sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358601
Number of genetic relatives of a person M in a genealogical tree extending back n generations and where everyone has 7 children down to the generation of M.
[ "1", "9", "109", "1485", "20701", "289629", "4054429", "56761245", "794655901", "11125179549", "155752507549", "2180535093405", "30527491283101", "427384877914269", "5983388290701469", "83767436069623965", "1172744104974342301", "16418417469640005789", "229857844574958508189" ]
[ "nonn", "easy" ]
29
0
2
[ "A076024", "A358504", "A358598", "A358599", "A358600", "A358601" ]
null
Hans Braxmeier, Nov 23 2022
2024-02-09T08:41:01
oeisdata/seq/A358/A358601.seq
1d23160ce6e8a3d67b6783275e31ae6a
A358602
Define u such that u(1) = k and u(n) = u(n-1) + (-1)^n*(n!) for n > 1. Terms are numbers k for which the number of consecutive values of u(i), starting at u(1) = k, that are primes reaches a new record high.
[ "2", "3", "11", "107", "119657", "2513657", "8448047", "210336167" ]
[ "nonn", "more" ]
34
1
1
null
null
Jean-Marc Rebert, Nov 23 2022
2022-12-21T22:10:41
oeisdata/seq/A358/A358602.seq
b3fb577f0a5c53cb5cdf4b5d8da16786
A358603
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-k)!/(n-2*k)!.
[ "1", "1", "0", "-1", "0", "3", "2", "-9", "-12", "35", "78", "-153", "-544", "723", "4170", "-3337", "-35028", "10851", "320678", "57255", "-3178152", "-2190253", "33864546", "42120183", "-385314460", "-719159517", "4649508222", "12033407591", "-59076411312", "-204022615725", "784134861818", "3554417974647", "-10768948801764" ]
[ "sign" ]
16
0
6
[ "A122852", "A358603", "A358604", "A358605", "A358606" ]
null
Seiichi Manyama, Nov 23 2022
2024-07-25T14:52:58
oeisdata/seq/A358/A358603.seq
701a240aeee8662b285cf309462762b7
A358604
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)!/(n-3*k)!.
[ "1", "1", "1", "0", "-1", "-2", "-1", "2", "7", "8", "-1", "-26", "-49", "-28", "103", "314", "359", "-344", "-2113", "-3682", "-161", "14684", "36791", "25762", "-100297", "-373456", "-472241", "587846", "3877487", "7149988", "-1111801", "-40808566", "-103472249", "-56751688", "424662623", "1490284654", "1674543359", "-4121143444" ]
[ "sign" ]
14
0
6
[ "A357532", "A358603", "A358604", "A358605", "A358606" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-28T12:05:24
oeisdata/seq/A358/A358604.seq
5de823814e3c015812ffa15d68657b1a
A358605
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-3*k)!/(n-4*k)!.
[ "1", "1", "1", "1", "0", "-1", "-2", "-3", "-2", "1", "6", "13", "16", "9", "-14", "-59", "-108", "-119", "-26", "261", "736", "1177", "1026", "-731", "-4964", "-11079", "-14978", "-6299", "30024", "102841", "189466", "190917", "-97004", "-921191", "-2301354", "-3396539", "-1674368", "7265241", "27311794", "53600101", "56943756", "-31760903", "-310594514", "-809146971" ]
[ "sign" ]
15
0
7
[ "A357533", "A358603", "A358604", "A358605", "A358606" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-28T12:05:21
oeisdata/seq/A358/A358605.seq
810463ee8718d4f1a0a8bbd5f3a5504c
A358606
a(n) = Sum_{k=0..floor(n/5)} (-1)^k * (n-4*k)!/(n-5*k)!.
[ "1", "1", "1", "1", "1", "0", "-1", "-2", "-3", "-4", "-3", "0", "5", "12", "21", "26", "21", "0", "-43", "-114", "-195", "-244", "-195", "42", "581", "1440", "2421", "2990", "2157", "-1644", "-9955", "-22974", "-37515", "-44248", "-24219", "50310", "205661", "442140", "689997", "740906", "190245", "-1534224", "-4941355", "-9887058", "-14429619", "-13255900", "3510141" ]
[ "sign" ]
15
0
8
[ "A357570", "A358603", "A358604", "A358605", "A358606" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-28T12:05:33
oeisdata/seq/A358/A358606.seq
a8bed55dd32188097fcf89a6e8a0fb91
A358607
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-2*k)!.
[ "1", "1", "1", "5", "23", "115", "697", "4925", "39623", "357955", "3589177", "39558845", "475412423", "6187461955", "86702878777", "1301486906045", "20836087009223", "354385941189955", "6381537618718777", "121290714467642045", "2426520470557921223", "50969651457241797955", "1121574207307049758777" ]
[ "nonn" ]
17
0
4
[ "A121868", "A136580", "A358607", "A358608", "A358609", "A358611" ]
null
Seiichi Manyama, Nov 23 2022
2024-06-14T11:53:17
oeisdata/seq/A358/A358607.seq
1018f5f301cc4b6422b599f8c6f2b286
A358608
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-3*k)!.
[ "1", "1", "2", "5", "23", "118", "715", "5017", "40202", "362165", "3623783", "39876598", "478639435", "6223397017", "87138414602", "1307195728565", "20916566490983", "355600289681398", "6401066509999435", "121624183842341017", "2432546407886958602", "51084541105199440565", "1123879103593765338983" ]
[ "nonn" ]
15
0
3
[ "A143630", "A358498", "A358607", "A358608", "A358609", "A358611" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-25T06:40:40
oeisdata/seq/A358/A358608.seq
51e6680a5c85656847a9ca7b278477ca
A358609
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-4*k)!.
[ "1", "1", "2", "6", "23", "119", "718", "5034", "40297", "362761", "3628082", "39911766", "478961303", "6226658039", "87174663118", "1307634456234", "20922310926697", "355681201437961", "6402286531064882", "121643792774375766", "2432881085865713303", "51090586490508002039", "1123994325491076615118" ]
[ "nonn" ]
15
0
3
[ "A358499", "A358607", "A358608", "A358609", "A358611" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-25T06:44:02
oeisdata/seq/A358/A358609.seq
4684ed8a0adc00a0e83e791d48b55e3f
A358610
Numbers k such that the concatenation 1,2,3,... up to (k-1) is one less than a multiple of k.
[ "1", "2", "4", "5", "8", "10", "13", "20", "25", "40", "50", "52", "100", "125", "200", "250", "400", "475", "500", "601", "848", "908", "1000", "1120", "1250", "1750", "2000", "2500", "2800", "2900", "3670", "4000", "4375", "4685", "5000", "6085", "7000", "7640", "7924", "8375", "10000", "10900", "12500", "13346", "14000", "17800", "20000", "21568", "25000" ]
[ "nonn", "base" ]
29
1
2
[ "A094151", "A110740", "A358610" ]
null
Martin Renner, Nov 23 2022
2022-12-11T12:15:09
oeisdata/seq/A358/A358610.seq
13aeb2dbd5d3acf771f7bd37b28c0c6f
A358611
a(n) = Sum_{k=0..floor(n/5)} (-1)^k * (n-5*k)!.
[ "1", "1", "2", "6", "24", "119", "719", "5038", "40314", "362856", "3628681", "39916081", "478996562", "6226980486", "87177928344", "1307670739319", "20922749971919", "355686949099438", "6402367478747514", "121645013230903656", "2432900700505900681", "51090921248959468081", "1124000372090658580562" ]
[ "nonn" ]
13
0
3
[ "A358500", "A358607", "A358608", "A358609", "A358611" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-25T06:34:18
oeisdata/seq/A358/A358611.seq
edf25f65c0170bc33486176dbc86d644
A358612
Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the second kind.
[ "1", "1", "1", "3", "1", "1", "5", "2", "1", "7", "6", "1", "1", "9", "4", "1", "11", "11", "2", "1", "13", "15", "3", "1", "15", "25", "10", "1", "1", "17", "8", "1", "19", "21", "4", "1", "21", "28", "6", "1", "23", "44", "19", "2", "1", "25", "39", "9", "1", "27", "58", "27", "3", "1", "29", "68", "34", "4", "1", "31", "90", "65", "15", "1", "1", "33", "16", "1", "35", "41", "8", "1", "37", "54", "12", "1" ]
[ "nonn", "base", "tabf" ]
48
0
4
[ "A000120", "A007814", "A008277", "A025480", "A329369", "A341392", "A357990", "A358612", "A358631", "A373183" ]
null
Mikhail Kurkov, Nov 23 2022
2024-06-21T14:17:52
oeisdata/seq/A358/A358612.seq
f79a60727c776d281b3b49637c30a0e8
A358613
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-k)!/(k! * (n-3*k)!).
[ "1", "1", "1", "-1", "-5", "-11", "-7", "31", "139", "245", "-71", "-1937", "-5989", "-6251", "25945", "144479", "304843", "-177899", "-3517351", "-11743505", "-10097381", "81902453", "433558201", "840235039", "-1481279605", "-15839941451", "-48073840007", "-8454966289", "564429256219", "2518098130645", "3490609807769" ]
[ "sign" ]
12
0
5
[ "A247917", "A358560", "A358613" ]
null
Seiichi Manyama, Nov 23 2022
2022-11-25T06:49:11
oeisdata/seq/A358/A358613.seq
00ce4c4aad1643b34f70b5f7a0d08d2a
A358614
Decimal expansion of 9*sqrt(2)/32.
