sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A359701 | a(n) = Sum_{d|n} d^(d + n/d - 2). | [
"1",
"3",
"10",
"69",
"626",
"7812",
"117650",
"2097425",
"43046803",
"1000003158",
"25937424602",
"743008418676",
"23298085122482",
"793714774077816",
"29192926025406980",
"1152921504623628545",
"48661191875666868482",
"2185911559739084235093",
"104127350297911241532842"
] | [
"nonn"
] | 16 | 1 | 2 | [
"A082245",
"A124923",
"A262843",
"A294956",
"A359701"
] | null | Seiichi Manyama, Jan 11 2023 | 2023-08-14T02:00:14 | oeisdata/seq/A359/A359701.seq | c56bb571faf12e19d024cf847f6452be |
A359702 | Odd primes p that are not congruent to 2*k modulo prime(k+1) for any positive integer k. | [
"3",
"7",
"31",
"37",
"43",
"61",
"67",
"73",
"157",
"211",
"271",
"277",
"331",
"367",
"421",
"457",
"571",
"691",
"823",
"883",
"997",
"1093",
"1201",
"1237",
"1303",
"1657",
"1783",
"2053",
"2287",
"2347",
"2371",
"2377",
"2557",
"2803",
"2971",
"3001",
"3061",
"3067",
"3307",
"3313",
"3391",
"3967",
"4021",
"4231",
"4273",
"4357",
"4447",
"4561",
"4603"
] | [
"nonn"
] | 24 | 1 | 1 | [
"A000668",
"A019434",
"A359702"
] | null | Andrea La Rosa, Jan 11 2023 | 2023-02-08T00:00:28 | oeisdata/seq/A359/A359702.seq | 9213bfb43a6080c582a35bb4c2f4b91a |
A359703 | Number of fillomino dissections of a 2 X n rectangle. | [
"1",
"1",
"5",
"33",
"138",
"715",
"3524",
"17119",
"84655",
"416723",
"2047650",
"10072806",
"49542408",
"243701785",
"1198732022",
"5895900754",
"28999718642",
"142641530115",
"701610208573",
"3450988507136",
"16974245195432",
"83490673950264",
"410663317558386",
"2019918477187441",
"9935315439670326"
] | [
"nonn"
] | 36 | 0 | 3 | [
"A003242",
"A359703"
] | null | Don Knuth, Jan 11 2023 | 2023-01-18T10:34:40 | oeisdata/seq/A359/A359703.seq | 800f1ad8f214b2985486383ef0a81ba6 |
A359704 | Minimum number of spanning trees in a 3-connected graph on n nodes. | [
"16",
"45",
"75",
"209",
"336",
"928",
"1445",
"3965",
"6000",
"16555"
] | [
"nonn",
"more"
] | 22 | 4 | 1 | [
"A006290",
"A199676",
"A359704"
] | null | David Kofoed Wind, Jan 11 2023 | 2023-02-17T22:28:52 | oeisdata/seq/A359/A359704.seq | 88804f1a2a3be4434861688d13c19dc7 |
A359705 | Cogrowth sequence of the Brin-Navas group B. | [
"1",
"4",
"28",
"232",
"2092",
"19864",
"195352",
"1970896",
"20275692",
"211825600",
"2240855128",
"23952786400",
"258287602744",
"2806152315048",
"30686462795856",
"337490492639512",
"3730522624066540",
"41422293291178872",
"461802091590831904",
"5167329622166765872"
] | [
"nonn",
"walk"
] | 13 | 0 | 2 | null | null | Andrew Elvey Price, Jan 11 2023 | 2023-01-14T09:39:49 | oeisdata/seq/A359/A359705.seq | b70fcc9680679d0147ac3046631c012b |
A359706 | Number of free (2-sided) ouroboros polyominoes with k=2n cells. | [
"0",
"1",
"0",
"1",
"1",
"4",
"7",
"31",
"95",
"420",
"1682",
"7544",
"33288",
"152022",
"696096",
"3231001"
] | [
"nonn",
"more"
] | 16 | 1 | 6 | [
"A002013",
"A359706",
"A359707"
] | null | Arthur O'Dwyer, Jan 11 2023 | 2023-01-18T09:36:15 | oeisdata/seq/A359/A359706.seq | f4b501cc0b1ad2e30934b03c374be46b |
A359707 | Number of 1-sided ouroboros polyominoes with k=2n cells. | [
"0",
"1",
"0",
"1",
"1",
"4",
"11",
"45",
"178",
"762",
"3309",
"14725",
"66323",
"302342",
"1391008",
"6453950"
] | [
"nonn",
"more"
] | 12 | 1 | 6 | [
"A151514",
"A359706",
"A359707"
] | null | Arthur O'Dwyer, Jan 11 2023 | 2023-01-18T09:36:27 | oeisdata/seq/A359/A359707.seq | b74b631ae2d8cdb1c48d9bd13df2f4c6 |
A359708 | a(n) is the greatest divisor d of 2*n such that the binary expansions of d and 2*n have no common 1-bit. | [
"1",
"2",
"1",
"4",
"5",
"3",
"1",
"8",
"9",
"10",
"1",
"6",
"1",
"2",
"1",
"16",
"17",
"18",
"1",
"20",
"21",
"2",
"1",
"12",
"5",
"2",
"9",
"7",
"1",
"3",
"1",
"32",
"33",
"34",
"1",
"36",
"37",
"19",
"1",
"40",
"41",
"42",
"1",
"4",
"5",
"2",
"1",
"24",
"1",
"25",
"17",
"4",
"1",
"18",
"1",
"14",
"1",
"2",
"1",
"6",
"1",
"2",
"1",
"64",
"65",
"66",
"1",
"68",
"69",
"35",
"1",
"72",
"73",
"74",
"1",
"38",
"1"
] | [
"nonn",
"base"
] | 13 | 1 | 2 | [
"A003714",
"A359627",
"A359708"
] | null | Rémy Sigrist, Jan 12 2023 | 2023-01-14T08:46:22 | oeisdata/seq/A359/A359708.seq | 091c12cbd63f31c94ea8959fa46cdee9 |
A359709 | Number of n-step self-avoiding walks on a 2D square lattice whose end-to-end distance is an integer. | [
"1",
"4",
"4",
"12",
"28",
"76",
"164",
"732",
"1044",
"4924",
"6724",
"30636",
"43972",
"190516",
"313996",
"1197908",
"2284260",
"7678188",
"16257604",
"50524252",
"113052396",
"341811828",
"773714436",
"2358452388",
"5245994292",
"16447462492",
"35395532236",
"115129727188",
"238542983748",
"804980005276"
] | [
"nonn",
"walk"
] | 27 | 0 | 2 | [
"A001411",
"A103606",
"A173380",
"A337353",
"A356617",
"A358036",
"A358046",
"A359073",
"A359709",
"A359741"
] | null | Scott R. Shannon, Jan 12 2023 | 2023-01-15T15:11:35 | oeisdata/seq/A359/A359709.seq | 6222aa47f705e2caeca4002d921ad20b |
A359710 | Order of shifts of Thue-Morse sequence. | [
"0",
"1",
"3",
"0",
"2",
"1",
"5",
"3",
"6",
"0",
"4",
"2",
"7",
"1",
"9",
"5",
"15",
"3",
"10",
"6",
"12",
"0",
"8",
"4",
"14",
"2",
"11",
"7",
"13",
"1",
"17",
"9",
"29",
"5",
"23",
"15",
"27",
"3",
"18",
"10",
"30",
"6",
"20",
"12",
"24",
"0",
"16",
"8",
"28",
"4",
"22",
"14",
"26",
"2",
"19",
"11",
"31",
"7",
"21",
"13",
"25",
"1",
"33",
"17",
"57",
"9",
"45",
"29",
"53",
"5",
"39",
"23",
"63",
"15"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A010060",
"A359710"
] | null | Jeffrey Shallit, Jan 11 2023 | 2023-01-12T01:42:55 | oeisdata/seq/A359/A359710.seq | 69a2217b81c3e2388bede4e632b234cc |
A359711 | a(n) = coefficient of x^n in A(x) such that 1 = Sum_{n=-oo..+oo} (-x)^n * (A(x) + x^(n-1))^(n+1). | [
"1",
"3",
"11",
"42",
"165",
"671",
"2795",
"11877",
"51286",
"224413",
"992924",
"4434833",
"19969030",
"90550829",
"413148619",
"1895338362",
"8737219074",
"40452543831",
"188025758635",
"877055405522",
"4104269624748",
"19262955163275",
"90652992751518",
"427681283728070",
"2022341915324936",
"9583224591208298"
] | [
"nonn"
] | 29 | 0 | 2 | [
"A359670",
"A359711",
"A359712",
"A359713",
"A363104",
"A363105",
"A363142",
"A363143",
"A363144"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-05-22T02:14:54 | oeisdata/seq/A359/A359711.seq | 9df2f9a325ceed6551d09e736f48df06 |
A359712 | a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-x)^n * (2*A(x) + x^(n-1))^(n+1). | [
"1",
"4",
"20",
"106",
"586",
"3356",
"19728",
"118382",
"722208",
"4466050",
"27931600",
"176371300",
"1122867012",
"7199842666",
"46454345844",
"301384205640",
"1964899532794",
"12866563846920",
"84585757496444",
"558060746899684",
"3693810227983576",
"24521903234307786",
"163234951757526400"
] | [
"nonn"
] | 20 | 0 | 2 | [
"A359670",
"A359711",
"A359712",
"A359713",
"A361778",
"A363104",
"A363105"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-05-22T02:15:14 | oeisdata/seq/A359/A359712.seq | ea24c6f6ccd10a2cc675c4e4983fe800 |
A359713 | a(n) = coefficient of x^n in A(x) such that 3 = Sum_{n=-oo..+oo} (-x)^n * (3*A(x) + x^(n-1))^(n+1). | [
"1",
"5",
"31",
"206",
"1433",
"10329",
"76459",
"577855",
"4440538",
"34591555",
"272545144",
"2168118299",
"17390330046",
"140486973983",
"1142036572271",
"9335129425718",
"76681549612006",
"632655728172281",
"5240339959916895",
"43561574812700958",
"363294379940353624",
"3038799803831856805"
] | [
"nonn"
] | 12 | 0 | 2 | [
"A359670",
"A359711",
"A359712",
"A359713",
"A363104",
"A363105"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-05-22T02:15:30 | oeisdata/seq/A359/A359713.seq | fe77b56fbec2e51c74c44bbe13542b67 |
A359714 | Central terms of triangle A359670; a(n) = A359670(2*n,n) for n >= 0. | [
"1",
"6",
"68",
"970",
"15627",
"271698",
"4980320",
"94919382",
"1864060550",
"37486601966",
"768542230128",
"16010270917186",
"338044149765168",
"7220000851821450",
"155743662496011552",
"3388779105788095886",
"74299386925266352272",
"1640069094618726916032",
"36421678762652448251540"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A359670",
"A359714"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-01-18T14:53:42 | oeisdata/seq/A359/A359714.seq | 90670b7ed5f81560b843d50380a5d085 |
A359715 | Column 2 of triangle A359670; a(n) = A359670(n+2,2) for n >= 0. | [
"1",
"12",
"68",
"284",
"998",
"3092",
"8724",
"22904",
"56679",
"133516",
"301664",
"657368",
"1387854",
"2849168",
"5704476",
"11166464",
"21415632",
"40312176",
"74593476",
"135864792",
"243872632",
"431835140",
"755039948",
"1304589104",
"2229192801",
"3769452152",
"6311385252",
"10469412968",
"17214152072"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A359670",
