sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A359001
Number of undirected n-cycles of the dodecahedral graph.
[ "12", "0", "0", "30", "20", "36", "120", "100", "60", "180", "180", "90", "180", "130", "0", "30" ]
[ "nonn", "fini", "full" ]
14
5
1
[ "A053016", "A268283", "A358999", "A359000", "A359001", "A359002" ]
null
Seiichi Manyama, Dec 10 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359001.seq
364b6e007597124cae22c65b6b2feffd
A359002
Number of undirected n-cycles of the icosahedral graph.
[ "20", "30", "72", "240", "720", "1620", "2680", "3336", "2880", "1280" ]
[ "nonn", "fini", "full" ]
12
3
1
[ "A053016", "A268283", "A358999", "A359000", "A359001", "A359002" ]
null
Seiichi Manyama, Dec 10 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359002.seq
e1e902092e01951b0019821e1443398e
A359003
a(n) is the smallest n-gonal number whose sum of digits is n.
[ "3", "4", "5", "6", "7", "8", "9", "370", "506", "156", "238", "671", "726", "88", "836", "585", "775", "7337", "5268", "8149", "8555", "8961", "9367", "9773", "15786", "9856", "91964", "65757", "89428", "179960", "47796", "108979", "197945", "86976", "467974", "998516", "259896", "598792", "1737788", "869649", "969991", "1985984", "998676", "3798496", "7979546", "5877696" ]
[ "nonn", "base" ]
7
3
1
[ "A007953", "A051885", "A062685", "A062688", "A358930", "A359003" ]
null
Ilya Gutkovskiy, Dec 10 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359003.seq
daf6b86aa9fda13c361d6b52aa3230f4
A359004
a(n) = Sum_{d|n} d^(n/d-1) * (n/d)^(d-1).
[ "1", "2", "2", "6", "2", "26", "2", "66", "83", "162", "2", "1250", "2", "898", "4052", "6146", "2", "22106", "2", "74242", "71444", "22530", "2", "771458", "390627", "106498", "1062884", "3039234", "2", "12528122", "2", "17825794", "14289860", "2228226", "75031252", "211754594", "2", "9961474", "179627060", "1185259522", "2", "2237309594", "2" ]
[ "nonn" ]
31
1
2
[ "A359004", "A359811", "A359863" ]
null
Seiichi Manyama, Jan 16 2023
2023-08-09T00:53:20
oeisdata/seq/A359/A359004.seq
02c1abb4e544b4eb2d3f985128a28803
A359005
Jane Street's infinite sidewalk's greedy walk.
[ "0", "1", "2", "4", "7", "3", "5", "8", "13", "6", "10", "16", "25", "12", "19", "9", "14", "22", "34", "52", "79", "39", "59", "29", "44", "21", "32", "15", "23", "11", "17", "26", "40", "61", "30", "46", "70", "106", "160", "241", "120", "181", "90", "136", "67", "33", "50", "24", "37", "18", "28", "43", "65", "98", "48", "73", "36", "55", "27", "41", "20", "31", "47", "71", "35", "53" ]
[ "nonn" ]
47
0
3
[ "A006999", "A358838", "A359005", "A359008" ]
null
Frederic Ruget, Dec 10 2022
2023-06-24T16:03:02
oeisdata/seq/A359/A359005.seq
46a45ed858fea1443da1f749742f7815
A359006
Euler characteristics of some Calabi-Yau n-folds.
[ "2", "0", "24", "-296", "5910", "-147624", "4482044", "-160180656", "6588215370", "-306553312880", "15921704570112", "-913109351334168", "57312158437875614", "-3907821040411155672", "287639624919939481380", "-22731972554599539494624", "1919809166125424793288978", "-172552913868209944831000416" ]
[ "sign", "easy" ]
15
1
1
null
null
F. Chapoton, Dec 10 2022
2022-12-12T18:17:04
oeisdata/seq/A359/A359006.seq
17e44d4f7db6be81b28f230a17a58b9f
A359007
a(n) = b(n-b(n)) where b is Van Eck's sequence A181391.
[ "0", "0", "0", "0", "1", "0", "2", "0", "2", "0", "0", "2", "0", "5", "1", "0", "0", "0", "2", "4", "0", "5", "0", "6", "0", "3", "0", "0", "2", "5", "0", "4", "14", "6", "3", "0", "6", "15", "5", "3", "9", "0", "5", "3", "0", "6", "5", "0", "3", "8", "3", "6", "0", "3", "2", "0", "0", "5", "9", "0", "4", "1", "0", "0", "3", "32", "0", "4", "11", "0", "7", "17", "0", "3", "11", "0", "2", "31", "6", "31", "0", "0", "6", "3", "0", "9", "2", "33", "3", "0", "3", "15", "0", "5" ]
[ "nonn", "easy" ]
25
1
7
[ "A181391", "A359007" ]
null
Tamas Sandor Nagy, Dec 10 2022
2023-01-08T22:47:06
oeisdata/seq/A359/A359007.seq
9bf0205c10f481f796dea59bb853a9cb
A359008
Jane Street's infinite sidewalk's greedy walk inverse mapping.
[ "0", "1", "2", "5", "3", "6", "9", "4", "7", "15", "10", "29", "13", "8", "16", "27", "11", "30", "49", "14", "60", "25", "17", "28", "47", "12", "31", "58", "50", "23", "34", "61", "26", "45", "18", "64", "56", "48", "75", "21", "32", "59", "105", "51", "24", "70", "35", "62", "54", "81", "46", "73", "19", "65", "111", "57", "103", "214", "76", "22", "68", "33", "244", "87", "106", "52" ]
[ "nonn" ]
18
0
3
[ "A358838", "A359005", "A359008" ]
null
Frederic Ruget, Dec 11 2022
2023-05-21T10:26:48
oeisdata/seq/A359/A359008.seq
636e13bb205e911ac2001316742d7eee
A359009
Irregular table read by rows: T(n,k) is the number of k-gons formed, k>=2, when every pair of n points, placed at the vertices of a regular n-gon, are connected by a circle and where the points lie at the ends of the circle's diameter.
[ "1", "0", "7", "8", "4", "0", "40", "20", "6", "6", "72", "6", "0", "0", "0", "0", "0", "0", "0", "1", "0", "133", "98", "42", "7", "1", "16", "184", "56", "0", "8", "0", "342", "306", "99", "54", "0", "0", "1", "10", "510", "220", "60", "10", "10", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "693", "858", "231", "88", "11", "11", "0", "0", "1", "24", "924", "612", "120", "60", "0", "1469", "1560", "455", "299", "13", "0", "0", "13", "0", "0", "1" ]
[ "nonn", "tabf" ]
23
2
3
[ "A331451", "A344938", "A358746", "A358782", "A358783", "A359009" ]
null
Scott R. Shannon, Dec 12 2022
2022-12-13T10:14:15
oeisdata/seq/A359/A359009.seq
a9123e5442a2cf947221437ca71920b6
A359010
Variant of the inventory sequence: Record the number of terms whose value occurs once thus far in the sequence, then the number of terms whose value occurs twice thus far, and so on; a row ends when a 0 that would repeat infinitely is reached.
[ "0", "1", "0", "1", "4", "0", "1", "0", "3", "4", "0", "1", "2", "0", "4", "0", "2", "2", "6", "4", "0", "2", "0", "0", "12", "0", "3", "2", "0", "8", "5", "0", "4", "2", "0", "4", "0", "12", "0", "3", "2", "3", "8", "0", "6", "7", "0", "2", "6", "3", "4", "5", "0", "7", "8", "0", "0", "6", "3", "8", "0", "6", "7", "8", "0", "0", "4", "3", "4", "10", "0", "7", "8", "9", "0", "2", "4", "0", "8", "5", "0", "14", "0", "9", "10", "0" ]
[ "nonn", "tabf" ]
33
1
5
[ "A342585", "A350768", "A359010" ]
null
Neal Gersh Tolunsky, Dec 11 2022
2025-02-17T14:03:11
oeisdata/seq/A359/A359010.seq
93716c8bc114d1b3d934586b40bdc399
A359011
Numbers k such that k^2 + the reversal of k^2 is a square.
[ "0", "231", "9426681", "8803095102", "56017891104", "4811618419542" ]
[ "nonn", "base", "hard", "more" ]
8
1
2
[ "A056964", "A061230", "A359011" ]
null
Michel Marcus, Dec 11 2022
2022-12-11T04:48:03
oeisdata/seq/A359/A359011.seq
5229e746dd56ea277a2350e555f44d03
A359012
Numbers k that are a substring of xPy where k=concatenation(x,y) and xPy is the number of permutations A008279(x,y).
[ "318", "557", "692", "729", "2226", "2437", "2776", "3209", "4436", "5336", "5549", "5718", "5956", "6068", "6141", "6353", "6958", "7045", "7046", "7338", "7345", "7643", "7865", "8261", "8409", "9153", "9178", "9242", "9544", "9569", "9664", "9894", "9999", "10174", "10889", "12389", "12434", "13497", "13516", "16308", "18695", "19707", "21940", "21954", "22535" ]
[ "nonn", "base" ]
35
1
1
[ "A008279", "A359012" ]
null
John Samuel, Dec 11 2022
2023-01-06T20:54:31
oeisdata/seq/A359/A359012.seq
0cb02a4070d9104e74db7c069d00cc12
A359013
Numbers k that can be written as the sum of a perfect square and a factorial in exactly 3 distinct ways.
