sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A358901 | Number of integer partitions of n whose parts have all different numbers of prime factors (A001222). | [
"1",
"1",
"1",
"2",
"2",
"2",
"3",
"4",
"4",
"5",
"5",
"7",
"9",
"8",
"9",
"11",
"11",
"15",
"16",
"16",
"18",
"20",
"22",
"26",
"28",
"31",
"32",
"36",
"40",
"45",
"46",
"46",
"50",
"59",
"64",
"70",
"75",
"78",
"83",
"89",
"94",
"108",
"106",
"104",
"120",
"137",
"142",
"147",
"150",
"161",
"174",
"190",
"200",
"220",
"226",
"224",
"248",
"274",
"274",
"287",
"301",
"320",
"340",
"351",
"361"
] | [
"nonn"
] | 24 | 0 | 4 | [
"A001221",
"A001222",
"A056239",
"A063834",
"A129519",
"A141199",
"A218482",
"A300335",
"A319071",
"A319169",
"A320324",
"A358335",
"A358831",
"A358836",
"A358901",
"A358902",
"A358903",
"A358908",
"A358909",
"A358910",
"A358911"
] | null | Gus Wiseman, Dec 07 2022 | 2024-02-12T18:26:24 | oeisdata/seq/A358/A358901.seq | 3867b626e43ac505052338d63d881990 |
A358902 | Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221). | [
"1",
"1",
"2",
"3",
"5",
"8",
"13",
"21",
"33",
"53",
"84",
"134",
"213",
"338",
"536",
"850",
"1349",
"2136",
"3389",
"5367",
"8509",
"13480",
"21362",
"33843",
"53624",
"84957",
"134600",
"213251",
"337850",
"535251",
"847987",
"1343440",
"2128372",
"3371895",
"5341977",
"8463051",
"13407689",
"21241181",
"33651507",
"53312538",
"84460690"
] | [
"nonn"
] | 19 | 0 | 3 | [
"A001221",
"A001222",
"A011782",
"A046660",
"A056239",
"A071625",
"A116608",
"A129519",
"A141199",
"A218482",
"A300335",
"A334028",
"A358831",
"A358836",
"A358902",
"A358903",
"A358908",
"A358911"
] | null | Gus Wiseman, Dec 07 2022 | 2024-02-14T09:56:49 | oeisdata/seq/A358/A358902.seq | b872753149ec4454cd5b754491a84c23 |
A358903 | Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221). | [
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"4",
"4",
"4",
"4",
"5",
"7",
"8",
"7",
"9",
"10",
"10",
"10",
"9",
"11",
"15",
"14",
"13",
"15",
"14",
"14",
"17",
"16",
"17",
"17",
"16",
"16",
"17",
"17",
"21",
"26",
"24",
"23",
"25",
"27",
"29",
"32",
"31",
"29",
"36",
"36",
"35",
"37",
"37",
"42",
"49",
"45",
"44",
"50",
"49",
"50",
"58",
"55",
"55",
"58",
"56",
"58",
"66",
"62",
"65",
"75"
] | [
"nonn"
] | 20 | 0 | 4 | [
"A001221",
"A001222",
"A046660",
"A071625",
"A116608",
"A129519",
"A141199",
"A319169",
"A358335",
"A358831",
"A358836",
"A358901",
"A358902",
"A358903",
"A358909",
"A358911"
] | null | Gus Wiseman, Dec 07 2022 | 2024-02-14T09:42:51 | oeisdata/seq/A358/A358903.seq | 5cefe4ce1ef723f7404cc4463b00596c |
A358904 | Number of finite sets of compositions with all equal sums and total sum n. | [
"1",
"1",
"2",
"4",
"9",
"16",
"38",
"64",
"156",
"260",
"632",
"1024",
"2601",
"4096",
"10208",
"16944",
"40966",
"65536",
"168672",
"262144",
"656980",
"1090240",
"2620928",
"4194304",
"10862100",
"16781584",
"41940992",
"69872384",
"168403448",
"268435456",
"693528552",
"1073741824",
"2695006177",
"4473400320",
"10737385472"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A000009",
"A001970",
"A034691",
"A063834",
"A074854",
"A075900",
"A098407",
"A133494",
"A218482",
"A261049",
"A296122",
"A304961",
"A305552",
"A336127",
"A358904",
"A358906",
"A358907",
"A359041"
] | null | Gus Wiseman, Dec 13 2022 | 2022-12-14T10:56:05 | oeisdata/seq/A358/A358904.seq | de35c525db077e93d09ce95a4607dda5 |
A358905 | Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal. | [
"1",
"1",
"3",
"6",
"13",
"24",
"49",
"91",
"179",
"341",
"664",
"1280",
"2503",
"4872",
"9557",
"18750",
"36927",
"72800",
"143880",
"284660",
"564093",
"1118911",
"2221834",
"4415417",
"8781591",
"17476099",
"34799199",
"69327512",
"138176461",
"275503854",
"549502119",
"1096327380",
"2187894634",
"4367310138",
"8719509111"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A000041",
"A000219",
"A001970",
"A038041",
"A055887",
"A063834",
"A141199",
"A218482",
"A279787",
"A281145",
"A305551",
"A306319",
"A319066",
"A319169",
"A320324",
"A323429",
"A358830",
"A358833",
"A358835",
"A358836",
"A358905",
"A358911",
"A358912"
] | null | Gus Wiseman, Dec 07 2022 | 2022-12-31T11:20:07 | oeisdata/seq/A358/A358905.seq | 4beba02e8988cb4de57ba75f8439753e |
A358906 | Number of finite sequences of distinct integer partitions with total sum n. | [
"1",
"1",
"2",
"7",
"13",
"35",
"87",
"191",
"470",
"1080",
"2532",
"5778",
"13569",
"30715",
"69583",
"160386",
"360709",
"814597",
"1824055",
"4102430",
"9158405",
"20378692",
"45215496",
"100055269",
"221388993",
"486872610",
"1069846372",
"2343798452",
"5127889666",
"11186214519",
"24351106180",
"52896439646"
] | [
"nonn"
] | 22 | 0 | 3 | [
"A000009",
"A000041",
"A000219",
"A001970",
"A055887",
"A063834",
"A098407",
"A261049",
"A271619",
"A279787",
"A296122",
"A304969",
"A330463",
"A336342",
"A358830",
"A358836",
"A358901",
"A358906",
"A358907",
"A358908",
"A358912",
"A358913",
"A358914"
] | null | Gus Wiseman, Dec 07 2022 | 2024-02-13T19:42:43 | oeisdata/seq/A358/A358906.seq | 4b3278166d9bd2154546af53f6be37fa |
A358907 | Number of finite sequences of distinct integer compositions with total sum n. | [
"1",
"1",
"2",
"8",
"18",
"54",
"156",
"412",
"1168",
"3200",
"8848",
"24192",
"66632",
"181912",
"495536",
"1354880",
"3680352",
"9997056",
"27093216",
"73376512",
"198355840",
"535319168",
"1443042688",
"3884515008",
"10445579840",
"28046885824",
"75225974912",
"201536064896",
"539339293824",
"1441781213952"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A000009",
"A000041",
"A000219",
"A001970",
"A055887",
"A063834",
"A074854",
"A075900",
"A098407",
"A133494",
"A218482",
"A261049",
"A296122",
"A304961",
"A307068",
"A336127",
"A336342",
"A358830",
"A358836",
"A358901",
"A358906",
"A358907",
"A358912",
"A358914"
] | null | Gus Wiseman, Dec 07 2022 | 2022-12-15T17:43:29 | oeisdata/seq/A358/A358907.seq | 29d0f05cdc786e25aacc7597b0b7f8fd |
A358908 | Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths. | [
"1",
"1",
"2",
"6",
"10",
"23",
"50",
"95",
"188",
"378",
"747",
"1414",
"2739",
"5179",
"9811",
"18562",
"34491",
"64131",
"118607",
"218369",
"400196",
"731414",
"1328069",
"2406363",
"4346152",
"7819549",
"14027500",
"25090582",
"44749372",
"79586074",
"141214698",
"249882141",
"441176493",
"777107137",
"1365801088",
"2395427040",
"4192702241"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A000009",
"A000041",
"A000219",
"A001970",
"A055887",
"A063834",
"A141199",
"A261049",
"A271619",
"A296122",
"A358830",
"A358831",
"A358836",
"A358901",
"A358905",
"A358906",
"A358907",
"A358908",
"A358912",
"A358914"
] | null | Gus Wiseman, Dec 09 2022 | 2022-12-31T11:20:14 | oeisdata/seq/A358/A358908.seq | 0cdb276ebe7f345d1ccaf8abe6609ccf |
A358909 | Number of integer partitions of n whose parts have weakly decreasing numbers of prime factors (A001222). | [
"1",
"1",
"2",
"3",
"5",
"7",
"11",
"15",
"22",
"29",
"41",
"53",
"73",
"93",
"124",
"157",
"206",
"256",
"329",
"406",
"514",
"628",
"784",
"949",
"1174",
"1411",
"1725",
"2061",
"2500",
"2966",
"3570",
"4217",
"5039",
"5919",
"7027",
"8219",
"9706",
"11301",
"13268",
"15394",
"17995",
"20792",
"24195",
"27863",
"32288",
"37061",
"42779",
"48950",
"56306"
] | [
"nonn"
] | 6 | 0 | 3 | [
"A001221",
"A001222",
"A011782",
"A056239",
"A063834",
"A141199",
"A218482",
"A300335",
"A319169",
"A320324",
"A358335",
"A358831",
"A358901",
"A358903",
"A358908",
"A358909",
"A358910",
"A358911"
] | null | Gus Wiseman, Dec 09 2022 | 2022-12-10T10:47:38 | oeisdata/seq/A358/A358909.seq | ae44168e637f2a881100283eed8a065d |
A358910 | Number of integer partitions of n whose parts do not have weakly decreasing numbers of prime factors (A001222). | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"3",
"4",
"8",
"11",
"19",
"25",
"41",
"56",
"84",
"113",
"164",
"218",
"306",
"401",
"547",
"711",
"949",
"1218",
"1599",
"2034",
"2625",
"3310",
"4224",
"5283",
"6664",
"8271",
"10336",
"12747",
"15791",
"19343",
"23791",
"28979",
"35398",
"42887",
"52073",
"62779",
"75804",
"90967",
"109291",
"130605"
] | [
"nonn"
] | 6 | 0 | 12 | [
"A001221",
"A001222",
"A056239",
"A063834",
"A141199",
"A218482",
"A300335",
"A319169",
"A320324",
"A358831",
"A358902",
"A358903",
"A358908",
"A358909",
"A358910",
"A358911"
] | null | Gus Wiseman, Dec 09 2022 | 2022-12-10T10:47:25 | oeisdata/seq/A358/A358910.seq | 890d685fe0e08517ed08093a44325861 |
