sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A358601 | Number of genetic relatives of a person M in a genealogical tree extending back n generations and where everyone has 7 children down to the generation of M. | [
"1",
"9",
"109",
"1485",
"20701",
"289629",
"4054429",
"56761245",
"794655901",
"11125179549",
"155752507549",
"2180535093405",
"30527491283101",
"427384877914269",
"5983388290701469",
"83767436069623965",
"1172744104974342301",
"16418417469640005789",
"229857844574958508189"
] | [
"nonn",
"easy"
] | 29 | 0 | 2 | [
"A076024",
"A358504",
"A358598",
"A358599",
"A358600",
"A358601"
] | null | Hans Braxmeier, Nov 23 2022 | 2024-02-09T08:41:01 | oeisdata/seq/A358/A358601.seq | 1d23160ce6e8a3d67b6783275e31ae6a |
A358602 | Define u such that u(1) = k and u(n) = u(n-1) + (-1)^n*(n!) for n > 1. Terms are numbers k for which the number of consecutive values of u(i), starting at u(1) = k, that are primes reaches a new record high. | [
"2",
"3",
"11",
"107",
"119657",
"2513657",
"8448047",
"210336167"
] | [
"nonn",
"more"
] | 34 | 1 | 1 | null | null | Jean-Marc Rebert, Nov 23 2022 | 2022-12-21T22:10:41 | oeisdata/seq/A358/A358602.seq | b3fb577f0a5c53cb5cdf4b5d8da16786 |
A358603 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-k)!/(n-2*k)!. | [
"1",
"1",
"0",
"-1",
"0",
"3",
"2",
"-9",
"-12",
"35",
"78",
"-153",
"-544",
"723",
"4170",
"-3337",
"-35028",
"10851",
"320678",
"57255",
"-3178152",
"-2190253",
"33864546",
"42120183",
"-385314460",
"-719159517",
"4649508222",
"12033407591",
"-59076411312",
"-204022615725",
"784134861818",
"3554417974647",
"-10768948801764"
] | [
"sign"
] | 16 | 0 | 6 | [
"A122852",
"A358603",
"A358604",
"A358605",
"A358606"
] | null | Seiichi Manyama, Nov 23 2022 | 2024-07-25T14:52:58 | oeisdata/seq/A358/A358603.seq | 701a240aeee8662b285cf309462762b7 |
A358604 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)!/(n-3*k)!. | [
"1",
"1",
"1",
"0",
"-1",
"-2",
"-1",
"2",
"7",
"8",
"-1",
"-26",
"-49",
"-28",
"103",
"314",
"359",
"-344",
"-2113",
"-3682",
"-161",
"14684",
"36791",
"25762",
"-100297",
"-373456",
"-472241",
"587846",
"3877487",
"7149988",
"-1111801",
"-40808566",
"-103472249",
"-56751688",
"424662623",
"1490284654",
"1674543359",
"-4121143444"
] | [
"sign"
] | 14 | 0 | 6 | [
"A357532",
"A358603",
"A358604",
"A358605",
"A358606"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-28T12:05:24 | oeisdata/seq/A358/A358604.seq | 5de823814e3c015812ffa15d68657b1a |
A358605 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-3*k)!/(n-4*k)!. | [
"1",
"1",
"1",
"1",
"0",
"-1",
"-2",
"-3",
"-2",
"1",
"6",
"13",
"16",
"9",
"-14",
"-59",
"-108",
"-119",
"-26",
"261",
"736",
"1177",
"1026",
"-731",
"-4964",
"-11079",
"-14978",
"-6299",
"30024",
"102841",
"189466",
"190917",
"-97004",
"-921191",
"-2301354",
"-3396539",
"-1674368",
"7265241",
"27311794",
"53600101",
"56943756",
"-31760903",
"-310594514",
"-809146971"
] | [
"sign"
] | 15 | 0 | 7 | [
"A357533",
"A358603",
"A358604",
"A358605",
"A358606"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-28T12:05:21 | oeisdata/seq/A358/A358605.seq | 810463ee8718d4f1a0a8bbd5f3a5504c |
A358606 | a(n) = Sum_{k=0..floor(n/5)} (-1)^k * (n-4*k)!/(n-5*k)!. | [
"1",
"1",
"1",
"1",
"1",
"0",
"-1",
"-2",
"-3",
"-4",
"-3",
"0",
"5",
"12",
"21",
"26",
"21",
"0",
"-43",
"-114",
"-195",
"-244",
"-195",
"42",
"581",
"1440",
"2421",
"2990",
"2157",
"-1644",
"-9955",
"-22974",
"-37515",
"-44248",
"-24219",
"50310",
"205661",
"442140",
"689997",
"740906",
"190245",
"-1534224",
"-4941355",
"-9887058",
"-14429619",
"-13255900",
"3510141"
] | [
"sign"
] | 15 | 0 | 8 | [
"A357570",
"A358603",
"A358604",
"A358605",
"A358606"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-28T12:05:33 | oeisdata/seq/A358/A358606.seq | a8bed55dd32188097fcf89a6e8a0fb91 |
A358607 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-2*k)!. | [
"1",
"1",
"1",
"5",
"23",
"115",
"697",
"4925",
"39623",
"357955",
"3589177",
"39558845",
"475412423",
"6187461955",
"86702878777",
"1301486906045",
"20836087009223",
"354385941189955",
"6381537618718777",
"121290714467642045",
"2426520470557921223",
"50969651457241797955",
"1121574207307049758777"
] | [
"nonn"
] | 17 | 0 | 4 | [
"A121868",
"A136580",
"A358607",
"A358608",
"A358609",
"A358611"
] | null | Seiichi Manyama, Nov 23 2022 | 2024-06-14T11:53:17 | oeisdata/seq/A358/A358607.seq | 1018f5f301cc4b6422b599f8c6f2b286 |
A358608 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-3*k)!. | [
"1",
"1",
"2",
"5",
"23",
"118",
"715",
"5017",
"40202",
"362165",
"3623783",
"39876598",
"478639435",
"6223397017",
"87138414602",
"1307195728565",
"20916566490983",
"355600289681398",
"6401066509999435",
"121624183842341017",
"2432546407886958602",
"51084541105199440565",
"1123879103593765338983"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A143630",
"A358498",
"A358607",
"A358608",
"A358609",
"A358611"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-25T06:40:40 | oeisdata/seq/A358/A358608.seq | 51e6680a5c85656847a9ca7b278477ca |
A358609 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-4*k)!. | [
"1",
"1",
"2",
"6",
"23",
"119",
"718",
"5034",
"40297",
"362761",
"3628082",
"39911766",
"478961303",
"6226658039",
"87174663118",
"1307634456234",
"20922310926697",
"355681201437961",
"6402286531064882",
"121643792774375766",
"2432881085865713303",
"51090586490508002039",
"1123994325491076615118"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A358499",
"A358607",
"A358608",
"A358609",
"A358611"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-25T06:44:02 | oeisdata/seq/A358/A358609.seq | 4684ed8a0adc00a0e83e791d48b55e3f |
A358610 | Numbers k such that the concatenation 1,2,3,... up to (k-1) is one less than a multiple of k. | [
"1",
"2",
"4",
"5",
"8",
"10",
"13",
"20",
"25",
"40",
"50",
"52",
"100",
"125",
"200",
"250",
"400",
"475",
"500",
"601",
"848",
"908",
"1000",
"1120",
"1250",
"1750",
"2000",
"2500",
"2800",
"2900",
"3670",
"4000",
"4375",
"4685",
"5000",
"6085",
"7000",
"7640",
"7924",
"8375",
"10000",
"10900",
"12500",
"13346",
"14000",
"17800",
"20000",
"21568",
"25000"
] | [
"nonn",
"base"
] | 29 | 1 | 2 | [
"A094151",
"A110740",
"A358610"
] | null | Martin Renner, Nov 23 2022 | 2022-12-11T12:15:09 | oeisdata/seq/A358/A358610.seq | 13aeb2dbd5d3acf771f7bd37b28c0c6f |
A358611 | a(n) = Sum_{k=0..floor(n/5)} (-1)^k * (n-5*k)!. | [
"1",
"1",
"2",
"6",
"24",
"119",
"719",
"5038",
"40314",
"362856",
"3628681",
"39916081",
"478996562",
"6226980486",
"87177928344",
"1307670739319",
"20922749971919",
"355686949099438",
"6402367478747514",
"121645013230903656",
"2432900700505900681",
"51090921248959468081",
"1124000372090658580562"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A358500",
"A358607",
"A358608",
"A358609",
"A358611"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-25T06:34:18 | oeisdata/seq/A358/A358611.seq | edf25f65c0170bc33486176dbc86d644 |
A358612 | Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the second kind. | [
"1",
"1",
"1",
"3",
"1",
"1",
"5",
"2",
"1",
"7",
"6",
"1",
"1",
"9",
"4",
"1",
"11",
"11",
"2",
"1",
"13",
"15",
"3",
"1",
"15",
"25",
"10",
"1",
"1",
"17",
"8",
"1",
"19",
"21",
"4",
"1",
"21",
"28",
"6",
"1",
"23",
"44",
"19",
"2",
"1",
"25",
"39",
"9",
"1",
"27",
"58",
"27",
"3",
"1",
"29",
"68",
"34",
"4",
"1",
"31",
"90",
"65",
"15",
"1",
"1",
"33",
"16",
"1",
"35",
"41",
"8",
"1",
"37",
"54",
"12",
"1"
] | [
"nonn",
"base",
"tabf"
] | 48 | 0 | 4 | [
"A000120",
"A007814",
"A008277",
"A025480",
"A329369",
"A341392",
"A357990",
"A358612",
"A358631",
"A373183"
] | null | Mikhail Kurkov, Nov 23 2022 | 2024-06-21T14:17:52 | oeisdata/seq/A358/A358612.seq | f79a60727c776d281b3b49637c30a0e8 |
A358613 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-k)!/(k! * (n-3*k)!). | [
"1",
"1",
"1",
"-1",
"-5",
"-11",
"-7",
"31",
"139",
"245",
"-71",
"-1937",
"-5989",
"-6251",
"25945",
"144479",
"304843",
"-177899",
"-3517351",
"-11743505",
"-10097381",
"81902453",
"433558201",
"840235039",
"-1481279605",
"-15839941451",
"-48073840007",
"-8454966289",
"564429256219",
"2518098130645",
"3490609807769"
] | [
"sign"
] | 12 | 0 | 5 | [
"A247917",
"A358560",
"A358613"
