sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358401
Difference in number of 0's in first n terms of Van Eck's sequence and number of primes less than or equal to n.
[ "1", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "-1", "-1", "0", "0", "-1", "-1", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "0", "-1", "-1", "-1", "-1", "-2", "-1", "-2", "-2", "-1", "-1", "-2", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "0", "0", "-1", "0", "-1", "-1", "-1", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1" ]
[ "sign" ]
17
1
41
[ "A000040", "A000720", "A171896", "A358401" ]
null
G. L. Honaker, Jr., Nov 13 2022
2022-11-21T12:31:59
oeisdata/seq/A358/A358401.seq
e79be9e8b67d9e6fc12f783203120659
A358402
a(1) = 0; for n > 1, let a(n-1) = m; if a(n-1) is the first occurrence of m then a(n) = 0, but if there is a k < n-1 with a(k) = m, a(n) is the minimum of n-1-k and j, where a(j) is the first occurrence of m in the sequence.
[ "0", "0", "1", "0", "1", "2", "0", "1", "3", "0", "1", "3", "3", "1", "3", "2", "6", "0", "1", "3", "5", "0", "1", "3", "4", "0", "1", "3", "4", "4", "1", "3", "4", "3", "2", "6", "17", "0", "1", "3", "6", "5", "21", "0", "1", "3", "6", "6", "1", "3", "4", "18", "0", "1", "3", "5", "14", "0", "1", "3", "5", "5", "1", "3", "4", "14", "9", "0", "1", "3", "6", "17", "35", "0", "1", "3", "6", "6", "1", "3", "4", "16", "0", "1", "3", "5", "21", "43", "0", "1", "3", "6", "14", "27", "0", "1" ]
[ "nonn" ]
22
1
6
[ "A171862", "A171863", "A181391", "A358402", "A358403", "A358405", "A358406" ]
null
Scott R. Shannon, Nov 14 2022
2023-01-22T02:35:37
oeisdata/seq/A358/A358402.seq
cbc10958a584514ba80ef5b38e161b1f
A358403
The index of A358402 where n first appears, or 0 if n never appears.
[ "1", "3", "6", "9", "25", "21", "17", "109", "198", "67", "860", "114", "148", "261", "57", "137", "82", "37", "52", "215", "447", "43", "105", "404", "267", "163", "414", "94", "154", "1292", "184", "716", "142", "669", "243", "73", "1685", "126", "360", "209", "329", "324", "355", "88", "542", "300", "887", "366", "422", "492", "1053", "1754", "256", "941", "946", "711", "679", "178", "283", "3273", "2221", "225" ]
[ "nonn" ]
10
0
2
[ "A181391", "A358402", "A358403", "A358405", "A358406" ]
null
Scott R. Shannon, Nov 14 2022
2022-11-14T10:00:21
oeisdata/seq/A358/A358403.seq
213be7886c9b272e09ed42001fcc0ee3
A358404
Multipliers involving Fibonacci-like sequences and Pythagorean triples.
[ "2", "3", "5", "8", "13", "21", "23", "34", "41", "61", "85", "89", "144", "233", "255", "264", "377", "383", "397", "443", "610", "762", "875", "987" ]
[ "nonn", "more" ]
18
1
1
[ "A000045", "A358404" ]
null
David Terr, Nov 14 2022
2025-03-24T03:59:25
oeisdata/seq/A358/A358404.seq
ebbcfce5663e97bcf3e59d33a80b422e
A358405
a(1) = 0; for n > 1, let a(n-1) = m; if a(n-1) is the first occurrence of m then a(n) = 0, but if there is a k < n-1 with a(k) = m, a(n) is the maximum of n-1-k and j, where a(j) is the first occurrence of m in the sequence.
[ "0", "0", "1", "0", "2", "0", "2", "5", "0", "3", "0", "2", "5", "8", "0", "4", "0", "2", "6", "0", "3", "11", "0", "3", "10", "0", "3", "10", "25", "0", "4", "16", "0", "3", "10", "25", "29", "0", "5", "26", "0", "3", "10", "25", "29", "37", "0", "6", "29", "37", "46", "0", "5", "14", "0", "3", "14", "54", "0", "4", "29", "37", "46", "51", "0", "6", "19", "0", "3", "13", "0", "3", "10", "30", "0", "4", "16", "45", "0", "4", "16", "32", "0", "4", "16", "32", "82" ]
[ "nonn", "look" ]
25
1
5
[ "A171862", "A171863", "A181391", "A358402", "A358403", "A358405", "A358406" ]
null
Scott R. Shannon, Nov 14 2022
2023-01-21T20:28:01
oeisdata/seq/A358/A358405.seq
ef41b43cb55a773f44010dfc9168f9bd
A358406
The index of A358405 where n first appears, or 0 if n never appears.
[ "1", "3", "5", "10", "16", "8", "19", "141", "14", "190", "25", "22", "416", "70", "54", "162", "32", "308", "169", "67", "93", "203", "118", "513", "196", "29", "40", "200", "861", "37", "74", "1081", "82", "216", "208", "363", "90", "46", "375", "1675", "1091", "333", "1407", "812", "166", "78", "51", "1099", "115", "193", "1243", "64", "595", "98", "58", "367", "617", "235", "325", "766", "2137", "272", "124" ]
[ "nonn" ]
10
0
2
[ "A181391", "A358402", "A358403", "A358405", "A358406" ]
null
Scott R. Shannon, Nov 14 2022
2022-11-14T09:59:39
oeisdata/seq/A358/A358406.seq
f38df512358ac681b83cbef6bd4ddfae
A358407
Number of regions formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on each of the two adjacent edges of the square.
[ "1", "5", "37", "173", "553", "1365", "2909", "5513", "9577", "15485", "24157", "35021", "51201", "71013", "95621", "126277", "167213", "211737", "272025", "335681", "413677", "505445", "618557", "729485", "878017", "1034697", "1215185", "1409273", "1654785", "1875265", "2192281", "2486797", "2836317", "3216833", "3633709", "4034313", "4599789", "5124841" ]
[ "nonn" ]
15
1
2
[ "A255011", "A355798", "A358407", "A358408", "A358409" ]
null
Scott R. Shannon, Nov 14 2022
2022-11-16T08:53:43
oeisdata/seq/A358/A358407.seq
ce5823e3b7344e3923bb2c641ad337a3
A358408
Number of vertices formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on each of the two adjacent edges of the square.
[ "4", "8", "32", "144", "468", "1160", "2512", "4836", "8468", "13760", "21784", "31168", "46596", "64760", "86912", "114656", "154400", "194116", "253160", "310408", "382712", "469296", "580688", "677656", "822928", "969880", "1141112", "1319984", "1566512", "1755032", "2080376", "2349188", "2686452", "3052184", "3450348", "3800756", "4387404", "4880560", "5443192" ]
[ "nonn" ]
11
1
1
[ "A331449", "A355799", "A358407", "A358408", "A358409" ]
null
Scott R. Shannon, Nov 14 2022
2022-11-16T08:53:36
oeisdata/seq/A358/A358408.seq
43926216f22c005e816a75a2c9259927
A358409
Number of edges formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on each of the two adjacent edges of the square.
[ "4", "12", "68", "316", "1020", "2524", "5420", "10348", "18044", "29244", "45940", "66188", "97796", "135772", "182532", "240932", "321612", "405852", "525184", "646088", "796388", "974740", "1199244", "1407140", "1700944", "2004576", "2356296", "2729256", "3221296", "3630296", "4272656", "4835984", "5522768", "6269016", "7084056", "7835068", "8987192", "10005400" ]
[ "nonn" ]
8
1
1
[ "A331448", "A355800", "A358407", "A358408", "A358409" ]
null
Scott R. Shannon, Nov 14 2022
2022-11-16T08:53:27
oeisdata/seq/A358/A358409.seq
2ed2cd54a10ecf60f500d905f1d2efe0
A358410
a(n) = Sum_{d|n} (d + n/d - 2)!/(d - 1)!.
[ "1", "2", "3", "9", "25", "130", "721", "5069", "40333", "363006", "3628801", "39917607", "479001601", "6227025848", "87178291591", "1307674408449", "20922789888001", "355687428461452", "6402373705728001", "121645100412461861", "2432902008176660217", "51090942171749356812", "1124000727777607680001" ]
[ "nonn" ]
13
1
2
[ "A157019", "A358280", "A358389", "A358410" ]
null
Seiichi Manyama, Nov 14 2022
2023-08-30T02:00:56
oeisdata/seq/A358/A358410.seq
2d2fd3f579a62408cd45f0dec4cdf5e6
A358411
a(n) = Sum_{d|n} (d + n/d - 1)!/(d - 1)!.
[ "1", "4", "9", "34", "125", "762", "5047", "40468", "362949", "3629560", "39916811", "479007174", "6227020813", "87178331590", "1307674370745", "20922790251808", "355687428096017", "6402373709377404", "121645100408832019", "2432902008216565330", "51090942171709621965", "1124000727778086681754" ]
[ "nonn" ]
13
1
2
[ "A081543", "A358389", "A358410", "A358411" ]
null
Seiichi Manyama, Nov 14 2022
2023-08-30T02:00:53
oeisdata/seq/A358/A358411.seq
f44ff579e3ab831eeefab28918be1ad1
A358412
Least number k coprime to 2 and 3 such that sigma(k)/k >= n.
