sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358801
Number of (undirected) paths in the grid graph P_5 X P_n.
[ "10", "373", "7119", "111030", "1530196", "19506257", "235936139", "2746052608", "31022271550", "342198075407", "3701853692717", "39403644085768", "413754416309036", "4294547371071725", "44133332753598489", "449640869111701814", "4546623490067918046", "45670109992300898801" ]
[ "nonn" ]
13
1
1
[ "A288518", "A358801" ]
null
Seiichi Manyama, Dec 01 2022
2023-01-27T13:32:24
oeisdata/seq/A358/A358801.seq
41c964ca6441b469f03fd9b6b9e33026
A358802
Number of (undirected) paths in the grid graph P_6 X P_n.
[ "15", "872", "28917", "801756", "19506257", "436619868", "9260866349", "189018035618", "3745089514523", "72455911732944", "1374701479269929", "25661853787702982", "472513518100876173", "8599155344969619012", "154920888058619312423", "2766592048670246327624", "49026467271775768869547" ]
[ "nonn" ]
14
1
1
[ "A288518", "A358802" ]
null
Seiichi Manyama, Dec 01 2022
2023-01-27T13:34:33
oeisdata/seq/A358/A358802.seq
59c491937936d4e22b613ee00f6edc7b
A358803
Number of (undirected) paths in the grid graph P_7 X P_n.
[ "21", "1929", "111360", "5493524", "235936139", "9260866349", "343715004510", "12272026383150", "425379224031883", "14398776122175869", "477992611490969866", "15612642461993689686", "503019559474972734241", "16017949107881110650889" ]
[ "nonn" ]
8
1
1
[ "A288518", "A358803" ]
null
Seiichi Manyama, Dec 01 2022
2022-12-02T07:03:46
oeisdata/seq/A358/A358803.seq
7212ab3cc801a845c80670cbc6be240d
A358804
a(n) is the least nonnegative integer k such that (k^2 + prime(n)^2)/2 is prime but (k^2 + prime(i)^2)/2 is not prime for i < n.
[ "0", "1", "3", "15", "31", "45", "143", "81", "233", "151", "71", "353", "141", "537", "457", "1663", "209", "391", "707", "1081", "1877", "1161", "3807", "2361", "5657", "1399", "2783", "2967", "3149", "2923", "5103", "1109", "11937", "7211", "2341", "9311", "6837", "10303", "24933", "8273", "11821", "9931", "11191", "6377", "14007", "48111", "12821", "43967", "27563", "17171", "38157", "16859" ]
[ "nonn" ]
8
1
3
[ "A358790", "A358804" ]
null
J. M. Bergot and Robert Israel, Dec 01 2022
2022-12-06T10:03:32
oeisdata/seq/A358/A358804.seq
4544ef404c685c16cbdcb935c91e3806
A358805
Numbers k such that k! + (k!/2) + 1 is prime.
[ "4", "5", "7", "11", "12", "14", "18", "28", "30", "62", "135", "153", "275", "584", "630", "1424", "1493", "4419", "8492", "10950" ]
[ "nonn", "more" ]
64
1
1
[ "A070960", "A358805", "A358878" ]
null
Arsen Vardanyan, Dec 01 2022
2024-08-02T08:58:03
oeisdata/seq/A358/A358805.seq
f40bf7d4584c8a57e46053762cbabf1a
A358806
a(n) is the minimal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.
[ "1", "0", "-4", "-110", "-5072", "-488212", "-86577891" ]
[ "sign", "hard", "more" ]
14
0
3
[ "A000217", "A351147", "A351153", "A358806", "A358807", "A358808", "A358809" ]
null
Stefano Spezia, Dec 02 2022
2022-12-06T09:57:48
oeisdata/seq/A358/A358806.seq
9b7ea1bbc5d6c7a80c963d0e3e80a577
A358807
a(n) is the maximal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.
[ "1", "0", "2", "86", "5911", "652189", "82173814" ]
[ "nonn", "hard", "more" ]
13
0
3
[ "A000217", "A351148", "A351153", "A358806", "A358807", "A358808", "A358809" ]
null
Stefano Spezia, Dec 02 2022
2022-12-06T09:58:17
oeisdata/seq/A358/A358807.seq
3d78ccfe412f4e92c41396d5d43eea41
A358808
a(n) is the minimal permanent of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.
[ "1", "0", "1", "33", "2425", "357046", "92052610" ]
[ "nonn", "hard", "more" ]
14
0
4
[ "A000217", "A351153", "A351610", "A358806", "A358807", "A358808", "A358809" ]
null
Stefano Spezia, Dec 02 2022
2022-12-07T08:57:58
oeisdata/seq/A358/A358808.seq
ecd0e23901beaf75eda7a21f87ec1f6c
A358809
a(n) is the maximal permanent of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.
[ "1", "0", "4", "186", "21823", "4569098", "1713573909" ]
[ "nonn", "hard", "more" ]
14
0
3
[ "A000217", "A351153", "A351611", "A358806", "A358807", "A358808", "A358809" ]
null
Stefano Spezia, Dec 02 2022
2022-12-07T14:58:47
oeisdata/seq/A358/A358809.seq
03d51d1045e34094ddcfe705534e9074
A358810
Number of spanning trees in C_5 X C_n.
[ "5", "16810", "10609215", "4381392020", "1562500000000", "522217835532030", "168437773747672835", "53095647535975155240", "16463182598208445194045", "5040439500800000000000000", "1527650417538030913166754055", "459160235715332056282793308860" ]
[ "nonn" ]
10
1
1
[ "A212796", "A358810" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358810.seq
49e85d95627ded095ec6dde5258e1431
A358811
Number of spanning trees in C_6 X C_n.
[ "6", "117600", "292626432", "428652000000", "522217835532030", "587312954081280000", "633426582213424399722", "665880333340217184000000", "687776414074843514847584256", "701129416495732552572667500000", "707405677027691828669857196745186" ]
[ "nonn" ]
10
1
1
[ "A212796", "A358811" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358811.seq
98e3c42f8001904d69d7d548b176c142
A358812
Number of spanning trees in C_7 X C_n.
[ "7", "799694", "7839321861", "40643137651228", "168437773747672835", "633426582213424399722", "2266101334892340404752384", "7871822605982542067643202616", "26818349084747196820449212376063", "90098172307754257628918141363625670", "299464785482715726798502702429093755197" ]
[ "nonn" ]
8
1
1
[ "A212796", "A358812" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358812.seq
c4a410b6fb89fee8e8cb48541b6aabf5
A358813
Number of spanning trees in C_8 X C_n.
[ "8", "5326848", "205683135000", "3771854305099776", "53095647535975155240", "665880333340217184000000", "7871822605982542067643202616", "89927963805390785392395474173952", "1005049441217682470864686231147005000" ]
[ "nonn" ]
10
1
1
[ "A212796", "A358813" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358813.seq
81a9433cd68957a9d2f947c650b2e32d
A358814
Number of spanning trees in C_9 X C_n.
[ "9", "34928082", "5312031978672", "344499209234302500", "16463182598208445194045", "687776414074843514847584256", "26818349084747196820449212376063", "1005049441217682470864686231147005000", "36735015407753190053984060991247792275456" ]
[ "nonn" ]
8
1
1
[ "A212796", "A358814" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358814.seq
ef417ad0d0069f9584fa78fd0a595d87
A358815
Number of spanning trees in C_10 X C_n.
[ "10", "226195360", "135495143785470", "31074298464967845120", "5040439500800000000000000", "701129416495732552572667500000", "90098172307754257628918141363625670", "11062145603354190616166421646710839715840" ]
[ "nonn" ]
8
1
1
[ "A212796", "A358815" ]
null
Seiichi Manyama, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358815.seq
ce9fda569c939ba222095de24e638f39
A358816
Numbers k such that d + k/d is prime for any unitary divisor d of k.
[ "1", "2", "4", "6", "10", "12", "16", "18", "22", "28", "30", "36", "40", "42", "52", "58", "60", "70", "72", "78", "82", "88", "100", "102", "108", "112", "130", "148", "162", "172", "190", "192", "196", "198", "210", "228", "232", "240", "250", "256", "268", "270", "280", "310", "312", "316", "330", "352", "358", "372", "378", "382", "388", "396", "400", "408", "432", "442", "448" ]
[ "nonn" ]
8
1
2
[ "A005117", "A006093", "A077610", "A080715", "A358816" ]
null
Amiram Eldar, Dec 02 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358816.seq
7be68dc1655736e8b5cbd6e05b6e60e9
A358817
Numbers k such that A046660(k) = A046660(k+1).
