sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A359601
Dirichlet inverse of A244042, where A244042(n) replaces 2's with 0's in the ternary representation of n.
[ "1", "0", "-3", "-4", "-3", "0", "-1", "0", "0", "-10", "-9", "12", "-13", "-12", "9", "6", "-9", "0", "-1", "24", "3", "-4", "-3", "0", "8", "0", "0", "-20", "-27", "30", "-31", "-30", "27", "-28", "-21", "0", "-37", "-36", "39", "40", "-39", "36", "-37", "36", "0", "-28", "-27", "-18", "-30", "30", "27", "76", "-27", "0", "53", "96", "3", "-4", "-3", "-72", "-1", "0", "0", "6", "69", "12", "-13", "60", "9", "82", "-9", "0", "-1", "0", "-24", "4", "15" ]
[ "sign", "base", "easy", "look" ]
12
1
3
[ "A056911", "A244042", "A300821", "A323239", "A337945", "A359601", "A359602" ]
null
Antti Karttunen, Jan 11 2023
2023-01-11T20:59:45
oeisdata/seq/A359/A359601.seq
2f0bd9963edcf7556c41c64b6f0a7268
A359602
Sum of A244042 and its Dirichlet inverse, where A244042(n) replaces 2's with 0's in the ternary representation of n.
[ "2", "0", "0", "0", "0", "0", "0", "0", "9", "0", "0", "24", "0", "0", "18", "16", "0", "0", "0", "24", "6", "0", "0", "0", "9", "0", "27", "8", "0", "60", "0", "0", "54", "0", "6", "36", "0", "0", "78", "80", "0", "72", "0", "72", "27", "0", "0", "12", "1", "60", "54", "104", "0", "0", "54", "96", "6", "0", "0", "-72", "0", "0", "9", "16", "78", "24", "0", "72", "18", "92", "0", "0", "0", "0", "-21", "8", "18", "0", "0", "-84", "81", "0", "0", "144", "54", "0", "162", "32" ]
[ "sign", "base", "easy" ]
10
1
1
[ "A053850", "A244042", "A353569", "A359601", "A359602" ]
null
Antti Karttunen, Jan 11 2023
2023-01-11T20:59:51
oeisdata/seq/A359/A359602.seq
e7ed78f0059badd289beeefbe8d4155f
A359603
Dirichlet inverse of function f(n) = 1+(A003415(n)*A276086(n)), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
[ "1", "-4", "-7", "-21", "-19", "30", "-11", "51", "-132", "-164", "-91", "-11", "-51", "-588", "-935", "-5904", "-451", "-1402", "-251", "-5979", "-7347", "-13898", "-2251", "-25507", "-12140", "-27718", "-99060", "-174307", "-11251", "11610", "-15", "52653", "685", "2410", "-1095", "24800", "-71", "-198", "-2647", "53673", "-631", "61020", "-351", "94173", "-20052", "-21368", "-3151", "207838" ]
[ "sign", "easy" ]
11
1
2
[ "A003415", "A276086", "A358669", "A359427", "A359589", "A359590", "A359603", "A359604" ]
null
Antti Karttunen, Jan 11 2023
2023-01-11T20:59:58
oeisdata/seq/A359/A359603.seq
9028e96d1a568f7dc32b55b212041d68
A359604
a(n) = A359603(n) mod 60.
[ "1", "56", "53", "39", "41", "30", "49", "51", "48", "16", "29", "49", "9", "12", "25", "36", "29", "38", "49", "21", "33", "22", "29", "53", "40", "2", "0", "53", "29", "30", "45", "33", "25", "10", "45", "20", "49", "42", "53", "33", "29", "0", "9", "33", "48", "52", "29", "58", "40", "58", "13", "13", "29", "26", "17", "33", "33", "22", "29", "31", "21", "8", "44", "57", "41", "14", "49", "9", "13", "52", "29", "16", "9", "42", "40", "53", "21", "20" ]
[ "nonn", "easy" ]
8
1
2
[ "A358669", "A358765", "A359590", "A359603", "A359604" ]
null
Antti Karttunen, Jan 11 2023
2023-01-11T21:00:04
oeisdata/seq/A359/A359604.seq
4f7d3d8ba8e56f312742e26a57d5a82b
A359605
a(n) = 1 if A355690(n) is positive (+1), otherwise 0.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0" ]
[ "nonn", "easy" ]
9
1
null
[ "A355690", "A359590", "A359605", "A359606" ]
null
Antti Karttunen, Jan 12 2023
2023-02-18T22:48:42
oeisdata/seq/A359/A359605.seq
be0a6af987e83e43ee0178642bb74cc7
A359606
a(n) = 1 if A355690(n) is negative (-1), otherwise 0.
[ "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "easy" ]
8
1
null
[ "A355690", "A359590", "A359605", "A359606" ]
null
Antti Karttunen, Jan 12 2023
2023-02-18T22:48:38
oeisdata/seq/A359/A359606.seq
5554cbe2a39d5f6ac80ac0dafc7448e8
A359607
Terms of A046337 for which A358777 is zero, where the latter is the Dirichlet inverse of former's characteristic function.
[ "81", "625", "729", "1215", "1701", "2401", "2673", "3159", "4131", "4617", "5589", "6561", "7047", "7533", "8991", "9375", "9963", "10449", "10935", "11421", "12879", "14337", "14641", "14823", "15309", "15625", "16281", "17253", "17739", "18225", "19197", "20169", "21627", "21875", "23571", "24057", "24543", "25029", "25515", "26001", "26487", "27459", "28431", "28561", "30861", "31833" ]
[ "nonn" ]
5
1
1
[ "A046337", "A353557", "A358777", "A359607" ]
null
Antti Karttunen, Jan 12 2023
2023-01-12T13:56:12
oeisdata/seq/A359/A359607.seq
ca6b5ed5e870b4701b9ed3b299c14622
A359608
Indices at which A358777 attains a new value.
[ "1", "2", "9", "225", "315", "1155", "2835", "4725", "10395", "11025", "17325", "45045", "70875", "93555", "99225", "155925", "165375", "255255", "259875", "363825", "405405", "637875", "675675", "1063125", "1334025", "1488375", "1576575", "2297295", "2338875", "2480625", "3274425", "3472875", "3648645", "3828825", "5457375", "6081075", "10135125", "12006225", "12733875", "13395375" ]
[ "nonn" ]
15
1
2
[ "A046337", "A353557", "A358777", "A359598", "A359600", "A359608", "A359609" ]
null
Antti Karttunen, Jan 12 2023
2024-01-03T17:19:20
oeisdata/seq/A359/A359608.seq
65a3a71c302871d64b32c5cfe640838f
A359609
Distinct values of A358777 in the order of their appearance.
[ "1", "0", "-1", "2", "3", "5", "-2", "-6", "-11", "-10", "-18", "-33", "9", "6", "14", "27", "22", "-61", "42", "66", "52", "-4", "126", "-12", "104", "-26", "198", "241", "-51", "-40", "-78", "-58", "-24", "378", "-174", "-153", "-339", "-268", "-254", "10", "-522", "723", "15", "-392", "-300", "20", "-762", "30", "58", "-1017", "83", "64", "174", "-1176", "124" ]
[ "sign" ]
5
1
4
[ "A358777", "A359599", "A359608", "A359609" ]
null
Antti Karttunen, Jan 12 2023
2023-01-12T13:56:20
oeisdata/seq/A359/A359609.seq
7ef9f492ce0770010393695062fd105d
A359610
Numbers k such that the sum of the 5th powers of the digits of k is prime.
[ "11", "101", "110", "111", "119", "128", "133", "182", "188", "191", "218", "223", "227", "229", "232", "247", "272", "274", "281", "292", "313", "322", "331", "337", "346", "359", "364", "368", "373", "377", "379", "386", "395", "397", "427", "436", "463", "472", "478", "487", "539", "557", "568", "575", "577", "586", "593", "634", "638", "643", "658", "667" ]
[ "nonn", "base", "easy" ]
28
1
1
[ "A028834", "A031974", "A055014", "A108662", "A210767", "A225534", "A245358", "A359610" ]
null
José Hernández, Jan 06 2023
2023-01-28T03:55:31
oeisdata/seq/A359/A359610.seq
515877884074fea1f55edb2d6f402579
A359611
The lexicographically earliest "Increasing Term Fractal Jump Sequence".
[ "1", "2", "20", "22", "100", "200", "201", "1000", "20000", "20001", "110000", "2000000", "2000001", "110100000", "200000000", "200000001", "1101001000000", "2000000000020", "2000000010101", "10100010000000", "20000000000002", "20020000000001", "101001010010000", "100000000200000000000000" ]
[ "nonn", "base" ]
15
1
2
[ "A105395", "A105396", "A105397", "A105398", "A105647", "A359385", "A359611" ]
null
Tyler Busby, Jan 06 2023
2023-01-30T07:42:52
oeisdata/seq/A359/A359611.seq
288941bf7564106320c7e3b7f5cf198c
A359612
Largest prime factor with minimal exponent in canonical prime factorization of n.
