95227613712",
"1409371197696",
"2514356038656",
"679185948672",
"0",
"3354162536029536",
"81696140755536384",
"284770675495950336",
"220415417637617664",
"33022883487154176",
"0",
"264444869673131894208",
"9583398717725834749440",
"54913653475645427527680",
"83079959422282198548480",
"35701050229143616880640",
"3393656235362623684608",
"0"
] | [
"nonn",
"tabl"
] | 22 | 0 | 2 | [
"A153300",
"A357541",
"A357800",
"A357801",
"A357802",
"A357805"
] | null | Paul D. Hanna, Oct 14 2022 | 2023-04-12T22:45:02 | oeisdata/seq/A357/A357801.seq | 305bda949d267f61c72a6f0193dcfbcd |
A357802 | Coefficients T(n,k) of x^(4*n)*r^(4*k)/(4*n)! in power series D(x,r) = 1 + r^4 * Integral S(x,r)^3 * C(x,r)^3 dx such that C(x,r)^4 - S(x,r)^4 = 1 and D(x,r)^4 - r^4*S(x,r)^4 = 1, as a triangle read by rows. | [
"1",
"0",
"6",
"0",
"6048",
"2268",
"0",
"35126784",
"56282688",
"7434504",
"0",
"679185948672",
"2514356038656",
"1409371197696",
"95227613712",
"0",
"33022883487154176",
"220415417637617664",
"284770675495950336",
"81696140755536384",
"3354162536029536",
"0",
"3393656235362623684608",
"35701050229143616880640",
"83079959422282198548480",
"54913653475645427527680",
"9583398717725834749440",
"264444869673131894208"
] | [
"nonn",
"tabl"
] | 10 | 0 | 3 | [
"A153300",
"A357542",
"A357800",
"A357801",
"A357802",
"A357805"
] | null | Paul D. Hanna, Oct 14 2022 | 2023-04-12T22:49:15 | oeisdata/seq/A357/A357802.seq | a44c8fa4ed2e8ed56eb482036fddb5c1 |
A357803 | a(n) = coefficient of x^(2*n) in A(x) such that A(x) = G(x)^2 where G(x) = 1 + Sum_{n>=1} (-1)^n * x^(4*n^2) * (F(x/2)^(2*n) + F(-x/2)^(2*n)), and F(x) is the g.f. of A357787. | [
"1",
"0",
"-4",
"-8",
"-12",
"-8",
"32",
"128",
"292",
"440",
"248",
"-904",
"-3616",
"-7032",
"-5824",
"13056",
"66372",
"146144",
"145116",
"-250216",
"-1545848",
"-3862464",
"-5072992",
"2525376",
"33963072",
"100587096",
"164044888",
"37400880",
"-712627392",
"-2586929240",
"-5043112640",
"-3653527040",
"13772747140",
"65564551200",
"150393547384",
"167883535904"
] | [
"sign"
] | 6 | 0 | 3 | [
"A357787",
"A357788",
"A357789",
"A357803",
"A357806"
] | null | Paul D. Hanna, Dec 06 2022 | 2022-12-08T07:35:55 | oeisdata/seq/A357/A357803.seq | df402096318eda344e501ce3e8dd65bc |
A357804 | a(n) = coefficient of x^(4*n+1)/(4*n+1)! in power series S(x) = Series_Reversion( Integral 1/(1 + x^4)^(3/2) dx ). | [
"1",
"36",
"87696",
"1483707456",
"91329084354816",
"14862901723860427776",
"5279211177231308343054336",
"3600188413031639396548043882496",
"4300014195136238449156877005063520256",
"8394333803654997846112872487491938363375616",
"25378508500092778024069322428694679252236239896576"
] | [
"nonn"
] | 17 | 0 | 2 | [
"A153301",
"A357800",
"A357804",
"A357805"
] | null | Paul D. Hanna, Oct 14 2022 | 2025-04-09T06:34:42 | oeisdata/seq/A357/A357804.seq | 6307cd51c927fde17e11d9c78fb32502 |
A357805 | a(n) = coefficient of x^(4*n)/(4*n)! in power series C(x) = 1 + Integral S(x)^3 * C(x)^3 dx such that C(x)^4 - S(x)^4 = 1. | [
"1",
"6",
"8316",
"98843976",
"4698140798736",
"623259279912288096",
"186936162949832833285056",
"110352751044119383032310847616",
"116215132158682166284921510741483776",
"202905498509713715271588290261091671041536",
"554890365215965228675768455367962915432839248896"
] | [
"nonn"
] | 12 | 0 | 2 | [
"A153300",
"A357801",
"A357802",
"A357804",
"A357805"
] | null | Paul D. Hanna, Oct 14 2022 | 2022-12-03T12:01:59 | oeisdata/seq/A357/A357805.seq | e4affb4c0073ff29a0ecaf128ae9c2d2 |
A357806 | a(n) = coefficient of x^(2*n) in A(x) = 1 + Sum_{n>=1} (-1)^n * x^(4*n^2) * (F(x/2)^(2*n) + F(-x/2)^(2*n)), where F(x) is the g.f. of A357787. | [
"1",
"0",
"-2",
"-4",
"-8",
"-12",
"-8",
"8",
"50",
"108",
"120",
"-68",
"-672",
"-1644",
"-1904",
"1912",
"15456",
"41160",
"59494",
"-5852",
"-311040",
"-996744",
"-1752680",
"-840600",
"5988928",
"24181500",
"50438488",
"45910304",
"-103373216",
"-582387300",
"-1428882832",
"-1814475760",
"1263429058",
"13685575400"
] | [
"sign"
] | 10 | 0 | 3 | [
"A357787",
"A357788",
"A357789",
"A357806"
] | null | Paul D. Hanna, Dec 05 2022 | 2022-12-06T10:23:06 | oeisdata/seq/A357/A357806.seq | 4b2b476a47d0d7822441ec4aa4ff5e97 |
A357807 | Semiprimes k such that k is congruent to 3 modulo k's index in the sequence of semiprimes. | [
"4",
"9",
"15",
"111",
"141",
"237",
"27663",
"27667",
"3066878",
"3066893",
"3067023",
"3067033",
"3067073",
"3067193",
"3067243",
"3067273",
"3067283",
"3067543",
"3067598",
"3067613",
"3067663",
"3067798",
"3067843",
"3067853",
"3067913",
"3067933",
"3067993",
"348933171",
"348933219",
"348933297"
] | [
"nonn",
"hard"
] | 10 | 1 | 1 | [
"A001358",
"A106128",
"A357807"
] | null | Lucas A. Brown, Oct 13 2022 | 2022-10-16T03:23:53 | oeisdata/seq/A357/A357807.seq | 43ae4aa45b9b1ebdb839bae28acfb9ae |
A357808 | Semiprimes k such that k is congruent to 4 modulo k's index in the sequence of semiprimes. | [
"4",
"6",
"14",
"115",
"118",
"178",
"187",
"214",
"235",
"3066899",
"3067069",
"3067079",
"3067149",
"3067429",
"3067549",
"3067594",
"3067609",
"3067669",
"3067719",
"3067999",
"44690978147",
"44690978217",
"44690978245",
"44690978623",
"44690978903",
"44690979022",
"44690979442"
] | [
"nonn",
"hard",
"more"
] | 10 | 1 | 1 | [
"A001358",
"A106129",
"A357808"
] | null | Lucas A. Brown, Oct 13 2022 | 2022-10-29T04:42:40 | oeisdata/seq/A357/A357808.seq | 7b235e7d3a94b8aa0a991147cff1653c |
A357809 | Locations of successive records in A357062. | [
"0",
"4",
"6",
"12",
"24",
"36",
"40",
"54",
"60",
"84",
"96",
"120",
"144",
"168",
"180",
"264",
"360",
"420",
"504",
"600",
"840",
"1176",
"1320",
"1440",
"1680",
"2280",
"2520",
"3024",
"3120",
"3960",
"6120",
"6300",
"7560",
"7800",
"8160",
"11760",
"14040",
"19320",
"21600",
"27720",
"30240",
"38760",
"52920",
"55440",
"65520",
"83160",
"85680"
] | [
"nonn",
"hard"
] | 12 | 1 | 2 | [
"A357062",
"A357809"
] | null | Charles R Greathouse IV, Oct 13 2022 | 2022-10-21T11:39:03 | oeisdata/seq/A357/A357809.seq | aca2642387ad86c2111daf328daab151 |
A357810 | Number of n-step closed paths on the Cairo pentagonal lattice graph starting from a degree-4 node. | [
"1",
"0",
"4",
"0",
"24",
"8",
"164",
"136",
"1236",
"1704",
"10116",
"19144",
"88616",
"205208",
"818764",
"2155160",
"7873440",
"22463400",
"77954740",
"233894600",
"788314984",
"2440865400",
"8095906076",
"25569342520",
"84107990356",
"269034666280"
] | [
"nonn",
"easy",
"walk"
] | 12 | 0 | 3 | [
"A002893",
"A002894",
"A002898",
"A357810",
"A357811"
] | null | Dave R.M. Langers, Oct 13 2022 | 2022-11-27T11:32:16 | oeisdata/seq/A357/A357810.seq | bd977ab5dd350d4f4fa5a6915862dcc9 |
A357811 | Number of n-step closed paths on the Cairo pentagonal lattice graph starting from a degree-3 node. | [
"1",
"0",
"3",
"0",
"17",
"6",
"115",
"100",
"867",
"1236",
"7117",
"13770",
"62545",
"146866",
"579387",
"1537920",
"5581725",
"16002810",
"55329435",
"166465820",
"559913787",
"1736268432",
"5752600961",
"18182999274",
"59777071435",
"191287075320"
] | [
"nonn",
"easy",
"walk"
] | 11 | 0 | 3 | [
"A002893",
"A002894",
"A002898",
"A357810",
"A357811"
] | null | Dave R.M. Langers, Oct 13 2022 | 2022-11-27T11:32:27 | oeisdata/seq/A357/A357811.seq | cc290c80c4f476d314f538338497efd6 |
A357812 | Number of subsets of [n] in which exactly half of the elements are powers of 2. | [
"1",
"1",
"1",
"3",
"4",
"10",
"20",
"35",
"70",
"126",
"210",
"330",
"495",
"715",
"1001",
"1365",
"4368",
"6188",
"8568",
"11628",
"15504",
"20349",
"26334",
"33649",
"42504",
"53130",
"65780",
"80730",
"98280",
"118755",
"142506",
"169911",
"906192",
"1107568",
"1344904",
"1623160",
"1947792",
"2324784",
"2760681",
"3262623",
"3838380"
] | [
"nonn"
] | 22 | 0 | 4 | [
"A000079",
"A029837",
"A037031",
"A102366",
"A113473",
"A180272",
"A357812",
"A357927"
] | null | Alois P. Heinz, Oct 13 2022 | 2022-10-20T17:35:33 | oeisdata/seq/A357/A357812.seq | 6123834215b0917a0d2c9bfd20c3d429 |
A357813 | a(n) is the least number k such that the sum of n^2 consecutive primes starting at prime(k) is a square. | [
"3",
"1",
"78",
"333",
"84",
"499",
"36",
"1874",
"1102",
"18",
"183",
"2706",
"23",
"104",
"739",
"1055",
"8435",
"633",
"42130",
"13800",
"942",
"55693",
"7449",
"13270",
"41410",
"4317",
"17167",
"61999",
"17117",
"9161",
"46704",
"12447",
"2679",
"2971",
"3946",
"103089",
"6359",
"19601",
"7240",
"422",
"690",
"20851",
"963",
"36597",
"3559",
"111687",
"12926",
"4071",
"30622",
"6355"
] | [
"nonn"
] | 55 | 2 | 1 | [
"A034963",
"A127336",
"A230327",
"A357813",
"A358156"
] | null | Jean-Marc Rebert, Nov 12 2022 | 2022-12-15T21:24:23 | oeisdata/seq/A357/A357813.seq | ba8385eb9b5afb9c398e4fc23392c7d6 |