[ "145", "46249", "63121", "42916624", "18700677890064", "28112213204100", "41654823930457982576640000", "445860623276908458083942400", "666474080134036599385635225600" ]
[ "nonn", "hard", "more" ]
13
1
1
[ "A000142", "A000290", "A358071", "A359013" ]
null
Walter Robinson, Dec 11 2022
2022-12-11T10:47:26
oeisdata/seq/A359/A359013.seq
adefd94086a1d53401f851e323a6fb76
A359014
a(n) is the index of the smallest n-gonal number with exactly n prime factors (counted with multiplicity).
[ "7", "4", "11", "50", "60", "22", "315", "264", "1295", "256", "315", "4480", "4727", "2634", "25123", "8192", "15903", "18432", "314315", "368640", "1859975", "95326", "2068659", "3145728", "2181039", "1028412", "23612379", "83886080", "18512791", "72421650", "536870912", "251658240" ]
[ "nonn", "more" ]
7
3
1
[ "A358321", "A358863", "A359014" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359014.seq
e80d87a0ce02655870445f6684a3fc99
A359015
a(n) is the index of the smallest n-gonal pyramidal number with exactly n distinct prime factors.
[ "7", "17", "84", "115", "220", "468", "3058", "5719", "18290", "182104", "144738", "1984619", "12051935" ]
[ "nonn", "more" ]
6
3
1
[ "A358864", "A359015", "A359016" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359015.seq
2671b903b7ec2f7747ad4e43710da588
A359016
a(n) is the index of the smallest n-gonal pyramidal number with exactly n prime factors (counted with multiplicity).
[ "4", "7", "9", "16", "31", "48", "28", "160", "54", "512", "128", "512", "946", "4224", "512", "10240", "11566", "4095", "1024", "65535", "94794", "180224", "22796", "262143", "1048575", "7077888", "1339848" ]
[ "nonn", "more" ]
7
3
1
[ "A358865", "A359015", "A359016" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359016.seq
bbae05527a077c62a49c098343fe1c64
A359017
a(n) is the index of the smallest triangular number with exactly n distinct prime factors.
[ "1", "2", "3", "11", "20", "84", "455", "1364", "10659", "58695", "254540", "728364", "13516580", "133595384", "812646120", "5327923964", "68971338435", "838101203939", "7588384207404", "69322940121435", "490005293940084" ]
[ "nonn", "more" ]
13
0
2
[ "A000217", "A001221", "A076550", "A076551", "A359017" ]
null
Ilya Gutkovskiy, Dec 12 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359017.seq
116f7d73f5c0111b4908c326d2c83ef7
A359018
a(n) = Sum_{d|n} d * 3^(d-1).
[ "1", "7", "28", "115", "406", "1492", "5104", "17611", "59077", "197242", "649540", "2127364", "6908734", "22325632", "71744968", "229600123", "731794258", "2324583475", "7360989292", "23245426690", "73222477552", "230128420012", "721764371008", "2259438436708", "7060738412431", "22029510754258", "68630377423960" ]
[ "nonn", "easy" ]
54
1
2
[ "A002129", "A034730", "A083413", "A167531", "A359018", "A359186", "A359189" ]
null
Seiichi Manyama, Dec 19 2022
2024-06-26T04:22:19
oeisdata/seq/A359/A359018.seq
299a50e41dd228e7a2bdad6bde079fd3
A359019
Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.
[ "1", "1", "2", "3", "6", "10", "21", "39", "82", "163", "347", "717", "1533", "3232", "6927", "14748", "31645", "67690", "145322", "311535", "668997", "1435645", "3083301", "6619842", "14218066", "30533005", "65580338", "140847132", "302522253", "649759735", "1395611508", "2997573501", "6438470626", "13829057884", "29703388721", "63799607283", "137035047576", "294336860797", "632205714741" ]
[ "nonn" ]
22
0
3
[ "A000045", "A000930", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:34:58
oeisdata/seq/A359/A359019.seq
5c83f1d2686daca33e9cfcee50bfe387
A359020
Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
[ "1", "1", "4", "6", "13", "39", "115", "295", "861", "2403", "7048", "20377", "60008", "175978", "519589", "1532455", "4531277", "13395656", "39639758", "117301153", "347248981", "1028011708", "3043852214", "9012879842", "26689014028", "79033362580", "234045889421", "693101137571", "2052569508948" ]
[ "nonn" ]
19
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:35:13
oeisdata/seq/A359/A359020.seq
096d926f74a237e5a509a46a8d8b2286
A359021
Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
[ "1", "1", "5", "10", "39", "77", "521", "1985", "8038", "32097", "130125", "525676", "2131557", "8635656", "35017970", "141968455", "575692056", "2334344849", "9465939422", "38384559168", "155652202456", "631178976378", "2559476952229", "10378857744374", "42087027204278", "170665938023137", "692062856184512" ]
[ "nonn" ]
25
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A079975", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:35:31
oeisdata/seq/A359/A359021.seq
b47c734b0c5543f6ca32c49fac811594
A359022
Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.
[ "1", "1", "9", "21", "115", "521", "1494", "15129", "83609", "459957", "2551794", "14150081", "78597739" ]
[ "nonn", "more" ]
10
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:36:30
oeisdata/seq/A359/A359022.seq
406a42c8d2cb3702ef24d42f9c1f6ce5
A359023
Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.
[ "1", "1", "12", "39", "295", "1985", "15129", "56978", "861159", "6542578", "49828415" ]
[ "nonn", "more" ]
9
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:38:00
oeisdata/seq/A359/A359023.seq
8f9b4880bde81dd9450a4c67cd432cc2
A359024
Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.
[ "1", "1", "21", "82", "861", "8038", "83609", "861159", "4495023" ]
[ "nonn", "more" ]
11
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-09-17T21:35:29
oeisdata/seq/A359/A359024.seq
5cfdc647844d98761f5fe12e5ae01b7b
A359025
Number of inequivalent tilings of a 9 X n rectangle using integer-sided square tiles.
[ "1", "1", "30", "163", "2403", "32097", "459957", "6542578", "93604244" ]
[ "nonn", "more" ]
9
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:38:09
oeisdata/seq/A359/A359025.seq
e95f366616302a5e78c366db74c0a9f5
A359026
Number of inequivalent tilings of a 10 X n rectangle using integer-sided square tiles.
[ "1", "1", "51", "347", "7048", "130125", "2551794", "49828415" ]
[ "nonn", "more" ]
9
0
3
[ "A000045", "A001224", "A002478", "A054856", "A054857", "A219925", "A219926", "A219927", "A219928", "A219929", "A227690", "A359019", "A359020", "A359021", "A359022", "A359023", "A359024", "A359025", "A359026" ]
null
John Mason, Dec 12 2022
2023-03-18T11:38:13
oeisdata/seq/A359/A359026.seq
4dbc8febc5fd5bdc5d49bd365e4d1adc
A359027
A line of empty cells is filled by successive terms t >= 1 with t+1 copies of t and gaps of t empty cells between them.
[ "1", "2", "1", "3", "4", "2", "5", "6", "2", "3", "7", "8", "4", "3", "9", "10", "5", "3", "11", "4", "12", "6", "13", "14", "4", "5", "7", "15", "16", "4", "8", "6", "5", "17", "18", "9", "19", "7", "5", "20", "6", "10", "21", "22", "5", "8", "11", "23", "6", "7", "24", "12", "9", "25", "26", "6", "13", "8", "7", "27", "10", "28", "6", "14", "29", "30", "9", "7", "11", "8", "15", "31", "32", "16", "12", "7", "10" ]
[ "nonn", "easy" ]
29
1
2
[ "A028920", "A166711", "A359027" ]
null
Tamas Sandor Nagy, Dec 12 2022
2022-12-15T17:00:16
oeisdata/seq/A359/A359027.seq
7ddf36b84f20027796bd4301dcdbd219
A359028
Integers m such that A006218(m+1)/(m+1) > A006218(m)/m.
[ "1", "2", "3", "5", "7", "8", "9", "11", "13", "14", "15", "17", "19", "20", "21", "23", "25", "26", "27", "29", "31", "32", "33", "34", "35", "37", "38", "39", "41", "43", "44", "47", "49", "51", "53", "55", "59", "62", "63", "65", "67", "69", "71", "74", "75", "77", "79", "80", "83", "87", "89", "91", "95", "97", "98", "99", "101", "103", "104", "107", "109", "111", "113", "115", "116", "119", "123", "125", "127", "129" ]
[ "nonn" ]
27
1
2
[ "A002182", "A006218", "A047255", "A050226", "A359028", "A359029" ]
null
Bernard Schott, Dec 12 2022
2022-12-17T20:02:11
oeisdata/seq/A359/A359028.seq
9965ad0883cb754a1b59ed2cf9894d86
A359029
Integers m such that A006218(m+1)/(m+1) < A006218(m)/m.
[ "6", "10", "12", "16", "18", "22", "24", "28", "30", "36", "40", "42", "45", "46", "48", "50", "52", "54", "56", "57", "58", "60", "61", "64", "66", "68", "70", "72", "73", "76", "78", "81", "82", "84", "85", "86", "88", "90", "92", "93", "94", "96", "100", "102", "105", "106", "108", "110", "112", "114", "117", "118", "120", "121", "122", "124", "126", "128", "130", "132", "133", "136" ]
[ "nonn" ]
18
1
1
[ "A006093", "A006218", "A050226", "A359028", "A359029" ]
null
Bernard Schott, Dec 18 2022
2022-12-23T13:07:26
oeisdata/seq/A359/A359029.seq
e5ec38483af170a2c7044face4f12c7b
A359030
Positive numbers that are the sum of cubes of three distinct integers in arithmetic progression.