[ "1", "5391411025", "5164037398437051798923642083026622326955987448536772329145127064375" ]
[ "nonn", "bref", "hard" ]
26
1
2
[ "A023199", "A047802", "A119240", "A358412", "A358413", "A358414", "A358418", "A358419" ]
null
Jianing Song, Nov 14 2022
2022-11-15T17:51:47
oeisdata/seq/A358/A358412.seq
45b68ff055735c42d8cd6532ebcd129a
A358413
Smallest 3-abundant number (sigma(x) > 3x) which is not divisible by any of the first n primes.
[ "180", "1018976683725", "5164037398437051798923642083026622326955987448536772329145127064375" ]
[ "nonn", "bref", "hard" ]
18
0
1
[ "A023199", "A047802", "A068403", "A119240", "A358412", "A358413", "A358414", "A358418", "A358419" ]
null
Jianing Song, Nov 14 2022
2022-11-15T17:51:41
oeisdata/seq/A358/A358413.seq
32901ff94187435606d86f6eb52e6d3c
A358414
Smallest 4-abundant number (sigma(x) > 4x) which is not divisible by any of the first n primes.
[ "27720", "1853070540093840001956842537745897243375" ]
[ "nonn", "bref", "hard" ]
19
0
1
[ "A023199", "A047802", "A068404", "A119240", "A358412", "A358413", "A358414", "A358418", "A358419" ]
null
Jianing Song, Nov 14 2022
2022-11-15T17:51:36
oeisdata/seq/A358/A358414.seq
85cbb1802351ec13ba5bd2106ac8cb94
A358415
a(n) is the prime or perfect or amicable or sociable number encountered in the aliquot sequence for 2^n.
[ "2", "3", "7", "3", "31", "41", "127", "41", "43", "7", "113", "7", "8191", "6", "6", "313", "131071", "211457", "524287", "53", "4217", "433", "41", "547", "2243", "691921", "21275809", "673", "76831", "467", "2147483647", "89", "112337", "401", "17681", "9342799", "12011", "9511", "19", "1061129", "164524721", "5460123943", "71", "106661", "33188053169", "211", "41" ]
[ "nonn" ]
11
1
1
[ "A001065", "A115350", "A358239", "A358266", "A358415" ]
null
Michel Marcus, Nov 14 2022
2022-11-15T10:47:14
oeisdata/seq/A358/A358415.seq
2fedc72c7b7348271cc2978863e9fe9e
A358416
a(1) = 0 and a(n+1) > a(n) is the smallest integer such that a(n+1)^2-a(n)^2 is triangular.
[ "0", "1", "2", "5", "14", "41", "46", "137", "410", "1229", "3686", "3818", "3982", "4015", "4036", "4091", "12272", "12320", "36959", "36991", "37328", "40505", "40615", "40856", "41542", "44222", "51913", "54032", "54785", "164354", "167686", "169769", "189742", "190225", "570674", "585136", "585161", "697507", "699542", "798592", "806618" ]
[ "nonn" ]
6
1
3
[ "A036449", "A358416" ]
null
Chai Wah Wu, Nov 14 2022
2022-11-15T03:26:44
oeisdata/seq/A358/A358416.seq
89bad51aef0f6c481bef970900523bb4
A358417
Indices of the triangular numbers in A189475.
[ "1", "2", "6", "18", "54", "29", "182", "546", "1638", "4914", "1407", "1599", "726", "581", "945", "16362", "1536", "49278", "2175", "7077", "22238", "4224", "6266", "10632", "21440", "38454", "21189", "12801", "219138", "47039", "37494", "119837", "19158", "760898", "182840", "7649", "536847", "75405", "544775", "160520", "365439", "307943" ]
[ "nonn" ]
6
1
2
[ "A000217", "A036449", "A189475", "A358416", "A358417" ]
null
Chai Wah Wu, Nov 14 2022
2022-11-15T03:28:34
oeisdata/seq/A358/A358417.seq
21e2fdea6b114ddb9fd23778e0a53712
A358418
Least number k coprime to 2, 3, and 5 such that sigma(k)/k >= n.
[ "1", "20169691981106018776756331" ]
[ "nonn", "bref", "hard" ]
18
1
2
[ "A023199", "A047802", "A119240", "A358412", "A358413", "A358414", "A358418", "A358419" ]
null
Jianing Song, Nov 14 2022
2022-11-15T17:51:32
oeisdata/seq/A358/A358418.seq
6ac80859e1ed213bf943e6f43b08c315
A358419
Least number k coprime to 2, 3, 5, and 7 such that sigma(k)/k >= n.
[ "1", "49061132957714428902152118459264865645885092682687973" ]
[ "nonn", "bref", "hard" ]
16
1
2
[ "A023199", "A047802", "A119240", "A358412", "A358413", "A358414", "A358418", "A358419" ]
null
Jianing Song, Nov 14 2022
2022-11-15T17:51:27
oeisdata/seq/A358/A358419.seq
70f4ede3e14bb84e36c6dd4fa04298ec
A358420
Primes that are the concatenation p|q of two primes p and q with the same number of digits, where r = (p+q)/2, r|q and p|r are all primes.
[ "1123", "101197", "101293", "101797", "107827", "109313", "113149", "151163", "151607", "151643", "163199", "163811", "179947", "193541", "211271", "223331", "239263", "251263", "251443", "263191", "271967", "281353", "281557", "307367", "331283", "337397", "353929", "359167", "359599", "367547", "383659", "383983", "389569", "401773", "419467", "421241", "421397" ]
[ "nonn", "base" ]
14
1
1
[ "A358420", "A358421" ]
null
J. M. Bergot and Robert Israel, Nov 14 2022
2022-11-21T09:49:41
oeisdata/seq/A358/A358420.seq
359d0766cf293f055646a0d3801debe7
A358421
Primes that are the concatenation of two primes with the same number of digits.
[ "23", "37", "53", "73", "1117", "1123", "1129", "1153", "1171", "1319", "1361", "1367", "1373", "1723", "1741", "1747", "1753", "1759", "1783", "1789", "1913", "1931", "1973", "1979", "1997", "2311", "2341", "2347", "2371", "2383", "2389", "2917", "2953", "2971", "3119", "3137", "3167", "3719", "3761", "3767", "3779", "3797", "4111", "4129", "4153", "4159", "4337", "4373", "4397", "4723", "4729" ]
[ "nonn", "base", "easy" ]
25
1
1
[ "A000040", "A001637", "A358421" ]
null
J. M. Bergot and Robert Israel, Nov 15 2022
2023-02-28T14:21:28
oeisdata/seq/A358/A358421.seq
4f1c516cfce47b404392b2d4e8264dce
A358422
a(n) is the least prime p such that 5^n * p + 6 is the square of a prime.
[ "3", "23", "67", "1031", "19", "61463", "290659", "977591", "257853763", "62602607", "26744819683", "419897923439", "5254699", "31105379274647", "3898814282899", "42812012202143", "291516070141267", "1646700822288287", "31943436447743683", "50590939472510999", "151828450171141747", "104165257122907367", "15165857481926132731" ]
[ "nonn" ]
10
0
1
[ "A358422", "A358426" ]
null
J. M. Bergot and Robert Israel, Nov 15 2022
2022-11-21T09:48:08
oeisdata/seq/A358/A358422.seq
5b4a047bde8a42f97eef56b82c05571d
A358423
Numbers k such that A030717(k) = 5.
[ "16", "18", "68", "76", "80", "89", "90", "93", "105", "109", "123", "143", "168", "286", "322", "366", "405", "448", "493", "494", "540", "541", "543", "591", "593", "646", "702", "770", "826", "832", "891", "893", "897", "960", "962", "966", "1032", "1034", "1039", "1110", "1112", "1117", "1193", "1195", "1200", "1279", "1281", "1286", "1367", "1369", "1374", "1459", "1461", "1466", "1554", "1556" ]
[ "nonn" ]
21
1
1
[ "A030717", "A030723", "A030724", "A030725", "A030726", "A358423", "A358424", "A358425" ]
null
Seiichi Manyama, Nov 15 2022
2022-11-19T10:58:47
oeisdata/seq/A358/A358423.seq
c85014209b56ff54770b47d6501363a6
A358424
Numbers k such that A030717(k) = 6.
[ "20", "23", "30", "127", "147", "166", "170", "191", "195", "219", "223", "254", "287", "360", "407", "450", "495", "542", "590", "592", "643", "644", "645", "699", "700", "759", "760", "762", "821", "822", "824", "886", "887", "889", "955", "956", "958", "1027", "1028", "1030", "1105", "1106", "1108", "1188", "1189", "1191", "1274", "1275", "1277", "1362", "1363", "1365", "1454", "1455" ]
[ "nonn" ]
10
1
1
[ "A030717", "A030723", "A030724", "A030725", "A030726", "A358423", "A358424", "A358425" ]
null
Seiichi Manyama, Nov 15 2022
2022-11-19T10:58:52
oeisdata/seq/A358/A358424.seq
acb39eecccef6b3be0ec581a3e44ad72
A358425
Numbers k such that A030717(k) = 7.