A357814 | Triangular array read by rows: T(n,k) is the quotient on division of Fib(n) by Fib(k) for 1 <= k <= n, where Fib(k) = A000045(k). | [
"1",
"1",
"1",
"2",
"2",
"1",
"3",
"3",
"1",
"1",
"5",
"5",
"2",
"1",
"1",
"8",
"8",
"4",
"2",
"1",
"1",
"13",
"13",
"6",
"4",
"2",
"1",
"1",
"21",
"21",
"10",
"7",
"4",
"2",
"1",
"1",
"34",
"34",
"17",
"11",
"6",
"4",
"2",
"1",
"1",
"55",
"55",
"27",
"18",
"11",
"6",
"4",
"2",
"1",
"1",
"89",
"89",
"44",
"29",
"17",
"11",
"6",
"4",
"2",
"1",
"1",
"144",
"144",
"72",
"48",
"28",
"18",
"11",
"6",
"4",
"2",
"1",
"1",
"233",
"233",
"116",
"77",
"46",
"29",
"17",
"11"
] | [
"nonn",
"tabl",
"look"
] | 33 | 1 | 4 | [
"A000032",
"A000045",
"A357724",
"A357814"
] | null | J. M. Bergot and Robert Israel, Oct 13 2022 | 2022-10-25T20:04:07 | oeisdata/seq/A357/A357814.seq | 6b3e5dfb58cdc1fe5c784ed5d88a2e38 |
A357815 | Smallest maximum degree over all maximal 2-degenerate graphs with diameter 2 and n vertices. | [
"0",
"1",
"2",
"3",
"3",
"4",
"4",
"4",
"4",
"5",
"6",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"12",
"13",
"14",
"14",
"15",
"16",
"16",
"17",
"18",
"18",
"19",
"20",
"20",
"21",
"22",
"22",
"23",
"24",
"24",
"25",
"26",
"26",
"27",
"28",
"28",
"29",
"30",
"30",
"31",
"32",
"32",
"33",
"34",
"34",
"35",
"36",
"36",
"37",
"38",
"38",
"39",
"40"
] | [
"nonn"
] | 7 | 1 | 3 | [
"A004523",
"A357815"
] | null | Allan Bickle, Oct 13 2022 | 2022-11-27T11:20:19 | oeisdata/seq/A357/A357815.seq | 8a268440b381cf2c930435b696242f37 |
A357816 | a(n) is the first even number k such that there are exactly n pairs (p,q) where p and q are prime, p<=q, p+q = k, and p+A001414(k) and q+A001414(k) are also prime. | [
"2",
"16",
"60",
"72",
"220",
"132",
"374",
"276",
"492",
"638",
"636",
"852",
"620",
"854",
"996",
"1056",
"1026",
"1212",
"2070",
"1530",
"2610",
"3976",
"3844",
"1488",
"1572",
"4812",
"4770",
"3942",
"2484",
"5028",
"3234",
"4668",
"6036",
"3276",
"5172",
"5532",
"6756",
"2730",
"6084",
"4230",
"6390",
"9132",
"14134",
"4620",
"9674",
"10692",
"6600",
"8910",
"10836",
"12204",
"18852",
"9660"
] | [
"nonn"
] | 9 | 0 | 1 | [
"A001414",
"A023036",
"A357816"
] | null | J. M. Bergot and Robert Israel, Oct 13 2022 | 2022-10-24T10:58:04 | oeisdata/seq/A357/A357816.seq | 614dde1b3b560ff578036181400b2c00 |
A357817 | Partial alternating sums of the Dedekind psi function (A001615): a(n) = Sum_{k=1..n} (-1)^(k+1) * psi(k). | [
"1",
"-2",
"2",
"-4",
"2",
"-10",
"-2",
"-14",
"-2",
"-20",
"-8",
"-32",
"-18",
"-42",
"-18",
"-42",
"-24",
"-60",
"-40",
"-76",
"-44",
"-80",
"-56",
"-104",
"-74",
"-116",
"-80",
"-128",
"-98",
"-170",
"-138",
"-186",
"-138",
"-192",
"-144",
"-216",
"-178",
"-238",
"-182",
"-254",
"-212",
"-308",
"-264",
"-336",
"-264",
"-336",
"-288",
"-384",
"-328",
"-418"
] | [
"sign"
] | 15 | 1 | 2 | [
"A001615",
"A068762",
"A068773",
"A173290",
"A307704",
"A357817"
] | null | Amiram Eldar, Oct 14 2022 | 2024-02-29T13:30:30 | oeisdata/seq/A357/A357817.seq | 0350a045b3b220d7d78522c009433bd8 |
A357818 | Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615). | [
"1",
"4",
"19",
"7",
"23",
"2",
"17",
"53",
"55",
"169",
"175",
"89",
"641",
"1303",
"331",
"1345",
"1373",
"1387",
"7061",
"2377",
"9613",
"29119",
"29539",
"29749",
"6017",
"6065",
"6121",
"6163",
"31151",
"31291",
"15803",
"3977",
"16013",
"48319",
"24317",
"12211",
"233899",
"58774",
"472757",
"59344",
"119543",
"1918673",
"21249043",
"21336823"
] | [
"nonn",
"frac"
] | 11 | 1 | 2 | [
"A001615",
"A001620",
"A028415",
"A065463",
"A104528",
"A173290",
"A212717",
"A335707",
"A357818",
"A357819"
] | null | Amiram Eldar, Oct 14 2022 | 2022-10-15T07:17:25 | oeisdata/seq/A357/A357818.seq | ae8df31558edde105e27994760220860 |
A357819 | Denominators of the partial sums of the reciprocals of the Dedekind psi function (A001615). | [
"1",
"3",
"12",
"4",
"12",
"1",
"8",
"24",
"24",
"72",
"72",
"36",
"252",
"504",
"126",
"504",
"504",
"504",
"2520",
"840",
"3360",
"10080",
"10080",
"10080",
"2016",
"2016",
"2016",
"2016",
"10080",
"10080",
"5040",
"1260",
"5040",
"15120",
"7560",
"3780",
"71820",
"17955",
"143640",
"17955",
"35910",
"574560",
"6320160",
"6320160",
"6320160",
"6320160"
] | [
"nonn",
"frac"
] | 9 | 1 | 2 | [
"A001615",
"A048049",
"A104529",
"A173290",
"A212718",
"A357818",
"A357819"
] | null | Amiram Eldar, Oct 14 2022 | 2022-10-15T07:19:28 | oeisdata/seq/A357/A357819.seq | 04c55594781ae1fcfb5bd902eb04a35e |
A357820 | Numerators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615). | [
"1",
"2",
"11",
"3",
"11",
"5",
"23",
"7",
"23",
"65",
"71",
"17",
"64",
"491",
"64",
"491",
"173",
"505",
"2651",
"2581",
"10639",
"1151",
"3593",
"3523",
"727",
"237",
"2189",
"2147",
"11071",
"10931",
"5623",
"2759",
"5623",
"16589",
"2113",
"8347",
"162373",
"159979",
"20318",
"160549",
"163969",
"649891",
"7292441",
"7204661",
"7292441",
"7204661"
] | [
"nonn",
"frac"
] | 9 | 1 | 2 | [
"A001615",
"A001620",
"A065463",
"A173290",
"A211177",
"A335707",
"A357820",
"A357821"
] | null | Amiram Eldar, Oct 14 2022 | 2022-10-15T07:21:24 | oeisdata/seq/A357/A357820.seq | 229ab0a49c1895a2b17481f80261b7a1 |
A357821 | Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615). | [
"1",
"3",
"12",
"4",
"12",
"6",
"24",
"8",
"24",
"72",
"72",
"18",
"63",
"504",
"63",
"504",
"168",
"504",
"2520",
"2520",
"10080",
"1120",
"3360",
"3360",
"672",
"224",
"2016",
"2016",
"10080",
"10080",
"5040",
"2520",
"5040",
"15120",
"1890",
"7560",
"143640",
"143640",
"17955",
"143640",
"143640",
"574560",
"6320160",
"6320160",
"6320160",
"6320160"
] | [
"nonn",
"frac"
] | 8 | 1 | 2 | [
"A001615",
"A173290",
"A211178",
"A357820",
"A357821"
] | null | Amiram Eldar, Oct 14 2022 | 2022-10-15T07:21:58 | oeisdata/seq/A357/A357821.seq | 341f9aac11ca19e59bc71205d990a175 |
A357822 | Number of simplicial 3-spheres (triangulations of S^3) with n vertices. | [
"1",
"2",
"5",
"39",
"1296",
"247882",
"166564303"
] | [
"nonn",
"hard",
"more"
] | 8 | 5 | 2 | [
"A000109",
"A357822"
] | null | R. J. Mathar, Oct 14 2022 | 2022-11-24T18:28:10 | oeisdata/seq/A357/A357822.seq | a9660a778f5639013597a5fcfc81c0f1 |
A357823 | a(n) is the number of bases > 1 where n is not divisible by the sum of its digits. | [
"0",
"0",
"1",
"0",
"3",
"0",
"5",
"1",
"4",
"3",
"9",
"1",
"11",
"9",
"7",
"5",
"15",
"5",
"17",
"7",
"11",
"17",
"21",
"5",
"18",
"20",
"17",
"14",
"27",
"12",
"29",
"16",
"24",
"28",
"24",
"13",
"35",
"33",
"31",
"17",
"39",
"22",
"41",
"33",
"26",
"41",
"45",
"18",
"42",
"34",
"42",
"38",
"51",
"33",
"45",
"35",
"48",
"53",
"57",
"26",
"59",
"57",
"44",
"41",
"52",
"43",
"65",
"56",
"60",
"48"
] | [
"nonn",
"base"
] | 38 | 1 | 5 | [
"A080221",
"A138530",
"A356555",
"A357823"
] | null | Rémy Sigrist, Oct 17 2022 | 2022-10-21T07:00:01 | oeisdata/seq/A357/A357823.seq | e5d84cff9aefe266acabc5118e0c08dd |
A357824 | Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"3",
"3",
"1",
"1",
"2",
"5",
"6",
"3",
"1",
"1",
"2",
"9",
"14",
"10",
"4",
"1",
"1",
"2",
"17",
"36",
"42",
"20",
"4",
"1",
"1",
"2",
"33",
"98",
"190",
"132",
"35",
"5",
"1",
"1",
"2",
"65",
"276",
"882",
"980",
"429",
"70",
"5",
"1",
"1",
"2",
"129",
"794",
"4150",
"7812",
"5705",
"1430",
"126",
"6",
"1",
"1",
"2",
"257",
"2316",
"19722",
"65300",
"78129",
"33040",
"4862",
"252",
"6"
] | [
"nonn",
"tabl"
] | 29 | 0 | 6 | [
"A000012",
"A000051",
"A000108",
"A001405",
"A001550",
"A003161",
"A007395",
"A008315",
"A008619",
"A074511",
"A120730",
"A129123",
"A357824",
"A357825",
"A361887",
"A361890",
"A382433"
] | null | Alois P. Heinz, Oct 14 2022 | 2025-03-25T12:02:47 | oeisdata/seq/A357/A357824.seq | 38f1a4396e5911557f94d689c97240eb |
A357825 | Total number of n-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j = 0..floor(n/2). | [
"1",
"1",
"2",
"9",
"98",
"4150",
"562692",
"211106945",
"404883552194",
"1766902576146876",
"40519034229909243476",
"2708397617879598970178238",
"658332084097982587522119612196",
"735037057881394837614680080889845116",
"2030001034486747324990010196845670569155080"
] | [
"nonn",
"easy"
] | 36 | 0 | 3 | [
"A000108",
"A000225",
"A008315",
"A120730",
"A357824",
"A357825",
"A357871"
] | null | Alois P. Heinz, Oct 14 2022 | 2023-03-23T03:33:33 | oeisdata/seq/A357/A357825.seq | 9cea157afdfac746df741a58db06eead |
A357826 | Base-10 weaker Skolem-Langford numbers. | [
"231213",
"312132",
"12132003",
"23121300",
"23421314",
"30023121",
"31213200",
"41312432",
"1214230043",
"1312432004",
"2342131400",
"2412134003",
"3004312142",
"3400324121",
"4002342131",
"4131243200",
"4562342536",
"4635243265",
"5364235246",
"5623425364",
"6352432654",
"6425324635",
"14156742352637",
"14167345236275"
] | [
"nonn",
"base",
"easy",