[ "9", "27", "36", "57", "72", "99", "132", "153", "216", "219", "243", "288", "297", "324", "369", "387", "405", "408", "456", "489", "495", "531", "576", "603", "612", "645", "684", "729", "792", "855", "867", "963", "972", "996", "1017", "1056", "1071", "1125", "1179", "1197", "1224", "1233", "1353", "1368", "1407", "1455", "1476", "1539", "1548", "1584", "1701", "1728", "1737", "1752", "1845", "1881" ]
[ "nonn" ]
21
1
1
[ "A306213", "A359030", "A359078" ]
null
Robert Israel, Dec 15 2022
2022-12-21T04:50:10
oeisdata/seq/A359/A359030.seq
a99a8133b5911304a66dcf6e42ddc093
A359031
a(n+1) gives the number of occurrences of the mode of the digits of a(n) among all the digits of [a(0), a(1), ..., a(n)], with a(0)=0.
[ "0", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "2", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2", "10", "3", "3", "4", "3", "5", "3", "6", "3", "7", "3", "8", "3", "9", "3", "10", "4", "4", "5", "4", "6", "4", "7", "4", "8", "4", "9", "4", "10", "5", "5", "6", "5", "7", "5", "8", "5", "9", "5", "10", "6", "6", "7", "6", "8", "6", "9", "6", "10", "7", "7", "8", "7", "9", "7", "10" ]
[ "nonn", "base", "look" ]
21
0
4
[ "A248034", "A249009", "A322182", "A336514", "A356348", "A358851", "A358967", "A359031" ]
null
Bence Bernáth, Dec 12 2022
2024-12-23T14:53:46
oeisdata/seq/A359/A359031.seq
52abdf14f1fd16d52797d36436349f63
A359032
a(n) is the number of ways to place non-attacking queens on an n X n board with no queens above the main diagonal.
[ "1", "2", "4", "9", "23", "66", "204", "669", "2305", "8348", "31542", "124021", "507937", "2154494", "9455972", "42847307", "200258387", "962904904", "4759773172", "24142168317", "125575232141", "668689805690", "3643481771390", "20286338601133" ]
[ "nonn", "more", "hard" ]
53
0
2
[ "A274616", "A287227", "A359032" ]
null
Alexander Kuleshov, Dec 13 2022
2023-03-20T19:24:17
oeisdata/seq/A359/A359032.seq
643557de38d22b2a6651dbb12dcdeec4
A359033
Maximum number of sides in any region when the vertices of a regular n-gon are connected by circles and where the vertices lie at the ends of the circles' diameters (cf. A359009 and A358782).
[ "2", "3", "3", "5", "12", "7", "6", "9", "20", "11", "6", "13", "28", "15", "8", "17", "36", "19", "8", "21", "44", "23", "10", "25", "52", "27", "8", "29", "60", "31", "10", "33", "68", "35", "10", "37", "76", "39", "10", "41", "84" ]
[ "nonn", "more" ]
19
2
1
[ "A358782", "A359009", "A359033" ]
null
Scott R. Shannon, Dec 12 2022
2023-04-06T21:42:28
oeisdata/seq/A359/A359033.seq
847865b5c6794bb278ba1dd222f92b8a
A359034
a(n+1) is the sum of the number of terms in all groups of contiguous terms that add up to a(n); a(1)=1.
[ "1", "1", "2", "3", "3", "4", "4", "5", "3", "5", "4", "6", "6", "7", "7", "8", "10", "11", "4", "7", "9", "9", "10", "12", "13", "14", "13", "15", "8", "11", "7", "10", "13", "16", "19", "18", "18", "19", "19", "20", "7", "11", "8", "12", "14", "14", "15", "9", "11", "9", "12", "15", "10", "14", "16", "20", "14", "17", "17", "18", "22", "22", "23", "22", "24", "23", "23", "24", "24", "25", "28", "27", "22" ]
[ "nonn" ]
35
1
3
[ "A124056", "A331614", "A358919", "A359034" ]
null
Neal Gersh Tolunsky, Dec 12 2022
2023-04-09T11:49:58
oeisdata/seq/A359/A359034.seq
b5256e3405603ec3a7b74694427ab194
A359035
a(n+1) is the smallest number not already used which can be written as the product of two numbers with the same difference as a(n) and a(n-1); a(1)=1 and a(2)=2.
[ "1", "2", "6", "5", "12", "8", "21", "14", "18", "32", "15", "38", "24", "51", "28", "50", "23", "58", "36", "48", "13", "74", "62", "45", "60", "16", "92", "77", "34", "44", "11", "70", "122", "53", "142", "90", "108", "19", "182", "164", "40", "125", "86", "82", "96", "72", "25", "98", "150", "165", "54", "112", "59", "110", "52", "120", "69", "106", "78", "29", "102", "228", "127", "206", "80", "256", "177", "162" ]
[ "nonn" ]
25
1
2
[ "A002378", "A359035" ]
null
Neal Gersh Tolunsky, Dec 12 2022
2023-04-09T15:31:31
oeisdata/seq/A359/A359035.seq
3e12b9958a7d8e129023b07c49eaea39
A359036
a(1) = 1. Thereafter a(n) is the least unused k distinct from n such that d(k) = d(n), where d is the divisor counting function, A000005.
[ "1", "3", "2", "9", "7", "8", "5", "6", "4", "14", "13", "18", "11", "10", "21", "81", "19", "12", "17", "28", "15", "26", "29", "30", "49", "22", "33", "20", "23", "24", "37", "44", "27", "35", "34", "100", "31", "39", "38", "42", "43", "40", "41", "32", "50", "51", "53", "80", "25", "45", "46", "63", "47", "56", "57", "54", "55", "62", "61", "72", "59", "58", "52", "729", "69", "70", "71", "75" ]
[ "nonn" ]
19
1
2
[ "A000005", "A005179", "A358820", "A359036" ]
null
David James Sycamore, Dec 13 2022
2024-02-22T20:06:07
oeisdata/seq/A359/A359036.seq
c8482a36a2f3c3c0b8ad9a32e6e0447d
A359037
a(n) = Sum_{d|n} tau(d^6), where tau(n) = number of divisors of n, cf. A000005.
[ "1", "8", "8", "21", "8", "64", "8", "40", "21", "64", "8", "168", "8", "64", "64", "65", "8", "168", "8", "168", "64", "64", "8", "320", "21", "64", "40", "168", "8", "512", "8", "96", "64", "64", "64", "441", "8", "64", "64", "320", "8", "512", "8", "168", "168", "64", "8", "520", "21", "168", "64", "168", "8", "320", "64", "320", "64", "64", "8", "1344", "8", "64", "168", "133", "64", "512", "8", "168", "64", "512", "8", "840", "8" ]
[ "nonn", "mult", "easy" ]
20
1
2
[ "A000005", "A007425", "A035116", "A061391", "A321348", "A356574", "A358380", "A359037", "A359038" ]
null
Seiichi Manyama, Dec 13 2022
2022-12-15T09:59:44
oeisdata/seq/A359/A359037.seq
5f004ac4cf39362e8517ee3a1e2dccdb
A359038
a(n) = Sum_{d|n} tau(d^7), where tau(n) = number of divisors of n, cf. A000005.
[ "1", "9", "9", "24", "9", "81", "9", "46", "24", "81", "9", "216", "9", "81", "81", "75", "9", "216", "9", "216", "81", "81", "9", "414", "24", "81", "46", "216", "9", "729", "9", "111", "81", "81", "81", "576", "9", "81", "81", "414", "9", "729", "9", "216", "216", "81", "9", "675", "24", "216", "81", "216", "9", "414", "81", "414", "81", "81", "9", "1944", "9", "81", "216", "154", "81", "729", "9", "216", "81", "729", "9" ]
[ "nonn", "mult", "easy" ]
24
1
2
[ "A000005", "A007425", "A035116", "A061391", "A321348", "A356574", "A358380", "A359037", "A359038" ]
null
Seiichi Manyama, Dec 13 2022
2022-12-14T09:08:36
oeisdata/seq/A359/A359038.seq
727d401b3deb4f2d2d8cb5c86b40aab6
A359039
Number of Wachs permutations of size n.
[ "1", "1", "2", "4", "8", "24", "48", "192", "384", "1920", "3840", "23040", "46080", "322560", "645120", "5160960", "10321920", "92897280", "185794560", "1857945600", "3715891200", "40874803200", "81749606400", "980995276800", "1961990553600", "25505877196800", "51011754393600", "714164561510400", "1428329123020800" ]
[ "nonn" ]
33
0
3
[ "A016116", "A081123", "A359039" ]
null
Per W. Alexandersson, Dec 13 2022
2023-12-21T20:55:22
oeisdata/seq/A359/A359039.seq
914f76966dc5f7fd0d343e51b475fcfe
A359040
Sum of the number of divisors of floor(n/(b*c)) with b,c > 0 and b*c <= n.
