sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A358901
Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).
[ "1", "1", "1", "2", "2", "2", "3", "4", "4", "5", "5", "7", "9", "8", "9", "11", "11", "15", "16", "16", "18", "20", "22", "26", "28", "31", "32", "36", "40", "45", "46", "46", "50", "59", "64", "70", "75", "78", "83", "89", "94", "108", "106", "104", "120", "137", "142", "147", "150", "161", "174", "190", "200", "220", "226", "224", "248", "274", "274", "287", "301", "320", "340", "351", "361" ]
[ "nonn" ]
24
0
4
[ "A001221", "A001222", "A056239", "A063834", "A129519", "A141199", "A218482", "A300335", "A319071", "A319169", "A320324", "A358335", "A358831", "A358836", "A358901", "A358902", "A358903", "A358908", "A358909", "A358910", "A358911" ]
null
Gus Wiseman, Dec 07 2022
2024-02-12T18:26:24
oeisdata/seq/A358/A358901.seq
3867b626e43ac505052338d63d881990
A358902
Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221).
[ "1", "1", "2", "3", "5", "8", "13", "21", "33", "53", "84", "134", "213", "338", "536", "850", "1349", "2136", "3389", "5367", "8509", "13480", "21362", "33843", "53624", "84957", "134600", "213251", "337850", "535251", "847987", "1343440", "2128372", "3371895", "5341977", "8463051", "13407689", "21241181", "33651507", "53312538", "84460690" ]
[ "nonn" ]
19
0
3
[ "A001221", "A001222", "A011782", "A046660", "A056239", "A071625", "A116608", "A129519", "A141199", "A218482", "A300335", "A334028", "A358831", "A358836", "A358902", "A358903", "A358908", "A358911" ]
null
Gus Wiseman, Dec 07 2022
2024-02-14T09:56:49
oeisdata/seq/A358/A358902.seq
b872753149ec4454cd5b754491a84c23
A358903
Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221).
[ "1", "1", "1", "2", "2", "2", "2", "2", "3", "4", "4", "4", "4", "5", "7", "8", "7", "9", "10", "10", "10", "9", "11", "15", "14", "13", "15", "14", "14", "17", "16", "17", "17", "16", "16", "17", "17", "21", "26", "24", "23", "25", "27", "29", "32", "31", "29", "36", "36", "35", "37", "37", "42", "49", "45", "44", "50", "49", "50", "58", "55", "55", "58", "56", "58", "66", "62", "65", "75" ]
[ "nonn" ]
20
0
4
[ "A001221", "A001222", "A046660", "A071625", "A116608", "A129519", "A141199", "A319169", "A358335", "A358831", "A358836", "A358901", "A358902", "A358903", "A358909", "A358911" ]
null
Gus Wiseman, Dec 07 2022
2024-02-14T09:42:51
oeisdata/seq/A358/A358903.seq
5cefe4ce1ef723f7404cc4463b00596c
A358904
Number of finite sets of compositions with all equal sums and total sum n.
[ "1", "1", "2", "4", "9", "16", "38", "64", "156", "260", "632", "1024", "2601", "4096", "10208", "16944", "40966", "65536", "168672", "262144", "656980", "1090240", "2620928", "4194304", "10862100", "16781584", "41940992", "69872384", "168403448", "268435456", "693528552", "1073741824", "2695006177", "4473400320", "10737385472" ]
[ "nonn" ]
13
0
3
[ "A000009", "A001970", "A034691", "A063834", "A074854", "A075900", "A098407", "A133494", "A218482", "A261049", "A296122", "A304961", "A305552", "A336127", "A358904", "A358906", "A358907", "A359041" ]
null
Gus Wiseman, Dec 13 2022
2022-12-14T10:56:05
oeisdata/seq/A358/A358904.seq
de35c525db077e93d09ce95a4607dda5
A358905
Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.
[ "1", "1", "3", "6", "13", "24", "49", "91", "179", "341", "664", "1280", "2503", "4872", "9557", "18750", "36927", "72800", "143880", "284660", "564093", "1118911", "2221834", "4415417", "8781591", "17476099", "34799199", "69327512", "138176461", "275503854", "549502119", "1096327380", "2187894634", "4367310138", "8719509111" ]
[ "nonn" ]
10
0
3
[ "A000041", "A000219", "A001970", "A038041", "A055887", "A063834", "A141199", "A218482", "A279787", "A281145", "A305551", "A306319", "A319066", "A319169", "A320324", "A323429", "A358830", "A358833", "A358835", "A358836", "A358905", "A358911", "A358912" ]
null
Gus Wiseman, Dec 07 2022
2022-12-31T11:20:07
oeisdata/seq/A358/A358905.seq
4beba02e8988cb4de57ba75f8439753e
A358906
Number of finite sequences of distinct integer partitions with total sum n.
[ "1", "1", "2", "7", "13", "35", "87", "191", "470", "1080", "2532", "5778", "13569", "30715", "69583", "160386", "360709", "814597", "1824055", "4102430", "9158405", "20378692", "45215496", "100055269", "221388993", "486872610", "1069846372", "2343798452", "5127889666", "11186214519", "24351106180", "52896439646" ]
[ "nonn" ]
22
0
3
[ "A000009", "A000041", "A000219", "A001970", "A055887", "A063834", "A098407", "A261049", "A271619", "A279787", "A296122", "A304969", "A330463", "A336342", "A358830", "A358836", "A358901", "A358906", "A358907", "A358908", "A358912", "A358913", "A358914" ]
null
Gus Wiseman, Dec 07 2022
2024-02-13T19:42:43
oeisdata/seq/A358/A358906.seq
4b3278166d9bd2154546af53f6be37fa
A358907
Number of finite sequences of distinct integer compositions with total sum n.
[ "1", "1", "2", "8", "18", "54", "156", "412", "1168", "3200", "8848", "24192", "66632", "181912", "495536", "1354880", "3680352", "9997056", "27093216", "73376512", "198355840", "535319168", "1443042688", "3884515008", "10445579840", "28046885824", "75225974912", "201536064896", "539339293824", "1441781213952" ]
[ "nonn" ]
11
0
3
[ "A000009", "A000041", "A000219", "A001970", "A055887", "A063834", "A074854", "A075900", "A098407", "A133494", "A218482", "A261049", "A296122", "A304961", "A307068", "A336127", "A336342", "A358830", "A358836", "A358901", "A358906", "A358907", "A358912", "A358914" ]
null
Gus Wiseman, Dec 07 2022
2022-12-15T17:43:29
oeisdata/seq/A358/A358907.seq
29d0f05cdc786e25aacc7597b0b7f8fd
A358908
Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.
[ "1", "1", "2", "6", "10", "23", "50", "95", "188", "378", "747", "1414", "2739", "5179", "9811", "18562", "34491", "64131", "118607", "218369", "400196", "731414", "1328069", "2406363", "4346152", "7819549", "14027500", "25090582", "44749372", "79586074", "141214698", "249882141", "441176493", "777107137", "1365801088", "2395427040", "4192702241" ]
[ "nonn" ]
9
0
3
[ "A000009", "A000041", "A000219", "A001970", "A055887", "A063834", "A141199", "A261049", "A271619", "A296122", "A358830", "A358831", "A358836", "A358901", "A358905", "A358906", "A358907", "A358908", "A358912", "A358914" ]
null
Gus Wiseman, Dec 09 2022
2022-12-31T11:20:14
oeisdata/seq/A358/A358908.seq
0cdb276ebe7f345d1ccaf8abe6609ccf
A358909
Number of integer partitions of n whose parts have weakly decreasing numbers of prime factors (A001222).
[ "1", "1", "2", "3", "5", "7", "11", "15", "22", "29", "41", "53", "73", "93", "124", "157", "206", "256", "329", "406", "514", "628", "784", "949", "1174", "1411", "1725", "2061", "2500", "2966", "3570", "4217", "5039", "5919", "7027", "8219", "9706", "11301", "13268", "15394", "17995", "20792", "24195", "27863", "32288", "37061", "42779", "48950", "56306" ]
[ "nonn" ]
6
0
3
[ "A001221", "A001222", "A011782", "A056239", "A063834", "A141199", "A218482", "A300335", "A319169", "A320324", "A358335", "A358831", "A358901", "A358903", "A358908", "A358909", "A358910", "A358911" ]
null
Gus Wiseman, Dec 09 2022
2022-12-10T10:47:38
oeisdata/seq/A358/A358909.seq
ae44168e637f2a881100283eed8a065d
A358910
Number of integer partitions of n whose parts do not have weakly decreasing numbers of prime factors (A001222).
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "3", "4", "8", "11", "19", "25", "41", "56", "84", "113", "164", "218", "306", "401", "547", "711", "949", "1218", "1599", "2034", "2625", "3310", "4224", "5283", "6664", "8271", "10336", "12747", "15791", "19343", "23791", "28979", "35398", "42887", "52073", "62779", "75804", "90967", "109291", "130605" ]
[ "nonn" ]
6
0
12
[ "A001221", "A001222", "A056239", "A063834", "A141199", "A218482", "A300335", "A319169", "A320324", "A358831", "A358902", "A358903", "A358908", "A358909", "A358910", "A358911" ]
null
Gus Wiseman, Dec 09 2022
2022-12-10T10:47:25
oeisdata/seq/A358/A358910.seq
890d685fe0e08517ed08093a44325861
A358911
Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity.