"A359715"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-01-18T14:54:22 | oeisdata/seq/A359/A359715.seq | f97ccc40f45d16e711b2a3e214c2b5d2 |
A359716 | Central terms of triangle A236961: a(n) = A236961(2*n,n) for n >= 0. | [
"1",
"2",
"21",
"412",
"12045",
"471666",
"23248400",
"1384919040",
"96891179337",
"7793576690170",
"709024597553360",
"72011978446738452",
"8079309076956842530",
"992583434486548102576",
"132551565601036631863350",
"19120614257204406476219136",
"2963248125855567894279025917",
"491063205808744535843792510886"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A236960",
"A236961",
"A359716"
] | null | Paul D. Hanna, Jan 15 2023 | 2023-01-17T09:58:25 | oeisdata/seq/A359/A359716.seq | 999cb6909a7575d7edac165c7815a289 |
A359717 | Row sums of triangle A236961. | [
"1",
"2",
"7",
"42",
"376",
"4458",
"65397",
"1140417",
"23021210",
"527739626",
"13539127840",
"384262459699",
"11952683436071",
"404329660018435",
"14777538816404041",
"580286020131192211",
"24364714949633126567",
"1089258665667224399708",
"51658296648076559411788",
"2590348228951371235924053"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A236960",
"A236961",
"A359717"
] | null | Paul D. Hanna, Jan 15 2023 | 2023-01-16T11:17:03 | oeisdata/seq/A359/A359717.seq | 5e46ef992acac3805c33b55bd200e498 |
A359718 | Column 3 of triangle A359670; a(n) = A359670(n+3,3) for n >= 0. | [
"1",
"20",
"170",
"970",
"4410",
"17172",
"59545",
"188700",
"556085",
"1542640",
"4065868",
"10253720",
"24880705",
"58351000",
"132750390",
"293867786",
"634623035",
"1339924290",
"2771178885",
"5623152080",
"11211087225",
"21989506510",
"42478375740",
"80897833810",
"152022961870",
"282119268256",
"517394696690"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A359670",
"A359718"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-01-18T14:54:27 | oeisdata/seq/A359/A359718.seq | cb9fb0361b876a0992cfd465521d701f |
A359719 | a(n) = coefficient of x^n/n! in A(x) = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (exp(3*n*x) - exp(-(3*n+1)*x)). | [
"1",
"-11",
"58",
"-225",
"2146",
"-14821",
"85590",
"-1974433",
"9180658",
"2927259",
"-85838114",
"63964584095",
"-520091681238",
"16934937109019",
"-384678052715594",
"5238404820228159",
"-295855770548974622",
"4600244140822151099",
"-186350295911412573810",
"4851711966859680480959"
] | [
"sign"
] | 14 | 1 | 2 | [
"A359719",
"A359919",
"A359920"
] | null | Paul D. Hanna, Jan 22 2023 | 2024-01-05T17:17:22 | oeisdata/seq/A359/A359719.seq | c47abdc5addb9cbb9bcb8fbfd6e215c3 |
A359720 | T(n,k) = coefficient of x^n*y^k in A(x,y) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (y + x^n)^n * A(x,y)^n. | [
"1",
"1",
"1",
"2",
"4",
"5",
"1",
"7",
"21",
"9",
"20",
"51",
"49",
"7",
"43",
"170",
"179",
"66",
"2",
"110",
"454",
"711",
"381",
"54",
"262",
"1367",
"2390",
"1894",
"523",
"25",
"674",
"3776",
"8361",
"8070",
"3496",
"469",
"5",
"1684",
"11062",
"27082",
"33093",
"19129",
"4602",
"269",
"4397",
"31054",
"89389",
"125983",
"93908",
"33211",
"4325",
"91",
"11320",
"89935",
"283170",
"470439",
"421762",
"200449",
"43062",
"2846",
"14"
] | [
"nonn",
"tabf"
] | 9 | 0 | 4 | [
"A000108",
"A097613",
"A355357",
"A357797",
"A359720",
"A359721",
"A359722",
"A359723",
"A359724",
"A359725",
"A359726"
] | null | Paul D. Hanna, Jan 13 2023 | 2023-01-14T10:53:33 | oeisdata/seq/A359/A359720.seq | 2610edd04dd029b96f0ef5a5a8c1c67a |
A359721 | a(n) = coefficient of x^n in the power series A(x) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (1 + x^n)^n * A(x)^n. | [
"1",
"1",
"3",
"10",
"37",
"127",
"460",
"1710",
"6461",
"24851",
"96921",
"382358",
"1522997",
"6116518",
"24740564",
"100698617",
"412126133",
"1694982357",
"7001729420",
"29037602898",
"120856092153",
"504647152650",
"2113469775619",
"8875358529059",
"37364827472930",
"157668052571948",
"666735804080597",
"2825054673048981"
] | [
"nonn"
] | 14 | 0 | 3 | [
"A355357",
"A357797",
"A359720",
"A359721",
"A359723",
"A359724"
] | null | Paul D. Hanna, Jan 11 2023 | 2023-03-14T04:44:06 | oeisdata/seq/A359/A359721.seq | e347cfe889a504e5a9404976c825485c |
A359722 | a(n) = A359720(3*n+1,2*n) for n >= 0. | [
"1",
"9",
"54",
"269",
"1254",
"5642",
"24828",
"107613",
"461318",
"1961102",
"8282196",
"34792914",
"145527004",
"606473844",
"2519619640",
"10440010845",
"43158028230",
"178049440230",
"733229991780",
"3014712182790",
"12377406450420",
"50751988872780",
"207859022097480",
"850399040956530",
"3475797671194524"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A000108",
"A359720",
"A359722"
] | null | Paul D. Hanna, Jan 14 2023 | 2023-01-14T10:51:45 | oeisdata/seq/A359/A359722.seq | ecd2f2e0ef74257befa8ddbf1fd653f7 |
A359723 | a(n) = coefficient of x^n in the power series A(x) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (3 + x^n)^n * A(x)^n. | [
"1",
"1",
"7",
"28",
"151",
"803",
"4108",
"22532",
"125449",
"705929",
"4035955",
"23332364",
"136111591",
"800561116",
"4741777880",
"28258286033",
"169322163149",
"1019483819757",
"6164900341534",
"37425357962592",
"228002416106605",
"1393503512669230",
"8541839907812651",
"52500559705299795",
"323483846045526418"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A355357",
"A357797",
"A359720",
"A359721",
"A359723",
"A359724"
] | null | Paul D. Hanna, Jan 11 2023 | 2023-01-14T10:08:08 | oeisdata/seq/A359/A359723.seq | 26a1f07435f194ac94f11f92c6457019 |
A359724 | a(n) = coefficient of x^n in the power series A(x) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (4 + x^n)^n * A(x)^n. | [
"1",
"1",
"9",
"40",
"235",
"1456",
"8323",
"51510",
"324674",
"2061746",
"13308492",
"86876405",
"572169044",
"3799139674",
"25403610485",
"170901457100",
"1155976005944",
"7856772779823",
"53630378512469",
"367507023955203",
"2527254094342404",
"17435029150904202",
"120633291776867632",
"836907189915348056"
] | [
"nonn"
] | 6 | 0 | 3 | [
"A355357",
"A357797",
"A359720",
"A359721",
"A359723",
"A359724"
] | null | Paul D. Hanna, Jan 11 2023 | 2023-01-14T10:08:52 | oeisdata/seq/A359/A359724.seq | 78f5978bfb8fc41d6b0261ea62f55b56 |
A359725 | a(n) = A359720(n+2,1), for n >= 0. | [
"2",
"5",
"21",
"51",
"170",
"454",
"1367",
"3776",
"11062",
"31054",
"89935",
"254654",
"733725",
"2088612",
"6004175",
"17150397",
"49267851",
"141065942",
"405274932",
"1162440833",
"3341173303",
"9596468129",
"27600014912",
"79359955225",
"228397685542",
"657335642733",
"1893081845674",
"5452722985712"
] | [
"nonn"
] | 7 | 0 | 1 | [
"A355357",
"A359720",
"A359725",
"A359726"
] | null | Paul D. Hanna, Jan 14 2023 | 2023-01-14T10:51:50 | oeisdata/seq/A359/A359725.seq | 58d37a16816e35d284e44a48833fc67d |
A359726 | a(n) = A359720(n+3,2), for n >= 0. | [
"1",
"9",
"49",
"179",
"711",
"2390",
"8361",
"27082",
"89389",
"283170",
"905307",
"2825245",
"8854116",
"27341969",
"84550769",
"259046260",
"793589833",
"2416512240",
"7352490113",
"22279068811",
"67435591018",
"203525629398",
"613550161717",
"1845654390776",
"5545861291941",
"16637001197044",
"49858191850323"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A355357",
"A359720",
"A359725",
"A359726"
] | null | Paul D. Hanna, Jan 14 2023 | 2023-01-14T10:51:54 | oeisdata/seq/A359/A359726.seq | 7b4387e5699567acafdc07f6afecfcfb |
A359727 | Beattific 'primes': numbers n > 1 not equal to floor(k*m*phi) or floor(k*m*phi^2) for any smaller element k in this sequence and any positive integer m. | [
"2",
"4",
"7",
"8",
"13",
"14",
"17",
"23",
"24",
"28",
"30",
"39",
"40",
"43",
"46",
"49",
"50",
"53",
"59",
"65",
"66",
"70",
"72",
"75",
"76",
"81",
"86",
"88",
"92",
"96",
"98",
"107",
"108",
"114",
"117",
"118",
"123",
"127",
"134",
"140",
"143",
"144",
"149",
"150",
"153",
"156",
"159",
"160",
"163",
"166",
"175",
"176",
"179",
"182",
"185",
"191",
"195"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A000201",
"A001622",
"A001950",
"A104457",
"A359727"
] | null | James Propp, Jan 11 2023 | 2023-01-28T13:44:56 | oeisdata/seq/A359/A359727.seq | 310c0c26791461bef5b47011e715e332 |
A359728 | a(1) = 1; a(n) is the smallest positive number not among the first k terms where k is the number of times a(n-1) has occurred. | [
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"3",
"4",
"2",
"4",
"3",
"4",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"2",
"4",
"5",
"3",
"4",
"5",
"3",
"4",
"5",
"4",
"5",
"4",
"5",
"4",
"5",
"4",
"5",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"2",
"4",
"5",
"6",
"3",
"5",
"6",
"3",
"5",
"6",
"4",
"5",
"6",
"4",
"5",
"6",
"4",
"6",
"4",
"6",
"4",
"6",
"5",
"6",
"5",
"6",
"5",
"6",
"5",
"6",
"5",
"6",
"5",
"6"
] | [
"nonn"
] | 25 | 1 | 2 | [
"A358921",
"A359728"
] | null | Neal Gersh Tolunsky, Jan 11 2023 | 2023-03-13T06:07:54 | oeisdata/seq/A359/A359728.seq | 00b9e974e074f7566fb720deefb63f33 |