"fini",
"full"
] | 46 | 1 | 1 | [
"A108116",
"A132291",
"A339803",
"A357826"
] | null | Marc Morgenegg, Oct 14 2022 | 2022-12-11T13:51:41 | oeisdata/seq/A357/A357826.seq | 950a11ec752c002ae7ad2389ecdbd096 |
A357827 | Number of automorphisms of the n-folded cube graph. | [
"2",
"24",
"1152",
"1920",
"23040",
"322560",
"5160960",
"92897280",
"1857945600",
"40874803200",
"980995276800",
"25505877196800",
"714164561510400",
"21424936845312000",
"685597979049984000"
] | [
"nonn",
"more"
] | 5 | 2 | 1 | [
"A000165",
"A288944",
"A357827"
] | null | Pontus von Brömssen, Oct 14 2022 | 2022-10-14T12:48:32 | oeisdata/seq/A357/A357827.seq | 53ceae6e7cdcd31afae2c6519a60d61c |
A357828 | a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|. | [
"1",
"0",
"0",
"1",
"6",
"35",
"226",
"1645",
"13454",
"122661",
"1236018",
"13656951",
"164290182",
"2138379243",
"29949509226",
"449188719525",
"7183702249542",
"122039922034485",
"2194928052851898",
"41666342509646127",
"832547791827455886",
"17466905709043534107",
"383908421683657311714"
] | [
"nonn"
] | 17 | 0 | 5 | [
"A003703",
"A357828",
"A357829",
"A357830"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357828.seq | b8dbba23c1e09688e183143c8ada30eb |
A357829 | a(n) = Sum_{k=0..floor((n-1)/3)} |Stirling1(n,3*k+1)|. | [
"0",
"1",
"1",
"2",
"7",
"34",
"205",
"1456",
"11837",
"108150",
"1096011",
"12196128",
"147814359",
"1938062490",
"27333191613",
"412614191808",
"6638401596645",
"113398127795862",
"2049808094564139",
"39091473755006400",
"784404343854767727",
"16520634668922810426",
"364400233756422553053"
] | [
"nonn"
] | 13 | 0 | 4 | [
"A357828",
"A357829",
"A357830"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357829.seq | 79523d8b4d1bc3f458325a8fc17b3d29 |
A357830 | a(n) = Sum_{k=0..floor((n-2)/3)} |Stirling1(n,3*k+2)|. | [
"0",
"0",
"1",
"3",
"11",
"51",
"289",
"1939",
"15029",
"132069",
"1296771",
"14063721",
"166897059",
"2150579067",
"29895590361",
"445871456667",
"7100686041813",
"120249378265653",
"2157637558311963",
"40887284144179473",
"815949872494416387",
"17103401793743095467",
"375692072337527815233"
] | [
"nonn"
] | 19 | 0 | 4 | [
"A357828",
"A357829",
"A357830"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357830.seq | 0dd82ade1def3af7ac3674cf66683fa0 |
A357831 | a(n) = Sum_{k=0..floor(n/3)} 2^k * |Stirling1(n,3*k)|. | [
"1",
"0",
"0",
"2",
"12",
"70",
"454",
"3332",
"27552",
"254400",
"2598852",
"29125932",
"355455468",
"4693396656",
"66671326176",
"1013916648840",
"16436063079552",
"282920894841096",
"5153797995148296",
"99052313167391760",
"2003040751641857856",
"42513854724369719136",
"944959706480298199824"
] | [
"nonn"
] | 15 | 0 | 4 | [
"A357831",
"A357832",
"A357833"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357831.seq | 9f608cbae4f063d36c53426a18f0c758 |
A357832 | a(n) = Sum_{k=0..floor((n-1)/3)} 2^k * |Stirling1(n,3*k+1)|. | [
"0",
"1",
"1",
"2",
"8",
"44",
"290",
"2194",
"18690",
"177072",
"1848048",
"21079332",
"260998584",
"3487438476",
"50030096844",
"767092681992",
"12520306878720",
"216760973139072",
"3967857438205320",
"76575231882844056",
"1553981718941428824",
"33082675130470434336",
"737250032464248840192"
] | [
"nonn"
] | 21 | 0 | 4 | [
"A357831",
"A357832",
"A357833"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357832.seq | f6ab2f0b9456288443301cb0ce4692fb |
A357833 | a(n) = Sum_{k=0..floor((n-2)/3)} 2^k * |Stirling1(n,3*k+2)|. | [
"0",
"0",
"1",
"3",
"11",
"52",
"304",
"2114",
"16992",
"154626",
"1568706",
"17535108",
"213965520",
"2828584824",
"40259041188",
"613656673476",
"9971942784132",
"172071391424832",
"3141974627361216",
"60523400730707208",
"1226519845766281008",
"26084378634267048984",
"580854626450078463000"
] | [
"nonn"
] | 15 | 0 | 4 | [
"A357831",
"A357832",
"A357833"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357833.seq | caadcb6df50ad49ad4441fceaee3a08c |
A357834 | a(n) = Sum_{k=0..floor(n/3)} Stirling1(n,3*k). | [
"1",
"0",
"0",
"1",
"-6",
"35",
"-224",
"1603",
"-12810",
"113589",
"-1109472",
"11852841",
"-137611110",
"1726238787",
"-23277264192",
"335861699355",
"-5164348236138",
"84316474011861",
"-1456893047937600",
"26562992204112273",
"-509679388313669574",
"10266675502780006947",
"-216625348636705401120"
] | [
"sign"
] | 14 | 0 | 5 | [
"A105752",
"A357834",
"A357835",
"A357836"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357834.seq | 6bcca63c2130b80472959c5d49fdfcb2 |
A357835 | a(n) = Sum_{k=0..floor((n-1)/3)} Stirling1(n,3*k+1). | [
"0",
"1",
"-1",
"2",
"-5",
"14",
"-35",
"-14",
"1701",
"-26418",
"351351",
"-4622982",
"62705643",
"-890078826",
"13297263525",
"-209438953542",
"3477446002485",
"-60803484275898",
"1117975706702127",
"-21580455768575886",
"436591651807054107",
"-9241512424454751714",
"204338436416329792941"
] | [
"sign"
] | 14 | 0 | 4 | [
"A357834",
"A357835",
"A357836"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357835.seq | 8056147a3c817c45256f9ec2eeccefc5 |
A357836 | a(n) = Sum_{k=0..floor((n-2)/3)} Stirling1(n,3*k+2). | [
"0",
"0",
"1",
"-3",
"11",
"-49",
"259",
"-1589",
"11109",
"-87171",
"758121",
"-7229859",
"74905467",
"-836159961",
"9980000667",
"-126422745813",
"1686902233653",
"-23512989735963",
"338917341235473",
"-4982536435536387",
"73087736506615467",
"-1025163078325255233",
"12286912220375608179"
] | [
"sign"
] | 13 | 0 | 4 | [
"A357834",
"A357835",
"A357836"
] | null | Seiichi Manyama, Oct 14 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357836.seq | 7ae45391ab25cdc070dfdbc560278078 |
A357837 | a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2. | [
"0",
"4",
"10",
"20",
"32",
"46",
"64",
"84",
"106",
"132",
"160",
"190",
"224",
"260",
"298",
"340",
"384",
"430",
"480",
"532",
"586",
"644",
"704",
"766",
"832",
"900",
"970",
"1044",
"1120",
"1198",
"1280",
"1364",
"1450",
"1540",
"1632",
"1726",
"1824",
"1924",
"2026",
"2132",
"2240",
"2350",
"2464",
"2580",
"2698",
"2820",
"2944",
"3070",
"3200",
"3332"
] | [
"nonn",
"easy"
] | 43 | 0 | 2 | [
"A002264",
"A002522",
"A005843",
"A047410",
"A071619",
"A211547",
"A345118",
"A357837"
] | null | Stefano Spezia, Oct 17 2022 | 2023-01-25T09:20:56 | oeisdata/seq/A357/A357837.seq | 7471ccd97eca603c4a3b9708cb6a3672 |
A357838 | Decimal expansion of Wien frequency displacement law constant. | [
"5",
"8",
"7",
"8",
"9",
"2",
"5",
"7",
"5",
"7",
"6",
"4",
"6",
"8",
"2",
"4",
"9",
"4",
"6",
"6",
"0",
"6",
"1",
"3",
"0",
"7",
"9",
"5",
"3",
"0",
"9",
"7",
"2",
"1",
"6",
"9",
"1",
"4",
"7",
"5",
"1",
"4",
"4",
"2",
"5",
"8",
"8",
"8",
"2",
"9",
"2",
"3",
"0",
"8",
"2",
"8",
"3",
"5",
"2",
"9",
"6",
"0",
"3",
"9",
"3",
"6",
"0",
"8",
"9",
"2",
"6",
"5",
"2",
"6",
"4",
"0",
"0",
"2",
"3",
"8",
"6",
"1",
"9",
"6",
"5",
"8",
"5"
] | [
"nonn",
"cons"
] | 14 | 11 | 1 | [
"A003676",
"A070063",
"A081819",
"A194567",
"A357838"
] | null | Lee A. Newberg, Oct 14 2022 | 2022-10-24T00:01:34 | oeisdata/seq/A357/A357838.seq | ef1964cc4067366d5c64458dea16b9ce |
A357839 | a(n) is the greatest divisor > 1 of n which has already been listed, otherwise a(n) is the smallest number not yet listed; a(1) = 0. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"3",
"2",
"5",
"4",
"6",
"2",
"5",
"4",
"7",
"6",
"8",
"5",
"7",
"2",
"9",
"8",
"5",
"2",
"9",
"7",
"10",
"10",
"11",
"8",
"11",
"2",
"7",
"9",
"12",
"2",
"3",
"10",
"13",
"7",
"14",
"11",
"9",
"2",
"15",
"12",
"7",
"10",
"3",
"13",
"16",
"9",
"11",
"14",
"3",
"2",
"17",
"15",
"18",
"2",
"9",
"16",
"13",
"11",
"19",
"17",
"3",
"14",
"20",
"18",
"21",
"2",
"15",
"19",
"11"
] | [
"nonn",
"easy"
] | 12 | 1 | 3 | [
"A008336",
"A008344",
"A051352",
"A357839"
] | null | Samuel Harkness, Oct 14 2022 | 2022-11-27T12:13:06 | oeisdata/seq/A357/A357839.seq | 4a46374f5c6c8164d924bdca1beb4d74 |
A357840 | Numbers k in A018900 with arithmetic derivative k' (A003415) in A018900. | [
"6",
"9",
"20",
"40",
"65",
"68",
"96",
"144",
"192",
"528",
"576",
"1028",
"4097",
"73728",
"81920",
"262148",
"557056",
"6291456",
"9437184",
"12582912",
"201326592",
"335544320",
"2415919104",
"1374389534720",
"11258999068426240",
"90071992547409920",
"648518346341351424",
"78398662313265594368",
"116056878683004400771792896"
] | [
"nonn",
"base"
] | 18 | 1 | 1 | [
"A003415",
"A018900",
"A019434",
"A357840"
] | null | Marius A. Burtea, Oct 20 2022 | 2022-11-19T21:50:29 | oeisdata/seq/A357/A357840.seq | 62cfbbf60008ab8384ef8e4684bdde99 |
A357841 | Smith numbers (A006753) for which the arithmetic derivative (A003415) is also a Smith number. | [
"4",
"27",
"85",
"121",
"166",
"265",
"517",
"526",
"634",
"706",
"778",
"913",
"985",
"1633",
"1822",
"1966",
"2173",
"2218",
"2326",
"2434",
"2605",
"2785",