[ "1", "4", "6", "12", "13", "21", "21", "32", "34", "39", "39", "59", "57", "61", "63", "80", "79", "94", "92", "107", "105", "107", "107", "149", "145", "144", "146", "158", "156", "176", "172", "199", "197", "197", "195", "239", "234", "234", "230", "263", "259", "273", "269", "279", "280", "280", "280", "354", "346", "346", "342", "346", "344" ]
[ "nonn" ]
7
1
2
null
null
Charles R Greathouse IV, Dec 13 2022
2023-01-24T23:39:00
oeisdata/seq/A359/A359040.seq
ecc8a6b2e7c301f9345a8626b11423c1
A359041
Number of finite sets of integer partitions with all equal sums and total sum n.
[ "1", "1", "2", "3", "6", "7", "14", "15", "32", "31", "63", "56", "142", "101", "240", "211", "467", "297", "985", "490", "1524", "1247", "2542", "1255", "6371", "1979", "7486", "7070", "14128", "4565", "32953", "6842", "42229", "37863", "56266", "17887", "192914", "21637", "145820", "197835", "371853", "44583", "772740", "63261", "943966", "1124840" ]
[ "nonn" ]
10
0
3
[ "A000005", "A000041", "A001970", "A034691", "A038041", "A055887", "A063834", "A074854", "A098407", "A133494", "A261049", "A271619", "A279787", "A289078", "A304961", "A305551", "A305552", "A306017", "A336342", "A358904", "A358906", "A358907", "A359041" ]
null
Gus Wiseman, Dec 14 2022
2022-12-14T10:56:13
oeisdata/seq/A359/A359041.seq
9597044ae10acbdde7c09ff1a0797886
A359042
Sum of partial sums of the n-th composition in standard order (A066099).
[ "0", "1", "2", "3", "3", "5", "4", "6", "4", "7", "6", "9", "5", "8", "7", "10", "5", "9", "8", "12", "7", "11", "10", "14", "6", "10", "9", "13", "8", "12", "11", "15", "6", "11", "10", "15", "9", "14", "13", "18", "8", "13", "12", "17", "11", "16", "15", "20", "7", "12", "11", "16", "10", "15", "14", "19", "9", "14", "13", "18", "12", "17", "16", "21", "7", "13", "12", "18", "11", "17", "16", "22" ]
[ "nonn" ]
12
0
3
[ "A000009", "A000120", "A001511", "A011782", "A029837", "A029931", "A053632", "A065120", "A066099", "A070939", "A133494", "A242628", "A253565", "A253566", "A264034", "A318283", "A358133", "A358134", "A358135", "A358136", "A358137", "A358194", "A359042", "A359043" ]
null
Gus Wiseman, Dec 20 2022
2023-04-16T06:32:19
oeisdata/seq/A359/A359042.seq
8f84a9ef7a8c9a042d1212cdf030c681
A359043
Sum of adjusted partial sums of the n-th composition in standard order (A066099). Row sums of A242628.
[ "0", "1", "2", "2", "3", "4", "3", "3", "4", "6", "5", "6", "4", "5", "4", "4", "5", "8", "7", "9", "6", "8", "7", "8", "5", "7", "6", "7", "5", "6", "5", "5", "6", "10", "9", "12", "8", "11", "10", "12", "7", "10", "9", "11", "8", "10", "9", "10", "6", "9", "8", "10", "7", "9", "8", "9", "6", "8", "7", "8", "6", "7", "6", "6", "7", "12", "11", "15", "10", "14", "13", "16", "9", "13", "12", "15", "11", "14", "13" ]
[ "nonn" ]
9
0
3
[ "A000120", "A005940", "A011782", "A019565", "A029837", "A029931", "A048793", "A059893", "A066099", "A125106", "A161511", "A242628", "A253565", "A253566", "A358133", "A358134", "A358135", "A358170", "A358194", "A359042", "A359043" ]
null
Gus Wiseman, Dec 21 2022
2022-12-21T20:11:44
oeisdata/seq/A359/A359043.seq
f613ab9211213ba87959bc83db1d7c47
A359044
Primes p such that primepi(p)-1 divides p-1.
[ "3", "5", "7", "31", "97", "101", "331", "1009", "1093", "1117", "1123", "1129", "3067", "64621", "480853", "481009", "481021", "481093", "481297", "481417", "3524431", "9558361", "9559591", "9560041", "9560071", "189961939", "189962011", "189962137", "189962623", "189963271", "189963901", "189968923", "514273609", "514274027" ]
[ "nonn" ]
9
1
1
[ "A105286", "A359044" ]
null
Chai Wah Wu, Dec 14 2022
2022-12-14T11:23:21
oeisdata/seq/A359/A359044.seq
750395bab7211b11cac5578f7794be3e
A359045
a(n) = Sum_{1<=i<j<k<=n} b(i)*b(j)*b(k), where b(m) = A020985(m).
[ "0", "0", "0", "-1", "-2", "-2", "-4", "-5", "-4", "0", "8", "-5", "-12", "-14", "-16", "-17", "-20", "-20", "-16", "-25", "-22", "-14", "-28", "-21", "-34", "-40", "-40", "-45", "-46", "-42", "-52", "-49", "-40", "-24", "0", "-33", "-10", "22", "-20", "11", "52", "104", "168", "91", "28", "-22", "16", "-33", "-70", "-96", "-112", "-105", "-120", "-126", "-128", "-133" ]
[ "sign" ]
6
0
5
[ "A020985", "A190173", "A213626", "A213786", "A213787", "A359045" ]
null
Chai Wah Wu, Feb 12 2023
2023-02-14T08:54:52
oeisdata/seq/A359/A359045.seq
f9a2b72104d02c8b67bf5e69589c8fd0
A359046
Number of distinct regions among all circles that can be constructed on vertices of an n-sided regular polygon, using only a compass.
[ "1", "3", "7", "45", "66", "186", "267", "657", "721", "1501", "1893", "2772", "3654", "5727", "6511", "9969", "11340", "14850", "18051", "23921", "26755", "35201", "39975", "47280", "55776", "69863", "75385", "93017", "102864", "117810", "134541", "161217", "172921", "205293", "221271", "252828", "277242", "322811", "341017", "393721", "420702", "466074", "509379" ]
[ "nonn" ]
22
1
2
[ "A007678", "A331702", "A358782", "A359046", "A359047", "A359061" ]
null
Scott R. Shannon, Dec 14 2022
2022-12-15T06:47:58
oeisdata/seq/A359/A359046.seq
8c7f539af24cb03ee85dc6d0b08686e8
A359047
Number of distinct edges among all circles that can be constructed on vertices of an n-sided regular polygon, using only a compass.
[ "1", "4", "12", "84", "120", "330", "504", "1240", "1332", "2850", "3696", "5172", "7176", "10906", "12660", "19280", "22440", "28494", "35796", "46220", "52752", "68662", "79488", "91272", "111000", "136838", "149472", "181972", "204972", "229650", "268212", "317024", "343860", "404090", "441420", "496764", "553224", "636538", "679224", "776200", "839844", "914634", "1017036" ]
[ "nonn" ]
15
1
2
[ "A135565", "A331702", "A358783", "A359046", "A359047", "A359061" ]
null
Scott R. Shannon, Dec 14 2022
2022-12-15T06:47:51
oeisdata/seq/A359/A359047.seq
85c6cf5c301ce31729344059beb4c232
A359048
a(n) is the minimum denominator d such that the decimal expansion of n/d is eventually periodic with periodicity not equal to zero.
[ "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "9", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "9", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "11", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "7", "3", "3", "9", "3", "3", "7", "3", "3", "7" ]
[ "base", "easy", "hear", "nonn" ]
35
1
1
null
null
Leonardo Sznajder, Dec 14 2022
2025-01-18T09:07:11
oeisdata/seq/A359/A359048.seq
135093cd435c03c36e5917da4a48d2ed
A359049
Autobiographical numbers k whose decimal digits are a concatenation count(0), count(1), ..., count(m) for some m, where count(j) is the number of (possibly overlapping) occurrences of j within the digits of k itself.
[ "1210", "2020", "21200", "3211000", "42101000", "521001000", "6210001000", "53110100002", "62200010001", "541011000021", "6401101000310", "74011001003100", "840110001031000", "1040110000031000", "9321000001201000", "94201000012110000", "1160010100041000010", "11611001000320000100", "13313000000001200000", "13313000000100200000" ]
[ "nonn", "base" ]
32
1
1
[ "A046043", "A138480", "A359049" ]
null
Marc Morgenegg, Dec 14 2022
2023-01-12T18:44:10
oeisdata/seq/A359/A359049.seq
7337b745f9d9eeb2ccae6b221ec5e900
A359050
a(n) is the least k such that fusc(k) + fusc(k+1) = n, where "fusc" is Stern's diatomic series (A002487).
[ "0", "1", "2", "4", "5", "16", "9", "10", "17", "19", "18", "22", "21", "34", "36", "46", "38", "37", "41", "94", "42", "70", "69", "76", "75", "73", "77", "133", "74", "82", "86", "139", "137", "85", "141", "157", "138", "268", "162", "148", "146", "289", "150", "154", "182", "166", "149", "283", "165", "169", "276", "274", "281", "637", "170", "292", "282", "307", "314" ]
[ "nonn", "look" ]
18
1
3
[ "A002487", "A359050" ]
null
Rémy Sigrist, Dec 14 2022
2022-12-16T17:59:02
oeisdata/seq/A359/A359050.seq
250191851cb714863bf8fa5aad27d56a
A359051
Irregular table T(n, k), n > 0, k = 1..A000010(n); the n-th row lists the numbers k such that fusc(k) + fusc(k+1) = n, where "fusc" is Stern's diatomic series (A002487).