[ "1", "1", "2", "2", "3", "4", "4", "7", "9", "12", "20", "21", "39", "49", "79", "109", "161", "236", "345", "512", "752", "1092", "1628", "2376", "3537", "5171", "7650", "11266", "16634", "24537", "36173", "53377", "78791", "116224", "171598", "253109", "373715", "551434", "814066", "1201466", "1773425", "2617744", "3864050", "5703840", "8419699" ]
[ "nonn" ]
17
0
3
[ "A001221", "A001222", "A011782", "A056239", "A063834", "A064573", "A218482", "A279787", "A300335", "A319066", "A319071", "A319169", "A320324", "A358335", "A358831", "A358901", "A358902", "A358903", "A358905", "A358908", "A358909", "A358910", "A358911" ]
null
Gus Wiseman, Dec 11 2022
2024-02-12T19:02:44
oeisdata/seq/A358/A358911.seq
bfab9118fe636e48dee59e945e3796ba
A358912
Number of finite sequences of integer partitions with total sum n and all distinct lengths.
[ "1", "1", "2", "5", "11", "23", "49", "103", "214", "434", "874", "1738", "3443", "6765", "13193", "25512", "48957", "93267", "176595", "332550", "622957", "1161230", "2153710", "3974809", "7299707", "13343290", "24280924", "43999100", "79412942", "142792535", "255826836", "456735456", "812627069", "1440971069", "2546729830" ]
[ "nonn" ]
12
0
3
[ "A000009", "A000041", "A000219", "A001970", "A007837", "A038041", "A055887", "A060642", "A063834", "A141199", "A218482", "A271619", "A319066", "A336342", "A358830", "A358831", "A358836", "A358901", "A358905", "A358906", "A358908", "A358912" ]
null
Gus Wiseman, Dec 07 2022
2022-12-31T11:20:20
oeisdata/seq/A358/A358912.seq
c605af916a656fb3e838c749efdc4b4e
A358913
Number of finite sequences of distinct sets with total sum n.
[ "1", "1", "1", "4", "6", "11", "28", "45", "86", "172", "344", "608", "1135", "2206", "4006", "7689", "13748", "25502", "47406", "86838", "157560", "286642", "522089", "941356", "1718622", "3079218", "5525805", "9902996", "17788396", "31742616", "56694704", "100720516", "178468026", "317019140", "560079704", "991061957" ]
[ "nonn" ]
10
0
4
[ "A000009", "A000041", "A000219", "A001970", "A050342", "A055887", "A063834", "A261049", "A271619", "A279785", "A279791", "A296122", "A304969", "A330462", "A336342", "A336343", "A358830", "A358906", "A358907", "A358908", "A358913", "A358914" ]
null
Gus Wiseman, Dec 11 2022
2024-02-13T20:09:46
oeisdata/seq/A358/A358913.seq
e9d52efe8e7aae52ddea177a8914cd6f
A358914
Number of twice-partitions of n into distinct strict partitions.
[ "1", "1", "1", "3", "4", "7", "13", "20", "32", "51", "83", "130", "206", "320", "496", "759", "1171", "1786", "2714", "4104", "6193", "9286", "13920", "20737", "30865", "45721", "67632", "99683", "146604", "214865", "314782", "459136", "668867", "972425", "1410458", "2040894", "2950839", "4253713", "6123836", "8801349", "12627079" ]
[ "nonn" ]
8
0
4
[ "A000009", "A000219", "A001970", "A050342", "A055887", "A063834", "A075900", "A261049", "A270995", "A271619", "A279785", "A279791", "A296122", "A304969", "A321449", "A330462", "A336342", "A336343", "A358830", "A358901", "A358906", "A358907", "A358913", "A358914" ]
null
Gus Wiseman, Dec 11 2022
2022-12-31T14:53:24
oeisdata/seq/A358/A358914.seq
09e733d7fdabe7846afb15ec55b0a6e0
A358915
a(n) is the far-difference representation of n written in balanced ternary.
[ "0", "1", "3", "9", "26", "27", "78", "80", "81", "82", "234", "240", "242", "243", "244", "246", "702", "703", "720", "726", "728", "729", "730", "732", "738", "2105", "2106", "2107", "2109", "2160", "2161", "2178", "2184", "2186", "2187", "2188", "2190", "2196", "2213", "2214", "6315", "6317", "6318", "6319", "6321", "6327", "6479", "6480", "6481", "6483" ]
[ "nonn", "base" ]
15
0
3
[ "A003714", "A097083", "A105446", "A117966", "A358915" ]
null
Peter Kagey, Dec 05 2022
2022-12-06T09:47:50
oeisdata/seq/A358/A358915.seq
ba3f1ff84f3a6b1b7cde36a2fd0eccb9
A358916
a(1) = 1. Thereafter a(n) is the least novel k != n such that A007947(k)|n.
[ "1", "4", "9", "2", "25", "3", "49", "16", "27", "5", "121", "6", "169", "7", "45", "8", "289", "12", "361", "10", "63", "11", "529", "18", "125", "13", "81", "14", "841", "15", "961", "64", "99", "17", "175", "24", "1369", "19", "117", "20", "1681", "21", "1849", "22", "75", "23", "2209", "32", "343", "40", "153", "26", "2809", "36", "275", "28", "171", "29", "3481", "30", "3721" ]
[ "nonn" ]
26
1
2
[ "A000005", "A000040", "A001248", "A005117", "A007947", "A032741", "A358820", "A358916", "A358971" ]
null
David James Sycamore, Dec 05 2022
2022-12-11T14:13:56
oeisdata/seq/A358/A358916.seq
2f0a2479f0bdff9b7695e3a9fe6f9e98
A358917
a(n) = Fibonacci(n+1)^4 - Fibonacci(n-1)^4.
[ "0", "1", "15", "80", "609", "4015", "27936", "190385", "1307775", "8956144", "61405905", "420831071", "2884553280", "19770670945", "135511114479", "928804587920", "6366127657281", "43634071586575", "299072419071840", "2049872742473489", "14050037090947935", "96300386075488816", "660052667580788145" ]
[ "nonn", "easy" ]
47
0
3
[ "A000045", "A056571", "A358917", "A358934" ]
null
Feryal Alayont, Dec 05 2022
2024-05-07T07:32:32
oeisdata/seq/A358/A358917.seq
4f84e664a9150a41f35f4177b9f220c6
A358918
a(0) = 0, and for any n >= 0, a(n+1) is the length of the longest run of consecutive terms a(i), ..., a(j) with 0 <= i <= j <= n such that a(i) XOR ... a(j) = a(n) (where XOR denotes the bitwise XOR operator).
[ "0", "1", "2", "1", "2", "4", "6", "2", "7", "9", "1", "6", "7", "9", "12", "9", "12", "13", "14", "17", "1", "14", "17", "18", "20", "18", "20", "22", "26", "18", "20", "28", "30", "26", "22", "28", "30", "30", "32", "3", "28", "30", "32", "3", "28", "38", "40", "22", "34", "46", "26", "41", "31", "45", "42", "40", "37", "41", "31", "58", "60", "53", "54", "57", "57", "57", "57", "57", "57", "57" ]
[ "nonn", "base" ]
20
0
3
[ "A358799", "A358918", "A358919" ]
null
Rémy Sigrist, Dec 06 2022
2022-12-12T15:00:16
oeisdata/seq/A358/A358918.seq
96a963f92efee7c4db27903ed63e867c
A358919
a(0) = 0, and for any n >= 0, a(n+1) is the sum of the lengths of the runs of consecutive terms a(i), ..., a(j) with 0 <= i <= j <= n such that a(i) XOR ... XOR a(j) = a(n) (where XOR denotes the bitwise XOR operator).
[ "0", "1", "3", "1", "4", "1", "5", "5", "10", "4", "12", "18", "1", "13", "8", "22", "44", "7", "52", "1", "19", "35", "10", "43", "53", "7", "68", "1", "31", "24", "56", "73", "8", "126", "105", "35", "71", "36", "71", "60", "70", "1", "124", "180", "10", "172", "41", "182", "40", "288", "1", "232", "15", "201", "4", "271", "6", "213", "1", "233", "14", "230", "25", "216", "9", "157", "115" ]
[ "nonn", "base" ]
10
0
3
[ "A358799", "A358918", "A358919" ]
null
Rémy Sigrist, Dec 06 2022
2022-12-12T12:14:46
oeisdata/seq/A358/A358919.seq
c8009ea784088fecd960d11ba03f756b
A358920
Number of (undirected) paths in the 5 X n king graph.
[ "10", "7909", "1622015", "329967798", "57533191444", "9454839968415", "1482823362091281", "224616420155224372", "33098477832558055458", "4770920988514661692889", "675419680016870426617489", "94197848411355615226343472" ]
[ "nonn" ]
12
1
1
[ "A288033", "A307026", "A339199", "A339202", "A339257", "A339763", "A358920" ]
null
Seiichi Manyama, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358920.seq
dab69aa60a9e106427b21034983557ee
A358921
a(1) = 1; a(n) is the smallest positive number not among the terms a(n-c .. n-1) where c = the number of times a(n-1) has occurred.
[ "1", "2", "1", "3", "1", "2", "3", "1", "4", "1", "5", "1", "2", "3", "4", "1", "6", "1", "7", "1", "5", "2", "3", "4", "1", "8", "1", "9", "1", "6", "2", "3", "4", "1", "5", "2", "6", "1", "7", "2", "3", "4", "5", "1", "8", "2", "6", "3", "7", "1", "9", "2", "4", "5", "3", "6", "1", "10", "1", "11", "1", "12", "1", "13", "1", "14", "1", "8", "2", "3", "4", "5", "6", "1", "7", "2", "9", "1", "15", "1", "16", "1", "17", "1" ]
[ "nonn", "hear", "look" ]
25
1
2
[ "A133622", "A268696", "A329985", "A358921" ]
null
Samuel Harkness, Dec 06 2022
2023-01-13T09:19:35
oeisdata/seq/A358/A358921.seq
b9930f49d54322b92e6e5ab2ea1893a8
A358922
First of four consecutive primes p,q,r,s such that q*s - p*r is a square.