"3505",
"3802",
"3865",
"3973",
"4306",
"4369",
"4765",
"4918",
"5248",
"5674",
"5818",
"5926",
"6178",
"6385",
"7186",
"7726",
"8185",
"8257",
"8653",
"9193",
"9301",
"10201",
"10489",
"10606"
] | [
"nonn",
"base"
] | 10 | 1 | 1 | [
"A003415",
"A006753",
"A357841"
] | null | Marius A. Burtea, Oct 20 2022 | 2022-11-19T21:50:41 | oeisdata/seq/A357/A357841.seq | ed25d01702d5f312722dae24205fa3ba |
A357842 | a(n) is the smallest number k for which k and the arithmetic derivative k' (A003415) have exactly n triangular divisors (A000217). | [
"2",
"27",
"18",
"72",
"612",
"1764",
"756",
"8100",
"27000",
"97200",
"66528",
"175500",
"93600",
"280800",
"1731600",
"661500",
"680400",
"3704400",
"34177500",
"11107800",
"16581600",
"20065500",
"108486000",
"102910500",
"108353700",
"181912500",
"314874000",
"462672000",
"4408236000",
"229975200",
"2297786400",
"672348600",
"925041600",
"1344697200",
"158230800"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A000217",
"A003415",
"A007862",
"A130317",
"A357842"
] | null | Marius A. Burtea, Oct 20 2022 | 2022-11-19T21:51:14 | oeisdata/seq/A357/A357842.seq | ec6e8a9288370b5041b89dd0aa248f15 |
A357843 | Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005). | [
"1",
"1",
"1",
"2",
"7",
"11",
"17",
"7",
"3",
"5",
"7",
"19",
"25",
"11",
"25",
"113",
"143",
"133",
"163",
"51",
"14",
"51",
"61",
"117",
"391",
"361",
"391",
"371",
"431",
"52",
"119",
"19",
"81",
"19",
"81",
"709",
"799",
"377",
"799",
"1553",
"1733",
"211",
"467",
"226",
"467",
"889",
"979",
"961",
"1021",
"991",
"259",
"503",
"274",
"2147",
"2237",
"274",
"1141",
"274"
] | [
"nonn",
"frac"
] | 14 | 1 | 4 | [
"A000005",
"A104528",
"A211177",
"A307704",
"A357820",
"A357843",
"A357844"
] | null | Amiram Eldar, Oct 16 2022 | 2022-10-17T01:43:18 | oeisdata/seq/A357/A357843.seq | 35edf0dd7546a903acedc22629894d69 |
A357844 | Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005). | [
"1",
"2",
"1",
"3",
"6",
"12",
"12",
"6",
"2",
"4",
"4",
"12",
"12",
"6",
"12",
"60",
"60",
"60",
"60",
"20",
"5",
"20",
"20",
"40",
"120",
"120",
"120",
"120",
"120",
"15",
"30",
"5",
"20",
"5",
"20",
"180",
"180",
"90",
"180",
"360",
"360",
"45",
"90",
"45",
"90",
"180",
"180",
"180",
"180",
"180",
"45",
"90",
"45",
"360",
"360",
"45",
"180",
"45",
"90",
"180",
"180",
"45",
"90",
"630"
] | [
"nonn",
"frac"
] | 9 | 1 | 2 | [
"A000005",
"A104529",
"A211178",
"A307704",
"A357821",
"A357843",
"A357844"
] | null | Amiram Eldar, Oct 16 2022 | 2022-10-17T01:43:23 | oeisdata/seq/A357/A357844.seq | e6fac376e7c207211268276e82f3dd24 |
A357845 | Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203). | [
"1",
"2",
"11",
"65",
"79",
"6",
"55",
"769",
"10837",
"30691",
"33421",
"32251",
"34591",
"16613",
"34591",
"1039561",
"365327",
"356647",
"373573",
"365513",
"1504367",
"4400261",
"4569521",
"4501817",
"149447",
"146327",
"149603",
"147263",
"151631",
"49937",
"25651",
"75913",
"38639",
"114097",
"232289",
"230129",
"4470731",
"4408487"
] | [
"nonn",
"frac"
] | 13 | 1 | 2 | [
"A000203",
"A065442",
"A065443",
"A068762",
"A104528",
"A212717",
"A357820",
"A357845",
"A357846"
] | null | Amiram Eldar, Oct 16 2022 | 2022-10-17T01:43:26 | oeisdata/seq/A357/A357845.seq | 1d52a6d7600bee97bf892d9e30f24f56 |
A357846 | Denominators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203). | [
"1",
"3",
"12",
"84",
"84",
"7",
"56",
"840",
"10920",
"32760",
"32760",
"32760",
"32760",
"16380",
"32760",
"1015560",
"338520",
"338520",
"338520",
"338520",
"1354080",
"4062240",
"4062240",
"4062240",
"131040",
"131040",
"131040",
"131040",
"131040",
"43680",
"21840",
"65520",
"32760",
"98280",
"196560",
"196560",
"3734640",
"3734640"
] | [
"nonn",
"frac"
] | 10 | 1 | 2 | [
"A000203",
"A068762",
"A104529",
"A212718",
"A357821",
"A357845",
"A357846"
] | null | Amiram Eldar, Oct 16 2022 | 2022-10-17T01:43:30 | oeisdata/seq/A357/A357846.seq | c03035ee645abf9cd61e96bc60858eac |
A357847 | Number of integer compositions of n whose length is twice their alternating sum. | [
"1",
"0",
"0",
"1",
"0",
"1",
"3",
"1",
"8",
"11",
"15",
"46",
"59",
"127",
"259",
"407",
"888",
"1591",
"2925",
"5896",
"10607",
"20582",
"39446",
"73448",
"142691",
"269777",
"513721",
"988638",
"1876107",
"3600313",
"6893509",
"13165219",
"25288200",
"48408011",
"92824505",
"178248758",
"341801149",
"656641084",
"1261298356"
] | [
"nonn"
] | 10 | 0 | 7 | [
"A011782",
"A025047",
"A097805",
"A103919",
"A262977",
"A301987",
"A344651",
"A357136",
"A357182",
"A357183",
"A357184",
"A357189",
"A357485",
"A357486",
"A357488",
"A357709",
"A357847",
"A357848"
] | null | Gus Wiseman, Oct 16 2022 | 2022-10-19T19:50:05 | oeisdata/seq/A357/A357847.seq | 24788b19df072fa5368007f8dfd5bbc9 |
A357848 | Heinz numbers of integer partitions whose length is twice their alternating sum. | [
"1",
"6",
"15",
"35",
"40",
"77",
"84",
"90",
"143",
"189",
"210",
"220",
"221",
"224",
"250",
"323",
"364",
"437",
"462",
"490",
"495",
"504",
"525",
"528",
"667",
"748",
"819",
"858",
"899",
"988",
"1029",
"1040",
"1134",
"1147",
"1155",
"1188",
"1210",
"1320",
"1326",
"1375",
"1400",
"1408",
"1517",
"1564",
"1683",
"1690",
"1763",
"1904",
"1938",
"2021"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000009",
"A000041",
"A000720",
"A001221",
"A001222",
"A003963",
"A025047",
"A056239",
"A097805",
"A103919",
"A262977",
"A301987",
"A344651",
"A357136",
"A357182",
"A357183",
"A357184",
"A357189",
"A357485",
"A357486",
"A357488",
"A357709",
"A357847",
"A357848"
] | null | Gus Wiseman, Oct 16 2022 | 2022-10-17T07:06:57 | oeisdata/seq/A357/A357848.seq | a047074c1bf8c61e0e41ccf59ae7c487 |
A357849 | Number of integer partitions (w,x,y) summing to n such that 2w = 3x + 4y. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"3",
"2",
"3",
"3",
"2",
"3",
"3",
"3",
"3",
"2",
"3",
"3",
"3",
"3",
"3",
"3"
] | [
"nonn"
] | 8 | 0 | 34 | [
"A000009",
"A000041",
"A008676",
"A357489",
"A357849",
"A358102"
] | null | Gus Wiseman, Nov 02 2022 | 2022-11-02T11:52:59 | oeisdata/seq/A357/A357849.seq | 9b1ecee0aecf55d3f02b5053764a4c8c |
A357850 | Numbers whose prime indices do not have weakly decreasing run-sums. Heinz numbers of the partitions counted by A357865. | [
"6",
"10",
"14",
"15",
"18",
"20",
"21",
"22",
"26",
"28",
"30",
"33",
"34",
"35",
"36",
"38",
"39",
"42",
"44",
"46",
"50",
"51",
"52",
"54",
"55",
"56",
"57",
"58",
"60",
"62",
"65",
"66",
"68",
"69",
"70",
"72",
"74",
"75",
"76",
"77",
"78",
"82",
"84",
"85",
"86",
"87",
"88",
"90",
"91",
"92",
"93",
"94",
"95",
"98",
"99",
"100",
"102",
"104",
"105",
"106",
"108",
"110",
"111"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A001221",
"A001222",
"A056239",
"A112798",
"A118914",
"A181819",
"A300273",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A353832",
"A353864",
"A353932",
"A354584",
"A357850",
"A357861",
"A357864",
"A357865",
"A357875",
"A357876",
"A357878"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T12:44:11 | oeisdata/seq/A357/A357850.seq | de3e6d579a57d835d06536fb486fc603 |
A357851 | Numbers k such that the half-alternating sum of the prime indices of k is 1. | [
"2",
"8",
"18",
"32",
"45",
"50",
"72",
"98",
"105",
"128",
"162",
"180",
"200",
"231",
"242",
"275",
"288",
"338",
"392",
"420",
"429",
"450",
"455",
"512",
"578",
"648",
"663",
"720",
"722",
"800",
"833",
"882",
"924",
"935",
"968",
"969",
"1050",
"1058",
"1100",
"1125",
"1152",
"1235",
"1250",
"1311",
"1352",
"1458",
"1463",
"1568",
"1680",
"1682",
"1716"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A000583",
"A001105",
"A003963",
"A035444",
"A035544",
"A053251",
"A055932",
"A056239",
"A112798",
"A316524",
"A344616",
"A345958",
"A351005",
"A351006",
"A357621",
"A357624",
"A357625",
"A357626",
"A357629",
"A357630",
"A357631",
"A357632",
"A357633",
"A357634",
"A357635",
"A357636",
"A357637",
"A357639",
"A357640",
"A357641",
"A357642",
"A357643",
"A357644",
"A357851"
] | null | Gus Wiseman, Oct 28 2022 | 2022-10-29T09:10:22 | oeisdata/seq/A357/A357851.seq | 2254d3d9729a5624a262c7196c4a7d99 |
A357852 | Replace prime(k) with prime(k+2) in the prime factorization of n. | [
"1",
"5",
"7",
"25",
"11",
"35",
"13",
"125",
"49",
"55",
"17",
"175",
"19",
"65",
"77",
"625",
"23",
"245",
"29",
"275",
"91",
"85",
"31",
"875",
"121",
"95",
"343",
"325",
"37",
"385",
"41",
"3125",
"119",
"115",
"143",
"1225",
"43",
"145",
"133",
"1375",
"47",
"455",
"53",
"425",
"539",
"155",
"59",
"4375",
"169",
"605",
"161",
"475",
"61",
"1715",
"187",
"1625",
"203"
] | [
"nonn",
"mult"
] | 18 | 1 | 2 | [
"A000040",
"A000720",
"A003961",
"A003964",
"A007310",
"A056239",
"A064988",
"A064989",
"A066207",
"A076610",
"A112798",
"A215366",