[ "0", "1", "2", "3", "4", "7", "5", "6", "8", "15", "16", "31", "9", "11", "12", "14", "32", "63", "10", "13", "64", "127", "17", "23", "24", "30", "128", "255", "19", "28", "256", "511", "18", "20", "27", "29", "33", "47", "48", "62", "512", "1023", "22", "25", "1024", "2047", "21", "26", "35", "39", "56", "60", "65", "95", "96", "126", "2048", "4095", "34", "40", "55", "61", "4096", "8191" ]
[ "nonn", "tabf" ]
11
1
3
[ "A000010", "A002487", "A359050", "A359051" ]
null
Rémy Sigrist, Dec 14 2022
2022-12-16T11:52:18
oeisdata/seq/A359/A359051.seq
7d0132140ba86b0dbfea4f81f3411779
A359052
a(n) = Sum_{d|n} sigma_d(d)^n.
[ "1", "26", "21953", "5554572467", "298500366308609377", "11413459460309090641106905930", "256925761343390078522337875137209684721665", "6476754651706496208416137876625690606583079440495100502628" ]
[ "nonn" ]
18
1
2
[ "A344060", "A359052", "A359053", "A359054" ]
null
Seiichi Manyama, Dec 14 2022
2023-08-27T17:02:56
oeisdata/seq/A359/A359052.seq
a41ffa18962398125e627a5ffb96bf63
A359053
a(n) = Sum_{d|n} sigma_d(d)^(n/d).
[ "1", "6", "29", "299", "3127", "48360", "823545", "16918164", "387462126", "10019541652", "285311670613", "8920567022545", "302875106592255", "11113363273445312", "437893951476881153", "18447309245488431653", "827240261886336764179", "39346708488214110663954", "1978419655660313589123981" ]
[ "nonn" ]
17
1
2
[ "A344061", "A359052", "A359053", "A359054" ]
null
Seiichi Manyama, Dec 14 2022
2023-08-27T17:02:28
oeisdata/seq/A359/A359053.seq
419f391ce6a76e1b6df4249391da4128
A359054
a(n) = Sum_{d|n} sigma_d(d)^d.
[ "1", "26", "21953", "5554571867", "298500366308609377", "11413459460309090640625021978", "256925761343390078522337875137209684721665", "6476754651706496208416137876625690606552226172163824554588" ]
[ "nonn" ]
16
1
2
[ "A344047", "A359052", "A359053", "A359054" ]
null
Seiichi Manyama, Dec 14 2022
2023-08-27T17:03:11
oeisdata/seq/A359/A359054.seq
fe8e7fbdaa93609a04b986a90a22e51c
A359055
Numbers that can be represented in more than one way as the sum of cubes of three distinct positive numbers in arithmetic progression.
[ "5643", "12384", "31977", "45144", "99072", "123849", "152361", "153792", "255816", "259776", "269739", "274968", "334368", "361152", "477576", "500445", "705375", "792576", "863379", "912339", "928017", "950931", "990792", "1090584", "1218888", "1230336", "1548000", "1629144", "1700424", "1737252", "1799523", "1813512", "1935549", "1941192", "2046528", "2078208" ]
[ "nonn" ]
17
1
1
[ "A306213", "A359055" ]
null
Robert Israel, Dec 14 2022
2022-12-16T09:37:15
oeisdata/seq/A359/A359055.seq
c686548ed2d82a04be7ef1c67d64aa2b
A359056
Numbers k >= 3 such that 1/d(k - 2) + 1/d(k - 1) + 1/d(k) is an integer, d(i) = A000005(i).
[ "3", "8", "15", "23", "39", "59", "159", "179", "383", "503", "543", "719", "879", "1203", "1319", "1383", "1439", "1623", "1823", "2019", "2559", "2579", "2859", "2903", "3063", "3119", "3779", "4283", "4359", "4443", "4679", "4703", "5079", "5099", "5583", "5639", "5703", "5939", "6339", "6639", "6663", "6719", "6999", "7419", "8223", "8783", "8819", "9183", "9663", "9903", "10079", "10839" ]
[ "nonn" ]
32
1
1
[ "A000005", "A317670", "A350675", "A359056" ]
null
Ctibor O. Zizka, Dec 14 2022
2024-12-30T17:06:11
oeisdata/seq/A359/A359056.seq
b6d900bb30fc2866371b2aa89200e41d
A359057
Decimal expansion of 1/(1 - e^(-gamma)).
[ "2", "2", "8", "0", "2", "9", "1", "0", "1", "6", "5", "1", "4", "3", "6", "0", "4", "2", "8", "2", "8", "6", "7", "4", "6", "8", "1", "2", "3", "2", "5", "1", "0", "9", "0", "1", "8", "1", "1", "0", "2", "8", "2", "4", "1", "3", "3", "2", "7", "4", "3", "8", "0", "5", "3", "4", "5", "0", "4", "1", "8", "7", "6", "6", "9", "0", "7", "6", "6", "2", "8", "0", "4", "4", "0", "1", "6", "1", "5", "6", "0", "6", "1", "1", "6", "2", "1", "8", "8", "6", "0", "4", "2", "3", "6", "0", "9", "1", "2", "8", "0", "5", "2", "2", "9" ]
[ "nonn", "cons" ]
23
1
1
[ "A001113", "A001620", "A080130", "A174973", "A227242", "A359057" ]
null
Omar E. Pol, Dec 14 2022
2022-12-21T20:48:05
oeisdata/seq/A359/A359057.seq
5c73bb364bfdc9f1d7f488a5a6155b62
A359058
a(n) = squared distance to the origin of the n-th vertex on a counterclockwise undulating spiral in a square grid.
[ "0", "1", "2", "1", "4", "5", "2", "5", "4", "1", "2", "1", "4", "5", "2", "5", "4", "9", "10", "5", "8", "5", "10", "9", "16", "17", "10", "13", "8", "13", "10", "17", "16", "9", "10", "5", "8", "5", "10", "9", "16", "17", "10", "13", "8", "13", "10", "17", "16", "25", "26", "17", "20", "13", "18", "13", "20", "17", "26", "25", "36", "37", "26", "29", "20", "25", "18", "25", "20", "29", "26", "37", "36", "25", "26", "17", "20", "13", "18", "13", "20" ]
[ "nonn", "easy" ]
47
0
3
[ "A001481", "A336336", "A359058", "A359216", "A359217" ]
null
Hans G. Oberlack, Dec 14 2022
2023-04-01T11:22:24
oeisdata/seq/A359/A359058.seq
8ad14fa61b4380d738a7996aa7f49e83
A359059
Numbers k such that phi(k) + rad(k) + psi(k) is a multiple of 3.
[ "1", "2", "3", "5", "7", "8", "9", "11", "13", "17", "18", "19", "20", "23", "27", "29", "31", "32", "36", "37", "41", "42", "43", "44", "45", "47", "49", "50", "53", "54", "59", "61", "63", "67", "68", "71", "72", "73", "78", "79", "80", "81", "83", "84", "89", "90", "92", "97", "99", "101", "103", "105", "107", "108", "109", "110", "113", "114", "116", "117", "125", "126", "127", "128", "131", "135", "137", "139" ]
[ "nonn" ]
47
1
2
[ "A000010", "A000040", "A000244", "A000420", "A001022", "A001029", "A001615", "A001748", "A007645", "A007947", "A009975", "A009981", "A009987", "A359059" ]
null
Torlach Rush, Dec 14 2022
2023-01-29T09:51:47
oeisdata/seq/A359/A359059.seq
2f467f11c585969fb5624835b7705c11
A359060
Decimal expansion of Sum_{n >= 1} sigma_4(n)/n!.
[ "4", "2", "3", "0", "1", "0", "4", "7", "5", "0", "3", "7", "3", "3", "5", "0", "8", "0", "6", "6", "8", "6", "4", "2", "8", "4", "0", "6", "2", "5", "3", "0", "7", "6", "4", "5", "3", "0", "5", "9", "5", "6", "7", "0", "6", "2", "2", "4", "9", "3", "3", "2", "3", "1", "5", "5", "1", "1", "8", "8", "7", "6", "9", "4", "9", "4", "2", "6", "8", "9", "9", "1", "3", "1", "9", "7", "6", "5", "8", "1", "2" ]
[ "cons", "nonn" ]
10
2
1
[ "A227988", "A227989", "A307036", "A359060" ]
null
Charles R Greathouse IV, Dec 14 2022
2023-06-21T06:37:46
oeisdata/seq/A359/A359060.seq
d0bc3ad0a3bf5f4baf1d56077fb1081b
A359061
Irregular table read by rows: T(n,k) is the number of k-gons formed, k>=2, among all circles that can be constructed on vertices of an n-sided regular polygon, using only a compass.
[ "3", "0", "7", "0", "16", "29", "0", "30", "35", "1", "0", "90", "96", "0", "105", "126", "35", "1", "0", "272", "304", "48", "32", "0", "1", "0", "315", "324", "81", "0", "0", "0", "1", "0", "460", "940", "60", "40", "0", "0", "0", "1", "0", "671", "858", "264", "88", "11", "0", "0", "0", "1", "0", "960", "1656", "108", "48", "0", "1144", "1807", "559", "130", "13", "0", "0", "0", "0", "0", "1", "0", "1960", "3136", "448", "168", "0", "14", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "tabf" ]
16
2
1
[ "A007678", "A331702", "A358782", "A359009", "A359046", "A359047", "A359061" ]
null
Scott R. Shannon, Dec 14 2022
2022-12-15T06:47:00
oeisdata/seq/A359/A359061.seq
e7aa131277f034a8725d0fa115883aa7
A359062
Nonprime terms of A359059.