A359729 | The number of Carmichael numbers smaller than the n-th Carmichael number which are quadratic residues of the n-th Carmichael number. | [
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"2",
"3",
"4",
"2",
"3",
"2",
"2",
"3",
"2",
"3",
"3",
"3",
"2",
"0",
"3",
"4",
"2",
"6",
"7",
"1",
"1",
"7",
"5",
"7",
"3",
"8",
"3",
"6",
"7",
"5",
"5",
"7",
"7",
"8",
"6",
"5",
"6",
"6",
"12",
"10",
"1",
"6",
"9",
"7",
"6",
"9",
"4",
"7",
"7",
"8",
"8",
"2",
"3",
"10",
"6",
"12",
"8",
"7",
"8",
"6",
"12",
"12",
"12",
"9",
"6",
"16",
"8",
"9",
"8",
"10",
"15",
"9",
"8",
"7",
"13",
"9",
"12",
"11",
"10",
"12",
"13",
"10",
"18",
"7"
] | [
"nonn"
] | 14 | 1 | 11 | [
"A002997",
"A317247",
"A359729"
] | null | R. J. Mathar, Jan 12 2023 | 2023-01-23T09:10:40 | oeisdata/seq/A359/A359729.seq | c4fb08b2ba0978ce8ce4c9177a7fb3ba |
A359730 | a(n) = Sum_{d|n} 2^(d-1) * d^(n/d). | [
"1",
"5",
"13",
"41",
"81",
"245",
"449",
"1185",
"2413",
"5585",
"11265",
"26693",
"53249",
"118081",
"248733",
"535041",
"1114113",
"2390885",
"4980737",
"10557201",
"22050797",
"46265345",
"96468993",
"201795717",
"419480401",
"873123841",
"1812204685",
"3760019521",
"7784628225",
"16111126325",
"33285996545",
"68729044993"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A001787",
"A308366",
"A359700",
"A359730"
] | null | Seiichi Manyama, Jan 12 2023 | 2023-08-14T01:59:37 | oeisdata/seq/A359/A359730.seq | 6783d4131cb2a6955d858c1887789ab1 |
A359731 | a(n) = (1/2) * Sum_{d|n} (2*d)^d. | [
"1",
"9",
"109",
"2057",
"50001",
"1493109",
"52706753",
"2147485705",
"99179645293",
"5120000050009",
"292159150705665",
"18260173719523445",
"1240576436601868289",
"91029559915023973833",
"7174453500000000050109",
"604462909807316734838793",
"54214017802982966177103873"
] | [
"nonn",
"easy"
] | 21 | 1 | 2 | [
"A062796",
"A076723",
"A359731",
"A359732"
] | null | Seiichi Manyama, Jan 12 2023 | 2023-08-14T02:00:18 | oeisdata/seq/A359/A359731.seq | 61e08d9b92bd9811b68a8aa355c9f6b3 |
A359732 | a(n) = Sum_{d|n} d^(2*d-1). | [
"1",
"9",
"244",
"16393",
"1953126",
"362797308",
"96889010408",
"35184372105225",
"16677181699666813",
"10000000000001953134",
"7400249944258160101212",
"6624737266949237373933820",
"7056410014866816666030739694",
"8819763977946281130541873428720"
] | [
"nonn",
"easy"
] | 15 | 1 | 2 | [
"A308688",
"A308696",
"A359731",
"A359732"
] | null | Seiichi Manyama, Jan 12 2023 | 2023-08-14T02:00:25 | oeisdata/seq/A359/A359732.seq | e925e083198be6f25d9156602a957b5f |
A359733 | a(n) = (1/2) * Sum_{d|n} (2*d)^(n/d). | [
"1",
"4",
"7",
"20",
"21",
"88",
"71",
"296",
"373",
"1084",
"1035",
"5084",
"4109",
"16496",
"20787",
"67728",
"65553",
"286516",
"262163",
"1070180",
"1189937",
"4194568",
"4194327",
"17760824",
"16827241",
"67109228",
"72150655",
"269503660",
"268435485",
"1104603808",
"1073741855",
"4303389216",
"4476371181"
] | [
"nonn",
"easy"
] | 16 | 1 | 2 | [
"A055225",
"A076717",
"A359733"
] | null | Seiichi Manyama, Jan 12 2023 | 2023-08-14T02:00:21 | oeisdata/seq/A359/A359733.seq | 4a8711a2263cb31a80c5d690799e76ae |
A359734 | Lexicographically earliest sequence of distinct nonnegative integers such that the sequence A051699(a(n)) (distance from the nearest prime) has the same sequence of digits. | [
"1",
"10",
"2",
"0",
"3",
"26",
"9",
"119",
"532",
"4",
"6",
"896",
"118",
"34",
"15",
"93",
"121",
"531",
"898",
"205",
"8",
"12",
"533",
"50",
"117",
"14",
"122",
"1078",
"56",
"16",
"21",
"18",
"144",
"64",
"20",
"895",
"1138",
"899",
"25",
"5",
"186",
"1077",
"22",
"27",
"204",
"76",
"86",
"206",
"7",
"24",
"28",
"120",
"30",
"123",
"32",
"33",
"35",
"36",
"11",
"300"
] | [
"nonn",
"base"
] | 19 | 0 | 2 | [
"A000040",
"A051699",
"A359734",
"A359736",
"A359737"
] | null | M. F. Hasler and Eric Angelini, Jan 12 2023 | 2024-12-21T18:22:54 | oeisdata/seq/A359/A359734.seq | 58130846fa8bfcd1eb37c0ecb1005bf7 |
A359735 | Let f(s,n) = 2^n + s*n, with s in {-1, 1}. Let c be the number of primes out of the pair f(-1,n), f(1,n). If only f(-1,n) is prime, a(n) = -1, otherwise a(n) = c. | [
"0",
"1",
"-1",
"2",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"-1",
"0",
"1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"sign"
] | 43 | 0 | 4 | [
"A006127",
"A048744",
"A052007",
"A129962",
"A359735"
] | null | Jean-Marc Rebert, Jan 12 2023 | 2025-01-18T16:33:52 | oeisdata/seq/A359/A359735.seq | 01cbf0a7cf5eb22e0d8b74cd4516fab9 |
A359736 | Lexicographically earliest sequence of distinct nonnegative integers such that the sequence d(n) = dist(a(n), SQUARES) has the same sequence of digits. | [
"0",
"10",
"1",
"2",
"6",
"42",
"20",
"7",
"11",
"4",
"56",
"3",
"5",
"21",
"30",
"43",
"12",
"31",
"14",
"8",
"13",
"9",
"29",
"19",
"15",
"18",
"22",
"17",
"24",
"32",
"72",
"26",
"28",
"90",
"23",
"91",
"35",
"109",
"37",
"41",
"48",
"73",
"27",
"34",
"50",
"57",
"38",
"40",
"33",
"47",
"71",
"51",
"62",
"55",
"66",
"89",
"112",
"16",
"79",
"39",
"130",
"63",
"46",
"44",
"65",
"25",
"135"
] | [
"nonn",
"base"
] | 11 | 0 | 2 | [
"A000290",
"A053188",
"A359734",
"A359736",
"A359737"
] | null | M. F. Hasler and Eric Angelini, Jan 12 2023 | 2024-12-21T18:20:50 | oeisdata/seq/A359/A359736.seq | 2e83cde00d80dfde738ae6f67dc1e170 |
A359737 | Lexicographically earliest sequence of distinct nonnegative integers such that the sequence d(n) = A296239(a(n)) has the same sequence of digits, where A296239 gives the distance from the nearest Fibonacci number, cf. A000045. | [
"0",
"12",
"10",
"4",
"1",
"17",
"6",
"7",
"41",
"27",
"48",
"25",
"9",
"11",
"62",
"30",
"42",
"15",
"26",
"43",
"14",
"20",
"28",
"19",
"16",
"2",
"38",
"23",
"22",
"29",
"32",
"40",
"51",
"18",
"33",
"59",
"36",
"3",
"53",
"47",
"35",
"46",
"54",
"49",
"57",
"24",
"63",
"87",
"31",
"91",
"111",
"64",
"37",
"113",
"5",
"39",
"56",
"88",
"81",
"52",
"58",
"50",
"80",
"86",
"61",
"92",
"60",
"141",
"85",
"82",
"147"
] | [
"nonn",
"base"
] | 16 | 0 | 2 | [
"A000045",
"A296239",
"A359734",
"A359736",
"A359737"
] | null | M. F. Hasler and Eric Angelini, Jan 12 2023 | 2024-12-21T18:24:34 | oeisdata/seq/A359/A359737.seq | 31e2bf73faadda3de5c65e1d6bc0a4d3 |
A359738 | a(n) = [x^n] (2*x^4 + 2*x^3 + 2*x^2 + x + 1)/(x^2 + 1). | [
"1",
"1",
"1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1"
] | [
"sign",
"easy"
] | 27 | 0 | null | [
"A057077",
"A087960",
"A100615",
"A266591",
"A359738"
] | null | Peter Luschny, Jan 23 2023 | 2025-03-25T02:31:34 | oeisdata/seq/A359/A359738.seq | c8b394aeafdd2ac29a53557087ddfc6a |
A359739 | a(n) = Sum_{j=0..n, j even} binomial(n, j) * oddfactorial(j/2) * n^j, where oddfactorial(n) = (2*n)! / (2^n*n!). | [
"1",
"1",
"5",
"28",
"865",
"9626",
"758701",
"12606280",
"1872570113",
"41351249980",
"9925656304501",
"273345587759696",
"96567039881462305",
"3185756105692821688",
"1555524449985942662045",
"59790093545794928817376",
"38565845285812075675023361",
"1692346747225524397926264080",
"1393672439437011815394433559653"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A359739",
"A359760"
] | null | Peter Luschny, Jan 12 2023 | 2023-01-18T09:34:20 | oeisdata/seq/A359/A359739.seq | bb7646d7d276654c0793b344a55245f5 |
A359740 | Maximal number of moves needed by a knight to reach every cell from a fixed position on an n X n X n chessboard, or -1 if it is not possible to reach every square. | [
"0",
"-1",
"-1",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67"
] | [
"sign",
"easy"
] | 40 | 1 | 4 | [
"A232007",
"A359740"
] | null | Marco Ripà, Jan 12 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359740.seq | c2d3ff2273090c65872d31cb9677a862 |
A359741 | Number of n-step self-avoiding walks on a 3D cubic lattice whose end-to-end distance is an integer. | [
"1",
"6",
"6",
"30",
"78",
"1134",
"1350",
"20574",
"23238",
"390606",
"496998",
"7614750",
"10987926",
"152120934",
"237122526",
"3110708214",
"5017927638",
"64718847438",
"105210653478",
"1362453235998"
] | [
"nonn",
"walk",
"more"
] | 16 | 0 | 2 | [
"A001412",
"A118313",
"A359133",
"A359709",
"A359741"
] | null | Scott R. Shannon, Jan 12 2023 | 2023-01-15T15:11:26 | oeisdata/seq/A359/A359741.seq | 75a1ae0e4d608ac237767dd167655e8d |
A359742 | Viggo Brun's ternary continued fraction algorithm applied to { log 2, log 3/2, log 5/4 } produces a list of triples (p,q,r); sequence gives p values. | [
"2",
"3",
"5",
"7",
"12",
"19",
"31",
"34",
"53",
"87",
"118",
"205",
"323",
"441",
"559",
"612",
"1171",
"1783",
"1901",
"3684",
"4296",
"7980",
"12276",
"16572",
"20868",
"25164",
"29460",
"33756",
"38052",
"39953",
"78005",
"111761",
"151714",
"229719",
"381433",
"533147",
"684861",
"796622",
"948336",
"1633197",
"2581533",
"4214730"
] | [
"nonn",