"A296150",
"A299201",
"A357852",
"A357977",
"A357979",
"A357980",
"A357983"
] | null | Gus Wiseman, Oct 28 2022 | 2022-10-30T08:58:09 | oeisdata/seq/A357/A357852.seq | e1a83ead5c0a4ea20800941fd0d23203 |
A357853 | Fully multiplicative with a(prime(k)) = A000009(k+1). | [
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"4",
"2",
"4",
"2",
"5",
"3",
"4",
"1",
"6",
"4",
"8",
"2",
"6",
"4",
"10",
"2",
"4",
"5",
"8",
"3",
"12",
"4",
"15",
"1",
"8",
"6",
"6",
"4",
"18",
"8",
"10",
"2",
"22",
"6",
"27",
"4",
"8",
"10",
"32",
"2",
"9",
"4",
"12",
"5",
"38",
"8",
"8",
"3",
"16",
"12",
"46",
"4",
"54",
"15",
"12",
"1",
"10",
"8",
"64",
"6",
"20",
"6",
"76",
"4",
"89",
"18",
"8",
"8",
"12",
"10"
] | [
"nonn",
"mult"
] | 10 | 1 | 3 | [
"A000009",
"A000040",
"A000720",
"A003961",
"A003964",
"A056239",
"A064988",
"A064989",
"A076610",
"A112798",
"A273873",
"A296150",
"A357852",
"A357853",
"A357977",
"A357978",
"A357979",
"A357980",
"A357982"
] | null | Gus Wiseman, Oct 28 2022 | 2022-10-28T20:53:02 | oeisdata/seq/A357/A357853.seq | b0580d9c3fad0bfee760bc8ba48649f5 |
A357854 | Squarefree numbers with a divisor having the same sum of prime indices as their quotient. | [
"1",
"30",
"70",
"154",
"165",
"210",
"273",
"286",
"390",
"442",
"462",
"561",
"595",
"646",
"714",
"741",
"858",
"874",
"910",
"1045",
"1155",
"1173",
"1254",
"1326",
"1330",
"1334",
"1495",
"1653",
"1771",
"1794",
"1798",
"1870",
"1938",
"2139",
"2145",
"2294",
"2415",
"2465",
"2470",
"2530",
"2622",
"2639",
"2730",
"2926",
"2945",
"2958",
"3034"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A001221",
"A001222",
"A002219",
"A033879",
"A033880",
"A056239",
"A064914",
"A112798",
"A181819",
"A235130",
"A237194",
"A237258",
"A276107",
"A300061",
"A300273",
"A319241",
"A321144",
"A357854",
"A357879",
"A357975",
"A357976"
] | null | Gus Wiseman, Oct 27 2022 | 2022-10-27T12:48:43 | oeisdata/seq/A357/A357854.seq | 917bc62bdb16b26c9ed31a6a4a867849 |
A357855 | Number of closed trails starting and ending at a fixed vertex in the complete undirected graph on n labeled vertices. | [
"1",
"1",
"3",
"13",
"829",
"78441",
"622316671",
"3001764349333",
"5926347237626029593"
] | [
"nonn",
"more",
"walk"
] | 19 | 1 | 3 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 16 2022 | 2022-10-19T07:12:00 | oeisdata/seq/A357/A357855.seq | 51bee9d36e681bbe3462ab3454165343 |
A357856 | Number of trails between two fixed distinct vertices in the complete undirected graph on n labeled vertices. | [
"0",
"1",
"2",
"15",
"514",
"106085",
"317848626",
"4238195548627",
"2617666555119413330"
] | [
"nonn",
"more",
"walk"
] | 15 | 1 | 3 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 16 2022 | 2022-10-19T07:14:06 | oeisdata/seq/A357/A357856.seq | 2a20ac66f86cd119e5b687d2e94f8839 |
A357857 | Number of (open and closed) trails in the complete undirected graph on n labeled vertices. | [
"1",
"4",
"21",
"232",
"14425",
"3653196",
"17705858989",
"261353065517776",
"241809117107232026097"
] | [
"nonn",
"more",
"walk"
] | 17 | 1 | 2 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 16 2022 | 2022-10-19T07:16:49 | oeisdata/seq/A357/A357857.seq | 38cbdc8d2114cacae3bfb52df162836e |
A357858 | Number of integer partitions that can be obtained by iteratively adding and multiplying together parts of the integer partition with Heinz number n. | [
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"6",
"2",
"3",
"1",
"7",
"1",
"3",
"3",
"11",
"1",
"7",
"1",
"8",
"3",
"3",
"1",
"14",
"3",
"3",
"4",
"8",
"1",
"11",
"1",
"19",
"3",
"3",
"3",
"18",
"1",
"3",
"3",
"18",
"1",
"12",
"1",
"8",
"8",
"3",
"1",
"27",
"3",
"10",
"3",
"8",
"1",
"16",
"3",
"19",
"3",
"3",
"1",
"25",
"1",
"3",
"8",
"33",
"3",
"12",
"1",
"8",
"3",
"12",
"1",
"35",
"1",
"3",
"11",
"8",
"3",
"12",
"1",
"34",
"9"
] | [
"nonn"
] | 7 | 1 | 4 | [
"A000041",
"A000792",
"A001055",
"A001221",
"A001222",
"A001970",
"A005520",
"A048249",
"A056239",
"A063834",
"A066739",
"A066815",
"A318948",
"A319841",
"A319850",
"A319855",
"A319856",
"A319909",
"A319910",
"A319913",
"A357858"
] | null | Gus Wiseman, Oct 17 2022 | 2022-10-17T12:32:10 | oeisdata/seq/A357/A357858.seq | 611c804725e7adf027f420ea4460a5a0 |
A357859 | Number of integer factorizations of 2n into distinct even factors. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"5",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"4",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"5",
"1",
"3",
"1",
"3",
"1",
"2",
"1",
"7",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"2",
"1",
"6",
"1",
"2",
"1",
"5",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"7",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"7",
"1",
"2",
"1",
"6",
"1",
"2",
"1"
] | [
"nonn"
] | 6 | 1 | 4 | [
"A000005",
"A000009",
"A000688",
"A000961",
"A001055",
"A001221",
"A001222",
"A001414",
"A004280",
"A023894",
"A050361",
"A295935",
"A318721",
"A340785",
"A357859",
"A357860"
] | null | Gus Wiseman, Oct 17 2022 | 2022-10-17T12:32:15 | oeisdata/seq/A357/A357859.seq | abe674688d4a9d997f7e6ed84ab21341 |
A357860 | Number of integer factorizations of n into distinct even factors. | [
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"5",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"4",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"4",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"5",
"0",
"1",
"0",
"3",
"0",
"1",
"0"
] | [
"nonn"
] | 6 | 1 | 8 | [
"A000005",
"A000009",
"A000688",
"A000961",
"A001055",
"A001221",
"A001222",
"A001414",
"A023894",
"A050361",
"A295935",
"A318721",
"A340785",
"A349906",
"A357859",
"A357860"
] | null | Gus Wiseman, Oct 17 2022 | 2022-10-23T23:55:40 | oeisdata/seq/A357/A357860.seq | ed7ebe2734075072587673ead396d79a |
A357861 | Numbers whose prime indices have weakly decreasing run-sums. Heinz numbers of the partitions counted by A304406. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"12",
"13",
"16",
"17",
"19",
"23",
"24",
"25",
"27",
"29",
"31",
"32",
"37",
"40",
"41",
"43",
"45",
"47",
"48",
"49",
"53",
"59",
"61",
"63",
"64",
"67",
"71",
"73",
"79",
"80",
"81",
"83",
"89",
"96",
"97",
"101",
"103",
"107",
"109",
"112",
"113",
"121",
"125",
"127",
"128",
"131",
"135",
"137",
"139",
"144",
"149",
"151",
"157"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A001221",
"A001222",
"A047966",
"A056239",
"A112798",
"A118914",
"A181819",
"A239312",
"A300273",
"A304405",
"A304406",
"A304430",
"A304442",
"A354584",
"A357850",
"A357861",
"A357864",
"A357865",
"A357875",
"A357876"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T12:44:21 | oeisdata/seq/A357/A357861.seq | 1ce4f5471e0e721d51aefe224eb9c1bd |
A357862 | Numbers whose prime indices have strictly increasing run-sums. Heinz numbers of the partitions counted by A304428. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A001221",
"A001222",
"A056239",
"A112798",
"A118914",
"A181819",
"A275870",
"A300273",
"A304405",
"A304428",
"A304430",
"A304442",
"A354584",
"A357862",
"A357863",
"A357864",
"A357875"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T16:27:04 | oeisdata/seq/A357/A357862.seq | 0fb807b1697678410c743328c7a071a2 |
A357863 | Numbers whose prime indices do not have strictly increasing run-sums. Heinz numbers of the partitions not counted by A304428. | [
"12",
"24",
"40",
"45",
"48",
"60",
"63",
"80",
"84",
"90",
"96",
"112",
"120",
"126",
"132",
"135",
"144",
"156",
"160",
"168",
"175",
"180",
"189",
"192",
"204",
"224",
"228",
"240",
"252",
"264",
"270",
"275",
"276",
"280",
"288",
"297",
"300",
"312",
"315",
"320",
"325",
"336",
"348",
"350",
"351",
"352",
"360",
"372",
"378",
"384",
"405",
"408",
"420",
"440"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A001221",
"A001222",
"A056239",
"A112798",
"A118914",
"A181819",
"A300273",
"A304428",
"A304430",
"A304442",
"A354584",
"A357862",
"A357863",
"A357864",
"A357875",
"A357876",
"A357878"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T12:45:03 | oeisdata/seq/A357/A357863.seq | e38681f7da7b2c8bf9ba81a3be2242a6 |
A357864 | Numbers whose prime indices have strictly decreasing run-sums. Heinz numbers of the partitions counted by A304430. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"13",
"16",
"17",
"19",
"23",
"24",
"25",
"27",
"29",
"31",
"32",
"37",
"41",
"43",
"45",
"47",
"48",
"49",
"53",
"59",
"61",
"64",
"67",
"71",
"73",
"79",
"80",
"81",
"83",
"89",
"96",
"97",
"101",
"103",
"107",
"109",
"113",
"121",
"125",
"127",
"128",
"131",
"135",
"137",
"139",
"149",
"151",
"157",
"160",
"163",
"167",
"169",
"173"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A001221",
"A001222",
"A056239",
"A112798",
"A118914",