[ "1", "8", "9", "18", "20", "27", "32", "36", "42", "44", "45", "49", "50", "54", "63", "68", "72", "78", "80", "81", "84", "90", "92", "99", "105", "108", "110", "114", "116", "117", "125", "126", "128", "135", "144", "153", "156", "162", "164", "168", "169", "170", "171", "176", "180", "186", "188", "189", "195", "198", "200", "207", "210", "212", "216", "222", "225", "228", "230" ]
[ "nonn" ]
33
1
2
[ "A000010", "A001615", "A007947", "A359059", "A359062" ]
null
Torlach Rush, Dec 15 2022
2023-02-12T20:51:59
oeisdata/seq/A359/A359062.seq
d064aec19245fa16dd2e741282e2cc47
A359063
Integers k such that A005420(k) = A005420(2*k) = A005420(4*k) where A005420(k) is the largest prime factor of 2^k-1.
[ "7", "13", "17", "31", "37", "59", "61", "65", "77", "83", "89", "97", "107", "127", "129", "131", "133", "145", "153", "165", "169", "179", "195", "197", "201", "221", "227", "235", "245", "249", "261", "269", "281", "293", "297", "303", "321", "325", "345", "369", "373", "381", "393", "399", "405", "409", "417", "421", "425", "427", "442", "443", "447", "455", "465" ]
[ "nonn", "hard" ]
17
1
1
[ "A005420", "A359063" ]
null
Michel Marcus, Dec 15 2022
2022-12-16T17:58:37
oeisdata/seq/A359/A359063.seq
a8c4fa8eb2af4b9e3df0ecc4bf9da550
A359064
a(n) is the number of trees of order n such that the number of eigenvalues of the Laplacian matrix in the interval [0, 1) is equal to ceiling((d + 1)/3) = A008620(d), where d is the diameter of the tree.
[ "2", "5", "7", "12", "20", "33", "52", "86", "137", "222", "353", "568", "900", "1433", "2260", "3574" ]
[ "nonn", "more" ]
6
5
1
[ "A000055", "A008620", "A359064" ]
null
Stefano Spezia, Dec 15 2022
2022-12-15T13:39:06
oeisdata/seq/A359/A359064.seq
5e1d85c351690e2987fa84c0dc646d4e
A359065
Lexicographically earliest sequence of distinct positive composite integers such that no subsequence sums to a prime and in which all terms are coprime.
[ "4", "21", "65", "209", "391", "3149", "9991", "368131", "57556589", "14865154981" ]
[ "nonn", "more" ]
27
1
1
[ "A052349", "A068638", "A359065" ]
null
Conor Houghton, Dec 15 2022
2023-04-11T12:06:20
oeisdata/seq/A359/A359065.seq
c81ef43de6feccea3004cd8b2454678d
A359066
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).
[ "1", "1", "5", "7", "31", "49", "209", "351", "1471", "2561", "10625", "18943", "78079", "141569", "580865", "1066495", "4361215", "8085505", "32978945", "61616127", "250806271", "471556097", "1916280833", "3621830655", "14698053631", "27902803969", "113104519169", "215530668031", "872801042431", "1668644405249", "6751535300609" ]
[ "easy", "nonn" ]
36
1
3
[ "A178792", "A240721", "A289871", "A359066", "A359067", "A359068" ]
null
Bridget Tenner, Dec 15 2022
2023-01-09T21:30:51
oeisdata/seq/A359/A359066.seq
a76acdabb2abe15cdc544df7cb903e79
A359067
a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k). a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
[ "0", "1", "4", "7", "28", "49", "199", "351", "1436", "2561", "10499", "18943", "77617", "141569", "579149", "1066495", "4354780", "8085505", "32954635", "61616127", "250713893", "471556097", "1915928117", "3621830655", "14696701553", "27902803969", "113099318869", "215530668031", "872780984131", "1668644405249", "6751457741849" ]
[ "easy", "nonn" ]
24
1
3
[ "A178792", "A240721", "A289871", "A359066", "A359067", "A359068" ]
null
Bridget Tenner, Dec 15 2022
2023-01-09T16:41:55
oeisdata/seq/A359/A359067.seq
960f5053f49ccce0f5c3ab76a80661f4
A359068
Number of 1-sided strip polyominoes with n cells.
[ "1", "1", "2", "5", "10", "24", "52", "124", "282", "668", "1548", "3654", "8533", "20093", "47033", "110533", "258807", "607227", "1421055", "3329585", "7785995", "18221563", "42575336", "99539106", "232398659", "542864111", "1266567155", "2956342341", "6893180336", "16078817198", "37469245219", "87347384305", "203447081205" ]
[ "nonn", "more" ]
40
1
3
[ "A151514", "A333313", "A359068" ]
null
Arthur O'Dwyer, Jan 11 2023
2023-01-18T03:25:16
oeisdata/seq/A359/A359068.seq
a912b4f2d0a6f86d3fa11afdb8aaa615
A359069
Smallest prime p such that p^(2n-1) - 1 is the product of 2n-1 distinct primes.
[ "3", "59", "47", "79", "347", "6343", "56711", "4523" ]
[ "nonn", "hard", "more" ]
20
1
1
[ "A001597", "A005117", "A045542", "A280005", "A359069", "A359070" ]
null
Kevin P. Thompson, Dec 15 2022
2023-01-31T08:32:34
oeisdata/seq/A359/A359069.seq
ef2fb5c11f2b489dfc2eac5644c3e88c
A359070
Smallest k > 1 such that k^n - 1 is the product of n distinct primes.
[ "3", "4", "15", "12", "39", "54", "79", "86", "144", "318", "1591", "144", "20131", "2014", "1764", "1308", "46656", "1296" ]
[ "nonn", "hard", "more" ]
12
1
1
[ "A001597", "A005117", "A045542", "A219019", "A281940", "A359069", "A359070" ]
null
Kevin P. Thompson, Dec 15 2022
2023-02-07T15:16:41
oeisdata/seq/A359/A359070.seq
9751ef31c79a4c67cabc3d9850d1ad10
A359071
Numerators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).
[ "1", "2", "5", "7", "9", "11", "35", "19", "22", "25", "53", "59", "65", "71", "145", "157", "163", "175", "181", "193", "205", "217", "221", "227", "239", "81", "83", "87", "91", "95", "479", "499", "519", "539", "549", "569", "589", "609", "1847", "1907", "1967", "2027", "2057", "2087", "2147", "2207", "1111", "563", "1141", "1171", "593", "608", "613", "628", "211" ]
[ "nonn", "frac" ]
9
2
2
[ "A051903", "A129132", "A242977", "A359071", "A359072" ]
null
Amiram Eldar, Dec 15 2022
2022-12-26T03:11:43
oeisdata/seq/A359/A359071.seq
38666a29ec04ff581750715b4c14f4a3
A359072
Denominators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).
[ "1", "1", "2", "2", "2", "2", "6", "3", "3", "3", "6", "6", "6", "6", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "4", "4", "4", "4", "4", "20", "20", "20", "20", "20", "20", "20", "20", "60", "60", "60", "60", "60", "60", "60", "60", "30", "15", "30", "30", "15", "15", "15", "15", "5", "5", "5", "5", "10", "10", "10", "5", "30", "30", "30", "30", "15", "15", "15", "15", "5", "5" ]
[ "nonn", "frac" ]
15
2
3
[ "A051903", "A129132", "A359071", "A359072" ]
null
Amiram Eldar, Dec 15 2022
2023-02-12T16:31:28
oeisdata/seq/A359/A359072.seq
e67f28fa4bc5654175f92a8e7f2331c9
A359073
Sum of square end-to-end displacements over all n-step self-avoiding walks of A359709.
[ "0", "4", "16", "44", "160", "556", "1744", "12252", "15840", "98876", "138160", "709900", "1155616", "5098260", "11820656", "37085908", "111147104", "281078764", "932893104", "2255139900", "7295211968", "18928121236", "54864568720", "160016686500", "404167501888", "1331607134172", "2945597090384", "10805511468852", "21448743511648" ]
[ "nonn", "walk" ]
17
0
2
[ "A001411", "A103606", "A173380", "A336448", "A337353", "A356617", "A358036", "A358046", "A359073", "A359133", "A359709" ]
null
Scott R. Shannon, Jan 12 2023
2023-01-15T15:11:31
oeisdata/seq/A359/A359073.seq
559de176ae3b241f8c8b6fea08506755
A359074
Numbers that have at least two divisors with an equal sum of digits.
[ "10", "12", "18", "20", "21", "22", "24", "27", "30", "36", "40", "42", "44", "45", "48", "50", "52", "54", "60", "63", "66", "70", "72", "80", "81", "84", "88", "90", "96", "100", "102", "104", "105", "108", "110", "111", "112", "114", "115", "117", "120", "124", "126", "130", "132", "133", "135", "136", "140", "144", "147", "150", "152", "153", "154", "156", "160", "162", "165" ]
[ "nonn", "base" ]
22
1
1
[ "A000005", "A007953", "A359074", "A359075", "A359076" ]
null
Stefano Spezia, Dec 15 2022
2023-01-13T11:32:44
oeisdata/seq/A359/A359074.seq
44f5b9d9c7df6affd36d129290c5b700
A359075
Numbers that do not have two divisors with an equal sum of digits.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "13", "14", "15", "16", "17", "19", "23", "25", "26", "28", "29", "31", "32", "33", "34", "35", "37", "38", "39", "41", "43", "46", "47", "49", "51", "53", "55", "56", "57", "58", "59", "61", "62", "64", "65", "67", "68", "69", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "85", "86", "87", "89", "91", "92", "93", "94", "95", "97" ]
[ "nonn", "base" ]
9
1
2
[ "A000005", "A007953", "A359074", "A359075", "A359077" ]
null
Stefano Spezia, Dec 15 2022
2022-12-21T20:22:14
oeisdata/seq/A359/A359075.seq
c08de5629eb1b7eedac1595d05e1e8ed
A359076
Numbers that have at least two proper divisors with an equal sum of digits.