A358911 | Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity. | [
"1",
"1",
"2",
"2",
"3",
"4",
"4",
"7",
"9",
"12",
"20",
"21",
"39",
"49",
"79",
"109",
"161",
"236",
"345",
"512",
"752",
"1092",
"1628",
"2376",
"3537",
"5171",
"7650",
"11266",
"16634",
"24537",
"36173",
"53377",
"78791",
"116224",
"171598",
"253109",
"373715",
"551434",
"814066",
"1201466",
"1773425",
"2617744",
"3864050",
"5703840",
"8419699"
] | [
"nonn"
] | 17 | 0 | 3 | [
"A001221",
"A001222",
"A011782",
"A056239",
"A063834",
"A064573",
"A218482",
"A279787",
"A300335",
"A319066",
"A319071",
"A319169",
"A320324",
"A358335",
"A358831",
"A358901",
"A358902",
"A358903",
"A358905",
"A358908",
"A358909",
"A358910",
"A358911"
] | null | Gus Wiseman, Dec 11 2022 | 2024-02-12T19:02:44 | oeisdata/seq/A358/A358911.seq | bfab9118fe636e48dee59e945e3796ba |
A358912 | Number of finite sequences of integer partitions with total sum n and all distinct lengths. | [
"1",
"1",
"2",
"5",
"11",
"23",
"49",
"103",
"214",
"434",
"874",
"1738",
"3443",
"6765",
"13193",
"25512",
"48957",
"93267",
"176595",
"332550",
"622957",
"1161230",
"2153710",
"3974809",
"7299707",
"13343290",
"24280924",
"43999100",
"79412942",
"142792535",
"255826836",
"456735456",
"812627069",
"1440971069",
"2546729830"
] | [
"nonn"
] | 12 | 0 | 3 | [
"A000009",
"A000041",
"A000219",
"A001970",
"A007837",
"A038041",
"A055887",
"A060642",
"A063834",
"A141199",
"A218482",
"A271619",
"A319066",
"A336342",
"A358830",
"A358831",
"A358836",
"A358901",
"A358905",
"A358906",
"A358908",
"A358912"
] | null | Gus Wiseman, Dec 07 2022 | 2022-12-31T11:20:20 | oeisdata/seq/A358/A358912.seq | c605af916a656fb3e838c749efdc4b4e |
A358913 | Number of finite sequences of distinct sets with total sum n. | [
"1",
"1",
"1",
"4",
"6",
"11",
"28",
"45",
"86",
"172",
"344",
"608",
"1135",
"2206",
"4006",
"7689",
"13748",
"25502",
"47406",
"86838",
"157560",
"286642",
"522089",
"941356",
"1718622",
"3079218",
"5525805",
"9902996",
"17788396",
"31742616",
"56694704",
"100720516",
"178468026",
"317019140",
"560079704",
"991061957"
] | [
"nonn"
] | 10 | 0 | 4 | [
"A000009",
"A000041",
"A000219",
"A001970",
"A050342",
"A055887",
"A063834",
"A261049",
"A271619",
"A279785",
"A279791",
"A296122",
"A304969",
"A330462",
"A336342",
"A336343",
"A358830",
"A358906",
"A358907",
"A358908",
"A358913",
"A358914"
] | null | Gus Wiseman, Dec 11 2022 | 2024-02-13T20:09:46 | oeisdata/seq/A358/A358913.seq | e9d52efe8e7aae52ddea177a8914cd6f |
A358914 | Number of twice-partitions of n into distinct strict partitions. | [
"1",
"1",
"1",
"3",
"4",
"7",
"13",
"20",
"32",
"51",
"83",
"130",
"206",
"320",
"496",
"759",
"1171",
"1786",
"2714",
"4104",
"6193",
"9286",
"13920",
"20737",
"30865",
"45721",
"67632",
"99683",
"146604",
"214865",
"314782",
"459136",
"668867",
"972425",
"1410458",
"2040894",
"2950839",
"4253713",
"6123836",
"8801349",
"12627079"
] | [
"nonn"
] | 8 | 0 | 4 | [
"A000009",
"A000219",
"A001970",
"A050342",
"A055887",
"A063834",
"A075900",
"A261049",
"A270995",
"A271619",
"A279785",
"A279791",
"A296122",
"A304969",
"A321449",
"A330462",
"A336342",
"A336343",
"A358830",
"A358901",
"A358906",
"A358907",
"A358913",
"A358914"
] | null | Gus Wiseman, Dec 11 2022 | 2022-12-31T14:53:24 | oeisdata/seq/A358/A358914.seq | 09e733d7fdabe7846afb15ec55b0a6e0 |
A358915 | a(n) is the far-difference representation of n written in balanced ternary. | [
"0",
"1",
"3",
"9",
"26",
"27",
"78",
"80",
"81",
"82",
"234",
"240",
"242",
"243",
"244",
"246",
"702",
"703",
"720",
"726",
"728",
"729",
"730",
"732",
"738",
"2105",
"2106",
"2107",
"2109",
"2160",
"2161",
"2178",
"2184",
"2186",
"2187",
"2188",
"2190",
"2196",
"2213",
"2214",
"6315",
"6317",
"6318",
"6319",
"6321",
"6327",
"6479",
"6480",
"6481",
"6483"
] | [
"nonn",
"base"
] | 15 | 0 | 3 | [
"A003714",
"A097083",
"A105446",
"A117966",
"A358915"
] | null | Peter Kagey, Dec 05 2022 | 2022-12-06T09:47:50 | oeisdata/seq/A358/A358915.seq | ba3f1ff84f3a6b1b7cde36a2fd0eccb9 |
A358916 | a(1) = 1. Thereafter a(n) is the least novel k != n such that A007947(k)|n. | [
"1",
"4",
"9",
"2",
"25",
"3",
"49",
"16",
"27",
"5",
"121",
"6",
"169",
"7",
"45",
"8",
"289",
"12",
"361",
"10",
"63",
"11",
"529",
"18",
"125",
"13",
"81",
"14",
"841",
"15",
"961",
"64",
"99",
"17",
"175",
"24",
"1369",
"19",
"117",
"20",
"1681",
"21",
"1849",
"22",
"75",
"23",
"2209",
"32",
"343",
"40",
"153",
"26",
"2809",
"36",
"275",
"28",
"171",
"29",
"3481",
"30",
"3721"
] | [
"nonn"
] | 26 | 1 | 2 | [
"A000005",
"A000040",
"A001248",
"A005117",
"A007947",
"A032741",
"A358820",
"A358916",
"A358971"
] | null | David James Sycamore, Dec 05 2022 | 2022-12-11T14:13:56 | oeisdata/seq/A358/A358916.seq | 2f0a2479f0bdff9b7695e3a9fe6f9e98 |
A358917 | a(n) = Fibonacci(n+1)^4 - Fibonacci(n-1)^4. | [
"0",
"1",
"15",
"80",
"609",
"4015",
"27936",
"190385",
"1307775",
"8956144",
"61405905",
"420831071",
"2884553280",
"19770670945",
"135511114479",
"928804587920",
"6366127657281",
"43634071586575",
"299072419071840",
"2049872742473489",
"14050037090947935",
"96300386075488816",
"660052667580788145"
] | [
"nonn",
"easy"
] | 47 | 0 | 3 | [
"A000045",
"A056571",
"A358917",
"A358934"
] | null | Feryal Alayont, Dec 05 2022 | 2024-05-07T07:32:32 | oeisdata/seq/A358/A358917.seq | 4f84e664a9150a41f35f4177b9f220c6 |
A358918 | a(0) = 0, and for any n >= 0, a(n+1) is the length of the longest run of consecutive terms a(i), ..., a(j) with 0 <= i <= j <= n such that a(i) XOR ... a(j) = a(n) (where XOR denotes the bitwise XOR operator). | [
"0",
"1",
"2",
"1",
"2",
"4",
"6",
"2",
"7",
"9",
"1",
"6",
"7",
"9",
"12",
"9",
"12",
"13",
"14",
"17",
"1",
"14",
"17",
"18",
"20",
"18",
"20",
"22",
"26",
"18",
"20",
"28",
"30",
"26",
"22",
"28",
"30",
"30",
"32",
"3",
"28",
"30",
"32",
"3",
"28",
"38",
"40",
"22",
"34",
"46",
"26",
"41",
"31",
"45",
"42",
"40",
"37",
"41",
"31",
"58",
"60",
"53",
"54",
"57",
"57",
"57",
"57",
"57",
"57",
"57"
] | [
"nonn",
"base"
] | 20 | 0 | 3 | [
"A358799",
"A358918",
"A358919"
] | null | Rémy Sigrist, Dec 06 2022 | 2022-12-12T15:00:16 | oeisdata/seq/A358/A358918.seq | 96a963f92efee7c4db27903ed63e867c |
A358919 | a(0) = 0, and for any n >= 0, a(n+1) is the sum of the lengths of the runs of consecutive terms a(i), ..., a(j) with 0 <= i <= j <= n such that a(i) XOR ... XOR a(j) = a(n) (where XOR denotes the bitwise XOR operator). | [
"0",
"1",
"3",
"1",
"4",
"1",
"5",
"5",
"10",
"4",
"12",
"18",
"1",
"13",
"8",
"22",
"44",
"7",
"52",
"1",
"19",
"35",
"10",
"43",
"53",
"7",
"68",
"1",
"31",
"24",
"56",
"73",
"8",
"126",
"105",
"35",
"71",
"36",
"71",
"60",
"70",
"1",
"124",
"180",
"10",
"172",
"41",
"182",
"40",
"288",
"1",
"232",
"15",
"201",
"4",
"271",
"6",
"213",
"1",
"233",
"14",
"230",
"25",
"216",
"9",
"157",
"115"
] | [
"nonn",
"base"
] | 10 | 0 | 3 | [
"A358799",
"A358918",
"A358919"
] | null | Rémy Sigrist, Dec 06 2022 | 2022-12-12T12:14:46 | oeisdata/seq/A358/A358919.seq | c8009ea784088fecd960d11ba03f756b |
A358920 | Number of (undirected) paths in the 5 X n king graph. | [
"10",
"7909",
"1622015",
"329967798",
"57533191444",
"9454839968415",
"1482823362091281",
"224616420155224372",
"33098477832558055458",
"4770920988514661692889",
"675419680016870426617489",
"94197848411355615226343472"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A288033",
"A307026",
"A339199",
"A339202",
"A339257",
"A339763",
"A358920"
] | null | Seiichi Manyama, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358920.seq | dab69aa60a9e106427b21034983557ee |
A358921 | a(1) = 1; a(n) is the smallest positive number not among the terms a(n-c .. n-1) where c = the number of times a(n-1) has occurred. | [
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"1",
"4",
"1",
"5",
"1",
"2",
"3",
"4",
"1",
"6",
"1",
"7",
"1",
"5",
"2",
"3",
"4",
"1",
"8",
"1",
"9",
"1",
"6",
"2",
"3",
"4",
"1",
"5",
"2",
"6",
"1",
"7",
"2",
"3",
"4",
"5",
"1",
"8",
"2",
"6",
"3",
"7",
"1",
"9",
"2",
"4",
"5",
"3",
"6",
"1",
"10",
"1",
"11",
"1",
"12",
"1",
"13",
"1",
"14",
"1",
"8",
"2",
"3",
"4",
"5",
"6",
"1",
"7",
"2",
"9",
"1",
"15",
"1",
"16",
"1",
"17",
"1"
] | [
"nonn",
"hear",
"look"
] | 25 | 1 | 2 | [
"A133622",
"A268696",
"A329985",
"A358921"
] | null | Samuel Harkness, Dec 06 2022 | 2023-01-13T09:19:35 | oeisdata/seq/A358/A358921.seq | b9930f49d54322b92e6e5ab2ea1893a8 |