[ "3", "9", "7", "7", "4", "7", "5", "6", "4", "4", "1", "7", "4", "3", "2", "9", "8", "2", "4", "7", "5", "4", "7", "4", "9", "5", "3", "6", "8", "3", "9", "7", "7", "5", "8", "4", "5", "9", "7", "7", "2", "0", "2", "1", "4", "9", "4", "9", "7", "6", "6", "6", "4", "5", "5", "8", "0", "9", "4", "1", "1", "7", "6", "3", "0", "9", "8", "9", "3", "5", "0", "9", "5", "6", "7", "4", "6", "7", "6", "0", "4", "6", "7", "6", "6", "7", "1", "4", "9", "4", "0", "2", "9", "6", "4", "9", "1", "9", "2" ]
[ "nonn", "cons", "easy" ]
52
0
1
[ "A002193", "A010474", "A010503", "A230981", "A358614" ]
null
Bernard Schott, Dec 05 2022
2022-12-17T20:02:05
oeisdata/seq/A358/A358614.seq
0d71c444b5781bdd9406e241dfe50f83
A358615
Record high values in A358497.
[ "1", "12", "122", "123", "1222", "1223", "1232", "1233", "1234", "12222", "12223", "12232", "12233", "12234", "12322", "12323", "12324", "12332", "12333", "12334", "12342", "12343", "12344", "12345", "122222", "122223", "122232", "122233", "122234", "122322", "122323", "122324", "122332", "122333", "122334", "122342", "122343", "122344" ]
[ "nonn", "base" ]
7
1
2
[ "A071159", "A358497", "A358615" ]
null
Gleb Ivanov, Nov 23 2022
2022-11-26T02:45:00
oeisdata/seq/A358/A358615.seq
66f0bea23a5cf95ca4b70aeff2986d6a
A358616
a(n) is the position of the first occurrence of the least term in row n of the Gilbreath array shown in A036262.
[ "1", "1", "2", "3", "3", "3", "3", "3", "9", "2", "2", "2", "2", "2", "2", "3", "4", "2", "3", "5", "2", "2", "3", "3", "6", "2", "2", "2", "3", "4", "2", "6", "2", "2", "2", "3", "9", "2", "2", "2", "2", "2", "2", "3", "4", "2", "3", "4", "2", "5", "2", "2", "4", "2", "3", "3", "3", "9", "2", "2", "2", "2", "2", "2", "5", "2", "2", "3", "5", "2", "2", "3", "4", "2", "8", "2", "2", "2", "2", "2", "4", "2", "3", "3", "3", "3" ]
[ "nonn" ]
7
1
3
[ "A000040", "A036262", "A358616", "A358617" ]
null
Clark Kimberling, Nov 23 2022
2022-11-27T11:07:10
oeisdata/seq/A358/A358616.seq
db7a2d345fe5cfa52f6f6c8c95db4ba3
A358617
a(n) is the number of zeros among the first n terms of row n of the Gilbreath array shown in A036262.
[ "0", "0", "1", "2", "3", "3", "3", "3", "1", "8", "7", "5", "7", "9", "5", "8", "5", "9", "10", "10", "8", "9", "10", "11", "10", "10", "17", "12", "17", "12", "13", "8", "20", "22", "18", "17", "14", "25", "20", "24", "24", "22", "21", "15", "19", "25", "25", "25", "24", "24", "21", "23", "27", "24", "23", "29", "32", "19", "26", "36", "34", "34", "31", "27", "35", "38", "35", "37", "25", "37" ]
[ "nonn" ]
6
1
4
[ "A000040", "A036262", "A358616", "A358617" ]
null
Clark Kimberling, Nov 23 2022
2022-11-27T11:07:21
oeisdata/seq/A358/A358617.seq
bee8119de4a3364356e380a50e271e6f
A358618
First differences of A258036.
[ "2", "2", "2", "2", "2", "3", "2", "2", "2", "2", "3", "2", "2", "2", "2", "2", "3", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2" ]
[ "easy", "nonn" ]
16
1
1
[ "A258036", "A358618", "A358619" ]
null
Clark Kimberling and Robert G. Wilson v, Oct 31 2022
2022-12-21T12:53:48
oeisdata/seq/A358/A358618.seq
264650e505bba2a072f42990fe5f3c7e
A358619
First forward difference of A258037.
[ "1", "1", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2" ]
[ "easy", "nonn" ]
11
1
3
[ "A258037", "A358618", "A358619" ]
null
Clark Kimberling and Robert G. Wilson v, Oct 31 2022
2022-11-25T13:31:08
oeisdata/seq/A358/A358619.seq
fbd90847737aa918f96e247b657de05a
A358620
Number of nonzero digits needed to write all nonnegative n-digit integers.
[ "9", "171", "2520", "33300", "414000", "4950000", "57600000", "657000000", "7380000000", "81900000000", "900000000000", "9810000000000", "106200000000000", "1143000000000000", "12240000000000000", "130500000000000000", "1386000000000000000", "14670000000000000000", "154800000000000000000" ]
[ "nonn", "base", "easy" ]
20
1
1
[ "A081045", "A113119", "A212704", "A358620" ]
null
Bernard Schott, Nov 23 2022
2022-11-30T07:21:46
oeisdata/seq/A358/A358620.seq
e5b6129729400acf34b760a4166817e0
A358621
Smallest b > 1 such that b^(2^n)+1 is a Sophie Germain prime.
[ "2", "2", "160", "140", "2800", "8660", "62150", "4085530", "922820", "4629490", "5802710", "1146175000", "90894850" ]
[ "nonn", "hard", "more" ]
6
0
1
[ "A005384", "A056993", "A182154", "A358621" ]
null
Jeppe Stig Nielsen, Nov 23 2022
2022-11-27T11:06:32
oeisdata/seq/A358/A358621.seq
0180d044eabd5becc60290cbee982298
A358622
Regular triangle read by rows. T(n, k) = [[n, k]], where [[n, k]] are the second order Stirling cycle numbers (or second order reciprocal Stirling numbers). T(n, k) for 0 <= k <= n.
[ "1", "0", "0", "0", "1", "0", "0", "2", "0", "0", "0", "6", "3", "0", "0", "0", "24", "20", "0", "0", "0", "0", "120", "130", "15", "0", "0", "0", "0", "720", "924", "210", "0", "0", "0", "0", "0", "5040", "7308", "2380", "105", "0", "0", "0", "0", "0", "40320", "64224", "26432", "2520", "0", "0", "0", "0", "0", "0", "362880", "623376", "303660", "44100", "945", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl" ]
28
0
8
[ "A000166", "A008306", "A024000", "A130534", "A201637", "A264428", "A269940", "A341101", "A358622" ]
null
Peter Luschny, Nov 23 2022
2022-11-25T08:16:22
oeisdata/seq/A358/A358622.seq
962e4f3fbb098bc03a62a17343e9b659
A358623
Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
[ "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "3", "0", "0", "0", "1", "10", "0", "0", "0", "0", "1", "25", "15", "0", "0", "0", "0", "1", "56", "105", "0", "0", "0", "0", "0", "1", "119", "490", "105", "0", "0", "0", "0", "0", "1", "246", "1918", "1260", "0", "0", "0", "0", "0", "0", "1", "501", "6825", "9450", "945", "0", "0", "0", "0", "0", "0", "1", "1012", "22935", "56980", "17325", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl" ]
9
0
13
[ "A000296", "A000587", "A008299", "A014182", "A048993", "A201637", "A264428", "A269939", "A293037", "A340264", "A358622", "A358623" ]
null
Peter Luschny, Nov 25 2022
2022-11-26T07:57:17
oeisdata/seq/A358/A358623.seq
9ac768fe8ab3faec514c7e7ce052235c
A358624
Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).
[ "1", "1", "2", "2", "6", "6", "6", "22", "30", "20", "24", "100", "170", "140", "70", "120", "548", "1050", "1120", "630", "252", "720", "3528", "7476", "8820", "6720", "2772", "924", "5040", "26136", "59388", "78708", "64680", "37884", "12012", "3432", "40320", "219168", "529896", "748440", "704550", "432432", "204204", "51480", "12870" ]
[ "nonn", "tabl" ]
8
0
3
[ "A000142", "A000984", "A001564", "A133942", "A358624" ]
null
Peter Luschny, Nov 26 2022
2022-11-28T05:06:00
oeisdata/seq/A358/A358624.seq
5e9ef05a95b33e25581f69691d749cbb
A358625
a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
[ "1", "1", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-691", "0", "1", "0", "-3617", "0", "43867", "0", "-174611", "0", "77683", "0", "-236364091", "0", "657931", "0", "-3392780147", "0", "1723168255201", "0", "-7709321041217", "0", "151628697551", "0", "-26315271553053477373", "0", "154210205991661", "0", "-261082718496449122051" ]
[ "sign", "frac" ]
27
0
13
[ "A001067", "A006953", "A027642", "A036283", "A053657", "A060054", "A075180", "A079612", "A120080", "A120082", "A120084", "A120086", "A164555", "A202318", "A342318", "A358625" ]
null
Peter Luschny, Dec 02 2022
2022-12-05T08:51:35
oeisdata/seq/A358/A358625.seq
5aff686a71561026c04cba6e5798afdb
A358626
Number of (undirected) paths in the 4 X n king graph.
[ "6", "1448", "96956", "6014812", "329967798", "16997993692", "834776217484", "39563650279918", "1823748204789500", "82228567227405462", "3641260776226602674", "158852482151721371580", "6843583319011989465314", "291698433877308327463184" ]
[ "nonn" ]
22
1
1
[ "A288033", "A307026", "A338617", "A339198", "A339201", "A339762", "A358626" ]
null
Seiichi Manyama, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358626.seq
f134e7e8b32662fc9441f53a086ace94
A358627
Triangle read by rows: T(n,k) is the number of edges formed when n points are placed along each edge of a square that divide the edges into n+1 equal parts and a line is continuously drawn from the current point to that k points, 2 <= k <= 2*n, counterclockwise around the square until the starting point is again reached.