[ "5", "13", "137", "353", "877", "5171", "6337", "9397", "11197", "16631", "20011", "31247", "39191", "61261", "110581", "114067", "178537", "182981", "186601", "216317", "251917", "266797", "273349", "296477", "369791", "372707", "427681", "431567", "580787", "889337", "963331", "1009193", "1244053", "1501847", "1937657", "2212187", "2227801", "2347907", "2595311", "2909219" ]
[ "nonn" ]
13
1
1
null
null
J. M. Bergot and Robert Israel, Dec 06 2022
2022-12-22T17:22:23
oeisdata/seq/A358/A358922.seq
c71bc7bdf7e12ab6c0a678a40830d788
A358923
Decimal expansion of the real part of the complex zero of the prime zeta function nearest the point {0,0}.
[ "2", "5", "3", "7", "5", "1", "6", "1", "0", "0", "3", "7", "5", "4", "1", "1", "1", "6", "9", "2", "5", "0", "6", "6", "8", "0", "1", "0", "3", "9", "2", "2", "8", "3", "1", "6", "0", "7", "6", "2", "9", "6", "5", "6", "9", "4", "1", "6", "6", "6", "5", "0", "0", "0", "0", "2", "9", "5", "7", "5", "7", "5", "2", "9", "7", "5", "8", "5", "6", "7", "0", "7", "5", "7", "9", "3", "8", "1", "0", "9", "2", "4", "3", "2", "6", "6", "1", "9", "9", "1", "5", "2", "0", "3", "9", "6", "9", "1", "6", "9", "8", "5", "5", "4", "3", "2", "5", "9", "9", "7", "6", "4", "7", "0", "0" ]
[ "nonn", "cons" ]
27
0
1
[ "A358923", "A358924" ]
null
Artur Jasinski, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358923.seq
d4f3b3fa969ec3944fb21bca6778e22e
A358924
Decimal expansion of the imaginary part of the complex zero of the prime zeta function nearest the point {0,0}.
[ "4", "7", "5", "8", "1", "1", "4", "7", "9", "6", "0", "9", "1", "4", "0", "6", "0", "9", "4", "1", "5", "9", "5", "2", "1", "2", "3", "8", "0", "4", "2", "6", "4", "9", "8", "5", "1", "2", "1", "5", "0", "2", "9", "6", "3", "7", "6", "7", "4", "0", "5", "6", "8", "1", "8", "5", "8", "7", "6", "3", "4", "5", "4", "5", "0", "7", "3", "0", "9", "8", "2", "2", "2", "3", "0", "6", "3", "2", "5", "0", "5", "9", "3", "0", "8", "3", "4", "1", "0", "5", "1", "9", "0", "9", "4", "8", "2", "3", "2", "6", "9", "2", "6", "7", "8", "5", "4", "4", "9", "7", "4", "2", "4", "5", "0" ]
[ "nonn", "cons" ]
23
1
1
[ "A358923", "A358924" ]
null
Artur Jasinski, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358924.seq
12d1502a806e76fb12b530d5ec7185d2
A358925
Numbers whose first occurrence in Stern's diatomic series (A002487) is later than that of one of their proper multiples.
[ "54", "2052", "4060", "23184", "54425", "109854", "121392", "126866", "249180", "317810", "323284", "330612", "363552", "384834", "416020", "476528", "512937", "537402", "537988", "544178", "558085", "601492", "739033", "743862", "785888", "832039", "930249", "982860", "984544", "1201692", "1203954", "1204276", "1207300" ]
[ "nonn" ]
9
1
1
[ "A002487", "A020946", "A358925" ]
null
Rémy Sigrist, Dec 06 2022
2022-12-07T15:00:36
oeisdata/seq/A358/A358925.seq
549cd48ca49931e1e931c84197889a19
A358926
a(n) is the smallest centered n-gonal number with exactly n prime factors (counted with multiplicity).
[ "316", "1625", "456", "3964051", "21568", "6561", "346528", "3588955448828761", "1684992", "210804461608463437", "36865024", "835904150390625", "2052407296" ]
[ "nonn", "more" ]
11
3
1
[ "A001222", "A358862", "A358863", "A358864", "A358865", "A358894", "A358926", "A358929" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358926.seq
92135134543416107c6eaf611c61d2c8
A358927
a(n) is the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists.
[ "1", "-1", "4", "20", "56", "120", "560", "4960", "19600", "41664", "341376", "695520", "7207200", "22238720", "178433024", "1429559296", "179481600", "11453245440", "11444858880", "393079864320", "3928874471424", "5864598896640", "46910348656640", "975649558118400", "3002365391929344", "7805131503206400" ]
[ "sign" ]
7
0
3
[ "A000292", "A001222", "A075088", "A156329", "A279082", "A358865", "A358927" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358927.seq
d1e094441cb36f3d8186b60150602c9f
A358928
a(n) is the smallest centered triangular number with exactly n distinct prime factors.
[ "1", "4", "10", "460", "9010", "772210", "20120860", "1553569960", "85507715710", "14932196985010", "1033664429333260", "197628216951078460", "21266854897681220860", "7423007155473283614010", "3108276166302017120182510", "851452464506763307285599610", "32749388246772812069108696710" ]
[ "nonn" ]
34
0
2
[ "A001221", "A005448", "A076551", "A156329", "A358894", "A358928", "A358929" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358928.seq
043c3c2cc41289cc6daa718a0e68ef57
A358929
a(n) is the smallest centered triangular number with exactly n prime factors (counted with multiplicity).
[ "1", "19", "4", "316", "136", "760", "64", "4960", "22144", "103360", "27136", "5492224", "1186816", "41414656", "271212544", "559980544", "1334788096", "12943360", "7032930304", "527049293824", "158186536960", "1096295120896", "7871801589760", "154690378792960", "13071965224960", "56262393856", "964655941943296" ]
[ "nonn" ]
10
0
2
[ "A001222", "A005448", "A075088", "A358926", "A358927", "A358928", "A358929" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358929.seq
4a6c9a77b0e868e5575ab4ac4439f7e6
A358930
a(n) is the smallest n-gonal number with binary weight n.
[ "21", "169", "117", "190", "1404", "9976", "3961", "11935", "19966", "113401", "98155", "208879", "261501", "3338221", "916475", "3100671", "9943039", "31457140", "50322871", "100523871", "264240373", "2113871829", "2012739435", "532673535", "7415513007", "33017544153", "17112759966", "50983861215", "59039022015" ]
[ "nonn", "base" ]
9
3
1
[ "A000120", "A089998", "A089999", "A358930", "A358931", "A358932" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358930.seq
0407f45bf0a54069a00d89ca25f76526
A358931
a(n) is the smallest n-gonal pyramidal number with binary weight n.
[ "35", "30", "405", "95", "6860", "765", "28855", "7923", "96760", "380091", "259064", "915915", "3845501", "1436415", "32471830", "11992255", "62904941", "182171613", "266182382", "670936891", "939382515", "2533347310", "30530860911", "1876688877", "16972115903", "201845686175", "529756691451", "409027868651", "2713039388125" ]
[ "nonn", "base" ]
8
3
1
[ "A000120", "A358930", "A358931", "A358932" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358931.seq
a0cf4d26fafa8ca82d5f2096d49d90d9
A358932
a(n) is the smallest centered n-gonal number with binary weight n.
[ "19", "85", "31", "469", "253", "2025", "5995", "4061", "15742", "48061", "8191", "220543", "384766", "3080161", "3272671", "6192631", "8385271", "31453021", "58159102", "249495467", "401469279", "268418041", "134193151", "2885548927", "1610563582", "8589393821", "33280753395", "83751780091", "171658174447" ]
[ "nonn", "base" ]
8
3
1
[ "A000120", "A358930", "A358931", "A358932" ]
null
Ilya Gutkovskiy, Dec 06 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358932.seq
09057bb1f8e9ca81d1884d2be9d2bd1e
A358933
Number of tilings of a 5 X n rectangle using n pentominoes of shapes N, U, Z.
[ "1", "0", "0", "0", "2", "0", "2", "2", "4", "2", "10", "8", "14", "18", "36", "34", "66", "88", "136", "170", "292", "382", "578", "818", "1244", "1692", "2576", "3676", "5400", "7654", "11412", "16284", "23852", "34448", "50396", "72472", "106046", "153556", "223458", "323430", "471644", "683046", "993958", "1442138", "2097830", "3042314", "4424880" ]
[ "nonn", "easy" ]
17
0
5
[ "A174249", "A343529", "A349187", "A352421", "A358933", "A361250" ]
null
Alois P. Heinz, Dec 06 2022
2023-05-02T08:37:16
oeisdata/seq/A358/A358933.seq
e5409889a347a31ebdefeb95d30f968f
A358934
a(n) = Fibonacci(n+1)^5 - Fibonacci(n-1)^5.
[ "0", "1", "31", "242", "3093", "32525", "368168", "4051333", "45064131", "499200274", "5538624025", "61414079849", "681135796944", "7553728681433", "83772910243607", "929052526388050", "10303364319347757", "114266002348885717", "1267229634537217144", "14053790947047408701", "155858934437282250075" ]
[ "nonn", "easy" ]
29
0
3
[ "A000045", "A056572", "A358934" ]
null
Feryal Alayont, Dec 06 2022
2024-08-05T15:21:52
oeisdata/seq/A358/A358934.seq
4d15b33960ba6cccf4ef30ad64e663f0
A358935
a(n) is the least k > 0 such that fusc(n) = fusc(n + k) or fusc(n) = fusc(n - k) (provided that n - k >= 0), where "fusc" is Stern's diatomic series (A002487).