"easy"
] | 8 | 0 | 1 | [
"A359742",
"A359743",
"A359744"
] | null | Sean A. Irvine, Jan 12 2023 | 2023-01-13T00:08:04 | oeisdata/seq/A359/A359742.seq | e9765fb3f67261da2f0861ff9655349a |
A359743 | Viggo Brun's ternary continued fraction algorithm applied to { log 2, log 3/2, log 5/4 } produces a list of triples (p,q,r); sequence gives q values. | [
"1",
"2",
"3",
"4",
"7",
"11",
"18",
"20",
"31",
"51",
"69",
"120",
"189",
"258",
"327",
"358",
"685",
"1043",
"1112",
"2155",
"2513",
"4668",
"7181",
"9694",
"12207",
"14720",
"17233",
"19746",
"22259",
"23371",
"45630",
"65376",
"88747",
"134377",
"223124",
"311871",
"400618",
"465994",
"554741",
"955359",
"1510100",
"2465459",
"3975559"
] | [
"nonn",
"easy"
] | 5 | 0 | 2 | [
"A359742",
"A359743",
"A359744"
] | null | Sean A. Irvine, Jan 12 2023 | 2023-01-12T23:01:27 | oeisdata/seq/A359/A359743.seq | 2928c0d60bd88f3904ceb231cc848ad4 |
A359744 | Viggo Brun's ternary continued fraction algorithm applied to { log 2, log 3/2, log 5/4 } produces a list of triples (p,q,r); sequence gives r values. | [
"1",
"1",
"2",
"2",
"4",
"6",
"10",
"11",
"17",
"28",
"38",
"66",
"104",
"142",
"180",
"197",
"377",
"574",
"612",
"1186",
"1383",
"2569",
"3952",
"5335",
"6718",
"8101",
"9484",
"10867",
"12250",
"12862",
"25112",
"35979",
"48841",
"73953",
"122794",
"171635",
"220476",
"256455",
"305296",
"525772",
"831068",
"1356840",
"2187908",
"3544748"
] | [
"nonn",
"easy"
] | 5 | 0 | 3 | [
"A359742",
"A359743",
"A359744"
] | null | Sean A. Irvine, Jan 12 2023 | 2023-01-12T23:01:22 | oeisdata/seq/A359/A359744.seq | 961495ad02d51da2950423cb6e7fcc46 |
A359745 | Numbers k such that k and k+1 have the same ordered prime signature. | [
"2",
"14",
"21",
"33",
"34",
"38",
"44",
"57",
"85",
"86",
"93",
"94",
"116",
"118",
"122",
"133",
"135",
"141",
"142",
"145",
"158",
"171",
"177",
"201",
"202",
"205",
"213",
"214",
"217",
"218",
"230",
"253",
"285",
"296",
"298",
"301",
"302",
"326",
"332",
"334",
"381",
"387",
"393",
"394",
"429",
"434",
"445",
"446",
"453",
"481",
"501",
"514",
"526",
"537",
"542"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A052213",
"A124010",
"A359745",
"A359746"
] | null | Amiram Eldar, Jan 13 2023 | 2023-01-17T09:23:56 | oeisdata/seq/A359/A359745.seq | e6b0ee37784b7d0922e150ffb142f241 |
A359746 | Numbers k such that k, k+1 and k+2 have the same ordered prime signature. | [
"33",
"85",
"93",
"141",
"201",
"213",
"217",
"301",
"393",
"445",
"633",
"697",
"921",
"1041",
"1137",
"1261",
"1309",
"1345",
"1401",
"1641",
"1761",
"1837",
"1885",
"1893",
"1941",
"1981",
"2013",
"2101",
"2181",
"2217",
"2305",
"2361",
"2433",
"2461",
"2517",
"2641",
"2665",
"2721",
"2733",
"3097",
"3385",
"3601",
"3693",
"3729",
"3865",
"3901",
"3957"
] | [
"nonn"
] | 22 | 1 | 1 | [
"A039833",
"A052214",
"A075039",
"A124010",
"A175590",
"A359745",
"A359746"
] | null | Amiram Eldar, Jan 13 2023 | 2023-01-17T09:23:50 | oeisdata/seq/A359/A359746.seq | 2f288d453675713da5037b0872e5c8ec |
A359747 | Numbers k such that k*(k+1) has in its canonical prime factorization mutually distinct exponents. | [
"1",
"3",
"4",
"7",
"8",
"16",
"24",
"27",
"31",
"48",
"63",
"71",
"72",
"107",
"108",
"124",
"127",
"199",
"242",
"243",
"256",
"400",
"431",
"432",
"499",
"512",
"576",
"647",
"783",
"863",
"967",
"971",
"1024",
"1151",
"1152",
"1372",
"1567",
"1600",
"1999",
"2187",
"2311",
"2400",
"2591",
"2592",
"2887",
"2916",
"3087",
"3136",
"3456",
"3887",
"3888",
"3968",
"4000"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A001694",
"A002378",
"A060355",
"A130091",
"A342028",
"A359747",
"A359748"
] | null | Amiram Eldar, Jan 13 2023 | 2023-01-17T09:23:42 | oeisdata/seq/A359/A359747.seq | a40d91631852f274d413eab1c7badad0 |
A359748 | Numbers k such that k and k+1 are both in A359747. | [
"3",
"7",
"71",
"107",
"242",
"431",
"1151",
"2591",
"3887",
"21599",
"49391",
"76831",
"79999",
"107647",
"139967",
"179999",
"197567",
"268911",
"345599",
"346111",
"401407",
"438047",
"472391",
"995327",
"1031047",
"1143071",
"1249999",
"1254527",
"1349999",
"1438207",
"1685447",
"2056751",
"2411207",
"2829887",
"3269807",
"4464071"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A130091",
"A342028",
"A342029",
"A359748"
] | null | Amiram Eldar, Jan 13 2023 | 2023-01-17T08:15:52 | oeisdata/seq/A359/A359748.seq | 20a1020289722bbdcdb4874d6227f61a |
A359749 | Numbers k such that k and k+1 do not share a common exponent in their prime factorizations. | [
"1",
"3",
"4",
"7",
"8",
"9",
"15",
"16",
"24",
"25",
"26",
"27",
"31",
"32",
"35",
"36",
"48",
"63",
"64",
"71",
"72",
"81",
"100",
"107",
"108",
"120",
"121",
"124",
"125",
"127",
"128",
"143",
"144",
"168",
"169",
"195",
"196",
"199",
"200",
"215",
"216",
"224",
"225",
"242",
"243",
"255",
"256",
"287",
"289",
"323",
"342",
"361",
"391",
"392",
"399",
"400",
"431",
"432",
"440"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A000079",
"A000225",
"A001694",
"A002496",
"A049533",
"A060355",
"A075408",
"A078324",
"A078325",
"A359747",
"A359749"
] | null | Amiram Eldar, Jan 13 2023 | 2023-01-17T09:23:37 | oeisdata/seq/A359/A359749.seq | a83815e1cb9e024541b1d8795c29156b |
A359750 | Numbers that are a product of one or more factorials j!, j >= 2, in at least two ways. | [
"24",
"48",
"96",
"144",
"192",
"288",
"384",
"576",
"720",
"768",
"864",
"1152",
"1440",
"1536",
"1728",
"2304",
"2880",
"3072",
"3456",
"4320",
"4608",
"5184",
"5760",
"6144",
"6912",
"8640",
"9216",
"10368",
"11520",
"12288",
"13824",
"17280",
"18432",
"20736",
"23040",
"24576",
"25920",
"27648",
"31104",
"34560",
"36864",
"40320",
"41472",
"46080"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A001013",
"A359750"
] | null | David A. Corneth, Jan 13 2023 | 2023-01-13T07:34:26 | oeisdata/seq/A359/A359750.seq | 1f2d049b2ccd9f8d1d8ea6d5b93bca21 |
A359751 | Numbers m > 1 such that for all k > 1, m can be written as a product of factorials without using k!. | [
"24",
"576",
"720",
"2880",
"13824",
"17280",
"40320",
"69120",
"241920",
"331776",
"362880",
"414720",
"518400",
"725760",
"967680",
"1451520",
"1658880",
"2073600",
"2903040",
"3628800",
"5806080",
"7962624",
"8294400",
"8709120",
"9953280",
"12441600",
"14515200",
"17418240",
"23224320",
"29030400",
"34836480",
"39813120",
"43545600"
] | [
"nonn"
] | 43 | 1 | 1 | [
"A001013",
"A359750",
"A359751"
] | null | David A. Corneth and Peter Munn, Jan 13 2023 | 2023-01-17T16:31:55 | oeisdata/seq/A359/A359751.seq | 88b8c5d85eb3f2814a1e370c7b214e13 |
A359752 | Lexicographically earliest array of distinct positive integers read by antidiagonals such that integers in cells which are a knight's move apart are coprime. | [
"1",
"2",
"3",
"4",
"5",
"7",
"6",
"8",
"9",
"11",
"13",
"17",
"19",
"23",
"10",
"12",
"15",
"21",
"27",
"16",
"14",
"22",
"25",
"29",
"31",
"37",
"20",
"33",
"18",
"24",
"35",
"26",
"39",
"41",
"43",
"47",
"49",
"53",
"59",
"61",
"32",
"55",
"67",
"45",
"28",
"30",
"51",
"57",
"63",
"34",
"36",
"71",
"73",
"38",
"44",
"40",
"65",
"79",
"83",
"89",
"85",
"77",
"91",
"69",
"42",
"75"
] | [
"nonn",
"tabl"
] | 31 | 1 | 2 | [
"A097883",
"A359752"
] | null | Jodi Spitz, Mar 07 2023 | 2023-03-10T13:35:19 | oeisdata/seq/A359/A359752.seq | 7d73730cce756c0e584ddcbe3b7f22f0 |
A359753 | a(n) is the number of subsets of the divisors of k which sum to k+1 where k is a number all of whose prime divisors are consecutive primes starting at 2. | [
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"5",
"5",
"1",
"8",
"11",
"3",
"33",
"1",
"27",
"20",
"21",
"21",
"271",
"1",
"117",
"13",
"4",
"720",
"43",
"149",
"143",
"2155",
"1",
"109",
"448",
"444",
"55",
"21963",
"85",
"19223",
"1247",
"279",
"17073",
"5",
"1",
"15086",
"1835",
"13732",
"13851",
"760",
"675187",
"37",
"171",
"588",
"9558",
"73713",
"135669",
"144",
"1",
"8206",
"7254"
] | [
"nonn"
] | 4 | 1 | 6 | [
"A055932",
"A359196",
"A359753"
] | null | David A. Corneth, Jan 17 2023 | 2023-01-28T12:37:13 | oeisdata/seq/A359/A359753.seq | 293972575fc8ebca83ba1b46c076bf45 |
A359754 | Positions of first appearances in the sequence of weighted sums of reversed prime indices (A318283). | [
"1",
"2",
"3",
"4",
"6",
"8",
"10",
"12",
"16",
"18",
"19",
"24",
"27",
"32",
"36",
"43",
"48",
"59",
"61",
"64",
"67",
"71",
"79",
"83",
"89",
"97",
"101",
"103",
"107",
"109",
"113",
"127",
"131",
"137",
"139",
"149",
"151",
"157",
"163",
"167",
"173",
"179",
"181",
"191",
"193",
"197",
"199",
"211",
"223",
"227",
"229",
"233",
"239",
"241",
"251",
"257",
"263",
"269"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A001222",
"A029931",
"A053632",
"A056239",
"A089633",
"A112798",
"A124757",
"A243055",
"A296150",
"A304818",
"A318283",
"A320387",
"A358136",