[ "1", "2", "5", "6", "10", "13", "14", "21", "22", "29", "30", "33", "34", "37", "38", "41", "42", "44", "46", "49", "57", "58", "61", "65", "66", "69", "70", "73", "75", "77", "78", "80", "82", "85", "86", "93", "94", "98", "101", "102", "105", "106", "109", "110", "113", "114", "116", "118", "122", "129", "130", "133", "135", "137", "138", "141", "142", "145", "147", "154", "157" ]
[ "nonn" ]
9
1
2
[ "A002961", "A005237", "A006049", "A007674", "A045920", "A046660", "A052213", "A085651", "A358817", "A358818" ]
null
Amiram Eldar, Dec 02 2022
2022-12-04T01:41:25
oeisdata/seq/A358/A358817.seq
43aacf23d44a4e971da1ffcecc0078a4
A358818
a(n) is the least number k such that A046660(k) = A046660(k+1) = n.
[ "1", "44", "135", "80", "8991", "29888", "123200", "2316032", "1043199", "24151040", "217713663", "689278976", "11573190656", "76876660736", "311969153024", "2035980763136", "2741258240000", "215189482110975" ]
[ "nonn", "more" ]
10
0
2
[ "A046660", "A052215", "A059737", "A093548", "A115186", "A358817", "A358818" ]
null
Amiram Eldar, Dec 02 2022
2022-12-15T05:07:28
oeisdata/seq/A358/A358818.seq
f34ab50fb5d799c1d26918d226b293dd
A358819
Numbers k such that for some r we have w(1) + ... + w(k - 1) = w(k + 1) + ... + w(k + r), where w(i) = A000120(i).
[ "4", "5", "8", "9", "10", "11", "12", "15", "22", "23", "40", "43", "44", "46", "49", "54", "59", "60", "61", "65", "70", "76", "77", "81", "87", "90", "92", "94", "100", "105", "107", "109", "110", "112", "125", "130", "131", "135", "150", "156", "158", "167", "170", "171", "182", "184", "185", "196", "201", "203", "212", "215", "216", "218", "220", "221", "223", "226", "230" ]
[ "nonn" ]
12
1
1
[ "A000120", "A000788", "A358819" ]
null
Ctibor O. Zizka, Dec 02 2022
2022-12-02T13:08:58
oeisdata/seq/A358/A358819.seq
53a3a783f715ed9f74810562df6cc951
A358820
a(n) is the least novel k such that d(k)|n, where d is the divisor counting function A000005.
[ "1", "2", "4", "3", "16", "5", "64", "6", "9", "7", "1024", "8", "4096", "11", "25", "10", "65536", "12", "262144", "13", "49", "17", "4194304", "14", "81", "19", "36", "15", "268435456", "18", "1073741824", "21", "121", "23", "625", "20", "68719476736", "29", "169", "22", "1099511627776", "28", "4398046511104", "26", "100", "31", "70368744177664", "24" ]
[ "nonn" ]
30
1
2
[ "A000005", "A005179", "A061286", "A128555", "A358820" ]
null
David James Sycamore, Dec 02 2022
2022-12-05T10:12:19
oeisdata/seq/A358/A358820.seq
d86aee5342c869adbc3eef8c8f71465f
A358821
a(n) is the largest square dividing n^2 - 1.
[ "1", "4", "1", "4", "1", "16", "9", "16", "9", "4", "1", "4", "1", "16", "1", "144", "1", "36", "1", "4", "1", "16", "25", "16", "225", "4", "9", "4", "1", "64", "1", "64", "1", "36", "1", "36", "1", "16", "1", "16", "1", "4", "9", "4", "9", "16", "49", "400", "49", "100", "1", "36", "1", "144", "1", "16", "1", "4", "1", "4", "9", "64", "9", "64", "1", "4", "1", "4", "1", "144", "1", "144", "25", "4" ]
[ "nonn" ]
50
2
2
[ "A005563", "A007913", "A008833", "A068310", "A358821" ]
null
Darío Clavijo, Jan 04 2023
2023-03-31T07:28:37
oeisdata/seq/A358/A358821.seq
0a4aa81fb20a95ca8a701575bd3726f2
A358822
a(n) is the first number k such that there are exactly n pairs of primes p < q with p + q = k such that p*q - k and p*q + k are both prime.
[ "2", "8", "48", "30", "114", "264", "390", "630", "1080", "660", "1470", "2046", "2730", "1680", "2310", "4530", "1650", "2760", "1290", "4170", "3150", "4590", "4440", "8610", "7800", "6090", "7950", "5040", "7560", "11550", "9690", "10530", "12180", "14280", "11520", "10920", "19980", "12810", "12210", "18270", "12390", "13230", "17460", "15990", "23070", "14490", "14880", "24540", "16830" ]
[ "nonn" ]
4
0
1
null
null
J. M. Bergot and Robert Israel, Dec 02 2022
2022-12-06T10:03:44
oeisdata/seq/A358/A358822.seq
fe712a2c89a0cda6fd4c036e9dc84926
A358823
Number of odd-length twice-partitions of n into partitions with all odd parts.
[ "0", "1", "1", "3", "3", "7", "10", "20", "29", "58", "83", "150", "230", "399", "605", "1037", "1545", "2547", "3879", "6241", "9437", "15085", "22622", "35493", "53438", "82943", "124157", "191267", "284997", "434634", "647437", "979293", "1452182", "2185599", "3228435", "4826596", "7112683", "10575699", "15530404", "22990800", "33651222" ]
[ "nonn" ]
13
0
4
[ "A000009", "A000041", "A001970", "A027193", "A063834", "A072233", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A321449", "A356932", "A358334", "A358823", "A358824" ]
null
Gus Wiseman, Dec 03 2022
2022-12-31T14:51:33
oeisdata/seq/A358/A358823.seq
1608c51283c6b3fb8ae9dd6a8c88b6f3
A358824
Number of twice-partitions of n of odd length.
[ "0", "1", "2", "4", "7", "15", "32", "61", "121", "260", "498", "967", "1890", "3603", "6839", "12972", "23883", "44636", "82705", "150904", "275635", "501737", "905498", "1628293", "2922580", "5224991", "9296414", "16482995", "29125140", "51287098", "90171414", "157704275", "275419984", "479683837", "833154673", "1442550486", "2493570655" ]
[ "nonn" ]
11
0
3
[ "A000009", "A000041", "A001970", "A024429", "A026424", "A027193", "A063834", "A072233", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A306319", "A321449", "A336342", "A356932", "A358334", "A358823", "A358824", "A358826", "A358834", "A358837" ]
null
Gus Wiseman, Dec 03 2022
2022-12-30T21:38:48
oeisdata/seq/A358/A358824.seq
5cbdcefb3edb61b28d48b0cad2b74713
A358825
Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts.
[ "1", "1", "1", "4", "4", "11", "20", "35", "56", "113", "207", "326", "602", "985", "1777", "3124", "5115", "8523", "15011", "24519", "41571", "71096", "115650", "191940", "320651", "530167", "865781", "1442059", "2358158", "3833007", "6325067", "10243259", "16603455", "27151086", "43734197", "71032191", "115091799", "184492464" ]
[ "nonn" ]
7
0
4
[ "A000009", "A000041", "A001970", "A027193", "A063834", "A072233", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A321449", "A356932", "A358334", "A358824", "A358825", "A358826" ]
null
Gus Wiseman, Dec 03 2022
2022-12-04T08:33:31
oeisdata/seq/A358/A358825.seq
f995d467eac0e12bfe55a75d50e06413
A358826
Number of ways to choose a sequence of partitions, one of each part of an odd-length partition of 2n+1 into odd parts.
[ "1", "4", "11", "35", "113", "326", "985", "3124", "8523", "24519", "71096", "191940", "530167", "1442059", "3833007", "10243259", "27151086", "71032191", "184492464", "478339983", "1227208513", "3140958369", "8016016201", "20210235189", "50962894061", "127936646350", "319022819270", "794501931062", "1969154638217" ]
[ "nonn" ]
6
0
2
[ "A000009", "A000041", "A001970", "A027193", "A063834", "A072233", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A321449", "A356932", "A358824", "A358825", "A358826", "A358827", "A358834" ]
null
Gus Wiseman, Dec 03 2022
2022-12-04T08:33:36
oeisdata/seq/A358/A358826.seq
9c71c3a54278a9d5937ab687dad690b6
A358827
Number of twice-partitions of n into partitions with all odd lengths and sums.
[ "1", "1", "1", "3", "3", "7", "11", "19", "27", "51", "83", "128", "208", "324", "542", "856", "1332", "2047", "3371", "5083", "8009", "12545", "19478", "29770", "46038", "70777", "108627", "167847", "255408", "388751", "593475", "901108", "1361840", "2077973", "3125004", "4729056", "7146843", "10732799", "16104511", "24257261", "36305878" ]
[ "nonn" ]
6
0
4
[ "A000009", "A000041", "A001970", "A027193", "A063834", "A072233", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A306319", "A321449", "A356932", "A358334", "A358824", "A358825", "A358827" ]
null
Gus Wiseman, Dec 03 2022
2022-12-04T08:33:40
oeisdata/seq/A358/A358827.seq
5c7f9343099580d2fd009ab8a9015c59
A358828
Number of twice-partitions of n with no singletons.