[ "9", "16", "40", "13", "20", "20", "19", "124", "17", "24", "64", "24", "140", "60", "204", "21", "28", "60", "28", "28", "74", "284", "39", "300", "25", "32", "32", "32", "176", "32", "292", "31", "68", "136", "436", "29", "36", "68", "36", "156", "84", "36", "53", "484", "158", "588", "67", "612", "33", "40", "72", "40", "144", "80", "328", "40", "520", "180", "648", "76", "752", "232", "764", "37", "44", "44", "44", "140", "44", "316", "62", "44", "202", "740", "43", "884", "268", "148", "103", "980", "41" ]
[ "nonn", "tabf" ]
16
1
1
[ "A331452", "A345459", "A355798", "A355838", "A357058", "A358407", "A358556", "A358574", "A358627" ]
null
Scott R. Shannon, Nov 24 2022
2022-11-24T12:50:55
oeisdata/seq/A358/A358627.seq
f409eb960399a999585f124af1a4731f
A358628
Square array A(i,j), i >= 0, j >= 0, read by antidiagonals: A(i,j) = Sum_{|X|=0..i} Sum_{|Y|=0..i} Product_{k=1..j} (1+X(k)+Y(k)), where X and Y are multi-indices of length j.
[ "1", "1", "1", "1", "8", "1", "1", "23", "27", "1", "1", "46", "176", "64", "1", "1", "77", "640", "800", "125", "1", "1", "116", "1707", "4850", "2675", "216", "1", "1", "163", "3761", "19607", "25235", "7301", "343", "1", "1", "218", "7282", "61216", "147952", "101528", "17248", "512", "1", "1", "281", "12846", "159854", "635376", "831600", "338688", "36576", "729", "1" ]
[ "easy", "nonn", "tabl" ]
71
0
5
[ "A000012", "A000578", "A033951", "A358628" ]
null
Thomas J. Radley, Nov 27 2022
2023-03-21T15:41:37
oeisdata/seq/A358/A358628.seq
f61d858ac1a6628b93d4b737390960d6
A358629
a(n) is the number of signed permutations W of V = (1, 2, ..., n) such that the dot product V*W = 0.
[ "0", "2", "0", "16", "48", "558", "4444", "62246", "692598", "11722730", "196824592", "3896202680", "86626174698", "2018770217402", "51681142218502", "1418482891697258", "41404316055037624", "1304323691188387488", "43501661519771535260", "1538705372277647632786" ]
[ "nonn", "more" ]
43
1
2
[ "A000165", "A358629", "A358655" ]
null
Thomas Scheuerle, Nov 24 2022
2023-06-18T13:46:14
oeisdata/seq/A358/A358629.seq
3681dd223143e4c95c50be23bd79e070
A358630
Decimal expansion of a seed to the logistic map with r=4 such that mapping the orbit to 0 and 1 gives the binary expansion of Pi.
[ "5", "8", "5", "7", "3", "0", "6", "7", "1", "3", "7", "8", "8", "3", "4", "9", "4", "7", "9", "6", "7", "2", "4", "6", "9", "6", "7", "6", "3", "2", "5", "5", "5", "2", "4", "1", "8", "2", "0", "9", "4", "5", "3", "6", "3", "0", "2", "4", "0", "9", "2", "6", "3", "8", "4", "8", "4", "1", "2", "1", "3", "3", "0", "0", "2", "4", "6", "4", "2", "3", "5", "7", "2", "2", "0", "1", "8", "1", "7", "6", "2", "7", "2", "9", "2", "0", "9", "9", "7", "3", "8", "2", "0", "5", "5", "4", "7", "6", "1", "9", "2", "6", "0", "9", "1" ]
[ "nonn", "cons" ]
25
0
1
[ "A004601", "A358630" ]
null
Antoine Beaulieu, Nov 24 2022
2023-01-05T19:13:21
oeisdata/seq/A358/A358630.seq
9e77aeeb548195c794b21e6bc0a33512
A358631
Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the first kind.
[ "1", "1", "2", "3", "1", "4", "5", "1", "6", "11", "6", "1", "6", "7", "1", "12", "20", "9", "1", "18", "26", "9", "1", "24", "50", "35", "10", "1", "8", "9", "1", "18", "29", "12", "1", "30", "41", "12", "1", "48", "94", "59", "14", "1", "36", "47", "12", "1", "72", "130", "71", "14", "1", "96", "154", "71", "14", "1", "120", "274", "225", "85", "15", "1", "10", "11", "1", "24", "38", "15", "1", "42" ]
[ "nonn", "base", "tabf" ]
37
0
3
[ "A000120", "A052852", "A053645", "A063250", "A132393", "A290255", "A347205", "A358612", "A358631" ]
null
Mikhail Kurkov, Nov 24 2022
2024-11-07T11:13:28
oeisdata/seq/A358/A358631.seq
cf66b23e1fbe3b51a9d50f46f9187caf
A358632
Coordination sequence for the faces of the uniform infinite surface that is formed from congruent regular pentagons and from which there is a continuous function that maps the faces 1:1 to regular pentagons in the plane.
[ "1", "5", "20", "50", "110", "200", "340", "525", "780", "1095", "1500", "1980", "2570", "3250", "4060", "4975", "6040", "7225", "8580", "10070", "11750" ]
[ "nonn", "more" ]
13
0
2
[ "A008383", "A063490", "A175898", "A358632" ]
null
Peter Munn and Allan C. Wechsler, Nov 24 2022
2022-11-25T22:13:18
oeisdata/seq/A358/A358632.seq
69b1a8d42e1defed3ff88a4a3993554d
A358633
a(n) is the smallest k > 1 such that the sum of digits of n^k is a power of n (or -1 if no such k exists).
[ "2", "2", "2", "18", "8", "7", "4", "3", "2", "2", "45741764", "4216", "32", "537", "39", "44", "3", "3", "1187", "13", "67", "4" ]
[ "sign", "base", "more" ]
38
1
1
[ "A066005", "A095412", "A118872", "A358633" ]
null
Jon E. Schoenfield, Nov 24 2022
2024-01-24T08:00:43
oeisdata/seq/A358/A358633.seq
e484c9d4c45921d6c357481eafbfd005
A358634
a(n) is the smallest number k such that n consecutive integers starting at k have the same number of n-gonal divisors.
[ "55", "844", "16652", "844529772", "243636414", "36289272509" ]
[ "nonn", "more", "hard" ]
11
3
1
[ "A006558", "A338628", "A358044", "A358634" ]
null
Ilya Gutkovskiy, Nov 24 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358634.seq
6f0633b4a87acc4f51803fc1c7135c9e
A358635
Number of partitions of n into at most 2 distinct prime powers (including 1).
[ "1", "1", "1", "2", "2", "3", "2", "3", "3", "4", "3", "4", "4", "4", "3", "3", "4", "4", "4", "4", "5", "4", "3", "3", "5", "4", "4", "5", "5", "4", "6", "4", "7", "5", "6", "4", "7", "3", "5", "4", "6", "4", "6", "4", "6", "5", "5", "3", "8", "4", "7", "4", "6", "3", "8", "3", "7", "4", "5", "3", "8", "4", "6", "4", "7", "3", "9", "3", "8", "5", "7", "3", "10", "4", "7", "6", "7", "3", "9", "3", "9", "5", "6", "5", "11", "3", "8", "4", "7", "4", "12", "4" ]
[ "nonn" ]
5
0
4
[ "A000961", "A106244", "A341132", "A347643", "A347762", "A358635", "A358636", "A358637" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:04:00
oeisdata/seq/A358/A358635.seq
17e419b6e149ad717e943a1b0ccfe94e
A358636
Number of partitions of n into at most 3 distinct prime powers (including 1).
[ "1", "1", "1", "2", "2", "3", "3", "4", "5", "6", "6", "7", "9", "9", "10", "9", "12", "11", "12", "12", "15", "14", "15", "14", "17", "16", "17", "17", "21", "19", "21", "20", "25", "22", "25", "24", "28", "27", "27", "26", "29", "29", "28", "31", "32", "30", "31", "32", "33", "35", "34", "34", "37", "37", "34", "37", "38", "39", "37", "41", "37", "44", "38", "40", "41", "44", "38", "47", "43", "46", "43", "50" ]
[ "nonn" ]
5
0
4
[ "A000961", "A106244", "A341140", "A347644", "A347763", "A358635", "A358636", "A358637" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:04:15
oeisdata/seq/A358/A358636.seq
0846f36cb34f64a08dc3d51ff5021bf8
A358637
Number of partitions of n into at most 4 distinct prime powers (including 1).
[ "1", "1", "1", "2", "2", "3", "3", "4", "5", "6", "7", "8", "10", "11", "13", "13", "17", "18", "19", "21", "24", "25", "27", "29", "32", "35", "35", "38", "42", "45", "46", "50", "54", "57", "57", "63", "65", "72", "70", "78", "79", "87", "82", "93", "93", "101", "97", "107", "107", "116", "112", "123", "122", "133", "127", "139", "137", "149", "140", "156", "154", "166", "158", "171", "168", "180", "174", "186" ]
[ "nonn" ]
5
0
4
[ "A000961", "A106244", "A341141", "A347586", "A347645", "A347764", "A358635", "A358636", "A358637" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:04:24
oeisdata/seq/A358/A358637.seq
857b2db635eae45863d78f1bfac84a91
A358638
Number of partitions of n into at most 2 distinct nonprime parts.
[ "1", "1", "0", "0", "1", "1", "1", "1", "1", "2", "3", "1", "2", "2", "3", "3", "4", "2", "4", "3", "4", "4", "6", "3", "6", "5", "7", "5", "7", "5", "8", "6", "7", "7", "10", "7", "11", "7", "9", "9", "11", "8", "12", "9", "11", "10", "13", "9", "14", "11", "14", "11", "14", "11", "16", "13", "15", "13", "17", "13", "19", "14", "16", "15", "19", "15", "21", "15", "17", "17", "21", "16", "22", "17", "21", "18", "22", "18", "25", "18", "22" ]
[ "nonn" ]
8
0
10
[ "A005171", "A018252", "A096258", "A302479", "A347788", "A358638", "A358639", "A358640" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:04:45
oeisdata/seq/A358/A358638.seq
df0331e8c8e5b9bd216afd9b9a3048dc
A358639
Number of partitions of n into at most 3 distinct nonprime parts.