[ "1", "1", "3", "2", "2", "3", "2", "4", "6", "3", "2", "6", "2", "4", "3", "8", "4", "3", "4", "6", "6", "4", "2", "12", "2", "4", "6", "8", "4", "6", "3", "16", "30", "3", "12", "6", "4", "8", "18", "12", "4", "12", "10", "8", "6", "4", "2", "24", "2", "4", "6", "8", "10", "12", "4", "16", "18", "7", "4", "12", "9", "6", "3", "32", "7", "3", "7", "6", "12", "9", "8", "12", "46", "7", "12", "11", "12", "21", "7" ]
[ "nonn" ]
11
1
3
[ "A002487", "A097581", "A358935" ]
null
Rémy Sigrist, Dec 07 2022
2022-12-08T01:51:40
oeisdata/seq/A358/A358935.seq
f1e431d15c6598a8b70cb8e51c4ba025
A358936
Numbers k such that for some r we have phi(1) + ... + phi(k - 1) = phi(k + 1) + ... + phi(k + r), where phi(i) = A000010(i).
[ "3", "4", "6", "38", "40", "88", "244", "578", "581", "602", "1663", "2196", "10327", "17358", "28133", "36163", "42299", "123556", "149788", "234900", "350210", "366321", "620478", "694950", "869880", "905807", "934286", "1907010", "2005592", "5026297", "7675637", "11492764", "12844691", "14400214", "15444216", "18798939", "20300872" ]
[ "nonn" ]
31
1
1
[ "A000010", "A001109", "A002088", "A064018", "A358936" ]
null
Ctibor O. Zizka, Dec 07 2022
2025-01-05T19:51:42
oeisdata/seq/A358/A358936.seq
d9608cbe8503b6ac21c8a6d34fb60598
A358937
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n.
[ "1", "1", "3", "6", "13", "31", "76", "192", "504", "1351", "3668", "10082", "27991", "78335", "220778", "626141", "1785593", "5117179", "14729826", "42568767", "123465517", "359268141", "1048541699", "3068583485", "9002849260", "26474484680", "78019959584", "230381635121", "681544367457", "2019718168994", "5995000501189" ]
[ "nonn" ]
36
0
3
[ "A355865", "A358937", "A366229" ]
null
Paul D. Hanna, Dec 07 2022
2025-03-24T05:54:10
oeisdata/seq/A358/A358937.seq
3b1e584cfbea2b04c4e0be9840ad6615
A358938
Decimal expansion of the real root of 2*x^5 - 1.
[ "8", "7", "0", "5", "5", "0", "5", "6", "3", "2", "9", "6", "1", "2", "4", "1", "3", "9", "1", "3", "6", "2", "7", "0", "0", "1", "7", "4", "7", "9", "7", "4", "6", "0", "9", "8", "9", "7", "9", "1", "2", "5", "4", "2", "4", "3", "4", "8", "0", "0", "3", "0", "4", "8", "2", "4", "1", "8", "5", "9", "5", "6", "8", "5", "0", "6", "7", "5", "0", "0", "1", "7", "7", "5", "2", "4" ]
[ "nonn", "cons", "easy" ]
17
0
1
[ "A001622", "A005531", "A011101", "A182007", "A188593", "A358938" ]
null
Wolfdieter Lang, Dec 07 2022
2025-03-24T09:06:52
oeisdata/seq/A358/A358938.seq
b8d2f27f0f7460471801ed95f83e3485
A358939
Decimal expansion of the real root of x^5 + x^3 - 1.
[ "8", "3", "7", "6", "1", "9", "7", "7", "4", "8", "2", "6", "9", "6", "2", "1", "8", "4", "9", "9", "7", "5", "2", "7", "2", "9", "4", "1", "9", "1", "8", "0", "6", "0", "9", "3", "9", "2", "5", "0", "5", "4", "5", "1", "8", "5", "8", "9", "6", "0", "2", "3", "7", "9", "1", "2", "5", "3", "0", "5", "5", "6", "9", "1", "2", "3", "7", "8", "5", "2", "9", "6", "3", "4", "6", "2" ]
[ "nonn", "cons" ]
10
0
1
[ "A160155", "A230152", "A358939", "A358940", "A358941", "A358942" ]
null
Wolfdieter Lang, Dec 15 2022
2022-12-20T11:45:23
oeisdata/seq/A358/A358939.seq
98a75f87cb3cd428bed9bb29c1fdb935
A358940
Decimal expansion of the real root of x^5 - x^3 - 1.
[ "1", "2", "3", "6", "5", "0", "5", "7", "0", "3", "3", "9", "1", "4", "9", "9", "0", "2", "4", "3", "3", "7", "5", "7", "4", "8", "0", "0", "9", "7", "6", "1", "4", "6", "7", "8", "2", "6", "8", "1", "0", "4", "2", "9", "4", "3", "5", "4", "6", "1", "1", "4", "9", "6", "7", "7", "6", "6", "1", "7", "3", "8", "4", "1", "7", "0", "7", "2", "6", "1", "4", "3", "5", "6", "1", "8" ]
[ "nonn", "cons" ]
7
1
2
[ "A160155", "A230152", "A358939", "A358940", "A358941", "A358942" ]
null
Wolfdieter Lang, Dec 12 2022
2022-12-20T11:45:31
oeisdata/seq/A358/A358940.seq
11fe4bbe191a0ee91c8914773d5c9801
A358941
Decimal expansion of the real root of x^5 + x^2 - 1.
[ "8", "0", "8", "7", "3", "0", "6", "0", "0", "4", "7", "9", "3", "9", "2", "0", "1", "3", "7", "3", "8", "5", "5", "4", "5", "2", "6", "5", "1", "1", "4", "0", "0", "0", "6", "4", "9", "5", "1", "3", "7", "7", "3", "5", "1", "5", "5", "9", "3", "1", "3", "0", "7", "5", "5", "4", "8", "1", "1", "6", "4", "0", "1", "8", "3", "6", "5", "4", "3", "3", "4", "0", "7", "4", "8", "3" ]
[ "nonn", "cons" ]
12
0
1
[ "A160155", "A230152", "A358939", "A358940", "A358941", "A358942" ]
null
Wolfdieter Lang, Dec 15 2022
2022-12-20T11:45:39
oeisdata/seq/A358/A358941.seq
fa42834ef3515587bff772e76a8c2ce3
A358942
Decimal expansion of the real root of x^5 - x^2 - 1.
[ "1", "1", "9", "3", "8", "5", "9", "1", "1", "1", "3", "2", "1", "2", "2", "3", "0", "1", "2", "0", "0", "9", "0", "2", "0", "7", "4", "6", "2", "9", "8", "0", "3", "1", "1", "2", "4", "5", "1", "4", "5", "2", "4", "2", "6", "9", "4", "8", "6", "4", "4", "4", "5", "0", "9", "6", "0", "2", "0", "8", "1", "4", "0", "1", "5", "9", "6", "0", "3", "5", "5", "6", "2", "3", "8", "5" ]
[ "nonn", "cons" ]
10
1
3
[ "A160155", "A230152", "A358939", "A358940", "A358941", "A358942" ]
null
Wolfdieter Lang, Dec 15 2022
2022-12-20T11:45:47
oeisdata/seq/A358/A358942.seq
77cd6b0949c49423fc50993898bb0366
A358943
Decimal expansion of the real root of 3*x^3 - 2.
[ "8", "7", "3", "5", "8", "0", "4", "6", "4", "7", "3", "6", "2", "9", "8", "8", "6", "9", "0", "4", "7", "2", "2", "0", "4", "2", "6", "8", "1", "3", "9", "9", "8", "7", "5", "6", "7", "4", "6", "4", "7", "5", "8", "8", "1", "9", "0", "7", "8", "7", "7", "2", "4", "1", "7", "0", "0", "9", "2", "4", "6", "0", "1", "9", "0", "9", "5", "6", "6", "6", "0", "6", "3", "9", "8", "6", "8", "0" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A010590", "A319034", "A358943" ]
null
Wolfdieter Lang, Jan 02 2023
2023-01-12T01:50:50
oeisdata/seq/A358/A358943.seq
cf7f5dc7c1ff13629a8cd7b09cb7b8f8
A358944
Number of Green's L-classes in B_n, the semigroup of binary relations on [n].
[ "1", "2", "7", "55", "1324", "120633", "36672159" ]
[ "nonn", "hard", "more" ]
24
0
2
[ "A102896", "A355315", "A358944" ]
null
Geoffrey Critzer, Jan 16 2023
2023-01-17T09:58:18
oeisdata/seq/A358/A358944.seq
a3a718735451ff08b21c9f4a50813549
A358945
Decimal expansion of the positive root of 4*x^2 + x - 1.
[ "3", "9", "0", "3", "8", "8", "2", "0", "3", "2", "0", "2", "2", "0", "7", "5", "6", "8", "7", "2", "7", "6", "7", "6", "2", "3", "1", "9", "9", "6", "7", "5", "9", "6", "2", "8", "1", "4", "3", "3", "9", "9", "9", "0", "3", "1", "7", "1", "7", "0", "2", "5", "5", "4", "2", "9", "9", "8", "2", "9", "1", "9", "6", "6", "3", "6", "8", "6", "9", "2", "9", "3", "2", "9", "2", "2" ]
[ "nonn", "cons", "easy" ]
24
0
1
[ "A006131", "A010473", "A049310", "A052923", "A174930", "A189038", "A222132", "A358945" ]
null
Wolfdieter Lang, Jan 20 2023
2024-01-15T16:44:12
oeisdata/seq/A358/A358945.seq
89a8a71ca0d5703e38e37a05223bf690
A358946
Positive integers that are properly represented by each primitive binary quadratic form of discriminant 28 that is properly equivalent to the principal form [1, 4, -3].