[ "20", "22", "24", "30", "36", "40", "42", "44", "48", "50", "52", "54", "60", "63", "66", "70", "72", "80", "81", "84", "88", "90", "96", "100", "102", "104", "105", "108", "110", "112", "115", "120", "124", "126", "130", "132", "135", "136", "140", "144", "147", "150", "154", "156", "160", "162", "165", "168", "170", "175", "176", "180", "189", "190", "192", "198", "200" ]
[ "nonn", "base" ]
19
1
1
[ "A000005", "A007953", "A359074", "A359076", "A359077" ]
null
Stefano Spezia, Dec 15 2022
2023-01-20T01:30:50
oeisdata/seq/A359/A359076.seq
147bfdccb4a6bddd4a6081da421da509
A359077
Numbers that do not have two proper divisors with an equal sum of digits.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "23", "25", "26", "27", "28", "29", "31", "32", "33", "34", "35", "37", "38", "39", "41", "43", "45", "46", "47", "49", "51", "53", "55", "56", "57", "58", "59", "61", "62", "64", "65", "67", "68", "69", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "85", "86", "87", "89" ]
[ "nonn", "base" ]
12
1
2
[ "A000005", "A007953", "A359075", "A359076", "A359077" ]
null
Stefano Spezia, Dec 15 2022
2022-12-21T20:22:45
oeisdata/seq/A359/A359077.seq
623c0344ff216ea1e732f513116a0dc1
A359078
a(n) is the first positive number that can be represented in exactly n ways as the sum of cubes of three distinct integers in arithmetic progression.
[ "9", "99", "792", "3829608", "255816", "24814152", "198513216", "1588105728", "669982104", "5359856832", "42878854656", "7133969443392", "57071755547136" ]
[ "nonn", "more" ]
13
1
1
[ "A359030", "A359078" ]
null
Robert Israel, Dec 15 2022
2022-12-31T11:38:49
oeisdata/seq/A359/A359078.seq
d1dc1d35a50ad102cd065b3576c88bcf
A359079
a(n) is the sum of the divisors d of 2*n such that the binary expansions of d and 2*n have no common 1-bit.
[ "1", "3", "1", "7", "6", "6", "1", "15", "10", "13", "1", "16", "1", "3", "1", "31", "18", "33", "1", "32", "22", "3", "1", "36", "6", "3", "10", "14", "1", "6", "1", "63", "34", "54", "1", "70", "38", "22", "1", "70", "42", "48", "1", "7", "6", "3", "1", "76", "1", "38", "18", "7", "1", "24", "1", "36", "1", "3", "1", "21", "1", "3", "1", "127", "84", "116", "1", "126", "70", "38", "1", "153", "74", "77" ]
[ "nonn", "base" ]
10
1
2
[ "A246601", "A346878", "A359079" ]
null
Rémy Sigrist, Dec 15 2022
2022-12-16T11:52:09
oeisdata/seq/A359/A359079.seq
6912e19d69eb21f01ffe2c89d5730f69
A359080
Numbers k such that A246600(k) = A000005(k).
[ "1", "3", "5", "7", "11", "13", "15", "17", "19", "23", "27", "29", "31", "37", "41", "43", "47", "51", "53", "59", "61", "63", "67", "71", "73", "79", "83", "85", "89", "95", "97", "101", "103", "107", "109", "111", "113", "119", "123", "125", "127", "131", "137", "139", "143", "149", "151", "157", "163", "167", "173", "179", "181", "187", "191", "193", "197", "199", "211", "219" ]
[ "nonn", "base" ]
25
1
2
[ "A000005", "A000225", "A065091", "A102553", "A246600", "A359080", "A359081", "A359082", "A359083" ]
null
Amiram Eldar, Dec 15 2022
2023-03-20T19:23:40
oeisdata/seq/A359/A359080.seq
d5e537e871331327c2792451a686d7c0
A359081
a(n) is the least number k such that A246600(k) = n, and -1 if no such k exists.
[ "1", "3", "39", "15", "175", "63", "1275", "255", "1215", "891", "495", "6975", "14175", "26367", "13311", "8127", "20475", "42735", "95931", "69615", "36855", "24255", "404415", "4095", "96255", "423423", "253935", "98175", "913275", "165375", "507375", "130815", "3198975", "1576575", "203775", "2154495", "4398975", "1616895", "1556415" ]
[ "nonn", "base" ]
9
1
2
[ "A000005", "A046801", "A246600", "A359080", "A359081", "A359082", "A359083" ]
null
Amiram Eldar, Dec 15 2022
2022-12-26T09:45:26
oeisdata/seq/A359/A359081.seq
2bdd162109cbf668658a0beb087ee93a
A359082
Indices of records in A246600.
[ "1", "3", "15", "63", "255", "495", "4095", "96255", "98175", "130815", "203775", "1048575", "5810175", "6455295", "16777215", "67096575", "88062975", "389656575", "553517055", "850917375", "1157349375", "9141354495", "12826279935", "22828220415", "26818379775", "31684427775", "68719476735", "242870910975", "1168231038975" ]
[ "nonn", "base" ]
13
1
2
[ "A046801", "A246600", "A359080", "A359081", "A359082", "A359083" ]
null
Amiram Eldar, Dec 15 2022
2023-03-13T09:55:05
oeisdata/seq/A359/A359082.seq
09c9a8eb496c1f40039ff9fce230b7b3
A359083
Numbers k such that A246600(k) = A000005(k) and A000005(k) sets a new record.
[ "1", "3", "15", "63", "255", "891", "4095", "262143", "1048575", "16777215", "68719476735" ]
[ "nonn", "base", "more" ]
6
1
2
[ "A000005", "A246600", "A359080", "A359081", "A359082", "A359083" ]
null
Amiram Eldar, Dec 15 2022
2022-12-17T08:26:40
oeisdata/seq/A359/A359083.seq
0c254fab22a64be1c2a8cdc6dd8c026b
A359084
Numbers k such that A246601(k) > 2*k.
[ "4095", "8190", "16380", "32760", "65520", "131040", "262080", "524160", "1048320", "2096640", "4193280", "8386560", "16773120", "16777215", "33546240", "33550335", "33554430", "67092480", "67096575", "67100670", "67108860", "134184960", "134189055", "134193150", "134201340", "134217720", "268369920", "268374015" ]
[ "nonn", "base" ]
12
1
1
[ "A000203", "A000396", "A005101", "A103292", "A246601", "A359084", "A359085" ]
null
Amiram Eldar, Dec 15 2022
2022-12-26T09:45:30
oeisdata/seq/A359/A359084.seq
0864a038dff0412c45350424c3119807
A359085
Odd numbers k such that A246601(k) > 2*k.
[ "4095", "16777215", "33550335", "67096575", "134189055", "268374015", "536743935", "1073483775", "2146963455", "4293922815", "8587841535", "17175678975", "34351353855", "68702703615", "68719476735", "137405403135", "137422176255", "137438949375", "274810802175", "274827575295", "274844348415", "274877894655" ]
[ "nonn", "base" ]
11
1
1
[ "A005101", "A005231", "A246601", "A359084", "A359085" ]
null
Amiram Eldar, Dec 15 2022
2022-12-26T09:45:34
oeisdata/seq/A359/A359085.seq
3e1c4fb6fe02921a064d0529445b0e74
A359086
Decimal expansion of 4*cosh^2(Pi/sqrt(12)).
[ "8", "2", "9", "6", "7", "4", "0", "9", "4", "1", "0", "5", "7", "8", "0", "8", "0", "2", "4", "3", "9", "6", "4", "4", "0", "3", "2", "0", "9", "1", "2", "7", "2", "6", "0", "0", "0", "3", "9", "2", "3", "2", "0", "5", "0", "8", "1", "7", "2", "9", "0", "5", "2", "2", "2", "0", "7", "2", "2", "3", "9", "8", "7", "1", "3", "4", "7", "2", "9", "5", "3", "2", "1", "3", "6", "5", "2", "5", "2", "8", "6", "3", "7", "7", "5", "7", "0" ]
[ "nonn", "cons" ]
12
1
1
null
null
Peter Kagey, Dec 15 2022
2022-12-21T20:44:39
oeisdata/seq/A359/A359086.seq
fa5cc7270c18b40a44a277befa95d1b1
A359087
a(n) is equal to the last point of a reverse pyramid summation with base 1, 2, 3, ..., n-2, n-1, n, n-1, n-2, ..., 3, 2, 1.