] | null | Seiichi Manyama, Nov 23 2022 | 2022-11-25T06:49:11 | oeisdata/seq/A358/A358613.seq | 00ce4c4aad1643b34f70b5f7a0d08d2a |
A358614 | Decimal expansion of 9*sqrt(2)/32. | [
"3",
"9",
"7",
"7",
"4",
"7",
"5",
"6",
"4",
"4",
"1",
"7",
"4",
"3",
"2",
"9",
"8",
"2",
"4",
"7",
"5",
"4",
"7",
"4",
"9",
"5",
"3",
"6",
"8",
"3",
"9",
"7",
"7",
"5",
"8",
"4",
"5",
"9",
"7",
"7",
"2",
"0",
"2",
"1",
"4",
"9",
"4",
"9",
"7",
"6",
"6",
"6",
"4",
"5",
"5",
"8",
"0",
"9",
"4",
"1",
"1",
"7",
"6",
"3",
"0",
"9",
"8",
"9",
"3",
"5",
"0",
"9",
"5",
"6",
"7",
"4",
"6",
"7",
"6",
"0",
"4",
"6",
"7",
"6",
"6",
"7",
"1",
"4",
"9",
"4",
"0",
"2",
"9",
"6",
"4",
"9",
"1",
"9",
"2"
] | [
"nonn",
"cons",
"easy"
] | 52 | 0 | 1 | [
"A002193",
"A010474",
"A010503",
"A230981",
"A358614"
] | null | Bernard Schott, Dec 05 2022 | 2022-12-17T20:02:05 | oeisdata/seq/A358/A358614.seq | 0d71c444b5781bdd9406e241dfe50f83 |
A358615 | Record high values in A358497. | [
"1",
"12",
"122",
"123",
"1222",
"1223",
"1232",
"1233",
"1234",
"12222",
"12223",
"12232",
"12233",
"12234",
"12322",
"12323",
"12324",
"12332",
"12333",
"12334",
"12342",
"12343",
"12344",
"12345",
"122222",
"122223",
"122232",
"122233",
"122234",
"122322",
"122323",
"122324",
"122332",
"122333",
"122334",
"122342",
"122343",
"122344"
] | [
"nonn",
"base"
] | 7 | 1 | 2 | [
"A071159",
"A358497",
"A358615"
] | null | Gleb Ivanov, Nov 23 2022 | 2022-11-26T02:45:00 | oeisdata/seq/A358/A358615.seq | 66f0bea23a5cf95ca4b70aeff2986d6a |
A358616 | a(n) is the position of the first occurrence of the least term in row n of the Gilbreath array shown in A036262. | [
"1",
"1",
"2",
"3",
"3",
"3",
"3",
"3",
"9",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"4",
"2",
"3",
"5",
"2",
"2",
"3",
"3",
"6",
"2",
"2",
"2",
"3",
"4",
"2",
"6",
"2",
"2",
"2",
"3",
"9",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"4",
"2",
"3",
"4",
"2",
"5",
"2",
"2",
"4",
"2",
"3",
"3",
"3",
"9",
"2",
"2",
"2",
"2",
"2",
"2",
"5",
"2",
"2",
"3",
"5",
"2",
"2",
"3",
"4",
"2",
"8",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"3",
"3",
"3",
"3"
] | [
"nonn"
] | 7 | 1 | 3 | [
"A000040",
"A036262",
"A358616",
"A358617"
] | null | Clark Kimberling, Nov 23 2022 | 2022-11-27T11:07:10 | oeisdata/seq/A358/A358616.seq | db7a2d345fe5cfa52f6f6c8c95db4ba3 |
A358617 | a(n) is the number of zeros among the first n terms of row n of the Gilbreath array shown in A036262. | [
"0",
"0",
"1",
"2",
"3",
"3",
"3",
"3",
"1",
"8",
"7",
"5",
"7",
"9",
"5",
"8",
"5",
"9",
"10",
"10",
"8",
"9",
"10",
"11",
"10",
"10",
"17",
"12",
"17",
"12",
"13",
"8",
"20",
"22",
"18",
"17",
"14",
"25",
"20",
"24",
"24",
"22",
"21",
"15",
"19",
"25",
"25",
"25",
"24",
"24",
"21",
"23",
"27",
"24",
"23",
"29",
"32",
"19",
"26",
"36",
"34",
"34",
"31",
"27",
"35",
"38",
"35",
"37",
"25",
"37"
] | [
"nonn"
] | 6 | 1 | 4 | [
"A000040",
"A036262",
"A358616",
"A358617"
] | null | Clark Kimberling, Nov 23 2022 | 2022-11-27T11:07:21 | oeisdata/seq/A358/A358617.seq | bee8119de4a3364356e380a50e271e6f |
A358618 | First differences of A258036. | [
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2"
] | [
"easy",
"nonn"
] | 16 | 1 | 1 | [
"A258036",
"A358618",
"A358619"
] | null | Clark Kimberling and Robert G. Wilson v, Oct 31 2022 | 2022-12-21T12:53:48 | oeisdata/seq/A358/A358618.seq | 264650e505bba2a072f42990fe5f3c7e |
A358619 | First forward difference of A258037. | [
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2"
] | [
"easy",
"nonn"
] | 11 | 1 | 3 | [
"A258037",
"A358618",
"A358619"
] | null | Clark Kimberling and Robert G. Wilson v, Oct 31 2022 | 2022-11-25T13:31:08 | oeisdata/seq/A358/A358619.seq | fbd90847737aa918f96e247b657de05a |
A358620 | Number of nonzero digits needed to write all nonnegative n-digit integers. | [
"9",
"171",
"2520",
"33300",
"414000",
"4950000",
"57600000",
"657000000",
"7380000000",
"81900000000",
"900000000000",
"9810000000000",
"106200000000000",
"1143000000000000",
"12240000000000000",
"130500000000000000",
"1386000000000000000",
"14670000000000000000",
"154800000000000000000"
] | [
"nonn",
"base",
"easy"
] | 20 | 1 | 1 | [
"A081045",
"A113119",
"A212704",
"A358620"
] | null | Bernard Schott, Nov 23 2022 | 2022-11-30T07:21:46 | oeisdata/seq/A358/A358620.seq | e5b6129729400acf34b760a4166817e0 |
A358621 | Smallest b > 1 such that b^(2^n)+1 is a Sophie Germain prime. | [
"2",
"2",
"160",
"140",
"2800",
"8660",
"62150",
"4085530",
"922820",
"4629490",
"5802710",
"1146175000",
"90894850"
] | [
"nonn",
"hard",
"more"
] | 6 | 0 | 1 | [
"A005384",
"A056993",
"A182154",
"A358621"
] | null | Jeppe Stig Nielsen, Nov 23 2022 | 2022-11-27T11:06:32 | oeisdata/seq/A358/A358621.seq | 0180d044eabd5becc60290cbee982298 |
A358622 | Regular triangle read by rows. T(n, k) = [[n, k]], where [[n, k]] are the second order Stirling cycle numbers (or second order reciprocal Stirling numbers). T(n, k) for 0 <= k <= n. | [
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"6",
"3",
"0",
"0",
"0",
"24",
"20",
"0",
"0",
"0",
"0",
"120",
"130",
"15",
"0",
"0",
"0",
"0",
"720",
"924",
"210",
"0",
"0",
"0",
"0",
"0",
"5040",
"7308",
"2380",
"105",
"0",
"0",
"0",
"0",
"0",
"40320",
"64224",
"26432",
"2520",
"0",
"0",
"0",
"0",
"0",
"0",
"362880",
"623376",
"303660",
"44100",
"945",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"tabl"
] | 28 | 0 | 8 | [
"A000166",
"A008306",
"A024000",
"A130534",
"A201637",
"A264428",
"A269940",
"A341101",
"A358622"
] | null | Peter Luschny, Nov 23 2022 | 2022-11-25T08:16:22 | oeisdata/seq/A358/A358622.seq | 962e4f3fbb098bc03a62a17343e9b659 |
A358623 | Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n. | [
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"3",
"0",
"0",
"0",
"1",
"10",
"0",
"0",
"0",
"0",
"1",
"25",
"15",
"0",
"0",
"0",
"0",
"1",
"56",
"105",
"0",
"0",
"0",
"0",
"0",
"1",
"119",
"490",
"105",
"0",
"0",
"0",
"0",
"0",
"1",
"246",
"1918",
"1260",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"501",
"6825",
"9450",
"945",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1012",
"22935",
"56980",
"17325",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"tabl"
] | 9 | 0 | 13 | [
"A000296",
"A000587",
"A008299",
"A014182",
"A048993",
"A201637",
"A264428",
"A269939",
"A293037",
"A340264",
"A358622",
"A358623"
] | null | Peter Luschny, Nov 25 2022 | 2022-11-26T07:57:17 | oeisdata/seq/A358/A358623.seq | 9ac768fe8ab3faec514c7e7ce052235c |
A358624 | Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1). | [
"1",
"1",
"2",
"2",
"6",
"6",
"6",
"22",
"30",
"20",
"24",
"100",
"170",
"140",
"70",
"120",
"548",
"1050",
"1120",
"630",
"252",
"720",
"3528",
"7476",
"8820",
"6720",
"2772",
"924",
"5040",
"26136",
"59388",
"78708",
"64680",
"37884",
"12012",
"3432",
"40320",
"219168",
"529896",
"748440",
"704550",
"432432",
"204204",
"51480",
"12870"
] | [
"nonn",
"tabl"
] | 8 | 0 | 3 | [
"A000142",
"A000984",
"A001564",
"A133942",
"A358624"
] | null | Peter Luschny, Nov 26 2022 | 2022-11-28T05:06:00 | oeisdata/seq/A358/A358624.seq | 5e9ef05a95b33e25581f69691d749cbb |
A358625 | a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1. | [
"1",
"1",
"1",
"0",
"-1",
"0",
"1",
"0",
"-1",
"0",
"1",
"0",
"-691",
"0",
"1",
"0",
"-3617",
"0",
"43867",
"0",
"-174611",
"0",
"77683",
"0",
"-236364091",
"0",
"657931",
"0",
"-3392780147",
"0",
"1723168255201",
"0",
"-7709321041217",
"0",
"151628697551",
"0",
"-26315271553053477373",
"0",
"154210205991661",
"0",
"-261082718496449122051"
] | [
"sign",
"frac"
] | 27 | 0 | 13 | [
"A001067",
"A006953",
"A027642",
"A036283",
"A053657",
"A060054",
"A075180",
"A079612",
"A120080",
"A120082",
"A120084",
"A120086",
"A164555",
"A202318",
"A342318",
"A358625"
] | null | Peter Luschny, Dec 02 2022 | 2022-12-05T08:51:35 | oeisdata/seq/A358/A358625.seq | 5aff686a71561026c04cba6e5798afdb |
A358626 | Number of (undirected) paths in the 4 X n king graph. | [
"6",
"1448",
"96956",
"6014812",
"329967798",
"16997993692",
"834776217484",
"39563650279918",
"1823748204789500",
"82228567227405462",
"3641260776226602674",
"158852482151721371580",
"6843583319011989465314",
"291698433877308327463184"
] | [
"nonn"
] | 22 | 1 | 1 | [
"A288033",
"A307026",
"A338617",
"A339198",