"A358137",
"A358194",
"A359361",
"A359497",
"A359674",
"A359675",
"A359677",
"A359678",
"A359679",
"A359680",
"A359681",
"A359682",
"A359683",
"A359754",
"A359755"
] | null | Gus Wiseman, Jan 15 2023 | 2023-01-16T11:14:59 | oeisdata/seq/A359/A359754.seq | 774169698c8d75c36ae164403533f928 |
A359755 | Positions of first appearances in the sequence of weighted sums of prime indices (A304818). | [
"1",
"2",
"3",
"4",
"6",
"7",
"8",
"10",
"12",
"15",
"16",
"18",
"20",
"24",
"26",
"28",
"36",
"40",
"46",
"48",
"50",
"52",
"56",
"62",
"68",
"74",
"76",
"86",
"88",
"92",
"94",
"106",
"107",
"118",
"122",
"124",
"131",
"134",
"136",
"142",
"146",
"152",
"158",
"164",
"166",
"173",
"178",
"188",
"193",
"194",
"199",
"202",
"206",
"214",
"218",
"226",
"229",
"236",
"239",
"254"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A001222",
"A029931",
"A053632",
"A056239",
"A089633",
"A112798",
"A124757",
"A243055",
"A304818",
"A318283",
"A320387",
"A358136",
"A358137",
"A358194",
"A359361",
"A359497",
"A359674",
"A359675",
"A359676",
"A359678",
"A359679",
"A359680",
"A359681",
"A359682",
"A359683",
"A359754",
"A359755",
"A359756"
] | null | Gus Wiseman, Jan 15 2023 | 2023-01-16T11:15:03 | oeisdata/seq/A359/A359755.seq | 7abc8fe19c8f7aef3e0a30356370cdc0 |
A359756 | First position of n in the sequence of zero-based weighted sums of standard compositions (A124757), if we start with position 0. | [
"0",
"3",
"6",
"7",
"13",
"14",
"15",
"27",
"29",
"30",
"31",
"55",
"59",
"61",
"62",
"63",
"111",
"119",
"123",
"125",
"126"
] | [
"nonn",
"more"
] | 6 | 0 | 2 | [
"A000120",
"A029931",
"A053632",
"A059893",
"A066099",
"A070939",
"A083329",
"A089633",
"A124757",
"A231204",
"A304818",
"A318283",
"A320387",
"A359043",
"A359674",
"A359676",
"A359678",
"A359681",
"A359682",
"A359756"
] | null | Gus Wiseman, Jan 17 2023 | 2023-01-19T11:10:50 | oeisdata/seq/A359/A359756.seq | 35e44cfc4ab5837142a97dcc34561a5e |
A359757 | Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n. | [
"4",
"9",
"25",
"49",
"121",
"169",
"289",
"361",
"529",
"841",
"961",
"1369",
"1681",
"1849",
"2209",
"2809",
"3481",
"3721",
"4489",
"5041",
"5329",
"6241",
"6889",
"7921",
"9409",
"10201",
"12167",
"11449",
"15341",
"24389",
"16399",
"26071",
"29791",
"31117",
"35557",
"50653",
"39401",
"56129",
"68921",
"58867",
"72283",
"83521",
"79007",
"86903",
"103823"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A001222",
"A001248",
"A029931",
"A053632",
"A055932",
"A056239",
"A089633",
"A112798",
"A124757",
"A231204",
"A243055",
"A296150",
"A304818",
"A318283",
"A320387",
"A358136",
"A358137",
"A358194",
"A359361",
"A359497",
"A359674",
"A359675",
"A359676",
"A359677",
"A359678",
"A359679",
"A359680",
"A359681",
"A359682",
"A359683",
"A359754",
"A359755",
"A359757"
] | null | Gus Wiseman, Jan 16 2023 | 2023-01-21T22:27:00 | oeisdata/seq/A359/A359757.seq | 4ace6c716a10e762ecaef256380b5938 |
A359758 | Expansion of 1/sqrt(1 - 4*x/(1-x)^5). | [
"1",
"2",
"16",
"110",
"770",
"5512",
"40066",
"294484",
"2182850",
"16288430",
"122198926",
"920820578",
"6964483628",
"52840433000",
"401990254180",
"3065365241440",
"23422905551018",
"179302895759782",
"1374785979255880",
"10556280995419090",
"81161958814162700",
"624750086745027388"
] | [
"nonn"
] | 24 | 0 | 2 | [
"A085362",
"A110170",
"A162478",
"A359489",
"A359758",
"A360132"
] | null | Seiichi Manyama, Mar 24 2023 | 2023-03-28T14:00:50 | oeisdata/seq/A359/A359758.seq | 49dfb7f0de7985c0ec55017f42f2845f |
A359759 | Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j). | [
"1",
"0",
"1",
"0",
"-3",
"1",
"0",
"13",
"-9",
"1",
"0",
"-103",
"79",
"-18",
"1",
"0",
"1241",
"-905",
"265",
"-30",
"1",
"0",
"-19691",
"13771",
"-4290",
"665",
"-45",
"1",
"0",
"384805",
"-262885",
"82621",
"-14630",
"1400",
"-63",
"1",
"0",
"-8918351",
"6007247",
"-1888362",
"353381",
"-40390",
"2618",
"-84",
"1"
] | [
"sign",
"tabl"
] | 13 | 0 | 5 | [
"A048993",
"A059297",
"A354794",
"A357247",
"A359759"
] | null | Peter Luschny, Jan 27 2023 | 2023-01-28T12:17:09 | oeisdata/seq/A359/A359759.seq | 0cd7f59ba84efaef6cb2f9d116539b7f |
A359760 | Triangle read by rows. The Kummer triangle, the coefficients of the Kummer polynomials. K(n, k) = binomial(n, k) * oddfactorial(k/2) if k is even, otherwise 0, where oddfactorial(z) := (2*z)!/(2^z*z!). | [
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"3",
"0",
"1",
"0",
"6",
"0",
"3",
"1",
"0",
"10",
"0",
"15",
"0",
"1",
"0",
"15",
"0",
"45",
"0",
"15",
"1",
"0",
"21",
"0",
"105",
"0",
"105",
"0",
"1",
"0",
"28",
"0",
"210",
"0",
"420",
"0",
"105",
"1",
"0",
"36",
"0",
"378",
"0",
"1260",
"0",
"945",
"0",
"1",
"0",
"45",
"0",
"630",
"0",
"3150",
"0",
"4725",
"0",
"945",
"1",
"0",
"55",
"0",
"990",
"0",
"6930",
"0",
"17325",
"0",
"10395",
"0"
] | [
"nonn",
"tabl"
] | 21 | 0 | 9 | [
"A000085",
"A001147",
"A001464",
"A001879",
"A002522",
"A005425",
"A047974",
"A056107",
"A066325",
"A073278",
"A099174",
"A100861",
"A104556",
"A111924",
"A115329",
"A123022",
"A123023",
"A144299",
"A344501",
"A359739",
"A359760",
"A359761"
] | null | Peter Luschny, Jan 13 2023 | 2025-04-13T03:33:15 | oeisdata/seq/A359/A359760.seq | d85f1fcfa0dd49feb0b46d28e9bcec80 |
A359761 | a(n) = binomial(4*n, 2*n)*(2*n)!/(2^n*n!). | [
"1",
"6",
"210",
"13860",
"1351350",
"174594420",
"28109701620",
"5421156741000",
"1218404977539750",
"312723944235202500",
"90252130306279441500",
"28929910132721937339000",
"10197793321784482911997500",
"3920659309406065045704885000",
"1632674555274097086889962825000",
"732091270584905133761459330730000"
] | [
"nonn",
"easy"
] | 7 | 0 | 2 | [
"A359760",
"A359761"
] | null | Peter Luschny, Jan 14 2023 | 2023-01-25T09:13:20 | oeisdata/seq/A359/A359761.seq | 85f92f49fee3e82070d88e7df5fdfcd6 |
A359762 | Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers'). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"3",
"1",
"1",
"1",
"10",
"7",
"4",
"1",
"1",
"1",
"26",
"25",
"10",
"5",
"1",
"1",
"1",
"76",
"81",
"46",
"13",
"6",
"1",
"1",
"1",
"232",
"331",
"166",
"73",
"16",
"7",
"1",
"1",
"1",
"764",
"1303",
"856",
"281",
"106",
"19",
"8",
"1",
"1",
"1",
"2620",
"5937",
"3844",
"1741",
"426",
"145",
"22",
"9",
"1",
"1"
] | [
"nonn",
"tabl"
] | 29 | 0 | 8 | [
"A000012",
"A000027",
"A000085",
"A016777",
"A047974",
"A100536",
"A115327",
"A115329",
"A115331",
"A277614",
"A293720",
"A359760",
"A359762"
] | null | Peter Luschny, Jan 14 2023 | 2025-03-25T02:30:26 | oeisdata/seq/A359/A359762.seq | dbf4982ac1253746ae53cf45ffac0072 |
A359763 | Dirichlet inverse of A065043, where A065043 is the characteristic function of the numbers with an even number of prime factors (counted with multiplicity). | [
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"2",
"0",
"-1",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"-1",
"1",
"-1",
"-1",
"0",
"3",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"3",
"-1",
"-1",
"-1",
"1",
"0",
"3",
"-1",
"0",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0"
] | [
"sign"
] | 19 | 1 | 36 | [
"A003961",
"A008836",
"A008966",
"A026424",
"A028260",
"A046523",
"A065043",
"A066829",
"A101296",
"A358777",
"A359763",
"A359764",
"A359765",
"A359766",
"A359767",
"A359773",
"A359780",
"A359823"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-14T17:47:06 | oeisdata/seq/A359/A359763.seq | ef3010b0f2dd504a2fb27e4a7f778ae9 |
A359764 | Parity of A359763, where A359763 is the Dirichlet inverse of characteristic function of the numbers with an even number of prime factors (counted with multiplicity). | [
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 15 | 1 | null | [
"A003961",
"A030229",
"A065043",
"A359595",
"A359763",
"A359764",
"A359765",
"A359766",
"A359767",
"A359774",
"A359781",
"A359791",
"A359824"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-14T17:47:18 | oeisdata/seq/A359/A359764.seq | 61e12fd3c71979a2416844396eb7b29a |
A359765 | Positions of odd terms in A359763, where A359763 is the Dirichlet inverse of characteristic function of the numbers with an even number of prime factors (counted with multiplicity). | [
"1",
"4",
"6",
"9",
"10",
"14",
"15",
"21",
"22",
"24",
"25",
"26",
"33",
"34",
"35",
"38",
"39",
"40",
"46",
"49",
"51",
"54",
"55",
"56",
"57",
"58",
"60",
"62",
"65",
"69",
"74",
"77",
"82",
"84",
"85",
"86",
"87",
"88",
"90",
"91",
"93",
"94",
"95",
"104",
"106",
"111",
"115",
"118",
"119",
"121",
"122",
"123",
"126",
"129",
"132",
"133",
"134",
"135",
"136",
"140",
"141",
"142",
"143",
"144",
"145",
"146",
"150",
"152",
"155",
"156"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A028260",
"A065043",
"A359596",
"A359763",
"A359764",
"A359765",
"A359766",
"A359767",