[ "1", "4", "19", "78", "301", "1108", "3951", "13758", "47049", "158616", "528619", "1745098", "5715429", "18593032", "60136183", "193525002", "620046513", "1978886448", "6293809971", "19955385762", "63094947981", "198990438408", "626141673375", "1966085927898", "6161660863929", "19276374528468", "60206635741131" ]
[ "nonn" ]
52
1
2
[ "A004737", "A027907", "A132894", "A359087" ]
null
Moosa Nasir, Dec 15 2022
2023-01-25T09:47:46
oeisdata/seq/A359/A359087.seq
0a4833e4511aef1d92d1c5fc3acbd76a
A359088
Odd integers k such that the multiplicative order of 2 modulo the largest prime factor of 2^k - 1 is different from k.
[ "51", "111", "327", "1281", "1563" ]
[ "nonn", "hard", "more" ]
16
1
1
[ "A002326", "A005420", "A359088" ]
null
Michel Marcus, Dec 16 2022
2025-02-16T11:49:39
oeisdata/seq/A359/A359088.seq
235ce8c27f053b3df559e33def0998a3
A359089
a(n) is the index of the smallest tetrahedral number with exactly n distinct prime factors.
[ "1", "2", "3", "7", "18", "34", "90", "259", "988", "2583", "5795", "37960", "101268", "424268", "3344614", "17168723", "74282570", "351200178", "1082950218", "5313193819", "31439710664", "317760710839", "1782400663483" ]
[ "nonn", "more" ]
15
0
2
[ "A000292", "A001221", "A156329", "A359017", "A359089", "A359090" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359089.seq
656e9d6d59294ca5811201ecb36304bf
A359090
a(n) is the index of the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists.
[ "1", "-1", "2", "4", "6", "8", "14", "30", "48", "62", "126", "160", "350", "510", "1022", "2046", "1024", "4095", "4094", "13310", "28672", "32768", "65534", "180224", "262142", "360448", "262143", "2097151", "3276800", "4194302", "2097150", "33554432", "16777214", "66715648", "33554430", "184549374", "134217728", "536870910", "1073741824" ]
[ "sign" ]
18
0
3
[ "A000292", "A001222", "A076550", "A358927", "A359089", "A359090" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359090.seq
31e0a06e5b46321786d23e11d1268cee
A359091
a(n) is the index of the smallest n-gonal number with binary weight n.
[ "6", "13", "9", "10", "24", "58", "34", "55", "67", "151", "134", "187", "201", "691", "350", "623", "1082", "1870", "2302", "3171", "5017", "13863", "13230", "6663", "24357", "50397", "35604", "60347", "63810", "107019", "181517", "365595", "624858", "1345485", "1002585", "1969415", "1191179", "7651731", "4592173", "7279863", "7403686", "17923182" ]
[ "nonn", "base" ]
8
3
1
[ "A000120", "A211201", "A231897", "A359091", "A359092" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359091.seq
b89df4b675b01b6ec6563e69afd119a8
A359092
a(n) is the index of the smallest n-gonal pyramidal number with binary weight n.
[ "5", "4", "9", "5", "20", "9", "29", "18", "40", "61", "52", "77", "121", "85", "235", "165", "281", "393", "438", "586", "645", "884", "1997", "777", "1597", "3598", "4901", "4442", "8249", "4582", "10685", "5362", "28473", "23140", "41305", "41266", "67947", "82953", "101229", "151121", "236221", "257326", "385090", "254725", "713021", "669890" ]
[ "nonn", "base" ]
7
3
1
[ "A000120", "A358931", "A359091", "A359092" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359092.seq
8e5a7d36a7f2ff1daeb4f1886b2d6d69
A359093
a(n) is the index of the smallest n-gonal number whose sum of digits is n.
[ "2", "2", "2", "2", "2", "2", "2", "10", "11", "6", "7", "11", "11", "4", "11", "9", "10", "29", "24", "29", "29", "29", "29", "29", "36", "28", "83", "69", "79", "110", "56", "83", "110", "72", "164", "236", "119", "178", "299", "209", "218", "308", "216", "416", "596", "506", "277", "443", "579", "589", "1172", "1217", "991", "1676", "1779", "2315", "1325", "1659", "3125", "2576" ]
[ "nonn", "base" ]
14
3
1
[ "A007953", "A359003", "A359093" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359093.seq
8335ffa2ac069369894ea7f7116fffd8
A359094
a(n) is the smallest square pyramidal number divisible by exactly n square pyramidal numbers.
[ "1", "5", "30", "140", "4900", "155155", "6930", "223300", "3573570", "380380", "340889640", "1801800", "333833500", "711410700", "78963134250", "427826509110", "70836325560", "862289508080", "62366724420", "3975527876320", "2279301054030", "3422848288860", "58264695188700", "4903512426212400" ]
[ "nonn" ]
11
1
2
[ "A000330", "A005179", "A130279", "A358543", "A359094", "A359095" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359094.seq
8b6fe37a44d6db7a3eb24dcf8f8accae
A359095
a(n) is the index of the smallest square pyramidal number divisible by exactly n square pyramidal numbers.
[ "1", "2", "4", "7", "24", "77", "27", "87", "220", "104", "1007", "175", "1000", "1287", "6187", "10867", "5967", "13727", "5719", "22847", "18980", "21735", "55912", "245024", "195975", "288144", "196735", "108927", "1107567", "5404112", "3145824", "3768687", "5405575", "1245887", "521559", "1101600" ]
[ "nonn" ]
12
1
2
[ "A000330", "A342808", "A359094", "A359095" ]
null
Ilya Gutkovskiy, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359095.seq
487f1642643ada9717369f1ce051da37
A359096
The sum of the numbers on the perimeter of the n X n diamond frame, located at the top of the numerical pyramid containing the positive integers in natural order.
[ "1", "11", "46", "121", "252", "455", "746", "1141", "1656", "2307", "3110", "4081", "5236", "6591", "8162", "9965", "12016", "14331", "16926", "19817", "23020", "26551", "30426", "34661", "39272", "44275", "49686", "55521", "61796", "68527", "75730", "83421", "91616", "100331", "109582", "119385", "129756", "140711", "152266", "164437", "177240", "190691" ]
[ "nonn", "easy" ]
42
1
2
[ "A000027", "A006003", "A359096" ]
null
Nicolay Avilov, Dec 16 2022
2023-02-05T23:06:17
oeisdata/seq/A359/A359096.seq
d0fcf792a4cf41b524dde363ec215c46
A359097
Number of distinct primes of type k + reverse(k) when k is a (2n - 1)-digit number.
[ "1", "25", "304", "3909", "58299", "907721" ]
[ "nonn", "base", "more" ]
20
1
2
[ "A056964", "A067030", "A358985", "A358986", "A359097" ]
null
Jean-Marc Rebert, Dec 16 2022
2022-12-22T08:17:19
oeisdata/seq/A359/A359097.seq
ec72ca0f64dded8df23a18753d4e962e
A359098
Numbers with exactly four nonzero decimal digits and not ending with 0.
[ "1111", "1112", "1113", "1114", "1115", "1116", "1117", "1118", "1119", "1121", "1122", "1123", "1124", "1125", "1126", "1127", "1128", "1129", "1131", "1132", "1133", "1134", "1135", "1136", "1137", "1138", "1139", "1141", "1142", "1143", "1144", "1145", "1146", "1147", "1148", "1149", "1151", "1152", "1153", "1154", "1155", "1156", "1157", "1158", "1159", "1161", "1162", "1163", "1164", "1165", "1166", "1167" ]
[ "nonn", "base", "easy" ]
39
1
1
[ "A358737", "A359098" ]
null
Charles R Greathouse IV, Jan 02 2023
2023-01-04T14:32:38
oeisdata/seq/A359/A359098.seq
d832855e4fafbc06abd64645eb4a5ee0
A359099
a(n) = (1/6) * Sum_{d|n} phi(7 * d).
[ "1", "2", "3", "4", "5", "6", "8", "8", "9", "10", "11", "12", "13", "16", "15", "16", "17", "18", "19", "20", "24", "22", "23", "24", "25", "26", "27", "32", "29", "30", "31", "32", "33", "34", "40", "36", "37", "38", "39", "40", "41", "48", "43", "44", "45", "46", "47", "48", "57", "50", "51", "52", "53", "54", "55", "64", "57", "58", "59", "60", "61", "62", "72", "64", "65", "66", "67", "68", "69", "80", "71", "72", "73", "74", "75", "76", "88", "78", "79" ]
[ "nonn", "mult" ]
37
1
2
[ "A000010", "A129527", "A327625", "A359099", "A359100", "A373188", "A373217" ]
null
Seiichi Manyama, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359099.seq
5a9447ee224c1bc287e68a494e14ca34
A359100
a(n) = (1/4) * Sum_{d|n} phi(5 * d).
[ "1", "2", "3", "4", "6", "6", "7", "8", "9", "12", "11", "12", "13", "14", "18", "16", "17", "18", "19", "24", "21", "22", "23", "24", "31", "26", "27", "28", "29", "36", "31", "32", "33", "34", "42", "36", "37", "38", "39", "48", "41", "42", "43", "44", "54", "46", "47", "48", "49", "62", "51", "52", "53", "54", "66", "56", "57", "58", "59", "72", "61", "62", "63", "64", "78", "66", "67", "68", "69", "84", "71", "72", "73", "74", "93", "76" ]
[ "nonn", "mult" ]
28
1
2
[ "A000010", "A055457", "A129527", "A327625", "A359099", "A359100", "A373188" ]
null
Seiichi Manyama, Dec 16 2022
2025-02-16T08:34:04
oeisdata/seq/A359/A359100.seq
b57f001bce274228c569ce09d9da6f89