[ "1", "1", "0", "0", "1", "1", "1", "1", "1", "2", "3", "2", "2", "3", "4", "5", "5", "4", "6", "7", "7", "8", "10", "9", "11", "13", "14", "14", "16", "15", "20", "20", "21", "21", "27", "26", "30", "29", "32", "33", "39", "35", "43", "42", "46", "46", "53", "49", "58", "58", "63", "61", "69", "64", "77", "75", "81", "78", "90", "85", "98", "95", "102", "100", "114", "106", "122", "116", "126", "124", "140" ]
[ "nonn" ]
5
0
10
[ "A018252", "A096258", "A307857", "A341461", "A347796", "A358638", "A358639", "A358640" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:05:03
oeisdata/seq/A358/A358639.seq
d34bc2b8f59dc4e749e9f5d6766fccd5
A358640
Number of partitions of n into at most 4 distinct nonprime parts.
[ "1", "1", "0", "0", "1", "1", "1", "1", "1", "2", "3", "2", "2", "3", "4", "5", "5", "4", "6", "8", "8", "9", "11", "11", "13", "16", "17", "19", "21", "22", "26", "30", "30", "34", "39", "43", "47", "50", "53", "61", "67", "69", "76", "84", "89", "97", "106", "110", "121", "131", "139", "148", "160", "166", "181", "194", "204", "215", "233", "242", "262", "274", "289", "305", "329", "338", "361", "378" ]
[ "nonn" ]
5
0
10
[ "A018252", "A096258", "A341462", "A347586", "A347662", "A347797", "A358638", "A358639", "A358640" ]
null
Ilya Gutkovskiy, Nov 24 2022
2022-11-27T11:05:29
oeisdata/seq/A358/A358640.seq
d51051ab9a7c00f3203451d9bfe4c2c3
A358641
Decimal expansion of the smallest real solution of 2*x = 2 + log(5*x - 1).
[ "2", "4", "4", "1", "0", "2", "7", "8", "5", "2", "0", "1", "3", "0", "2", "9", "0", "9", "5", "8", "2", "9", "7", "5", "9", "5", "0", "1", "7", "4", "8", "3", "1", "5", "1", "9", "3", "0", "1", "6", "7", "9", "0", "6", "3", "0", "7", "7", "1", "1", "4", "2", "9", "0", "0", "7", "6", "8", "5", "3", "8", "7", "3", "2", "8", "9", "3", "1", "0", "5", "1", "9", "1", "2", "9", "8", "2", "5", "4", "9", "5", "6", "5" ]
[ "nonn", "cons" ]
7
0
1
[ "A358641", "A358642" ]
null
Stefano Spezia, Nov 24 2022
2022-11-27T10:39:07
oeisdata/seq/A358/A358641.seq
5fcd333c07376c3ce0f5965f60ff99ba
A358642
Decimal expansion of the largest real solution of 2*x = 2 + log(5*x - 1).
[ "2", "1", "3", "4", "6", "9", "3", "3", "8", "4", "3", "2", "2", "9", "2", "1", "5", "3", "8", "9", "4", "6", "2", "6", "8", "8", "5", "6", "4", "9", "8", "8", "4", "5", "8", "0", "4", "5", "6", "5", "3", "4", "0", "3", "0", "6", "6", "1", "0", "9", "9", "6", "2", "5", "7", "3", "5", "7", "5", "1", "6", "4", "3", "5", "0", "2", "2", "8", "6", "9", "6", "7", "0", "7", "4", "5", "5", "9", "5", "3", "7", "4", "1", "6", "8", "4", "6", "9" ]
[ "nonn", "cons" ]
10
1
1
[ "A358641", "A358642" ]
null
Stefano Spezia, Nov 24 2022
2022-11-27T10:39:21
oeisdata/seq/A358/A358642.seq
66182bf8c6600319a5648e6fcb1bb663
A358643
Decimal expansion of the smallest real solution of 2*x = 2 + log(4*x - 1).
[ "3", "1", "3", "3", "1", "2", "7", "2", "7", "3", "2", "4", "0", "2", "8", "0", "1", "0", "6", "0", "4", "7", "2", "9", "1", "8", "3", "1", "7", "4", "1", "6", "5", "9", "0", "6", "4", "8", "5", "2", "4", "3", "8", "2", "6", "9", "7", "1", "6", "2", "7", "6", "3", "6", "4", "7", "3", "2", "4", "7", "4", "2", "6", "8", "4", "9", "4", "8", "3", "3", "3", "9", "2", "8", "1", "6", "7", "9", "5", "1", "8", "6", "6", "9", "7", "5", "9", "6" ]
[ "nonn", "cons" ]
6
0
1
[ "A358643", "A358644" ]
null
Stefano Spezia, Nov 24 2022
2022-11-27T10:39:29
oeisdata/seq/A358/A358643.seq
4a8fffee00d84b1543aea6cca701b6b8
A358644
Decimal expansion of the largest real solution of 2*x = 2 + log(4*x - 1).
[ "1", "9", "6", "1", "9", "6", "9", "3", "7", "5", "1", "7", "2", "9", "3", "9", "8", "2", "1", "1", "2", "8", "5", "3", "0", "3", "4", "4", "8", "7", "4", "3", "0", "5", "9", "2", "5", "2", "2", "4", "0", "4", "0", "1", "8", "1", "2", "5", "8", "3", "1", "2", "1", "0", "4", "7", "3", "0", "5", "0", "5", "3", "1", "4", "8", "7", "1", "1", "3", "1", "5", "9", "5", "9", "1", "2", "1", "5", "6", "6", "4", "5", "6", "7", "8", "2", "2" ]
[ "nonn", "cons" ]
9
1
2
[ "A358643", "A358644" ]
null
Stefano Spezia, Nov 24 2022
2022-11-27T10:39:42
oeisdata/seq/A358/A358644.seq
7264bbc5813b4450f2e12ac330ebc810
A358645
Decimal expansion of 4/5 + log(5).
[ "2", "4", "0", "9", "4", "3", "7", "9", "1", "2", "4", "3", "4", "1", "0", "0", "3", "7", "4", "6", "0", "0", "7", "5", "9", "3", "3", "3", "2", "2", "6", "1", "8", "7", "6", "3", "9", "5", "2", "5", "6", "0", "1", "3", "5", "4", "2", "6", "8", "5", "1", "7", "7", "2", "1", "9", "1", "2", "6", "4", "7", "8", "9", "1", "4", "7", "4", "1", "7", "8", "9", "8", "7", "7", "0", "7", "6", "5", "7", "7", "6", "4", "6", "3", "0", "1", "3", "3", "8", "7", "8" ]
[ "nonn", "cons" ]
12
1
1
[ "A016628", "A358645", "A358646" ]
null
Stefano Spezia, Nov 24 2022
2022-11-28T05:56:34
oeisdata/seq/A358/A358645.seq
582ef90cd6f7fe6b32a188e5d9c37c63
A358646
Decimal expansion of 3/4 + log(4).
[ "2", "1", "3", "6", "2", "9", "4", "3", "6", "1", "1", "1", "9", "8", "9", "0", "6", "1", "8", "8", "3", "4", "4", "6", "4", "2", "4", "2", "9", "1", "6", "3", "5", "3", "1", "3", "6", "1", "5", "1", "0", "0", "0", "2", "6", "8", "7", "2", "0", "5", "1", "0", "5", "0", "8", "2", "4", "1", "3", "6", "0", "0", "1", "8", "9", "8", "6", "7", "8", "7", "2", "4", "3", "9", "3", "9", "3", "8", "9", "4", "3", "1", "2", "1", "1", "7", "2", "6", "6", "5" ]
[ "nonn", "cons" ]
10
1
1
[ "A016627", "A358645", "A358646" ]
null
Stefano Spezia, Nov 24 2022
2022-11-27T10:40:07
oeisdata/seq/A358/A358646.seq
6de6ed3aea4183ef60e2358ff4debf7b
A358647
Final digit reached by traveling right (with wraparound) through the digits of n. Each move steps right k places, where k is the digit at the beginning of the move. Moves begin at the most significant digit and d moves are made, where d is the number of digits in n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", "1", "2", "1", "4", "1", "6", "1", "8", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "0", "3", "2", "3", "4", "3", "6", "3", "8", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "0", "5", "2", "5", "4", "5", "6", "5", "8", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "0", "7", "2", "7", "4", "7", "6", "7", "8", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "0", "9", "2", "9", "4", "9", "6", "9", "8", "9" ]
[ "nonn", "base", "easy" ]
24
0
3
[ "A357531", "A358647" ]
null
Moosa Nasir, Nov 24 2022
2022-11-30T12:39:40
oeisdata/seq/A358/A358647.seq
2e541454b0393836634bece87910eeb9
A358648
Number of preference profiles of the stable roommates problem with 2n participants.
[ "1", "1296", "2985984000000", "416336312719673760153600000000", "39594086612242519324387557078266845776303882240000000000", "16363214235219603423192858350259453436046713251360764276842772299776000000000000000000000000" ]
[ "nonn", "easy" ]
17
1
2
[ "A001147", "A091868", "A185141", "A356584", "A358648" ]
null
Dan Eilers, Nov 24 2022
2022-12-12T06:03:31
oeisdata/seq/A358/A358648.seq
d5e73f02a7741bd13fa2dbf262ed2f3d
A358649
Number of convergent n X n matrices over GF(2).
[ "1", "2", "11", "205", "14137", "3755249", "3916674017", "16190352314305", "266479066904477569", "17503939768635307654913", "4593798697440979773283368449", "4819699338906053452395454422580225", "20221058158328101246044232181365184919553" ]
[ "nonn" ]
34
0
2
[ "A053763", "A132186", "A296548", "A358649", "A379778" ]
null
Geoffrey Critzer, Nov 26 2022
2025-01-03T09:37:14
oeisdata/seq/A358/A358649.seq
0045f66494429336d9116e9f1760bcc6
A358650
Matula-Goebel tree number of the binomial tree of n vertices.