"A359791"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-13T16:25:34 | oeisdata/seq/A359/A359765.seq | 735a5528d420a81c44a30ea1607b14d1 |
A359766 | Positions of even terms in A359763, where A359763 is the Dirichlet inverse of characteristic function of the numbers with an even number of prime factors (counted with multiplicity). | [
"2",
"3",
"5",
"7",
"8",
"11",
"12",
"13",
"16",
"17",
"18",
"19",
"20",
"23",
"27",
"28",
"29",
"30",
"31",
"32",
"36",
"37",
"41",
"42",
"43",
"44",
"45",
"47",
"48",
"50",
"52",
"53",
"59",
"61",
"63",
"64",
"66",
"67",
"68",
"70",
"71",
"72",
"73",
"75",
"76",
"78",
"79",
"80",
"81",
"83",
"89",
"92",
"96",
"97",
"98",
"99",
"100",
"101",
"102",
"103",
"105",
"107",
"108",
"109",
"110",
"112",
"113",
"114",
"116",
"117",
"120",
"124",
"125",
"127",
"128",
"130"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A026424",
"A065043",
"A359763",
"A359764",
"A359765",
"A359766",
"A359767",
"A359791"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-13T16:25:39 | oeisdata/seq/A359/A359766.seq | 00da40d424d0787ecb45ecf6e28cc1eb |
A359767 | Numbers k such that A065043(k) = 1 but A359764(k) = 0, where A359764 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even number of prime factors). | [
"16",
"36",
"64",
"81",
"96",
"100",
"160",
"196",
"216",
"224",
"225",
"240",
"256",
"336",
"352",
"360",
"384",
"416",
"441",
"484",
"486",
"504",
"528",
"540",
"544",
"560",
"576",
"600",
"608",
"624",
"625",
"640",
"676",
"729",
"736",
"756",
"792",
"810",
"816",
"880",
"896",
"900",
"912",
"928",
"936",
"960",
"992",
"1000",
"1024",
"1040",
"1089",
"1104",
"1134",
"1156",
"1176",
"1184",
"1188",
"1215",
"1224",
"1225"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A013929",
"A026424",
"A028260",
"A065043",
"A359763",
"A359764",
"A359765",
"A359766",
"A359767",
"A359784"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-13T16:25:43 | oeisdata/seq/A359/A359767.seq | e41c9acf780eedd9433610541e925d7b |
A359768 | a(n) = 1 if the parity of n and that of sopfr(n) differ, otherwise 0. Here sopfr is the sum of prime factors (with repetition). | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 13 | 1 | null | [
"A000035",
"A001414",
"A036347",
"A075254",
"A075255",
"A359768"
] | null | Antti Karttunen, Jan 15 2023 | 2023-11-22T10:48:12 | oeisdata/seq/A359/A359768.seq | c4a1ec459a7d0036f9e8965c14dfcbe9 |
A359769 | a(n) = A353557(n) - A353556(n). | [
"1",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"-1",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"-1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"1",
"-1",
"1",
"-1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"-1",
"0",
"-1",
"1",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"1",
"-1",
"0",
"-1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"-1",
"1",
"0",
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"-1",
"1",
"-1"
] | [
"sign"
] | 10 | 1 | null | [
"A001222",
"A003961",
"A065043",
"A353556",
"A353557",
"A359769",
"A359770",
"A359814"
] | null | Antti Karttunen, Jan 15 2023 | 2023-11-22T10:47:38 | oeisdata/seq/A359/A359769.seq | da2a816ae65d1ddde4b41fed5d5b7e24 |
A359770 | a(n) = 1 if n and bigomega(n) are of different parity, otherwise 0. Here bigomega (A001222) gives the number of prime factors of n with multiplicity. | [
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1"
] | [
"nonn"
] | 12 | 1 | null | [
"A000035",
"A001222",
"A003961",
"A065043",
"A069345",
"A353556",
"A353557",
"A359769",
"A359770",
"A359771",
"A359772",
"A359815"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-16T15:44:35 | oeisdata/seq/A359/A359770.seq | 6150cb2870ea143ef8b819e689bf6e59 |
A359771 | Union of even numbers with an odd number of prime factors and odd numbers with an even number of prime factors, when the number of prime factors is counted with multiplicity. | [
"1",
"2",
"8",
"9",
"12",
"15",
"18",
"20",
"21",
"25",
"28",
"30",
"32",
"33",
"35",
"39",
"42",
"44",
"48",
"49",
"50",
"51",
"52",
"55",
"57",
"65",
"66",
"68",
"69",
"70",
"72",
"76",
"77",
"78",
"80",
"81",
"85",
"87",
"91",
"92",
"93",
"95",
"98",
"102",
"108",
"110",
"111",
"112",
"114",
"115",
"116",
"119",
"120",
"121",
"123",
"124",
"128",
"129",
"130",
"133",
"135",
"138",
"141",
"143",
"145",
"148",
"154",
"155",
"159",
"161"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A001222",
"A046337",
"A046470",
"A069345",
"A359770",
"A359771",
"A359772"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-15T15:09:46 | oeisdata/seq/A359/A359771.seq | 90473d3e7b3ade2823aaf3eec95b89e5 |
A359772 | Union of even numbers with an even number of prime factors and odd numbers with an odd number of prime factors, when the number of prime factors is counted with multiplicity. | [
"3",
"4",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"16",
"17",
"19",
"22",
"23",
"24",
"26",
"27",
"29",
"31",
"34",
"36",
"37",
"38",
"40",
"41",
"43",
"45",
"46",
"47",
"53",
"54",
"56",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"67",
"71",
"73",
"74",
"75",
"79",
"82",
"83",
"84",
"86",
"88",
"89",
"90",
"94",
"96",
"97",
"99",
"100",
"101",
"103",
"104",
"105",
"106",
"107",
"109",
"113",
"117",
"118",
"122",
"125",
"126",
"127",
"131",
"132"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A001222",
"A063745",
"A067019",
"A069345",
"A359770",
"A359771",
"A359772"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-15T15:09:52 | oeisdata/seq/A359/A359772.seq | fd802d69b48d72f703fe62bfb5a8ccd9 |
A359773 | Dirichlet inverse of A356163, where A356163 is the characteristic function of the numbers with an even sum of prime factors (counted with multiplicity). | [
"1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"-1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | [
"sign"
] | 21 | 1 | 225 | [
"A001414",
"A003961",
"A036347",
"A036348",
"A036349",
"A067019",
"A335657",
"A356163",
"A359155",
"A359763",
"A359773",
"A359774",
"A359775",
"A359776",
"A359777",
"A359780"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-15T19:50:34 | oeisdata/seq/A359/A359773.seq | 95bc89f7cfb6f610b295d566337746eb |
A359774 | Parity of A359773, where A359773 is the Dirichlet inverse of A356163. | [
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1"
] | [
"nonn"
] | 14 | 1 | null | [
"A001414",
"A003961",
"A356163",
"A359764",
"A359773",
"A359774",
"A359775",
"A359776",
"A359777",
"A359787",
"A359789"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-16T21:55:26 | oeisdata/seq/A359/A359774.seq | 31e89ddae1eb20ade48eead56c45d39d |
A359775 | Positions of odd terms in A359773, where A359773 is the Dirichlet inverse of A356163. | [
"1",
"2",
"9",
"15",
"18",
"21",
"25",
"30",
"33",
"35",
"39",
"42",
"49",
"50",
"51",
"55",
"57",
"65",
"66",
"69",
"70",
"77",
"78",
"85",
"87",
"91",
"93",
"95",
"98",
"102",
"110",
"111",
"114",
"115",
"119",
"121",
"123",
"129",
"130",
"133",
"135",
"138",
"141",
"143",
"145",
"154",
"155",
"159",
"161",
"169",
"170",
"174",
"177",
"182",
"183",
"185",
"186",
"187",
"189",
"190",
"201",
"203",
"205",
"209",
"213",
"215",
"217"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A001414",
"A036349",
"A356163",
"A359765",
"A359773",
"A359774",
"A359775",
"A359776",
"A359777",
"A359789"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-15T15:10:21 | oeisdata/seq/A359/A359775.seq | 2a037c20e151e9f2f766878b24f925b0 |
A359776 | Positions of even terms in A359773, where A359773 is the Dirichlet inverse of A356163. | [
"3",
"4",
"5",
"6",
"7",
"8",
"10",
"11",
"12",
"13",
"14",
"16",
"17",
"19",
"20",
"22",
"23",
"24",
"26",
"27",
"28",
"29",
"31",
"32",
"34",
"36",
"37",
"38",
"40",
"41",
"43",
"44",
"45",
"46",
"47",
"48",
"52",
"53",
"54",
"56",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"67",
"68",
"71",
"72",
"73",
"74",
"75",
"76",
"79",
"80",
"81",
"82",
"83",
"84",
"86",
"88",
"89",
"90",
"92",
"94",
"96",
"97",
"99",
"100",
"101",
"103",
"104",
"105",
"106"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A001414",
"A335657",
"A356163",
"A359766",
"A359773",
"A359774",
"A359775",
"A359776",
"A359777",
"A359789"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-15T15:10:26 | oeisdata/seq/A359/A359776.seq | 64c83bd7a6028772477d3e7c6753ee0e |
A359777 | Numbers k such that A356163(k) = 1 but A359774(k) = 0, where A359774 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even sum of prime factors, with repetition). | [
"4",
"8",
"16",
"32",
"36",
"60",
"64",
"72",
"81",
"84",
"100",
"120",
"128",
"132",
"140",
"144",
"156",
"162",
"168",
"196",
"200",
"204",
"220",
"225",
"228",
"240",
"256",
"260",
"264",
"276",
"280",
"288",
"308",
"312",
"324",
"336",