[ "1", "0", "1", "2", "5", "8", "19", "30", "68", "111", "229", "380", "799", "1280", "2519", "4325", "8128", "13666", "25758", "43085", "79300", "134571", "240124", "407794", "730398", "1224821", "2152122", "3646566", "6338691", "10657427", "18469865", "30913539", "53108364", "88953395", "151396452", "253098400", "429416589" ]
[ "nonn" ]
5
0
4
[ "A000009", "A000041", "A000219", "A001970", "A002865", "A063834", "A072233", "A296122", "A304966", "A321449", "A358824", "A358828", "A358829" ]
null
Gus Wiseman, Dec 03 2022
2022-12-03T13:54:02
oeisdata/seq/A358/A358828.seq
677ac63a8d4c90fc33b9ad73721765ae
A358829
Number of twice-partitions of n with no (1)'s.
[ "1", "0", "2", "3", "9", "13", "38", "56", "144", "237", "524", "886", "1961", "3225", "6700", "11702", "23007", "39787", "77647", "133707", "254896", "442736", "820703", "1427446", "2630008", "4535330", "8224819", "14250148", "25513615", "43981753", "78252954", "134323368", "236900355", "406174046", "709886932", "1213934012" ]
[ "nonn" ]
5
0
3
[ "A000009", "A000041", "A000219", "A001970", "A002865", "A063834", "A072233", "A296122", "A304966", "A317911", "A321449", "A358824", "A358828", "A358829" ]
null
Gus Wiseman, Dec 03 2022
2022-12-03T13:53:48
oeisdata/seq/A358/A358829.seq
f80a49edf9e380fbba2aa90df6898290
A358830
Number of twice-partitions of n into partitions with all different lengths.
[ "1", "1", "2", "4", "9", "15", "31", "53", "105", "178", "330", "555", "1024", "1693", "2991", "5014", "8651", "14242", "24477", "39864", "67078", "109499", "181311", "292764", "483775", "774414", "1260016", "2016427", "3254327", "5162407", "8285796", "13074804", "20812682", "32733603", "51717463", "80904644", "127305773", "198134675", "309677802" ]
[ "nonn" ]
11
0
3
[ "A000009", "A000219", "A001970", "A007837", "A063834", "A141199", "A271619", "A273873", "A279375", "A279785", "A279790", "A296122", "A306319", "A321449", "A336342", "A358334", "A358830", "A358831", "A358832", "A358836" ]
null
Gus Wiseman, Dec 03 2022
2022-12-31T20:30:13
oeisdata/seq/A358/A358830.seq
20fffc13af1c6a4403e5126971f1a982
A358831
Number of twice-partitions of n into partitions with weakly decreasing lengths.
[ "1", "1", "3", "6", "14", "26", "56", "102", "205", "372", "708", "1260", "2345", "4100", "7388", "12819", "22603", "38658", "67108", "113465", "193876", "324980", "547640", "909044", "1516609", "2495023", "4118211", "6726997", "11002924", "17836022", "28948687", "46604803", "75074397", "120134298", "192188760", "305709858", "486140940" ]
[ "nonn" ]
9
0
3
[ "A000041", "A000219", "A001970", "A061260", "A063834", "A072233", "A141199", "A196545", "A271619", "A279787", "A289501", "A296122", "A306319", "A321449", "A358830", "A358831", "A358836" ]
null
Gus Wiseman, Dec 03 2022
2022-12-31T20:30:09
oeisdata/seq/A358/A358831.seq
78bd991e9a32c1ac9b6445d7c1c3e14e
A358832
Number of twice-partitions of n into partitions of distinct lengths and distinct sums.
[ "1", "1", "2", "4", "7", "15", "25", "49", "79", "154", "248", "453", "748", "1305", "2125", "3702", "5931", "9990", "16415", "26844", "43246", "70947", "113653", "182314", "292897", "464614", "739640", "1169981", "1844511", "2888427", "4562850", "7079798", "11064182", "17158151", "26676385", "41075556", "63598025", "97420873", "150043132" ]
[ "nonn" ]
10
0
3
[ "A000009", "A000219", "A001970", "A063834", "A141199", "A271619", "A273873", "A279375", "A279785", "A279790", "A296122", "A306319", "A321449", "A326533", "A326535", "A358334", "A358830", "A358832", "A358833", "A358836" ]
null
Gus Wiseman, Dec 04 2022
2022-12-31T14:51:57
oeisdata/seq/A358/A358832.seq
6f537287dd63777678f510e75907e737
A358833
Number of rectangular twice-partitions of n of type (P,R,P).
[ "1", "1", "3", "4", "8", "8", "17", "16", "32", "34", "56", "57", "119", "102", "179", "199", "335", "298", "598", "491", "960", "925", "1441", "1256", "2966", "2026", "3726", "3800", "6488", "4566", "11726", "6843", "16176", "14109", "21824", "16688", "49507", "21638", "50286", "50394", "99408", "44584", "165129", "63262", "208853", "205109", "248150" ]
[ "nonn" ]
10
0
3
[ "A000041", "A000219", "A001970", "A008284", "A063834", "A141199", "A279787", "A281145", "A296122", "A306319", "A321449", "A327908", "A358823", "A358831", "A358832", "A358833", "A358835" ]
null
Gus Wiseman, Dec 04 2022
2022-12-31T14:52:23
oeisdata/seq/A358/A358833.seq
21ebc07c79212569f742fb66b4f40b49
A358834
Number of odd-length twice-partitions of n into odd-length partitions.
[ "0", "1", "1", "3", "3", "8", "11", "24", "35", "74", "109", "213", "336", "624", "986", "1812", "2832", "5002", "7996", "13783", "21936", "37528", "59313", "99598", "158356", "262547", "415590", "684372", "1079576", "1759984", "2779452", "4491596", "7069572", "11370357", "17841534", "28509802", "44668402", "70975399", "110907748" ]
[ "nonn" ]
9
0
4
[ "A000009", "A000041", "A001970", "A003712", "A026424", "A027193", "A063834", "A078408", "A270995", "A271619", "A279374", "A279785", "A296122", "A300301", "A321449", "A356932", "A356935", "A358334", "A358823", "A358824", "A358826", "A358827", "A358834", "A358837" ]
null
Gus Wiseman, Dec 04 2022
2022-12-30T21:38:54
oeisdata/seq/A358/A358834.seq
fe16a26a4d56b2c6f2522431987cfbf8
A358835
Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.
[ "1", "1", "3", "4", "8", "8", "17", "16", "31", "34", "54", "57", "108", "102", "166", "191", "294", "298", "504", "491", "803", "843", "1251", "1256", "2167", "1974", "3133", "3226", "4972", "4566", "8018", "6843", "11657", "11044", "17217", "15010", "28422", "21638", "38397", "35067", "58508", "44584", "91870", "63262", "125114", "106264", "177483" ]
[ "nonn" ]
14
0
3
[ "A000219", "A001970", "A007425", "A063834", "A141199", "A296122", "A305551", "A319066", "A320324", "A326534", "A327899", "A327908", "A356932", "A358831", "A358832", "A358833", "A358835" ]
null
Gus Wiseman, Dec 05 2022
2025-03-24T05:29:24
oeisdata/seq/A358/A358835.seq
47c35a195fc4c17c86fa1557780aacf6
A358836
Number of multiset partitions of integer partitions of n with all distinct block sizes.
[ "1", "1", "2", "4", "8", "15", "28", "51", "92", "164", "289", "504", "871", "1493", "2539", "4290", "7201", "12017", "19939", "32911", "54044", "88330", "143709", "232817", "375640", "603755", "966816", "1542776", "2453536", "3889338", "6146126", "9683279", "15211881", "23830271", "37230720", "58015116", "90174847", "139820368", "216286593" ]
[ "nonn" ]
16
0
3
[ "A000009", "A000041", "A001970", "A003242", "A007837", "A011782", "A063834", "A106356", "A141199", "A188900", "A188920", "A189076", "A238130", "A238279", "A238343", "A271619", "A273873", "A279375", "A279785", "A279790", "A296122", "A319066", "A326533", "A333213", "A333755", "A335456", "A336342", "A356932", "A358334", "A358830", "A358832", "A358836", "A374629", "A374634", "A374635", "A374637", "A374679", "A374701", "A374740", "A374742", "A374743", "A374744", "A374746", "A374747" ]
null
Gus Wiseman, Dec 05 2022
2024-08-22T16:08:35
oeisdata/seq/A358/A358836.seq
4fddc0255ad57098cc5ff7dbeebb1070
A358837
Number of odd-length multiset partitions of integer partitions of n.
[ "0", "1", "2", "4", "7", "14", "28", "54", "106", "208", "399", "757", "1424", "2642", "4860", "8851", "15991", "28673", "51095", "90454", "159306", "279067", "486598", "844514", "1459625", "2512227", "4307409", "7357347", "12522304", "21238683", "35903463", "60497684", "101625958", "170202949", "284238857", "473356564", "786196353" ]
[ "nonn" ]
11
0
3
[ "A000219", "A001970", "A024429", "A026424", "A027193", "A063834", "A141199", "A296122", "A336342", "A358334", "A358824", "A358831", "A358837" ]
null
Gus Wiseman, Dec 05 2022
2022-12-31T11:20:03
oeisdata/seq/A358/A358837.seq
58e424dfca840444d9eb05b5147ba84b
A358838
Minimum number of jumps needed to go from slab 0 to slab n in Jane Street's infinite sidewalk.