[ "2", "3", "2", "5", "3", "7", "2", "3", "5", "11", "3", "13", "7", "5", "2", "17", "2", "19", "5", "7", "11", "23", "3", "5", "13", "3", "7", "29", "5", "31", "2", "11", "17", "7", "3", "37", "19", "13", "5", "41", "7", "43", "11", "5", "23", "47", "3", "7", "2", "17", "13", "53", "2", "11", "7", "19", "29", "59", "5", "61", "31", "7", "2", "13", "11", "67", "17", "23", "7", "71", "3", "73", "37", "3" ]
[ "nonn" ]
30
2
1
[ "A006530", "A067695", "A356838", "A356840", "A359612" ]
null
Jens Ahlström, Jan 06 2023
2023-02-08T10:10:23
oeisdata/seq/A359/A359612.seq
cee307df736abd369778bf5a02e2a099
A359613
Greatest k such that a polynomial f(x) with nonnegative integral coefficients with degree at most k is irreducible if f(n) is a prime.
[ "6", "9", "12", "15", "19", "22", "25", "28", "31", "34", "37", "40", "44", "47", "50", "53", "56", "59", "62" ]
[ "nonn", "hard", "more", "nice" ]
13
2
1
[ "A253280", "A359613" ]
null
Ondrej Kutal, Jan 07 2023
2023-01-08T10:13:16
oeisdata/seq/A359/A359613.seq
299afc9c37ed7bf6b7c84b920c654dfc
A359614
a(n) is the minimal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
[ "1", "1", "-3", "-30", "-256", "-7595", "-358301", "-7665804", "-227965955", "-13089461984", "-2467071630448" ]
[ "sign", "hard", "more" ]
23
0
3
[ "A350953", "A359559", "A359561", "A359614", "A359615", "A359616", "A359617" ]
null
Stefano Spezia, Jan 07 2023
2023-01-25T20:50:05
oeisdata/seq/A359/A359614.seq
26cfaa91ba30c9bca06bacaa99971700
A359615
a(n) is the maximal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
[ "1", "1", "3", "9", "512", "9195", "242931", "7459494", "524426191", "17012915860", "773407040859" ]
[ "nonn", "hard", "more" ]
23
0
3
[ "A350954", "A359559", "A359561", "A359614", "A359615", "A359616", "A359617" ]
null
Stefano Spezia, Jan 07 2023
2023-01-25T20:50:17
oeisdata/seq/A359/A359615.seq
233913f709cfea3a037273888e8a3be5
A359616
a(n) is the minimal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
[ "1", "1", "5", "18", "245", "2249", "57213", "947177", "50431724", "1282453618" ]
[ "nonn", "hard", "more" ]
23
0
3
[ "A351019", "A359560", "A359562", "A359614", "A359615", "A359616", "A359617" ]
null
Stefano Spezia, Jan 07 2023
2023-01-25T21:10:57
oeisdata/seq/A359/A359616.seq
982871f85d394089642a683db1558a26
A359617
a(n) is the maximal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
[ "1", "1", "5", "54", "980", "26775", "1061841", "56647472", "4103545288", "367479636012" ]
[ "nonn", "hard", "more" ]
21
0
3
[ "A351020", "A359560", "A359562", "A359614", "A359615", "A359616", "A359617" ]
null
Stefano Spezia, Jan 07 2023
2023-01-25T22:07:22
oeisdata/seq/A359/A359617.seq
b0c419ed7199a051284a5e1682882334
A359618
a(n) is the minimal absolute value of the determinant of a nonsingular n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with off-diagonal elements purely imaginary.
[ "1", "1", "3", "9", "16", "21", "20", "17", "131", "62", "1" ]
[ "nonn", "hard", "more" ]
11
0
3
[ "A348891", "A358325", "A359559", "A359561", "A359614", "A359615", "A359616", "A359617", "A359618" ]
null
Stefano Spezia, Jan 21 2023
2023-01-25T02:54:30
oeisdata/seq/A359/A359618.seq
eee159d8088b44d36e9fcc6da6a4d304
A359619
Irregular table read by rows: T(n,k) is the number of k-gons, k>=1, after n iterations of constructing circles from all current vertices using only a compass, starting with one vertex. See the Comments.
[ "0", "1", "0", "0", "2", "1", "0", "1", "16", "4", "0", "16", "2470", "3599", "902", "168", "14" ]
[ "nonn", "more", "hard", "tabf" ]
5
1
5
[ "A359009", "A359061", "A359258", "A359569", "A359570", "A359571", "A359619" ]
null
Scott R. Shannon, Jan 07 2023
2023-01-09T09:32:10
oeisdata/seq/A359/A359619.seq
834f5796235f769f6c3c775c108c108a
A359620
Number of edge cuts in the n-antiprism graph.
[ "1", "4", "62", "1440", "30346", "589556", "10858046", "192811016", "3336192082", "56642890908", "948242161382", "15706527467824", "258068117928826", "4214126476848580", "68489478048350222", "1109069751830483544", "17909240724783047842", "288575383662532867820", "4642173797092097149238" ]
[ "nonn" ]
23
0
2
[ "A359620", "A359621" ]
null
Eric W. Weisstein, Jan 07 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359620.seq
adf1443fb10ff3850692679915567fae
A359621
Number of edge cuts in the n-prism graph.
[ "1", "4", "31", "314", "3013", "27060", "232671", "1947118", "16021801", "130447976", "1055068595", "8498016994", "68269451069", "547562782044", "4387403278023", "35132904838614", "281226897433681", "2250607478637648", "18008682685966299", "144087851840540874", "1152791046751807845" ]
[ "nonn" ]
13
0
2
[ "A359620", "A359621" ]
null
Eric W. Weisstein, Jan 07 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359621.seq
d172c33ef38e21f602c5329c1399b3f9
A359622
Number of edge cuts in the n-Moebius ladder.
[ "1", "26", "307", "3004", "27049", "232658", "1947103", "16021784", "130447957", "1055068574", "8498016971", "68269451044", "547562782017", "4387403277994", "35132904838583", "281226897433648", "2250607478637613", "18008682685966262", "144087851840540835", "1152791046751807804", "9222750661998396185", "73784021962658308290" ]
[ "nonn", "easy" ]
14
1
2
null
null
Eric W. Weisstein, Jan 07 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359622.seq
e8ccc675a4271b1cff38a86c984ea785
A359623
a(n) is the least integer of the form sum(X)/sum(Y) where {X, Y} runs through the partitions of the divisors of n into two nonempty sets (and sum(Z) is the sum of the elements of Z).
[ "2", "3", "6", "5", "1", "7", "2", "12", "2", "11", "1", "13", "2", "2", "30", "17", "2", "19", "1", "3", "2", "23", "1", "30", "2", "3", "1", "29", "1", "31", "2", "3", "2", "3", "6", "37", "2", "3", "1", "41", "1", "43", "2", "5", "2", "47", "1", "56", "2", "3", "6", "53", "1", "5", "1", "3", "2", "59", "1", "61", "2", "7", "126", "5", "1", "67", "5", "3", "1", "71", "2", "73", "2", "3", "6", "7", "1", "79", "1" ]
[ "nonn" ]
74
2
1
[ "A039653", "A083207", "A359623" ]
null
Rémy Sigrist, Feb 17 2023
2023-02-19T09:18:06
oeisdata/seq/A359/A359623.seq
dabe6e999fd5e7f57c14eebdda994bbc
A359624
Centered triangular numbers which are products of three distinct primes.
[ "1054", "1786", "2110", "2710", "4294", "5134", "6634", "7885", "8326", "10210", "12835", "13114", "14554", "17014", "22510", "24769", "25546", "26335", "30889", "32635", "36271", "42085", "44635", "45154", "47794", "49414", "52174", "52735", "53866", "56746", "58510", "61510", "63346", "66466", "68374", "71614", "73594", "75601", "76954", "84610", "88210" ]
[ "nonn" ]
19
1
1
[ "A005448", "A007304", "A359624" ]
null
Massimo Kofler, Jan 08 2023
2023-01-27T13:34:13
oeisdata/seq/A359/A359624.seq
4f8003a07403408d5b941f032d73962e
A359625
Least number m such that denominator(sigma(m)/(m+1)) = n, or zero if no such m exists.
[ "2", "1", "8", "95", "4", "143", "6", "63", "26", "9", "10", "16415", "12", "111", "44", "255", "16", "273023", "18", "159", "62", "175", "22", "575", "74", "25", "80", "671", "28", "3599", "30", "511", "395", "441", "34", "5183", "36", "303", "116", "8639", "40", "163295", "42", "1055", "134", "101567", "46", "19191876318719", "48", "49", "152", "415", "52", "3887" ]
[ "nonn" ]
31
1
1
[ "A063906", "A162657", "A339966", "A359625" ]
null
Michel Marcus, Jan 07 2023
2023-08-28T08:21:15
oeisdata/seq/A359/A359625.seq
c10e329e57680040212186fee3dc1aa2
A359626
a(n) is equal to the number of filled unit triangles in a regular triangle whose coloring scheme is given in the comments.