A358922 | First of four consecutive primes p,q,r,s such that q*s - p*r is a square. | [
"5",
"13",
"137",
"353",
"877",
"5171",
"6337",
"9397",
"11197",
"16631",
"20011",
"31247",
"39191",
"61261",
"110581",
"114067",
"178537",
"182981",
"186601",
"216317",
"251917",
"266797",
"273349",
"296477",
"369791",
"372707",
"427681",
"431567",
"580787",
"889337",
"963331",
"1009193",
"1244053",
"1501847",
"1937657",
"2212187",
"2227801",
"2347907",
"2595311",
"2909219"
] | [
"nonn"
] | 13 | 1 | 1 | null | null | J. M. Bergot and Robert Israel, Dec 06 2022 | 2022-12-22T17:22:23 | oeisdata/seq/A358/A358922.seq | c71bc7bdf7e12ab6c0a678a40830d788 |
A358923 | Decimal expansion of the real part of the complex zero of the prime zeta function nearest the point {0,0}. | [
"2",
"5",
"3",
"7",
"5",
"1",
"6",
"1",
"0",
"0",
"3",
"7",
"5",
"4",
"1",
"1",
"1",
"6",
"9",
"2",
"5",
"0",
"6",
"6",
"8",
"0",
"1",
"0",
"3",
"9",
"2",
"2",
"8",
"3",
"1",
"6",
"0",
"7",
"6",
"2",
"9",
"6",
"5",
"6",
"9",
"4",
"1",
"6",
"6",
"6",
"5",
"0",
"0",
"0",
"0",
"2",
"9",
"5",
"7",
"5",
"7",
"5",
"2",
"9",
"7",
"5",
"8",
"5",
"6",
"7",
"0",
"7",
"5",
"7",
"9",
"3",
"8",
"1",
"0",
"9",
"2",
"4",
"3",
"2",
"6",
"6",
"1",
"9",
"9",
"1",
"5",
"2",
"0",
"3",
"9",
"6",
"9",
"1",
"6",
"9",
"8",
"5",
"5",
"4",
"3",
"2",
"5",
"9",
"9",
"7",
"6",
"4",
"7",
"0",
"0"
] | [
"nonn",
"cons"
] | 27 | 0 | 1 | [
"A358923",
"A358924"
] | null | Artur Jasinski, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358923.seq | d4f3b3fa969ec3944fb21bca6778e22e |
A358924 | Decimal expansion of the imaginary part of the complex zero of the prime zeta function nearest the point {0,0}. | [
"4",
"7",
"5",
"8",
"1",
"1",
"4",
"7",
"9",
"6",
"0",
"9",
"1",
"4",
"0",
"6",
"0",
"9",
"4",
"1",
"5",
"9",
"5",
"2",
"1",
"2",
"3",
"8",
"0",
"4",
"2",
"6",
"4",
"9",
"8",
"5",
"1",
"2",
"1",
"5",
"0",
"2",
"9",
"6",
"3",
"7",
"6",
"7",
"4",
"0",
"5",
"6",
"8",
"1",
"8",
"5",
"8",
"7",
"6",
"3",
"4",
"5",
"4",
"5",
"0",
"7",
"3",
"0",
"9",
"8",
"2",
"2",
"2",
"3",
"0",
"6",
"3",
"2",
"5",
"0",
"5",
"9",
"3",
"0",
"8",
"3",
"4",
"1",
"0",
"5",
"1",
"9",
"0",
"9",
"4",
"8",
"2",
"3",
"2",
"6",
"9",
"2",
"6",
"7",
"8",
"5",
"4",
"4",
"9",
"7",
"4",
"2",
"4",
"5",
"0"
] | [
"nonn",
"cons"
] | 23 | 1 | 1 | [
"A358923",
"A358924"
] | null | Artur Jasinski, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358924.seq | 12d1502a806e76fb12b530d5ec7185d2 |
A358925 | Numbers whose first occurrence in Stern's diatomic series (A002487) is later than that of one of their proper multiples. | [
"54",
"2052",
"4060",
"23184",
"54425",
"109854",
"121392",
"126866",
"249180",
"317810",
"323284",
"330612",
"363552",
"384834",
"416020",
"476528",
"512937",
"537402",
"537988",
"544178",
"558085",
"601492",
"739033",
"743862",
"785888",
"832039",
"930249",
"982860",
"984544",
"1201692",
"1203954",
"1204276",
"1207300"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A002487",
"A020946",
"A358925"
] | null | Rémy Sigrist, Dec 06 2022 | 2022-12-07T15:00:36 | oeisdata/seq/A358/A358925.seq | 549cd48ca49931e1e931c84197889a19 |
A358926 | a(n) is the smallest centered n-gonal number with exactly n prime factors (counted with multiplicity). | [
"316",
"1625",
"456",
"3964051",
"21568",
"6561",
"346528",
"3588955448828761",
"1684992",
"210804461608463437",
"36865024",
"835904150390625",
"2052407296"
] | [
"nonn",
"more"
] | 11 | 3 | 1 | [
"A001222",
"A358862",
"A358863",
"A358864",
"A358865",
"A358894",
"A358926",
"A358929"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358926.seq | 92135134543416107c6eaf611c61d2c8 |
A358927 | a(n) is the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists. | [
"1",
"-1",
"4",
"20",
"56",
"120",
"560",
"4960",
"19600",
"41664",
"341376",
"695520",
"7207200",
"22238720",
"178433024",
"1429559296",
"179481600",
"11453245440",
"11444858880",
"393079864320",
"3928874471424",
"5864598896640",
"46910348656640",
"975649558118400",
"3002365391929344",
"7805131503206400"
] | [
"sign"
] | 7 | 0 | 3 | [
"A000292",
"A001222",
"A075088",
"A156329",
"A279082",
"A358865",
"A358927"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358927.seq | d1e094441cb36f3d8186b60150602c9f |
A358928 | a(n) is the smallest centered triangular number with exactly n distinct prime factors. | [
"1",
"4",
"10",
"460",
"9010",
"772210",
"20120860",
"1553569960",
"85507715710",
"14932196985010",
"1033664429333260",
"197628216951078460",
"21266854897681220860",
"7423007155473283614010",
"3108276166302017120182510",
"851452464506763307285599610",
"32749388246772812069108696710"
] | [
"nonn"
] | 34 | 0 | 2 | [
"A001221",
"A005448",
"A076551",
"A156329",
"A358894",
"A358928",
"A358929"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358928.seq | 043c3c2cc41289cc6daa718a0e68ef57 |
A358929 | a(n) is the smallest centered triangular number with exactly n prime factors (counted with multiplicity). | [
"1",
"19",
"4",
"316",
"136",
"760",
"64",
"4960",
"22144",
"103360",
"27136",
"5492224",
"1186816",
"41414656",
"271212544",
"559980544",
"1334788096",
"12943360",
"7032930304",
"527049293824",
"158186536960",
"1096295120896",
"7871801589760",
"154690378792960",
"13071965224960",
"56262393856",
"964655941943296"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A001222",
"A005448",
"A075088",
"A358926",
"A358927",
"A358928",
"A358929"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358929.seq | 4a6c9a77b0e868e5575ab4ac4439f7e6 |
A358930 | a(n) is the smallest n-gonal number with binary weight n. | [
"21",
"169",
"117",
"190",
"1404",
"9976",
"3961",
"11935",
"19966",
"113401",
"98155",
"208879",
"261501",
"3338221",
"916475",
"3100671",
"9943039",
"31457140",
"50322871",
"100523871",
"264240373",
"2113871829",
"2012739435",
"532673535",
"7415513007",
"33017544153",
"17112759966",
"50983861215",
"59039022015"
] | [
"nonn",
"base"
] | 9 | 3 | 1 | [
"A000120",
"A089998",
"A089999",
"A358930",
"A358931",
"A358932"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358930.seq | 0407f45bf0a54069a00d89ca25f76526 |
A358931 | a(n) is the smallest n-gonal pyramidal number with binary weight n. | [
"35",
"30",
"405",
"95",
"6860",
"765",
"28855",
"7923",
"96760",
"380091",
"259064",
"915915",
"3845501",
"1436415",
"32471830",
"11992255",
"62904941",
"182171613",
"266182382",
"670936891",
"939382515",
"2533347310",
"30530860911",
"1876688877",
"16972115903",
"201845686175",
"529756691451",
"409027868651",
"2713039388125"
] | [
"nonn",
"base"
] | 8 | 3 | 1 | [
"A000120",
"A358930",
"A358931",
"A358932"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358931.seq | a0cf4d26fafa8ca82d5f2096d49d90d9 |
A358932 | a(n) is the smallest centered n-gonal number with binary weight n. | [
"19",
"85",
"31",
"469",
"253",
"2025",
"5995",
"4061",
"15742",
"48061",
"8191",
"220543",
"384766",
"3080161",
"3272671",
"6192631",
"8385271",
"31453021",
"58159102",
"249495467",
"401469279",
"268418041",
"134193151",
"2885548927",
"1610563582",
"8589393821",
"33280753395",
"83751780091",
"171658174447"
] | [
"nonn",
"base"
] | 8 | 3 | 1 | [
"A000120",
"A358930",
"A358931",
"A358932"
] | null | Ilya Gutkovskiy, Dec 06 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358932.seq | 09057bb1f8e9ca81d1884d2be9d2bd1e |
A358933 | Number of tilings of a 5 X n rectangle using n pentominoes of shapes N, U, Z. | [
"1",
"0",
"0",
"0",
"2",
"0",
"2",
"2",
"4",
"2",
"10",
"8",
"14",
"18",
"36",
"34",
"66",
"88",
"136",
"170",
"292",
"382",
"578",
"818",
"1244",
"1692",
"2576",
"3676",
"5400",
"7654",
"11412",
"16284",
"23852",
"34448",
"50396",
"72472",
"106046",
"153556",
"223458",
"323430",
"471644",
"683046",
"993958",
"1442138",
"2097830",
"3042314",
"4424880"
] | [
"nonn",
"easy"
] | 17 | 0 | 5 | [
"A174249",
"A343529",
"A349187",
"A352421",
"A358933",
"A361250"
] | null | Alois P. Heinz, Dec 06 2022 | 2023-05-02T08:37:16 | oeisdata/seq/A358/A358933.seq | e5409889a347a31ebdefeb95d30f968f |
A358934 | a(n) = Fibonacci(n+1)^5 - Fibonacci(n-1)^5. | [
"0",
"1",
"31",
"242",
"3093",
"32525",
"368168",
"4051333",
"45064131",
"499200274",
"5538624025",
"61414079849",
"681135796944",
"7553728681433",
"83772910243607",
"929052526388050",
"10303364319347757",
"114266002348885717",
"1267229634537217144",
"14053790947047408701",
"155858934437282250075"
] | [
"nonn",
"easy"
] | 29 | 0 | 3 | [