[ "0", "1", "2", "5", "3", "6", "9", "4", "7", "10", "10", "5", "8", "8", "11", "11", "11", "6", "14", "9", "9", "12", "12", "12", "15", "12", "7", "18", "15", "10", "10", "10", "13", "13", "13", "13", "16", "16", "13", "16", "8", "19", "19", "16", "11", "11", "11", "11", "19", "14", "14", "14", "14", "14", "22", "17", "17", "17", "14", "17", "17", "9", "20", "20", "20", "17", "17", "12", "12", "12" ]
[ "nonn" ]
107
0
3
[ "A004523", "A005408", "A006999", "A008619", "A299174", "A358838", "A359005", "A359008", "A360593", "A360595", "A360744", "A360746" ]
null
Frederic Ruget, Dec 02 2022
2023-05-21T10:26:52
oeisdata/seq/A358/A358838.seq
e379a29188804e09c21551cd5a7794a6
A358839
Dirichlet inverse of A353627, the characteristic function of the squarefree numbers multiplied by binary powers.
[ "1", "-1", "-1", "0", "-1", "1", "-1", "0", "1", "1", "-1", "0", "-1", "1", "1", "0", "-1", "-1", "-1", "0", "1", "1", "-1", "0", "1", "1", "-1", "0", "-1", "-1", "-1", "0", "1", "1", "1", "0", "-1", "1", "1", "0", "-1", "-1", "-1", "0", "-1", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "1", "0", "1", "1", "-1", "0", "-1", "1", "-1", "0", "1", "-1", "-1", "0", "1", "-1", "-1", "0", "-1", "1", "-1", "0", "1", "-1", "-1", "0", "1", "1", "-1", "0", "1", "1", "1", "0", "-1", "1", "1", "0", "1", "1", "1", "0", "-1", "-1", "-1", "0", "-1", "-1", "-1", "0", "-1" ]
[ "sign", "mult" ]
32
1
null
[ "A008586", "A008683", "A008836", "A166486", "A166698", "A353627", "A355689", "A358839", "A359370", "A359371", "A359372", "A359373", "A359378" ]
null
Antti Karttunen, Dec 23 2022
2025-03-11T16:21:21
oeisdata/seq/A358/A358839.seq
0bfd9a87fb1e1f65dc9ba457d6fae6bb
A358840
Primorial base exp-function reduced modulo 6.
[ "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "1", "2", "3", "0", "3", "0", "5", "4", "3", "0", "3", "0", "1", "2", "3", "0" ]
[ "nonn" ]
11
0
2
[ "A010875", "A047235", "A120325", "A276086", "A328632", "A353486", "A358840", "A358841", "A358842", "A358843", "A358850" ]
null
Antti Karttunen, Dec 02 2022
2022-12-03T19:41:06
oeisdata/seq/A358/A358840.seq
8f753716349a790ac97887443674b428
A358841
a(n) = 1 if A276086(n) is of the form 6k+1, where A276086 is the primorial base exp-function.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
12
0
null
[ "A059841", "A079979", "A120325", "A276086", "A328578", "A328632", "A353488", "A358840", "A358841", "A358842" ]
null
Antti Karttunen, Dec 02 2022
2022-12-03T20:26:38
oeisdata/seq/A358/A358841.seq
5f45a4888f2b04353b5f87514c4ef289
A358842
a(n) = 1 if A276086(n) is of the form 6k+5, where A276086 is the primorial base exp-function.
[ "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
13
0
null
[ "A003987", "A059841", "A079979", "A120325", "A276086", "A353489", "A353516", "A358755", "A358840", "A358841", "A358842", "A358843", "A358846" ]
null
Antti Karttunen, Dec 02 2022
2022-12-03T20:26:42
oeisdata/seq/A358/A358842.seq
da2a444b4b12093b51609ea52a3430e9
A358843
Numbers k such that A276086(k) == 5 (mod 6), where A276086 is the primorial base exp-function.
[ "6", "18", "36", "48", "66", "78", "96", "108", "126", "138", "156", "168", "186", "198", "210", "222", "234", "240", "252", "264", "270", "282", "294", "300", "312", "324", "330", "342", "354", "360", "372", "384", "390", "402", "414", "426", "438", "456", "468", "486", "498", "516", "528", "546", "558", "576", "588", "606", "618", "630", "642", "654", "660", "672", "684", "690", "702", "714", "720", "732", "744", "750" ]
[ "nonn" ]
9
1
1
[ "A008588", "A328586", "A328632", "A358840", "A358842", "A358843", "A358844" ]
null
Antti Karttunen, Dec 02 2022
2022-12-03T11:54:54
oeisdata/seq/A358/A358843.seq
ef4ff411f2dd5f89179a046bc3071dab
A358844
Numbers k for which A276086(6*k) == 5 (mod 6), where A276086 is the primorial base exp-function.
[ "1", "3", "6", "8", "11", "13", "16", "18", "21", "23", "26", "28", "31", "33", "35", "37", "39", "40", "42", "44", "45", "47", "49", "50", "52", "54", "55", "57", "59", "60", "62", "64", "65", "67", "69", "71", "73", "76", "78", "81", "83", "86", "88", "91", "93", "96", "98", "101", "103", "105", "107", "109", "110", "112", "114", "115", "117", "119", "120", "122", "124", "125", "127", "129", "130", "132", "134", "135", "137", "139", "141" ]
[ "nonn" ]
7
1
2
[ "A276086", "A358843", "A358844", "A358845", "A358846" ]
null
Antti Karttunen, Dec 02 2022
2022-12-03T13:54:16
oeisdata/seq/A358/A358844.seq
83537c5e87def1e6947e93500be4aa9e
A358845
Numbers k for which A276086(6*k) == 1 (mod 6), where A276086 is the primorial base exp-function.
[ "0", "2", "4", "5", "7", "9", "10", "12", "14", "15", "17", "19", "20", "22", "24", "25", "27", "29", "30", "32", "34", "36", "38", "41", "43", "46", "48", "51", "53", "56", "58", "61", "63", "66", "68", "70", "72", "74", "75", "77", "79", "80", "82", "84", "85", "87", "89", "90", "92", "94", "95", "97", "99", "100", "102", "104", "106", "108", "111", "113", "116", "118", "121", "123", "126", "128", "131", "133", "136", "138", "140", "142", "144" ]
[ "nonn" ]
6
1
2
[ "A276086", "A328632", "A358840", "A358841", "A358844", "A358845", "A358846" ]
null
Antti Karttunen, Dec 03 2022
2022-12-03T13:54:25
oeisdata/seq/A358/A358845.seq
6efbc0508b4d70d74cbb8ca2de7b5705
A358846
a(n) = 1 if A276086(6*n) == 5 (mod 6), otherwise 0, where A276086 is the primorial base exp-function.
[ "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1" ]
[ "nonn" ]
13
0
null
[ "A003987", "A276086", "A358840", "A358842", "A358844", "A358845", "A358846", "A358847" ]
null
Antti Karttunen, Dec 03 2022
2022-12-03T16:52:36
oeisdata/seq/A358/A358846.seq
5f89e38da54564d8e50b2a8136c561b3
A358847
a(n) = 1 if A053669(6*n) [the smallest prime not dividing 6*n] is of the form 6m-1, otherwise a(n) = 0.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0" ]
[ "nonn", "easy" ]
22
1
null
[ "A002110", "A003987", "A276084", "A353528", "A353529", "A358755", "A358846", "A358847", "A358848", "A358849" ]
null
Antti Karttunen, Dec 03 2022
2024-04-16T02:39:37
oeisdata/seq/A358/A358847.seq
0117f62d3ec7a698211e6e2d85682ae5
A358848
Numbers k for which A053669(6*k) [the smallest prime not dividing 6k] is of the form 6m+1.
[ "5", "10", "15", "20", "25", "30", "40", "45", "50", "55", "60", "65", "75", "80", "85", "90", "95", "100", "110", "115", "120", "125", "130", "135", "145", "150", "155", "160", "165", "170", "180", "185", "190", "195", "200", "205", "215", "220", "225", "230", "235", "240", "250", "255", "260", "265", "270", "275", "285", "290", "295", "300", "305", "310", "320", "325", "330", "335", "340", "345", "355", "360", "365", "370", "375", "380", "385" ]
[ "nonn" ]
12
1
1
[ "A008587", "A053669", "A067761", "A358847", "A358848", "A358849" ]
null
Antti Karttunen, Dec 03 2022
2022-12-04T08:33:07
oeisdata/seq/A358/A358848.seq
9b44cf7cb6be276af091fc990ddb6ff3
A358849
Numbers k for which A053669(6*k) [the smallest prime not dividing 6k] is of the form 6m-1.