[ "1", "2", "9", "18", "21", "29", "37", "42", "53", "57", "58", "74", "81", "93", "106", "109", "113", "114", "133", "137", "141", "149", "162", "177", "186", "189", "193", "197", "217", "218", "226", "233", "249", "261", "266", "274", "277", "281", "282", "298", "309", "317", "329", "333", "337", "354", "361", "373", "378", "386", "389", "393", "394", "401", "413", "417", "421", "434", "449", "457", "466", "477", "498", "501" ]
[ "nonn" ]
14
1
2
[ "A028881", "A242662", "A307168", "A307169", "A307172", "A307173", "A358946", "A358947", "A359476", "A359477" ]
null
Wolfdieter Lang, Jan 10 2023
2023-02-03T03:17:12
oeisdata/seq/A358/A358946.seq
aae9f509b805a05110b3c4bed675cd58
A358947
a(n) = 2^m(n), where m(n) is the number of distinct primes, neither 2 nor 7, dividing A358946(n).
[ "1", "1", "2", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "4", "2", "2", "4", "4", "2", "2", "2", "2", "2", "2", "2", "4", "4", "2", "2", "2", "2", "4", "2", "4", "2", "2", "4", "2", "4", "2", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "2", "2", "2", "4", "4", "4", "4", "4", "2", "2", "2", "2", "2", "2", "4", "4", "4", "2", "4", "2", "4", "4", "4", "2", "4", "4", "2", "4", "4" ]
[ "nonn" ]
11
1
3
[ "A358946", "A358947", "A359476", "A359477" ]
null
Wolfdieter Lang, Jan 10 2023
2023-01-12T01:53:08
oeisdata/seq/A358/A358947.seq
faf491a6e7ba6a2c408c21534e3c97aa
A358948
Number of regions formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "1", "12", "228", "1464", "12516", "29022", "153564", "364650", "996672", "1750326", "5274156", "7761498" ]
[ "nonn", "more" ]
11
1
2
[ "A005728", "A006842", "A006843", "A358882", "A358886", "A358948", "A358949", "A358950", "A358951" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 07 2022
2023-09-27T14:55:53
oeisdata/seq/A358/A358948.seq
2b2dcf844f627f75241ccc14581a141a
A358949
Number of vertices formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "3", "10", "148", "1111", "9568", "23770", "126187", "308401", "855145", "1521733", "4591405", "6831040" ]
[ "nonn", "more" ]
8
1
1
[ "A005728", "A006842", "A006843", "A358882", "A358887", "A358948", "A358949", "A358950", "A358951" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 07 2022
2023-09-27T14:56:52
oeisdata/seq/A358/A358949.seq
7c2ccae779bd46e522f908d5f69df139
A358950
Number of edges formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
[ "3", "21", "375", "2574", "22083", "52791", "279750", "673050", "1851816", "3272058", "9865560", "14592537" ]
[ "nonn", "more" ]
6
1
1
[ "A005728", "A006842", "A006843", "A358882", "A358888", "A358948", "A358949", "A358950", "A358951" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 07 2022
2022-12-19T13:31:51
oeisdata/seq/A358/A358950.seq
1e4ab8aeb7e720ba319a25c27e65c695
A358951
Irregular table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n).
[ "1", "12", "180", "42", "6", "810", "576", "72", "6", "6786", "4932", "744", "48", "6", "13662", "12522", "2568", "258", "12", "72582", "64932", "14376", "1632", "36", "6", "164484", "155088", "38688", "5958", "414", "18", "439524", "422370", "114804", "18462", "1392", "120", "750108", "749928", "211518", "35226", "3336", "204", "6", "2265462", "2240994", "647184", "109602", "10230", "666", "18" ]
[ "nonn", "tabf" ]
10
1
2
[ "A005728", "A006842", "A006843", "A358882", "A358889", "A358948", "A358949", "A358950", "A358951" ]
null
Scott R. Shannon and N. J. A. Sloane, Dec 07 2022
2022-12-19T13:32:13
oeisdata/seq/A358/A358951.seq
b35b9ecdda1a52d67cdd9eb284822981
A358952
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
[ "1", "2", "18", "124", "1244", "11652", "122153", "1281722", "14009973", "154993908", "1748602308", "19949674928", "230299666100", "2682127476280", "31492460744869", "372295036400060", "4428101312591810", "52949362040059258", "636176332781478365", "7676183282453865394", "92978971123440688904" ]
[ "nonn" ]
9
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T06:47:54
oeisdata/seq/A358/A358952.seq
dddd790ab77afb0d672997f2f7a8e0f5
A358953
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(3*n) * (x^n - 2*A(x))^(4*n+1).
[ "1", "3", "21", "159", "1369", "12131", "111489", "1042310", "9878188", "94345595", "905236045", "8698907855", "83509981377", "798911473287", "7596665295846", "71585365842419", "666055801137389", "6089025714101416", "54304588402962717", "467144137463862047", "3798557443794080777", "27983895459969702990" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:35
oeisdata/seq/A358/A358953.seq
c6eec425ff82a7c9dac20383bd63fd69
A358954
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(4*n) * (x^n - 2*A(x))^(5*n+1).
[ "1", "4", "36", "384", "4568", "57920", "768760", "10543120", "148247390", "2125715618", "30965114225", "456956616284", "6817011617601", "102640570550600", "1557716916728198", "23804070258610024", "365964582592739540", "5656501536118793076", "87846324474413129008", "1370097609728212588634", "21451062781643458337802" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:39
oeisdata/seq/A358/A358954.seq
a2daa5d12da9c03f97b4b892d1972dbb
A358955
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(5*n) * (x^n - 2*A(x))^(6*n+1).
[ "1", "5", "55", "715", "10285", "157577", "2521339", "41635879", "704264465", "12139738505", "212475103777", "3765897874074", "67454279084444", "1219122315546851", "22204489538545069", "407150017658467685", "7509869807043464691", "139245172845883281403", "2593887890033997265241", "48521833007161546858193" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:43
oeisdata/seq/A358/A358955.seq
2c589ca0cc09fe8b069a5b792e9c8faf
A358956
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(6*n) * (x^n - 2*A(x))^(7*n+1).
[ "1", "6", "78", "1196", "20280", "366288", "6908744", "134492752", "2681961056", "54504790720", "1124768357872", "23505633975616", "496452504891320", "10580216111991080", "227237269499825185", "4913552644294206262", "106877300690757456293", "2336971970184440328572", "51339570414117180476064" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:47
oeisdata/seq/A358/A358956.seq
2981dab15dbb112950e9171f40799852
A358957
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(7*n) * (x^n - 2*A(x))^(8*n+1).
[ "1", "7", "105", "1855", "36225", "753319", "16356809", "366518975", "8412321985", "196761671175", "4672976571753", "112386313863327", "2731613284143345", "66992673654966087", "1655756220596437601", "41199365822954474670", "1031225066096367871764", "25947188077245338061147", "655925022779049206277461" ]
[ "nonn" ]
6
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:52
oeisdata/seq/A358/A358957.seq
2a4021ff509b76af9fd28b66190c0393
A358958
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(8*n) * (x^n - 2*A(x))^(9*n+1).
[ "1", "8", "136", "2720", "60112", "1414400", "34744192", "880722944", "22866372480", "604987038208", "16252230833792", "442118711113216", "12154717695451712", "337169716435693120", "9425612400257630864", "265272780558100130464", "7510038750103097772890", "213729057394800722424678", "6110972702751703321123745" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:34:56
oeisdata/seq/A358/A358958.seq
e3bd3a1c5ff6df6b0706eb186bf10f60
A358959
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1).
[ "1", "9", "171", "3819", "94221", "2474541", "67842255", "1919233719", "55608288057", "1641837803793", "49218744365683", "1494112796918051", "45836491198618821", "1418839143493455861", "44259772786526485527", "1389967891240928450511", "43910122539568806384513", "1394423517592589134138485" ]
[ "nonn" ]
5
0
2
[ "A355865", "A358952", "A358953", "A358954", "A358955", "A358956", "A358957", "A358958", "A358959" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-08T07:35:00
oeisdata/seq/A358/A358959.seq
a38686eeb3fefe22ea373e07c6134a34
A358960
Number of directed Hamiltonian paths of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
[ "24", "144", "240", "3240", "75840" ]
[ "nonn", "fini", "full" ]
11
1
1
[ "A053016", "A063723", "A268283", "A343213", "A358960" ]
null
Seiichi Manyama, Dec 07 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358960.seq
71456ba8172010f61dbe1afd8c199790
A358961
a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(2*n+1))^(n-1).
[ "1", "3", "7", "33", "163", "858", "4708", "26662", "154699", "914885", "5494719", "33423598", "205493244", "1274928510", "7972042450", "50188844583", "317861388939", "2023777490895", "12945901676736", "83163975425669", "536279878717858", "3470134399230086", "22525040920670333", "146633283078321531" ]
[ "nonn" ]
38
0
2
[ "A357227", "A358937", "A358961", "A358962", "A358963", "A358964", "A358965" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-09T14:35:12
oeisdata/seq/A358/A358961.seq
61b5275f54e157aa9ef24c1c430b935a
A358962
a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(3*n+2))^(n-1).
[ "1", "2", "8", "30", "146", "748", "4002", "22114", "125220", "722850", "4238148", "25169064", "151084168", "915235106", "5587985801", "34351213384", "212436911849", "1320744403708", "8250065775120", "51752790871466", "325887027304769", "2059216160242430", "13052805881695018", "82976612756731258" ]
[ "nonn" ]
21
0
2
[ "A358961", "A358962", "A358963", "A358964", "A358965" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-09T14:33:22
oeisdata/seq/A358/A358962.seq
16946f16862a149992f60dd8bab17fae
A358963
a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(4*n+3))^(n-1).