"A339201",
"A339762",
"A358626"
] | null | Seiichi Manyama, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358626.seq | f134e7e8b32662fc9441f53a086ace94 |
A358627 | Triangle read by rows: T(n,k) is the number of edges formed when n points are placed along each edge of a square that divide the edges into n+1 equal parts and a line is continuously drawn from the current point to that k points, 2 <= k <= 2*n, counterclockwise around the square until the starting point is again reached. | [
"9",
"16",
"40",
"13",
"20",
"20",
"19",
"124",
"17",
"24",
"64",
"24",
"140",
"60",
"204",
"21",
"28",
"60",
"28",
"28",
"74",
"284",
"39",
"300",
"25",
"32",
"32",
"32",
"176",
"32",
"292",
"31",
"68",
"136",
"436",
"29",
"36",
"68",
"36",
"156",
"84",
"36",
"53",
"484",
"158",
"588",
"67",
"612",
"33",
"40",
"72",
"40",
"144",
"80",
"328",
"40",
"520",
"180",
"648",
"76",
"752",
"232",
"764",
"37",
"44",
"44",
"44",
"140",
"44",
"316",
"62",
"44",
"202",
"740",
"43",
"884",
"268",
"148",
"103",
"980",
"41"
] | [
"nonn",
"tabf"
] | 16 | 1 | 1 | [
"A331452",
"A345459",
"A355798",
"A355838",
"A357058",
"A358407",
"A358556",
"A358574",
"A358627"
] | null | Scott R. Shannon, Nov 24 2022 | 2022-11-24T12:50:55 | oeisdata/seq/A358/A358627.seq | f409eb960399a999585f124af1a4731f |
A358628 | Square array A(i,j), i >= 0, j >= 0, read by antidiagonals: A(i,j) = Sum_{|X|=0..i} Sum_{|Y|=0..i} Product_{k=1..j} (1+X(k)+Y(k)), where X and Y are multi-indices of length j. | [
"1",
"1",
"1",
"1",
"8",
"1",
"1",
"23",
"27",
"1",
"1",
"46",
"176",
"64",
"1",
"1",
"77",
"640",
"800",
"125",
"1",
"1",
"116",
"1707",
"4850",
"2675",
"216",
"1",
"1",
"163",
"3761",
"19607",
"25235",
"7301",
"343",
"1",
"1",
"218",
"7282",
"61216",
"147952",
"101528",
"17248",
"512",
"1",
"1",
"281",
"12846",
"159854",
"635376",
"831600",
"338688",
"36576",
"729",
"1"
] | [
"easy",
"nonn",
"tabl"
] | 71 | 0 | 5 | [
"A000012",
"A000578",
"A033951",
"A358628"
] | null | Thomas J. Radley, Nov 27 2022 | 2023-03-21T15:41:37 | oeisdata/seq/A358/A358628.seq | f61d858ac1a6628b93d4b737390960d6 |
A358629 | a(n) is the number of signed permutations W of V = (1, 2, ..., n) such that the dot product V*W = 0. | [
"0",
"2",
"0",
"16",
"48",
"558",
"4444",
"62246",
"692598",
"11722730",
"196824592",
"3896202680",
"86626174698",
"2018770217402",
"51681142218502",
"1418482891697258",
"41404316055037624",
"1304323691188387488",
"43501661519771535260",
"1538705372277647632786"
] | [
"nonn",
"more"
] | 43 | 1 | 2 | [
"A000165",
"A358629",
"A358655"
] | null | Thomas Scheuerle, Nov 24 2022 | 2023-06-18T13:46:14 | oeisdata/seq/A358/A358629.seq | 3681dd223143e4c95c50be23bd79e070 |
A358630 | Decimal expansion of a seed to the logistic map with r=4 such that mapping the orbit to 0 and 1 gives the binary expansion of Pi. | [
"5",
"8",
"5",
"7",
"3",
"0",
"6",
"7",
"1",
"3",
"7",
"8",
"8",
"3",
"4",
"9",
"4",
"7",
"9",
"6",
"7",
"2",
"4",
"6",
"9",
"6",
"7",
"6",
"3",
"2",
"5",
"5",
"5",
"2",
"4",
"1",
"8",
"2",
"0",
"9",
"4",
"5",
"3",
"6",
"3",
"0",
"2",
"4",
"0",
"9",
"2",
"6",
"3",
"8",
"4",
"8",
"4",
"1",
"2",
"1",
"3",
"3",
"0",
"0",
"2",
"4",
"6",
"4",
"2",
"3",
"5",
"7",
"2",
"2",
"0",
"1",
"8",
"1",
"7",
"6",
"2",
"7",
"2",
"9",
"2",
"0",
"9",
"9",
"7",
"3",
"8",
"2",
"0",
"5",
"5",
"4",
"7",
"6",
"1",
"9",
"2",
"6",
"0",
"9",
"1"
] | [
"nonn",
"cons"
] | 25 | 0 | 1 | [
"A004601",
"A358630"
] | null | Antoine Beaulieu, Nov 24 2022 | 2023-01-05T19:13:21 | oeisdata/seq/A358/A358630.seq | 9e77aeeb548195c794b21e6bc0a33512 |
A358631 | Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the first kind. | [
"1",
"1",
"2",
"3",
"1",
"4",
"5",
"1",
"6",
"11",
"6",
"1",
"6",
"7",
"1",
"12",
"20",
"9",
"1",
"18",
"26",
"9",
"1",
"24",
"50",
"35",
"10",
"1",
"8",
"9",
"1",
"18",
"29",
"12",
"1",
"30",
"41",
"12",
"1",
"48",
"94",
"59",
"14",
"1",
"36",
"47",
"12",
"1",
"72",
"130",
"71",
"14",
"1",
"96",
"154",
"71",
"14",
"1",
"120",
"274",
"225",
"85",
"15",
"1",
"10",
"11",
"1",
"24",
"38",
"15",
"1",
"42"
] | [
"nonn",
"base",
"tabf"
] | 37 | 0 | 3 | [
"A000120",
"A052852",
"A053645",
"A063250",
"A132393",
"A290255",
"A347205",
"A358612",
"A358631"
] | null | Mikhail Kurkov, Nov 24 2022 | 2024-11-07T11:13:28 | oeisdata/seq/A358/A358631.seq | cf66b23e1fbe3b51a9d50f46f9187caf |
A358632 | Coordination sequence for the faces of the uniform infinite surface that is formed from congruent regular pentagons and from which there is a continuous function that maps the faces 1:1 to regular pentagons in the plane. | [
"1",
"5",
"20",
"50",
"110",
"200",
"340",
"525",
"780",
"1095",
"1500",
"1980",
"2570",
"3250",
"4060",
"4975",
"6040",
"7225",
"8580",
"10070",
"11750"
] | [
"nonn",
"more"
] | 13 | 0 | 2 | [
"A008383",
"A063490",
"A175898",
"A358632"
] | null | Peter Munn and Allan C. Wechsler, Nov 24 2022 | 2022-11-25T22:13:18 | oeisdata/seq/A358/A358632.seq | 69b1a8d42e1defed3ff88a4a3993554d |
A358633 | a(n) is the smallest k > 1 such that the sum of digits of n^k is a power of n (or -1 if no such k exists). | [
"2",
"2",
"2",
"18",
"8",
"7",
"4",
"3",
"2",
"2",
"45741764",
"4216",
"32",
"537",
"39",
"44",
"3",
"3",
"1187",
"13",
"67",
"4"
] | [
"sign",
"base",
"more"
] | 38 | 1 | 1 | [
"A066005",
"A095412",
"A118872",
"A358633"
] | null | Jon E. Schoenfield, Nov 24 2022 | 2024-01-24T08:00:43 | oeisdata/seq/A358/A358633.seq | e484c9d4c45921d6c357481eafbfd005 |
A358634 | a(n) is the smallest number k such that n consecutive integers starting at k have the same number of n-gonal divisors. | [
"55",
"844",
"16652",
"844529772",
"243636414",
"36289272509"
] | [
"nonn",
"more",
"hard"
] | 11 | 3 | 1 | [
"A006558",
"A338628",
"A358044",
"A358634"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358634.seq | 6f0633b4a87acc4f51803fc1c7135c9e |
A358635 | Number of partitions of n into at most 2 distinct prime powers (including 1). | [
"1",
"1",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"3",
"4",
"4",
"4",
"3",
"3",
"4",
"4",
"4",
"4",
"5",
"4",
"3",
"3",
"5",
"4",
"4",
"5",
"5",
"4",
"6",
"4",
"7",
"5",
"6",
"4",
"7",
"3",
"5",
"4",
"6",
"4",
"6",
"4",
"6",
"5",
"5",
"3",
"8",
"4",
"7",
"4",
"6",
"3",
"8",
"3",
"7",
"4",
"5",
"3",
"8",
"4",
"6",
"4",
"7",
"3",
"9",
"3",
"8",
"5",
"7",
"3",
"10",
"4",
"7",
"6",
"7",
"3",
"9",
"3",
"9",
"5",
"6",
"5",
"11",
"3",
"8",
"4",
"7",
"4",
"12",
"4"
] | [
"nonn"
] | 5 | 0 | 4 | [
"A000961",
"A106244",
"A341132",
"A347643",
"A347762",
"A358635",
"A358636",
"A358637"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:04:00 | oeisdata/seq/A358/A358635.seq | 17e419b6e149ad717e943a1b0ccfe94e |
A358636 | Number of partitions of n into at most 3 distinct prime powers (including 1). | [
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"5",
"6",
"6",
"7",
"9",
"9",
"10",
"9",
"12",
"11",
"12",
"12",
"15",
"14",
"15",
"14",
"17",
"16",
"17",
"17",
"21",
"19",
"21",
"20",
"25",
"22",
"25",
"24",
"28",
"27",
"27",
"26",
"29",
"29",
"28",
"31",
"32",
"30",
"31",
"32",
"33",
"35",
"34",
"34",
"37",
"37",
"34",
"37",
"38",
"39",
"37",
"41",
"37",
"44",
"38",
"40",
"41",
"44",
"38",
"47",
"43",
"46",
"43",
"50"
] | [
"nonn"
] | 5 | 0 | 4 | [
"A000961",
"A106244",
"A341140",
"A347644",
"A347763",
"A358635",
"A358636",
"A358637"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:04:15 | oeisdata/seq/A358/A358636.seq | 0846f36cb34f64a08dc3d51ff5021bf8 |
A358637 | Number of partitions of n into at most 4 distinct prime powers (including 1). | [
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"5",
"6",
"7",
"8",
"10",
"11",
"13",
"13",
"17",
"18",
"19",
"21",
"24",
"25",
"27",
"29",
"32",
"35",
"35",
"38",
"42",
"45",
"46",
"50",
"54",
"57",
"57",
"63",
"65",
"72",
"70",
"78",
"79",
"87",
"82",
"93",
"93",
"101",
"97",
"107",
"107",
"116",
"112",
"123",
"122",
"133",
"127",
"139",
"137",
"149",
"140",
"156",
"154",
"166",
"158",
"171",
"168",
"180",
"174",
"186"
] | [
"nonn"
] | 5 | 0 | 4 | [
"A000961",
"A106244",
"A341141",
"A347586",
"A347645",
"A347764",
"A358635",
"A358636",
"A358637"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:04:24 | oeisdata/seq/A358/A358637.seq | 857b2db635eae45863d78f1bfac84a91 |
A358638 | Number of partitions of n into at most 2 distinct nonprime parts. | [