[ "1", "4", "9", "15", "21", "27", "34", "43", "54", "66", "78", "90", "103", "118", "135", "153", "171", "189", "208", "229", "252", "276", "300", "324", "349", "376", "405", "435", "465", "495", "526", "559", "594", "630", "666", "702", "739", "778", "819", "861", "903", "945", "988", "1033", "1080", "1128", "1176", "1224", "1273", "1324", "1377", "1431", "1485", "1539", "1594", "1651", "1710", "1770", "1830", "1890", "1951", "2014", "2079" ]
[ "nonn", "easy" ]
21
1
2
[ "A000096", "A077859", "A359626" ]
null
Nicolay Avilov, Apr 20 2023
2023-08-05T21:21:50
oeisdata/seq/A359/A359626.seq
52fcfb7c9234376aecd56b6b65b969ec
A359627
Irregular table read by rows; the n-th row lists the divisors d of 2*n such that the binary expansions of d and 2*n have no common 1-bit.
[ "1", "1", "2", "1", "1", "2", "4", "1", "5", "1", "2", "3", "1", "1", "2", "4", "8", "1", "9", "1", "2", "10", "1", "1", "2", "3", "4", "6", "1", "1", "2", "1", "1", "2", "4", "8", "16", "1", "17", "1", "2", "3", "9", "18", "1", "1", "2", "4", "5", "20", "1", "21", "1", "2", "1", "1", "2", "3", "4", "6", "8", "12", "1", "5", "1", "2", "1", "9", "1", "2", "4", "7", "1", "1", "2", "3", "1", "1", "2", "4", "8", "16", "32" ]
[ "nonn", "base", "tabf" ]
24
1
3
[ "A307314", "A359079", "A359627", "A359708" ]
null
Rémy Sigrist, Jan 12 2023
2024-01-25T12:35:02
oeisdata/seq/A359/A359627.seq
18fc406b4da9ffa6778e47bcda901af0
A359628
Triangle read by rows: T(n,k) is the maximum number of connected endofunctions that are spanning subgraphs of a semi-regular loopless digraph on n vertices each with out-degree k.
[ "1", "1", "8", "1", "16", "78", "1", "32", "234", "944", "1", "64", "710", "3776", "13800", "1", "128" ]
[ "nonn", "tabl", "more" ]
30
2
3
[ "A000435", "A359628" ]
null
Yali Harrary, Jan 08 2023
2023-02-16T05:27:35
oeisdata/seq/A359/A359628.seq
0eeb7d84679df0be31e5f9e722cf3c8e
A359629
Indices of the primes of |A007442|.
[ "1", "5", "7", "8", "11", "13", "40", "106", "132", "154", "478", "647", "1576", "2067", "2656", "3837", "5158", "6985", "7844", "9777", "11607", "21027", "22638", "31979", "33592", "34279" ]
[ "nonn", "more" ]
30
1
2
[ "A007442", "A359629" ]
null
Robert G. Wilson v, Jan 08 2023
2025-06-20T20:22:53
oeisdata/seq/A359/A359629.seq
14a293655c5a6ed283b86a6e43979628
A359630
Primes p such that 10^p+3 or 10^p+9 is also prime.
[ "2", "3", "5", "11", "17", "101", "107", "26927", "48109" ]
[ "nonn", "base", "hard", "more" ]
43
1
1
[ "A049054", "A088275", "A359630" ]
null
Mikk Heidemaa, Jan 08 2023
2025-02-09T19:03:09
oeisdata/seq/A359/A359630.seq
f6a5c140bd4a95fc60e85419f7dc9fe8
A359631
a(n) is the smallest positive integer which can be represented as the sum of distinct positive Fibonacci n-step numbers (with a single type of 1) in exactly n ways, or -1 if no such integer exists.
[ "1", "3", "44", "416", "26815", "464031" ]
[ "nonn", "more" ]
20
1
2
[ "A000119", "A013583", "A117546", "A287656", "A288120", "A359631" ]
null
Ilya Gutkovskiy, Jan 08 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359631.seq
1618030e0af7f56a489e482cd1bf7286
A359632
Sequence of gaps between deletions of multiples of 7 in step 4 of the sieve of Eratosthenes.
[ "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3", "12", "7", "4", "7", "4", "7", "12", "3" ]
[ "nonn", "easy" ]
58
1
1
[ "A002110", "A005867", "A007395", "A010701", "A010705", "A054272", "A236175", "A359632" ]
null
Alexandre Herrera, Jan 08 2023
2024-07-02T02:16:38
oeisdata/seq/A359/A359632.seq
490cc42969a2f3ead9b5f50e34826c9e
A359633
a(n) is the least prime > a(n-1) such that a(n-1) and a(n) are quadratic residues mod each other.
[ "2", "7", "29", "53", "59", "137", "139", "173", "179", "193", "197", "223", "241", "251", "317", "353", "383", "389", "409", "419", "457", "461", "467", "541", "557", "563", "593", "601", "607", "701", "743", "761", "769", "773", "787", "797", "811", "853", "857", "859", "881", "883", "929", "937", "941", "947", "977", "991", "1009", "1013", "1019", "1033", "1039", "1049", "1051", "1097", "1129", "1153", "1171" ]
[ "nonn" ]
10
1
1
[ "A034794", "A034795", "A359633" ]
null
Robert Israel, Jan 07 2023
2023-01-15T15:23:09
oeisdata/seq/A359/A359633.seq
68f59bc41810e74a6997778bfb00e352
A359634
a(0)=1 and thereafter a(n) is the length of the longest contiguous group of terms in the sequence thus far that add up to n; if no such group exists, set a(n)=0.
[ "1", "1", "2", "2", "3", "3", "4", "3", "4", "5", "4", "5", "6", "4", "5", "6", "7", "6", "7", "8", "5", "7", "8", "9", "7", "6", "8", "9", "10", "6", "9", "10", "11", "9", "8", "10", "11", "12", "9", "10", "9", "11", "12", "13", "7", "12", "13", "14", "12", "11", "13", "14", "15", "11", "13", "11", "14", "15", "16", "13", "6", "14", "13", "15", "16", "17", "13", "15", "12", "16", "17", "18", "15", "8", "16", "14", "17", "18", "19", "15", "16", "12", "17", "14", "18", "19", "20" ]
[ "nonn" ]
25
0
3
[ "A138099", "A331614", "A358537", "A359634" ]
null
Neal Gersh Tolunsky, Jan 08 2023
2023-03-09T04:21:11
oeisdata/seq/A359/A359634.seq
11373a5a3bf28a29c9d15d3e524e5c92
A359635
a(n) = A162657(n)/n.
[ "1", "1", "1", "1", "1", "3", "1", "1", "1", "2", "1", "4", "1", "8", "3", "1", "1", "26", "1", "24", "1", "4", "1", "3", "1", "2", "1", "7", "1", "6", "1", "1", "3", "2", "1", "1", "1", "4", "1", "2", "1", "32", "1", "4", "18", "8", "1", "4", "1", "1", "9", "2", "1", "3", "1", "8", "1", "2", "1", "156", "1", "32", "1", "1", "1", "312", "1", "2", "3", "14", "1", "26", "1", "2", "1", "4", "1", "8", "1", "2", "1", "2", "1", "21", "1", "4", "3", "4", "1", "792" ]
[ "nonn" ]
10
1
6
[ "A162657", "A359635" ]
null
Michel Marcus, Jan 09 2023
2023-01-09T13:02:45
oeisdata/seq/A359/A359635.seq
9fe75d14bc8c5cc0819545d3bd405c75
A359636
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have at least n distinct prime factors.
[ "7", "19", "643", "51427", "8083633", "1077940147", "75582271489", "34710483181813" ]
[ "nonn", "hard", "more" ]
25
1
1
[ "A001359", "A075590", "A185032", "A359636" ]
null
Hugo Pfoertner, Jan 12 2023
2023-11-03T06:29:58
oeisdata/seq/A359/A359636.seq
e1e2690058681b49da401bdf5e3f060a
A359637
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have at least n prime factors, counted with multiplicity.
[ "7", "97", "349", "13309", "33613", "5594749", "84477247", "1524981247", "60924074749" ]
[ "nonn", "hard", "more" ]
5
2
1
[ "A001222", "A001359", "A062502", "A359636", "A359637" ]
null
Hugo Pfoertner, Jan 16 2023
2023-01-21T09:32:32
oeisdata/seq/A359/A359637.seq
9f6af0aacb4d938897f4c2a573b6e1c9
A359638
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have exactly n prime factors, counted with multiplicity.
[ "601", "1429", "81547", "248749", "27140749", "310314157", "3566181247" ]
[ "nonn", "more", "hard" ]
4
3
1
[ "A001222", "A001359", "A062502", "A359636", "A359637", "A359638" ]
null
Hugo Pfoertner, Jan 16 2023
2023-01-28T12:12:41
oeisdata/seq/A359/A359638.seq
ba747aea1f183ec5cbc0dc0908475062
A359639
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have at least n odd prime factors, counted with multiplicity.
[ "97", "1999", "101527", "6666547", "272572999", "3819770107", "410274361249" ]
[ "nonn", "hard", "more" ]
4
2
1
[ "A001222", "A001359", "A087436", "A359637", "A359639", "A359640" ]
null
Hugo Pfoertner, Jan 16 2023
2023-01-30T12:30:03
oeisdata/seq/A359/A359639.seq
e55127ffef60f7aa5f584a344ff601ef
A359640
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have exactly n odd prime factors, counted with multiplicity.