[ "1", "2", "7", "31", "143", "731", "3896", "21444", "120967", "695699", "4063879", "24045306", "143808836", "867972228", "5280039896", "32339575813", "199266229047", "1234340158837", "7682216027973", "48014943810066", "301247658649431", "1896587278353158", "11978138505184044", "75867527248248561" ]
[ "nonn" ]
20
0
2
[ "A358961", "A358962", "A358963", "A358964", "A358965" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-09T14:33:41
oeisdata/seq/A358/A358963.seq
08a0208879ceb666d5dfd214bca93dde
A358964
a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(5*n+4))^(n-1).
[ "1", "2", "7", "30", "144", "728", "3879", "21338", "120301", "691482", "4037020", "23873308", "142702222", "860823760", "5233702949", "32038319854", "197302553658", "1221511228130", "7598234842024", "47464203317986", "297630203452010", "1872792573164662", "11821420702394153", "74834134991237178" ]
[ "nonn" ]
18
0
2
[ "A358961", "A358962", "A358963", "A358964", "A358965" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-09T14:34:19
oeisdata/seq/A358/A358964.seq
d7c0054cf04c9b1ce90015da9c9d19aa
A358965
a(n) = coefficient of x^n in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(6*n+5))^(n-1).
[ "1", "2", "7", "30", "143", "729", "3876", "21321", "120195", "690816", "4032807", "23846485", "142530516", "859719414", "5226571568", "31992109155", "197002217763", "1219554190530", "7585453430037", "47380560231549", "297081856642195", "1869191995298989", "11797744585161792", "74678247991840230", "473954364916279312" ]
[ "nonn" ]
16
0
2
[ "A358961", "A358962", "A358963", "A358964", "A358965" ]
null
Paul D. Hanna, Dec 07 2022
2022-12-09T14:34:47
oeisdata/seq/A358/A358965.seq
aae4f07150fdfef108dc50ff4373466c
A358966
a(n) = n!*Sum_{m=1..floor(n/2)} 1/(m*binomial(n-1,2*m-1)*n).
[ "0", "0", "1", "1", "5", "9", "70", "178", "2132", "6900", "118536", "462936", "10606752", "48446496", "1397029824", "7305837120", "254261617920", "1498370192640", "61084867115520", "400578023738880", "18717879561984000", "135203360447232000", "7123176975979008000", "56195977439927808000" ]
[ "nonn" ]
7
0
5
null
null
Vladimir Kruchinin, Dec 07 2022
2022-12-08T01:08:55
oeisdata/seq/A358/A358966.seq
97ea0ba13b67637d491bed5184e90663
A358967
a(n+1) gives the number of occurrences of the smallest digit of a(n) so far, up to and including a(n), with a(0)=0.
[ "0", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "2", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2", "10", "3", "3", "4", "3", "5", "3", "6", "3", "7", "3", "8", "3", "9", "3", "10", "4", "4", "5", "4", "6", "4", "7", "4", "8", "4", "9", "4", "10", "5", "5", "6", "5", "7", "5", "8", "5", "9", "5", "10", "6", "6", "7", "6", "8", "6", "9", "6", "10", "7", "7", "8", "7", "9", "7", "10", "8", "8", "9", "8", "10", "9", "9", "10", "10", "11", "22", "12", "23", "14" ]
[ "nonn", "base" ]
33
0
4
[ "A248034", "A249009", "A336514", "A356348", "A358851", "A358967" ]
null
Bence Bernáth, Dec 08 2022
2024-12-23T14:53:46
oeisdata/seq/A358/A358967.seq
64473b06b5a8b057b74c1e01fd7c189c
A358968
Decimal expansion of the real part of the smallest complex zero of the prime zeta function in absolutely convergent zone.
[ "1", "0", "6", "1", "9", "2", "4", "1", "7", "5", "9", "2", "2", "0", "7", "0", "7", "6", "0", "8", "4", "9", "9", "6", "1", "7", "9", "5", "6", "9", "4", "6", "1", "1", "2", "5", "2", "1", "3", "8", "6", "8", "3", "8", "0", "9", "6", "5", "8", "0", "6", "2", "0", "2", "5", "5", "9", "2", "5", "6", "1", "0", "7", "9", "3", "4", "2", "4", "8", "2", "5", "8", "6", "9", "5", "8", "2", "9", "5", "1", "7", "9", "3", "5", "8", "4", "8", "9", "2", "9", "8", "1", "0", "6", "0", "8", "8", "3", "1", "3", "8", "7", "9", "4", "4", "2", "7", "1", "6", "0", "2", "5", "6", "2", "5" ]
[ "nonn", "cons" ]
27
1
3
[ "A358923", "A358924", "A358968", "A358969" ]
null
Artur Jasinski, Dec 07 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358968.seq
65c9c5b730af5e44188fdf0316315663
A358969
Decimal expansion of the imaginary part of the smallest complex zero of the prime zeta function in the absolutely convergent zone.
[ "2", "3", "7", "1", "7", "3", "3", "0", "3", "9", "1", "8", "5", "1", "0", "5", "1", "6", "6", "9", "2", "7", "9", "7", "8", "0", "2", "1", "5", "3", "1", "8", "5", "8", "4", "1", "1", "7", "7", "4", "1", "0", "0", "4", "3", "4", "8", "6", "3", "2", "4", "5", "9", "9", "5", "1", "0", "9", "9", "5", "1", "8", "2", "0", "3", "0", "8", "6", "6", "1", "5", "3", "1", "0", "9", "0", "2", "7", "3", "7", "9", "7", "7", "6", "9", "8", "3", "2", "6", "7", "8", "2", "1", "8", "6", "4", "5", "9", "8", "2", "6", "1", "6", "3", "8", "0", "9", "9", "0", "2", "9", "7", "3", "0", "2" ]
[ "nonn", "cons" ]
29
2
1
[ "A358923", "A358924", "A358968", "A358969" ]
null
Artur Jasinski, Dec 07 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358969.seq
2d70e5d5b073a57c84e52a26f600ca4b
A358970
Nonnegative numbers m such that if 2^k appears in the binary expansion of m, then k+1 divides m.
[ "0", "1", "2", "6", "8", "12", "36", "60", "128", "136", "168", "261", "288", "520", "530", "540", "630", "640", "1056", "2052", "2088", "2100", "2184", "2208", "2304", "2340", "2520", "2580", "4134", "8232", "8400", "8820", "9240", "10248", "10920", "16440", "16560", "16920", "16950", "17010", "17040", "17190", "17280", "18480", "18600", "18720" ]
[ "nonn", "base", "easy" ]
15
1
3
[ "A058891", "A271410", "A320673", "A358970" ]
null
Rémy Sigrist, Dec 07 2022
2022-12-12T15:00:27
oeisdata/seq/A358/A358970.seq
6724abb08ab23965915767d8518b82ea
A358971
a(1) = 1. Thereafter a(n) is least novel k != n such that rad(k) = rad(n), where rad is A007947.
[ "1", "4", "9", "2", "25", "12", "49", "16", "3", "20", "121", "6", "169", "28", "45", "8", "289", "24", "361", "10", "63", "44", "529", "18", "5", "52", "81", "14", "841", "60", "961", "64", "99", "68", "175", "48", "1369", "76", "117", "50", "1681", "84", "1849", "22", "15", "92", "2209", "36", "7", "40", "153", "26", "2809", "72", "275", "98", "171", "116", "3481", "30", "3721" ]
[ "nonn" ]
25
1
2
[ "A000040", "A001248", "A005117", "A007947", "A253288", "A358916", "A358971" ]
null
David James Sycamore, Dec 07 2022
2023-02-12T17:27:36
oeisdata/seq/A358/A358971.seq
2e16ee89b2844c395b3c6406f378f0bf
A358972
a(n) = ((...((n!^(n-1)!)^(n-2)!)^...)^2!)^1!.
[ "1", "2", "36", "36520347436056576" ]
[ "nonn" ]
30
1
2
[ "A000178", "A067039", "A073581", "A358972" ]
null
Arsen Vardanyan, Dec 07 2022
2022-12-09T06:17:14
oeisdata/seq/A358/A358972.seq
a205f96e92927fc8e86b0097cecd8a58
A358973
Numbers of the form m + omega(m) with m a positive integer.
[ "1", "3", "4", "5", "6", "8", "9", "10", "12", "14", "16", "17", "18", "20", "22", "23", "24", "26", "28", "30", "32", "33", "35", "36", "37", "38", "40", "41", "42", "44", "45", "46", "47", "48", "50", "52", "53", "54", "56", "57", "58", "59", "60", "62", "63", "64", "65", "67", "68", "69", "70", "71", "72", "73", "74", "76", "77", "78", "79", "80", "81", "82" ]
[ "nonn" ]
4
1
2
[ "A337455", "A358973" ]
null
Charles R Greathouse IV, Dec 07 2022
2022-12-07T17:16:54
oeisdata/seq/A358/A358973.seq
9f3646a64807081cc3186cb7430b8ef5
A358974
a(n) is the least prime p such that q-p = n*(r-q) where p,q,r are consecutive primes.
[ "3", "7", "23", "6397", "139", "509", "84871", "1933", "1259", "43331", "1129", "4523", "933073", "2971", "6917", "1568771", "9973", "32261", "4131109", "25261", "78737", "12809359", "91033", "28229", "13626257", "35677", "117443", "37305713", "399793", "102701", "217795247", "288583", "296843", "240485257", "173359", "1025957", "213158279", "1053103", "370949", "1163010181" ]
[ "nonn" ]
13
1
1
[ "A001223", "A179256", "A181994", "A358974" ]
null
Robert Israel and Juri-Stepan Gerasimov, Dec 07 2022
2022-12-10T10:47:29
oeisdata/seq/A358/A358974.seq
c72f2fd8ebdabe38059a1786991b9b6c
A358975
Numbers that are coprime to their digital sum in base 3 (A053735).