[ "25", "29", "31", "193", "250", "323", "361", "401", "402", "445", "490", "537", "587", "640", "696", "701", "756", "761", "818", "823", "883", "888", "952", "957", "1024", "1029", "1102", "1107", "1185", "1190", "1271", "1276", "1359", "1364", "1451", "1456", "1546", "1551", "1645", "1650", "1750", "1755", "1860", "1865", "1974", "1979", "2091", "2096", "2213", "2218", "2338" ]
[ "nonn" ]
10
1
1
[ "A030717", "A030723", "A030724", "A030725", "A030726", "A358423", "A358424", "A358425" ]
null
Seiichi Manyama, Nov 15 2022
2022-11-19T10:58:58
oeisdata/seq/A358/A358425.seq
bbdb0888bd8553ea78e2ef7eeba40824
A358426
a(n) is the least prime p such that (p^2 - 6)/5^n is prime.
[ "3", "11", "41", "359", "109", "13859", "67391", "276359", "10036141", "11057609", "511057609", "4528004891", "35817391", "194860036141", "154261057609", "1143030588859", "6669469411141", "35444788401359", "349076695973641", "982316442067391", "3805192418629891", "7047685094411141", "190153153844411141", "4915609391637379891" ]
[ "nonn" ]
8
0
1
[ "A358422", "A358426" ]
null
J. M. Bergot and Robert Israel, Nov 15 2022
2022-11-20T18:30:33
oeisdata/seq/A358/A358426.seq
9b83af7d2eb5ae41ef9f8ac13ca24da0
A358427
a(n) is the least prime p such that there are exactly n primes q with the same number of digits as p such that the concatenations p|q and q|p are prime, or 0 if there is no such p.
[ "2", "3", "13", "23", "19", "353", "157", "173", "101", "113", "137", "193", "181", "1831", "983", "1297", "2861", "1321", "1259", "1381", "1229", "1039", "1009", "1097", "1033", "1019", "1237", "1129", "1051", "1013", "1049", "1723", "1181", "1117", "1583", "1523", "1153", "1439" ]
[ "nonn", "base", "more" ]
8
0
1
[ "A358421", "A358427" ]
null
J. M. Bergot and Robert Israel, Nov 15 2022
2022-11-19T20:24:40
oeisdata/seq/A358/A358427.seq
61831cba4a876e23efccf130e0625731
A358428
Numbers k such that k^2 + 1, k^2 + 2 and k^2 + 3 are all squarefree.
[ "2", "6", "8", "10", "16", "20", "26", "28", "30", "34", "36", "42", "44", "46", "48", "52", "54", "56", "60", "62", "64", "66", "72", "74", "78", "80", "84", "88", "90", "92", "96", "98", "100", "106", "108", "114", "116", "120", "126", "128", "134", "136", "138", "142", "144", "146", "150", "152", "154", "156", "160", "162", "164", "170", "172", "174", "178", "180", "186", "188", "190", "192", "196", "198", "200" ]
[ "nonn" ]
11
1
1
[ "A335962", "A358428" ]
null
Michel Marcus, Nov 15 2022
2022-12-11T19:24:21
oeisdata/seq/A358/A358428.seq
f16b78815a8fc889777f6417744c94c1
A358429
Construct a square spiral: a(n) is the sum of all adjacent terms a(k) in the spiral for k < n; a(1) = 0, a(2) = 1.
[ "0", "1", "1", "2", "2", "4", "4", "9", "10", "11", "23", "25", "26", "54", "59", "63", "65", "134", "144", "152", "156", "321", "344", "374", "395", "406", "835", "894", "968", "1019", "1045", "2144", "2283", "2459", "2646", "2774", "2839", "5812", "6155", "6585", "7037", "7345", "7501", "15323", "16144", "17183", "18296", "19471", "20272" ]
[ "nonn" ]
17
1
4
[ "A094767", "A094769", "A141481", "A358429" ]
null
Abraham C Leventhal, Nov 15 2022
2022-12-06T09:24:25
oeisdata/seq/A358/A358429.seq
e79b6f2d4e8894152ebee8a20a015af3
A358430
Define sp(k,n) to be the sum of n^3 consecutive primes starting at prime(k). Then a(n) is the least number k such that sp(k,n) is a cube, or -1 if no such number exists.
[ "2704", "74", "734", "19189898", "26509715", "69713", "4521289", "2173287", "2785343", "228207824", "570319147", "5229039", "57210987" ]
[ "nonn", "more" ]
28
2
1
[ "A127335", "A357813", "A358156", "A358430" ]
null
Jean-Marc Rebert, Nov 15 2022
2022-12-21T22:09:40
oeisdata/seq/A358/A358430.seq
f5658abb63d44e16afc3e261a3126101
A358431
a(0) = 1; a(n+1) = 1 if a(n) > n, otherwise a(n+1) = a(n) + a(a(n)).
[ "1", "1", "2", "4", "1", "2", "4", "5", "7", "12", "1", "2", "4", "5", "7", "12", "16", "32", "1", "2", "4", "5", "7", "12", "16", "32", "1", "2", "4", "5", "7", "12", "16", "32", "48", "1", "2", "4", "5", "7", "12", "16", "32", "48", "1", "2", "4", "5", "7", "12", "16", "32", "48", "55", "1", "2", "4", "5", "7", "12", "16", "32", "48", "55", "57", "62", "110", "1", "2", "4", "5", "7", "12", "16", "32", "48", "55", "57", "62", "110" ]
[ "nonn" ]
13
0
3
[ "A062039", "A358431" ]
null
Aidan Clarke, Nov 15 2022
2023-01-02T17:32:07
oeisdata/seq/A358/A358431.seq
cfe03700b9693f630284038ed7e63455
A358432
Nonnegative integers m which can be represented using only 0's and 1's in the complex base 1+i, i.e., m = c(0) + c(1)*(1+i) + c(2)*(1+i)^2 + ... where each coefficient c(k) is either 0 or 1.
[ "0", "1", "6", "7", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "24", "25", "30", "31", "34", "35", "36", "37", "40", "41", "86", "87", "90", "91", "92", "93", "96", "97", "102", "103", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "120", "121", "126", "127", "130", "131", "132", "133", "136", "137", "150", "151" ]
[ "nonn" ]
26
1
3
[ "A290884", "A358432" ]
null
Eugen Ionascu, Nov 15 2022
2023-01-01T09:46:35
oeisdata/seq/A358/A358432.seq
760391cde1bd352b1c581a04b2c88929
A358433
Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with index k, n>=1, 1<=k<=n.
[ "2", "13", "3", "365", "105", "42", "43801", "12915", "6300", "2520", "21725297", "6412815", "3228960", "1562400", "624960", "43798198753", "12928608063", "6533019360", "3254791680", "1574899200", "629959680", "355991759464385", "105083758588095", "53109556520832", "26576858972160", "13227473387520", "6400390348800", "2560156139520" ]
[ "nonn", "tabl" ]
6
1
1
[ "A002416", "A083402", "A346214", "A348015", "A358433" ]
null
Geoffrey Critzer, Nov 15 2022
2022-11-16T14:54:08
oeisdata/seq/A358/A358433.seq
d6f556b348609698b6fb0628b41f2961
A358434
Number of odd middle divisors of n, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).
[ "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "2", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "0", "2", "0", "0", "0", "0", "1", "0", "1", "0", "0", "2", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "2", "0", "0", "0", "0", "0", "0", "1", "2", "0", "0", "0", "0", "1", "0" ]
[ "nonn" ]
55
1
15
[ "A001227", "A067742", "A071090", "A071562", "A299761", "A358434", "A361561" ]
null
Omar E. Pol, Mar 14 2023
2023-04-06T13:00:17
oeisdata/seq/A358/A358434.seq
0e02fe841f04a6664f39d13a28e00b3d
A358435
Row sums of the triangular array A357498.
[ "1", "4", "8", "16", "22", "36", "47", "68", "81", "105", "125", "155", "169", "220", "239", "300", "326", "365", "414", "475", "500", "572", "635", "705", "734", "830", "897", "966", "1009", "1151", "1195", "1318", "1373", "1490", "1566", "1672", "1734", "1903", "1971", "2107", "2221", "2390", "2461", "2580", "2689", "2887", "2963", "3176", "3276", "3450", "3580", "3789", "3868" ]
[ "nonn" ]
18
1
2
[ "A007952", "A357498", "A358435" ]
null
Tamas Sandor Nagy, Nov 16 2022
2022-12-01T08:58:06
oeisdata/seq/A358/A358435.seq
29e6504865eedd62246b1d0dce111d83
A358436
a(n) = Sum_{j=0..n} C(n)*C(n-j), where C(n) is the n-th Catalan number.
[ "1", "2", "8", "45", "322", "2730", "26004", "268554", "2940080", "33635316", "398300344", "4849845000", "60429982144", "767721774800", "9916427702880", "129937069996965", "1724052965464890", "23129299114182030", "313351935000465900", "4282621342230699930", "58994556159403576140", "818487022124443918740" ]
[ "nonn" ]
7
0
2
[ "A000108", "A358436", "A358437" ]
null
Peter Luschny, Nov 16 2022
2022-11-16T09:44:41
oeisdata/seq/A358/A358436.seq
26a600bb3ec3b37cc657b6bc5257c100
A358437
a(n) = Sum_{j=0..n} binomial(n, j)*C(n)*C(n-j), where C(n) is the n-th Catalan number.