"A000045",
"A056572",
"A358934"
] | null | Feryal Alayont, Dec 06 2022 | 2024-08-05T15:21:52 | oeisdata/seq/A358/A358934.seq | 4d15b33960ba6cccf4ef30ad64e663f0 |
A358935 | a(n) is the least k > 0 such that fusc(n) = fusc(n + k) or fusc(n) = fusc(n - k) (provided that n - k >= 0), where "fusc" is Stern's diatomic series (A002487). | [
"1",
"1",
"3",
"2",
"2",
"3",
"2",
"4",
"6",
"3",
"2",
"6",
"2",
"4",
"3",
"8",
"4",
"3",
"4",
"6",
"6",
"4",
"2",
"12",
"2",
"4",
"6",
"8",
"4",
"6",
"3",
"16",
"30",
"3",
"12",
"6",
"4",
"8",
"18",
"12",
"4",
"12",
"10",
"8",
"6",
"4",
"2",
"24",
"2",
"4",
"6",
"8",
"10",
"12",
"4",
"16",
"18",
"7",
"4",
"12",
"9",
"6",
"3",
"32",
"7",
"3",
"7",
"6",
"12",
"9",
"8",
"12",
"46",
"7",
"12",
"11",
"12",
"21",
"7"
] | [
"nonn"
] | 11 | 1 | 3 | [
"A002487",
"A097581",
"A358935"
] | null | Rémy Sigrist, Dec 07 2022 | 2022-12-08T01:51:40 | oeisdata/seq/A358/A358935.seq | f1e431d15c6598a8b70cb8e51c4ba025 |
A358936 | Numbers k such that for some r we have phi(1) + ... + phi(k - 1) = phi(k + 1) + ... + phi(k + r), where phi(i) = A000010(i). | [
"3",
"4",
"6",
"38",
"40",
"88",
"244",
"578",
"581",
"602",
"1663",
"2196",
"10327",
"17358",
"28133",
"36163",
"42299",
"123556",
"149788",
"234900",
"350210",
"366321",
"620478",
"694950",
"869880",
"905807",
"934286",
"1907010",
"2005592",
"5026297",
"7675637",
"11492764",
"12844691",
"14400214",
"15444216",
"18798939",
"20300872"
] | [
"nonn"
] | 31 | 1 | 1 | [
"A000010",
"A001109",
"A002088",
"A064018",
"A358936"
] | null | Ctibor O. Zizka, Dec 07 2022 | 2025-01-05T19:51:42 | oeisdata/seq/A358/A358936.seq | d9608cbe8503b6ac21c8a6d34fb60598 |
A358937 | Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n. | [
"1",
"1",
"3",
"6",
"13",
"31",
"76",
"192",
"504",
"1351",
"3668",
"10082",
"27991",
"78335",
"220778",
"626141",
"1785593",
"5117179",
"14729826",
"42568767",
"123465517",
"359268141",
"1048541699",
"3068583485",
"9002849260",
"26474484680",
"78019959584",
"230381635121",
"681544367457",
"2019718168994",
"5995000501189"
] | [
"nonn"
] | 36 | 0 | 3 | [
"A355865",
"A358937",
"A366229"
] | null | Paul D. Hanna, Dec 07 2022 | 2025-03-24T05:54:10 | oeisdata/seq/A358/A358937.seq | 3b1e584cfbea2b04c4e0be9840ad6615 |
A358938 | Decimal expansion of the real root of 2*x^5 - 1. | [
"8",
"7",
"0",
"5",
"5",
"0",
"5",
"6",
"3",
"2",
"9",
"6",
"1",
"2",
"4",
"1",
"3",
"9",
"1",
"3",
"6",
"2",
"7",
"0",
"0",
"1",
"7",
"4",
"7",
"9",
"7",
"4",
"6",
"0",
"9",
"8",
"9",
"7",
"9",
"1",
"2",
"5",
"4",
"2",
"4",
"3",
"4",
"8",
"0",
"0",
"3",
"0",
"4",
"8",
"2",
"4",
"1",
"8",
"5",
"9",
"5",
"6",
"8",
"5",
"0",
"6",
"7",
"5",
"0",
"0",
"1",
"7",
"7",
"5",
"2",
"4"
] | [
"nonn",
"cons",
"easy"
] | 17 | 0 | 1 | [
"A001622",
"A005531",
"A011101",
"A182007",
"A188593",
"A358938"
] | null | Wolfdieter Lang, Dec 07 2022 | 2025-03-24T09:06:52 | oeisdata/seq/A358/A358938.seq | b8d2f27f0f7460471801ed95f83e3485 |
A358939 | Decimal expansion of the real root of x^5 + x^3 - 1. | [
"8",
"3",
"7",
"6",
"1",
"9",
"7",
"7",
"4",
"8",
"2",
"6",
"9",
"6",
"2",
"1",
"8",
"4",
"9",
"9",
"7",
"5",
"2",
"7",
"2",
"9",
"4",
"1",
"9",
"1",
"8",
"0",
"6",
"0",
"9",
"3",
"9",
"2",
"5",
"0",
"5",
"4",
"5",
"1",
"8",
"5",
"8",
"9",
"6",
"0",
"2",
"3",
"7",
"9",
"1",
"2",
"5",
"3",
"0",
"5",
"5",
"6",
"9",
"1",
"2",
"3",
"7",
"8",
"5",
"2",
"9",
"6",
"3",
"4",
"6",
"2"
] | [
"nonn",
"cons"
] | 10 | 0 | 1 | [
"A160155",
"A230152",
"A358939",
"A358940",
"A358941",
"A358942"
] | null | Wolfdieter Lang, Dec 15 2022 | 2022-12-20T11:45:23 | oeisdata/seq/A358/A358939.seq | 98a75f87cb3cd428bed9bb29c1fdb935 |
A358940 | Decimal expansion of the real root of x^5 - x^3 - 1. | [
"1",
"2",
"3",
"6",
"5",
"0",
"5",
"7",
"0",
"3",
"3",
"9",
"1",
"4",
"9",
"9",
"0",
"2",
"4",
"3",
"3",
"7",
"5",
"7",
"4",
"8",
"0",
"0",
"9",
"7",
"6",
"1",
"4",
"6",
"7",
"8",
"2",
"6",
"8",
"1",
"0",
"4",
"2",
"9",
"4",
"3",
"5",
"4",
"6",
"1",
"1",
"4",
"9",
"6",
"7",
"7",
"6",
"6",
"1",
"7",
"3",
"8",
"4",
"1",
"7",
"0",
"7",
"2",
"6",
"1",
"4",
"3",
"5",
"6",
"1",
"8"
] | [
"nonn",
"cons"
] | 7 | 1 | 2 | [
"A160155",
"A230152",
"A358939",
"A358940",
"A358941",
"A358942"
] | null | Wolfdieter Lang, Dec 12 2022 | 2022-12-20T11:45:31 | oeisdata/seq/A358/A358940.seq | 11fe4bbe191a0ee91c8914773d5c9801 |
A358941 | Decimal expansion of the real root of x^5 + x^2 - 1. | [
"8",
"0",
"8",
"7",
"3",
"0",
"6",
"0",
"0",
"4",
"7",
"9",
"3",
"9",
"2",
"0",
"1",
"3",
"7",
"3",
"8",
"5",
"5",
"4",
"5",
"2",
"6",
"5",
"1",
"1",
"4",
"0",
"0",
"0",
"6",
"4",
"9",
"5",
"1",
"3",
"7",
"7",
"3",
"5",
"1",
"5",
"5",
"9",
"3",
"1",
"3",
"0",
"7",
"5",
"5",
"4",
"8",
"1",
"1",
"6",
"4",
"0",
"1",
"8",
"3",
"6",
"5",
"4",
"3",
"3",
"4",
"0",
"7",
"4",
"8",
"3"
] | [
"nonn",
"cons"
] | 12 | 0 | 1 | [
"A160155",
"A230152",
"A358939",
"A358940",
"A358941",
"A358942"
] | null | Wolfdieter Lang, Dec 15 2022 | 2022-12-20T11:45:39 | oeisdata/seq/A358/A358941.seq | fa42834ef3515587bff772e76a8c2ce3 |
A358942 | Decimal expansion of the real root of x^5 - x^2 - 1. | [
"1",
"1",
"9",
"3",
"8",
"5",
"9",
"1",
"1",
"1",
"3",
"2",
"1",
"2",
"2",
"3",
"0",
"1",
"2",
"0",
"0",
"9",
"0",
"2",
"0",
"7",
"4",
"6",
"2",
"9",
"8",
"0",
"3",
"1",
"1",
"2",
"4",
"5",
"1",
"4",
"5",
"2",
"4",
"2",
"6",
"9",
"4",
"8",
"6",
"4",
"4",
"4",
"5",
"0",
"9",
"6",
"0",
"2",
"0",
"8",
"1",
"4",
"0",
"1",
"5",
"9",
"6",
"0",
"3",
"5",
"5",
"6",
"2",
"3",
"8",
"5"
] | [
"nonn",
"cons"
] | 10 | 1 | 3 | [
"A160155",
"A230152",
"A358939",
"A358940",
"A358941",
"A358942"
] | null | Wolfdieter Lang, Dec 15 2022 | 2022-12-20T11:45:47 | oeisdata/seq/A358/A358942.seq | 77cd6b0949c49423fc50993898bb0366 |
A358943 | Decimal expansion of the real root of 3*x^3 - 2. | [
"8",
"7",
"3",
"5",
"8",
"0",
"4",
"6",
"4",
"7",
"3",
"6",
"2",
"9",
"8",
"8",
"6",
"9",
"0",
"4",
"7",
"2",
"2",
"0",
"4",
"2",
"6",
"8",
"1",
"3",
"9",
"9",
"8",
"7",
"5",
"6",
"7",
"4",
"6",
"4",
"7",
"5",
"8",
"8",
"1",
"9",
"0",
"7",
"8",
"7",
"7",
"2",
"4",
"1",
"7",
"0",
"0",
"9",
"2",
"4",
"6",
"0",
"1",
"9",
"0",
"9",
"5",
"6",
"6",
"6",
"0",
"6",
"3",
"9",
"8",
"6",
"8",
"0"
] | [
"nonn",
"cons",
"easy"
] | 8 | 0 | 1 | [
"A010590",
"A319034",
"A358943"
] | null | Wolfdieter Lang, Jan 02 2023 | 2023-01-12T01:50:50 | oeisdata/seq/A358/A358943.seq | cf7f5dc7c1ff13629a8cd7b09cb7b8f8 |
A358944 | Number of Green's L-classes in B_n, the semigroup of binary relations on [n]. | [
"1",
"2",
"7",
"55",
"1324",
"120633",
"36672159"
] | [
"nonn",
"hard",
"more"
] | 24 | 0 | 2 | [
"A102896",
"A355315",
"A358944"
] | null | Geoffrey Critzer, Jan 16 2023 | 2023-01-17T09:58:18 | oeisdata/seq/A358/A358944.seq | a3a718735451ff08b21c9f4a50813549 |
A358945 | Decimal expansion of the positive root of 4*x^2 + x - 1. | [
"3",
"9",
"0",
"3",
"8",
"8",
"2",
"0",
"3",
"2",
"0",
"2",
"2",
"0",
"7",
"5",
"6",
"8",
"7",
"2",
"7",
"6",
"7",
"6",
"2",
"3",
"1",
"9",
"9",
"6",
"7",
"5",
"9",
"6",
"2",
"8",
"1",
"4",
"3",
"3",
"9",
"9",
"9",
"0",
"3",
"1",
"7",
"1",
"7",
"0",
"2",
"5",
"5",
"4",
"2",
"9",
"9",
"8",
"2",
"9",
"1",
"9",
"6",
"6",
"3",
"6",
"8",
"6",
"9",
"2",
"9",
"3",
"2",
"9",
"2",
"2"
] | [
"nonn",
"cons",
"easy"
] | 24 | 0 | 1 | [
"A006131",
"A010473",
"A049310",
"A052923",
"A174930",
"A189038",
"A222132",
"A358945"
] | null | Wolfdieter Lang, Jan 20 2023 | 2024-01-15T16:44:12 | oeisdata/seq/A358/A358945.seq | 89a8a71ca0d5703e38e37a05223bf690 |
A358946 | Positive integers that are properly represented by each primitive binary quadratic form of discriminant 28 that is properly equivalent to the principal form [1, 4, -3]. | [
"1",
"2",
"9",
"18",
"21",
"29",
"37",
"42",
"53",
"57",
"58",
"74",
"81",
"93",
"106",
"109",
"113",
"114",
"133",
"137",
"141",
"149",
"162",
"177",
"186",
"189",
"193",
"197",
"217",
"218",
"226",
"233",
"249",
"261",
"266",
"274",
"277",
"281",
"282",
"298",
"309",
"317",
"329",
"333",
"337",
"354",
"361",
"373",
"378",
"386",
"389",
"393",
"394",
"401",
"413",
"417",
"421",
"434",
"449",
"457",
"466",
"477",
"498",
"501"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A028881",
"A242662",
"A307168",
"A307169",
"A307172",
"A307173",
"A358946",
"A358947",
"A359476",
"A359477"
] | null | Wolfdieter Lang, Jan 10 2023 | 2023-02-03T03:17:12 | oeisdata/seq/A358/A358946.seq | aae9f509b805a05110b3c4bed675cd58 |