[ "1", "2", "4", "6", "12", "18", "42", "78", "156", "234", "546", "1014", "2886", "4758", "14118", "30966", "61932", "92898", "216762", "402558", "1145742", "1888926", "5604846", "12293502", "28210026", "45860646", "121727346", "249864654", "813198126", "1423166394", "4740553974", "11234495766", "22468991532", "33703487298" ]
[ "nonn", "easy" ]
15
1
2
[ "A076146", "A348067", "A358650" ]
null
Kevin Ryde, Nov 25 2022
2024-12-19T11:46:19
oeisdata/seq/A358/A358650.seq
f910c397f9b20f9abd087aeb62053f08
A358651
a(n) = n!*Sum_{m=1..floor(n/2)} 1/(m^2*binomial(n-m,m)).
[ "0", "0", "2", "3", "14", "40", "254", "1106", "9400", "56232", "607392", "4685472", "61485984", "585235872", "9014205888", "102480586560", "1806461775360", "23934358033920", "473963802485760", "7180611912944640", "157539651679641600", "2688528843644313600", "64654185117092659200" ]
[ "nonn" ]
14
0
3
null
null
Vladimir Kruchinin, Nov 25 2022
2022-11-27T10:49:00
oeisdata/seq/A358/A358651.seq
6b7393bd2f8674dd4181e62964ca6500
A358652
a(n) = n!*Sum_{m=1..floor((n+1)/2)} 1/(m*binomial(n-m,m-1)).
[ "1", "2", "9", "30", "180", "890", "7084", "47544", "478512", "4103712", "50079744", "525568032", "7531512768", "93697680960", "1539661512960", "22172241784320", "410427317468160", "6717998786595840", "138197449498521600", "2534644598027673600", "57329127350795059200" ]
[ "nonn" ]
13
1
2
null
null
Vladimir Kruchinin, Nov 25 2022
2023-12-10T09:14:54
oeisdata/seq/A358/A358652.seq
bcf75195095418c7d44670b561710fa0
A358653
a(n) is the number of trivial braids on 3 strands which are products of n generators a, b, where a = sigma_1 sigma_2 sigma_1 and b = sigma_1 sigma_2.
[ "1", "0", "4", "0", "28", "10", "244", "210", "2412", "3366", "26014", "49456", "299452", "701818", "3624478" ]
[ "nonn", "more" ]
12
0
3
[ "A354602", "A358653" ]
null
Alexei Vernitski, Nov 25 2022
2024-01-16T16:57:41
oeisdata/seq/A358/A358653.seq
5722dbda7660695280b92245b02bc012
A358654
a(n) = A025480(A353654(n+1) - 1).
[ "0", "1", "3", "2", "7", "5", "6", "15", "4", "11", "13", "14", "31", "9", "10", "23", "12", "27", "29", "30", "63", "8", "19", "21", "22", "47", "25", "26", "55", "28", "59", "61", "62", "127", "17", "18", "39", "20", "43", "45", "46", "95", "24", "51", "53", "54", "111", "57", "58", "119", "60", "123", "125", "126", "255", "16", "35", "37", "38", "79", "41", "42", "87", "44", "91", "93" ]
[ "nonn", "base" ]
28
0
3
[ "A025480", "A048679", "A247648", "A343152", "A348366", "A353654", "A355489", "A358654" ]
null
Mikhail Kurkov, Nov 25 2022
2024-04-25T11:29:11
oeisdata/seq/A358/A358654.seq
d7d2f3a794f0ac0fd97c47351ed903a6
A358655
a(n) is the number of distinct scalar products which can be formed by pairs of signed permutations (V, W) of [n].
[ "1", "2", "7", "24", "61", "111", "183", "281", "409", "571", "771", "1013", "1301", "1639", "2031", "2481", "2993", "3571", "4219", "4941", "5741", "6623", "7591", "8649", "9801", "11051", "12403", "13861", "15429", "17111", "18911", "20833", "22881", "25059", "27371", "29821", "32413", "35151", "38039", "41081", "44281", "47643" ]
[ "nonn", "easy" ]
54
0
2
[ "A000165", "A188475", "A358629", "A358655" ]
null
Thomas Scheuerle, Nov 25 2022
2024-10-02T07:29:01
oeisdata/seq/A358/A358655.seq
da07017662ed087ac05b94b6070fbb03
A358656
Least prime p such that p^n + 2 is the product of n distinct primes.
[ "3", "2", "7", "71", "241", "83", "157", "6947", "4231", "35509", "15541", "199499", "649147" ]
[ "nonn", "more" ]
51
1
1
[ "A000961", "A005117", "A280005", "A358656" ]
null
J.W.L. (Jan) Eerland, Nov 27 2022
2024-05-19T04:10:22
oeisdata/seq/A358/A358656.seq
8c9fbc40ee97f4fe075846b034c26d61
A358657
Numbers such that the three numbers before and the three numbers after are squarefree semiprimes.
[ "216", "143100", "194760", "206136", "273420", "684900", "807660", "1373940", "1391760", "1516536", "1591596", "1611000", "1774800", "1882980", "1891764", "2046456", "2051496", "2163420", "2163960", "2338056", "2359980", "2522520", "2913840", "3108204", "4221756", "4297320", "4334940", "4866120", "4988880", "5108796", "5247144", "5606244", "5996844" ]
[ "nonn", "changed" ]
42
1
1
[ "A001358", "A158476", "A350101", "A358657", "A358666" ]
null
Tanya Khovanova and Massimo Kofler, Nov 25 2022
2025-04-26T01:44:43
oeisdata/seq/A358/A358657.seq
4f82edac5cb4dd19327ed3c8f1f246c5
A358658
Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167).
[ "1", "3", "0", "7", "3", "2", "1", "3", "7", "1", "7", "0", "6", "0", "7", "2", "3", "6", "9", "2", "9", "6", "4", "2", "2", "8", "0", "4", "2", "5", "3", "9", "8", "8", "3", "9", "1", "4", "2", "7", "4", "3", "4", "6", "8", "6", "0", "8", "2", "3", "9", "4", "0", "9", "8", "0", "1", "5", "3", "6", "3", "5", "6", "9", "8", "1", "7", "0", "0", "9", "7", "0", "8", "9", "0", "0", "8", "4", "9", "7", "3", "2", "2", "0", "0", "7", "2", "0", "2", "5", "4", "0", "4", "5", "4", "8", "4", "4", "8", "1", "2", "9", "7", "2", "9" ]
[ "nonn", "cons" ]
6
1
2
[ "A047994", "A321167", "A327838", "A358658" ]
null
Amiram Eldar, Nov 25 2022
2022-11-26T02:44:30
oeisdata/seq/A358/A358658.seq
7b3e5231fc7c682d8ab597cb948c88ed
A358659
Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.
[ "9", "8", "4", "8", "8", "3", "6", "4", "1", "8", "7", "7", "2", "2", "8", "2", "9", "4", "0", "9", "5", "3", "7", "0", "1", "3", "8", "0", "4", "8", "9", "6", "1", "1", "3", "7", "6", "4", "7", "3", "1", "6", "3", "2", "2", "2", "2", "7", "0", "5", "8", "1", "3", "4", "5", "5", "0", "0", "6", "3", "6", "2", "3", "5", "5", "0", "2", "2", "3", "9", "6", "8", "0", "6", "5", "9", "0", "8", "2", "3", "8", "0", "0", "8", "1", "8", "9", "3", "8", "0", "9", "5", "5", "7", "4", "0", "8", "7", "6", "9", "1", "3", "3", "4", "4" ]
[ "nonn", "cons" ]
5
0
1
[ "A049419", "A278908", "A307869", "A308042", "A308043", "A358659" ]
null
Amiram Eldar, Nov 25 2022
2022-11-26T02:44:41
oeisdata/seq/A358/A358659.seq
e86d6de125a6e173ba7741a113b14195
A358660
a(n) = Sum_{d|n} d * (n/d)^(n-d).
[ "1", "4", "12", "76", "630", "7968", "117656", "2105416", "43048917", "1000781420", "25937424612", "743130116112", "23298085122494", "793742455829456", "29192926758107760", "1152930300766980112", "48661191875666868498", "2185915267189632382650", "104127350297911241532860" ]
[ "nonn" ]
30
1
2
[ "A090879", "A342629", "A356539", "A358660", "A359112" ]
null
Seiichi Manyama, Dec 17 2022
2023-08-27T17:02:12
oeisdata/seq/A358/A358660.seq
2effdd24758716e58945e6920be623f9
A358661
Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1)) / x = (1 - (x - 1)^(x - 1)) / (x - 2).
[ "1", "1", "9", "8", "6", "8", "8", "3", "0", "7", "6", "8", "7", "2", "8", "9", "7", "2", "2", "2", "2", "7", "2", "4", "3", "6", "8", "3", "7", "7", "9", "8", "4", "7", "9", "4", "5", "2", "4", "5", "0", "7", "3", "2", "8", "6", "3", "9", "3", "4", "4", "2", "8", "7", "9", "8", "6", "0", "7", "2", "2", "4", "7", "2", "5", "1", "7", "2", "0", "7", "6", "0", "9", "8", "2", "3", "7", "2", "3", "9", "1", "0", "0", "5", "1", "8", "3", "9", "6", "1" ]
[ "nonn", "cons" ]
8
1
3
[ "A001622", "A358661", "A358662", "A358663" ]
null
Wesley Ivan Hurt, Nov 25 2022
2022-11-27T11:02:31
oeisdata/seq/A358/A358661.seq
0e4bd0218a909d962f0c13b8979ad32c
A358662
Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1))/x = (1 - (x - 1)^x)/(x - 2).