[ "1", "2", "10", "75", "714", "7896", "96492", "1265550", "17496050", "251958564", "3748716036", "57282665622", "895001791740", "14249639190000", "230568513719400", "3783394404776475", "62848104088770450", "1055378592304360500", "17894108081334292500", "306026774743629058350", "5274529871824080624900" ]
[ "nonn" ]
12
0
2
[ "A000108", "A358436", "A358437" ]
null
Peter Luschny, Nov 16 2022
2024-02-19T04:35:33
oeisdata/seq/A358/A358437.seq
6c10783a8f33da91ace576265c034468
A358438
a(1) = 4, a(2) = 6; then a(n + 1) is the smallest semiprime number > a(n) such that the sum of any three consecutive terms is a semiprime.
[ "4", "6", "15", "25", "34", "35", "46", "62", "69", "74", "94", "106", "119", "121", "122", "134", "142", "146", "158", "169", "178", "206", "213", "214", "235", "249", "253", "265", "267", "299", "303", "319", "321", "334", "382", "395", "422", "445", "446", "454", "466", "469", "482", "514", "517", "538", "586", "589", "591", "623", "629" ]
[ "nonn" ]
25
1
1
[ "A001358", "A062391", "A358438" ]
null
Zak Seidov, Nov 17 2022
2022-12-17T05:56:19
oeisdata/seq/A358/A358438.seq
8246a0b672d8573ca2ec519dae1f5f64
A358439
Number of even digits necessary to write all positive n-digit integers.
[ "4", "85", "1300", "17500", "220000", "2650000", "31000000", "355000000", "4000000000", "44500000000", "490000000000", "5350000000000", "58000000000000", "625000000000000", "6700000000000000", "71500000000000000", "760000000000000000", "8050000000000000000", "85000000000000000000", "895000000000000000000" ]
[ "nonn", "base", "easy" ]
37
1
1
[ "A064532", "A081045", "A113119", "A196563", "A212704", "A358439", "A358854", "A359271" ]
null
Bernard Schott, Nov 16 2022
2024-03-31T17:11:04
oeisdata/seq/A358/A358439.seq
e8dfbff6356d1ac5776f739b96aa96f8
A358440
a(n) is the largest prime that divides any two successive terms of the sequence b(m) = m^2 + n with m >= 1.
[ "5", "3", "13", "17", "7", "5", "29", "11", "37", "41", "5", "7", "53", "19", "61", "13", "23", "73", "11", "3", "17", "89", "31", "97", "101", "7", "109", "113", "13", "11", "5", "43", "19", "137", "47", "29", "149", "17", "157", "23", "11", "13", "173", "59", "181", "37", "7", "193", "197", "67", "41", "19", "71", "31", "17", "5", "229", "233", "79", "241" ]
[ "nonn" ]
18
1
1
[ "A051541", "A117950", "A358440" ]
null
Bernard Schott, Nov 16 2022
2022-11-17T05:11:09
oeisdata/seq/A358/A358440.seq
433c04057341ac0a9f57b80333e78cea
A358441
Indices of records in A266798.
[ "0", "1", "11", "111", "112", "123", "1111", "1213", "1267", "1478", "7283", "7328", "11111", "76548", "105672", "105836", "111111", "1111111", "11111111", "911111111", "9911111111" ]
[ "nonn", "base", "fini", "more" ]
21
1
3
[ "A266798", "A358441", "A358442" ]
null
Charles R Greathouse IV and David A. Corneth, Nov 16 2022
2022-11-29T01:31:20
oeisdata/seq/A358/A358441.seq
a84dcd13e55ac1c18f1eec13fee4264d
A358442
Records in A266798.
[ "10", "100", "1000", "7079", "7179", "10000", "60679", "61168", "61447", "76668", "80037", "100000", "505679", "580500", "920007", "930033", "4045679", "30345679", "202345679", "212345678", "302345678" ]
[ "nonn", "base", "fini", "more" ]
23
1
1
[ "A266798", "A358441", "A358442" ]
null
Charles R Greathouse IV and David A. Corneth, Nov 16 2022
2022-11-29T01:31:25
oeisdata/seq/A358/A358442.seq
525b64ab1957fd1eb4b5871246c211df
A358443
a(1) = 1. After each newly determined a(n-1), cross out every n-th number in the line of the positive integers. a(n) will be the smallest unused number that has not been crossed out.
[ "1", "2", "4", "6", "10", "18", "30", "42", "90", "138", "162" ]
[ "nonn", "fini", "full" ]
43
1
2
null
null
Tamas Sandor Nagy and Thomas Scheuerle, Nov 16 2022
2023-04-16T02:35:27
oeisdata/seq/A358/A358443.seq
d2b3faf5d1e50711dcb1df025b827d87
A358444
a(1) = 1, a(2) = 2; for n > 2, a(n) = smallest positive number which has not appeared that has a common factor with a(n-2)^2 + a(n-1)^2.
[ "1", "2", "5", "29", "4", "857", "10", "734549", "539562233501", "6", "12433", "15", "8", "17", "353", "12", "124753", "13", "14", "20", "16", "18", "22", "24", "25", "1201", "26", "41", "2357", "28", "5556233", "37", "30", "2269", "39", "32", "35", "52", "3929", "40", "15438641", "82", "45", "65", "34", "5381", "78", "50", "36", "38", "42", "44", "46", "48", "51", "3", "9", "21", "27", "33", "54", "55", "91" ]
[ "nonn" ]
17
1
2
[ "A098550", "A336957", "A337136", "A347594", "A358444" ]
null
Scott R. Shannon, Nov 16 2022
2022-11-17T16:54:21
oeisdata/seq/A358/A358444.seq
d32f6e354b2c5a6c4e21f5fbf0b08143
A358445
Euler's 4 X 4 magic square of squares.
[ "4624", "841", "1681", "1369", "289", "961", "6241", "1024", "3481", "784", "529", "3721", "121", "5929", "64", "2401" ]
[ "nonn", "fini", "full" ]
52
1
1
[ "A271580", "A358445" ]
null
Robert C. Lyons, Dec 30 2022
2024-02-12T08:39:21
oeisdata/seq/A358/A358445.seq
3ec88aa8ceed6ffa07ca517ad59dc307
A358446
a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k).
[ "1", "1", "4", "9", "56", "190", "1704", "7644", "93120", "516240", "8136000", "53523360", "1047548160", "7961241600", "187132377600", "1611967392000", "44311886438400", "426483893606400", "13428757601280000", "142790947407360000", "5066854992138240000", "58981696577556480000", "2328441680297779200000" ]
[ "nonn" ]
26
0
3
[ "A003149", "A143216", "A344391", "A358446" ]
null
Vladimir Kruchinin, Nov 16 2022
2022-11-17T07:59:57
oeisdata/seq/A358/A358446.seq
ba799b955ef427604b233c84d0cfb10a
A358447
Numbers k such that there exist primes p, q, r, s with k = p + q = r + s = p*q - r*s.
[ "16", "24", "96", "120", "240", "264", "504", "744", "840", "1080", "1104", "1416", "1440", "1680", "2256", "2280", "2520", "2760", "2856", "3120", "3264", "3456", "3576", "3696", "3864", "3960", "4296", "4440", "4536", "4584", "4800", "5040", "5496", "5640", "5880", "6720", "6960", "7224", "7800", "8280", "8904", "8976", "9240", "9480", "9984", "10080", "10296", "10656", "10824", "10920" ]
[ "nonn" ]
9
1
1
null
null
J. M. Bergot and Robert Israel, Nov 17 2022
2022-11-20T11:08:00
oeisdata/seq/A358/A358447.seq
0c50fb4491ce8bbb99919b032afbdf28
A358448
Indices of record values of A036450(n) = d(d(d(n))).
[ "1", "2", "12", "60", "5040", "3603600", "908107200", "15437822400", "293318625600", "267154604196480000", "4935147003321575040000", "1963886355464640647040000", "74963506074440798138163840000", "65039484811827775408882461490752000000", "3415186532666352810621130006203072000000" ]
[ "nonn" ]
5
1
2
[ "A002182", "A007416", "A036450", "A358448" ]
null
Charles R Greathouse IV, Nov 17 2022
2022-11-17T10:02:42
oeisdata/seq/A358/A358448.seq
12a3b395d6a58acbedbe79aacc716e38
A358449
Euler transform of (0, 1, -2, 4, -8, 16, ...), (cf. A122803).
[ "1", "1", "-1", "3", "-4", "4", "-2", "2", "2", "-26", "80", "-168", "351", "-749", "1485", "-2779", "5134", "-9314", "16318", "-27522", "44596", "-68484", "96148", "-113172", "77125", "122309", "-750801", "2411307", "-6424162", "15607886", "-35846784", "79201548", "-170009469", "356687423", "-734287141", "1487086199", "-2967980133" ]
[ "sign" ]
10
0
4
[ "A034691", "A122803", "A358449" ]
null
Peter Luschny, Nov 17 2022
2022-11-18T09:55:08
oeisdata/seq/A358/A358449.seq
c9509c8d501ab3f343a606bf8a3f28d5
A358450
Decimal expansion of 2*EllipticK(i) - EllipticE(i), reciprocal of A088375.