[ "1", "3", "5", "7", "9", "11", "13", "17", "19", "23", "27", "29", "31", "37", "41", "43", "47", "49", "51", "53", "55", "59", "61", "67", "69", "71", "73", "79", "81", "83", "85", "89", "91", "97", "101", "103", "107", "109", "113", "119", "121", "123", "125", "127", "129", "131", "137", "139", "141", "143", "147", "149", "151", "153", "155", "157", "159", "161", "163", "167", "169" ]
[ "nonn", "base" ]
14
1
2
[ "A000244", "A053735", "A064150", "A065091", "A094387", "A185199", "A332880", "A339076", "A358975", "A358976", "A358977", "A358978" ]
null
Amiram Eldar, Dec 07 2022
2023-02-12T17:26:40
oeisdata/seq/A358/A358975.seq
71fe2ed765b456a206eabb8b987510be
A358976
Numbers that are coprime to the sum of their factorial base digits (A034968).
[ "1", "2", "3", "5", "6", "7", "10", "11", "13", "14", "15", "17", "19", "21", "22", "23", "24", "25", "28", "29", "31", "32", "33", "37", "39", "41", "43", "44", "47", "49", "50", "51", "53", "55", "57", "58", "59", "61", "62", "65", "66", "67", "69", "71", "73", "76", "77", "79", "83", "84", "85", "87", "88", "89", "92", "93", "95", "97", "98", "101", "102", "103", "106", "107", "109", "110" ]
[ "nonn", "base" ]
10
1
2
[ "A000040", "A000142", "A034968", "A059956", "A094387", "A118363", "A339076", "A358975", "A358976", "A358977", "A358978" ]
null
Amiram Eldar, Dec 07 2022
2022-12-12T01:34:25
oeisdata/seq/A358/A358976.seq
14ed01276de991d183713ed7c4613f75
A358977
Numbers that are coprime to the sum of their primorial base digits (A276150).
[ "1", "2", "3", "5", "6", "7", "10", "11", "13", "14", "15", "17", "19", "21", "22", "23", "26", "29", "30", "31", "34", "35", "37", "38", "39", "41", "43", "46", "47", "49", "53", "54", "55", "57", "58", "59", "61", "62", "63", "67", "69", "71", "73", "74", "78", "79", "81", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "98", "101", "102", "103", "106", "107", "109", "110" ]
[ "nonn", "base" ]
9
1
2
[ "A000040", "A002110", "A059956", "A094387", "A276150", "A333426", "A339076", "A358975", "A358976", "A358977", "A358978" ]
null
Amiram Eldar, Dec 07 2022
2022-12-12T01:34:17
oeisdata/seq/A358/A358977.seq
bbe50699b6968865114a6c7fcd3eb3a2
A358978
Numbers that are coprime to the number of terms in their Zeckendorf representation (A007895).
[ "1", "2", "3", "5", "7", "8", "9", "11", "13", "15", "17", "19", "20", "21", "23", "25", "28", "29", "31", "32", "33", "34", "35", "37", "38", "39", "40", "41", "43", "44", "47", "49", "50", "51", "52", "53", "55", "57", "59", "61", "62", "63", "64", "65", "67", "70", "71", "73", "75", "77", "79", "83", "85", "87", "88", "89", "91", "95", "97", "98", "100", "101", "103", "104", "107", "109" ]
[ "nonn", "base" ]
10
1
2
[ "A000040", "A000045", "A007895", "A059956", "A063743", "A094387", "A328208", "A339076", "A358975", "A358976", "A358977", "A358978" ]
null
Amiram Eldar, Dec 07 2022
2022-12-12T01:33:39
oeisdata/seq/A358/A358978.seq
2bcf16ac66507ebbe821ea5d2f6cec6d
A358979
Least prime p such that p^n + 4 is the product of n distinct primes.
[ "3", "19", "11", "29", "131", "631", "983", "353", "9941", "20089", "15031", "8387", "102931" ]
[ "nonn", "more" ]
48
1
1
[ "A000961", "A005117", "A280005", "A358656", "A358979" ]
null
J.W.L. (Jan) Eerland, Dec 27 2022
2023-01-24T14:19:39
oeisdata/seq/A358/A358979.seq
1ec57cd8e37e522f2418a2604559403b
A358980
Least prime in a string of exactly n consecutive primes with primitive root 2, or 0 if no such prime exists.
[ "2", "19", "3", "173", "53", "523", "31883", "123637", "71899", "565589", "1241557", "1925501", "604829", "52003139", "410665589", "3448332373", "1250481059", "5352930581" ]
[ "nonn", "more" ]
33
0
1
[ "A001122", "A358980" ]
null
Giorgos Kalogeropoulos, Dec 12 2022
2024-03-21T14:41:21
oeisdata/seq/A358/A358980.seq
180d9c9faece3b76d728f7c3a8924915
A358981
Decimal expansion of Pi/3 - sqrt(3)/4.
[ "6", "1", "4", "1", "8", "4", "8", "4", "9", "3", "0", "4", "3", "7", "8", "4", "2", "2", "7", "7", "2", "3", "5", "2", "8", "7", "5", "7", "1", "6", "6", "9", "9", "5", "3", "6", "3", "3", "0", "0", "2", "1", "8", "1", "9", "6", "7", "2", "4", "4", "0", "1", "1", "6", "6", "4", "4", "3", "6", "3", "1", "1", "9", "2", "3", "9", "6", "2", "2", "2", "1", "4", "5", "3", "4", "8", "6", "9", "6", "5", "6", "9", "3", "9", "0", "5", "8", "3", "9", "5", "0", "9", "1", "3", "9", "3", "5", "4", "5", "4" ]
[ "nonn", "cons" ]
16
0
1
[ "A000796", "A019670", "A020761", "A093731", "A104954", "A120011", "A358981" ]
null
Michal Paulovic, Dec 08 2022
2024-03-08T11:28:07
oeisdata/seq/A358/A358981.seq
2db52786968fd141417cce16731957ce
A358982
In base 10, for all numbers with n digits, a(n) is the number where the sum of digits of a(n) minus the sum of the last n digits of a(n)^3 reaches a record maximum.
[ "8", "87", "887", "8887", "99868", "978887", "7978887", "96699868", "987978887", "9896699868", "89987978887", "969896699868", "7969896699868", "97969896699868", "897969896699868", "9988999939998887", "99988999939998887", "999988999939998887", "8999988999939998887", "78999988999939998887" ]
[ "nonn", "base" ]
22
1
1
[ "A000578", "A004164", "A358982" ]
null
Martin Raab, Dec 08 2022
2022-12-19T15:05:26
oeisdata/seq/A358/A358982.seq
c603a363c2f7eb96fa50f94571f01410
A358983
a(n) is the first emirp p that starts a sequence of n emirps x(1),...,x(n) with x(1) = p and x(k+1) = 2*x(k) - reverse(x(k)), but 2*x(n) - reverse(x(n)) is not an emirp.
[ "13", "941", "1471", "120511", "368631127" ]
[ "nonn", "base", "more" ]
12
1
1
[ "A006567", "A358689", "A358983" ]
null
J. M. Bergot and Robert Israel, Dec 08 2022
2022-12-11T11:54:44
oeisdata/seq/A358/A358983.seq
5198e9c82df3a515ef66238e29fe2396
A358984
The number of n-digit numbers k such that k + digit reversal of k (A056964) is a square.
[ "3", "8", "19", "0", "169", "896", "1496", "3334", "21789", "79403", "239439", "651236", "1670022", "3015650", "27292097", "55608749", "234846164", "366081231", "2594727780", "6395506991" ]
[ "nonn", "base", "more" ]
45
1
1
[ "A056964", "A061230", "A356648", "A358984" ]
null
Nicolay Avilov, Dec 08 2022
2023-01-07T04:32:49
oeisdata/seq/A358/A358984.seq
25a971b4aed4894f5a4615d64e0b5d32
A358985
a(n) is the number of numbers of the form k + reverse(k) for at least one n-digit number k.
[ "10", "18", "180", "342", "3420", "6498", "64980", "123462", "1234620", "2345778", "23457780", "44569782", "445697820", "846825858", "8468258580", "16089691302", "160896913020", "305704134738", "3057041347380", "5808378560022", "58083785600220", "110359192640418", "1103591926404180", "2096824660167942" ]
[ "nonn", "base" ]
26
1
1
[ "A067030", "A358985", "A358986" ]
null
Jon E. Schoenfield, Dec 08 2022
2024-10-04T10:02:18
oeisdata/seq/A358/A358985.seq
f6cb8c6cb11bbca7b0d8e891a4064eac
A358986
a(n) is the number of numbers of the form k + reverse(k) for at least one number k < 10^n.
[ "10", "28", "207", "548", "3966", "10462", "75435", "198890", "1433489", "3779246" ]
[ "nonn", "base", "more" ]
14
1
1
[ "A067030", "A358985", "A358986" ]
null
Jon E. Schoenfield, Dec 08 2022
2022-12-09T10:53:32
oeisdata/seq/A358/A358986.seq
7071143c69824c3e6f173375dbd21005
A358987
Omit the trailing 5 from double factorial of odd numbers (A001147(n)).
[ "1", "1", "3", "1", "10", "94", "1039", "13513", "202702", "3445942", "65472907", "1374931057", "31623414322", "790585358062", "21345804667687", "619028335362937", "19189878396251062", "633265987076285062", "22164309547669977187", "820079453263789155937", "31983098677287777081562", "1311307045768798860344062" ]
[ "nonn", "base", "easy" ]
53
0
3
[ "A001147", "A358987" ]
null
Stefano Spezia, Dec 10 2022
2024-04-02T03:00:59
oeisdata/seq/A358/A358987.seq
3a41f229ed0f58b4cf92518c97fa9630
A358988
Oblong numbers which are products of four distinct primes.