[ "1", "2", "3", "4", "6", "7", "8", "9", "11", "12", "13", "14", "16", "17", "18", "19", "21", "22", "23", "24", "26", "27", "28", "29", "31", "32", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "46", "47", "48", "49", "51", "52", "53", "54", "56", "57", "58", "59", "61", "62", "63", "64", "66", "67", "68", "69", "70", "71", "72", "73", "74", "76", "77", "78", "79", "81", "82", "83", "84", "86", "87", "88", "89", "91", "92", "93", "94" ]
[ "nonn" ]
12
1
2
[ "A053669", "A358847", "A358848", "A358849" ]
null
Antti Karttunen, Dec 03 2022
2022-12-04T08:33:11
oeisdata/seq/A358/A358849.seq
4bb908acb203a31d0999c47925816d48
A358850
Primorial base exp-function reduced modulo 12.
[ "1", "2", "3", "6", "9", "6", "5", "10", "3", "6", "9", "6", "1", "2", "3", "6", "9", "6", "5", "10", "3", "6", "9", "6", "1", "2", "3", "6", "9", "6", "7", "2", "9", "6", "3", "6", "11", "10", "9", "6", "3", "6", "7", "2", "9", "6", "3", "6", "11", "10", "9", "6", "3", "6", "7", "2", "9", "6", "3", "6", "1", "2", "3", "6", "9", "6", "5", "10", "3", "6", "9", "6", "1", "2", "3", "6", "9", "6", "5", "10", "3", "6", "9", "6", "1", "2", "3", "6", "9", "6", "7", "2", "9", "6", "3", "6", "11", "10" ]
[ "nonn" ]
8
0
2
[ "A010881", "A276086", "A353486", "A358840", "A358850" ]
null
Antti Karttunen, Dec 03 2022
2022-12-03T20:26:47
oeisdata/seq/A358/A358850.seq
972546212dc24181a1ad31f572e9c21f
A358851
a(n+1) is the number of occurrences of the largest digit of a(n) among all the digits of [a(0), a(1), ..., a(n)], with a(0)=0.
[ "0", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "11", "13", "2", "2", "3", "3", "4", "2", "4", "3", "5", "2", "5", "3", "6", "2", "6", "3", "7", "2", "7", "3", "8", "2", "8", "3", "9", "2", "9", "3", "10", "15", "4", "4", "5", "5", "6", "4", "6", "5", "7", "4", "7", "5", "8", "4", "8", "5", "9", "4", "9", "5", "10", "17", "6", "6", "7", "7", "8", "6" ]
[ "nonn", "base" ]
46
0
4
[ "A248034", "A249009", "A336514", "A356348", "A358851" ]
null
Bence Bernáth, Dec 08 2022
2024-12-23T14:53:46
oeisdata/seq/A358/A358851.seq
94e933c9ecd4515492a8db19678fbb94
A358852
a(n) = n!*Sum_{m=0..floor(n/3)} 1/binomial(n-m,2*m).
[ "1", "1", "2", "12", "32", "140", "1512", "6384", "44928", "749088", "4299840", "42546240", "974695680", "7061783040", "90598072320", "2640888230400", "23099489280000", "364696083763200", "12881138586624000", "132004210918809600", "2475855534329856000", "102587486964092928000", "1205260977814806528000" ]
[ "nonn" ]
16
0
3
[ "A358446", "A358852" ]
null
Vladimir Kruchinin, Dec 02 2022
2023-12-10T09:14:10
oeisdata/seq/A358/A358852.seq
ba6dc8e8834fdad773bb91a56d2ba927
A358853
Number of Hamiltonian cycles in C_5 X C_n.
[ "20", "390", "2930", "23580", "145210", "1045940", "6228730", "43322370", "260600210", "1776654220", "10913989610", "73525916750", "461264468640", "3088176680560", "19722405442490", "131703577902460", "853035459491710", "5693694272274220", "37271158654667390", "248902943147007900" ]
[ "nonn" ]
21
2
1
[ "A222199", "A270273", "A358853" ]
null
Seiichi Manyama, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358853.seq
71de7fd6f39932d1f2dddb73d8cfdc91
A358854
Number of even digits necessary to write all the numbers from 0 up to n.
[ "1", "1", "2", "2", "3", "3", "4", "4", "5", "5", "6", "6", "7", "7", "8", "8", "9", "9", "10", "10", "12", "13", "15", "16", "18", "19", "21", "22", "24", "25", "26", "26", "27", "27", "28", "28", "29", "29", "30", "30", "32", "33", "35", "36", "38", "39", "41", "42", "44", "45", "46", "46", "47", "47", "48", "48", "49", "49", "50", "50", "52", "53", "55", "56", "58", "59", "61", "62", "64", "65", "66", "66", "67", "67", "68", "68" ]
[ "nonn", "base" ]
22
0
3
[ "A117804", "A196563", "A279766", "A358854" ]
null
Bernard Schott, Dec 03 2022
2023-02-19T17:48:00
oeisdata/seq/A358/A358854.seq
56852b7f71b7c06b75d07aa510b5e90d
A358855
Number of (undirected) cycles in the graph C_5 X C_n.
[ "7298", "132089", "2183490", "34846271", "548520502", "8593998133", "134605124804", "2112734282875", "33277625395316", "526401223244097", "8365394600819118", "133560895142858179", "2142023381577621160", "34497747586243864061", "557716750350292506722", "9047143455744392381123" ]
[ "nonn", "hard" ]
16
3
1
[ "A296527", "A339074", "A339075", "A358810", "A358853", "A358855", "A358856" ]
null
Seiichi Manyama, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358855.seq
f3ca24f8f93942fcb24079e3782ce672
A358856
Number of (undirected) cycles in the graph C_6 X C_n.
[ "35205", "1165194", "34846271", "995818716", "27888940001", "773821636750", "21378607696815", "589724385779004", "16270311004670729", "449476421435825046", "12442365158796491483", "345293706994488530008", "9609116953522118190009", "268189777386676703675238", "7507073356371047897526119", "210735605847160867677182616" ]
[ "nonn", "hard" ]
12
3
1
[ "A296527", "A339074", "A339075", "A358811", "A358855", "A358856" ]
null
Seiichi Manyama, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358856.seq
c432bd2f65097537e32f8a2ab7de6d34
A358857
Least integer k in A031443 such that k*n is also in A031443, or -1 if there is no such k.
[ "2", "-1", "49", "-1", "2", "2", "535", "-1", "3843", "899", "49", "197", "12", "52", "9", "-1", "9", "10", "2", "9", "2", "2", "35", "9", "2", "2", "147", "2", "2141", "2095", "32991", "-1", "258055", "63495", "3849", "15367", "961", "906", "226", "3603", "56", "201", "49", "197", "49", "49", "50", "789", "56", "56", "42", "209", "50", "42", "44", "41", "10", "12", "10", "41" ]
[ "sign", "base" ]
19
1
1
[ "A031443", "A358857", "A358858" ]
null
Jeffrey Shallit, Dec 03 2022
2022-12-04T13:05:34
oeisdata/seq/A358/A358857.seq
7051562f7884ee1ce6605496fe4c94fd
A358858
Least multiple m of n such that both m and m/n belong to A031443, or -1 if there is no such m.
[ "2", "-1", "147", "-1", "10", "12", "3745", "-1", "34587", "8990", "539", "2364", "156", "728", "135", "-1", "153", "180", "38", "180", "42", "44", "805", "216", "50", "52", "3969", "56", "62089", "62850", "1022721", "-1", "8515815", "2158830", "134715", "553212", "35557", "34428", "8814", "144120", "2296", "8442", "2107", "8668", "2205", "2254" ]
[ "sign", "base" ]
15
1
1
[ "A031443", "A358857", "A358858" ]
null
Jeffrey Shallit, Dec 03 2022
2022-12-04T13:05:29
oeisdata/seq/A358/A358858.seq
d03436580cf636d8b46d68777d383423
A358859
a(n) is the smallest n-gonal number divisible by exactly n n-gonal numbers.
[ "6", "36", "210", "4560", "6426", "326040", "4232250", "1969110", "296676380", "4798080", "166289760", "73765692000", "712750500", "50561280", "33944067893736", "2139168754800", "4292572951800", "1414764341760", "72461756727360", "180975331456920", "1870768457500800", "5498331930000", "153698278734000" ]
[ "nonn" ]
12
3
1
[ "A005179", "A076983", "A358539", "A358859", "A358860", "A358861" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358859.seq
c1529fa1afea2c418dc24ce15f6e1b95
A358860
a(n) is the smallest n-gonal pyramidal number divisible by exactly n n-gonal pyramidal numbers.
[ "56", "140", "4200", "331800", "611520", "8385930", "1071856800", "41086892000", "78540000", "38102655397426620", "59089382788800", "22241349900", "2326493030400", "7052419469195100", "886638404171520" ]
[ "nonn", "more" ]
21
3
1
[ "A005179", "A358540", "A358859", "A358860", "A358861" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358860.seq
c8a8e832e2618d7e86ef5b2d3505880c
A358861
a(n) is the smallest centered n-gonal number divisible by exactly n centered n-gonal numbers.