[ "7", "1", "1", "9", "5", "8", "6", "5", "9", "7", "7", "8", "2", "6", "3", "8", "0", "1", "5", "1", "2", "4", "5", "8", "5", "4", "8", "8", "0", "5", "3", "9", "7", "7", "6", "7", "7", "2", "7", "7", "7", "1", "1", "4", "4", "1", "0", "7", "9", "8", "5", "8", "0", "2", "2", "7", "6", "5", "7", "3", "3", "7", "5", "4", "2", "7", "1", "9", "2", "6", "8", "6", "4", "6", "3", "2", "4", "9", "2", "8", "9", "6", "9", "7", "2", "0" ]
[ "nonn", "cons" ]
13
0
1
[ "A088375", "A358450" ]
null
Peter Luschny, Nov 19 2022
2025-02-04T22:35:06
oeisdata/seq/A358/A358450.seq
3e151ee25496409f78527731e249b812
A358451
Inverse Euler transform of the Riordan numbers, (A005043).
[ "1", "0", "1", "1", "2", "5", "11", "28", "68", "174", "445", "1166", "3068", "8190", "21994", "59585", "162360", "445145", "1226376", "3394654", "9434260", "26317865", "73661588", "206809307", "582255448", "1643536725", "4650250254", "13186484316", "37468566744", "106666821221", "304200399505", "868977304140", "2486163857424" ]
[ "nonn" ]
9
0
5
[ "A005043", "A358451" ]
null
Peter Luschny, Nov 20 2022
2024-06-15T05:55:57
oeisdata/seq/A358/A358451.seq
d2f98ee9a075d0b91b4840b43937478b
A358452
The inverse Euler transform of p(n) = n if n is prime, otherwise 1.
[ "1", "1", "1", "1", "-3", "3", "-3", "5", "-8", "5", "-11", "36", "-45", "41", "-72", "142", "-223", "311", "-493", "851", "-1243", "1823", "-3204", "5336", "-7906", "12083", "-20134", "33133", "-51685", "81568", "-133556", "215363", "-340155", "547916", "-895895", "1442323", "-2300704", "3718260", "-6056908", "9787064", "-15755664", "25541623" ]
[ "sign" ]
6
0
5
[ "A089026", "A219224", "A358452" ]
null
Peter Luschny, Nov 21 2022
2022-11-21T12:31:19
oeisdata/seq/A358/A358452.seq
99a7847a5e9dd108636ccf80266e4415
A358453
Number of transitive ordered rooted trees with n nodes.
[ "1", "1", "1", "2", "4", "8", "17", "37", "83", "190", "444", "1051", "2518", "6090", "14852" ]
[ "nonn", "more" ]
9
1
4
[ "A000081", "A290689", "A290822", "A306844", "A318185", "A324695", "A324751", "A324756", "A324758", "A324764", "A324768", "A324838", "A324840", "A324844", "A358453", "A358454", "A358456", "A358457", "A358458" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T21:53:07
oeisdata/seq/A358/A358453.seq
fad0e73b327b0b8755e85b2f1f8fd97e
A358454
Number of weakly transitive ordered rooted trees with n nodes.
[ "1", "1", "1", "3", "6", "13", "33", "80", "201", "509", "1330", "3432", "8982", "23559", "62189" ]
[ "nonn", "more" ]
5
1
4
[ "A000081", "A290689", "A290822", "A306844", "A318185", "A324695", "A324751", "A324756", "A324758", "A324764", "A324768", "A324838", "A324840", "A324844", "A358453", "A358454", "A358456" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T21:53:11
oeisdata/seq/A358/A358454.seq
976d83045d40ca7513e3c8c5d1a906e4
A358455
Number of recursively anti-transitive ordered rooted trees with n nodes.
[ "1", "1", "2", "4", "10", "26", "72", "206", "608", "1830", "5612", "17442", "54866", "174252", "558072", "1800098" ]
[ "nonn", "more" ]
7
1
3
[ "A000081", "A000108", "A290689", "A306844", "A318185", "A324695", "A324751", "A324756", "A324758", "A324764", "A324765", "A324766", "A324767", "A324768", "A324838", "A324840", "A324844", "A358453", "A358455", "A358456" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T21:53:03
oeisdata/seq/A358/A358455.seq
74b055f38f79a4bc4fceca8ee59d65c1
A358456
Number of recursively bi-anti-transitive ordered rooted trees with n nodes.
[ "1", "1", "2", "3", "7", "17", "47", "117", "321", "895", "2556", "7331", "21435", "63116", "187530" ]
[ "nonn", "more" ]
5
1
3
[ "A000081", "A000108", "A290689", "A306844", "A318185", "A324695", "A324751", "A324756", "A324758", "A324764", "A324765", "A324766", "A324767", "A324768", "A324838", "A324840", "A324844", "A358453", "A358455", "A358456" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T23:37:01
oeisdata/seq/A358/A358456.seq
3224e0f9d50b7cbffcf7be25ae6cf5cf
A358457
Numbers k such that the k-th standard ordered rooted tree is transitive (counted by A358453).
[ "1", "2", "4", "7", "8", "14", "15", "16", "25", "27", "28", "30", "31", "32", "50", "53", "54", "55", "56", "57", "59", "60", "62", "63", "64", "99", "100", "105", "106", "107", "108", "109", "110", "111", "112", "114", "117", "118", "119", "120", "121", "123", "124", "126", "127", "128", "198", "199", "200", "210", "211", "212", "213", "214", "215", "216", "217", "218" ]
[ "nonn" ]
7
1
2
[ "A000081", "A000108", "A004249", "A032027", "A290689", "A290822", "A306844", "A318185", "A324695", "A324758", "A324765", "A324766", "A324840", "A358373", "A358377", "A358453", "A358454", "A358455", "A358456", "A358457", "A358458" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T23:36:56
oeisdata/seq/A358/A358457.seq
3f78a5312e8ce4a64a1b3e65313fdfa2
A358458
Numbers k such that the k-th standard ordered rooted tree is weakly transitive (counted by A358454).
[ "1", "2", "4", "6", "7", "8", "12", "14", "15", "16", "18", "22", "23", "24", "25", "27", "28", "30", "31", "32", "36", "38", "39", "42", "44", "45", "46", "47", "48", "50", "51", "53", "54", "55", "56", "57", "59", "60", "62", "63", "64", "70", "71", "72", "76", "78", "79", "82", "84", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "99", "100", "102", "103", "105" ]
[ "nonn" ]
5
1
2
[ "A000081", "A000108", "A004249", "A032027", "A290689", "A290822", "A306844", "A318185", "A324695", "A324758", "A324765", "A324766", "A324840", "A358373", "A358377", "A358453", "A358454", "A358455", "A358456", "A358457", "A358458" ]
null
Gus Wiseman, Nov 18 2022
2022-11-18T23:36:40
oeisdata/seq/A358/A358458.seq
54ea6ec975d02b9328b524b7091c11c7
A358459
Numbers k such that the k-th standard ordered rooted tree is balanced (counted by A007059).
[ "1", "2", "3", "4", "5", "8", "9", "11", "16", "17", "32", "35", "37", "41", "43", "64", "128", "129", "137", "139", "163", "169", "171", "256", "257", "293", "512", "515", "529", "547", "553", "555", "641", "649", "651", "675", "681", "683", "1024", "1025", "2048", "2053", "2057", "2059", "2177", "2185", "2187", "2211", "2217", "2219", "2305", "2341", "2563" ]
[ "nonn" ]
6
1
2
[ "A000081", "A000108", "A003238", "A004249", "A007059", "A032027", "A048816", "A184155", "A244925", "A290822", "A318185", "A358373", "A358378", "A358379", "A358459" ]
null
Gus Wiseman, Nov 19 2022
2022-11-19T08:56:49
oeisdata/seq/A358/A358459.seq
d77f89ca5f469fecbc2b3b9b304c6267
A358460
Number of locally disjoint ordered rooted trees with n nodes.
[ "1", "1", "2", "5", "13", "36", "103", "301", "902", "2767", "8637", "27324", "87409", "282319", "919352" ]
[ "nonn", "more" ]
7
1
3
[ "A000081", "A000108", "A006013", "A007562", "A143363", "A290689", "A302696", "A316471", "A316473", "A316495", "A316694", "A318185", "A319378", "A324768", "A324844", "A358453", "A358460" ]
null
Gus Wiseman, Nov 19 2022
2022-11-19T08:57:07
oeisdata/seq/A358/A358460.seq
5359bb7bfc0d7bec7af8624662b1b181
A358461
Number of near-rings with identity of order n, up to isomorphism.
[ "1", "1", "6", "1", "1", "1", "53", "11", "1", "1", "11", "1", "1", "1", "4274", "1", "26", "1" ]
[ "nonn", "more" ]
48
2
3
[ "A037221", "A305858", "A358461" ]
null
Choiwah Chow, Dec 17 2022
2023-01-09T06:54:04
oeisdata/seq/A358/A358461.seq
636295378802a78bae0a425cdc1719f1
A358462
a(1) = 1, a(2) = -1; for n > 2, a(n) is smallest magnitude nonzero integer which has not appeared such that the quadratic equation a(n-2)*x^2 + a(n-1)*x + a(n) = 0 has at least one integer root.