[ "307", "1999", "101527", "7146697", "272572999", "4809363523" ]
[ "nonn", "hard", "more" ]
4
2
1
[ "A001222", "A001359", "A087436", "A359637", "A359639", "A359640" ]
null
Hugo Pfoertner, Jan 16 2023
2023-01-30T12:29:56
oeisdata/seq/A359/A359640.seq
85d6b38fd80f6a81d90224a3e226b458
A359641
a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have exactly n odd prime factors, all with exponent 1.
[ "307", "8929", "992263", "229658167", "28674536239" ]
[ "nonn", "hard", "more" ]
10
2
1
[ "A001222", "A001359", "A087436", "A285800", "A359640", "A359641" ]
null
Hugo Pfoertner, Jan 17 2023
2023-02-21T17:17:26
oeisdata/seq/A359/A359641.seq
7c56289a624cb33c941918e937fb4613
A359642
Number of numbers <= 10^n that are products of 4 distinct primes.
[ "0", "0", "16", "429", "7039", "92966", "1103888", "12364826", "133702610", "1413227318", "14709861824", "151469044739", "1547593008310", "15721130285808", "159006397271949", "1602820838558101", "16114386617828822", "161673560523193369", "1619352576852638084", "16197963371445222701" ]
[ "nonn" ]
15
1
3
[ "A006880", "A036351", "A046386", "A215218", "A359642" ]
null
Peter Dolland, Jan 09 2023
2025-01-31T16:11:13
oeisdata/seq/A359/A359642.seq
abb54d9005481e6d6ca479f13b95fc66
A359643
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k).
[ "1", "5", "37", "317", "2885", "27105", "259765", "2523813", "24768069", "244941833", "2437083697", "24367722725", "244639635749", "2464477467769", "24899468129405", "252202062544617", "2560119328830725", "26038134699958233", "265278657849511561", "2706809063101138409", "27657194997231516145", "282941098708193905485" ]
[ "nonn" ]
25
0
2
[ "A026375", "A156887", "A188686", "A346646", "A346664", "A359643" ]
null
Vaclav Kotesovec, Jan 09 2023
2025-04-17T09:34:55
oeisdata/seq/A359/A359643.seq
84ce94adda12fa34522940980df03c52
A359644
Number of numbers <= 10^n that are products of 5 distinct primes.
[ "0", "0", "0", "24", "910", "18387", "286758", "3884936", "48396263", "571221133", "6499261245", "72047682376", "783561421371", "8399470576016", "89038389261794", "935562667202846", "9761003371437806", "101253973351371824", "1045354835981786609" ]
[ "nonn", "more" ]
19
1
4
[ "A006880", "A036351", "A046387", "A215218", "A359642", "A359644" ]
null
Peter Dolland, Jan 09 2023
2025-06-27T17:28:32
oeisdata/seq/A359/A359644.seq
d1be1d87010f2b2f9950ded7db503a1c
A359645
Number of numbers <= 10^n that are products of 6 distinct primes.
[ "0", "0", "0", "0", "20", "1235", "32396", "605939", "9446284", "131733664", "1706815354", "21008871506", "249145286508", "2873325692759", "32433194803107", "359960491516138", "3941261642520039", "42679704453671033", "457980431402674541" ]
[ "nonn", "more" ]
18
1
5
[ "A006880", "A036351", "A067885", "A215218", "A359642", "A359644", "A359645" ]
null
Peter Dolland, Jan 09 2023
2025-06-27T17:28:17
oeisdata/seq/A359/A359645.seq
10c328527858c47243317905d9c48ac2
A359646
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*n+k,k).
[ "1", "7", "89", "1273", "19181", "297662", "4707971", "75459496", "1221388525", "19919031781", "326797222834", "5387618403526", "89178832899887", "1481143718244912", "24671054686539336", "411966653603163008", "6894167059382069485", "115593504497163747167", "1941434442814233362939", "32656575110841643234631" ]
[ "nonn" ]
10
0
2
[ "A001850", "A114496", "A156886", "A156887", "A359646" ]
null
Vaclav Kotesovec, Jan 09 2023
2023-01-09T21:30:47
oeisdata/seq/A359/A359646.seq
7946199dc3356d16b363d5a56bc4cb4e
A359647
a(n) = [x^n] hypergeom([1/4, 3/4], [2], 64*x). The central terms of the Motzkin triangle A359364 without zeros.
[ "1", "6", "140", "4620", "180180", "7759752", "356948592", "17210021400", "859544957700", "44123307828600", "2315270298060720", "123691561681243920", "6707888537328997200", "368417878127146461600", "20455964090297751153600", "1146556787261188952159280", "64797319609481605046295780" ]
[ "nonn" ]
13
0
2
[ "A000108", "A001006", "A001448", "A359364", "A359647" ]
null
Peter Luschny, Jan 09 2023
2023-08-02T09:23:36
oeisdata/seq/A359/A359647.seq
c0146927ed89e067437b4fa6daad518c
A359648
Triangle read by rows. T(n, k) = (n!)^2 / (k! * (n - k)! * (floor(n/2)!)^2 * (floor(n/2) + 1)).
[ "1", "1", "1", "1", "2", "1", "3", "9", "9", "3", "2", "8", "12", "8", "2", "10", "50", "100", "100", "50", "10", "5", "30", "75", "100", "75", "30", "5", "35", "245", "735", "1225", "1225", "735", "245", "35", "14", "112", "392", "784", "980", "784", "392", "112", "14", "126", "1134", "4536", "10584", "15876", "15876", "10584", "4536", "1134", "126" ]
[ "nonn", "tabl" ]
8
0
5
[ "A000007", "A057977", "A063549", "A240558", "A359648" ]
null
Peter Luschny, Jan 09 2023
2023-01-18T09:34:23
oeisdata/seq/A359/A359648.seq
3310c8787e2c56f63b827eb99360fd6d
A359649
a(n) = hypergeom([(1 - n)/2, -n/2], [2], 4*n^2).
[ "1", "1", "5", "28", "609", "6501", "272701", "4286815", "272156417", "5648748355", "484054204501", "12482361156398", "1351553781736225", "41650209565275195", "5460281206077347469", "195722005810272604876", "30156361094764202326017", "1232550298298392183231275", "218366864894707599746619685" ]
[ "nonn" ]
7
0
3
[ "A359364", "A359649" ]
null
Peter Luschny, Jan 10 2023
2024-01-08T07:58:41
oeisdata/seq/A359/A359649.seq
91e76eae5db34bff124c1d6ed16f2cff
A359650
Smallest prime factor q of (2^(p-1)-1) / (3*p) with prime p such that q is greater than p (increasing p, cf. A359387).
[ "31", "89", "178481", "233", "13367", "6361", "499", "62020897", "3391", "1049", "4153", "1433", "7068569257", "1327", "1399", "1913", "54217", "80929", "26371", "7753", "855857", "5867", "3449", "48731", "7707719", "12619129", "104369", "32051", "78557207", "67219", "1676083", "34513", "22291", "4567", "14563", "830833", "2731", "343081" ]
[ "nonn" ]
11
1
1
[ "A000720", "A020639", "A096060", "A359387", "A359650" ]
null
Alain Rocchelli, Jan 09 2023
2023-01-21T02:42:41
oeisdata/seq/A359/A359650.seq
0884824bbb65186435b443e1ef65fb34
A359651
Numbers with exactly three nonzero decimal digits and not ending with 0.
[ "111", "112", "113", "114", "115", "116", "117", "118", "119", "121", "122", "123", "124", "125", "126", "127", "128", "129", "131", "132", "133", "134", "135", "136", "137", "138", "139", "141", "142", "143", "144", "145", "146", "147", "148", "149", "151", "152", "153", "154", "155", "156", "157", "158", "159", "161", "162", "163", "164", "165", "166", "167", "168", "169", "171", "172", "173", "174", "175" ]
[ "nonn", "base", "easy" ]
14
1
1
[ "A359098", "A359651" ]
null
Charles R Greathouse IV, Jan 09 2023
2023-01-15T02:37:05
oeisdata/seq/A359/A359651.seq
41887e31c07aad8e8c8352ba09e72874
A359652
Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic or geometric progression.