[ "1", "4", "7", "0", "4", "1", "0", "8", "4", "1", "4", "5", "2", "8", "5", "8", "5", "5", "7", "1", "6", "0", "8", "6", "7", "1", "4", "7", "3", "0", "2", "6", "7", "0", "7", "5", "5", "7", "9", "1", "2", "5", "0", "9", "2", "0", "9", "5", "3", "6", "5", "3", "9", "9", "0", "7", "3", "5", "0", "5", "4", "1", "9", "0", "2", "5", "9", "8", "0", "4", "7", "3", "9", "8", "6", "9", "9", "6", "0", "0", "7", "0", "4", "9", "5", "4", "8", "4", "3", "4" ]
[ "nonn", "cons" ]
6
1
2
[ "A001622", "A358661", "A358662", "A358663" ]
null
Wesley Ivan Hurt, Nov 25 2022
2022-11-27T11:02:49
oeisdata/seq/A358/A358662.seq
acb3eaafeb5e6adb6a7cb736d6a25fab
A358663
Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1))/x = (1 - (x - 1)^(x + 1))/(x - 2).
[ "1", "5", "4", "7", "2", "2", "7", "1", "9", "3", "8", "0", "9", "3", "7", "2", "7", "5", "0", "2", "0", "1", "8", "2", "2", "6", "2", "4", "1", "2", "6", "5", "3", "5", "4", "6", "4", "8", "0", "2", "9", "5", "8", "5", "6", "2", "8", "2", "3", "9", "3", "5", "6", "3", "4", "3", "5", "8", "2", "0", "2", "9", "4", "7", "4", "7", "1", "0", "1", "9", "8", "6", "2", "8", "1", "4", "5", "8", "9", "5", "1", "2", "2", "0", "8", "1", "8", "2", "9", "6" ]
[ "nonn", "cons" ]
6
1
2
[ "A001622", "A358661", "A358662", "A358663" ]
null
Wesley Ivan Hurt, Nov 25 2022
2022-11-27T11:02:56
oeisdata/seq/A358/A358663.seq
24cc305722d6974c7ba012040ae8d1a5
A358664
Decimal expansion of ((phi + 1)^phi - 1) / phi, where phi is the golden ratio.
[ "2", "3", "1", "4", "9", "5", "5", "9", "2", "8", "8", "2", "9", "7", "3", "8", "4", "5", "1", "6", "0", "1", "6", "4", "0", "7", "8", "7", "5", "8", "6", "0", "4", "7", "6", "4", "3", "9", "7", "0", "3", "5", "1", "9", "0", "2", "3", "7", "9", "3", "7", "4", "6", "7", "2", "4", "8", "0", "6", "2", "6", "9", "8", "1", "3", "6", "6", "4", "5", "6", "2", "6", "4", "0", "5", "5", "7", "1", "4", "1", "8", "4", "4", "8", "3", "8", "5", "4", "0", "3", "6", "9", "2" ]
[ "nonn", "cons" ]
16
1
1
[ "A001622", "A358661", "A358662", "A358663", "A358664" ]
null
Wesley Ivan Hurt, Nov 25 2022
2025-03-24T03:59:44
oeisdata/seq/A358/A358664.seq
f02d0ed2a2bc0c506fffc693a58159d2
A358665
Number of (undirected) paths in the 7 X n king graph.
[ "21", "202719", "375341540", "834776217484", "1482823362091281", "2480146959625512771", "3954100866385811897908", "6098277513580967335984126", "9152733286084921835343938561", "13441847550989968623927296910019", "19393111514791549266474890223886106", "27568262002518118100083519899700564808" ]
[ "nonn" ]
31
1
1
[ "A307026", "A358665" ]
null
Seiichi Manyama, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358665.seq
c1f96f79de0cd9ce479cdf437c62ffad
A358666
Numbers such that the two numbers before and the two numbers after are squarefree semiprimes.
[ "144", "204", "216", "300", "696", "1140", "1764", "2604", "3240", "3900", "4536", "4764", "5316", "5460", "6000", "6504", "7116", "7836", "7860", "8004", "8484", "9300", "9864", "9936", "10020", "11760", "12180", "13140", "13656", "14256", "15096", "16020", "16440", "16860", "18000", "19536", "20016", "20136", "20280", "21780", "22116", "22236", "23940" ]
[ "nonn" ]
14
1
1
[ "A001358", "A358657", "A358665", "A358666" ]
null
Tanya Khovanova and Massimo Kofler, Nov 25 2022
2022-11-27T10:41:01
oeisdata/seq/A358/A358666.seq
fd0cdbbf142be3541370a61dc1f784fc
A358667
T(n,k) is the k-th integer j > 1 such that the sum of digits of n^j is a power of n (or -1 if no such k-th integer exists); table read by downward antidiagonals.
[ "2", "3", "2", "4", "3", "2", "5", "9", "3", "18", "6", "36", "4", "88", "8", "7", "85", "5", "97", "208", "7", "8", "176", "9", "100", "977", "8", "4", "9", "194", "10", "1521", "1007", "9", "11", "3", "10", "200", "11", "6034", "4938", "10", "4433", "12", "2", "11", "375", "13", "6052", "24709", "13", "30810", "125", "18", "2", "12", "1517", "16", "96867", "24733", "51", "216613", "1014", "1503", "3" ]
[ "nonn", "tabl" ]
10
1
1
[ "A095412", "A118872", "A358633", "A358667" ]
null
Jon E. Schoenfield, Nov 25 2022
2024-10-20T11:41:41
oeisdata/seq/A358/A358667.seq
1d27f60771c978fcdcba4e40e36d24b0
A358668
a(n) is the least m such that A359194^k(m) = n for some k >= 0 (where A359194^k denotes the k-th iterate of A359194).
[ "0", "0", "2", "3", "4", "5", "3", "7", "8", "9", "7", "11", "12", "3", "14", "11", "11", "17", "11", "19", "20", "14", "12", "23", "3", "12", "26", "12", "28", "29", "11", "12", "32", "33", "12", "35", "36", "11", "38", "12", "29", "41", "42", "28", "44", "45", "12", "47", "48", "26", "50", "51", "12", "53", "54", "3", "56", "26", "23", "59", "60", "12", "62", "26", "26", "65", "26", "67", "68" ]
[ "nonn", "base" ]
63
0
3
[ "A070167", "A358668", "A359194", "A359214" ]
null
Rémy Sigrist, Dec 22 2022
2022-12-23T08:51:03
oeisdata/seq/A358/A358668.seq
cb8becdd0318802d039d2fb733ecb23c
A358669
Pointwise product of the arithmetic derivative and the primorial base exp-function.
[ "0", "0", "3", "6", "36", "18", "25", "10", "180", "180", "315", "90", "400", "50", "675", "1200", "7200", "450", "2625", "250", "9000", "7500", "14625", "2250", "27500", "12500", "28125", "101250", "180000", "11250", "217", "14", "1680", "588", "1197", "1512", "2100", "70", "2205", "3360", "21420", "630", "7175", "350", "25200", "40950", "39375", "3150", "98000", "24500", "118125", "105000", "441000" ]
[ "nonn" ]
24
0
3
[ "A003415", "A016825", "A042965", "A059841", "A067019", "A121262", "A152822", "A235992", "A276086", "A327858", "A353558", "A358669", "A358680", "A358748", "A358749", "A358765", "A359423", "A359603" ]
null
Antti Karttunen, Dec 05 2022
2023-01-11T15:58:51
oeisdata/seq/A358/A358669.seq
d6ee988192233851148b30b784ae9136
A358670
a(n) = 1 if for all factorizations of n as x*y, the sum x+y is carryfree when the addition is done in the primorial base, otherwise 0.
[ "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0" ]
[ "nonn", "base" ]
14
1
null
[ "A038548", "A276086", "A329041", "A358233", "A358670", "A358671", "A358672" ]
null
Antti Karttunen, Nov 26 2022
2022-11-29T12:53:05
oeisdata/seq/A358/A358670.seq
1249e6ea461ba610ea5a1372e6f9ae1f
A358671
Numbers k such that for all factorizations of k as x*y, the sum x+y is carryfree when the addition is done in the primorial base, A049345.
[ "2", "4", "6", "14", "18", "24", "26", "28", "38", "42", "52", "54", "62", "72", "74", "76", "78", "86", "96", "98", "114", "122", "124", "126", "134", "146", "148", "158", "172", "186", "194", "206", "218", "222", "244", "254", "258", "268", "278", "292", "302", "314", "316", "326", "362", "366", "386", "388", "398", "402", "412", "422", "434", "436", "438", "446", "458", "474", "482", "508", "518", "542", "554", "556", "558" ]
[ "nonn", "base" ]
15
1
1
[ "A038548", "A049345", "A276086", "A329041", "A358233", "A358670", "A358671", "A358673" ]
null
Antti Karttunen, Nov 26 2022
2022-11-28T17:22:42
oeisdata/seq/A358/A358671.seq
520de0a771f890a07a0e4ccde0647de4
A358672
a(n) = 1 if for all factorizations of n as x*y, the sum (x * y') + (x' * y) is carryfree when the addition is done in the primorial base, otherwise 0. Here u' stands for A003415(u), the arithmetic derivative of u.
[ "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1" ]
[ "nonn", "base" ]
16
1
null
[ "A003415", "A038548", "A276086", "A329041", "A358235", "A358670", "A358672", "A358673", "A358674" ]
null
Antti Karttunen, Nov 26 2022
2022-11-29T12:53:20
oeisdata/seq/A358/A358672.seq
b38ea48cbfebf88ff4e09993b5261473
A358673
Numbers k such that for all factorizations of k as x*y, the sum (x * y') + (x' * y) is carryfree when the addition is done in the primorial base, A049345. Here n' stands for A003415(n), the arithmetic derivative of n.