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"2",
"2",
"3",
"3",
"4",
"2",
"4",
"3",
"4",
"4",
"6",
"3",
"6",
"5",
"7",
"5",
"7",
"5",
"8",
"6",
"7",
"7",
"10",
"7",
"11",
"7",
"9",
"9",
"11",
"8",
"12",
"9",
"11",
"10",
"13",
"9",
"14",
"11",
"14",
"11",
"14",
"11",
"16",
"13",
"15",
"13",
"17",
"13",
"19",
"14",
"16",
"15",
"19",
"15",
"21",
"15",
"17",
"17",
"21",
"16",
"22",
"17",
"21",
"18",
"22",
"18",
"25",
"18",
"22"
] | [
"nonn"
] | 8 | 0 | 10 | [
"A005171",
"A018252",
"A096258",
"A302479",
"A347788",
"A358638",
"A358639",
"A358640"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:04:45 | oeisdata/seq/A358/A358638.seq | df0331e8c8e5b9bd216afd9b9a3048dc |
A358639 | Number of partitions of n into at most 3 distinct nonprime parts. | [
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"2",
"2",
"3",
"4",
"5",
"5",
"4",
"6",
"7",
"7",
"8",
"10",
"9",
"11",
"13",
"14",
"14",
"16",
"15",
"20",
"20",
"21",
"21",
"27",
"26",
"30",
"29",
"32",
"33",
"39",
"35",
"43",
"42",
"46",
"46",
"53",
"49",
"58",
"58",
"63",
"61",
"69",
"64",
"77",
"75",
"81",
"78",
"90",
"85",
"98",
"95",
"102",
"100",
"114",
"106",
"122",
"116",
"126",
"124",
"140"
] | [
"nonn"
] | 5 | 0 | 10 | [
"A018252",
"A096258",
"A307857",
"A341461",
"A347796",
"A358638",
"A358639",
"A358640"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:05:03 | oeisdata/seq/A358/A358639.seq | d34bc2b8f59dc4e749e9f5d6766fccd5 |
A358640 | Number of partitions of n into at most 4 distinct nonprime parts. | [
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"2",
"2",
"3",
"4",
"5",
"5",
"4",
"6",
"8",
"8",
"9",
"11",
"11",
"13",
"16",
"17",
"19",
"21",
"22",
"26",
"30",
"30",
"34",
"39",
"43",
"47",
"50",
"53",
"61",
"67",
"69",
"76",
"84",
"89",
"97",
"106",
"110",
"121",
"131",
"139",
"148",
"160",
"166",
"181",
"194",
"204",
"215",
"233",
"242",
"262",
"274",
"289",
"305",
"329",
"338",
"361",
"378"
] | [
"nonn"
] | 5 | 0 | 10 | [
"A018252",
"A096258",
"A341462",
"A347586",
"A347662",
"A347797",
"A358638",
"A358639",
"A358640"
] | null | Ilya Gutkovskiy, Nov 24 2022 | 2022-11-27T11:05:29 | oeisdata/seq/A358/A358640.seq | d51051ab9a7c00f3203451d9bfe4c2c3 |
A358641 | Decimal expansion of the smallest real solution of 2*x = 2 + log(5*x - 1). | [
"2",
"4",
"4",
"1",
"0",
"2",
"7",
"8",
"5",
"2",
"0",
"1",
"3",
"0",
"2",
"9",
"0",
"9",
"5",
"8",
"2",
"9",
"7",
"5",
"9",
"5",
"0",
"1",
"7",
"4",
"8",
"3",
"1",
"5",
"1",
"9",
"3",
"0",
"1",
"6",
"7",
"9",
"0",
"6",
"3",
"0",
"7",
"7",
"1",
"1",
"4",
"2",
"9",
"0",
"0",
"7",
"6",
"8",
"5",
"3",
"8",
"7",
"3",
"2",
"8",
"9",
"3",
"1",
"0",
"5",
"1",
"9",
"1",
"2",
"9",
"8",
"2",
"5",
"4",
"9",
"5",
"6",
"5"
] | [
"nonn",
"cons"
] | 7 | 0 | 1 | [
"A358641",
"A358642"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-27T10:39:07 | oeisdata/seq/A358/A358641.seq | 5fcd333c07376c3ce0f5965f60ff99ba |
A358642 | Decimal expansion of the largest real solution of 2*x = 2 + log(5*x - 1). | [
"2",
"1",
"3",
"4",
"6",
"9",
"3",
"3",
"8",
"4",
"3",
"2",
"2",
"9",
"2",
"1",
"5",
"3",
"8",
"9",
"4",
"6",
"2",
"6",
"8",
"8",
"5",
"6",
"4",
"9",
"8",
"8",
"4",
"5",
"8",
"0",
"4",
"5",
"6",
"5",
"3",
"4",
"0",
"3",
"0",
"6",
"6",
"1",
"0",
"9",
"9",
"6",
"2",
"5",
"7",
"3",
"5",
"7",
"5",
"1",
"6",
"4",
"3",
"5",
"0",
"2",
"2",
"8",
"6",
"9",
"6",
"7",
"0",
"7",
"4",
"5",
"5",
"9",
"5",
"3",
"7",
"4",
"1",
"6",
"8",
"4",
"6",
"9"
] | [
"nonn",
"cons"
] | 10 | 1 | 1 | [
"A358641",
"A358642"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-27T10:39:21 | oeisdata/seq/A358/A358642.seq | 66182bf8c6600319a5648e6fcb1bb663 |
A358643 | Decimal expansion of the smallest real solution of 2*x = 2 + log(4*x - 1). | [
"3",
"1",
"3",
"3",
"1",
"2",
"7",
"2",
"7",
"3",
"2",
"4",
"0",
"2",
"8",
"0",
"1",
"0",
"6",
"0",
"4",
"7",
"2",
"9",
"1",
"8",
"3",
"1",
"7",
"4",
"1",
"6",
"5",
"9",
"0",
"6",
"4",
"8",
"5",
"2",
"4",
"3",
"8",
"2",
"6",
"9",
"7",
"1",
"6",
"2",
"7",
"6",
"3",
"6",
"4",
"7",
"3",
"2",
"4",
"7",
"4",
"2",
"6",
"8",
"4",
"9",
"4",
"8",
"3",
"3",
"3",
"9",
"2",
"8",
"1",
"6",
"7",
"9",
"5",
"1",
"8",
"6",
"6",
"9",
"7",
"5",
"9",
"6"
] | [
"nonn",
"cons"
] | 6 | 0 | 1 | [
"A358643",
"A358644"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-27T10:39:29 | oeisdata/seq/A358/A358643.seq | 4a8fffee00d84b1543aea6cca701b6b8 |
A358644 | Decimal expansion of the largest real solution of 2*x = 2 + log(4*x - 1). | [
"1",
"9",
"6",
"1",
"9",
"6",
"9",
"3",
"7",
"5",
"1",
"7",
"2",
"9",
"3",
"9",
"8",
"2",
"1",
"1",
"2",
"8",
"5",
"3",
"0",
"3",
"4",
"4",
"8",
"7",
"4",
"3",
"0",
"5",
"9",
"2",
"5",
"2",
"2",
"4",
"0",
"4",
"0",
"1",
"8",
"1",
"2",
"5",
"8",
"3",
"1",
"2",
"1",
"0",
"4",
"7",
"3",
"0",
"5",
"0",
"5",
"3",
"1",
"4",
"8",
"7",
"1",
"1",
"3",
"1",
"5",
"9",
"5",
"9",
"1",
"2",
"1",
"5",
"6",
"6",
"4",
"5",
"6",
"7",
"8",
"2",
"2"
] | [
"nonn",
"cons"
] | 9 | 1 | 2 | [
"A358643",
"A358644"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-27T10:39:42 | oeisdata/seq/A358/A358644.seq | 7264bbc5813b4450f2e12ac330ebc810 |
A358645 | Decimal expansion of 4/5 + log(5). | [
"2",
"4",
"0",
"9",
"4",
"3",
"7",
"9",
"1",
"2",
"4",
"3",
"4",
"1",
"0",
"0",
"3",
"7",
"4",
"6",
"0",
"0",
"7",
"5",
"9",
"3",
"3",
"3",
"2",
"2",
"6",
"1",
"8",
"7",
"6",
"3",
"9",
"5",
"2",
"5",
"6",
"0",
"1",
"3",
"5",
"4",
"2",
"6",
"8",
"5",
"1",
"7",
"7",
"2",
"1",
"9",
"1",
"2",
"6",
"4",
"7",
"8",
"9",
"1",
"4",
"7",
"4",
"1",
"7",
"8",
"9",
"8",
"7",
"7",
"0",
"7",
"6",
"5",
"7",
"7",
"6",
"4",
"6",
"3",
"0",
"1",
"3",
"3",
"8",
"7",
"8"
] | [
"nonn",
"cons"
] | 12 | 1 | 1 | [
"A016628",
"A358645",
"A358646"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-28T05:56:34 | oeisdata/seq/A358/A358645.seq | 582ef90cd6f7fe6b32a188e5d9c37c63 |
A358646 | Decimal expansion of 3/4 + log(4). | [
"2",
"1",
"3",
"6",
"2",
"9",
"4",
"3",
"6",
"1",
"1",
"1",
"9",
"8",
"9",
"0",
"6",
"1",
"8",
"8",
"3",
"4",
"4",
"6",
"4",
"2",
"4",
"2",
"9",
"1",
"6",
"3",
"5",
"3",
"1",
"3",
"6",
"1",
"5",
"1",
"0",
"0",
"0",
"2",
"6",
"8",
"7",
"2",
"0",
"5",
"1",
"0",
"5",
"0",
"8",
"2",
"4",
"1",
"3",
"6",
"0",
"0",
"1",
"8",
"9",
"8",
"6",
"7",
"8",
"7",
"2",
"4",
"3",
"9",
"3",
"9",
"3",
"8",
"9",
"4",
"3",
"1",
"2",
"1",
"1",
"7",
"2",
"6",
"6",
"5"
] | [
"nonn",
"cons"
] | 10 | 1 | 1 | [
"A016627",
"A358645",
"A358646"
] | null | Stefano Spezia, Nov 24 2022 | 2022-11-27T10:40:07 | oeisdata/seq/A358/A358646.seq | 6de6ed3aea4183ef60e2358ff4debf7b |
A358647 | Final digit reached by traveling right (with wraparound) through the digits of n. Each move steps right k places, where k is the digit at the beginning of the move. Moves begin at the most significant digit and d moves are made, where d is the number of digits in n. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"0",
"1",
"2",
"1",
"4",
"1",
"6",
"1",
"8",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"3",
"2",
"3",
"4",
"3",
"6",
"3",
"8",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"0",
"5",
"2",
"5",
"4",
"5",
"6",
"5",
"8",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"0",
"7",
"2",
"7",
"4",
"7",
"6",
"7",
"8",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"0",
"9",
"2",
"9",
"4",
"9",
"6",
"9",
"8",
"9"
] | [
"nonn",
"base",
"easy"
] | 24 | 0 | 3 | [
"A357531",
"A358647"
] | null | Moosa Nasir, Nov 24 2022 | 2022-11-30T12:39:40 | oeisdata/seq/A358/A358647.seq | 2e541454b0393836634bece87910eeb9 |
A358648 | Number of preference profiles of the stable roommates problem with 2n participants. | [
"1",
"1296",
"2985984000000",
"416336312719673760153600000000",
"39594086612242519324387557078266845776303882240000000000",
"16363214235219603423192858350259453436046713251360764276842772299776000000000000000000000000"
] | [
"nonn",
"easy"
] | 17 | 1 | 2 | [
"A001147",
"A091868",
"A185141",
"A356584",
"A358648"
] | null | Dan Eilers, Nov 24 2022 | 2022-12-12T06:03:31 | oeisdata/seq/A358/A358648.seq | d5e73f02a7741bd13fa2dbf262ed2f3d |
A358649 | Number of convergent n X n matrices over GF(2). | [
"1",
"2",
"11",
"205",
"14137",
"3755249",
"3916674017",
"16190352314305",
"266479066904477569",
"17503939768635307654913",
"4593798697440979773283368449",