[ "1", "-1", "-2", "3", "2", "-5", "-3", "8", "-4", "-12", "-8", "4", "12", "-16", "-28", "44", "24", "-20", "-44", "-24", "20", "56", "32", "-88", "48", "40", "-112", "64", "176", "-48", "-128", "-64", "192", "256", "-256", "-512", "768", "512", "-1280", "-768", "2048", "-1024", "-3072", "-2048", "1024", "3072", "-4096", "-7168", "11264", "6144", "-5120", "-11264", "-6144", "5120", "14336", "8192" ]
[ "sign" ]
14
1
3
[ "A000058", "A000290", "A001622", "A002378", "A348139", "A358462" ]
null
Scott R. Shannon, Nov 17 2022
2023-01-08T13:01:59
oeisdata/seq/A358/A358462.seq
257c84920b11ff2af1ad52f49e0e7c16
A358463
a(n) is the first average of a twin prime pair that is the sum of two distinct averages of twin prime pairs in exactly n ways.
[ "4", "18", "72", "180", "240", "462", "420", "1062", "660", "1290", "2142", "2130", "2550", "2340", "3822", "6762", "2310", "3540", "4788", "6300", "6360", "5880", "5280", "6270", "7350", "8010", "5850", "15330", "9240", "10890", "13398", "7590", "28548", "19992", "11970", "22542", "23688", "11550", "19140", "20748", "27060", "18060", "36930", "25170", "40152", "29400", "27690", "25410" ]
[ "nonn" ]
8
0
1
[ "A014574", "A358463" ]
null
J. M. Bergot and Robert Israel, Nov 17 2022
2022-11-20T11:07:55
oeisdata/seq/A358/A358463.seq
46a73a18c3cb8afa96e34c139828db26
A358464
a(n) is the greatest m such that Sum_{k = 1..m} 1/(1 + n*k) <= 1.
[ "2", "6", "16", "42", "110", "288", "761", "2020", "5388", "14417", "38681", "103994", "280032", "755031", "2037848", "5504884", "14880978", "40250609", "108926101", "294902398", "798703663", "2163878141" ]
[ "nonn", "more" ]
39
1
1
[ "A002387", "A025169", "A064169", "A358464" ]
null
Thomas Scheuerle, Nov 18 2022
2024-04-05T10:06:41
oeisdata/seq/A358/A358464.seq
03c2e3e7da641fbbf93c003efe6d27ea
A358465
Least area (doubled) of a triangle enclosing a circle of radius n such that the center of the circle and the vertices of the triangle all have integer coordinates.
[ "12", "45", "96", "168", "269", "380", "520", "670", "861", "1044", "1274", "1508", "1760", "2050", "2340", "2680", "3016", "3383", "3762", "4176", "4588", "5052", "5511", "6000", "6512", "7040", "7584", "8160", "8758", "9360", "10010", "10659", "11352", "12036", "12753", "13482", "14238", "15032", "15812", "16640", "17500", "18352", "19240", "20153", "21060" ]
[ "nonn" ]
28
1
1
[ "A357577", "A358465" ]
null
Gerhard Kirchner, Nov 18 2022
2024-03-02T12:34:55
oeisdata/seq/A358/A358465.seq
9a607d02e2db5d2437d5bec44c5b8813
A358466
Number of 1's that appeared by n-th step when constructing A030717.
[ "1", "2", "2", "3", "3", "4", "4", "5", "6", "7", "8", "8", "8", "10", "14", "17", "23", "30", "38", "49", "62", "77", "94", "110", "129", "149", "172", "195", "218", "241", "266", "293", "323", "356", "389", "424", "461", "500", "545", "593", "641", "688", "737", "787", "839", "896", "957", "1021", "1085", "1152", "1219", "1291", "1368", "1447", "1527", "1611", "1697", "1788", "1879", "1974", "2074", "2181", "2290", "2401", "2519" ]
[ "nonn" ]
18
1
2
[ "A030717", "A030723", "A358466", "A358467", "A358468" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T10:13:45
oeisdata/seq/A358/A358466.seq
6105d34a6ec5152b9827c01d23670a9b
A358467
Number of 1's that appeared in the n-th step when constructing A030717.
[ "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "2", "4", "3", "6", "7", "8", "11", "13", "15", "17", "16", "19", "20", "23", "23", "23", "23", "25", "27", "30", "33", "33", "35", "37", "39", "45", "48", "48", "47", "49", "50", "52", "57", "61", "64", "64", "67", "67", "72", "77", "79", "80", "84", "86", "91", "91", "95", "100", "107", "109", "111", "118", "123", "127", "134", "138", "143", "148", "153", "158", "165", "171", "176", "179", "184", "187", "192", "195" ]
[ "nonn" ]
16
1
14
[ "A030717", "A358466", "A358467", "A358469" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T10:13:41
oeisdata/seq/A358/A358467.seq
c4039b0431ecc1d51071bcc254f72591
A358468
Number of 2's that appeared by n-th step when constructing A030717.
[ "0", "0", "1", "2", "3", "3", "3", "3", "4", "6", "8", "9", "10", "11", "12", "14", "16", "19", "23", "26", "27", "29", "32", "38", "43", "48", "51", "56", "63", "71", "79", "87", "94", "101", "109", "116", "125", "133", "140", "149", "161", "174", "188", "202", "217", "233", "250", "266", "284", "304", "326", "347", "369", "392", "418", "444", "471", "499", "530", "561", "593", "625", "658", "692", "726", "761", "797", "833", "869", "906", "944" ]
[ "nonn" ]
13
1
4
[ "A030717", "A358466", "A358468", "A358469" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T10:13:49
oeisdata/seq/A358/A358468.seq
8c74f085556138afbba612b39d1e835c
A358469
Number of 2's that appeared in the n-th step when constructing A030717.
[ "0", "0", "1", "1", "1", "0", "0", "0", "1", "2", "2", "1", "1", "1", "1", "2", "2", "3", "4", "3", "1", "2", "3", "6", "5", "5", "3", "5", "7", "8", "8", "8", "7", "7", "8", "7", "9", "8", "7", "9", "12", "13", "14", "14", "15", "16", "17", "16", "18", "20", "22", "21", "22", "23", "26", "26", "27", "28", "31", "31", "32", "32", "33", "34", "34", "35", "36", "36", "36", "37", "38", "37", "38", "38", "38", "39", "41", "42", "44", "45", "47", "47", "48", "49", "49", "49", "51", "53", "56", "56", "58", "60", "61", "62", "65" ]
[ "nonn" ]
11
1
10
[ "A030717", "A358467", "A358468", "A358469" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T10:13:53
oeisdata/seq/A358/A358469.seq
fc9aa2da6f8446ce385d5aee321c8725
A358470
Number of 3's that appeared by n-th step when constructing A030717.
[ "0", "0", "0", "0", "1", "3", "5", "6", "7", "7", "8", "11", "15", "18", "20", "23", "25", "27", "29", "31", "35", "39", "42", "45", "48", "51", "56", "61", "64", "67", "70", "73", "75", "78", "82", "88", "94", "101", "109", "117", "124", "133", "143", "155", "168", "181", "193", "207", "222", "237", "253", "269", "285", "302", "319", "337", "356", "375", "393", "412", "431", "450", "470", "491", "512", "533", "553", "573", "594", "615", "636", "657", "678" ]
[ "nonn" ]
15
1
6
[ "A030717", "A358466", "A358468", "A358470", "A358472", "A358473", "A358474", "A358475", "A358476" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:26
oeisdata/seq/A358/A358470.seq
f0ea011f79017cea5f81723a4de8343a
A358471
a(n) is the number of transitive generalized signotopes.
[ "2", "14", "424", "58264", "33398288", "68779723376" ]
[ "nonn", "more" ]
23
3
1
[ "A006247", "A328377", "A358471" ]
null
Robert Lauff, Nov 18 2022
2022-12-25T20:25:28
oeisdata/seq/A358/A358471.seq
ca321c0bb734cb9df3df48d189058572
A358472
Number of 4's that appeared by n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "1", "2", "2", "3", "3", "3", "3", "4", "5", "5", "5", "5", "5", "6", "6", "6", "7", "8", "9", "11", "12", "12", "14", "16", "18", "21", "26", "31", "35", "38", "40", "43", "46", "49", "53", "57", "61", "65", "69", "73", "78", "83", "88", "93", "98", "104", "110", "116", "122", "128", "134", "140", "147", "154", "161", "168", "175", "182", "189", "196", "204", "212", "220", "228", "236", "245", "254", "263", "271", "279", "287", "295", "303", "311" ]
[ "nonn" ]
6
1
8
[ "A030717", "A358466", "A358468", "A358470", "A358472", "A358473", "A358474", "A358475", "A358477" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:22
oeisdata/seq/A358/A358472.seq
b6693fa65da6b5fdf33c1f500765d5fe
A358473
Number of 5's that appeared by n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "1", "2", "2", "2", "2", "2", "2", "3", "5", "8", "10", "11", "12", "13", "13", "13", "13", "14", "15", "16", "17", "18", "20", "23", "25", "26", "27", "28", "30", "33", "36", "39", "42", "45", "48", "51", "54", "57", "60", "63", "66", "69", "72", "75", "78", "81", "84", "87", "90", "93", "96", "99", "102", "105", "108", "111", "114", "117", "120", "123", "126", "129", "132", "135", "138", "141", "144", "148", "152", "156", "160", "164", "168", "172" ]
[ "nonn" ]
6
1
9
[ "A030717", "A358466", "A358468", "A358470", "A358472", "A358473", "A358474", "A358475", "A358478" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:18
oeisdata/seq/A358/A358473.seq
52f11b3322af2dc51c1fe0105b70dc83
A358474
Number of 6's that appeared by n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "0", "1", "2", "3", "3", "3", "3", "3", "3", "3", "3", "4", "5", "7", "9", "11", "12", "13", "13", "14", "15", "16", "17", "18", "20", "23", "25", "28", "31", "34", "37", "40", "43", "46", "49", "52", "55", "58", "61", "64", "67", "70", "73", "76", "79", "82", "85", "88", "91", "94", "97", "100", "103", "106", "109", "112", "115", "118", "121", "124", "127", "130", "133", "136", "139", "142", "145", "148", "151", "154", "157", "160", "163", "166", "169" ]
[ "nonn" ]
6
1
10
[ "A030717", "A358466", "A358468", "A358470", "A358472", "A358473", "A358474", "A358475", "A358479" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:13
oeisdata/seq/A358/A358474.seq
f776ebe59d930bab5c583a86b8a9d33e
A358475
Number of 7's that appeared by n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "4", "4", "5", "5", "6", "7", "9", "10", "11", "12", "13", "14", "16", "18", "20", "22", "24", "26", "28", "30", "32", "34", "36", "38", "40", "42", "44", "46", "48", "50", "52", "54", "56", "58", "60", "62", "64", "66", "68", "70", "72", "74", "76", "78", "80", "82", "84", "86", "88", "90", "92", "94", "96", "98", "100", "102", "104", "106", "108", "110", "112", "114", "116", "118", "120", "122", "124" ]
[ "nonn" ]
7
1
11
[ "A030717", "A358466", "A358468", "A358470", "A358472", "A358473", "A358474", "A358475", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:08
oeisdata/seq/A358/A358475.seq
28b1895b699becfd1eac02dddb26888c
A358476
Number of 3's that appeared in the n-th step when constructing A030717.