[ "1", "1", "2", "1", "1", "2", "2", "5", "5", "1", "1", "2", "1", "1", "2", "2", "5", "5", "2", "5", "5", "6", "6", "10", "6", "6", "11", "1", "1", "2", "1", "1", "2", "2", "5", "5", "1", "1", "2", "1", "1", "2", "2", "5", "5", "2", "5", "5", "6", "6", "10", "6", "6", "11", "11", "5", "5", "6", "6", "12", "6", "6", "12", "2", "12", "14", "13", "13", "3", "13", "12", "12", "15", "13", "12", "12", "13", "15", "13", "17" ]
[ "nonn", "look" ]
16
1
3
[ "A229037", "A268811", "A359652" ]
null
Neal Gersh Tolunsky, Jan 09 2023
2023-01-10T20:00:55
oeisdata/seq/A359/A359652.seq
d44f2fec43d28e9da91f140e95a590f5
A359653
Number of regions formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
[ "1", "4", "96", "728", "7840", "17744", "104136", "246108", "681704", "1187200", "3719496", "5396692", "14149896" ]
[ "nonn", "more" ]
8
1
2
[ "A005728", "A006842", "A006843", "A355798", "A358882", "A358886", "A358948", "A359653", "A359654", "A359655", "A359656" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 09 2023
2023-01-10T18:21:25
oeisdata/seq/A359/A359653.seq
d00841d2fa0daebf5d0145d0ad2c6e7b
A359654
Number of vertices formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
[ "4", "9", "77", "593", "6749", "15569", "93281", "222933", "623409", "1087393", "3453289", "5011009", "13271517" ]
[ "nonn", "more" ]
8
1
1
[ "A005728", "A006842", "A006843", "A355799", "A358883", "A358887", "A358949", "A359653", "A359654", "A359655", "A359656" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 10 2023
2023-01-10T18:22:29
oeisdata/seq/A359/A359654.seq
ea0aabc2291ddb465ee8188733ff6eff
A359655
Number of edges formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
[ "4", "12", "172", "1320", "14588", "33312", "197416", "469040", "1305112", "2274592", "7172784", "10407700", "27421412" ]
[ "nonn", "more" ]
6
1
1
[ "A005728", "A006842", "A006843", "A355800", "A358884", "A358888", "A358950", "A359653", "A359654", "A359655", "A359656" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 10 2023
2023-01-10T18:22:47
oeisdata/seq/A359/A359655.seq
efabb567fdbde8d3f1b83a5bfcb68d2f
A359656
Irregular table read by rows: T(n,k) is the number of k-gons, k>=3, formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
[ "0", "1", "0", "4", "56", "40", "368", "300", "48", "12", "3376", "3408", "960", "96", "7536", "7524", "2240", "436", "8", "42048", "45112", "13912", "2868", "168", "28", "97720", "105980", "34496", "7020", "832", "52", "8", "267240", "290456", "100560", "20576", "2688", "160", "24", "461800", "509824", "174400", "36228", "4608", "324", "16", "1411272", "1594296", "569152", "126408", "16856", "1408", "104" ]
[ "nonn", "tabf" ]
12
1
4
[ "A005728", "A006842", "A006843", "A355801", "A358885", "A358889", "A358951", "A359653", "A359654", "A359655", "A359656" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 10 2023
2023-01-11T08:47:49
oeisdata/seq/A359/A359656.seq
98569bb6443f313416c166b2753c21af
A359657
Least k such that A359247(k) = n, or 0 if no such k exists.
[ "5", "1", "136", "168", "141", "424", "1867", "680", "3981", "5800", "2216", "13648", "5763", "2728", "8872", "11944", "15752", "6824", "15219", "8352", "17064", "10920", "10400", "38407", "25105", "27304", "36879", "40501", "37077", "20323", "25635", "29073", "57611", "45795", "90197", "61741", "68735", "55319", "46645", "42549", "95412" ]
[ "nonn" ]
11
0
1
[ "A070165", "A187203", "A359247", "A359657" ]
null
Michel Lagneau, Jan 10 2023
2023-01-25T10:01:37
oeisdata/seq/A359/A359657.seq
d4ebef1f9b92fb6d2bd5d622bf33a29e
A359658
a(n) = Sum_{k=0..n} k^(k * (n-k) + 1).
[ "0", "1", "3", "12", "118", "3345", "337337", "117813304", "182877273548", "1095343802746641", "33833602932485958015", "4588786457956655542361532", "3347980595386754115503487966082", "13023291362471615806961306534915589217" ]
[ "nonn" ]
11
0
3
[ "A349893", "A359658", "A359659" ]
null
Seiichi Manyama, Jan 10 2023
2023-01-10T06:44:13
oeisdata/seq/A359/A359658.seq
6a37d154c069937d66e2cd6f33519daa
A359659
a(n) = Sum_{k=0..n} k^(k * (n-k+1)).
[ "1", "2", "6", "45", "1051", "88602", "27121964", "37004504305", "198705527223757", "5595513387083114570", "686714367475480207331582", "468422339816915120237104999421", "1664212116512828935888786624225704855" ]
[ "nonn" ]
18
0
2
[ "A003101", "A026898", "A031971", "A349836", "A349882", "A349883", "A349893", "A359658", "A359659" ]
null
Seiichi Manyama, Jan 10 2023
2023-01-12T06:44:30
oeisdata/seq/A359/A359659.seq
beb9364ec8e2f47776c4c715f90a426b
A359660
a(n) = Sum_{k=0..n} k^(2 * (n-k) + 1).
[ "0", "1", "3", "12", "64", "441", "3855", "41464", "533736", "8071785", "141351715", "2829417276", "64038928728", "1624347614737", "45822087138879", "1427872211276376", "48858282302548240", "1826209988254883889", "74216973833968292451", "3265676709281560408780" ]
[ "nonn", "easy" ]
11
0
3
[ "A000217", "A003101", "A234568", "A349882", "A359660" ]
null
Seiichi Manyama, Jan 10 2023
2023-01-10T06:44:44
oeisdata/seq/A359/A359660.seq
0916423e64b08c6e0c56c3c760161f9e
A359661
a(n) is the number of free convex polyominoes of n cells.
[ "1", "1", "2", "5", "11", "29", "72", "191", "478", "1211", "2973", "7274", "17455", "41645", "98271", "230848", "539000", "1254936" ]
[ "nonn", "more" ]
9
1
3
[ "A000105", "A001169", "A067675", "A359661" ]
null
John Mason, Jan 10 2023
2023-01-10T11:38:15
oeisdata/seq/A359/A359661.seq
7a44de231d31409b0277d0d03e23e9ae
A359662
Number of (3-dimensional) cells of regular m-polytopes for m >= 3.
[ "1", "5", "8", "15", "16", "24", "35", "40", "70", "80", "120", "126", "160", "210", "240", "330", "495", "560", "600", "715", "1001", "1120", "1365", "1792", "1820", "2016", "2380", "3060", "3360", "3876", "4845", "5280", "5376", "5985", "7315", "7920", "8855", "10626", "11440", "12650", "14950", "15360", "16016", "17550", "20475", "21840", "23751" ]
[ "easy", "nonn" ]
12
1
2
[ "A000332", "A001789", "A063924", "A130810", "A359201", "A359202", "A359662" ]
null
Marco Ripà, Jan 10 2023
2023-01-12T23:01:41
oeisdata/seq/A359/A359662.seq
a380f18bb123e22d8f93fd6d8053c3df
A359663
a(1) = 1; for n > 1, a(n) is the smallest positive number which has not appeared that shares a factor with the sum of the first n terms of the Champernowne string starting from 1.
[ "1", "3", "2", "4", "5", "6", "7", "8", "9", "10", "12", "47", "14", "21", "15", "13", "11", "16", "18", "61", "20", "67", "73", "22", "24", "26", "25", "28", "30", "17", "27", "32", "33", "107", "109", "36", "19", "29", "34", "38", "127", "39", "35", "137", "40", "42", "44", "45", "48", "46", "49", "51", "43", "50", "54", "52", "57", "31", "55", "193", "56", "60", "23", "58", "62", "64", "63", "66", "65", "68", "70", "72", "69", "77", "75", "37" ]
[ "nonn", "base" ]
7
1
2
[ "A027749", "A033307", "A065648", "A359114", "A359663" ]
null
Scott R. Shannon, Jan 10 2023
2023-01-10T07:59:05
oeisdata/seq/A359/A359663.seq
54e77f421554c694088a24ccf4e73cbf
A359664
Prime Maze Room 11, opposite parity of A059459 starting from prime room 11.
[ "11", "43", "41", "2089", "2081", "2083", "2087", "10889035741470030830827987437816582768679", "10889035741470030830827987437816582768647" ]
[ "nonn", "less" ]
79
1
1
[ "A059459", "A359664" ]
null
Gregory Allen, Jan 10 2023
2023-02-03T16:25:28
oeisdata/seq/A359/A359664.seq
a3800feecacc5abb50416f18a9187cbe
A359665
a(n) = Sum_{k=0..n} binomial(k^3, k).
[ "1", "2", "30", "2955", "638331", "235169606", "131748994154", "104332124742623", "110963563379491743", "152605484049946645638", "263562165946020159478038", "558488792578762177358255808", "1424733420462958066911824023728", "4307309064570490624823548890385698", "15228800547242034570505949850130312826" ]
[ "nonn" ]
9
0
2
[ "A005809", "A107444", "A188675", "A295773", "A359665" ]
null
Vaclav Kotesovec, Jan 10 2023
2023-01-10T08:32:34
oeisdata/seq/A359/A359665.seq
92bd6a862b88b4524e25c4baa3da2ad7
A359666
Integers k such that sigma(k) <= sigma(k+1) <= sigma(k+2) <= sigma(k+3), where sigma is the sum of divisors.