"A181819",
"A300273",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A304686",
"A354584",
"A357861",
"A357862",
"A357863",
"A357864",
"A357875"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T13:12:07 | oeisdata/seq/A357/A357864.seq | dec56b2e547d45906f225247cbc6578e |
A357865 | Number of integer partitions of n whose run-sums are not weakly increasing. | [
"0",
"0",
"0",
"1",
"1",
"4",
"5",
"10",
"13",
"22",
"31",
"45",
"57",
"85",
"115",
"155",
"199",
"267",
"344",
"452",
"577",
"744",
"940",
"1191",
"1486",
"1877",
"2339",
"2910",
"3595",
"4442",
"5453",
"6688",
"8162",
"9960",
"12089",
"14662",
"17698",
"21365",
"25703",
"30869",
"36961",
"44207",
"52728",
"62801",
"74644",
"88587",
"104930",
"124113"
] | [
"nonn"
] | 8 | 0 | 6 | [
"A000009",
"A000041",
"A047966",
"A098859",
"A239312",
"A275870",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A353832",
"A353837",
"A353864",
"A354584",
"A357850",
"A357861",
"A357865",
"A357875",
"A357876",
"A357878"
] | null | Gus Wiseman, Oct 19 2022 | 2022-10-20T12:44:26 | oeisdata/seq/A357/A357865.seq | a25fb108ab464a92712bd57ce94c7157 |
A357866 | a(n) is the greatest remainder of n divided by its sum of digits in any base > 1. | [
"0",
"0",
"1",
"0",
"2",
"0",
"3",
"2",
"4",
"2",
"5",
"2",
"6",
"4",
"7",
"4",
"8",
"4",
"9",
"6",
"10",
"6",
"11",
"6",
"12",
"8",
"13",
"8",
"14",
"8",
"15",
"10",
"16",
"10",
"17",
"10",
"18",
"12",
"19",
"12",
"20",
"12",
"21",
"14",
"22",
"14",
"23",
"14",
"24",
"16",
"25",
"16",
"26",
"16",
"27",
"18",
"28",
"18",
"29",
"18",
"30",
"20",
"31",
"20",
"32",
"20",
"33",
"22",
"34",
"22",
"35"
] | [
"nonn",
"base"
] | 10 | 1 | 5 | [
"A138530",
"A357823",
"A357866"
] | null | Rémy Sigrist, Oct 17 2022 | 2022-10-21T06:59:29 | oeisdata/seq/A357/A357866.seq | d62ea31de6b1532319a2d41bc5d6786b |
A357867 | Numbers k such that A334499(k) is not divisible by k. | [
"12",
"15",
"25",
"28",
"30",
"39"
] | [
"nonn",
"more"
] | 5 | 1 | 1 | [
"A334499",
"A334500",
"A357867"
] | null | Pontus von Brömssen, Oct 17 2022 | 2022-10-21T10:04:05 | oeisdata/seq/A357/A357867.seq | 4e23bf5ded60ed3e994e55c600621ba4 |
A357868 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j). | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"13",
"0",
"1",
"0",
"0",
"6",
"75",
"0",
"1",
"0",
"0",
"6",
"38",
"541",
"0",
"1",
"0",
"0",
"0",
"36",
"270",
"4683",
"0",
"1",
"0",
"0",
"0",
"24",
"150",
"2342",
"47293",
"0",
"1",
"0",
"0",
"0",
"0",
"240",
"1260",
"23646",
"545835",
"0",
"1",
"0",
"0",
"0",
"0",
"120",
"1560",
"16926",
"272918",
"7087261",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1800",
"8400",
"197316",
"3543630",
"102247563",
"0"
] | [
"nonn",
"tabl"
] | 16 | 0 | 9 | [
"A000007",
"A000670",
"A052841",
"A324162",
"A353774",
"A353775",
"A357293",
"A357868",
"A357869",
"A357881"
] | null | Seiichi Manyama, Oct 17 2022 | 2022-10-18T13:31:43 | oeisdata/seq/A357/A357868.seq | 731b681244948acae7045d0c176be100 |
A357869 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j)/j!. | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"5",
"0",
"1",
"0",
"0",
"6",
"15",
"0",
"1",
"0",
"0",
"6",
"26",
"52",
"0",
"1",
"0",
"0",
"0",
"36",
"150",
"203",
"0",
"1",
"0",
"0",
"0",
"24",
"150",
"962",
"877",
"0",
"1",
"0",
"0",
"0",
"0",
"240",
"900",
"6846",
"4140",
"0",
"1",
"0",
"0",
"0",
"0",
"120",
"1560",
"9366",
"54266",
"21147",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1800",
"8400",
"101556",
"471750",
"115975",
"0"
] | [
"nonn",
"tabl"
] | 18 | 0 | 9 | [
"A000007",
"A000110",
"A052859",
"A324162",
"A353664",
"A353665",
"A357293",
"A357868",
"A357869"
] | null | Seiichi Manyama, Oct 17 2022 | 2024-01-05T12:29:43 | oeisdata/seq/A357/A357869.seq | 2831200e182c55e363209eafd704b504 |
A357870 | Triangle of integers related to generalized Markov numbers, read by rows. | [
"3",
"13",
"51",
"61",
"217",
"846",
"291",
"1001",
"3673",
"14637",
"1393",
"4683",
"16693",
"62221",
"247965",
"6673",
"22265",
"77064",
"282317",
"1054081",
"4200768",
"31971",
"106153",
"360517",
"1285131",
"4778353",
"17857153",
"71165091"
] | [
"nonn",
"tabl",
"more"
] | 18 | 1 | 1 | [
"A101368",
"A357749",
"A357870"
] | null | Michel Marcus, Oct 17 2022 | 2022-10-19T06:47:58 | oeisdata/seq/A357/A357870.seq | 3ffc016cd1bad9edb7161e8f212587ed |
A357871 | Total number of n-multisets of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). | [
"1",
"1",
"2",
"5",
"21",
"183",
"3424",
"155833",
"25962389",
"10152021001",
"18355563410823",
"94826525443572702",
"1720192707342762602561",
"135432808172830648285721490",
"25492564910167901918236137649748",
"28315683468644276652408152922412713937",
"65407605920313732627652296139090181364409413"
] | [
"nonn"
] | 25 | 0 | 3 | [
"A008315",
"A357825",
"A357871"
] | null | Alois P. Heinz, Oct 17 2022 | 2022-11-19T03:36:59 | oeisdata/seq/A357/A357871.seq | 99af406612f841bc42fa796b06484e09 |
A357872 | a(n) = n * (3/2)^(v(n, 2) - v(n, 3)) where v(n, k) = valuation(n, k) mod 2 for n > 0. | [
"1",
"3",
"2",
"4",
"5",
"6",
"7",
"12",
"9",
"15",
"11",
"8",
"13",
"21",
"10",
"16",
"17",
"27",
"19",
"20",
"14",
"33",
"23",
"24",
"25",
"39",
"18",
"28",
"29",
"30",
"31",
"48",
"22",
"51",
"35",
"36",
"37",
"57",
"26",
"60",
"41",
"42",
"43",
"44",
"45",
"69",
"47",
"32",
"49",
"75",
"34",
"52",
"53",
"54",
"55",
"84",
"38",
"87",
"59",
"40",
"61",
"93",
"63",
"64",
"65",
"66",
"67",
"68",
"46",
"105",
"71",
"108",
"73",
"111"
] | [
"nonn",
"easy",
"mult"
] | 30 | 1 | 2 | [
"A007814",
"A007949",
"A064614",
"A096268",
"A182581",
"A357872"
] | null | Werner Schulte, Oct 17 2022 | 2023-12-10T09:22:53 | oeisdata/seq/A357/A357872.seq | 6afec26cc0cb60a11b07b4c28e5c8122 |
A357873 | Numbers whose multiset of prime factors has all non-isomorphic multiset partitions. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"64",
"65",
"67",
"68",
"69",
"71",
"72",
"73"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A000612",
"A001055",
"A001221",
"A001222",
"A007716",
"A055621",
"A056239",
"A112798",
"A283877",
"A302545",
"A317533",
"A317791",
"A321194",
"A357873",
"A357874"
] | null | Gus Wiseman, Oct 18 2022 | 2022-10-18T13:32:12 | oeisdata/seq/A357/A357873.seq | cece4fe51f283a1f04f37b9c73481ce0 |
A357874 | Numbers whose multiset of prime factors has at least two multiset partitions that are isomorphic. | [
"30",
"36",
"42",
"60",
"66",
"70",
"78",
"84",
"90",
"100",
"102",
"105",
"110",
"114",
"120",
"126",
"130",
"132",
"138",
"140",
"150",
"154",
"156",
"165",
"168",
"170",
"174",
"180",
"182",
"186",
"190",
"195",
"196",
"198",
"204",
"210",
"216",
"220",
"222",
"225",
"228",
"230",
"231",
"234",
"238",
"240",
"246",
"252",
"255",
"258",
"260",
"264",
"266",
"270"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A000612",
"A001055",
"A001221",
"A001222",
"A007716",
"A055621",
"A056239",
"A112798",
"A283877",
"A300913",
"A302545",
"A317533",
"A317791",
"A321194",
"A357873",
"A357874"
] | null | Gus Wiseman, Oct 18 2022 | 2022-10-18T13:32:06 | oeisdata/seq/A357/A357874.seq | 4bc576bc5882054b7d628c22deec1c63 |
A357875 | Numbers whose run-sums of prime indices are weakly increasing. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70"
] | [
"nonn"
] | 4 | 1 | 2 | [
"A001221",
"A001222",
"A047966",
"A056239",
"A112798",
"A118914",
"A181819",
"A239312",
"A275870",
"A300273",
"A304405",
"A304442",
"A325249",
"A353743",
"A354584",
"A354912",
"A357875",
"A357876"
] | null | Gus Wiseman, Oct 18 2022 | 2022-10-18T13:32:32 | oeisdata/seq/A357/A357875.seq | 08dd1c37201c012f7348a58996a11688 |
A357876 | The run-sums of the prime indices of n are not weakly increasing. | [
"24",
"45",
"48",
"80",
"90",
"96",
"120",
"135",
"160",
"168",
"175",
"180",
"189",
"192",
"224",
"240",
"264",
"270",
"275",
"288",
"297",
"312",
"315",
"320",
"336",
"350",
"360",
"378",
"384",
"405",
"408",
"448",
"456",
"480",
"495",
"525",
"528",
"539",
"540",
"550",
"552",
"560",
"567",
"576",
"585",
"594",
"600",
"624",
"630",
"637",
"640",
"672",
"696"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A001221",
"A001222",
"A047966",
"A056239",
"A112798",
"A118914",
"A181819",
"A239312",
"A275870",
"A300273",
"A304442",
"A325249",
"A353743",
"A354584",
"A354912",
"A357875",
"A357876",
"A357878"
] | null | Gus Wiseman, Oct 17 2022 | 2022-10-18T07:27:35 | oeisdata/seq/A357/A357876.seq | 793eef5c72c7a63372368a59f175c63a |
A357877 | The a(n)-th composition in standard order is the sequence of run-sums of the prime indices of n. | [
"0",
"1",
"2",
"2",
"4",
"6",
"8",
"4",
"8",
"12",
"16",
"10",
"32",
"24",
"20",
"8",
"64",
"24",
"128",
"20",
"40",
"48",
"256",
"18",
"32",
"96",
"32",
"40",
"512",