A358947 | a(n) = 2^m(n), where m(n) is the number of distinct primes, neither 2 nor 7, dividing A358946(n). | [
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"4",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"2",
"2",
"2",
"2",
"4",
"2",
"4",
"2",
"2",
"4",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"4",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"4",
"2",
"4",
"4"
] | [
"nonn"
] | 11 | 1 | 3 | [
"A358946",
"A358947",
"A359476",
"A359477"
] | null | Wolfdieter Lang, Jan 10 2023 | 2023-01-12T01:53:08 | oeisdata/seq/A358/A358947.seq | faf491a6e7ba6a2c408c21534e3c97aa |
A358948 | Number of regions formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n). | [
"1",
"12",
"228",
"1464",
"12516",
"29022",
"153564",
"364650",
"996672",
"1750326",
"5274156",
"7761498"
] | [
"nonn",
"more"
] | 11 | 1 | 2 | [
"A005728",
"A006842",
"A006843",
"A358882",
"A358886",
"A358948",
"A358949",
"A358950",
"A358951"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 07 2022 | 2023-09-27T14:55:53 | oeisdata/seq/A358/A358948.seq | 2b2dcf844f627f75241ccc14581a141a |
A358949 | Number of vertices formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n). | [
"3",
"10",
"148",
"1111",
"9568",
"23770",
"126187",
"308401",
"855145",
"1521733",
"4591405",
"6831040"
] | [
"nonn",
"more"
] | 8 | 1 | 1 | [
"A005728",
"A006842",
"A006843",
"A358882",
"A358887",
"A358948",
"A358949",
"A358950",
"A358951"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 07 2022 | 2023-09-27T14:56:52 | oeisdata/seq/A358/A358949.seq | 7c2ccae779bd46e522f908d5f69df139 |
A358950 | Number of edges formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n). | [
"3",
"21",
"375",
"2574",
"22083",
"52791",
"279750",
"673050",
"1851816",
"3272058",
"9865560",
"14592537"
] | [
"nonn",
"more"
] | 6 | 1 | 1 | [
"A005728",
"A006842",
"A006843",
"A358882",
"A358888",
"A358948",
"A358949",
"A358950",
"A358951"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 07 2022 | 2022-12-19T13:31:51 | oeisdata/seq/A358/A358950.seq | 1e4ab8aeb7e720ba319a25c27e65c695 |
A358951 | Irregular table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n). | [
"1",
"12",
"180",
"42",
"6",
"810",
"576",
"72",
"6",
"6786",
"4932",
"744",
"48",
"6",
"13662",
"12522",
"2568",
"258",
"12",
"72582",
"64932",
"14376",
"1632",
"36",
"6",
"164484",
"155088",
"38688",
"5958",
"414",
"18",
"439524",
"422370",
"114804",
"18462",
"1392",
"120",
"750108",
"749928",
"211518",
"35226",
"3336",
"204",
"6",
"2265462",
"2240994",
"647184",
"109602",
"10230",
"666",
"18"
] | [
"nonn",
"tabf"
] | 10 | 1 | 2 | [
"A005728",
"A006842",
"A006843",
"A358882",
"A358889",
"A358948",
"A358949",
"A358950",
"A358951"
] | null | Scott R. Shannon and N. J. A. Sloane, Dec 07 2022 | 2022-12-19T13:32:13 | oeisdata/seq/A358/A358951.seq | b35b9ecdda1a52d67cdd9eb284822981 |
A358952 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1). | [
"1",
"2",
"18",
"124",
"1244",
"11652",
"122153",
"1281722",
"14009973",
"154993908",
"1748602308",
"19949674928",
"230299666100",
"2682127476280",
"31492460744869",
"372295036400060",
"4428101312591810",
"52949362040059258",
"636176332781478365",
"7676183282453865394",
"92978971123440688904"
] | [
"nonn"
] | 9 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T06:47:54 | oeisdata/seq/A358/A358952.seq | dddd790ab77afb0d672997f2f7a8e0f5 |
A358953 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(3*n) * (x^n - 2*A(x))^(4*n+1). | [
"1",
"3",
"21",
"159",
"1369",
"12131",
"111489",
"1042310",
"9878188",
"94345595",
"905236045",
"8698907855",
"83509981377",
"798911473287",
"7596665295846",
"71585365842419",
"666055801137389",
"6089025714101416",
"54304588402962717",
"467144137463862047",
"3798557443794080777",
"27983895459969702990"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:35 | oeisdata/seq/A358/A358953.seq | c6eec425ff82a7c9dac20383bd63fd69 |
A358954 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(4*n) * (x^n - 2*A(x))^(5*n+1). | [
"1",
"4",
"36",
"384",
"4568",
"57920",
"768760",
"10543120",
"148247390",
"2125715618",
"30965114225",
"456956616284",
"6817011617601",
"102640570550600",
"1557716916728198",
"23804070258610024",
"365964582592739540",
"5656501536118793076",
"87846324474413129008",
"1370097609728212588634",
"21451062781643458337802"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:39 | oeisdata/seq/A358/A358954.seq | a2daa5d12da9c03f97b4b892d1972dbb |
A358955 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(5*n) * (x^n - 2*A(x))^(6*n+1). | [
"1",
"5",
"55",
"715",
"10285",
"157577",
"2521339",
"41635879",
"704264465",
"12139738505",
"212475103777",
"3765897874074",
"67454279084444",
"1219122315546851",
"22204489538545069",
"407150017658467685",
"7509869807043464691",
"139245172845883281403",
"2593887890033997265241",
"48521833007161546858193"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:43 | oeisdata/seq/A358/A358955.seq | 2c589ca0cc09fe8b069a5b792e9c8faf |
A358956 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(6*n) * (x^n - 2*A(x))^(7*n+1). | [
"1",
"6",
"78",
"1196",
"20280",
"366288",
"6908744",
"134492752",
"2681961056",
"54504790720",
"1124768357872",
"23505633975616",
"496452504891320",
"10580216111991080",
"227237269499825185",
"4913552644294206262",
"106877300690757456293",
"2336971970184440328572",
"51339570414117180476064"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:47 | oeisdata/seq/A358/A358956.seq | 2981dab15dbb112950e9171f40799852 |
A358957 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(7*n) * (x^n - 2*A(x))^(8*n+1). | [
"1",
"7",
"105",
"1855",
"36225",
"753319",
"16356809",
"366518975",
"8412321985",
"196761671175",
"4672976571753",
"112386313863327",
"2731613284143345",
"66992673654966087",
"1655756220596437601",
"41199365822954474670",
"1031225066096367871764",
"25947188077245338061147",
"655925022779049206277461"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:52 | oeisdata/seq/A358/A358957.seq | 2a4021ff509b76af9fd28b66190c0393 |
A358958 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(8*n) * (x^n - 2*A(x))^(9*n+1). | [
"1",
"8",
"136",
"2720",
"60112",
"1414400",
"34744192",
"880722944",
"22866372480",
"604987038208",
"16252230833792",
"442118711113216",
"12154717695451712",
"337169716435693120",
"9425612400257630864",
"265272780558100130464",
"7510038750103097772890",
"213729057394800722424678",
"6110972702751703321123745"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:34:56 | oeisdata/seq/A358/A358958.seq | e3bd3a1c5ff6df6b0706eb186bf10f60 |
A358959 | a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1). | [
"1",
"9",
"171",
"3819",
"94221",
"2474541",
"67842255",
"1919233719",
"55608288057",
"1641837803793",
"49218744365683",
"1494112796918051",
"45836491198618821",
"1418839143493455861",
"44259772786526485527",
"1389967891240928450511",
"43910122539568806384513",
"1394423517592589134138485"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355865",
"A358952",
"A358953",
"A358954",
"A358955",
"A358956",
"A358957",
"A358958",
"A358959"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-08T07:35:00 | oeisdata/seq/A358/A358959.seq | a38686eeb3fefe22ea373e07c6134a34 |
A358960 | Number of directed Hamiltonian paths of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph). | [
"24",
"144",
"240",
"3240",
"75840"
] | [
"nonn",
"fini",
"full"
] | 11 | 1 | 1 | [
"A053016",
"A063723",
"A268283",
"A343213",
"A358960"
] | null | Seiichi Manyama, Dec 07 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358960.seq | 71456ba8172010f61dbe1afd8c199790 |
A358961 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(2*n+1))^(n-1). | [
"1",
"3",
"7",
"33",
"163",
"858",
"4708",
"26662",
"154699",
"914885",
"5494719",
"33423598",
"205493244",
"1274928510",
"7972042450",
"50188844583",
"317861388939",
"2023777490895",
"12945901676736",
"83163975425669",
"536279878717858",
"3470134399230086",
"22525040920670333",
"146633283078321531"
] | [
"nonn"
] | 38 | 0 | 2 | [
"A357227",
"A358937",
"A358961",
"A358962",
"A358963",
"A358964",
"A358965"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-09T14:35:12 | oeisdata/seq/A358/A358961.seq | 61b5275f54e157aa9ef24c1c430b935a |
A358962 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(3*n+2))^(n-1). | [
"1",
"2",
"8",
"30",
"146",
"748",
"4002",