[ "0", "0", "0", "0", "1", "2", "2", "1", "1", "0", "1", "3", "4", "3", "2", "3", "2", "2", "2", "2", "4", "4", "3", "3", "3", "3", "5", "5", "3", "3", "3", "3", "2", "3", "4", "6", "6", "7", "8", "8", "7", "9", "10", "12", "13", "13", "12", "14", "15", "15", "16", "16", "16", "17", "17", "18", "19", "19", "18", "19", "19", "19", "20", "21", "21", "21", "20", "20", "21", "21", "21", "21", "21", "21", "21", "21", "21", "21", "21", "21", "21", "22", "23", "23", "24", "25", "25", "25", "25", "26", "26", "26", "27", "27", "27", "27" ]
[ "nonn" ]
8
1
6
[ "A030717", "A030725", "A358467", "A358469", "A358476", "A358477", "A358478", "A358479", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:29:46
oeisdata/seq/A358/A358476.seq
b005365385e7c813c44a7a2ebf8bef06
A358477
Number of 4's that appeared in the n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1", "1", "2", "1", "0", "2", "2", "2", "3", "5", "5", "4", "3", "2", "3", "3", "3", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "7", "7", "7", "8", "8", "8", "8", "8", "9", "9", "9", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "10", "10", "10", "10", "10", "10" ]
[ "nonn" ]
8
1
26
[ "A030717", "A030726", "A358467", "A358469", "A358476", "A358477", "A358478", "A358479", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:29:52
oeisdata/seq/A358/A358477.seq
40d490a309d34c4fab22d5f102678503
A358478
Number of 5's that appeared in the n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "2", "3", "2", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "2", "3", "2", "1", "1", "1", "2", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4" ]
[ "nonn" ]
8
1
16
[ "A030717", "A358423", "A358467", "A358469", "A358476", "A358477", "A358478", "A358479", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:29:56
oeisdata/seq/A358/A358478.seq
33c3d5f9ff9501f5982046f61e71dadd
A358479
Number of 6's that appeared in the n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "2", "2", "2", "1", "1", "0", "1", "1", "1", "1", "1", "2", "3", "2", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3" ]
[ "nonn" ]
8
1
21
[ "A030717", "A358424", "A358467", "A358469", "A358476", "A358477", "A358478", "A358479", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:00
oeisdata/seq/A358/A358479.seq
b5737fb0a39cf0d7024a8a50e4b9baa2
A358480
Number of 7's that appeared in the n-th step when constructing A030717.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "2", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "2", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2" ]
[ "nonn" ]
8
1
11
[ "A030717", "A358425", "A358467", "A358469", "A358476", "A358477", "A358478", "A358479", "A358480" ]
null
Seiichi Manyama, Nov 18 2022
2022-11-18T12:30:04
oeisdata/seq/A358/A358480.seq
993b29b0283a86fb156f4b69a4bec9f4
A358481
a(n) is the number of different pairs of shortest grid paths joining two opposite corners in opposite order in an n X n X n grid without having middle point on their paths as a common point.
[ "30", "6218", "2658432", "1054788750", "552306591900", "269380692717696", "155175092086118400", "83798883891736779150", "50885239237727996887500", "29198209396114625497699068", "18332853214682572877389897728", "10951674446687597386319569942656", "7036938452279110885561897815723264", "4325988198220149508865311059521280000" ]
[ "nonn" ]
8
1
1
[ "A268553", "A357760", "A358481" ]
null
Janaka Rodrigo, Nov 18 2022
2022-12-21T12:03:07
oeisdata/seq/A358/A358481.seq
9c153dfdc7b176a98d39aa4013fa6637
A358482
a(n) is the first prime p such that, if q is the next prime, (p*q+p+q)/5^n is a prime.
[ "2", "7", "1847", "90793", "139313", "1790293", "3834043", "5521543", "24996487", "2062865293", "5555052793", "12111965183", "95460776921", "6045070151921", "10204150316653", "70501997496487", "442748358250633", "368313674465183", "2935956099058987", "10360552690003447", "120999670013476223", "1820610211470152737" ]
[ "nonn" ]
63
0
1
[ "A000351", "A002386", "A126148", "A358482" ]
null
Robert Israel, Dec 25 2022
2022-12-30T06:32:40
oeisdata/seq/A358/A358482.seq
cb1673aaa8151f5f168538bc477f1150
A358483
Numbers k such that k, k+1 and k+2 are all infinitary abundant numbers (A129656).
[ "2666847104", "2695309694", "8207456894", "8967010688", "12147283070", "12491149670", "13911605630", "14126720894", "17238119624", "17238704768", "18420223094", "20922243110", "21786026624", "25118874494", "26079705728", "26979164288", "27257009624", "30000503168", "30478990904", "30832299134", "32892108248" ]
[ "nonn" ]
11
1
1
[ "A049417", "A096536", "A129656", "A327635", "A358483" ]
null
Amiram Eldar, Nov 18 2022
2022-11-19T04:33:26
oeisdata/seq/A358/A358483.seq
00d50e511a59032136001655fbb88c48
A358484
Numbers k such that k, k+1 and k+2 are all bi-unitary abundant numbers (A292982).
[ "268005374", "600350750", "2666847104", "2683146464", "2695309694", "2849458688", "3904592768", "4112553248", "5368737374", "6554410784", "6955574624", "8207456894", "8967010688", "9220179968", "9868366430", "10529171288", "12147283070", "12411630944", "12491149670", "13911605630", "14126720894", "14396391008" ]
[ "nonn" ]
10
1
1
[ "A096536", "A188999", "A292982", "A318167", "A358484" ]
null
Amiram Eldar, Nov 18 2022
2022-11-19T04:47:49
oeisdata/seq/A358/A358484.seq
841be021903279c4029bda9d73c75fed
A358485
a(n) is the maximal determinant of an n X n matrix using the integers 0 to n^2 - 1.
[ "1", "0", "6", "332", "36000", "6313388", "1765146660", "731664377274" ]
[ "nonn", "hard", "more" ]
14
0
3
[ "A085000", "A358485", "A358486", "A358487" ]
null
Stefano Spezia, Nov 18 2022
2022-11-21T09:38:14
oeisdata/seq/A358/A358485.seq
bcce6e0d17db86d458d64bb1a8d9a0ca
A358486
a(n) is the minimal permanent of an n X n matrix using the integers 0 to n^2 - 1.
[ "1", "0", "2", "128", "18948", "40179728", "2863042492" ]
[ "nonn", "hard", "more" ]
7
0
3
[ "A350565", "A358486", "A358487" ]
null
Stefano Spezia, Nov 18 2022
2022-11-19T20:28:10
oeisdata/seq/A358/A358486.seq
37e2b862d55449ffaf907392560ea987
A358487
a(n) is the maximal permanent of an n X n matrix using the integers 0 to n^2 - 1.
[ "1", "0", "6", "553", "107140", "40179728", "27312009708" ]
[ "nonn", "hard", "more" ]
7
0
3
[ "A350566", "A358486", "A358487" ]
null
Stefano Spezia, Nov 18 2022
2022-11-19T20:28:18
oeisdata/seq/A358/A358487.seq
9d2e3e3443afb8d27045593b38ab3354
A358488
a(1) = 1, a(2) = 2. Thereafter a(n) is least novel m satisfying: 1. If i = a(n-2) and j = a(n-1) are closed, choose m closed to i and open to j. 2. If i and j are open, choose m closed to h = a(n-3) and open to i + j, unless such a solution does not exist, in which case the constraint that m is closed to h is dropped, leaving a(n) as least novel m open to i + j. See comments.