"340",
"348",
"364",
"372",
"380",
"392",
"400",
"408",
"440",
"441",
"444",
"450",
"456",
"460",
"476",
"480",
"484",
"492",
"512",
"516",
"520",
"528",
"532",
"540",
"552",
"560",
"564"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A001414",
"A036349",
"A335657",
"A356163",
"A359767",
"A359773",
"A359774",
"A359775",
"A359776",
"A359777",
"A359784"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-15T15:10:30 | oeisdata/seq/A359/A359777.seq | 25811ee58f582946003914356a47324a |
A359778 | Number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103). | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"5",
"1",
"1",
"2",
"2",
"2",
"5",
"1",
"2",
"2",
"2",
"1",
"5",
"1",
"2",
"4",
"2",
"1",
"2",
"2",
"4",
"2",
"2",
"1",
"5",
"2",
"2",
"2",
"2",
"1",
"6",
"1",
"2",
"4",
"1",
"2",
"5",
"1",
"2",
"2",
"5",
"1",
"5",
"1",
"2",
"4",
"2",
"2",
"5",
"1",
"2",
"3",
"2",
"1",
"6",
"2",
"2",
"2",
"2",
"1",
"11",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"4",
"4",
"5",
"1",
"5",
"1",
"2",
"5",
"2",
"1",
"7"
] | [
"nonn"
] | 13 | 1 | 6 | [
"A001055",
"A048103",
"A276086",
"A317836",
"A358236",
"A359550",
"A359778",
"A359779"
] | null | Antti Karttunen, Jan 16 2023 | 2023-01-17T10:01:03 | oeisdata/seq/A359/A359778.seq | cbc955eb571b85880cd6744682f12cd8 |
A359779 | Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103). | [
"1",
"-1",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"1",
"-1",
"0",
"0",
"0",
"-1",
"1",
"-1",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"1",
"1",
"-1",
"1",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"1",
"-1",
"1",
"1",
"0",
"-1",
"0",
"-1",
"1",
"0",
"1",
"-1",
"1",
"0",
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"1",
"0",
"0",
"1",
"-1",
"1",
"0",
"1",
"-1",
"0",
"-1",
"0",
"1",
"1",
"0",
"1",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"-1",
"1",
"1",
"0",
"-1",
"1",
"-1",
"0",
"1"
] | [
"sign"
] | 8 | 1 | 420 | [
"A048103",
"A359550",
"A359778",
"A359779"
] | null | Antti Karttunen, Jan 16 2023 | 2023-01-17T10:01:09 | oeisdata/seq/A359/A359779.seq | 3fd7f212d675e446c64839a076db5536 |
A359780 | Dirichlet inverse of A358680, where A358680 is the characteristic function of the numbers with even arithmetic derivative (A003415). | [
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"-1",
"-1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"-1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"1",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"-1",
"-1",
"0",
"-1",
"3",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"-1",
"0"
] | [
"sign"
] | 25 | 1 | 96 | [
"A003415",
"A003961",
"A016825",
"A067019",
"A235992",
"A353348",
"A358680",
"A359763",
"A359780",
"A359781",
"A359782",
"A359783",
"A359784",
"A359793",
"A359823"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-17T16:31:12 | oeisdata/seq/A359/A359780.seq | d6cd61bf60a4868b0b00cf161c5300a1 |
A359781 | Parity of A359780, where A359780 is the Dirichlet inverse of the characteristic function of the numbers with even arithmetic derivative (A003415). | [
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 16 | 1 | null | [
"A003961",
"A056913",
"A358680",
"A359764",
"A359774",
"A359780",
"A359781",
"A359782",
"A359783",
"A359784",
"A359790"
] | null | Antti Karttunen, Jan 13 2023 | 2025-03-25T02:31:22 | oeisdata/seq/A359/A359781.seq | 385a71d75a260648d2c50656aa7fcc35 |
A359782 | Positions of even terms in A359780. | [
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"16",
"17",
"18",
"19",
"22",
"23",
"26",
"27",
"29",
"30",
"31",
"34",
"37",
"38",
"41",
"42",
"43",
"45",
"46",
"47",
"50",
"53",
"54",
"58",
"59",
"61",
"62",
"63",
"66",
"67",
"70",
"71",
"73",
"74",
"75",
"78",
"79",
"81",
"82",
"83",
"86",
"89",
"90",
"94",
"97",
"98",
"99",
"101",
"102",
"103",
"105",
"106",
"107",
"109",
"110",
"113",
"114",
"117",
"118",
"122",
"125",
"126",
"127",
"128",
"130",
"131"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A235991",
"A358680",
"A359780",
"A359781",
"A359782",
"A359783",
"A359784",
"A359790"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-14T12:41:07 | oeisdata/seq/A359/A359782.seq | 9fd91f75b8aaea2e16e91579606fff55 |
A359783 | Positions of odd terms in A359780. | [
"1",
"4",
"8",
"9",
"12",
"15",
"20",
"21",
"24",
"25",
"28",
"32",
"33",
"35",
"36",
"39",
"40",
"44",
"48",
"49",
"51",
"52",
"55",
"56",
"57",
"60",
"64",
"65",
"68",
"69",
"72",
"76",
"77",
"80",
"84",
"85",
"87",
"88",
"91",
"92",
"93",
"95",
"96",
"100",
"104",
"108",
"111",
"112",
"115",
"116",
"119",
"120",
"121",
"123",
"124",
"129",
"132",
"133",
"135",
"136",
"140",
"141",
"143",
"144",
"145",
"148",
"152",
"155",
"156",
"159",
"160",
"161"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A003415",
"A056913",
"A235992",
"A358680",
"A359765",
"A359780",
"A359781",
"A359782",
"A359783",
"A359784",
"A359790",
"A359825"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-14T12:40:10 | oeisdata/seq/A359/A359783.seq | 363b68dda75c9826b5a28a815f22fcbf |
A359784 | Numbers k such that A358680(k) = 1 but A359781(k) = 0, where A359781 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with even arithmetic derivative). | [
"16",
"81",
"128",
"192",
"225",
"240",
"320",
"324",
"336",
"384",
"441",
"448",
"528",
"560",
"624",
"625",
"640",
"648",
"704",
"729",
"816",
"832",
"880",
"896",
"900",
"912",
"972",
"1024",
"1040",
"1088",
"1089",
"1104",
"1215",
"1216",
"1225",
"1232",
"1360",
"1392",
"1408",
"1456",
"1472",
"1488",
"1520",
"1521",
"1620",
"1664",
"1701",
"1764",
"1776",
"1800",
"1840",
"1856",
"1904",
"1920",
"1944",
"1968",
"1984"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A003415",
"A013929",
"A235991",
"A235992",
"A358680",
"A359767",
"A359780",
"A359781",
"A359782",
"A359783",
"A359784"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-14T12:40:03 | oeisdata/seq/A359/A359784.seq | 3519e7cd5de11732f8ed3a251026e883 |
A359785 | Dirichlet inverse of A320655, where A320655(n) is the number of factorizations of n into semiprimes. | [
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"1",
"0",
"-1",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"-1",
"1",
"-1",
"-1",
"0",
"2",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"2",
"-1",
"-1",
"-1",
"1",
"0",
"2",
"-1",
"0",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0"
] | [
"sign"
] | 9 | 1 | 60 | [
"A320655",
"A322353",
"A359785",
"A359786"
] | null | Antti Karttunen, Jan 16 2023 | 2023-10-05T16:25:15 | oeisdata/seq/A359/A359785.seq | ba1a1aa6aa1884161af1cbf5496531ae |
A359786 | Dirichlet inverse of A322353, where A322353(n) is the number of factorizations of n into distinct semiprimes. | [
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"1",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"2",
"0",
"-1",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"-1",
"1",
"-1",
"-1",
"0",
"2",
"0",
"-1",
"0",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"1",
"-1",
"0",
"2",
"-1",
"-1",
"-1",
"1",
"0",
"2",
"-1",
"0",
"-1",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0"
] | [
"sign"
] | 8 | 1 | 36 | [
"A320655",
"A322353",
"A359785",
"A359786"
] | null | Antti Karttunen, Jan 16 2023 | 2023-10-05T16:25:21 | oeisdata/seq/A359/A359786.seq | 3f90591db1adddd7ce14571e6e1594af |
A359787 | Parity of Dirichlet inverse of A075255, where A075255(n) = n - sopfr(n), where sopfr is the sum of prime factors (with repetition). | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 11 | 1 | null | [
"A001414",
"A003961",
"A075255",
"A359764",
"A359768",
"A359774",
"A359787",
"A359788",
"A359816"
] | null | Antti Karttunen, Jan 16 2023 | 2023-01-17T10:01:14 | oeisdata/seq/A359/A359787.seq | 0871f5e4cfe8bf833356f0c8303b7d12 |
A359788 | Dirichlet inverse of A075255, where A075255(n) = n - sopfr(n), where sopfr is the sum of prime factors (with repetition). | [
"1",
"0",
"0",
"0",
"0",
"-1",
"0",
"-2",
"-3",
"-3",
"0",
"-5",
"0",
"-5",
"-7",
"-8",
"0",
"-10",
"0",
"-11",
"-11",
"-9",
"0",
"-15",
"-15",
"-11",
"-18",
"-17",
"0",
"-20",
"0",
"-22",
"-19",
"-15",
"-23",
"-25",
"0",
"-17",
"-23",
"-29",
"0",
"-30",
"0",
"-29",
"-34",
"-21",
"0",
"-33",
"-35",
"-38",
"-31",
"-35",
"0",
"-37",
"-39",
"-43",
"-35",
"-27",
"0",
"-42",
"0",
"-29",
"-50",
"-48",
"-47",
"-50",
"0",
"-47",
"-43",
"-56",
"0",
"-38",
"0",
"-35"
] | [
"sign"
] | 8 | 1 | 8 | [
"A001414",
"A075255",
"A359787",
"A359788",
"A359789"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-16T21:55:43 | oeisdata/seq/A359/A359788.seq | b4efd06d129f573f470fe962898ba1df |
A359789 | Dirichlet inverse of A036288, where A036288(n) = 1 + sopfr(n), where sopfr is the sum of prime divisors with repetition, A001414. | [