"22114",
"125220",
"722850",
"4238148",
"25169064",
"151084168",
"915235106",
"5587985801",
"34351213384",
"212436911849",
"1320744403708",
"8250065775120",
"51752790871466",
"325887027304769",
"2059216160242430",
"13052805881695018",
"82976612756731258"
] | [
"nonn"
] | 21 | 0 | 2 | [
"A358961",
"A358962",
"A358963",
"A358964",
"A358965"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-09T14:33:22 | oeisdata/seq/A358/A358962.seq | 16946f16862a149992f60dd8bab17fae |
A358963 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(4*n+3))^(n-1). | [
"1",
"2",
"7",
"31",
"143",
"731",
"3896",
"21444",
"120967",
"695699",
"4063879",
"24045306",
"143808836",
"867972228",
"5280039896",
"32339575813",
"199266229047",
"1234340158837",
"7682216027973",
"48014943810066",
"301247658649431",
"1896587278353158",
"11978138505184044",
"75867527248248561"
] | [
"nonn"
] | 20 | 0 | 2 | [
"A358961",
"A358962",
"A358963",
"A358964",
"A358965"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-09T14:33:41 | oeisdata/seq/A358/A358963.seq | 08a0208879ceb666d5dfd214bca93dde |
A358964 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(5*n+4))^(n-1). | [
"1",
"2",
"7",
"30",
"144",
"728",
"3879",
"21338",
"120301",
"691482",
"4037020",
"23873308",
"142702222",
"860823760",
"5233702949",
"32038319854",
"197302553658",
"1221511228130",
"7598234842024",
"47464203317986",
"297630203452010",
"1872792573164662",
"11821420702394153",
"74834134991237178"
] | [
"nonn"
] | 18 | 0 | 2 | [
"A358961",
"A358962",
"A358963",
"A358964",
"A358965"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-09T14:34:19 | oeisdata/seq/A358/A358964.seq | d7c0054cf04c9b1ce90015da9c9d19aa |
A358965 | a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(6*n+5))^(n-1). | [
"1",
"2",
"7",
"30",
"143",
"729",
"3876",
"21321",
"120195",
"690816",
"4032807",
"23846485",
"142530516",
"859719414",
"5226571568",
"31992109155",
"197002217763",
"1219554190530",
"7585453430037",
"47380560231549",
"297081856642195",
"1869191995298989",
"11797744585161792",
"74678247991840230",
"473954364916279312"
] | [
"nonn"
] | 16 | 0 | 2 | [
"A358961",
"A358962",
"A358963",
"A358964",
"A358965"
] | null | Paul D. Hanna, Dec 07 2022 | 2022-12-09T14:34:47 | oeisdata/seq/A358/A358965.seq | aae4f07150fdfef108dc50ff4373466c |
A358966 | a(n) = n!*Sum_{m=1..floor(n/2)} 1/(m*binomial(n-1,2*m-1)*n). | [
"0",
"0",
"1",
"1",
"5",
"9",
"70",
"178",
"2132",
"6900",
"118536",
"462936",
"10606752",
"48446496",
"1397029824",
"7305837120",
"254261617920",
"1498370192640",
"61084867115520",
"400578023738880",
"18717879561984000",
"135203360447232000",
"7123176975979008000",
"56195977439927808000"
] | [
"nonn"
] | 7 | 0 | 5 | null | null | Vladimir Kruchinin, Dec 07 2022 | 2022-12-08T01:08:55 | oeisdata/seq/A358/A358966.seq | 97ea0ba13b67637d491bed5184e90663 |
A358967 | a(n+1) gives the number of occurrences of the smallest digit of a(n) so far, up to and including a(n), with a(0)=0. | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"5",
"1",
"6",
"1",
"7",
"1",
"8",
"1",
"9",
"1",
"10",
"2",
"2",
"3",
"2",
"4",
"2",
"5",
"2",
"6",
"2",
"7",
"2",
"8",
"2",
"9",
"2",
"10",
"3",
"3",
"4",
"3",
"5",
"3",
"6",
"3",
"7",
"3",
"8",
"3",
"9",
"3",
"10",
"4",
"4",
"5",
"4",
"6",
"4",
"7",
"4",
"8",
"4",
"9",
"4",
"10",
"5",
"5",
"6",
"5",
"7",
"5",
"8",
"5",
"9",
"5",
"10",
"6",
"6",
"7",
"6",
"8",
"6",
"9",
"6",
"10",
"7",
"7",
"8",
"7",
"9",
"7",
"10",
"8",
"8",
"9",
"8",
"10",
"9",
"9",
"10",
"10",
"11",
"22",
"12",
"23",
"14"
] | [
"nonn",
"base"
] | 33 | 0 | 4 | [
"A248034",
"A249009",
"A336514",
"A356348",
"A358851",
"A358967"
] | null | Bence Bernáth, Dec 08 2022 | 2024-12-23T14:53:46 | oeisdata/seq/A358/A358967.seq | 64473b06b5a8b057b74c1e01fd7c189c |
A358968 | Decimal expansion of the real part of the smallest complex zero of the prime zeta function in absolutely convergent zone. | [
"1",
"0",
"6",
"1",
"9",
"2",
"4",
"1",
"7",
"5",
"9",
"2",
"2",
"0",
"7",
"0",
"7",
"6",
"0",
"8",
"4",
"9",
"9",
"6",
"1",
"7",
"9",
"5",
"6",
"9",
"4",
"6",
"1",
"1",
"2",
"5",
"2",
"1",
"3",
"8",
"6",
"8",
"3",
"8",
"0",
"9",
"6",
"5",
"8",
"0",
"6",
"2",
"0",
"2",
"5",
"5",
"9",
"2",
"5",
"6",
"1",
"0",
"7",
"9",
"3",
"4",
"2",
"4",
"8",
"2",
"5",
"8",
"6",
"9",
"5",
"8",
"2",
"9",
"5",
"1",
"7",
"9",
"3",
"5",
"8",
"4",
"8",
"9",
"2",
"9",
"8",
"1",
"0",
"6",
"0",
"8",
"8",
"3",
"1",
"3",
"8",
"7",
"9",
"4",
"4",
"2",
"7",
"1",
"6",
"0",
"2",
"5",
"6",
"2",
"5"
] | [
"nonn",
"cons"
] | 27 | 1 | 3 | [
"A358923",
"A358924",
"A358968",
"A358969"
] | null | Artur Jasinski, Dec 07 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358968.seq | 65c9c5b730af5e44188fdf0316315663 |
A358969 | Decimal expansion of the imaginary part of the smallest complex zero of the prime zeta function in the absolutely convergent zone. | [
"2",
"3",
"7",
"1",
"7",
"3",
"3",
"0",
"3",
"9",
"1",
"8",
"5",
"1",
"0",
"5",
"1",
"6",
"6",
"9",
"2",
"7",
"9",
"7",
"8",
"0",
"2",
"1",
"5",
"3",
"1",
"8",
"5",
"8",
"4",
"1",
"1",
"7",
"7",
"4",
"1",
"0",
"0",
"4",
"3",
"4",
"8",
"6",
"3",
"2",
"4",
"5",
"9",
"9",
"5",
"1",
"0",
"9",
"9",
"5",
"1",
"8",
"2",
"0",
"3",
"0",
"8",
"6",
"6",
"1",
"5",
"3",
"1",
"0",
"9",
"0",
"2",
"7",
"3",
"7",
"9",
"7",
"7",
"6",
"9",
"8",
"3",
"2",
"6",
"7",
"8",
"2",
"1",
"8",
"6",
"4",
"5",
"9",
"8",
"2",
"6",
"1",
"6",
"3",
"8",
"0",
"9",
"9",
"0",
"2",
"9",
"7",
"3",
"0",
"2"
] | [
"nonn",
"cons"
] | 29 | 2 | 1 | [
"A358923",
"A358924",
"A358968",
"A358969"
] | null | Artur Jasinski, Dec 07 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358969.seq | 2d70e5d5b073a57c84e52a26f600ca4b |
A358970 | Nonnegative numbers m such that if 2^k appears in the binary expansion of m, then k+1 divides m. | [
"0",
"1",
"2",
"6",
"8",
"12",
"36",
"60",
"128",
"136",
"168",
"261",
"288",
"520",
"530",
"540",
"630",
"640",
"1056",
"2052",
"2088",
"2100",
"2184",
"2208",
"2304",
"2340",
"2520",
"2580",
"4134",
"8232",
"8400",
"8820",
"9240",
"10248",
"10920",
"16440",
"16560",
"16920",
"16950",
"17010",
"17040",
"17190",
"17280",
"18480",
"18600",
"18720"
] | [
"nonn",
"base",
"easy"
] | 15 | 1 | 3 | [
"A058891",
"A271410",
"A320673",
"A358970"
] | null | Rémy Sigrist, Dec 07 2022 | 2022-12-12T15:00:27 | oeisdata/seq/A358/A358970.seq | 6724abb08ab23965915767d8518b82ea |
A358971 | a(1) = 1. Thereafter a(n) is least novel k != n such that rad(k) = rad(n), where rad is A007947. | [
"1",
"4",
"9",
"2",
"25",
"12",
"49",
"16",
"3",
"20",
"121",
"6",
"169",
"28",
"45",
"8",
"289",
"24",
"361",
"10",
"63",
"44",
"529",
"18",
"5",
"52",
"81",
"14",
"841",
"60",
"961",
"64",
"99",
"68",
"175",
"48",
"1369",
"76",
"117",
"50",
"1681",
"84",
"1849",
"22",
"15",
"92",
"2209",
"36",
"7",
"40",
"153",
"26",
"2809",
"72",
"275",
"98",
"171",
"116",
"3481",
"30",
"3721"
] | [
"nonn"
] | 25 | 1 | 2 | [
"A000040",
"A001248",
"A005117",
"A007947",
"A253288",
"A358916",
"A358971"
] | null | David James Sycamore, Dec 07 2022 | 2023-02-12T17:27:36 | oeisdata/seq/A358/A358971.seq | 2e16ee89b2844c395b3c6406f378f0bf |
A358972 | a(n) = ((...((n!^(n-1)!)^(n-2)!)^...)^2!)^1!. | [
"1",
"2",
"36",
"36520347436056576"
] | [
"nonn"
] | 30 | 1 | 2 | [
"A000178",
"A067039",
"A073581",
"A358972"
] | null | Arsen Vardanyan, Dec 07 2022 | 2022-12-09T06:17:14 | oeisdata/seq/A358/A358972.seq | a205f96e92927fc8e86b0097cecd8a58 |
A358973 | Numbers of the form m + omega(m) with m a positive integer. | [
"1",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"12",
"14",
"16",
"17",
"18",
"20",
"22",
"23",
"24",
"26",
"28",
"30",
"32",
"33",
"35",
"36",
"37",
"38",
"40",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"50",
"52",
"53",
"54",
"56",
"57",
"58",
"59",
"60",
"62",
"63",
"64",
"65",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"76",
"77",
"78",
"79",
"80",
"81",
"82"
] | [
"nonn"
] | 4 | 1 | 2 | [
"A337455",
"A358973"
] | null | Charles R Greathouse IV, Dec 07 2022 | 2022-12-07T17:16:54 | oeisdata/seq/A358/A358973.seq | 9f3646a64807081cc3186cb7430b8ef5 |
A358974 | a(n) is the least prime p such that q-p = n*(r-q) where p,q,r are consecutive primes. | [
"3",
"7",
"23",
"6397",
"139",
"509",
"84871",
"1933",
"1259",
"43331",
"1129",
"4523",
"933073",
"2971",
"6917",
"1568771",
"9973",
"32261",
"4131109",
"25261",
"78737",
"12809359",
"91033",
"28229",
"13626257",