[ "210", "462", "870", "930", "1122", "1190", "1482", "1722", "1806", "3306", "4422", "4970", "6162", "7310", "7482", "8742", "8930", "10302", "10506", "11990", "12882", "14042", "15006", "17030", "17822", "18906", "19182", "20022", "20306", "21170", "25122", "30102", "31506", "32942", "36290", "40602", "41006", "42230", "45582", "46010", "47306" ]
[ "nonn" ]
34
1
1
[ "A002378", "A046386", "A358988" ]
null
Massimo Kofler, Dec 10 2022
2022-12-21T22:31:52
oeisdata/seq/A358/A358988.seq
a4647c0d90776696b8d7f57fc040297f
A358989
Decimal expansion of 13*sqrt(146)/50.
[ "3", "1", "4", "1", "5", "9", "1", "9", "5", "3", "1", "3", "4", "5", "8", "8", "7", "3", "7", "7", "5", "3", "5", "3", "8", "2", "0", "9", "3", "7", "0", "0", "4", "2", "4", "8", "1", "5", "5", "9", "5", "8", "2", "2", "5", "4", "3", "4", "1", "3", "0", "5", "6", "1", "7", "9", "1", "7", "6", "5", "6", "4", "2", "8", "4", "2", "2", "0", "8", "4", "5", "3", "2", "5", "2", "7", "7", "1", "4", "8", "4", "4", "1", "9", "0", "9", "7", "2", "7", "2", "3", "5", "1", "0" ]
[ "nonn", "cons" ]
13
1
1
[ "A000796", "A358989" ]
null
Jack Zhang, Dec 09 2022
2022-12-10T08:09:41
oeisdata/seq/A358/A358989.seq
abec1592fd33e0b7f019945fcc78d5cf
A358990
a(n) is the product of the first n odd numbers not divisible by 5.
[ "1", "1", "3", "21", "189", "2079", "27027", "459459", "8729721", "183324141", "4216455243", "113844291561", "3301484455269", "102346018113339", "3377418597740187", "124964488116386919", "4873615036539089841", "199818216498102683481", "8592183309418415389683", "403832615542665523315101", "19787798161590610642439949" ]
[ "nonn" ]
8
0
3
[ "A000142", "A045572", "A356858", "A358990", "A358991", "A358992", "A358993" ]
null
Stefano Spezia, Dec 09 2022
2022-12-11T12:01:02
oeisdata/seq/A358/A358990.seq
99831fcf02399e791e2516a6b70732aa
A358991
a(n) is the number of zero digits in the product of the first n odd numbers not divisible by 5.
[ "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "2", "1", "0", "2", "1", "1", "2", "2", "3", "2", "2", "2", "3", "2", "4", "5", "2", "4", "1", "3", "4", "5", "6", "9", "5", "4", "6", "4", "7", "7", "10", "5", "7", "10", "8", "9", "8", "4", "7", "4", "15", "9", "4", "7", "12", "9", "8", "14", "12", "5", "14", "12", "6", "11", "10", "14", "17", "17", "11", "19", "11", "15", "19", "15", "13", "14", "11", "19" ]
[ "nonn", "base" ]
5
0
14
[ "A045572", "A055641", "A356859", "A358990", "A358991", "A358992", "A358993" ]
null
Stefano Spezia, Dec 09 2022
2022-12-11T12:01:19
oeisdata/seq/A358/A358991.seq
5b2d3685074d74009bf566ff0f1c59df
A358992
a(n) is the number of digits in the product of the first n odd numbers not divisible by 5.
[ "1", "1", "1", "2", "3", "4", "5", "6", "7", "9", "10", "12", "13", "15", "16", "18", "19", "21", "22", "24", "26", "28", "29", "31", "33", "35", "36", "38", "40", "42", "44", "46", "48", "49", "51", "53", "55", "57", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "82", "84", "86", "88", "90", "92", "94", "96", "99", "101", "103", "105", "107", "109", "112", "114", "116" ]
[ "nonn", "base" ]
5
0
4
[ "A045572", "A055642", "A356860", "A358990", "A358991", "A358992", "A358993" ]
null
Stefano Spezia, Dec 09 2022
2022-12-11T12:01:29
oeisdata/seq/A358/A358992.seq
450547e2d382e945c8d9966c0e8a45fe
A358993
a(n) is the number of nonzero digits in the product of the first n odd numbers not divisible by 5.
[ "1", "1", "1", "2", "3", "3", "4", "6", "7", "9", "10", "12", "12", "13", "15", "18", "17", "20", "21", "22", "24", "25", "27", "29", "31", "32", "34", "34", "35", "40", "40", "45", "45", "45", "46", "47", "46", "52", "55", "55", "59", "58", "60", "59", "66", "66", "65", "69", "70", "74", "80", "79", "84", "75", "83", "90", "89", "87", "92", "95", "91", "95", "104", "98", "102", "110", "107" ]
[ "nonn", "base" ]
4
0
4
[ "A045572", "A055640", "A356861", "A358990", "A358991", "A358992", "A358993" ]
null
Stefano Spezia, Dec 09 2022
2022-12-11T12:01:38
oeisdata/seq/A358/A358993.seq
43b408238cc46dcfb6cc4f4f05bce4ac
A358994
The sum of the numbers that are inside the contour of an n-story Christmas tree drawn at the top of the numerical pyramid containing the positive integers in natural order.
[ "21", "151", "561", "1503", "3310", "6396", "11256", "18466", "28683", "42645", "61171", "85161", "115596", "153538", "200130", "256596", "324241", "404451", "498693", "608515", "735546", "881496", "1048156", "1237398", "1451175", "1691521", "1960551", "2260461", "2593528", "2962110", "3368646", "3815656", "4305741", "4841583", "5425945" ]
[ "nonn", "easy" ]
62
1
1
[ "A001844", "A006137", "A022266", "A358994" ]
null
Nicolay Avilov, Dec 25 2022
2023-02-05T23:06:11
oeisdata/seq/A358/A358994.seq
5f20a6919394dcb1d3df533a2134a4f5
A358995
Lucas numbers which are the sum of three repdigits.
[ "3", "4", "7", "11", "18", "29", "47", "76", "123", "199", "322", "521", "843", "5778" ]
[ "nonn", "fini", "full" ]
19
1
1
[ "A000032", "A358995" ]
null
Ctibor O. Zizka, Dec 24 2022
2023-04-17T06:18:26
oeisdata/seq/A358/A358995.seq
321aad3b9a57de2b6652e7bd94cdac00
A358996
Number of self-avoiding paths of length 2*(n+A002620(n-1)) along the edges of a grid with n X n square cells, which do not pass above the diagonal, start at the lower left corner and finish at the upper right corner.
[ "1", "1", "2", "2", "10", "20", "248", "1072", "31178", "270026", "18806964", "329412610", "54393195014", "1931171930256", "749416883107560", "54217060622200086" ]
[ "nonn", "more" ]
14
0
3
[ "A000108", "A002620", "A340005", "A340043", "A358996" ]
null
Seiichi Manyama, Dec 09 2022
2022-12-09T16:05:13
oeisdata/seq/A358/A358996.seq
ecc9184489f9b8794144171276a3cb51
A358997
a(n) is the number of distinct positive real roots of the Maclaurin polynomial of degree 2*n for cos(x).
[ "0", "1", "2", "1", "2", "1", "2", "3", "2", "3", "4", "3", "4", "3", "4", "5", "4", "5", "6", "5", "6", "5", "6", "7", "6", "7", "6", "7", "8", "7", "8", "9", "8", "9", "8", "9", "10", "9", "10", "11", "10", "11", "10", "11", "12", "11", "12", "11", "12", "13", "12", "13", "14", "13", "14", "13", "14", "15", "14", "15", "14", "15", "16", "15", "16", "17", "16", "17", "16", "17", "18", "17", "18", "19", "18", "19", "18", "19", "20", "19", "20", "19", "20", "21" ]
[ "nonn", "look" ]
14
0
3
[ "A012265", "A332325", "A358997" ]
null
Robert Israel, Dec 09 2022
2023-11-12T13:16:40
oeisdata/seq/A358/A358997.seq
102608ac9987f36e1ef91d022b3f1022
A358998
Nonprimes whose sum of factorials of digits is a prime.
[ "10", "12", "20", "21", "30", "100", "110", "111", "122", "133", "134", "135", "136", "143", "153", "155", "178", "187", "202", "212", "220", "221", "303", "304", "305", "306", "314", "315", "316", "330", "340", "341", "350", "351", "360", "361", "403", "413", "430", "505", "513", "515", "530", "531", "550", "551", "603", "630", "708", "718", "780", "781", "807" ]
[ "base", "easy", "nonn" ]
26
1
1
[ "A061602", "A084405", "A358998" ]
null
Carole Dubois, Feb 11 2023
2023-02-23T14:48:40
oeisdata/seq/A358/A358998.seq
ab55d82063651020b41fa4aba0982c55
A358999
Number of undirected cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
[ "7", "28", "63", "1168", "12878" ]
[ "nonn", "fini", "full" ]
18
1
1
[ "A053016", "A268283", "A358999", "A359000", "A359001", "A359002" ]
null
Seiichi Manyama, Dec 10 2022
2025-02-16T08:34:04
oeisdata/seq/A358/A358999.seq
126afa2924c2195f94bccdb2b1be469a
A359000
Number of undirected n-cycles of the octahedral graph.
[ "8", "15", "24", "16" ]
[ "nonn", "fini", "full" ]
12
3
1
[ "A053016", "A268283", "A358999", "A359000", "A359001", "A359002" ]
null
Seiichi Manyama, Dec 10 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359000.seq
ddfcee132f861aa3318ba7ef418e97a0