"4819699338906053452395454422580225",
"20221058158328101246044232181365184919553"
] | [
"nonn"
] | 34 | 0 | 2 | [
"A053763",
"A132186",
"A296548",
"A358649",
"A379778"
] | null | Geoffrey Critzer, Nov 26 2022 | 2025-01-03T09:37:14 | oeisdata/seq/A358/A358649.seq | 0045f66494429336d9116e9f1760bcc6 |
A358650 | Matula-Goebel tree number of the binomial tree of n vertices. | [
"1",
"2",
"4",
"6",
"12",
"18",
"42",
"78",
"156",
"234",
"546",
"1014",
"2886",
"4758",
"14118",
"30966",
"61932",
"92898",
"216762",
"402558",
"1145742",
"1888926",
"5604846",
"12293502",
"28210026",
"45860646",
"121727346",
"249864654",
"813198126",
"1423166394",
"4740553974",
"11234495766",
"22468991532",
"33703487298"
] | [
"nonn",
"easy"
] | 15 | 1 | 2 | [
"A076146",
"A348067",
"A358650"
] | null | Kevin Ryde, Nov 25 2022 | 2024-12-19T11:46:19 | oeisdata/seq/A358/A358650.seq | f910c397f9b20f9abd087aeb62053f08 |
A358651 | a(n) = n!*Sum_{m=1..floor(n/2)} 1/(m^2*binomial(n-m,m)). | [
"0",
"0",
"2",
"3",
"14",
"40",
"254",
"1106",
"9400",
"56232",
"607392",
"4685472",
"61485984",
"585235872",
"9014205888",
"102480586560",
"1806461775360",
"23934358033920",
"473963802485760",
"7180611912944640",
"157539651679641600",
"2688528843644313600",
"64654185117092659200"
] | [
"nonn"
] | 14 | 0 | 3 | null | null | Vladimir Kruchinin, Nov 25 2022 | 2022-11-27T10:49:00 | oeisdata/seq/A358/A358651.seq | 6b7393bd2f8674dd4181e62964ca6500 |
A358652 | a(n) = n!*Sum_{m=1..floor((n+1)/2)} 1/(m*binomial(n-m,m-1)). | [
"1",
"2",
"9",
"30",
"180",
"890",
"7084",
"47544",
"478512",
"4103712",
"50079744",
"525568032",
"7531512768",
"93697680960",
"1539661512960",
"22172241784320",
"410427317468160",
"6717998786595840",
"138197449498521600",
"2534644598027673600",
"57329127350795059200"
] | [
"nonn"
] | 13 | 1 | 2 | null | null | Vladimir Kruchinin, Nov 25 2022 | 2023-12-10T09:14:54 | oeisdata/seq/A358/A358652.seq | bcf75195095418c7d44670b561710fa0 |
A358653 | a(n) is the number of trivial braids on 3 strands which are products of n generators a, b, where a = sigma_1 sigma_2 sigma_1 and b = sigma_1 sigma_2. | [
"1",
"0",
"4",
"0",
"28",
"10",
"244",
"210",
"2412",
"3366",
"26014",
"49456",
"299452",
"701818",
"3624478"
] | [
"nonn",
"more"
] | 12 | 0 | 3 | [
"A354602",
"A358653"
] | null | Alexei Vernitski, Nov 25 2022 | 2024-01-16T16:57:41 | oeisdata/seq/A358/A358653.seq | 5722dbda7660695280b92245b02bc012 |
A358654 | a(n) = A025480(A353654(n+1) - 1). | [
"0",
"1",
"3",
"2",
"7",
"5",
"6",
"15",
"4",
"11",
"13",
"14",
"31",
"9",
"10",
"23",
"12",
"27",
"29",
"30",
"63",
"8",
"19",
"21",
"22",
"47",
"25",
"26",
"55",
"28",
"59",
"61",
"62",
"127",
"17",
"18",
"39",
"20",
"43",
"45",
"46",
"95",
"24",
"51",
"53",
"54",
"111",
"57",
"58",
"119",
"60",
"123",
"125",
"126",
"255",
"16",
"35",
"37",
"38",
"79",
"41",
"42",
"87",
"44",
"91",
"93"
] | [
"nonn",
"base"
] | 28 | 0 | 3 | [
"A025480",
"A048679",
"A247648",
"A343152",
"A348366",
"A353654",
"A355489",
"A358654"
] | null | Mikhail Kurkov, Nov 25 2022 | 2024-04-25T11:29:11 | oeisdata/seq/A358/A358654.seq | d7d2f3a794f0ac0fd97c47351ed903a6 |
A358655 | a(n) is the number of distinct scalar products which can be formed by pairs of signed permutations (V, W) of [n]. | [
"1",
"2",
"7",
"24",
"61",
"111",
"183",
"281",
"409",
"571",
"771",
"1013",
"1301",
"1639",
"2031",
"2481",
"2993",
"3571",
"4219",
"4941",
"5741",
"6623",
"7591",
"8649",
"9801",
"11051",
"12403",
"13861",
"15429",
"17111",
"18911",
"20833",
"22881",
"25059",
"27371",
"29821",
"32413",
"35151",
"38039",
"41081",
"44281",
"47643"
] | [
"nonn",
"easy"
] | 54 | 0 | 2 | [
"A000165",
"A188475",
"A358629",
"A358655"
] | null | Thomas Scheuerle, Nov 25 2022 | 2024-10-02T07:29:01 | oeisdata/seq/A358/A358655.seq | da07017662ed087ac05b94b6070fbb03 |
A358656 | Least prime p such that p^n + 2 is the product of n distinct primes. | [
"3",
"2",
"7",
"71",
"241",
"83",
"157",
"6947",
"4231",
"35509",
"15541",
"199499",
"649147"
] | [
"nonn",
"more"
] | 51 | 1 | 1 | [
"A000961",
"A005117",
"A280005",
"A358656"
] | null | J.W.L. (Jan) Eerland, Nov 27 2022 | 2024-05-19T04:10:22 | oeisdata/seq/A358/A358656.seq | 8c9fbc40ee97f4fe075846b034c26d61 |
A358657 | Numbers such that the three numbers before and the three numbers after are squarefree semiprimes. | [
"216",
"143100",
"194760",
"206136",
"273420",
"684900",
"807660",
"1373940",
"1391760",
"1516536",
"1591596",
"1611000",
"1774800",
"1882980",
"1891764",
"2046456",
"2051496",
"2163420",
"2163960",
"2338056",
"2359980",
"2522520",
"2913840",
"3108204",
"4221756",
"4297320",
"4334940",
"4866120",
"4988880",
"5108796",
"5247144",
"5606244",
"5996844"
] | [
"nonn",
"changed"
] | 42 | 1 | 1 | [
"A001358",
"A158476",
"A350101",
"A358657",
"A358666"
] | null | Tanya Khovanova and Massimo Kofler, Nov 25 2022 | 2025-04-26T01:44:43 | oeisdata/seq/A358/A358657.seq | 4f82edac5cb4dd19327ed3c8f1f246c5 |
A358658 | Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167). | [
"1",
"3",
"0",
"7",
"3",
"2",
"1",
"3",
"7",
"1",
"7",
"0",
"6",
"0",
"7",
"2",
"3",
"6",
"9",
"2",
"9",
"6",
"4",
"2",
"2",
"8",
"0",
"4",
"2",
"5",
"3",
"9",
"8",
"8",
"3",
"9",
"1",
"4",
"2",
"7",
"4",
"3",
"4",
"6",
"8",
"6",
"0",
"8",
"2",
"3",
"9",
"4",
"0",
"9",
"8",
"0",
"1",
"5",
"3",
"6",
"3",
"5",
"6",
"9",
"8",
"1",
"7",
"0",
"0",
"9",
"7",
"0",
"8",
"9",
"0",
"0",
"8",
"4",
"9",
"7",
"3",
"2",
"2",
"0",
"0",
"7",
"2",
"0",
"2",
"5",
"4",
"0",
"4",
"5",
"4",
"8",
"4",
"4",
"8",
"1",
"2",
"9",
"7",
"2",
"9"
] | [
"nonn",
"cons"
] | 6 | 1 | 2 | [
"A047994",
"A321167",
"A327838",
"A358658"
] | null | Amiram Eldar, Nov 25 2022 | 2022-11-26T02:44:30 | oeisdata/seq/A358/A358658.seq | 7b3e5231fc7c682d8ab597cb948c88ed |
A358659 | Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors. | [
"9",
"8",
"4",
"8",
"8",
"3",
"6",
"4",
"1",
"8",
"7",
"7",
"2",
"2",
"8",
"2",
"9",
"4",
"0",
"9",
"5",
"3",
"7",
"0",
"1",
"3",
"8",
"0",
"4",
"8",
"9",
"6",
"1",
"1",
"3",
"7",
"6",
"4",
"7",
"3",
"1",
"6",
"3",
"2",
"2",
"2",
"2",
"7",
"0",
"5",
"8",
"1",
"3",
"4",
"5",
"5",
"0",
"0",
"6",
"3",
"6",
"2",
"3",
"5",
"5",
"0",
"2",
"2",
"3",
"9",
"6",
"8",
"0",
"6",
"5",
"9",
"0",
"8",
"2",
"3",
"8",
"0",
"0",
"8",
"1",
"8",
"9",
"3",
"8",
"0",
"9",
"5",
"5",
"7",
"4",
"0",
"8",
"7",
"6",
"9",
"1",
"3",
"3",
"4",
"4"
] | [
"nonn",
"cons"
] | 5 | 0 | 1 | [
"A049419",
"A278908",
"A307869",
"A308042",
"A308043",
"A358659"
] | null | Amiram Eldar, Nov 25 2022 | 2022-11-26T02:44:41 | oeisdata/seq/A358/A358659.seq | e86d6de125a6e173ba7741a113b14195 |
A358660 | a(n) = Sum_{d|n} d * (n/d)^(n-d). | [
"1",
"4",
"12",
"76",
"630",
"7968",
"117656",
"2105416",
"43048917",
"1000781420",
"25937424612",
"743130116112",
"23298085122494",
"793742455829456",
"29192926758107760",
"1152930300766980112",
"48661191875666868498",
"2185915267189632382650",
"104127350297911241532860"
] | [
"nonn"
] | 30 | 1 | 2 | [
"A090879",
"A342629",
"A356539",
"A358660",
"A359112"
] | null | Seiichi Manyama, Dec 17 2022 | 2023-08-27T17:02:12 | oeisdata/seq/A358/A358660.seq | 2effdd24758716e58945e6920be623f9 |
A358661 | Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1)) / x = (1 - (x - 1)^(x - 1)) / (x - 2). | [
"1",
"1",
"9",
"8",
"6",
"8",
"8",
"3",
"0",
"7",
"6",
"8",
"7",
"2",
"8",
"9",
"7",
"2",
"2",
"2",
"2",
"7",
"2",
"4",
"3",
"6",
"8",
"3",
"7",
"7",
"9",
"8",
"4",
"7",
"9",
"4",
"5",
"2",
"4",
"5",
"0",
"7",
"3",
"2",
"8",
"6",
"3",
"9",
"3",
"4",
"4",
"2",
"8",
"7",
"9",
"8",
"6",
"0",
"7",
"2",
"2",
"4",
"7",
"2",
"5",
"1",
"7",
"2",
"0",
"7",
"6",
"0",
"9",
"8",
"2",
"3",
"7",
"2",
"3",
"9",
"1",
"0",
"0",
"5",
"1",
"8",
"3",
"9",
"6",
"1"
] | [
"nonn",
"cons"
] | 8 | 1 | 3 | [
"A001622",
"A358661",
"A358662",
"A358663"
] | null | Wesley Ivan Hurt, Nov 25 2022 | 2022-11-27T11:02:31 | oeisdata/seq/A358/A358661.seq | 0e4bd0218a909d962f0c13b8979ad32c |
A358662 | Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1))/x = (1 - (x - 1)^x)/(x - 2). | [
"1",
"4",
"7",
"0",
"4",
"1",
"0",
"8",
"4",
"1",
"4",
"5",
"2",
"8",
"5",
"8",
"5",
"5",
"7",
"1",
"6",
"0",
"8",
"6",
"7",
"1",
"4",
"7",
"3",
"0",
"2",
"6",
"7",
"0",
"7",
"5",
"5",
"7",
"9",
"1",
"2",
"5",
"0",
"9",
"2",
"0",
"9",
"5",