"35677",
"117443",
"37305713",
"399793",
"102701",
"217795247",
"288583",
"296843",
"240485257",
"173359",
"1025957",
"213158279",
"1053103",
"370949",
"1163010181"
] | [
"nonn"
] | 13 | 1 | 1 | [
"A001223",
"A179256",
"A181994",
"A358974"
] | null | Robert Israel and Juri-Stepan Gerasimov, Dec 07 2022 | 2022-12-10T10:47:29 | oeisdata/seq/A358/A358974.seq | c72f2fd8ebdabe38059a1786991b9b6c |
A358975 | Numbers that are coprime to their digital sum in base 3 (A053735). | [
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"17",
"19",
"23",
"27",
"29",
"31",
"37",
"41",
"43",
"47",
"49",
"51",
"53",
"55",
"59",
"61",
"67",
"69",
"71",
"73",
"79",
"81",
"83",
"85",
"89",
"91",
"97",
"101",
"103",
"107",
"109",
"113",
"119",
"121",
"123",
"125",
"127",
"129",
"131",
"137",
"139",
"141",
"143",
"147",
"149",
"151",
"153",
"155",
"157",
"159",
"161",
"163",
"167",
"169"
] | [
"nonn",
"base"
] | 14 | 1 | 2 | [
"A000244",
"A053735",
"A064150",
"A065091",
"A094387",
"A185199",
"A332880",
"A339076",
"A358975",
"A358976",
"A358977",
"A358978"
] | null | Amiram Eldar, Dec 07 2022 | 2023-02-12T17:26:40 | oeisdata/seq/A358/A358975.seq | 71fe2ed765b456a206eabb8b987510be |
A358976 | Numbers that are coprime to the sum of their factorial base digits (A034968). | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"24",
"25",
"28",
"29",
"31",
"32",
"33",
"37",
"39",
"41",
"43",
"44",
"47",
"49",
"50",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"66",
"67",
"69",
"71",
"73",
"76",
"77",
"79",
"83",
"84",
"85",
"87",
"88",
"89",
"92",
"93",
"95",
"97",
"98",
"101",
"102",
"103",
"106",
"107",
"109",
"110"
] | [
"nonn",
"base"
] | 10 | 1 | 2 | [
"A000040",
"A000142",
"A034968",
"A059956",
"A094387",
"A118363",
"A339076",
"A358975",
"A358976",
"A358977",
"A358978"
] | null | Amiram Eldar, Dec 07 2022 | 2022-12-12T01:34:25 | oeisdata/seq/A358/A358976.seq | 14ed01276de991d183713ed7c4613f75 |
A358977 | Numbers that are coprime to the sum of their primorial base digits (A276150). | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"26",
"29",
"30",
"31",
"34",
"35",
"37",
"38",
"39",
"41",
"43",
"46",
"47",
"49",
"53",
"54",
"55",
"57",
"58",
"59",
"61",
"62",
"63",
"67",
"69",
"71",
"73",
"74",
"78",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"98",
"101",
"102",
"103",
"106",
"107",
"109",
"110"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A000040",
"A002110",
"A059956",
"A094387",
"A276150",
"A333426",
"A339076",
"A358975",
"A358976",
"A358977",
"A358978"
] | null | Amiram Eldar, Dec 07 2022 | 2022-12-12T01:34:17 | oeisdata/seq/A358/A358977.seq | bbe50699b6968865114a6c7fcd3eb3a2 |
A358978 | Numbers that are coprime to the number of terms in their Zeckendorf representation (A007895). | [
"1",
"2",
"3",
"5",
"7",
"8",
"9",
"11",
"13",
"15",
"17",
"19",
"20",
"21",
"23",
"25",
"28",
"29",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"43",
"44",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"57",
"59",
"61",
"62",
"63",
"64",
"65",
"67",
"70",
"71",
"73",
"75",
"77",
"79",
"83",
"85",
"87",
"88",
"89",
"91",
"95",
"97",
"98",
"100",
"101",
"103",
"104",
"107",
"109"
] | [
"nonn",
"base"
] | 10 | 1 | 2 | [
"A000040",
"A000045",
"A007895",
"A059956",
"A063743",
"A094387",
"A328208",
"A339076",
"A358975",
"A358976",
"A358977",
"A358978"
] | null | Amiram Eldar, Dec 07 2022 | 2022-12-12T01:33:39 | oeisdata/seq/A358/A358978.seq | 2bcf16ac66507ebbe821ea5d2f6cec6d |
A358979 | Least prime p such that p^n + 4 is the product of n distinct primes. | [
"3",
"19",
"11",
"29",
"131",
"631",
"983",
"353",
"9941",
"20089",
"15031",
"8387",
"102931"
] | [
"nonn",
"more"
] | 48 | 1 | 1 | [
"A000961",
"A005117",
"A280005",
"A358656",
"A358979"
] | null | J.W.L. (Jan) Eerland, Dec 27 2022 | 2023-01-24T14:19:39 | oeisdata/seq/A358/A358979.seq | 1ec57cd8e37e522f2418a2604559403b |
A358980 | Least prime in a string of exactly n consecutive primes with primitive root 2, or 0 if no such prime exists. | [
"2",
"19",
"3",
"173",
"53",
"523",
"31883",
"123637",
"71899",
"565589",
"1241557",
"1925501",
"604829",
"52003139",
"410665589",
"3448332373",
"1250481059",
"5352930581"
] | [
"nonn",
"more"
] | 33 | 0 | 1 | [
"A001122",
"A358980"
] | null | Giorgos Kalogeropoulos, Dec 12 2022 | 2024-03-21T14:41:21 | oeisdata/seq/A358/A358980.seq | 180d9c9faece3b76d728f7c3a8924915 |
A358981 | Decimal expansion of Pi/3 - sqrt(3)/4. | [
"6",
"1",
"4",
"1",
"8",
"4",
"8",
"4",
"9",
"3",
"0",
"4",
"3",
"7",
"8",
"4",
"2",
"2",
"7",
"7",
"2",
"3",
"5",
"2",
"8",
"7",
"5",
"7",
"1",
"6",
"6",
"9",
"9",
"5",
"3",
"6",
"3",
"3",
"0",
"0",
"2",
"1",
"8",
"1",
"9",
"6",
"7",
"2",
"4",
"4",
"0",
"1",
"1",
"6",
"6",
"4",
"4",
"3",
"6",
"3",
"1",
"1",
"9",
"2",
"3",
"9",
"6",
"2",
"2",
"2",
"1",
"4",
"5",
"3",
"4",
"8",
"6",
"9",
"6",
"5",
"6",
"9",
"3",
"9",
"0",
"5",
"8",
"3",
"9",
"5",
"0",
"9",
"1",
"3",
"9",
"3",
"5",
"4",
"5",
"4"
] | [
"nonn",
"cons"
] | 16 | 0 | 1 | [
"A000796",
"A019670",
"A020761",
"A093731",
"A104954",
"A120011",
"A358981"
] | null | Michal Paulovic, Dec 08 2022 | 2024-03-08T11:28:07 | oeisdata/seq/A358/A358981.seq | 2db52786968fd141417cce16731957ce |
A358982 | In base 10, for all numbers with n digits, a(n) is the number where the sum of digits of a(n) minus the sum of the last n digits of a(n)^3 reaches a record maximum. | [
"8",
"87",
"887",
"8887",
"99868",
"978887",
"7978887",
"96699868",
"987978887",
"9896699868",
"89987978887",
"969896699868",
"7969896699868",
"97969896699868",
"897969896699868",
"9988999939998887",
"99988999939998887",
"999988999939998887",
"8999988999939998887",
"78999988999939998887"
] | [
"nonn",
"base"
] | 22 | 1 | 1 | [
"A000578",
"A004164",
"A358982"
] | null | Martin Raab, Dec 08 2022 | 2022-12-19T15:05:26 | oeisdata/seq/A358/A358982.seq | c603a363c2f7eb96fa50f94571f01410 |
A358983 | a(n) is the first emirp p that starts a sequence of n emirps x(1),...,x(n) with x(1) = p and x(k+1) = 2*x(k) - reverse(x(k)), but 2*x(n) - reverse(x(n)) is not an emirp. | [
"13",
"941",
"1471",
"120511",
"368631127"
] | [
"nonn",
"base",
"more"
] | 12 | 1 | 1 | [
"A006567",
"A358689",
"A358983"
] | null | J. M. Bergot and Robert Israel, Dec 08 2022 | 2022-12-11T11:54:44 | oeisdata/seq/A358/A358983.seq | 5198e9c82df3a515ef66238e29fe2396 |
A358984 | The number of n-digit numbers k such that k + digit reversal of k (A056964) is a square. | [
"3",
"8",
"19",
"0",
"169",
"896",
"1496",
"3334",
"21789",
"79403",
"239439",
"651236",
"1670022",
"3015650",
"27292097",
"55608749",
"234846164",
"366081231",
"2594727780",
"6395506991"
] | [
"nonn",
"base",
"more"
] | 45 | 1 | 1 | [
"A056964",
"A061230",
"A356648",
"A358984"
] | null | Nicolay Avilov, Dec 08 2022 | 2023-01-07T04:32:49 | oeisdata/seq/A358/A358984.seq | 25a971b4aed4894f5a4615d64e0b5d32 |
A358985 | a(n) is the number of numbers of the form k + reverse(k) for at least one n-digit number k. | [
"10",
"18",
"180",
"342",
"3420",
"6498",
"64980",
"123462",
"1234620",
"2345778",
"23457780",
"44569782",
"445697820",
"846825858",
"8468258580",
"16089691302",
"160896913020",
"305704134738",
"3057041347380",
"5808378560022",
"58083785600220",
"110359192640418",
"1103591926404180",
"2096824660167942"
] | [
"nonn",
"base"
] | 26 | 1 | 1 | [
"A067030",
"A358985",
"A358986"
] | null | Jon E. Schoenfield, Dec 08 2022 | 2024-10-04T10:02:18 | oeisdata/seq/A358/A358985.seq | f6cb8c6cb11bbca7b0d8e891a4064eac |
A358986 | a(n) is the number of numbers of the form k + reverse(k) for at least one number k < 10^n. | [
"10",
"28",
"207",
"548",
"3966",
"10462",
"75435",
"198890",
"1433489",
"3779246"
] | [
"nonn",
"base",
"more"
] | 14 | 1 | 1 | [
"A067030",
"A358985",
"A358986"
] | null | Jon E. Schoenfield, Dec 08 2022 | 2022-12-09T10:53:32 | oeisdata/seq/A358/A358986.seq | 7071143c69824c3e6f173375dbd21005 |
A358987 | Omit the trailing 5 from double factorial of odd numbers (A001147(n)). | [
"1",
"1",
"3",
"1",
"10",
"94",
"1039",
"13513",
"202702",
"3445942",
"65472907",
"1374931057",
"31623414322",
"790585358062",
"21345804667687",
"619028335362937",
"19189878396251062",
"633265987076285062",
"22164309547669977187",
"820079453263789155937",
"31983098677287777081562",
"1311307045768798860344062"
] | [
"nonn",
"base",
"easy"
] | 53 | 0 | 3 | [
"A001147",
"A358987"