"1",
"-3",
"-4",
"4",
"-6",
"18",
"-8",
"-4",
"9",
"28",
"-12",
"-40",
"-14",
"38",
"39",
"4",
"-18",
"-63",
"-20",
"-64",
"53",
"58",
"-24",
"64",
"25",
"68",
"-18",
"-88",
"-30",
"-253",
"-32",
"-4",
"81",
"88",
"83",
"216",
"-38",
"98",
"95",
"104",
"-42",
"-347",
"-44",
"-136",
"-144",
"118",
"-48",
"-88",
"49",
"-175",
"123",
"-160",
"-54",
"180",
"127",
"144",
"137",
"148",
"-60",
"820",
"-62",
"158",
"-198",
"4",
"149",
"-535"
] | [
"sign"
] | 8 | 1 | 2 | [
"A001414",
"A036288",
"A359773",
"A359774",
"A359788",
"A359789",
"A359790",
"A359791"
] | null | Antti Karttunen, Jan 15 2023 | 2023-01-17T10:01:19 | oeisdata/seq/A359/A359789.seq | 1a86a9586e76ccf96b422d2ccd4f8f36 |
A359790 | Dirichlet inverse of function f(n) = 1 + n', where n' stands for the arithmetic derivative of n, A003415(n). | [
"1",
"-2",
"-2",
"-1",
"-2",
"2",
"-2",
"-1",
"-3",
"0",
"-2",
"3",
"-2",
"-2",
"-1",
"0",
"-2",
"6",
"-2",
"3",
"-3",
"-6",
"-2",
"7",
"-7",
"-8",
"-8",
"3",
"-2",
"12",
"-2",
"3",
"-7",
"-12",
"-5",
"9",
"-2",
"-14",
"-9",
"11",
"-2",
"18",
"-2",
"3",
"0",
"-18",
"-2",
"11",
"-11",
"6",
"-13",
"3",
"-2",
"26",
"-9",
"15",
"-15",
"-24",
"-2",
"17",
"-2",
"-26",
"-4",
"9",
"-11",
"30",
"-2",
"3",
"-19",
"16",
"-2",
"9",
"-2",
"-32",
"0",
"3",
"-11",
"36",
"-2",
"23",
"-16",
"-36"
] | [
"sign"
] | 12 | 1 | 2 | [
"A003415",
"A003961",
"A346241",
"A347082",
"A347084",
"A359603",
"A359780",
"A359781",
"A359782",
"A359783",
"A359789",
"A359790",
"A359791"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-17T10:01:24 | oeisdata/seq/A359/A359790.seq | 22e4e352a373b97e8c36daaf13ddcf35 |
A359791 | Dirichlet inverse of function f(n) = 1 + A349905(n), where A349905(n) is the arithmetic derivative of prime shifted n. | [
"1",
"-2",
"-2",
"-3",
"-2",
"-1",
"-2",
"-8",
"-7",
"-3",
"-2",
"0",
"-2",
"-7",
"-5",
"-16",
"-2",
"0",
"-2",
"-4",
"-9",
"-9",
"-2",
"23",
"-11",
"-13",
"-40",
"-12",
"-2",
"12",
"-2",
"-16",
"-11",
"-15",
"-11",
"42",
"-2",
"-19",
"-15",
"21",
"-2",
"12",
"-2",
"-16",
"-24",
"-25",
"-2",
"128",
"-19",
"-12",
"-17",
"-24",
"-2",
"67",
"-13",
"17",
"-21",
"-27",
"-2",
"105",
"-2",
"-33",
"-48",
"48",
"-17",
"12",
"-2",
"-28",
"-27",
"0",
"-2",
"224"
] | [
"sign"
] | 7 | 1 | 2 | [
"A003415",
"A003961",
"A349905",
"A359169",
"A359764",
"A359765",
"A359766",
"A359790",
"A359791"
] | null | Antti Karttunen, Jan 13 2023 | 2023-01-17T10:01:28 | oeisdata/seq/A359/A359791.seq | 1efe84436d08b81a1439ad0af420f53a |
A359792 | a(n) = (-1)^A003415(n), where A003415 is the arithmetic derivative of n. | [
"1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"-1",
"-1",
"-1",
"1",
"-1"
] | [
"sign"
] | 7 | 1 | null | [
"A003415",
"A165560",
"A358680",
"A359792",
"A359793"
] | null | Antti Karttunen, Jan 14 2023 | 2023-01-14T18:36:51 | oeisdata/seq/A359/A359792.seq | d0ec5c54677cd69743ebb585c69167f2 |
A359793 | Dirichlet inverse of (-1)^A003415(n), where A003415 is the arithmetic derivative of n. | [
"1",
"1",
"1",
"0",
"1",
"3",
"1",
"-2",
"0",
"3",
"1",
"2",
"1",
"3",
"1",
"-4",
"1",
"4",
"1",
"2",
"1",
"3",
"1",
"-6",
"0",
"3",
"0",
"2",
"1",
"9",
"1",
"-4",
"1",
"3",
"1",
"8",
"1",
"3",
"1",
"-6",
"1",
"9",
"1",
"2",
"0",
"3",
"1",
"-20",
"0",
"4",
"1",
"2",
"1",
"4",
"1",
"-6",
"1",
"3",
"1",
"16",
"1",
"3",
"0",
"0",
"1",
"9",
"1",
"2",
"1",
"9",
"1",
"-4",
"1",
"3",
"0",
"2",
"1",
"9",
"1",
"-20",
"0",
"3",
"1",
"16",
"1",
"3",
"1",
"-6",
"1",
"12",
"1",
"2",
"1",
"3",
"1",
"-28",
"1",
"4",
"0"
] | [
"sign"
] | 10 | 1 | 6 | [
"A003415",
"A005117",
"A008966",
"A013929",
"A359780",
"A359792",
"A359793",
"A359823"
] | null | Antti Karttunen, Jan 14 2023 | 2023-01-14T18:37:15 | oeisdata/seq/A359/A359793.seq | 4e1e1e446f3316c2da96b6f6b1629ee7 |
A359794 | Union of odd numbers and numbers with an odd 2-adic valuation. | [
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"17",
"18",
"19",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"45",
"46",
"47",
"49",
"50",
"51",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"77",
"78",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"88",
"89",
"90",
"91",
"93",
"94"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A005408",
"A036554",
"A048675",
"A108269",
"A359794",
"A359832"
] | null | Antti Karttunen, Jan 25 2023 | 2025-01-29T14:33:28 | oeisdata/seq/A359/A359794.seq | 6fe792ae2c41588f5b7bc1d7fa167a05 |
A359795 | Dirichlet inverse of function f(n) = 1 + A048675(n), where A048675(n) is fully additive with a(p) = 2^(1-PrimePi(p)). | [
"1",
"-2",
"-3",
"1",
"-5",
"8",
"-9",
"0",
"4",
"14",
"-17",
"-7",
"-33",
"26",
"23",
"0",
"-65",
"-16",
"-129",
"-13",
"43",
"50",
"-257",
"2",
"16",
"98",
"-4",
"-25",
"-513",
"-84",
"-1025",
"0",
"83",
"194",
"77",
"24",
"-2049",
"386",
"163",
"4",
"-4097",
"-160",
"-8193",
"-49",
"-52",
"770",
"-16385",
"0",
"64",
"-64",
"323",
"-97",
"-32769",
"24",
"149",
"8",
"643",
"1538",
"-65537",
"115",
"-131073",
"3074",
"-100"
] | [
"sign"
] | 16 | 1 | 2 | [
"A000720",
"A048675",
"A091428",
"A353348",
"A359592",
"A359603",
"A359789",
"A359790",
"A359791",
"A359795"
] | null | Antti Karttunen, Jan 26 2023 | 2023-01-26T16:13:21 | oeisdata/seq/A359/A359795.seq | c8ab20f7a0468232a5bde15e07664882 |
A359796 | a(n) = Sum_{d|n} (2*d)^(d-1). | [
"1",
"5",
"37",
"517",
"10001",
"248873",
"7529537",
"268435973",
"11019960613",
"512000010005",
"26559922791425",
"1521681143418409",
"95428956661682177",
"6502111422505477189",
"478296900000000010037",
"37778931862957430145541",
"3189059870763703892770817"
] | [
"nonn",
"easy"
] | 12 | 1 | 2 | [
"A262843",
"A359731",
"A359796"
] | null | Seiichi Manyama, Jan 13 2023 | 2023-08-14T02:00:29 | oeisdata/seq/A359/A359796.seq | a15ba72f83e661ea362771321d1b769f |
A359797 | Cogrowth sequence of the lamplighter group Z_2 wr Z where wr denotes the wreath product. | [
"1",
"3",
"15",
"87",
"547",
"3623",
"24885",
"175591",
"1265187",
"9271167",
"68894785",
"518053231",
"3935274277",
"30158804835",
"232930956175",
"1811476156847",
"14174669041427",
"111532445963367",
"882004732285473",
"7006931317108119",
"55899039962599777",
"447666261592033123"
] | [
"nonn",
"walk"
] | 19 | 0 | 2 | [
"A288348",
"A359797",
"A359798"
] | null | Andrew Elvey Price, Jan 13 2023 | 2023-07-30T19:10:13 | oeisdata/seq/A359/A359797.seq | 76dbe050fa2f505955dece052ea52c52 |
A359798 | Cogrowth sequence of the group Z wr Z where wr denotes the wreath product. | [
"1",
"4",
"28",
"232",
"2108",
"20384",
"206392",
"2165720",
"23385340",
"258532216",
"2915343808",
"33437862352",
"389230520888",
"4590271681064",
"54767161155000",
"660307913374352",
"8036973478493436",
"98672644594401736",
"1221090110502080440",
"15222093531642444504"
] | [
"nonn"
] | 26 | 0 | 2 | [
"A294782",
"A359705",
"A359797",
"A359798"
] | null | Andrew Elvey Price, Jan 13 2023 | 2023-07-30T18:22:36 | oeisdata/seq/A359/A359798.seq | c0da7cd3e0aef211902505b6e1bf24c1 |
A359799 | a(1) = 1, a(2) = 3; for n > 2, a(n) is the smallest positive number which has not appeared that shares a factor with |a(n-1) - a(n-2)| while the difference |a(n) - a(n-1)| is distinct from all previous differences |a(i) - a(i-1)|, i=2..n-1. | [
"1",
"3",
"6",
"12",
"2",
"10",
"14",
"26",
"4",
"11",
"28",
"17",
"22",
"35",
"65",
"5",
"20",
"36",
"8",
"32",
"9",
"23",
"42",
"76",
"18",
"38",
"56",
"15",
"41",
"16",
"25",
"54",
"87",
"21",
"48",
"27",
"63",
"24",
"66",
"7",
"59",
"13",
"44",
"93",
"49",
"84",
"30",
"62",
"100",
"19",
"69",
"106",
"37",
"90",
"212",
"34",
"74",
"122",
"33",
"89",
"46",
"129",
"249",
"39",
"86",
"141",
"40",
"101",
"183",
"50",
"95",
"159",
"52"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A337136",
"A352763",
"A353989",
"A354087",
"A354687",
"A354727",
"A354753",
"A354755",
"A359799",
"A361314"
] | null | Scott R. Shannon, Mar 07 2023 | 2023-03-09T06:18:02 | oeisdata/seq/A359/A359799.seq | 758ed980f6432ae5863209595bd5b024 |
A359800 | a(n) is the least m such that the concatenation of n^2 and m is a square. | [
"6",
"9",
"61",
"9",
"6",
"1",
"284",
"516",
"225",
"489",
"104",
"4",
"744",
"249",
"625",
"3201",
"444",
"9",
"201",
"689",
"4201",
"416",
"984",
"4801",
"681",
"5201",
"316",
"996",
"5801",
"601",
"6201",
"144",
"936",
"6801",
"449",
"7201",
"7401",
"804",
"7801",
"225",
"8201",
"8401",
"6",
"8801",
"9001",
"9201",
"9401",
"324",
"9801",
"19344",
"769",
"38025"
] | [
"nonn",
"look",
"base"
] | 64 | 1 | 1 | [
"A000290",
"A071176",
"A075836",
"A084070",
"A221874",
"A246560",
"A359800"
] | null | Mohammed Yaseen, Jan 13 2023 | 2023-02-16T15:15:29 | oeisdata/seq/A359/A359800.seq | ed9f4838cb59fcae6b8c4ab35bc23be1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.