[ "1", "13", "61", "73", "133", "145", "193", "205", "253", "397", "457", "481", "493", "553", "565", "613", "625", "661", "673", "733", "757", "793", "817", "853", "913", "973", "997", "1033", "1093", "1213", "1237", "1285", "1321", "1333", "1453", "1513", "1537", "1633", "1645", "1657", "1681", "1813", "1825", "1873", "1933", "2077", "2113", "2173", "2233", "2245", "2293", "2413", "2497" ]
[ "nonn", "easy" ]
61
1
2
[ "A000203", "A053224", "A323726", "A359666", "A364662" ]
null
Alexandru Petrescu, Feb 28 2023
2023-08-01T10:55:53
oeisdata/seq/A359/A359666.seq
558281cd784bbf327611c06e46aa0f01
A359667
a(n) is the number of minimally prolific free polyominoes, i.e., that can generate the least possible number of children by adding a square.
[ "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "3", "1", "1", "5", "1", "1", "2", "2" ]
[ "nonn", "more" ]
6
1
8
[ "A000105", "A255890", "A359667" ]
null
John Mason, Jan 10 2023
2023-01-10T13:04:58
oeisdata/seq/A359/A359667.seq
7a953767994dedf2c159b9b10392f110
A359668
Triangle read by rows. Each term of the triangle is positive and distinct. In row k are the next k least numbers such that the sum of any one number from each of the first k rows is a prime number.
[ "2", "3", "5", "6", "12", "24", "18030", "97830", "165690", "392250" ]
[ "nonn", "tabl", "more", "hard" ]
55
1
1
[ "A000040", "A000142", "A000217", "A001097", "A359668" ]
null
Tamas Sandor Nagy, Mar 14 2023
2023-11-06T07:16:24
oeisdata/seq/A359/A359668.seq
74d98098ffddc69a0d87cc5fda0f7185
A359669
a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n+1)) * A(x)^(n^2).
[ "1", "1", "0", "3", "6", "13", "55", "142", "429", "1495", "4538", "14894", "50279", "164189", "554402", "1883870", "6371434", "21854442", "75183191", "259137380", "899092908", "3127293679", "10907931688", "38188033950", "133998312862", "471339759941", "1662075700667", "5872497411731", "20790187564837", "73741279736768" ]
[ "nonn" ]
7
0
4
[ "A359669", "A359672" ]
null
Paul D. Hanna, Jan 17 2023
2023-01-18T14:54:17
oeisdata/seq/A359/A359669.seq
a0312fbb54fbbde641bc0208547b9026
A359670
Triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) satisfying y = Sum_{n=-oo..+oo} (-1)^n * x^n * (y*A(x,y) + x^(n-1))^(n+1).
[ "1", "2", "1", "4", "6", "1", "8", "21", "12", "1", "14", "62", "68", "20", "1", "24", "162", "284", "170", "30", "1", "40", "384", "998", "970", "360", "42", "1", "64", "855", "3092", "4410", "2720", "679", "56", "1", "100", "1806", "8724", "17172", "15627", "6608", "1176", "72", "1", "154", "3648", "22904", "59545", "74682", "47089", "14392", "1908", "90", "1", "232", "7110", "56679", "188700", "311530", "271698", "125160", "28764", "2940", "110", "1" ]
[ "nonn", "tabl" ]
44
0
2
[ "A293600", "A359670", "A359711", "A359712", "A359713", "A359714", "A359715", "A359718", "A359720", "A361770", "A363104", "A363105", "A363135", "A363136", "A363137", "A363142", "A363182", "A363183", "A363184", "A363185" ]
null
Paul D. Hanna, Jan 17 2023
2023-05-26T13:45:38
oeisdata/seq/A359/A359670.seq
a7f95c026006d6e4b763b9450a78c188
A359671
a(n) = coefficient of x^n in A(x) where 1 = Sum_{n=-oo..+oo} (x^n - x*A(x))^n.
[ "2", "4", "6", "6", "10", "78", "412", "1394", "3312", "6416", "17454", "83334", "384284", "1377888", "3931286", "10234748", "31776266", "127848076", "527518582", "1910397078", "6035143914", "18202417974", "60151348904", "226355566282", "874920531958", "3166323335574", "10599244540550", "34588365630694", "118339356017608" ]
[ "nonn" ]
9
0
1
[ "A355868", "A359671" ]
null
Paul D. Hanna, Jan 10 2023
2023-10-13T11:11:48
oeisdata/seq/A359/A359671.seq
833818952454e945bf05ebf8fc8c4155
A359672
a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (1 + x^n*A(x)^n)^n.
[ "1", "1", "2", "5", "21", "72", "257", "998", "3988", "16064", "65734", "273541", "1151184", "4886946", "20916523", "90181047", "391230537", "1706503782", "7480000600", "32930469730", "145546039760", "645574246834", "2872745389578", "12821285282360", "57377599801569", "257416078950987", "1157519956026736", "5216112572700566" ]
[ "nonn" ]
16
0
3
[ "A357399", "A357791", "A357797", "A359672" ]
null
Paul D. Hanna, Jan 10 2023
2023-01-11T11:09:33
oeisdata/seq/A359/A359672.seq
8b6b52eba487a06c901c35c1b8b0ad5a
A359673
a(n) = coefficient of x^n in A(x) where 1 = Sum_{n=-oo..+oo} (2*x + (-x)^n*A(x)^n)^n.
[ "1", "2", "5", "13", "30", "74", "202", "616", "2126", "7828", "29366", "110398", "414214", "1556848", "5892713", "22524354", "86954484", "338421674", "1324660464", "5204326208", "20498580511", "80907096678", "320002290542", "1268500509496", "5040195484362", "20073242195580", "80120884387322", "320442284717582", "1283939790460139" ]
[ "nonn" ]
13
0
2
[ "A355868", "A359673" ]
null
Paul D. Hanna, Jan 10 2023
2023-10-13T11:09:03
oeisdata/seq/A359/A359673.seq
a1d73160a71af9625691638f71414491
A359674
Zero-based weighted sum of the prime indices of n in weakly increasing order.
[ "0", "0", "0", "1", "0", "2", "0", "3", "2", "3", "0", "5", "0", "4", "3", "6", "0", "6", "0", "7", "4", "5", "0", "9", "3", "6", "6", "9", "0", "8", "0", "10", "5", "7", "4", "11", "0", "8", "6", "12", "0", "10", "0", "11", "8", "9", "0", "14", "4", "9", "7", "13", "0", "12", "5", "15", "8", "10", "0", "14", "0", "11", "10", "15", "6", "12", "0", "15", "9", "11", "0", "17", "0", "12", "9", "17", "5", "14", "0", "18" ]
[ "nonn" ]
9
1
6
[ "A001222", "A001248", "A008578", "A029931", "A053632", "A055932", "A056239", "A112798", "A124757", "A231204", "A243055", "A304818", "A318283", "A358136", "A358137", "A358194", "A359043", "A359360", "A359361", "A359497", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359755" ]
null
Gus Wiseman, Jan 13 2023
2023-01-14T22:00:30
oeisdata/seq/A359/A359674.seq
33ce869506afb3b6b04805d374a6e68a
A359675
Positions of first appearances in the sequence of zero-based weighted sums of prime indices (A359674).
[ "1", "4", "6", "8", "12", "14", "16", "20", "24", "30", "32", "36", "40", "48", "52", "56", "72", "80", "92", "96", "100", "104", "112", "124", "136", "148", "152", "172", "176", "184", "188", "212", "214", "236", "244", "248", "262", "268", "272", "284", "292", "304", "316", "328", "332", "346", "356", "376", "386", "388", "398", "404", "412", "428", "436", "452", "458" ]
[ "nonn" ]
7
1
2
[ "A001222", "A001248", "A029931", "A053632", "A055932", "A056239", "A089633", "A112798", "A124757", "A231204", "A243055", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359360", "A359361", "A359497", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755", "A359756" ]
null
Gus Wiseman, Jan 13 2023
2023-01-15T09:51:00
oeisdata/seq/A359/A359675.seq
150a6fc22f447bc604304f0387cb87c4
A359676
Least positive integer whose weakly increasing prime indices have zero-based weighted sum n (A359674).
[ "1", "4", "6", "8", "14", "12", "16", "20", "30", "24", "32", "36", "40", "52", "48", "56", "100", "72", "80", "92", "96", "104", "112", "124", "136", "148", "176", "152", "214", "172", "184", "188", "262", "212", "272", "236", "248", "244", "304", "268", "346", "284", "328", "292", "386", "316", "398", "332", "376", "356", "458", "388", "478", "404", "472", "412", "526" ]
[ "nonn", "look" ]
6
1
2
[ "A001222", "A001248", "A029931", "A053632", "A055932", "A056239", "A089633", "A112798", "A124757", "A231204", "A243055", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359361", "A359497", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755", "A359756" ]
null
Gus Wiseman, Jan 14 2023
2023-01-15T09:51:05
oeisdata/seq/A359/A359676.seq
de22a005fd1c64ac4dc85e8569668c0f
A359677
Zero-based weighted sum of the reversed (weakly decreasing) prime indices of n.