[ "64", "925", "2976", "93457", "866272", "11025", "3036880", "18412718645101", "9283470627432", "201580440699781", "92839099743040", "5236660451226975", "66779973961058176" ]
[ "nonn", "more" ]
15
3
1
[ "A005179", "A358541", "A358859", "A358860", "A358861" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358861.seq
98538c48a5e332aa08ae4a21969a3326
A358862
a(n) is the smallest n-gonal number with exactly n distinct prime factors.
[ "66", "44100", "11310", "103740", "3333330", "185040240", "15529888374", "626141842326", "21647593547580", "351877410344460", "82634328555218440", "2383985537862979050", "239213805711830629680" ]
[ "nonn", "more" ]
17
3
1
[ "A001221", "A076551", "A156236", "A156237", "A156238", "A156239", "A358862", "A358863", "A358864", "A358865" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358862.seq
932bc40ad826f591c1deb7f661063d7f
A358863
a(n) is the smallest n-gonal number with exactly n prime factors (counted with multiplicity).
[ "4", "28", "16", "176", "4950", "8910", "1408", "346500", "277992", "7542080", "326656", "544320", "120400000", "145213440", "48549888", "4733575168", "536813568", "2149576704", "3057500160", "938539560960", "1358951178240", "36324805836800", "99956555776", "49212503949312", "118747221196800", "59461613912064", "13749193801728" ]
[ "nonn" ]
24
2
1
[ "A001222", "A075088", "A086270", "A209049", "A358862", "A358863", "A358864", "A358865", "A359854" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358863.seq
d8185c5e96497b8cde0583a1a31273ed
A358864
a(n) is the smallest n-gonal pyramidal number with exactly n distinct prime factors.
[ "84", "1785", "299880", "1020510", "8897460", "102612510", "33367223274", "249417828660", "9177835927260", "10064864238489060", "5558913993302670", "15633689593760207970", "3792821921183752657200" ]
[ "nonn", "more" ]
12
3
1
[ "A001221", "A156329", "A358862", "A358863", "A358864", "A358865" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358864.seq
9575a2e9a7698eed806488e73dfbf655
A358865
a(n) is the smallest n-gonal pyramidal number with exactly n prime factors (counted with multiplicity).
[ "20", "140", "405", "2856", "25296", "111720", "25984", "5474000", "237600", "223826688", "3852800", "268565760", "1834725376", "175861400000", "335674368", "2863363937280", "4383831556096", "206015846400", "3400704000", "938209120583680", "2981338216980480", "21463949229465600", "45410367307776", "72056803765911552" ]
[ "nonn" ]
10
3
1
[ "A001222", "A358862", "A358863", "A358864", "A358865" ]
null
Ilya Gutkovskiy, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358865.seq
23bdd7b552cfd81b0fd94cf0ce176992
A358866
Positive integers expressible as a quotient of two terms of A014486.
[ "1", "3", "5", "6", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "28", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89" ]
[ "nonn", "base", "more" ]
18
1
2
[ "A014486", "A358866" ]
null
Jeffrey Shallit, Dec 03 2022
2022-12-07T10:14:47
oeisdata/seq/A358/A358866.seq
136284fad36b89adc00b451d584eef3c
A358867
Primes from which subtracting the sum of the first k primes does not yield another prime, for any k.
[ "2", "3", "11", "37", "67", "97", "127", "157", "211", "223", "277", "307", "337", "367", "373", "379", "397", "409", "439", "727", "739", "769", "853", "937", "967", "991", "1069", "1129", "1171", "1399", "1447", "1567", "1579", "1597", "1693", "1753", "1777", "1783", "1831", "1861", "1987", "2203", "2617", "3067", "3109", "3793", "4561", "4603", "4783", "4993", "5323", "5431", "5557", "6211", "6373", "7741" ]
[ "nonn" ]
15
1
1
[ "A000040", "A007504", "A090304", "A358867" ]
null
Tamas Sandor Nagy, Dec 03 2022
2022-12-15T21:24:12
oeisdata/seq/A358/A358867.seq
8f3af2936212fe30211ee7f59ccb980c
A358868
Number of (undirected) Hamiltonian paths in the graph C_5 X C_n.
[ "1160", "18240", "287160", "2955700", "29861820", "263890620", "2271291760", "18578622510", "148166461700", "1154270708140", "8816903664840", "66466271481610", "493981029964240", "3639806487902700", "26549365603051040", "192467514066590100", "1385199533746259460", "9923453811044261140", "70715845300102361800" ]
[ "nonn" ]
19
2
1
[ "A268838", "A339797", "A339798", "A358810", "A358853", "A358855", "A358868", "A358869", "A358870" ]
null
Seiichi Manyama, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358868.seq
0cb2eb3f31904d8f93e74a30167fcada
A358869
Number of (undirected) paths in the graph C_5 X C_n.
[ "6690", "324570", "10489660", "276182500", "6486444750", "141606011050", "2938679135800", "58759814756160", "1142125726154350", "21713533582158110", "405578743418707380", "7468021173224848600", "135906384557097211050", "2449354951706961634050", "43785800216111451354800", "777390470051273329332440", "13722022446524862502553730" ]
[ "nonn" ]
23
2
1
[ "A307919", "A339795", "A339796", "A358810", "A358853", "A358855", "A358868", "A358869", "A358872" ]
null
Seiichi Manyama, Dec 03 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358869.seq
a5d2f614cfe787f016a6e7ee4c0e952f
A358870
Number of (undirected) Hamiltonian paths in the graph C_6 X C_n.
[ "3264", "73368", "2172480", "29861820", "560028096", "6632769528", "103075391424", "1156940480232", "16166871906480", "176333810290572", "2300510733948576", "24611138715163572", "306092489935215648", "3227108582232289260", "38755349620705085952", "403867959699992233836", "4722889110592680685152", "48750193590184268147100" ]
[ "nonn" ]
19
2
1
[ "A268838", "A339797", "A339798", "A358811", "A358856", "A358868", "A358870" ]
null
Seiichi Manyama, Dec 04 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358870.seq
0a26ced96e886806076fced70a9b4965
A358871
Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, A(1, 1) = 2, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n+1, k+(1+(-1)^(n+k))/2) + A(n, k+(1-(-1)^(n+k))/2).
[ "0", "1", "1", "1", "2", "1", "2", "3", "3", "2", "1", "3", "2", "3", "1", "3", "4", "5", "5", "4", "3", "2", "4", "3", "4", "3", "4", "2", "3", "5", "6", "5", "5", "6", "5", "3", "1", "4", "3", "5", "2", "5", "3", "4", "1", "4", "5", "7", "8", "7", "7", "8", "7", "5", "4", "3", "5", "4", "6", "5", "6", "5", "6", "4", "5", "3", "5", "7", "8", "7", "8", "9", "9", "8", "7", "8", "7", "5", "2", "6", "4", "7", "3", "7", "4", "7", "3", "7", "4", "6", "2" ]
[ "nonn", "tabl" ]
10
0
5
[ "A002487", "A357743", "A358871" ]
null
Rémy Sigrist, Dec 04 2022
2023-01-18T03:29:08
oeisdata/seq/A358/A358871.seq
73fca4d5b8fa70d541354f0817020ac9
A358872
Number of (undirected) paths in the graph C_6 X C_n.
[ "2298906", "136547568", "6486444750", "272445788808", "10588228608678", "390094527889632", "13820471174703870", "475213692224985720", "15959826206607422634", "525938391754196467536", "17064848263643902844850", "546612855015952410743736", "17320886593911945339408810", "543869852159220927372363456" ]
[ "nonn" ]
14
3
1
[ "A307919", "A339795", "A339796", "A358811", "A358856", "A358869", "A358872" ]
null
Seiichi Manyama, Dec 04 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358872.seq
78343436660e1ac86b49e2bbc865ef8e
A358873
a(1) = 1. For n >= 2, to obtain a(n), concatenate the numbers n,...,1,a(1),...,a(n-1).
[ "1", "211", "3211211", "432112113211211", "5432112113211211432112113211211", "654321121132112114321121132112115432112113211211432112113211211" ]
[ "nonn", "base", "easy" ]
26
1
2
[ "A082850", "A358873" ]
null
Tamas Sandor Nagy, Dec 04 2022
2022-12-07T09:10:37
oeisdata/seq/A358/A358873.seq
f80c30d2d856c9db28a522f4d91da412
A358874
Inverse permutation to A076034.
[ "1", "2", "3", "4", "5", "7", "6", "11", "12", "16", "8", "22", "9", "29", "30", "37", "10", "46", "13", "56", "17", "67", "14", "79", "15", "92", "38", "106", "18", "121", "19", "137", "57", "154", "23", "172", "20", "191", "68", "211", "21", "232", "24", "254", "93", "277", "25", "301", "39", "326", "107", "352", "26", "379", "40", "407", "138", "436", "27", "466", "28", "497" ]
[ "nonn", "look" ]
13
1
2
[ "A000124", "A076034", "A358874" ]
null
Rémy Sigrist, Dec 04 2022
2022-12-05T04:46:52
oeisdata/seq/A358/A358874.seq
fdbf1ba2ddc0ddf563e1451020ff23e3
A358875
Regular table of distinct nonnegative integers built by greedy algorithm such the binary expansions of two distinct terms in the same row have no common 1's.