[ "1", "2", "3", "4", "5", "6", "7", "11", "12", "13", "14", "17", "18", "19", "23", "26", "27", "29", "31", "37", "38", "41", "43", "47", "53", "59", "61", "62", "63", "67", "70", "71", "73", "74", "79", "83", "86", "89", "97", "99", "101", "103", "107", "109", "113", "117", "122", "127", "131", "134", "137", "139", "146", "149", "151", "153", "154", "157", "158", "163", "167", "173", "179", "181", "186", "190", "191", "193", "194", "195" ]
[ "nonn", "base" ]
22
1
2
[ "A000040", "A003415", "A049345", "A358235", "A358671", "A358672", "A358673", "A358674", "A380468", "A380525" ]
null
Antti Karttunen, Nov 26 2022
2025-02-09T18:10:03
oeisdata/seq/A358/A358673.seq
b1c52b7382b4fb40b08d3eaf587e31df
A358674
Numbers k for which there is a factorization of k into such a pair of natural numbers x and y, that the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n.
[ "8", "9", "10", "15", "16", "20", "21", "22", "24", "25", "28", "30", "32", "33", "34", "35", "36", "39", "40", "42", "44", "45", "46", "48", "49", "50", "51", "52", "54", "55", "56", "57", "58", "60", "64", "65", "66", "68", "69", "72", "75", "76", "77", "78", "80", "81", "82", "84", "85", "87", "88", "90", "91", "92", "93", "94", "95", "96", "98", "100", "102", "104", "105", "106", "108", "110", "111", "112", "114", "115", "116", "118", "119" ]
[ "nonn", "base" ]
15
1
1
[ "A003415", "A016754", "A038548", "A276086", "A329041", "A358235", "A358672", "A358673", "A358674", "A358675" ]
null
Antti Karttunen, Nov 26 2022
2022-11-28T17:22:25
oeisdata/seq/A358/A358674.seq
580e948c6cdb6d57717cff21ff01099c
A358675
Numbers k such that for all nontrivial factorizations of k as x*y, the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n.
[ "8", "9", "10", "15", "16", "20", "21", "22", "25", "28", "30", "33", "34", "35", "39", "44", "46", "49", "50", "51", "55", "56", "57", "58", "65", "66", "68", "69", "77", "81", "82", "84", "85", "87", "91", "92", "93", "94", "95", "102", "106", "108", "111", "112", "115", "116", "118", "119", "120", "121", "123", "125", "128", "129", "133", "136", "138", "141", "142", "143", "145", "147", "148", "155", "156", "159", "160", "161" ]
[ "nonn", "base" ]
14
1
1
[ "A003415", "A049345", "A358235", "A358674", "A358675" ]
null
Antti Karttunen, Nov 26 2022
2022-11-28T17:22:31
oeisdata/seq/A358/A358675.seq
a7b3cf366fcc930816e0d7006fff4943
A358676
Number of (undirected) paths in the 6 X n king graph.
[ "15", "40674", "25281625", "16997993692", "9454839968415", "4956907379126694", "2480146959625512771", "1199741105997010103190", "564696981034110130721083", "260043412621117997164783364", "117628771690070383600923005043", "52423243374584008151179491288866" ]
[ "nonn" ]
23
1
1
[ "A307026", "A358676" ]
null
Seiichi Manyama, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358676.seq
8f651730d5094aa6a3f01460a7ed1bb0
A358677
Irregular triangle where row n gives the columns of A340316 whose minimum value is in row n of A340316. The lists of column indices are given in abbreviated form, using pairs (x, y) to mean the range [x..y].
[ "1", "16", "18", "18", "21", "21", "17", "17", "19", "20", "22", "265549", "265604", "265605", "265608", "265681", "265683", "265829", "265831", "265831", "265835", "265836", "265850", "265850", "265853", "265853", "265862", "265873", "265550", "265603", "265606", "265607", "265682", "265682", "265830", "265830", "265832", "265834", "265837", "265849", "265851", "265852", "265854", "265861" ]
[ "nonn", "tabf" ]
44
1
2
[ "A276176", "A340316", "A346617", "A358677" ]
null
Michel Marcus, Dec 12 2022
2023-01-29T05:05:16
oeisdata/seq/A358/A358677.seq
8180e53b691f8f69110f338dd48fa13d
A358678
a(n) = 1 if n is odd and sigma(n) == 2 mod 4, otherwise 0.
[ "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0" ]
[ "nonn" ]
7
1
null
[ "A000035", "A000203", "A191218", "A353812", "A358678", "A359150" ]
null
Antti Karttunen, Dec 17 2022
2022-12-17T22:53:31
oeisdata/seq/A358/A358678.seq
608c6cab750173bb7fbfbf8249b9c1fc
A358679
Dirichlet inverse of the characteristic function of A061345, odd prime powers.
[ "1", "0", "-1", "0", "-1", "0", "-1", "0", "0", "0", "-1", "0", "-1", "0", "2", "0", "-1", "0", "-1", "0", "2", "0", "-1", "0", "0", "0", "0", "0", "-1", "0", "-1", "0", "2", "0", "2", "0", "-1", "0", "2", "0", "-1", "0", "-1", "0", "-1", "0", "-1", "0", "0", "0", "2", "0", "-1", "0", "2", "0", "2", "0", "-1", "0", "-1", "0", "-1", "0", "2", "0", "-1", "0", "2", "0", "-1", "0", "-1", "0", "-1", "0", "2", "0", "-1", "0", "0", "0", "-1", "0", "2", "0", "2", "0", "-1", "0", "2", "0", "2", "0", "2", "0", "-1", "0", "-1", "0", "-1", "0", "-1", "0", "-6" ]
[ "sign" ]
7
1
15
[ "A061345", "A174275", "A358679" ]
null
Antti Karttunen, Dec 23 2022
2022-12-23T16:22:29
oeisdata/seq/A358/A358679.seq
0b921318dba366edc6ebdd7c8763a883
A358680
a(n) = 1 if the arithmetic derivative of n is even, 0 otherwise.
[ "1", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1" ]
[ "nonn" ]
10
0
null
[ "A003415", "A059841", "A121262", "A165560", "A235992", "A353494", "A353495", "A353557", "A358680" ]
null
Antti Karttunen, Dec 07 2022
2022-12-08T16:32:12
oeisdata/seq/A358/A358680.seq
efa2fda2703e5e4219f81a02b902682f
A358681
Largest area (doubled) of a triangle enclosed by a circle of radius n such that the center of the circle and the vertices of the triangle all have integer coordinates.
[ "2", "8", "21", "36", "64", "90", "120", "157", "208", "256", "306", "360", "432", "504", "576", "650", "750", "832", "928", "1025", "1122", "1254", "1360", "1480", "1612", "1748", "1886", "2016", "2170", "2328", "2484", "2646", "2802", "3000", "3180", "3348", "3540", "3718", "3944", "4148", "4340", "4552", "4788", "5016", "5244", "5473", "5718", "5964" ]
[ "nonn" ]
17
1
1
[ "A120893", "A358465", "A358681" ]
null
Gerhard Kirchner, Nov 26 2022
2024-01-03T17:19:02
oeisdata/seq/A358/A358681.seq
62225e65467fe6e5e58e6b0040ab2fc0
A358682
Numbers k such that 8*k^2 + 8*k - 7 is a square.
[ "1", "7", "43", "253", "1477", "8611", "50191", "292537", "1705033", "9937663", "57920947", "337588021", "1967607181", "11468055067", "66840723223", "389576284273", "2270616982417", "13234125610231", "77134136678971", "449570694463597", "2620290030102613", "15272169486152083", "89012726886809887", "518804191834707241" ]
[ "nonn", "easy" ]
12
1
2
[ "A002315", "A006452", "A077443", "A077446", "A106328", "A106329", "A216134", "A358682" ]
null
Stefano Spezia, Nov 26 2022
2022-11-27T12:12:41
oeisdata/seq/A358/A358682.seq
78265a1463e51476694c00bd61618c72
A358683
a(n) is the sum of all divisors of all positive integers k where A182986(n) < k <= prime(n), n >= 1.
[ "4", "4", "13", "20", "58", "42", "97", "59", "134", "259", "104", "342", "248", "140", "282", "498", "542", "230", "623", "438", "269", "722", "517", "854", "1256", "646", "320", "672", "390", "730", "2767", "815", "1348", "428", "2361", "524", "1564", "1553", "1002", "1729", "1670", "728", "2980", "702", "1227", "668", "4125", "4172", "1477", "790", "1500", "2246", "986", "3859", "2601", "2470", "2630" ]
[ "nonn" ]
61
1
1
[ "A000040", "A000203", "A001235", "A024916", "A182986", "A237270", "A237591", "A237593", "A244583", "A299763", "A358683" ]
null
Omar E. Pol, Nov 26 2022
2022-12-21T20:47:28
oeisdata/seq/A358/A358683.seq
64e9551c28fb1235e47fc94ad61e6559
A358684
a(n) is the minimum integer k such that the smallest prime factor of the n-th Fermat number exceeds 2^(2^n - k).
[ "0", "0", "0", "0", "0", "23", "46", "73", "206", "491", "999", "2030", "4080", "8151" ]
[ "nonn", "more" ]
30
0
6
[ "A000215", "A093179", "A358684" ]
null
Lorenzo Sauras Altuzarra, Nov 26 2022
2022-12-27T16:54:12
oeisdata/seq/A358/A358684.seq
36e926080f18e982e07b7a5d11514585
A358685
Number of primes < 10^n whose digits are all odd.
[ "3", "15", "57", "182", "790", "3217", "13298", "56866", "254689", "1128121", "5106701", "23266331", "107019385", "494689488", "2306491761", "10758057302", "50548874979" ]
[ "base", "nonn", "more" ]
43
1
1
[ "A030096", "A358685", "A358690" ]
null
Zhining Yang, Nov 26 2022
2022-12-22T02:12:58
oeisdata/seq/A358/A358685.seq
e577e80284ec4d6027c675504d92c64d
A358686
Numbers sandwiched between two semiprimes, one of which is a square.