"52",
"1024",
"16",
"80",
"192",
"72",
"40",
"2048",
"384",
"160",
"36",
"4096",
"104",
"8192",
"80",
"68",
"768",
"16384",
"34",
"128",
"96",
"320",
"160",
"32768",
"96",
"144",
"72",
"640",
"1536",
"65536",
"84"
] | [
"nonn"
] | 9 | 1 | 3 | [
"A001221",
"A001222",
"A011782",
"A047966",
"A056239",
"A066099",
"A112798",
"A118914",
"A181819",
"A238279",
"A239312",
"A275870",
"A300273",
"A304405",
"A304442",
"A304660",
"A329738",
"A333755",
"A351014",
"A353743",
"A353832",
"A353847",
"A354584",
"A354912",
"A357875",
"A357877"
] | null | Gus Wiseman, Oct 17 2022 | 2023-07-15T10:36:14 | oeisdata/seq/A357/A357877.seq | 16d9e05bb9aded590cab5b28642f8df4 |
A357878 | Number of integer partitions of n whose run-sums are not weakly decreasing. | [
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"3",
"4",
"8",
"11",
"19",
"25",
"40",
"55",
"79",
"104",
"150",
"196",
"270",
"350",
"467",
"600",
"786",
"997",
"1293",
"1632",
"2077",
"2597",
"3283",
"4067",
"5088",
"6268",
"7769",
"9517",
"11704",
"14238",
"17405",
"21092",
"25598",
"30861",
"37278",
"44729",
"53742",
"64226",
"76811",
"91448",
"108929",
"129174"
] | [
"nonn"
] | 6 | 0 | 8 | [
"A000009",
"A000041",
"A047966",
"A098859",
"A239312",
"A275870",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A353832",
"A353837",
"A353864",
"A353932",
"A354584",
"A357850",
"A357865",
"A357875",
"A357876",
"A357878"
] | null | Gus Wiseman, Oct 18 2022 | 2022-10-20T12:44:31 | oeisdata/seq/A357/A357878.seq | bb9dab816c2afe7118228c236f6cc1fd |
A357879 | Number of divisors of n with the same sum of prime indices as their quotient. Central column of A321144, taking gaps as 0's. | [
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2"
] | [
"nonn"
] | 12 | 1 | 12 | [
"A001221",
"A001222",
"A002219",
"A033879",
"A033880",
"A056239",
"A064914",
"A112798",
"A181819",
"A213074",
"A235130",
"A237258",
"A276107",
"A300061",
"A321144",
"A357879",
"A357975",
"A357976"
] | null | Gus Wiseman, Oct 27 2022 | 2025-01-20T22:52:24 | oeisdata/seq/A357/A357879.seq | 9c252d8d1837821ddecd8ee2f816921b |
A357880 | a(1) = a(2) = 1; for n > 2, a(n) is the smallest positive number such that a(n) plus the sum of all previous terms appears in the string concatenation of a(1)..a(n-1). | [
"1",
"1",
"9",
"8",
"79",
"21",
"79",
"19",
"574",
"1",
"87",
"40",
"2",
"36",
"30",
"211",
"593",
"83",
"83",
"30",
"128",
"64",
"184",
"501",
"148",
"9",
"280",
"329",
"203",
"5",
"185",
"161",
"3",
"314",
"391",
"119",
"150",
"24",
"556",
"197",
"195",
"64",
"105",
"108",
"8",
"777",
"207",
"16",
"302",
"52",
"147",
"2",
"111",
"298",
"53",
"67",
"66",
"20",
"105",
"99",
"37",
"15",
"85",
"51",
"183",
"39",
"45",
"8",
"14"
] | [
"nonn",
"base"
] | 12 | 1 | 3 | [
"A000027",
"A000217",
"A007908",
"A337227",
"A351753",
"A357432",
"A357433",
"A357880"
] | null | Scott R. Shannon, Oct 18 2022 | 2022-10-20T20:37:27 | oeisdata/seq/A357/A357880.seq | 7079abe624aceb86bcf6138a54959f1c |
A357881 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|. | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"14",
"0",
"1",
"0",
"0",
"6",
"88",
"0",
"1",
"0",
"0",
"6",
"46",
"694",
"0",
"1",
"0",
"0",
"0",
"36",
"340",
"6578",
"0",
"1",
"0",
"0",
"0",
"24",
"210",
"3308",
"72792",
"0",
"1",
"0",
"0",
"0",
"0",
"240",
"2070",
"36288",
"920904",
"0",
"1",
"0",
"0",
"0",
"0",
"120",
"2040",
"24864",
"460752",
"13109088",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1800",
"17640",
"310632",
"6551424",
"207360912",
"0"
] | [
"nonn",
"tabl"
] | 16 | 0 | 9 | [
"A000007",
"A007840",
"A052811",
"A353118",
"A353119",
"A353200",
"A357119",
"A357868",
"A357881",
"A357882"
] | null | Seiichi Manyama, Oct 18 2022 | 2022-10-18T13:31:56 | oeisdata/seq/A357/A357881.seq | eb80387090321dd7caf01157647efd80 |
A357882 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|/j!. | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"6",
"0",
"1",
"0",
"0",
"6",
"24",
"0",
"1",
"0",
"0",
"6",
"34",
"120",
"0",
"1",
"0",
"0",
"0",
"36",
"220",
"720",
"0",
"1",
"0",
"0",
"0",
"24",
"210",
"1688",
"5040",
"0",
"1",
"0",
"0",
"0",
"0",
"240",
"1710",
"14868",
"40320",
"0",
"1",
"0",
"0",
"0",
"0",
"120",
"2040",
"17304",
"147684",
"362880",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1800",
"17640",
"194712",
"1631376",
"3628800",
"0"
] | [
"nonn",
"tabl"
] | 17 | 0 | 9 | [
"A000007",
"A000142",
"A009199",
"A353344",
"A353358",
"A353404",
"A357119",
"A357869",
"A357881",
"A357882"
] | null | Seiichi Manyama, Oct 18 2022 | 2022-10-19T11:11:39 | oeisdata/seq/A357/A357882.seq | 9e6a15772bcac09a2c90190921bbec1a |
A357883 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|/(k!^j * j!). | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"6",
"0",
"1",
"0",
"0",
"3",
"24",
"0",
"1",
"0",
"0",
"1",
"14",
"120",
"0",
"1",
"0",
"0",
"0",
"6",
"80",
"720",
"0",
"1",
"0",
"0",
"0",
"1",
"35",
"544",
"5040",
"0",
"1",
"0",
"0",
"0",
"0",
"10",
"235",
"4284",
"40320",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"85",
"1834",
"38310",
"362880",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"15",
"735",
"16352",
"383256",
"3628800",
"0"
] | [
"nonn",
"tabl"
] | 14 | 0 | 9 | [
"A000007",
"A000142",
"A324162",
"A347001",
"A347002",
"A347003",
"A347004",
"A357119",
"A357881",
"A357882",
"A357883"
] | null | Seiichi Manyama, Oct 18 2022 | 2022-10-18T13:31:38 | oeisdata/seq/A357/A357883.seq | ca3d0791d0de56acfaee765e32f90e37 |
A357884 | a(1)=0; if a(n-1) shares any digits with n-1, then a(n) = a(n-1) with all copies of digits from n-1 removed. Otherwise, a(n) = a(n-1) + (n-1). | [
"0",
"1",
"3",
"0",
"4",
"9",
"15",
"22",
"30",
"39",
"49",
"60",
"72",
"85",
"99",
"114",
"4",
"21",
"2",
"21",
"1",
"0",
"22",
"0",
"24",
"4",
"30",
"57",
"85",
"114",
"144",
"44",
"76",
"109",
"143",
"14",
"50",
"87",
"7",
"46",
"6",
"47",
"7",
"50",
"94",
"9",
"55",
"102",
"150",
"199",
"249",
"300",
"352",
"2",
"56",
"6",
"0",
"57",
"7",
"66",
"0",
"61",
"1",
"64",
"0",
"65",
"5"
] | [
"nonn",
"base",
"easy",
"look"
] | 43 | 1 | 3 | [
"A045541",
"A357884"
] | null | Gavin Lupo, Oct 18 2022 | 2022-10-29T07:06:31 | oeisdata/seq/A357/A357884.seq | 036738b97f0226eab7585d9d1e5d952f |
A357885 | Triangle read by rows: T(n,k) = number of closed trails of length k starting and ending at a fixed vertex in the complete undirected graph on n labeled vertices, for n >= 1 and k = 0 .. n(n-1)/2. | [
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"0",
"6",
"6",
"0",
"0",
"1",
"0",
"0",
"12",
"24",
"24",
"72",
"168",
"0",
"0",
"528",
"1",
"0",
"0",
"20",
"60",
"120",
"480",
"1680",
"3120",
"5760",
"15840",
"29040",
"22320",
"0",
"0",
"0",
"1",
"0",
"0",
"30",
"120",
"360",
"1800",
"8280",
"27360",
"88560",
"310320",
"934560",
"2296800",
"5541120",
"12965760",
"21837600",
"27740160",
"58752000",
"101882880",
"0",
"0",
"389928960"
] | [
"tabf",
"nonn",
"walk"
] | 12 | 1 | 7 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 18 2022 | 2022-10-21T14:30:40 | oeisdata/seq/A357/A357885.seq | a64f21633228c92a49129d0064b3cd9a |
A357886 | Triangle read by rows: T(n,k) = number of open trails of length k starting and ending at fixed distinct vertices in the complete undirected graph on n labeled vertices, for n >= 1 and k = 0 .. n*(n-1)/2. | [
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"2",
"2",
"4",
"6",
"0",
"0",
"1",
"3",
"6",
"18",
"48",
"78",
"96",
"132",
"132",
"0",
"0",
"1",
"4",
"12",
"48",
"180",
"528",
"1392",
"3600",
"7920",
"13680",
"21840",
"31872",
"25008",
"0",
"0",
"0",
"1",
"5",
"20",
"100",
"480",
"1980",
"7680",
"29040",
"100920",
"316320",
"923520",
"2502000",
"6011760",
"12584880",
"23417280",
"38196480",
"50112000",
"53667840",
"64988160",
"64988160",
"0"
] | [
"tabf",
"nonn",
"walk"
] | 14 | 1 | 10 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 19 2022 | 2022-10-22T08:08:02 | oeisdata/seq/A357/A357886.seq | 5fa2fe70ad1383ef8ad078c1b387c614 |
A357887 | Triangle read by rows: T(n,k) = number of circuits of length k in the complete undirected graph on n labeled vertices, for n >= 1 and k = 0 .. n(n-1)/2. | [
"1",
"2",
"0",
"3",
"0",
"0",
"2",
"4",
"0",
"0",
"8",
"6",
"0",
"0",
"5",
"0",
"0",
"20",
"30",
"24",
"60",
"120",
"0",
"0",
"264",
"6",
"0",
"0",
"40",
"90",
"144",
"480",
"1440",
"2340",
"3840",
"9504",
"15840",
"11160",
"0",
"0",
"0",
"7",
"0",
"0",
"70",
"210",
"504",
"2100",
"8280",
"23940",
"68880",
"217224",
"594720",
"1339800",
"2983680",
"6482880",
"10190880",
"12136320",
"24192000",
"39621120",
"0",
"0",
"129976320"
] | [
"tabf",
"nonn",
"walk"
] | 17 | 1 | 2 | [
"A007082",
"A135388",
"A232545",
"A350028",
"A356366",
"A357855",
"A357856",