[ "0", "1", "2", "3", "4", "8", "5", "10", "16", "32", "6", "9", "48", "64", "128", "7", "24", "96", "256", "512", "1024", "11", "20", "160", "320", "1536", "2048", "4096", "12", "17", "34", "192", "768", "3072", "8192", "16384", "13", "18", "224", "1280", "2560", "12288", "32768", "65536", "131072", "14", "33", "80", "384", "3584", "20480", "40960", "196608", "262144", "524288" ]
[ "nonn", "base", "tabl" ]
11
1
3
[ "A076034", "A358875", "A358876" ]
null
Rémy Sigrist, Dec 04 2022
2022-12-06T07:50:05
oeisdata/seq/A358/A358875.seq
d95e371a1958395bec6140b7232329cc
A358876
Inverse to A358875.
[ "1", "2", "3", "4", "5", "7", "11", "16", "6", "12", "8", "22", "29", "37", "46", "56", "9", "30", "38", "67", "23", "79", "92", "106", "17", "121", "137", "154", "172", "191", "211", "232", "10", "47", "31", "173", "68", "138", "122", "254", "80", "93", "277", "301", "326", "352", "379", "407", "13", "436", "466", "497", "529", "562", "596", "631", "667", "704", "742", "781" ]
[ "nonn", "base" ]
10
0
2
[ "A358874", "A358875", "A358876" ]
null
Rémy Sigrist, Dec 04 2022
2022-12-06T07:49:49
oeisdata/seq/A358/A358876.seq
8f9691bf976115a80b8cb5c7afde8c6e
A358877
Triangle read by rows: T(n,k) is the number of cubes of side length k that can be placed inside a cube of side length n without overlap, 1 <= k <= n.
[ "1", "8", "1", "27", "1", "1", "64", "8", "1", "1", "125", "8", "1", "1", "1", "216", "27", "8", "1", "1", "1", "343", "27", "8", "1", "1", "1", "1", "512", "64", "8", "8", "1", "1", "1", "1", "729", "64", "27", "8", "1", "1", "1", "1", "1", "1000", "125", "27", "8", "8", "1", "1", "1", "1", "1", "1331", "125", "27", "8", "8", "1", "1", "1", "1", "1", "1", "1728", "216", "64", "27", "8", "8", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl" ]
38
1
2
[ "A000578", "A318742", "A358877", "A360610" ]
null
Torlach Rush, Feb 17 2023
2023-02-19T17:15:13
oeisdata/seq/A358/A358877.seq
2d910fad3dab3b5392a57bacedc74da4
A358878
Numbers k such that k! + (k!/2) - 1 is prime.
[ "2", "5", "7", "15", "20", "47", "84", "138", "169", "257", "263", "431", "559", "2939", "4403", "4870", "5273" ]
[ "nonn", "more" ]
24
1
1
[ "A070960", "A358805", "A358878" ]
null
Arsen Vardanyan, Dec 04 2022
2023-04-02T10:27:36
oeisdata/seq/A358/A358878.seq
9bfd5c0622bb037740f0dc8067b5850e
A358879
Primes p such that p^2 + 1 has more divisors than p^2 - 1.
[ "2917", "5443", "7187", "9133", "10357", "12227", "12967", "13043", "14243", "17047", "20507", "20743", "21767", "25657", "27893", "27997", "28163", "30307", "32323", "32443", "33493", "33623", "34157", "34367", "34897", "35537", "37783", "37957", "39827", "41387", "41893", "42793", "43633", "44357", "49109", "49993", "56597", "56857" ]
[ "nonn" ]
7
1
1
[ "A000005", "A000040", "A341655", "A341658", "A341660", "A358879" ]
null
Jon E. Schoenfield, Dec 04 2022
2022-12-04T20:24:31
oeisdata/seq/A358/A358879.seq
0fa9823dea829be281132456f9c34aa2
A358880
Squares of the form k + reverse(k) for at least one k.
[ "4", "16", "121", "484", "625", "1089", "10201", "14641", "19881", "40804", "49284", "69696", "91809", "94249", "203401", "698896", "1002001", "1234321", "1490841", "1517824", "4008004", "4276624", "4460544", "4937284", "5313025", "6325225", "6895876", "6948496", "7706176", "9018009", "15665764", "15776784", "16120225" ]
[ "nonn", "base" ]
14
1
1
[ "A000290", "A067030", "A356648", "A358880" ]
null
Jon E. Schoenfield, Dec 04 2022
2022-12-25T14:02:52
oeisdata/seq/A358/A358880.seq
8ad490d5fcf01a3f7eddd2837d046a45
A358881
a(n) is the smallest prime p such that p^2 - 1 has 2*n divisors, or -1 if no such prime exists.
[ "2", "3", "-1", "5", "7", "-1", "-1", "11", "17", "23", "-1", "19", "-1", "31", "73", "29", "-1", "383", "-1", "41", "97", "-1", "-1", "79", "-1", "-1", "127", "223", "-1", "71", "-1", "109", "-1", "-1", "2593", "197", "-1", "-1", "-1", "281", "-1", "1439", "-1", "34303", "199", "-1", "-1", "181", "-1", "647", "-1", "6143", "-1", "7057", "-1", "929", "-1", "-1", "-1", "521", "-1" ]
[ "sign", "hard" ]
22
1
1
[ "A000005", "A000040", "A341655", "A341658", "A341660", "A350780", "A358881" ]
null
Jon E. Schoenfield, Dec 04 2022
2025-02-16T17:52:36
oeisdata/seq/A358/A358881.seq
58d2c01772659adebf1c524f5685b624
A358882
The number of regions in a Farey diagram of order (n,n).
[ "4", "56", "504", "2024", "8064", "18200", "50736", "99248", "202688", "343256", "657904", "983008", "1708672", "2485968", "3755184", "5289944", "8069736", "10539792", "15387320", "19913840" ]
[ "nonn", "more" ]
27
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358883", "A358884", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-08T08:53:33
oeisdata/seq/A358/A358882.seq
afda96c3d706fdb703fcd227e9be3a78
A358883
The number of vertices in a Farey diagram of order (n,n).
[ "5", "37", "313", "1253", "4977", "11253", "31393", "61409", "125525", "212785", "407757", "609361", "1059497", "1541005", "2328621", "3282329", "5006113", "6538721", "9545621", "12352197" ]
[ "nonn", "more" ]
14
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358883", "A358884", "A358885", "A358886", "A358887", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358883.seq
6c8e25d0408f813dd42fc2d096d7ba68
A358884
The number of edges in a Farey diagram of order (n,n).
[ "8", "92", "816", "3276", "13040", "29452", "82128", "160656", "328212", "556040", "1065660", "1592368", "2768168", "4026972", "6083804", "8572272", "13075848", "17078512", "24932940", "32266036" ]
[ "nonn", "more" ]
13
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358883", "A358884", "A358885", "A358886", "A358888", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358884.seq
5fa5a87d5eff7c60b2b893aba1a883aa
A358885
Table read by rows: T(n,k) = the number of regions with k sides, k >= 3, in a Farey diagram of order (n,n).
[ "4", "48", "8", "400", "104", "1568", "456", "6216", "1848", "13944", "4256", "38760", "11976", "75768", "23480", "154440", "48248", "261072", "82184", "500464", "157440", "747480", "235528", "1298584", "410088", "1890184", "595784", "2853416", "901768", "4015552", "1274392", "6127632", "1942104", "8002552", "2537240", "11683880", "3703440", "15123800", "4790040" ]
[ "nonn", "tabf" ]
19
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358883", "A358884", "A358885", "A358886", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358885.seq
fe11bf31ab47752849e648941a7d2ee4
A358886
Number of regions formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "4", "56", "1040", "6064", "53104", "115496", "629920", "1457744", "3952264", "6835568" ]
[ "nonn", "more" ]
20
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358885", "A358886", "A358887", "A358888", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358886.seq
e2b5cd2112fa8fb6730d185a32ffbbc5
A358887
Number of vertices formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "5", "37", "705", "4549", "42357", "94525", "531485", "1250681", "3440621", "5985201" ]
[ "nonn", "more" ]
14
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358883", "A358885", "A358886", "A358887", "A358888", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358887.seq
f82076086a1988671a5fb02a3957e769
A358888
Number of edges formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "8", "92", "1744", "10612", "95460", "210020", "1161404", "2708424", "7392884", "12820768" ]
[ "nonn", "more" ]
12
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358884", "A358885", "A358886", "A358887", "A358888", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358888.seq
652a0da457545297ecdfbef629b8a3ac
A358889
Table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n).