"3",
"6",
"5",
"3",
"9",
"9",
"0",
"7",
"3",
"5",
"0",
"5",
"4",
"1",
"9",
"0",
"2",
"5",
"9",
"8",
"0",
"4",
"7",
"3",
"9",
"8",
"6",
"9",
"9",
"6",
"0",
"0",
"7",
"0",
"4",
"9",
"5",
"4",
"8",
"4",
"3",
"4"
] | [
"nonn",
"cons"
] | 6 | 1 | 2 | [
"A001622",
"A358661",
"A358662",
"A358663"
] | null | Wesley Ivan Hurt, Nov 25 2022 | 2022-11-27T11:02:49 | oeisdata/seq/A358/A358662.seq | acb3eaafeb5e6adb6a7cb736d6a25fab |
A358663 | Decimal expansion of the solution to (1 - (x + 1)^(x^2 - 1))/x = (1 - (x - 1)^(x + 1))/(x - 2). | [
"1",
"5",
"4",
"7",
"2",
"2",
"7",
"1",
"9",
"3",
"8",
"0",
"9",
"3",
"7",
"2",
"7",
"5",
"0",
"2",
"0",
"1",
"8",
"2",
"2",
"6",
"2",
"4",
"1",
"2",
"6",
"5",
"3",
"5",
"4",
"6",
"4",
"8",
"0",
"2",
"9",
"5",
"8",
"5",
"6",
"2",
"8",
"2",
"3",
"9",
"3",
"5",
"6",
"3",
"4",
"3",
"5",
"8",
"2",
"0",
"2",
"9",
"4",
"7",
"4",
"7",
"1",
"0",
"1",
"9",
"8",
"6",
"2",
"8",
"1",
"4",
"5",
"8",
"9",
"5",
"1",
"2",
"2",
"0",
"8",
"1",
"8",
"2",
"9",
"6"
] | [
"nonn",
"cons"
] | 6 | 1 | 2 | [
"A001622",
"A358661",
"A358662",
"A358663"
] | null | Wesley Ivan Hurt, Nov 25 2022 | 2022-11-27T11:02:56 | oeisdata/seq/A358/A358663.seq | 24cc305722d6974c7ba012040ae8d1a5 |
A358664 | Decimal expansion of ((phi + 1)^phi - 1) / phi, where phi is the golden ratio. | [
"2",
"3",
"1",
"4",
"9",
"5",
"5",
"9",
"2",
"8",
"8",
"2",
"9",
"7",
"3",
"8",
"4",
"5",
"1",
"6",
"0",
"1",
"6",
"4",
"0",
"7",
"8",
"7",
"5",
"8",
"6",
"0",
"4",
"7",
"6",
"4",
"3",
"9",
"7",
"0",
"3",
"5",
"1",
"9",
"0",
"2",
"3",
"7",
"9",
"3",
"7",
"4",
"6",
"7",
"2",
"4",
"8",
"0",
"6",
"2",
"6",
"9",
"8",
"1",
"3",
"6",
"6",
"4",
"5",
"6",
"2",
"6",
"4",
"0",
"5",
"5",
"7",
"1",
"4",
"1",
"8",
"4",
"4",
"8",
"3",
"8",
"5",
"4",
"0",
"3",
"6",
"9",
"2"
] | [
"nonn",
"cons"
] | 16 | 1 | 1 | [
"A001622",
"A358661",
"A358662",
"A358663",
"A358664"
] | null | Wesley Ivan Hurt, Nov 25 2022 | 2025-03-24T03:59:44 | oeisdata/seq/A358/A358664.seq | f02d0ed2a2bc0c506fffc693a58159d2 |
A358665 | Number of (undirected) paths in the 7 X n king graph. | [
"21",
"202719",
"375341540",
"834776217484",
"1482823362091281",
"2480146959625512771",
"3954100866385811897908",
"6098277513580967335984126",
"9152733286084921835343938561",
"13441847550989968623927296910019",
"19393111514791549266474890223886106",
"27568262002518118100083519899700564808"
] | [
"nonn"
] | 31 | 1 | 1 | [
"A307026",
"A358665"
] | null | Seiichi Manyama, Dec 12 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358665.seq | c1f96f79de0cd9ce479cdf437c62ffad |
A358666 | Numbers such that the two numbers before and the two numbers after are squarefree semiprimes. | [
"144",
"204",
"216",
"300",
"696",
"1140",
"1764",
"2604",
"3240",
"3900",
"4536",
"4764",
"5316",
"5460",
"6000",
"6504",
"7116",
"7836",
"7860",
"8004",
"8484",
"9300",
"9864",
"9936",
"10020",
"11760",
"12180",
"13140",
"13656",
"14256",
"15096",
"16020",
"16440",
"16860",
"18000",
"19536",
"20016",
"20136",
"20280",
"21780",
"22116",
"22236",
"23940"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A001358",
"A358657",
"A358665",
"A358666"
] | null | Tanya Khovanova and Massimo Kofler, Nov 25 2022 | 2022-11-27T10:41:01 | oeisdata/seq/A358/A358666.seq | fd0cdbbf142be3541370a61dc1f784fc |
A358667 | T(n,k) is the k-th integer j > 1 such that the sum of digits of n^j is a power of n (or -1 if no such k-th integer exists); table read by downward antidiagonals. | [
"2",
"3",
"2",
"4",
"3",
"2",
"5",
"9",
"3",
"18",
"6",
"36",
"4",
"88",
"8",
"7",
"85",
"5",
"97",
"208",
"7",
"8",
"176",
"9",
"100",
"977",
"8",
"4",
"9",
"194",
"10",
"1521",
"1007",
"9",
"11",
"3",
"10",
"200",
"11",
"6034",
"4938",
"10",
"4433",
"12",
"2",
"11",
"375",
"13",
"6052",
"24709",
"13",
"30810",
"125",
"18",
"2",
"12",
"1517",
"16",
"96867",
"24733",
"51",
"216613",
"1014",
"1503",
"3"
] | [
"nonn",
"tabl"
] | 10 | 1 | 1 | [
"A095412",
"A118872",
"A358633",
"A358667"
] | null | Jon E. Schoenfield, Nov 25 2022 | 2024-10-20T11:41:41 | oeisdata/seq/A358/A358667.seq | 1d27f60771c978fcdcba4e40e36d24b0 |
A358668 | a(n) is the least m such that A359194^k(m) = n for some k >= 0 (where A359194^k denotes the k-th iterate of A359194). | [
"0",
"0",
"2",
"3",
"4",
"5",
"3",
"7",
"8",
"9",
"7",
"11",
"12",
"3",
"14",
"11",
"11",
"17",
"11",
"19",
"20",
"14",
"12",
"23",
"3",
"12",
"26",
"12",
"28",
"29",
"11",
"12",
"32",
"33",
"12",
"35",
"36",
"11",
"38",
"12",
"29",
"41",
"42",
"28",
"44",
"45",
"12",
"47",
"48",
"26",
"50",
"51",
"12",
"53",
"54",
"3",
"56",
"26",
"23",
"59",
"60",
"12",
"62",
"26",
"26",
"65",
"26",
"67",
"68"
] | [
"nonn",
"base"
] | 63 | 0 | 3 | [
"A070167",
"A358668",
"A359194",
"A359214"
] | null | Rémy Sigrist, Dec 22 2022 | 2022-12-23T08:51:03 | oeisdata/seq/A358/A358668.seq | cb8becdd0318802d039d2fb733ecb23c |
A358669 | Pointwise product of the arithmetic derivative and the primorial base exp-function. | [
"0",
"0",
"3",
"6",
"36",
"18",
"25",
"10",
"180",
"180",
"315",
"90",
"400",
"50",
"675",
"1200",
"7200",
"450",
"2625",
"250",
"9000",
"7500",
"14625",
"2250",
"27500",
"12500",
"28125",
"101250",
"180000",
"11250",
"217",
"14",
"1680",
"588",
"1197",
"1512",
"2100",
"70",
"2205",
"3360",
"21420",
"630",
"7175",
"350",
"25200",
"40950",
"39375",
"3150",
"98000",
"24500",
"118125",
"105000",
"441000"
] | [
"nonn"
] | 24 | 0 | 3 | [
"A003415",
"A016825",
"A042965",
"A059841",
"A067019",
"A121262",
"A152822",
"A235992",
"A276086",
"A327858",
"A353558",
"A358669",
"A358680",
"A358748",
"A358749",
"A358765",
"A359423",
"A359603"
] | null | Antti Karttunen, Dec 05 2022 | 2023-01-11T15:58:51 | oeisdata/seq/A358/A358669.seq | d6ee988192233851148b30b784ae9136 |
A358670 | a(n) = 1 if for all factorizations of n as x*y, the sum x+y is carryfree when the addition is done in the primorial base, otherwise 0. | [
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0"
] | [
"nonn",
"base"
] | 14 | 1 | null | [
"A038548",
"A276086",
"A329041",
"A358233",
"A358670",
"A358671",
"A358672"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-29T12:53:05 | oeisdata/seq/A358/A358670.seq | 1249e6ea461ba610ea5a1372e6f9ae1f |
A358671 | Numbers k such that for all factorizations of k as x*y, the sum x+y is carryfree when the addition is done in the primorial base, A049345. | [
"2",
"4",
"6",
"14",
"18",
"24",
"26",
"28",
"38",
"42",
"52",
"54",
"62",
"72",
"74",
"76",
"78",
"86",
"96",
"98",
"114",
"122",
"124",
"126",
"134",
"146",
"148",
"158",
"172",
"186",
"194",
"206",
"218",
"222",
"244",
"254",
"258",
"268",
"278",
"292",
"302",
"314",
"316",
"326",
"362",
"366",
"386",
"388",
"398",
"402",
"412",
"422",
"434",
"436",
"438",
"446",
"458",
"474",
"482",
"508",
"518",
"542",
"554",
"556",
"558"
] | [
"nonn",
"base"
] | 15 | 1 | 1 | [
"A038548",
"A049345",
"A276086",
"A329041",
"A358233",
"A358670",
"A358671",
"A358673"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-28T17:22:42 | oeisdata/seq/A358/A358671.seq | 520de0a771f890a07a0e4ccde0647de4 |
A358672 | a(n) = 1 if for all factorizations of n as x*y, the sum (x * y') + (x' * y) is carryfree when the addition is done in the primorial base, otherwise 0. Here u' stands for A003415(u), the arithmetic derivative of u. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1"
] | [
"nonn",
"base"
] | 16 | 1 | null | [
"A003415",
"A038548",
"A276086",
"A329041",
"A358235",
"A358670",
"A358672",
"A358673",
"A358674"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-29T12:53:20 | oeisdata/seq/A358/A358672.seq | b38ea48cbfebf88ff4e09993b5261473 |
A358673 | Numbers k such that for all factorizations of k as x*y, the sum (x * y') + (x' * y) is carryfree when the addition is done in the primorial base, A049345. Here n' stands for A003415(n), the arithmetic derivative of n. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"11",
"12",
"13",
"14",
"17",
"18",
"19",
"23",
"26",
"27",
"29",
"31",
"37",
"38",
"41",
"43",
"47",
"53",
"59",
"61",
"62",
"63",
"67",
"70",
"71",
"73",
"74",
"79",
"83",
"86",
"89",
"97",
"99",
"101",
"103",
"107",
"109",
"113",
"117",
"122",
"127",
"131",
"134",
"137",
"139",
"146",
"149",
"151",
"153",
"154",
"157",
"158",
"163",
"167",
"173",
"179",
"181",
"186",
"190",
"191",