"A357857",
"A357885",
"A357886",
"A357887"
] | null | Max Alekseyev, Oct 19 2022 | 2022-10-21T14:31:54 | oeisdata/seq/A357/A357887.seq | 07b126bab3c41225475d1b01a65f2823 |
A357888 | a(n) is the minimal squared length of the longest side of a strictly convex grid n-gon of smallest area. | [
"2",
"1",
"2",
"2",
"5",
"2",
"5",
"5",
"5",
"5",
"10",
"5",
"10",
"5",
"13",
"10",
"13",
"10",
"13",
"13",
"17",
"13",
"17",
"13",
"25",
"17",
"25",
"17",
"25",
"13",
"25",
"17",
"26",
"17",
"26",
"17",
"26",
"17",
"26",
"25",
"26",
"25",
"29",
"29",
"29",
"34",
"34",
"34",
"41",
"37",
"41",
"37",
"41",
"34",
"41",
"41",
"41",
"41",
"41",
"41",
"61",
"41",
"61",
"41",
"61",
"41",
"61",
"41",
"41"
] | [
"nonn"
] | 31 | 3 | 1 | [
"A063984",
"A070911",
"A089187",
"A321693",
"A322029",
"A322345",
"A322348",
"A357888"
] | null | Hugo Pfoertner, Nov 10 2022 | 2025-01-01T22:19:19 | oeisdata/seq/A357/A357888.seq | 9405651f9ec14ecda1af85bc560f4605 |
A357889 | a(n) = (A022010(n) - 179)/210. | [
"26",
"422",
"1355",
"2983",
"4074",
"5460",
"31242",
"35906",
"40825",
"84968",
"90902",
"114293",
"204675",
"207304",
"329316",
"353648",
"377182",
"382985",
"400497",
"418993",
"590790",
"611757",
"686734",
"748244",
"993947",
"1038255",
"1181931",
"1246060",
"1310026",
"1347976",
"1354707",
"1440679",
"1477788",
"1559980",
"1720425",
"1915719",
"1989590"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A022009",
"A022010",
"A182387",
"A357889",
"A357890"
] | null | Hugo Pfoertner, Nov 18 2022 | 2022-11-18T20:09:02 | oeisdata/seq/A357/A357889.seq | 68c39bab40e994fd18bcefe5bddc8408 |
A357890 | a(n) = (A022013(n) - 173)/210. | [
"422",
"1355",
"4074",
"5460",
"31242",
"329316",
"353648",
"1038255",
"1246060",
"1440679",
"4593664",
"6382389",
"6669205",
"6773694",
"8748381",
"9343041",
"10085055",
"10711252",
"10819136",
"12181959",
"12804411",
"13683806",
"14044105",
"15616253",
"19232028",
"20795482",
"21014272",
"25076295",
"26366476",
"27457318"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A022011",
"A022012",
"A022013",
"A145315",
"A182393",
"A357889",
"A357890"
] | null | Hugo Pfoertner, Nov 18 2022 | 2022-11-18T20:08:57 | oeisdata/seq/A357/A357890.seq | 4bd4f8789b53cc4489e0c706033b8144 |
A357891 | a(1) = 1; a(n+1) is the smallest integer > 0 that cannot be obtained from the integers {a(1), ..., a(n)} using each number exactly once and the operators +, -, *, /. | [
"1",
"2",
"4",
"11",
"34",
"152",
"1079",
"6610",
"93221"
] | [
"nonn",
"hard",
"more"
] | 11 | 1 | 2 | [
"A071115",
"A217043",
"A357891",
"A358075"
] | null | Rainer Rosenthal and Hugo Pfoertner, Nov 01 2022 | 2022-11-10T12:35:59 | oeisdata/seq/A357/A357891.seq | 925a4e511e7bbb75b0b1e0e0c51e9627 |
A357892 | T(n,k) are the values of a variant of the Chebyshev polynomials P(n,x) of order n evaluated at x = k, where T(n,k), n >= 0, k <= n is a triangle read by rows. P(0,x) = 1, P(1,x) = x, P(n,x) = x*P(n-1,x) - P(n-2,x). | [
"1",
"0",
"1",
"-1",
"0",
"3",
"0",
"-1",
"4",
"21",
"1",
"-1",
"5",
"55",
"209",
"0",
"0",
"6",
"144",
"780",
"2640",
"-1",
"1",
"7",
"377",
"2911",
"12649",
"40391",
"0",
"1",
"8",
"987",
"10864",
"60605",
"235416",
"726103",
"1",
"0",
"9",
"2584",
"40545",
"290376",
"1372105",
"4976784",
"15003009",
"0",
"-1",
"10",
"6765",
"151316",
"1391275",
"7997214",
"34111385",
"118118440",
"350382231"
] | [
"sign",
"tabl"
] | 6 | 0 | 6 | [
"A001353",
"A001906",
"A097690",
"A357892"
] | null | Hugo Pfoertner, Oct 18 2022 | 2022-10-19T06:49:13 | oeisdata/seq/A357/A357892.seq | f6c703eacfa7a963afc48548dead24f6 |
A357893 | a(d) is the minimal integer k such that all Jensen polynomials Jd,nPL(x) associated to MacMahon's plane partition function PL(n) have real roots for x >= k. | [
"12",
"26",
"46",
"73",
"102",
"136"
] | [
"nonn",
"more"
] | 9 | 2 | 1 | [
"A324794",
"A357893"
] | null | Michel Marcus, Oct 18 2022 | 2022-10-21T14:33:38 | oeisdata/seq/A357/A357893.seq | e5d5b7dbd3a288f102dd5813d50080f1 |
A357894 | Integers k such that the sum of some number of initial decimal digits of sqrt(k) is equal to k. | [
"0",
"1",
"6",
"10",
"14",
"18",
"27",
"33",
"41",
"43",
"46",
"55",
"56",
"62",
"66",
"69",
"70",
"77",
"80",
"87",
"93",
"98",
"102",
"108",
"110",
"123",
"124",
"145",
"147",
"149",
"150",
"154",
"157",
"162",
"164",
"165",
"168",
"176",
"177",
"179",
"180",
"182",
"183",
"197",
"204",
"213",
"214",
"219",
"224",
"236",
"237",
"242",
"248",
"251",
"252",
"261",
"262",
"263",
"271",
"274",
"285",
"295"
] | [
"nonn",
"base"
] | 19 | 1 | 3 | [
"A106039",
"A357894"
] | null | Gil Broussard, Oct 18 2022 | 2022-11-19T21:22:26 | oeisdata/seq/A357/A357894.seq | 3010465abed3840bd4805d3fe95de4ad |
A357895 | Number of partitions of the complete graph on n vertices into strokes. | [
"1",
"2",
"12",
"472",
"104800"
] | [
"nonn",
"more",
"walk"
] | 8 | 1 | 2 | [
"A089243",
"A131518",
"A131520",
"A131709",
"A354228",
"A357857",
"A357895"
] | null | Yasutoshi Kohmoto and Max Alekseyev, Oct 18 2022 | 2022-10-21T14:32:24 | oeisdata/seq/A357/A357895.seq | 0287273d91984b0c1d985b01f5419373 |
A357896 | Additive triprimes. | [
"8",
"44",
"66",
"75",
"99",
"116",
"125",
"138",
"147",
"165",
"170",
"174",
"242",
"246",
"255",
"273",
"279",
"282",
"318",
"332",
"345",
"354",
"363",
"369",
"387",
"404",
"426",
"435",
"477",
"507",
"530",
"534",
"549",
"561",
"578",
"596",
"602",
"606",
"615",
"639",
"642",
"651",
"657",
"668",
"705",
"710",
"741",
"747",
"822",
"873",
"903",
"909",
"927",
"938",
"956",
"963",
"981",
"1025",
"1034",
"1038",
"1052",
"1065",
"1070",
"1074"
] | [
"nonn",
"base"
] | 13 | 1 | 1 | [
"A007953",
"A014612",
"A046704",
"A118688",
"A357896"
] | null | Zak Seidov, Oct 18 2022 | 2022-11-02T07:28:34 | oeisdata/seq/A357/A357896.seq | 802bc1b1eb3f530f7081b93a92b74542 |
A357897 | a(1)=1; thereafter a(n)=n+k, where k is the minimal value of k such that a(k)=n-1 and k belongs to [1, n-1], or k=0 if no such value exists. | [
"1",
"3",
"3",
"6",
"5",
"11",
"11",
"8",
"17",
"10",
"21",
"18",
"13",
"27",
"15",
"31",
"17",
"27",
"31",
"20",
"41",
"33",
"23",
"47",
"25",
"51",
"27",
"42",
"29",
"59",
"31",
"48",
"33",
"56",
"35",
"71",
"37",
"75",
"39",
"79",
"41",
"63",
"71",
"44",
"89",
"46",
"93",
"72",
"81",
"50",
"101",
"78",
"53",
"107",
"55",
"111",
"91",
"58",
"117",
"90",
"61",
"123",
"63",
"106",
"65",
"131",
"67"
] | [
"nonn"
] | 21 | 1 | 2 | null | null | Joseph Bove, Oct 19 2022 | 2022-10-24T14:13:50 | oeisdata/seq/A357/A357897.seq | a5ca920d705f33200e48fea345cea8df |
A357898 | a(n) is the least k such that phi(k) + d(k) = 2^n, or -1 if there is no such k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k. | [
"1",
"3",
"7",
"21",
"31",
"77",
"127",
"301",
"783",
"1133",
"3399",
"4781",
"8191",
"16637",
"37367",
"101601",
"131071",
"305837",
"524287",
"1073581",
"3220743",
"4201133",
"8544103",
"18404669",
"34012327",
"67139117",
"135255431",
"300528877",
"824583699",
"1073862029",
"2147483647",
"4295564381",
"8603449703",
"25807607829"
] | [
"nonn"
] | 43 | 1 | 2 | [
"A000005",
"A000010",
"A061468",
"A070319",
"A073757",
"A357898"
] | null | J. M. Bergot and Robert Israel, Oct 19 2022 | 2023-01-20T21:44:00 | oeisdata/seq/A357/A357898.seq | 88fb301e60ac85a10411f0a147579ff0 |
A357899 | Let k be the smallest k such that the square root of k*n rounds to a prime number; a(n) is this prime number. | [
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"5",
"5",
"5",
"7",
"7",
"7",
"11",
"11",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"11",
"11",
"11",
"13",
"13",
"13",
"11",
"11",
"11",
"11",
"11",
"11",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"23",
"23",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17"
] | [
"nonn"
] | 13 | 1 | 1 | [
"A000194",
"A308052",
"A357477",
"A357899"
] | null | Rémy Sigrist, Oct 19 2022 | 2022-10-19T12:59:02 | oeisdata/seq/A357/A357899.seq | f25104071e6d83e7076ead6415293eef |
A357900 | Number of groups of order A060702(n) with trivial center. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"5",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"5",
"2",
"5",
"1",
"1",
"5",
"2",
"1",
"2",
"1",
"1",
"4",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"4",
"1",
"1",
"4",
"1",
"1",
"17",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"8",
"1",
"1",
"2",
"1",
"11",
"1",
"2",
"2",
"5",
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"1",
"1",
"19"
] | [
"nonn",
"hard"
] | 21 | 1 | 6 | [
"A056867",
"A059806",
"A060702",
"A357900"
] | null | Jianing Song, Oct 19 2022 | 2022-10-20T07:43:18 | oeisdata/seq/A357/A357900.seq | d533c43857f5974497fbbc330ca26ddb |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.