[ "4", "48", "8", "712", "304", "24", "3368", "2400", "280", "16", "27424", "20360", "4784", "504", "32", "56000", "47088", "10912", "1400", "88", "8", "292424", "255608", "69368", "11504", "960", "56", "658800", "590208", "175856", "30160", "2496", "200", "24", "1748112", "1593912", "506496", "93584", "9616", "520", "24", "2981448", "2778456", "890368", "166912", "17192", "1144", "48" ]
[ "nonn", "more", "tabl" ]
19
1
1
[ "A005728", "A006842", "A006843", "A358298", "A358307", "A358882", "A358885", "A358886", "A358887", "A358888", "A358889" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 05 2022
2022-12-06T19:33:37
oeisdata/seq/A358/A358889.seq
08c77c32e3d47210c8cdfdfaf2e3dbb9
A358890
a(n) is the first term of the first maximal run of n consecutive numbers with increasing greatest prime factors.
[ "14", "4", "1", "8", "90", "168", "9352", "46189", "2515371", "721970", "6449639", "565062156", "11336460025", "37151747513", "256994754033", "14037913234203" ]
[ "nonn", "more" ]
31
1
1
[ "A006530", "A070087", "A079748", "A079749", "A100384", "A358890" ]
null
Reinhard Zumkeller, Jan 10 2003
2022-12-10T23:35:27
oeisdata/seq/A358/A358890.seq
59f227b93f4f7421998326016e774441
A358891
Number of types of generalized symmetries in orthogonal diagonal Latin squares of order n in parastrophic slices.
[ "6", "0", "0", "76", "44", "0", "145" ]
[ "nonn", "more", "hard" ]
31
1
1
[ "A000041", "A274171", "A287649", "A287650", "A293777", "A357473", "A358394", "A358515", "A358891" ]
null
Eduard I. Vatutin, Dec 05 2022
2025-02-24T13:35:29
oeisdata/seq/A358/A358891.seq
31b3541dd7c00590f9ea8b2912b881c6
A358892
Numbers obtained by self-shuffling the binary expansion of nonnegative numbers.
[ "0", "3", "10", "12", "15", "36", "40", "43", "45", "48", "51", "53", "54", "58", "60", "63", "136", "144", "147", "149", "153", "160", "163", "165", "169", "170", "172", "175", "178", "180", "183", "187", "192", "195", "197", "201", "202", "204", "207", "210", "212", "215", "216", "219", "221", "228", "232", "235", "237", "238", "240", "243", "245", "246", "250", "252" ]
[ "nonn", "base" ]
10
1
2
[ "A001969", "A053754", "A191755", "A358892", "A358893" ]
null
Rémy Sigrist, Dec 05 2022
2022-12-07T15:00:44
oeisdata/seq/A358/A358892.seq
a9703a2be1e9c0c87ce51112e3bb2115
A358893
Irregular triangle T(n, k), n >= 0, k = 1..A193020(n), read by rows: the n-th row lists the numbers obtained by self-shuffling the binary expansion of n.
[ "0", "3", "10", "12", "15", "36", "40", "48", "43", "45", "51", "53", "54", "58", "60", "63", "136", "144", "160", "192", "147", "149", "153", "163", "165", "169", "195", "197", "201", "170", "172", "178", "180", "202", "204", "210", "212", "175", "183", "187", "207", "215", "219", "204", "212", "216", "228", "232", "240", "219", "221", "235", "237", "243", "245" ]
[ "nonn", "base", "tabf" ]
11
0
2
[ "A193020", "A330940", "A330941", "A358892", "A358893" ]
null
Rémy Sigrist, Dec 05 2022
2022-12-08T01:51:33
oeisdata/seq/A358/A358893.seq
980bb263e17503e6204b0e9c322c9678
A358894
a(n) is the smallest centered n-gonal number with exactly n distinct prime factors.
[ "460", "99905", "463326", "808208947", "23089262218", "12442607161209225", "53780356630", "700326051644920151", "46634399568693102", "45573558879962759570353" ]
[ "nonn", "more" ]
12
3
1
[ "A001221", "A358862", "A358863", "A358864", "A358865", "A358894" ]
null
Ilya Gutkovskiy, Dec 05 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358894.seq
431418473fa03c944bd85aea92528008
A358895
Numbers k such that p(k)^p(k + 1) < p(k + 2)^p(k), where p(k) = prime(k).
[ "1", "2", "3", "10", "33", "41", "45", "52", "60", "98", "113", "120", "262", "294", "296", "318", "343", "377", "408", "428", "444", "475", "477", "486", "572", "601", "673", "700", "774", "837", "870", "913", "934", "936", "944", "984", "1050", "1115", "1169", "1182", "1230", "1232", "1287", "1391", "1445", "1456", "1550", "1584", "1647", "1653", "1674" ]
[ "nonn" ]
5
1
2
[ "A000040", "A053089", "A358895", "A358896" ]
null
Clark Kimberling, Dec 06 2022
2022-12-15T14:00:21
oeisdata/seq/A358/A358895.seq
c648b34e95f5f6310b64e4ab4bd3feea
A358896
Primes p(k) such that p(k)^p(k + 1) < p(k + 2)^p(k).
[ "2", "3", "5", "29", "137", "179", "197", "239", "281", "521", "617", "659", "1667", "1931", "1949", "2111", "2309", "2591", "2801", "2969", "3119", "3371", "3389", "3467", "4157", "4421", "5021", "5279", "5879", "6449", "6761", "7127", "7331", "7349", "7457", "7757", "8387", "8969", "9437", "9547", "10007", "10037", "10529", "11549", "12071" ]
[ "nonn" ]
8
1
1
[ "A000040", "A053089", "A358895", "A358896" ]
null
Clark Kimberling, Dec 06 2022
2022-12-17T13:42:59
oeisdata/seq/A358/A358896.seq
fa576d8adb30f59d0d8dc1096773ef83
A358897
Numbers k such that p(k)^p(k) < p(k+1)^p(k-1), where p(k) = prime(k).
[ "46", "99", "263", "295", "297", "319", "344", "378", "409", "429", "487", "573", "602", "838", "914", "937", "945", "985", "1051", "1116", "1170", "1231", "1233", "1288", "1392", "1446", "1457", "1551", "1585", "1648", "1675", "1708", "1710", "1831", "1879", "1908", "1983", "2032", "2064", "2154", "2176", "2250", "2310", "2327", "2344", "2524" ]
[ "nonn" ]
6
1
1
[ "A000040", "A053089", "A358897", "A358898" ]
null
Clark Kimberling, Dec 06 2022
2022-12-15T14:00:53
oeisdata/seq/A358/A358897.seq
aa96908ed2e6ece20dcd300a85ba6604
A358898
Primes p(k) such that p(k)^p(k) < p(k+1)^p(k-1).
[ "199", "523", "1669", "1933", "1951", "2113", "2311", "2593", "2803", "2971", "3469", "4159", "4423", "6451", "7129", "7351", "7459", "7759", "8389", "8971", "9439", "10009", "10039", "10531", "11551", "12073", "12163", "13009", "13339", "13933", "14251", "14563", "14593", "15683", "16141", "16453", "17209", "17683", "17989", "18919" ]
[ "nonn" ]
6
1
1
[ "A000040", "A053089", "A358897", "A358898" ]
null
Clark Kimberling, Dec 06 2022
2022-12-15T14:01:08
oeisdata/seq/A358/A358898.seq
6d91b5a385f6fba58197fbde76a9d791
A358899
Numbers k such that p(k)^p(k) > p(k-1)^p(k+1), where p(k) = prime(k).
[ "3", "5", "10", "35", "190", "206", "294", "296", "320", "332", "336", "430", "458", "463", "530", "558", "608", "616", "636", "726", "805", "837", "870", "891", "1117", "1171", "1198", "1230", "1232", "1275", "1328", "1371", "1391", "1410", "1445", "1571", "1634", "1651", "1709", "1832", "1880", "1987", "2028", "2066", "2075", "2244", "2249", "2311" ]
[ "nonn" ]
11
1
1
[ "A000040", "A053089", "A358899", "A358900" ]
null
Clark Kimberling, Dec 06 2022
2024-07-17T08:56:15
oeisdata/seq/A358/A358899.seq
8201a2cf8250ae6a84ef328ffdc8157f
A358900
Primes prime(k) such that prime(k)^prime(k) > prime(k-1)^prime(k+1).
[ "5", "11", "29", "149", "1151", "1277", "1931", "1949", "2129", "2237", "2267", "2999", "3251", "3299", "3821", "4049", "4481", "4547", "4721", "5501", "6197", "6449", "6761", "6947", "8999", "9461", "9719", "10007", "10037", "10427", "10937", "11351", "11549", "11777", "12071", "13217", "13829", "13997", "14591", "15727", "16183", "17291" ]
[ "nonn" ]
22
1
1
[ "A000040", "A053089", "A358899", "A358900" ]
null
Clark Kimberling, Dec 06 2022
2024-07-17T09:45:35
oeisdata/seq/A358/A358900.seq
0fd3e1669757cc91549a983d3e00b772