"193",
"194",
"195"
] | [
"nonn",
"base"
] | 22 | 1 | 2 | [
"A000040",
"A003415",
"A049345",
"A358235",
"A358671",
"A358672",
"A358673",
"A358674",
"A380468",
"A380525"
] | null | Antti Karttunen, Nov 26 2022 | 2025-02-09T18:10:03 | oeisdata/seq/A358/A358673.seq | b1c52b7382b4fb40b08d3eaf587e31df |
A358674 | Numbers k for which there is a factorization of k into such a pair of natural numbers x and y, that the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n. | [
"8",
"9",
"10",
"15",
"16",
"20",
"21",
"22",
"24",
"25",
"28",
"30",
"32",
"33",
"34",
"35",
"36",
"39",
"40",
"42",
"44",
"45",
"46",
"48",
"49",
"50",
"51",
"52",
"54",
"55",
"56",
"57",
"58",
"60",
"64",
"65",
"66",
"68",
"69",
"72",
"75",
"76",
"77",
"78",
"80",
"81",
"82",
"84",
"85",
"87",
"88",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"98",
"100",
"102",
"104",
"105",
"106",
"108",
"110",
"111",
"112",
"114",
"115",
"116",
"118",
"119"
] | [
"nonn",
"base"
] | 15 | 1 | 1 | [
"A003415",
"A016754",
"A038548",
"A276086",
"A329041",
"A358235",
"A358672",
"A358673",
"A358674",
"A358675"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-28T17:22:25 | oeisdata/seq/A358/A358674.seq | 580e948c6cdb6d57717cff21ff01099c |
A358675 | Numbers k such that for all nontrivial factorizations of k as x*y, the sum (x * y') + (x' * y) will generate at least one carry when the addition is done in the primorial base. Here n' stands for A003415(n), the arithmetic derivative of n. | [
"8",
"9",
"10",
"15",
"16",
"20",
"21",
"22",
"25",
"28",
"30",
"33",
"34",
"35",
"39",
"44",
"46",
"49",
"50",
"51",
"55",
"56",
"57",
"58",
"65",
"66",
"68",
"69",
"77",
"81",
"82",
"84",
"85",
"87",
"91",
"92",
"93",
"94",
"95",
"102",
"106",
"108",
"111",
"112",
"115",
"116",
"118",
"119",
"120",
"121",
"123",
"125",
"128",
"129",
"133",
"136",
"138",
"141",
"142",
"143",
"145",
"147",
"148",
"155",
"156",
"159",
"160",
"161"
] | [
"nonn",
"base"
] | 14 | 1 | 1 | [
"A003415",
"A049345",
"A358235",
"A358674",
"A358675"
] | null | Antti Karttunen, Nov 26 2022 | 2022-11-28T17:22:31 | oeisdata/seq/A358/A358675.seq | a7b3cf366fcc930816e0d7006fff4943 |
A358676 | Number of (undirected) paths in the 6 X n king graph. | [
"15",
"40674",
"25281625",
"16997993692",
"9454839968415",
"4956907379126694",
"2480146959625512771",
"1199741105997010103190",
"564696981034110130721083",
"260043412621117997164783364",
"117628771690070383600923005043",
"52423243374584008151179491288866"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A307026",
"A358676"
] | null | Seiichi Manyama, Dec 12 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358676.seq | 8f651730d5094aa6a3f01460a7ed1bb0 |
A358677 | Irregular triangle where row n gives the columns of A340316 whose minimum value is in row n of A340316. The lists of column indices are given in abbreviated form, using pairs (x, y) to mean the range [x..y]. | [
"1",
"16",
"18",
"18",
"21",
"21",
"17",
"17",
"19",
"20",
"22",
"265549",
"265604",
"265605",
"265608",
"265681",
"265683",
"265829",
"265831",
"265831",
"265835",
"265836",
"265850",
"265850",
"265853",
"265853",
"265862",
"265873",
"265550",
"265603",
"265606",
"265607",
"265682",
"265682",
"265830",
"265830",
"265832",
"265834",
"265837",
"265849",
"265851",
"265852",
"265854",
"265861"
] | [
"nonn",
"tabf"
] | 44 | 1 | 2 | [
"A276176",
"A340316",
"A346617",
"A358677"
] | null | Michel Marcus, Dec 12 2022 | 2023-01-29T05:05:16 | oeisdata/seq/A358/A358677.seq | 8180e53b691f8f69110f338dd48fa13d |
A358678 | a(n) = 1 if n is odd and sigma(n) == 2 mod 4, otherwise 0. | [
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 7 | 1 | null | [
"A000035",
"A000203",
"A191218",
"A353812",
"A358678",
"A359150"
] | null | Antti Karttunen, Dec 17 2022 | 2022-12-17T22:53:31 | oeisdata/seq/A358/A358678.seq | 608c6cab750173bb7fbfbf8249b9c1fc |
A358679 | Dirichlet inverse of the characteristic function of A061345, odd prime powers. | [
"1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"2",
"0",
"2",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"2",
"0",
"-1",
"0",
"2",
"0",
"2",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"2",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"2",
"0",
"2",
"0",
"-1",
"0",
"2",
"0",
"2",
"0",
"2",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-6"
] | [
"sign"
] | 7 | 1 | 15 | [
"A061345",
"A174275",
"A358679"
] | null | Antti Karttunen, Dec 23 2022 | 2022-12-23T16:22:29 | oeisdata/seq/A358/A358679.seq | 0b921318dba366edc6ebdd7c8763a883 |
A358680 | a(n) = 1 if the arithmetic derivative of n is even, 0 otherwise. | [
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] | [
"nonn"
] | 10 | 0 | null | [
"A003415",
"A059841",
"A121262",
"A165560",
"A235992",
"A353494",
"A353495",
"A353557",
"A358680"
] | null | Antti Karttunen, Dec 07 2022 | 2022-12-08T16:32:12 | oeisdata/seq/A358/A358680.seq | efa2fda2703e5e4219f81a02b902682f |
A358681 | Largest area (doubled) of a triangle enclosed by a circle of radius n such that the center of the circle and the vertices of the triangle all have integer coordinates. | [
"2",
"8",
"21",
"36",
"64",
"90",
"120",
"157",
"208",
"256",
"306",
"360",
"432",
"504",
"576",
"650",
"750",
"832",
"928",
"1025",
"1122",
"1254",
"1360",
"1480",
"1612",
"1748",
"1886",
"2016",
"2170",
"2328",
"2484",
"2646",
"2802",
"3000",
"3180",
"3348",
"3540",
"3718",
"3944",
"4148",
"4340",
"4552",
"4788",
"5016",
"5244",
"5473",
"5718",
"5964"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A120893",
"A358465",
"A358681"
] | null | Gerhard Kirchner, Nov 26 2022 | 2024-01-03T17:19:02 | oeisdata/seq/A358/A358681.seq | 62225e65467fe6e5e58e6b0040ab2fc0 |
A358682 | Numbers k such that 8*k^2 + 8*k - 7 is a square. | [
"1",
"7",
"43",
"253",
"1477",
"8611",
"50191",
"292537",
"1705033",
"9937663",
"57920947",
"337588021",
"1967607181",
"11468055067",
"66840723223",
"389576284273",
"2270616982417",
"13234125610231",
"77134136678971",
"449570694463597",
"2620290030102613",
"15272169486152083",
"89012726886809887",
"518804191834707241"
] | [
"nonn",
"easy"
] | 12 | 1 | 2 | [
"A002315",
"A006452",
"A077443",
"A077446",
"A106328",
"A106329",
"A216134",
"A358682"
] | null | Stefano Spezia, Nov 26 2022 | 2022-11-27T12:12:41 | oeisdata/seq/A358/A358682.seq | 78265a1463e51476694c00bd61618c72 |
A358683 | a(n) is the sum of all divisors of all positive integers k where A182986(n) < k <= prime(n), n >= 1. | [
"4",
"4",
"13",
"20",
"58",
"42",
"97",
"59",
"134",
"259",
"104",
"342",
"248",
"140",
"282",
"498",
"542",
"230",
"623",
"438",
"269",
"722",
"517",
"854",
"1256",
"646",
"320",
"672",
"390",
"730",
"2767",
"815",
"1348",
"428",
"2361",
"524",
"1564",
"1553",
"1002",
"1729",
"1670",
"728",
"2980",
"702",
"1227",
"668",
"4125",
"4172",
"1477",
"790",
"1500",
"2246",
"986",
"3859",
"2601",
"2470",
"2630"
] | [
"nonn"
] | 61 | 1 | 1 | [
"A000040",
"A000203",
"A001235",
"A024916",
"A182986",
"A237270",
"A237591",
"A237593",
"A244583",
"A299763",
"A358683"
] | null | Omar E. Pol, Nov 26 2022 | 2022-12-21T20:47:28 | oeisdata/seq/A358/A358683.seq | 64e9551c28fb1235e47fc94ad61e6559 |
A358684 | a(n) is the minimum integer k such that the smallest prime factor of the n-th Fermat number exceeds 2^(2^n - k). | [
"0",
"0",
"0",
"0",
"0",
"23",
"46",
"73",
"206",
"491",
"999",
"2030",
"4080",
"8151"
] | [
"nonn",
"more"
] | 30 | 0 | 6 | [
"A000215",
"A093179",
"A358684"
] | null | Lorenzo Sauras Altuzarra, Nov 26 2022 | 2022-12-27T16:54:12 | oeisdata/seq/A358/A358684.seq | 36e926080f18e982e07b7a5d11514585 |
A358685 | Number of primes < 10^n whose digits are all odd. | [
"3",
"15",
"57",
"182",
"790",
"3217",
"13298",
"56866",
"254689",
"1128121",
"5106701",
"23266331",
"107019385",
"494689488",
"2306491761",
"10758057302",
"50548874979"
] | [
"base",
"nonn",
"more"
] | 43 | 1 | 1 | [
"A030096",
"A358685",
"A358690"
] | null | Zhining Yang, Nov 26 2022 | 2022-12-22T02:12:58 | oeisdata/seq/A358/A358685.seq | e577e80284ec4d6027c675504d92c64d |
A358686 | Numbers sandwiched between two semiprimes, one of which is a square. | [
"5",
"50",
"120",
"122",
"288",
"290",
"528",
"842",
"960",
"1370",
"1680",
"1850",
"2808",
"2810",
"4488",
"5328",
"5330",