[ "5", "50", "120", "122", "288", "290", "528", "842", "960", "1370", "1680", "1850", "2808", "2810", "4488", "5328", "5330", "6240", "6242", "6888", "6890", "9408", "9410", "11880", "12768", "18770", "22200", "22800", "26568", "27888", "36482", "38808", "39600", "52440", "54290", "58080", "63000", "63002", "69170", "72360", "72362", "73442", "76730", "78960" ]
[ "nonn" ]
30
1
1
[ "A001358", "A006881", "A124936", "A358665", "A358686" ]
null
Tanya Khovanova, Nov 26 2022
2023-07-23T01:53:43
oeisdata/seq/A358/A358686.seq
03429d425cae4cfed60a3cf13757edf1
A358687
a(n) = n! * Sum_{k=0..n} k^(3 * (n-k)) / (n-k)!.
[ "1", "1", "4", "57", "1444", "61785", "4050126", "373648513", "47101090744", "7764843893265", "1630744323319450", "426925697290933401", "136591846585403311620", "52602030074554601172649", "24058544668572618782040022", "12916480280574798627072144465" ]
[ "nonn" ]
24
0
3
[ "A006153", "A193421", "A349880", "A356673", "A358687", "A358688" ]
null
Seiichi Manyama, Nov 26 2022
2022-11-27T06:44:28
oeisdata/seq/A358/A358687.seq
4cf0f5d8898ec98a7ccfcdb73a9f61eb
A358688
a(n) = n! * Sum_{k=0..n} k^(k * (n-k)) / (n-k)!.
[ "1", "2", "5", "34", "869", "75866", "28213327", "39049033346", "256215628707257", "7710689746589777938", "1063776147486867074877851", "870059224717752809087935599002", "3104894940194751778363241199111802885", "77521065749331962430758061530260243383954602" ]
[ "nonn" ]
16
0
2
[ "A006153", "A193421", "A349893", "A356674", "A358687", "A358688" ]
null
Seiichi Manyama, Nov 26 2022
2022-11-27T06:44:34
oeisdata/seq/A358/A358688.seq
bcf47db08697d4fab46d34653c2c7f77
A358689
Emirps p such that 2*p - reverse(p) is also an emirp.
[ "941", "1031", "1201", "1471", "7523", "7673", "7687", "9133", "9293", "9479", "9491", "9601", "9781", "9923", "10091", "10711", "12071", "14891", "15511", "17491", "17681", "18671", "32633", "33623", "34963", "35983", "36943", "36973", "37963", "39157", "70913", "72253", "72337", "72353", "73327", "74093", "75223", "75577", "75833", "75913", "77263", "77557", "79393", "79973" ]
[ "nonn", "base" ]
29
1
1
[ "A006567", "A358689" ]
null
J. M. Bergot and Robert Israel, Dec 08 2022
2022-12-11T01:34:07
oeisdata/seq/A358/A358689.seq
ae15c5db5835f8ce11eb306f2af42508
A358690
Number of n-digit primes whose digits are all odd.
[ "3", "12", "42", "125", "608", "2427", "10081", "43568", "197823", "873432", "3978580", "18159630", "83753054", "387670103", "1811802273", "8451565541", "39790817677" ]
[ "base", "nonn", "more" ]
34
1
1
[ "A030096", "A358685", "A358690" ]
null
Zhining Yang, Nov 26 2022
2023-01-14T08:44:48
oeisdata/seq/A358/A358690.seq
5287a2082e89130749cc5b0d2857a7eb
A358691
Gilbreath transform of primes p(2k-1); see Comments.
[ "3", "3", "3", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
12
1
1
[ "A000040", "A031368", "A036262", "A358691", "A358692" ]
null
Clark Kimberling, Nov 27 2022
2023-09-25T19:24:14
oeisdata/seq/A358/A358691.seq
e7ff417246263994c8198a160e8034f6
A358692
Gilbreath transform of primes p(2*k) with 2 prefixed; see Comments.
[ "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
20
1
2
[ "A031215", "A031368", "A036262", "A358691", "A358692" ]
null
Clark Kimberling, Nov 27 2022
2025-03-24T04:12:28
oeisdata/seq/A358/A358692.seq
3d7b042fd6af01d21904a436cb95d48d
A358693
Numbers k such that k / (sum of digits of k) is the square of a prime.
[ "12", "24", "36", "48", "81", "150", "225", "375", "441", "735", "882", "1014", "1452", "1521", "1815", "2023", "2028", "2178", "2312", "2535", "2601", "3549", "3610", "4046", "4332", "4335", "4624", "4913", "5054", "5415", "5491", "5780", "6069", "6137", "6358", "6647", "6936", "7581", "7942", "8664", "8959", "9386", "9522", "9747", "10092", "11532", "12321", "12615", "12696" ]
[ "nonn", "base" ]
63
1
1
[ "A001102", "A001248", "A007953", "A358693" ]
null
Andi Fugard, Jan 01 2023
2023-01-12T19:25:49
oeisdata/seq/A358/A358693.seq
69417601cc02fd634472e0f568961872
A358694
Triangle read by rows. Coefficients of the polynomials H(n, x) = Sum_{k=0..n-1} Sum_{i=0..k} abs(Stirling1(n, n - i)) * x^(n - k) in ascending order of powers.
[ "1", "0", "1", "0", "2", "1", "0", "6", "4", "1", "0", "24", "18", "7", "1", "0", "120", "96", "46", "11", "1", "0", "720", "600", "326", "101", "16", "1", "0", "5040", "4320", "2556", "932", "197", "22", "1", "0", "40320", "35280", "22212", "9080", "2311", "351", "29", "1", "0", "362880", "322560", "212976", "94852", "27568", "5119", "583", "37", "1" ]
[ "nonn", "tabl" ]
19
0
5
[ "A000254", "A001008", "A358694" ]
null
Peter Luschny, Nov 27 2022
2023-11-12T13:01:51
oeisdata/seq/A358/A358694.seq
52480f13eeca0cbcd00ddb1ef45dc062
A358695
a(n) = numerator( Sum_{k=0..n} (-1)^k * binomial(1/2, k)^2 * binomial(n, k) ).
[ "1", "3", "33", "75", "1305", "-8253", "-340711", "-2173509", "-758532375", "-3823240245", "-73518428511", "-342444310533", "-24952606638687", "-111735599023125", "-1975318542049815", "-8639356601706213", "-9590905885722547959", "-41296955508208952901", "-707029904720030040775", "-3010762771187568788685" ]
[ "sign", "frac" ]
12
0
2
[ "A056982", "A260832", "A358113", "A358695" ]
null
Peter Luschny, Dec 08 2022
2022-12-09T03:54:44
oeisdata/seq/A358/A358695.seq
9ab242d3c21db74275c61f38cd089152
A358696
Number of self-avoiding closed paths in the 5 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.
[ "1", "5", "36", "191", "1123", "6410", "37165", "214515", "1240200", "7165033", "41403125", "239227616", "1382302375", "7987125379", "46150853892", "266666446637", "1540838849619", "8903196975232", "51444004997119", "297251155267189", "1717561649837610", "9924328164015589", "57344252900906673", "331343672343272500", "1914553310297505893", "11062575457823993391", "63921216037276901284" ]
[ "nonn" ]
18
2
2
[ "A333515", "A333758", "A358696" ]
null
Seiichi Manyama, Nov 27 2022
2022-11-27T10:49:30
oeisdata/seq/A358/A358696.seq
1d4458825bf1b0e3aa672cb69e5f8b83
A358697
Number of self-avoiding closed paths in the 6 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.
[ "1", "11", "122", "1123", "11346", "113748", "1153742", "11674245", "118180383", "1195822385", "12100751361", "122447319062" ]
[ "nonn", "more" ]
7
2
2
[ "A333758", "A358697" ]
null
Seiichi Manyama, Nov 27 2022
2022-11-27T08:56:09
oeisdata/seq/A358/A358697.seq
42c2621933a22565439f86e0ee3af29d
A358698
Number of self-avoiding closed paths in the 7 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph.
[ "1", "21", "408", "6410", "113748", "2002405", "35669433", "633099244", "11240647480", "199480271184", "3540336868535", "62831861216325", "1115122033297714", "19790829247392636", "351241699540793996", "6233729269914805533", "110634310753645173365", "1963503651093439655818", "34847658208568166865562", "618465506517313482341986" ]
[ "nonn" ]
13
2
2
[ "A333758", "A358698" ]
null
Seiichi Manyama, Nov 27 2022
2022-11-27T10:30:24
oeisdata/seq/A358/A358698.seq
980ef928742e7bada12bda5021bf6202
A358699
a(n) is the largest prime factor of 2^(prime(n) - 1) - 1.
[ "3", "5", "7", "31", "13", "257", "73", "683", "127", "331", "109", "61681", "5419", "2796203", "8191", "3033169", "1321", "599479", "122921", "38737", "22366891", "8831418697", "2931542417", "22253377", "268501", "131071", "28059810762433", "279073", "54410972897", "77158673929", "145295143558111", "2879347902817", "10052678938039" ]
[ "nonn" ]
41
2
1
[ "A005420", "A006093", "A006530", "A061286", "A071243", "A086019", "A098102", "A274906", "A358699" ]
null
Hugo Pfoertner, Nov 27 2022
2022-12-01T12:40:56
oeisdata/seq/A358/A358699.seq
31914a00c5569262a5c978a197881780
A358700
a(n) is the number of binary digits of n^2.
[ "0", "1", "3", "4", "5", "5", "6", "6", "7", "7", "7", "7", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "10", "10", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "13", "13", "13", "13", "13", "13", "13" ]
[ "nonn", "base" ]
14
0
3
[ "A000290", "A029837", "A070939", "A358700" ]
null
Hugo Pfoertner, Dec 16 2022
2022-12-17T02:53:27
oeisdata/seq/A358/A358700.seq
34297f763b9f5553b9a447aa2aa11a2f