[ "0", "0", "0", "1", "0", "1", "0", "3", "2", "1", "0", "3", "0", "1", "2", "6", "0", "4", "0", "3", "2", "1", "0", "6", "3", "1", "6", "3", "0", "4", "0", "10", "2", "1", "3", "7", "0", "1", "2", "6", "0", "4", "0", "3", "6", "1", "0", "10", "4", "5", "2", "3", "0", "9", "3", "6", "2", "1", "0", "7", "0", "1", "6", "15", "3", "4", "0", "3", "2", "5", "0", "11", "0", "1", "7", "3", "4", "4", "0", "10", "12", "1", "0", "7", "3" ]
[ "nonn" ]
5
1
8
[ "A001222", "A001248", "A008578", "A029931", "A053632", "A055932", "A056239", "A100484", "A112798", "A124757", "A231204", "A243055", "A304818", "A318283", "A358136", "A358137", "A358194", "A359042", "A359043", "A359361", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359683", "A359754", "A359755" ]
null
Gus Wiseman, Jan 13 2023
2023-01-15T09:51:09
oeisdata/seq/A359/A359677.seq
bc6ad72f52e14ac7f2e98d7c9a6406ab
A359678
Number of multisets (finite weakly increasing sequences of positive integers) with zero-based weighted sum (A359674) equal to n > 0.
[ "1", "2", "4", "4", "6", "9", "8", "10", "14", "13", "16", "21", "17", "22", "28", "23", "30", "37", "30", "38", "46", "38", "46", "59", "46", "55", "70", "59", "70", "86", "67", "81", "96", "84", "98", "115", "95", "114", "135", "114", "132", "158", "127", "156", "178", "148", "176", "207", "172", "201", "227", "196", "228", "270", "222", "255", "296", "255", "295", "338", "278" ]
[ "nonn" ]
10
1
2
[ "A029931", "A053632", "A124757", "A231204", "A243055", "A304818", "A320387", "A358194", "A359674", "A359675", "A359676", "A359677", "A359678", "A359680", "A359681", "A359757" ]
null
Gus Wiseman, Jan 15 2023
2023-01-22T11:33:55
oeisdata/seq/A359/A359678.seq
6505d51b620258b9d6dfa7835230d218
A359679
Least number with weighted sum of reversed (weakly decreasing) prime indices (A318283) equal to n.
[ "1", "2", "3", "4", "6", "10", "8", "12", "19", "18", "16", "24", "27", "36", "43", "32", "48", "59", "61", "67", "71", "64", "79", "83", "89", "97", "101", "103", "107", "109", "113", "127", "131", "137", "139", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229", "233", "239", "241", "251", "257", "263", "269" ]
[ "nonn" ]
7
0
2
[ "A001222", "A001248", "A029931", "A053632", "A055932", "A056239", "A089633", "A112798", "A231204", "A243055", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359360", "A359361", "A359497", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755", "A359756" ]
null
Gus Wiseman, Jan 14 2023
2023-01-15T09:51:20
oeisdata/seq/A359/A359679.seq
a0fabc4c6080394f6120578d5be661c6
A359680
Positions of first appearances in the sequence of zero-based weighted sums of reversed prime indices (A359677).
[ "1", "4", "8", "9", "16", "18", "32", "36", "50", "54", "64", "72", "81", "100", "108", "128", "144", "216", "243", "256", "288", "300", "400", "432", "486", "512", "576", "600", "648", "729", "800", "864", "1024", "1152", "1296", "1350", "1728", "1944", "2048", "2187", "2304", "2400", "2916", "3375", "3456", "3600", "4096", "4374", "4608", "4800", "5184" ]
[ "nonn" ]
5
1
2
[ "A001222", "A029931", "A053632", "A055932", "A056239", "A089633", "A112798", "A124757", "A231204", "A243055", "A296150", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359361", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755", "A359756" ]
null
Gus Wiseman, Jan 15 2023
2023-01-16T11:14:55
oeisdata/seq/A359/A359680.seq
dfbf8d1864f28b25a6ed74228f91a4a1
A359681
Least positive integer whose reversed (weakly decreasing) prime indices have zero-based weighted sum (A359677) equal to n.
[ "1", "4", "9", "8", "18", "50", "16", "36", "100", "54", "32", "72", "81", "108", "300", "64", "144", "400", "216", "600", "243", "128", "288", "800", "432", "486", "1350", "648", "256", "576", "729", "864", "2400", "3375", "1296", "3600", "512", "1152", "1944", "1728", "4800", "9000", "2187", "2916", "8100", "1024", "2304", "6400", "3456", "4374", "12150" ]
[ "nonn" ]
7
0
2
[ "A001222", "A001248", "A029931", "A053632", "A055932", "A056239", "A089633", "A112798", "A124757", "A231204", "A243055", "A304818", "A318283", "A320387", "A358194", "A359043", "A359360", "A359361", "A359497", "A359674", "A359675", "A359676", "A359677", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755" ]
null
Gus Wiseman, Jan 15 2023
2023-01-15T09:51:40
oeisdata/seq/A359/A359681.seq
661b1c121a6cdb60ecc8009b093f9ccd
A359682
Least positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.
[ "1", "2", "3", "4", "7", "6", "8", "10", "15", "12", "16", "18", "20", "26", "24", "28", "50", "36", "40", "46", "48", "52", "56", "62", "68", "74", "88", "76", "107", "86", "92", "94", "131", "106", "136", "118", "124", "122", "152", "134", "173", "142", "164", "146", "193", "158", "199", "166", "188", "178", "229", "194", "239", "202", "236", "206", "263", "214", "271", "218" ]
[ "nonn" ]
7
0
2
[ "A001222", "A001248", "A029931", "A055932", "A056239", "A089633", "A112798", "A243055", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359360", "A359361", "A359497", "A359675", "A359676", "A359678", "A359679", "A359680", "A359681", "A359682", "A359683", "A359754", "A359755", "A359756" ]
null
Gus Wiseman, Jan 15 2023
2023-01-15T09:51:36
oeisdata/seq/A359/A359682.seq
1cc128ecbfbcd041d056bea45b9d5264
A359683
Greatest positive integer whose reversed (weakly decreasing) prime indices have weighted sum (A318283) equal to n.
[ "1", "2", "3", "5", "7", "11", "14", "22", "26", "34", "44", "55", "68", "85", "110", "130", "170", "190", "242", "290", "374", "418", "506", "638", "748", "836", "1012", "1276", "1364", "1628", "1914", "2090", "2552", "3190", "3410", "4070", "4510", "5060", "6380", "7018", "8140", "9020", "9922", "11396", "14036", "15004", "17908", "19844", "21692", "23452" ]
[ "nonn" ]
12
0
2
[ "A001222", "A001248", "A029931", "A055932", "A056239", "A089633", "A112798", "A243055", "A304818", "A318283", "A320387", "A358136", "A358137", "A358194", "A359043", "A359361", "A359497", "A359676", "A359678", "A359679", "A359681", "A359682", "A359683", "A359755" ]
null
Gus Wiseman, Jan 15 2023
2023-01-28T12:15:05
oeisdata/seq/A359/A359683.seq
6edb9d7c6cdabe253aabf9e2ccf783d2
A359684
Greatest prime dividing 2^n - n for n>=2; a(1) = 1.
[ "1", "2", "5", "3", "3", "29", "11", "31", "503", "13", "97", "1021", "8179", "1637", "4679", "13", "8737", "131063", "524269", "262139", "2097131", "2003", "1423", "2713", "123817", "170327", "577", "14983", "564533", "87481", "318949", "262657", "209510599", "157109", "344117", "2473", "2255501", "26861", "49977801259", "24481" ]
[ "nonn" ]
22
1
2
[ "A000040", "A000325", "A006530", "A359684" ]
null
Philippe Deléham, Jan 11 2023
2023-03-30T02:32:03
oeisdata/seq/A359/A359684.seq
4560fc7f78280988f2f5d66a01f36a34
A359685
Greatest prime dividing 2^n + n.
[ "3", "3", "11", "5", "37", "7", "5", "11", "521", "47", "71", "79", "547", "911", "32783", "241", "307", "6899", "24967", "87383", "457", "4799", "270601", "7109", "3728273", "12497", "1201", "100613", "2017", "17318417", "859", "87211", "47491", "8589934609", "195329", "1483453", "320370521", "8191129", "549755813927", "478881371" ]
[ "nonn" ]
18
1
1
[ "A000040", "A006127", "A006530", "A359685" ]
null
Philippe Deléham, Jan 11 2023
2023-03-30T02:31:08
oeisdata/seq/A359/A359685.seq
bd94de8ad294c9a3542cf76866cef591
A359686
Triangle read by rows: T(n,k) is the minimum number of connected endofunctions that are spanning subgraphs of a semi-regular loopless digraph on n vertices each with out-degree k.
[ "1", "1", "8", "0", "14", "78", "0", "22", "213", "944", "0", "0", "529", "3400", "13800", "0", "0" ]
[ "nonn", "tabl", "more" ]
16
2
3
[ "A000435", "A359628", "A359686" ]
null
Yali Harrary, Jan 11 2023
2024-01-04T14:31:09
oeisdata/seq/A359/A359686.seq
859c04e1d1b77137406f0cdfeee677d8
A359687
Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 5.