"6240",
"6242",
"6888",
"6890",
"9408",
"9410",
"11880",
"12768",
"18770",
"22200",
"22800",
"26568",
"27888",
"36482",
"38808",
"39600",
"52440",
"54290",
"58080",
"63000",
"63002",
"69170",
"72360",
"72362",
"73442",
"76730",
"78960"
] | [
"nonn"
] | 30 | 1 | 1 | [
"A001358",
"A006881",
"A124936",
"A358665",
"A358686"
] | null | Tanya Khovanova, Nov 26 2022 | 2023-07-23T01:53:43 | oeisdata/seq/A358/A358686.seq | 03429d425cae4cfed60a3cf13757edf1 |
A358687 | a(n) = n! * Sum_{k=0..n} k^(3 * (n-k)) / (n-k)!. | [
"1",
"1",
"4",
"57",
"1444",
"61785",
"4050126",
"373648513",
"47101090744",
"7764843893265",
"1630744323319450",
"426925697290933401",
"136591846585403311620",
"52602030074554601172649",
"24058544668572618782040022",
"12916480280574798627072144465"
] | [
"nonn"
] | 24 | 0 | 3 | [
"A006153",
"A193421",
"A349880",
"A356673",
"A358687",
"A358688"
] | null | Seiichi Manyama, Nov 26 2022 | 2022-11-27T06:44:28 | oeisdata/seq/A358/A358687.seq | 4cf0f5d8898ec98a7ccfcdb73a9f61eb |
A358688 | a(n) = n! * Sum_{k=0..n} k^(k * (n-k)) / (n-k)!. | [
"1",
"2",
"5",
"34",
"869",
"75866",
"28213327",
"39049033346",
"256215628707257",
"7710689746589777938",
"1063776147486867074877851",
"870059224717752809087935599002",
"3104894940194751778363241199111802885",
"77521065749331962430758061530260243383954602"
] | [
"nonn"
] | 16 | 0 | 2 | [
"A006153",
"A193421",
"A349893",
"A356674",
"A358687",
"A358688"
] | null | Seiichi Manyama, Nov 26 2022 | 2022-11-27T06:44:34 | oeisdata/seq/A358/A358688.seq | bcf47db08697d4fab46d34653c2c7f77 |
A358689 | Emirps p such that 2*p - reverse(p) is also an emirp. | [
"941",
"1031",
"1201",
"1471",
"7523",
"7673",
"7687",
"9133",
"9293",
"9479",
"9491",
"9601",
"9781",
"9923",
"10091",
"10711",
"12071",
"14891",
"15511",
"17491",
"17681",
"18671",
"32633",
"33623",
"34963",
"35983",
"36943",
"36973",
"37963",
"39157",
"70913",
"72253",
"72337",
"72353",
"73327",
"74093",
"75223",
"75577",
"75833",
"75913",
"77263",
"77557",
"79393",
"79973"
] | [
"nonn",
"base"
] | 29 | 1 | 1 | [
"A006567",
"A358689"
] | null | J. M. Bergot and Robert Israel, Dec 08 2022 | 2022-12-11T01:34:07 | oeisdata/seq/A358/A358689.seq | ae15c5db5835f8ce11eb306f2af42508 |
A358690 | Number of n-digit primes whose digits are all odd. | [
"3",
"12",
"42",
"125",
"608",
"2427",
"10081",
"43568",
"197823",
"873432",
"3978580",
"18159630",
"83753054",
"387670103",
"1811802273",
"8451565541",
"39790817677"
] | [
"base",
"nonn",
"more"
] | 34 | 1 | 1 | [
"A030096",
"A358685",
"A358690"
] | null | Zhining Yang, Nov 26 2022 | 2023-01-14T08:44:48 | oeisdata/seq/A358/A358690.seq | 5287a2082e89130749cc5b0d2857a7eb |
A358691 | Gilbreath transform of primes p(2k-1); see Comments. | [
"3",
"3",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A000040",
"A031368",
"A036262",
"A358691",
"A358692"
] | null | Clark Kimberling, Nov 27 2022 | 2023-09-25T19:24:14 | oeisdata/seq/A358/A358691.seq | e7ff417246263994c8198a160e8034f6 |
A358692 | Gilbreath transform of primes p(2*k) with 2 prefixed; see Comments. | [
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn"
] | 20 | 1 | 2 | [
"A031215",
"A031368",
"A036262",
"A358691",
"A358692"
] | null | Clark Kimberling, Nov 27 2022 | 2025-03-24T04:12:28 | oeisdata/seq/A358/A358692.seq | 3d7b042fd6af01d21904a436cb95d48d |
A358693 | Numbers k such that k / (sum of digits of k) is the square of a prime. | [
"12",
"24",
"36",
"48",
"81",
"150",
"225",
"375",
"441",
"735",
"882",
"1014",
"1452",
"1521",
"1815",
"2023",
"2028",
"2178",
"2312",
"2535",
"2601",
"3549",
"3610",
"4046",
"4332",
"4335",
"4624",
"4913",
"5054",
"5415",
"5491",
"5780",
"6069",
"6137",
"6358",
"6647",
"6936",
"7581",
"7942",
"8664",
"8959",
"9386",
"9522",
"9747",
"10092",
"11532",
"12321",
"12615",
"12696"
] | [
"nonn",
"base"
] | 63 | 1 | 1 | [
"A001102",
"A001248",
"A007953",
"A358693"
] | null | Andi Fugard, Jan 01 2023 | 2023-01-12T19:25:49 | oeisdata/seq/A358/A358693.seq | 69417601cc02fd634472e0f568961872 |
A358694 | Triangle read by rows. Coefficients of the polynomials H(n, x) = Sum_{k=0..n-1} Sum_{i=0..k} abs(Stirling1(n, n - i)) * x^(n - k) in ascending order of powers. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"6",
"4",
"1",
"0",
"24",
"18",
"7",
"1",
"0",
"120",
"96",
"46",
"11",
"1",
"0",
"720",
"600",
"326",
"101",
"16",
"1",
"0",
"5040",
"4320",
"2556",
"932",
"197",
"22",
"1",
"0",
"40320",
"35280",
"22212",
"9080",
"2311",
"351",
"29",
"1",
"0",
"362880",
"322560",
"212976",
"94852",
"27568",
"5119",
"583",
"37",
"1"
] | [
"nonn",
"tabl"
] | 19 | 0 | 5 | [
"A000254",
"A001008",
"A358694"
] | null | Peter Luschny, Nov 27 2022 | 2023-11-12T13:01:51 | oeisdata/seq/A358/A358694.seq | 52480f13eeca0cbcd00ddb1ef45dc062 |
A358695 | a(n) = numerator( Sum_{k=0..n} (-1)^k * binomial(1/2, k)^2 * binomial(n, k) ). | [
"1",
"3",
"33",
"75",
"1305",
"-8253",
"-340711",
"-2173509",
"-758532375",
"-3823240245",
"-73518428511",
"-342444310533",
"-24952606638687",
"-111735599023125",
"-1975318542049815",
"-8639356601706213",
"-9590905885722547959",
"-41296955508208952901",
"-707029904720030040775",
"-3010762771187568788685"
] | [
"sign",
"frac"
] | 12 | 0 | 2 | [
"A056982",
"A260832",
"A358113",
"A358695"
] | null | Peter Luschny, Dec 08 2022 | 2022-12-09T03:54:44 | oeisdata/seq/A358/A358695.seq | 9ab242d3c21db74275c61f38cd089152 |
A358696 | Number of self-avoiding closed paths in the 5 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph. | [
"1",
"5",
"36",
"191",
"1123",
"6410",
"37165",
"214515",
"1240200",
"7165033",
"41403125",
"239227616",
"1382302375",
"7987125379",
"46150853892",
"266666446637",
"1540838849619",
"8903196975232",
"51444004997119",
"297251155267189",
"1717561649837610",
"9924328164015589",
"57344252900906673",
"331343672343272500",
"1914553310297505893",
"11062575457823993391",
"63921216037276901284"
] | [
"nonn"
] | 18 | 2 | 2 | [
"A333515",
"A333758",
"A358696"
] | null | Seiichi Manyama, Nov 27 2022 | 2022-11-27T10:49:30 | oeisdata/seq/A358/A358696.seq | 1d4458825bf1b0e3aa672cb69e5f8b83 |
A358697 | Number of self-avoiding closed paths in the 6 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph. | [
"1",
"11",
"122",
"1123",
"11346",
"113748",
"1153742",
"11674245",
"118180383",
"1195822385",
"12100751361",
"122447319062"
] | [
"nonn",
"more"
] | 7 | 2 | 2 | [
"A333758",
"A358697"
] | null | Seiichi Manyama, Nov 27 2022 | 2022-11-27T08:56:09 | oeisdata/seq/A358/A358697.seq | 42c2621933a22565439f86e0ee3af29d |
A358698 | Number of self-avoiding closed paths in the 7 X n grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph. | [
"1",
"21",
"408",
"6410",
"113748",
"2002405",
"35669433",
"633099244",
"11240647480",
"199480271184",
"3540336868535",
"62831861216325",
"1115122033297714",
"19790829247392636",
"351241699540793996",
"6233729269914805533",
"110634310753645173365",
"1963503651093439655818",
"34847658208568166865562",
"618465506517313482341986"
] | [
"nonn"
] | 13 | 2 | 2 | [
"A333758",
"A358698"
] | null | Seiichi Manyama, Nov 27 2022 | 2022-11-27T10:30:24 | oeisdata/seq/A358/A358698.seq | 980ef928742e7bada12bda5021bf6202 |
A358699 | a(n) is the largest prime factor of 2^(prime(n) - 1) - 1. | [
"3",
"5",
"7",
"31",
"13",
"257",
"73",
"683",
"127",
"331",
"109",
"61681",
"5419",
"2796203",
"8191",
"3033169",
"1321",
"599479",
"122921",
"38737",
"22366891",
"8831418697",
"2931542417",
"22253377",
"268501",
"131071",
"28059810762433",
"279073",
"54410972897",
"77158673929",
"145295143558111",
"2879347902817",
"10052678938039"
] | [
"nonn"
] | 41 | 2 | 1 | [
"A005420",
"A006093",
"A006530",
"A061286",
"A071243",
"A086019",
"A098102",
"A274906",
"A358699"
] | null | Hugo Pfoertner, Nov 27 2022 | 2022-12-01T12:40:56 | oeisdata/seq/A358/A358699.seq | 31914a00c5569262a5c978a197881780 |
A358700 | a(n) is the number of binary digits of n^2. | [
"0",
"1",
"3",
"4",
"5",
"5",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"13"
] | [
"nonn",
"base"
] | 14 | 0 | 3 | [
"A000290",
"A029837",
"A070939",
"A358700"
] | null | Hugo Pfoertner, Dec 16 2022 | 2022-12-17T02:53:27 | oeisdata/seq/A358/A358700.seq | 34297f763b9f5553b9a447aa2aa11a2f |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.