] | null | Stefano Spezia, Dec 10 2022 | 2024-04-02T03:00:59 | oeisdata/seq/A358/A358987.seq | 3a41f229ed0f58b4cf92518c97fa9630 |
A358988 | Oblong numbers which are products of four distinct primes. | [
"210",
"462",
"870",
"930",
"1122",
"1190",
"1482",
"1722",
"1806",
"3306",
"4422",
"4970",
"6162",
"7310",
"7482",
"8742",
"8930",
"10302",
"10506",
"11990",
"12882",
"14042",
"15006",
"17030",
"17822",
"18906",
"19182",
"20022",
"20306",
"21170",
"25122",
"30102",
"31506",
"32942",
"36290",
"40602",
"41006",
"42230",
"45582",
"46010",
"47306"
] | [
"nonn"
] | 34 | 1 | 1 | [
"A002378",
"A046386",
"A358988"
] | null | Massimo Kofler, Dec 10 2022 | 2022-12-21T22:31:52 | oeisdata/seq/A358/A358988.seq | a4647c0d90776696b8d7f57fc040297f |
A358989 | Decimal expansion of 13*sqrt(146)/50. | [
"3",
"1",
"4",
"1",
"5",
"9",
"1",
"9",
"5",
"3",
"1",
"3",
"4",
"5",
"8",
"8",
"7",
"3",
"7",
"7",
"5",
"3",
"5",
"3",
"8",
"2",
"0",
"9",
"3",
"7",
"0",
"0",
"4",
"2",
"4",
"8",
"1",
"5",
"5",
"9",
"5",
"8",
"2",
"2",
"5",
"4",
"3",
"4",
"1",
"3",
"0",
"5",
"6",
"1",
"7",
"9",
"1",
"7",
"6",
"5",
"6",
"4",
"2",
"8",
"4",
"2",
"2",
"0",
"8",
"4",
"5",
"3",
"2",
"5",
"2",
"7",
"7",
"1",
"4",
"8",
"4",
"4",
"1",
"9",
"0",
"9",
"7",
"2",
"7",
"2",
"3",
"5",
"1",
"0"
] | [
"nonn",
"cons"
] | 13 | 1 | 1 | [
"A000796",
"A358989"
] | null | Jack Zhang, Dec 09 2022 | 2022-12-10T08:09:41 | oeisdata/seq/A358/A358989.seq | abec1592fd33e0b7f019945fcc78d5cf |
A358990 | a(n) is the product of the first n odd numbers not divisible by 5. | [
"1",
"1",
"3",
"21",
"189",
"2079",
"27027",
"459459",
"8729721",
"183324141",
"4216455243",
"113844291561",
"3301484455269",
"102346018113339",
"3377418597740187",
"124964488116386919",
"4873615036539089841",
"199818216498102683481",
"8592183309418415389683",
"403832615542665523315101",
"19787798161590610642439949"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A000142",
"A045572",
"A356858",
"A358990",
"A358991",
"A358992",
"A358993"
] | null | Stefano Spezia, Dec 09 2022 | 2022-12-11T12:01:02 | oeisdata/seq/A358/A358990.seq | 99831fcf02399e791e2516a6b70732aa |
A358991 | a(n) is the number of zero digits in the product of the first n odd numbers not divisible by 5. | [
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"1",
"0",
"2",
"1",
"1",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"4",
"5",
"2",
"4",
"1",
"3",
"4",
"5",
"6",
"9",
"5",
"4",
"6",
"4",
"7",
"7",
"10",
"5",
"7",
"10",
"8",
"9",
"8",
"4",
"7",
"4",
"15",
"9",
"4",
"7",
"12",
"9",
"8",
"14",
"12",
"5",
"14",
"12",
"6",
"11",
"10",
"14",
"17",
"17",
"11",
"19",
"11",
"15",
"19",
"15",
"13",
"14",
"11",
"19"
] | [
"nonn",
"base"
] | 5 | 0 | 14 | [
"A045572",
"A055641",
"A356859",
"A358990",
"A358991",
"A358992",
"A358993"
] | null | Stefano Spezia, Dec 09 2022 | 2022-12-11T12:01:19 | oeisdata/seq/A358/A358991.seq | 5b2d3685074d74009bf566ff0f1c59df |
A358992 | a(n) is the number of digits in the product of the first n odd numbers not divisible by 5. | [
"1",
"1",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"12",
"13",
"15",
"16",
"18",
"19",
"21",
"22",
"24",
"26",
"28",
"29",
"31",
"33",
"35",
"36",
"38",
"40",
"42",
"44",
"46",
"48",
"49",
"51",
"53",
"55",
"57",
"59",
"61",
"63",
"65",
"67",
"69",
"71",
"73",
"75",
"77",
"79",
"82",
"84",
"86",
"88",
"90",
"92",
"94",
"96",
"99",
"101",
"103",
"105",
"107",
"109",
"112",
"114",
"116"
] | [
"nonn",
"base"
] | 5 | 0 | 4 | [
"A045572",
"A055642",
"A356860",
"A358990",
"A358991",
"A358992",
"A358993"
] | null | Stefano Spezia, Dec 09 2022 | 2022-12-11T12:01:29 | oeisdata/seq/A358/A358992.seq | 450547e2d382e945c8d9966c0e8a45fe |
A358993 | a(n) is the number of nonzero digits in the product of the first n odd numbers not divisible by 5. | [
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"6",
"7",
"9",
"10",
"12",
"12",
"13",
"15",
"18",
"17",
"20",
"21",
"22",
"24",
"25",
"27",
"29",
"31",
"32",
"34",
"34",
"35",
"40",
"40",
"45",
"45",
"45",
"46",
"47",
"46",
"52",
"55",
"55",
"59",
"58",
"60",
"59",
"66",
"66",
"65",
"69",
"70",
"74",
"80",
"79",
"84",
"75",
"83",
"90",
"89",
"87",
"92",
"95",
"91",
"95",
"104",
"98",
"102",
"110",
"107"
] | [
"nonn",
"base"
] | 4 | 0 | 4 | [
"A045572",
"A055640",
"A356861",
"A358990",
"A358991",
"A358992",
"A358993"
] | null | Stefano Spezia, Dec 09 2022 | 2022-12-11T12:01:38 | oeisdata/seq/A358/A358993.seq | 43b408238cc46dcfb6cc4f4f05bce4ac |
A358994 | The sum of the numbers that are inside the contour of an n-story Christmas tree drawn at the top of the numerical pyramid containing the positive integers in natural order. | [
"21",
"151",
"561",
"1503",
"3310",
"6396",
"11256",
"18466",
"28683",
"42645",
"61171",
"85161",
"115596",
"153538",
"200130",
"256596",
"324241",
"404451",
"498693",
"608515",
"735546",
"881496",
"1048156",
"1237398",
"1451175",
"1691521",
"1960551",
"2260461",
"2593528",
"2962110",
"3368646",
"3815656",
"4305741",
"4841583",
"5425945"
] | [
"nonn",
"easy"
] | 62 | 1 | 1 | [
"A001844",
"A006137",
"A022266",
"A358994"
] | null | Nicolay Avilov, Dec 25 2022 | 2023-02-05T23:06:11 | oeisdata/seq/A358/A358994.seq | 5f20a6919394dcb1d3df533a2134a4f5 |
A358995 | Lucas numbers which are the sum of three repdigits. | [
"3",
"4",
"7",
"11",
"18",
"29",
"47",
"76",
"123",
"199",
"322",
"521",
"843",
"5778"
] | [
"nonn",
"fini",
"full"
] | 19 | 1 | 1 | [
"A000032",
"A358995"
] | null | Ctibor O. Zizka, Dec 24 2022 | 2023-04-17T06:18:26 | oeisdata/seq/A358/A358995.seq | 321aad3b9a57de2b6652e7bd94cdac00 |
A358996 | Number of self-avoiding paths of length 2*(n+A002620(n-1)) along the edges of a grid with n X n square cells, which do not pass above the diagonal, start at the lower left corner and finish at the upper right corner. | [
"1",
"1",
"2",
"2",
"10",
"20",
"248",
"1072",
"31178",
"270026",
"18806964",
"329412610",
"54393195014",
"1931171930256",
"749416883107560",
"54217060622200086"
] | [
"nonn",
"more"
] | 14 | 0 | 3 | [
"A000108",
"A002620",
"A340005",
"A340043",
"A358996"
] | null | Seiichi Manyama, Dec 09 2022 | 2022-12-09T16:05:13 | oeisdata/seq/A358/A358996.seq | ecc9184489f9b8794144171276a3cb51 |
A358997 | a(n) is the number of distinct positive real roots of the Maclaurin polynomial of degree 2*n for cos(x). | [
"0",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"3",
"4",
"3",
"4",
"3",
"4",
"5",
"4",
"5",
"6",
"5",
"6",
"5",
"6",
"7",
"6",
"7",
"6",
"7",
"8",
"7",
"8",
"9",
"8",
"9",
"8",
"9",
"10",
"9",
"10",
"11",
"10",
"11",
"10",
"11",
"12",
"11",
"12",
"11",
"12",
"13",
"12",
"13",
"14",
"13",
"14",
"13",
"14",
"15",
"14",
"15",
"14",
"15",
"16",
"15",
"16",
"17",
"16",
"17",
"16",
"17",
"18",
"17",
"18",
"19",
"18",
"19",
"18",
"19",
"20",
"19",
"20",
"19",
"20",
"21"
] | [
"nonn",
"look"
] | 14 | 0 | 3 | [
"A012265",
"A332325",
"A358997"
] | null | Robert Israel, Dec 09 2022 | 2023-11-12T13:16:40 | oeisdata/seq/A358/A358997.seq | 102608ac9987f36e1ef91d022b3f1022 |
A358998 | Nonprimes whose sum of factorials of digits is a prime. | [
"10",
"12",
"20",
"21",
"30",
"100",
"110",
"111",
"122",
"133",
"134",
"135",
"136",
"143",
"153",
"155",
"178",
"187",
"202",
"212",
"220",
"221",
"303",
"304",
"305",
"306",
"314",
"315",
"316",
"330",
"340",
"341",
"350",
"351",
"360",
"361",
"403",
"413",
"430",
"505",
"513",
"515",
"530",
"531",
"550",
"551",
"603",
"630",
"708",
"718",
"780",
"781",
"807"
] | [
"base",
"easy",
"nonn"
] | 26 | 1 | 1 | [
"A061602",
"A084405",
"A358998"
] | null | Carole Dubois, Feb 11 2023 | 2023-02-23T14:48:40 | oeisdata/seq/A358/A358998.seq | ab55d82063651020b41fa4aba0982c55 |
A358999 | Number of undirected cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph). | [
"7",
"28",
"63",
"1168",
"12878"
] | [
"nonn",
"fini",
"full"
] | 18 | 1 | 1 | [
"A053016",
"A268283",
"A358999",
"A359000",
"A359001",
"A359002"
] | null | Seiichi Manyama, Dec 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A358/A358999.seq | 126afa2924c2195f94bccdb2b1be469a |
A359000 | Number of undirected n-cycles of the octahedral graph. | [
"8",
"15",
"24",
"16"
] | [
"nonn",
"fini",
"full"
] | 12 | 3 | 1 | [
"A053016",
"A268283",
"A358999",
"A359000",
"A359001",
"A359002"
] | null | Seiichi Manyama, Dec 10 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359000.seq | ddfcee132f861aa3318ba7ef418e97a0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.