[ "489489", "525698", "526535", "763002", "903210", "1423214" ]
[ "nonn", "more" ]
39
1
1
[ "A060748", "A060838", "A159843", "A309960", "A309961", "A309962", "A309963", "A309964", "A359687" ]
null
Maksym Voznyy and Charles R Greathouse IV, Jan 25 2023
2023-01-25T09:08:36
oeisdata/seq/A359/A359687.seq
578678cf9875ea1aed249b53c4441918
A359688
a(n) is the number of asymmetrical polyiamonds of n cells.
[ "0", "0", "0", "0", "4", "10", "36", "94", "294", "794", "2300", "6394", "18266", "51592", "147426", "420512", "1206740", "3466876" ]
[ "nonn", "more" ]
5
1
5
[ "A000577", "A359688" ]
null
John Mason, Jan 11 2023
2023-01-11T13:13:53
oeisdata/seq/A359/A359688.seq
9feb0bf979af1ec15044c8ad45b9cb88
A359689
a(n) is the number of free polyiamonds of n cells with chessboard coloring.
[ "2", "1", "2", "4", "8", "19", "48", "120", "320", "864", "2372", "6581", "18470", "52094", "147966", "421931", "1208214", "3470789", "10001186", "28892674", "83671476", "242823392", "706090582", "2056861981", "6001601254", "17538308071", "51323923796", "150389970179", "441211039118", "1295886198194", "3810209524640", "11214075937205", "33035791339150" ]
[ "nonn" ]
19
1
1
[ "A000577", "A001933", "A359689" ]
null
John Mason, Jan 11 2023
2023-10-28T23:54:14
oeisdata/seq/A359/A359689.seq
2a23a0e642e096d9e080ffbe77a1578b
A359690
Number of vertices in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
[ "5", "13", "69", "289", "1971", "3997", "20371", "45751", "120957", "205299", "629847", "897801", "2334409", "3461459", "5517131", "8468061" ]
[ "nonn", "more" ]
14
1
1
[ "A005728", "A006842", "A006843", "A331755", "A358883", "A358887", "A359654", "A359690", "A359691", "A359692", "A359693", "A359694" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 11 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359690.seq
3900db77cf0be527e6ef8aff80d568b9
A359691
Number of crossings in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
[ "1", "7", "59", "275", "1949", "3971", "20333", "45705", "120899", "205233", "629761", "897707", "2334291", "3461329", "5516985", "8467899" ]
[ "nonn", "more" ]
8
1
2
[ "A005728", "A006842", "A006843", "A159065", "A331755", "A358883", "A358887", "A359654", "A359690", "A359691", "A359692", "A359693", "A359694" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 11 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359691.seq
2cf8d263598578318aedbf247f87f6fa
A359692
Number of regions in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
[ "2", "12", "94", "382", "2486", "4946", "24100", "53152", "138158", "233254", "700720", "999364", "2559344", "3785044", "6027148", "9210820" ]
[ "nonn" ]
11
1
1
[ "A005728", "A006842", "A006843", "A290131", "A358882", "A358886", "A359653", "A359690", "A359691", "A359692", "A359693", "A359694" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 11 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359692.seq
237dc4f1bae4961b63fc27b393434a03
A359693
Number of edges in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
[ "6", "24", "162", "670", "4456", "8942", "44470", "98902", "259114", "438552", "1330566", "1897164", "4893752", "7246502", "11544278", "17678880" ]
[ "nonn", "more" ]
9
1
1
[ "A005728", "A006842", "A006843", "A290132", "A358884", "A358888", "A359655", "A359690", "A359691", "A359692", "A359693", "A359694" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 11 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359693.seq
181f4bc82d384ff4cd4fd34af95e511f
A359694
Irregular table read by rows: T(n,k) is the number of k-gons, k>=3, in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
[ "2", "10", "2", "70", "24", "218", "160", "4", "1254", "1068", "148", "16", "2254", "2414", "252", "26", "10082", "11760", "1980", "266", "12", "21410", "25958", "5096", "648", "36", "4", "53422", "68208", "14360", "1980", "168", "20", "86986", "118922", "24028", "3056", "248", "12", "0", "2", "255678", "346676", "84344", "12774", "1132", "110", "4", "2", "365674", "493530", "119820", "18600", "1624", "112", "4" ]
[ "nonn", "tabf" ]
13
1
1
[ "A005728", "A006842", "A006843", "A290131", "A358882", "A358886", "A359653", "A359690", "A359691", "A359692", "A359693", "A359694" ]
null
Scott R. Shannon and N. J. A. Sloane, Jan 11 2023
2025-02-16T08:34:04
oeisdata/seq/A359/A359694.seq
796ecf895960bf9264afa1e71f08f7b3
A359695
Numbers k such that 29^k - 2 is prime.
[ "2", "4", "8", "14", "42", "420", "1344" ]
[ "nonn", "more" ]
33
1
1
[ "A087886", "A090669", "A105772", "A109076", "A109080", "A128457", "A128459", "A128460", "A359695" ]
null
Arsen Vardanyan, Mar 07 2023
2024-09-15T01:58:50
oeisdata/seq/A359/A359695.seq
46b76233f5171d7a3c6e5ceaf832c6b0
A359696
a(n) is the number of points with integer coordinates located between the x-axis and the graph of the function y = n^3 / (n^2 + x^2).
[ "1", "6", "15", "28", "49", "72", "103", "138", "177", "228", "275", "330", "397", "464", "543", "620", "707", "800", "891", "1002", "1105", "1220", "1341", "1468", "1605", "1740", "1883", "2032", "2187", "2356", "2517", "2694", "2869", "3058", "3249", "3444", "3645", "3856", "4075", "4294", "4519", "4748", "4987", "5230" ]
[ "nonn" ]
44
1
2
null
null
Nicolay Avilov, Mar 07 2023
2024-03-08T01:02:35
oeisdata/seq/A359/A359696.seq
283587cb031f7745d6e02a7485779b18
A359697
Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is carryless product n X k base 10.
[ "1", "2", "4", "3", "6", "9", "4", "8", "2", "6", "5", "0", "5", "0", "5", "6", "2", "8", "4", "0", "6", "7", "4", "1", "8", "5", "2", "9", "8", "6", "4", "2", "0", "8", "6", "4", "9", "8", "7", "6", "5", "4", "3", "2", "1", "10", "20", "30", "40", "50", "60", "70", "80", "90", "100", "11", "22", "33", "44", "55", "66", "77", "88", "99", "110", "121", "12", "24", "36", "48", "50", "62", "74", "86", "98", "120", "132", "144" ]
[ "nonn", "tabl", "base", "look" ]
43
1
2
[ "A001477", "A004520", "A008592", "A055120", "A059691", "A059729", "A359697" ]
null
Seiichi Manyama, Mar 08 2023
2023-03-08T23:17:35
oeisdata/seq/A359/A359697.seq
0dbf990778703f0150765c7638cfbd78
A359698
Least k > 0 such that the first n digits of 2^k and 3^k are identical.
[ "1", "17", "193", "619", "2016", "91958", "91958", "8186278", "45392361", "977982331", "26450915298", "91600221212", "196425900073", "14810317269038", "44430951807114", "626642721222487", "626642721222487", "102882886570917135", "874191214492184404", "3830977578643912683", "86801197487071715103" ]
[ "base", "nonn" ]
57
0
2
[ "A000079", "A000244", "A088995", "A359698" ]
null
Keith F. Lynch, May 20 2023
2023-06-04T08:56:10
oeisdata/seq/A359/A359698.seq
fc73360730ef17000a49d55fc140185b
A359699
Decimal expansion of x such that Gamma(t) and t^x*e^-t are tangent at one point.
[ "2", "8", "8", "5", "1", "8", "2", "1", "2", "2", "4", "9", "9", "9", "9", "3", "1", "7", "5", "5", "1", "9", "7", "9", "6", "2", "2", "4", "3", "7", "3", "8", "5", "1", "2", "3", "5", "1", "4", "1", "3", "7", "0", "2", "7", "4", "3", "2", "4", "7", "8", "1", "8", "3", "4", "7", "2", "6", "3", "1", "5", "9", "0", "8", "1", "7", "8", "8", "2", "0", "8", "0", "8", "3", "8", "3", "3", "5", "6", "1", "4", "9", "3", "6", "3", "1", "4", "1", "5", "9", "8", "4", "1", "3", "6", "3", "4", "1", "3", "7", "6", "2", "2", "4", "5", "4" ]
[ "cons", "nonn" ]
26
1
1
null
null
Jodi Spitz, Mar 07 2023
2023-11-10T10:42:37
oeisdata/seq/A359/A359699.seq
32d30ccc279da825d20342bae89c7a02
A359700
a(n) = Sum_{d|n} d^(d + n/d - 1).
[ "1", "5", "28", "265", "3126", "46754", "823544", "16778273", "387420733", "10000015690", "285311670612", "8916100733146", "302875106592254", "11112006831323074", "437893890380939688", "18446744073843786241", "827240261886336764178", "39346408075300026047027" ]
[ "nonn" ]
19
1
2
[ "A014566", "A055225", "A087909", "A294956", "A353013", "A353014", "A359700" ]
null
Seiichi Manyama, Jan 11 2023
2023-08-14T01:59:57
oeisdata/seq/A359/A359700.seq
4d9448ef1a72af9fb426662f636e6dfc