[ "1", "2", "4", "3", "9", "15", "8", "14", "11", "33", "55", "6", "12", "16", "7", "21", "35", "10", "5", "18", "22", "24", "23", "115", "161", "20", "25", "27", "36", "28", "26", "30", "32", "31", "93", "155", "34", "17", "39", "13", "38", "19", "42", "40", "41", "123", "287", "44", "46", "45", "51", "57", "52", "50", "56", "53", "159", "265", "48", "54", "58", "49", "63", "77", "60", "62" ]
[ "nonn" ]
19
1
2
[ "A007947", "A098550", "A358488", "A358534" ]
null
David James Sycamore and Michael De Vlieger, Nov 18 2022
2022-12-05T11:36:03
oeisdata/seq/A358/A358488.seq
b6efafe44c7f7b052dbbb6dedce93b1e
A358489
Numbers k such that phi(k) = 13! where phi is the Euler totient function (A000010).
[ "6227180929", "6227182993", "6227186509", "6227199361", "6227220691", "6227229637", "6227245393", "6227246107", "6227260969", "6227267713", "6227268799", "6227279341", "6227280491", "6227288461", "6227311397", "6227314111", "6227327761", "6227351861", "6227355097", "6227376241", "6227447761", "6227454979" ]
[ "nonn", "fini" ]
22
1
1
[ "A000010", "A055487", "A165774", "A358489" ]
null
Darío Clavijo, Nov 18 2022
2022-12-21T21:24:19
oeisdata/seq/A358/A358489.seq
9a6395333685b3896303fc3d4d7d6384
A358490
Composite Fibonacci numbers whose sum of prime factors (with multiplicity) is a prime.
[ "34", "75025", "196418", "701408733", "225851433717", "591286729879", "23416728348467685", "420196140727489673", "927372692193078999176", "16641027750620563662096", "114059301025943970552219", "1264937032042997393488322", "5358359254990966640871840", "2353412818241252672952597492098", "3807901929474025356630904134051" ]
[ "nonn" ]
11
1
1
[ "A000045", "A001414", "A046363", "A090206", "A100118", "A358490" ]
null
Marc Kouyoumdjian, Nov 18 2022
2022-12-21T21:33:52
oeisdata/seq/A358/A358490.seq
fa37de7b3482b580ffc73318af65c40d
A358491
a(n) = n!*Sum_{m=0..floor((n-1)/2)} 1/(n-m)/binomial(n-m-1,m).
[ "1", "1", "5", "10", "74", "216", "2316", "8688", "128880", "581760", "11406240", "59667840", "1482693120", "8782905600", "266800262400", "1762116249600", "63536485017600", "462613126348800", "19342202181120000", "153884245616640000", "7325057766297600000" ]
[ "nonn" ]
26
1
3
[ "A000045", "A358446", "A358491" ]
null
Vladimir Kruchinin, Nov 19 2022
2022-11-19T20:17:45
oeisdata/seq/A358/A358491.seq
3469a357e8bc0c9aa733d5cf1dfacbe3
A358492
Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593.
[ "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "1", "3", "1", "1", "3", "2", "1", "1", "1", "3", "2", "1", "1", "1", "3", "3", "1", "1", "1", "1", "4", "2", "1", "1", "1", "4", "2", "2", "1", "1", "1", "1", "1", "3", "4", "1", "1", "1", "1", "3", "4", "2", "1", "1", "1", "1", "2", "4", "2", "2", "1", "1", "1", "1", "1", "3", "5", "2", "1", "1", "1", "1", "1", "1", "3", "5", "2", "1", "1", "1", "1", "1", "3", "5", "2", "2", "1", "1", "1", "1", "1", "1", "1", "5", "4", "2", "1", "1", "1", "1", "1", "1", "5", "4", "2", "2" ]
[ "nonn", "tabf" ]
32
1
5
[ "A000012", "A000027", "A008619", "A196020", "A235791", "A236104", "A237270", "A237271", "A237591", "A237593", "A245092", "A262626", "A339575", "A358492" ]
null
Omar E. Pol, Nov 19 2022
2022-12-15T13:43:56
oeisdata/seq/A358/A358492.seq
3e50de3a618981c80ca724680f71dd5b
A358493
a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/k!.
[ "1", "1", "2", "7", "26", "126", "745", "5163", "41052", "367981", "3669484", "40282220", "482650681", "6267119885", "87659113950", "1313921407891", "21010208286486", "356998222642362", "6423340164746737", "122001442713615031", "2439314857827015896", "51212765334037840345", "1126436834463405257528" ]
[ "nonn", "easy" ]
27
0
3
[ "A000522", "A003470", "A177251", "A357949", "A358493", "A358494", "A370511" ]
null
Seiichi Manyama, Nov 19 2022
2024-05-02T04:28:40
oeisdata/seq/A358/A358493.seq
0a5dda45528b8fa17b4c0cb4c93d775c
A358494
a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/k!.
[ "1", "1", "2", "6", "24", "121", "722", "5046", "40344", "363000", "3629521", "39921843", "479041932", "6227383740", "87181920360", "1307714287321", "20923268909764", "355693655298260", "6402460885833720", "121646408103159240", "2432922931206035521", "51091297862251106885", "1124007130194903158430" ]
[ "nonn", "easy" ]
13
0
3
[ "A000522", "A003470", "A357949", "A358493", "A358494" ]
null
Seiichi Manyama, Nov 19 2022
2024-02-26T10:11:25
oeisdata/seq/A358/A358494.seq
868c07592f98664828dec0bb015da62e
A358495
a(n) = Sum_{k=0..n} binomial(binomial(n, k), n).
[ "1", "2", "1", "2", "17", "506", "48772", "13681602", "12287555282", "33669343492094", "311704008906073448", "9309805333008203501246", "987309241535765332024955809", "351345748109942610415182510895442", "459648902729700156671704473390158212154", "2067884865276847662816755891452805155809167114" ]
[ "nonn" ]
11
0
2
[ "A357871", "A358495", "A358496" ]
null
Vaclav Kotesovec, Nov 19 2022
2022-11-19T15:00:19
oeisdata/seq/A358/A358495.seq
0df3a1368e27e04eccf4828fcc7658cd
A358496
a(n) = Sum_{k=0..n} binomial(binomial(n, k), k).
[ "1", "2", "3", "7", "24", "176", "2623", "79479", "5141566", "669156932", "178757299486", "104033138190939", "125893536876304530", "320091464865316176891", "1828276720220263211454403", "22393381352339181425954204921", "582288411818399885839904060337943", "34678571156322738984042119670750665153" ]
[ "nonn" ]
9
0
2
[ "A167008", "A220359", "A357871", "A358495", "A358496" ]
null
Vaclav Kotesovec, Nov 19 2022
2023-12-26T16:50:07
oeisdata/seq/A358/A358496.seq
5a7d140b591616ba27b0c759cd66e9c1
A358497
Replace each new digit in n with index 1, 2, ..., 9, 0 in order in which that digit appears in n, from left to right.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "12", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "11", "12" ]
[ "nonn", "base", "easy" ]
57
0
11
[ "A071159", "A227362", "A358497", "A358615" ]
null
Gleb Ivanov, Nov 19 2022
2024-11-05T12:13:40
oeisdata/seq/A358/A358497.seq
56db83ec0410a65b625be7290bb7d6a8
A358498
a(n) = Sum_{k=0..floor(n/3)} (n-3*k)!.
[ "1", "1", "2", "7", "25", "122", "727", "5065", "40442", "363607", "3633865", "39957242", "479365207", "6230654665", "87218248442", "1308153733207", "20929020542665", "355774646344442", "6403681859461207", "121666029429374665", "2433257782822984442", "51097345853568901207", "1124122393807037054665" ]
[ "nonn", "easy" ]
15
0
3
[ "A136580", "A358498", "A358499", "A358500" ]
null
Seiichi Manyama, Nov 19 2022
2022-11-24T03:37:52
oeisdata/seq/A358/A358498.seq
a64f0d62d927de0a6e9c85016e29e492
A358499
a(n) = Sum_{k=0..floor(n/4)} (n-4*k)!.
[ "1", "1", "2", "6", "25", "121", "722", "5046", "40345", "363001", "3629522", "39921846", "479041945", "6227383801", "87181920722", "1307714289846", "20923268929945", "355693655479801", "6402460887648722", "121646408123121846", "2432922931445569945", "51091297865364919801", "1124007130238495328722" ]
[ "nonn", "easy" ]
14
0
3
[ "A136580", "A358498", "A358499", "A358500" ]
null
Seiichi Manyama, Nov 19 2022
2022-11-24T04:22:10
oeisdata/seq/A358/A358499.seq
01223a4c5b8ea1d332dea8e090415675
A358500
a(n) = Sum_{k=0..floor(n/5)} (n-5*k)!.
[ "1", "1", "2", "6", "24", "121", "721", "5042", "40326", "362904", "3628921", "39917521", "479006642", "6227061126", "87178654104", "1307677996921", "20922829805521", "355687907102642", "6402379932789126", "121645187587486104", "2432903315854636921", "51090963094539245521", "1124001083465514782642" ]
[ "nonn", "easy" ]
17
0
3
[ "A136580", "A358498", "A358499", "A358500" ]
null
Seiichi Manyama, Nov 19 2022
2022-11-24T04:48:47
oeisdata/seq/A358/A358500.seq
804b09a37777974047ba52e670313a67