sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A359401 | Nonnegative integers whose sum of positions of 1's in their binary expansion is greater than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left. | [
"11",
"19",
"23",
"35",
"37",
"39",
"43",
"47",
"55",
"67",
"69",
"71",
"75",
"77",
"79",
"83",
"87",
"91",
"95",
"103",
"111",
"131",
"133",
"134",
"135",
"137",
"139",
"141",
"142",
"143",
"147",
"149",
"151",
"155",
"157",
"158",
"159",
"163",
"167",
"171",
"173",
"175",
"179",
"183",
"187",
"191",
"199",
"203",
"207",
"215",
"223",
"239",
"259",
"261",
"262",
"263"
] | [
"nonn",
"base"
] | 8 | 1 | 1 | [
"A000120",
"A029931",
"A030190",
"A030308",
"A048793",
"A051293",
"A053632",
"A070939",
"A222955",
"A230877",
"A231204",
"A291166",
"A304818",
"A326669",
"A326672",
"A326673",
"A359043",
"A359401",
"A359402",
"A359495"
] | null | Gus Wiseman, Jan 05 2023 | 2023-01-07T09:28:17 | oeisdata/seq/A359/A359401.seq | b21673ca4c11abb6a0a52dc0d677373e |
A359402 | Numbers whose binary expansion and reversed binary expansion have the same sum of positions of 1's, where positions in a sequence are read starting with 1 from the left. | [
"0",
"1",
"3",
"5",
"7",
"9",
"15",
"17",
"21",
"27",
"31",
"33",
"45",
"51",
"63",
"65",
"70",
"73",
"78",
"85",
"93",
"99",
"107",
"119",
"127",
"129",
"150",
"153",
"165",
"189",
"195",
"219",
"231",
"255",
"257",
"266",
"273",
"282",
"294",
"297",
"310",
"313",
"325",
"334",
"341",
"350",
"355",
"365",
"371",
"381",
"387",
"397",
"403",
"413",
"427",
"443",
"455",
"471"
] | [
"nonn"
] | 12 | 1 | 3 | [
"A000120",
"A029931",
"A030190",
"A030308",
"A048793",
"A051293",
"A053632",
"A070939",
"A222955",
"A231204",
"A291166",
"A304818",
"A318283",
"A326669",
"A326672",
"A326673",
"A358134",
"A359042",
"A359401",
"A359402",
"A359495"
] | null | Gus Wiseman, Jan 05 2023 | 2023-01-08T01:16:26 | oeisdata/seq/A359/A359402.seq | 208eb6a0ff360b76bb8e639724dc2398 |
A359403 | Primes that are the concatenation of the first m consecutive k-th powers. | [
"149",
"11681",
"164729",
"1102459049",
"1262144387420489",
"1472236648286964521369622528399544939174411840147874772641",
"1755578637259143234191361824800363140073127359051977856583921"
] | [
"nonn",
"base"
] | 8 | 1 | 1 | [
"A007908",
"A019521",
"A019522",
"A284377",
"A359403"
] | null | Michel Marcus, Dec 30 2022 | 2022-12-30T06:31:08 | oeisdata/seq/A359/A359403.seq | 81278e796a4e1c241fae21df7989da7c |
A359404 | Number of unordered triples of self-avoiding paths with nodes that cover all vertices of a convex n-gon. | [
"0",
"0",
"15",
"315",
"4200",
"45360",
"433440",
"3825360",
"31944000",
"256164480",
"1991877888",
"15117822720",
"112519680000",
"824063385600",
"5953789181952",
"42518284701696",
"300588079104000",
"2106258635980800",
"14642876032942080",
"101081482775691264",
"693338799538176000",
"4728258324725760000",
"32074214121878323200"
] | [
"nonn",
"easy"
] | 23 | 4 | 3 | [
"A001792",
"A332426",
"A359404"
] | null | Ivaylo Kortezov, Dec 30 2022 | 2023-01-29T23:01:19 | oeisdata/seq/A359/A359404.seq | 014891554440885827ba65f5582916e1 |
A359405 | Number of unordered pairs of self-avoiding paths with nodes that cover all vertices of a convex n-gon; one-node paths are allowed. | [
"3",
"15",
"70",
"330",
"1596",
"7840",
"38592",
"188640",
"911680",
"4350720",
"20507136",
"95560192",
"440724480",
"2014003200",
"9128476672",
"41074384896",
"183618256896",
"816062464000",
"3607813816320",
"15874289958912",
"69544309424128",
"303465643376640",
"1319414897049600",
"5717462509158400",
"24699433622962176",
"106397550709309440"
] | [
"nonn",
"easy"
] | 22 | 3 | 1 | [
"A001792",
"A332426",
"A359405"
] | null | Ivaylo Kortezov, Dec 30 2022 | 2023-01-29T18:12:14 | oeisdata/seq/A359/A359405.seq | 5169a8fbf6d86949b12153b3d6155519 |
A359406 | Integers k such that the concatenation of k consecutive primes starting at 31 is prime. | [
"1",
"2",
"3",
"23",
"43",
"141"
] | [
"nonn",
"base",
"more"
] | 58 | 1 | 2 | [
"A030996",
"A069151",
"A280894",
"A309191",
"A359406"
] | null | Mikk Heidemaa, Dec 30 2022 | 2023-02-14T02:35:43 | oeisdata/seq/A359/A359406.seq | df0d26fb601b4696c92d32a5e02db366 |
A359407 | Product_{n>=1} (1 + a(n) * x^n) = 1 + Sum_{n>=1} (n * (n + 1) / 2) * x^n. | [
"1",
"3",
"3",
"7",
"-1",
"-8",
"-3",
"48",
"1",
"-39",
"-6",
"34",
"-25",
"-293",
"24",
"2649",
"-35",
"-2104",
"-239",
"3387",
"323",
"-15322",
"-182",
"27551",
"-2477",
"-121985",
"3663",
"275053",
"-360",
"-942231",
"-26801",
"8245538",
"40690",
"-7506845",
"11479",
"19149901",
"-297030",
"-61205072",
"442870",
"158934665",
"284075",
"-490800388",
"-3338212"
] | [
"sign",
"look"
] | 14 | 1 | 2 | [
"A000217",
"A147559",
"A359407"
] | null | Seiichi Manyama, Dec 30 2022 | 2022-12-30T10:55:03 | oeisdata/seq/A359/A359407.seq | 2d23573be2e01a19753142e340c86f54 |
A359408 | Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has only two elements. | [
"1",
"3",
"5",
"9",
"11",
"15",
"16",
"17",
"21",
"22",
"26",
"27",
"29",
"32",
"35",
"39",
"41",
"44",
"45",
"46",
"51",
"52",
"56",
"57",
"58",
"59",
"62",
"65",
"69",
"70",
"71",
"74",
"76",
"77",
"81",
"82",
"86",
"87",
"88",
"92",
"95",
"99",
"100",
"101",
"105",
"105",
"106",
"107",
"111",
"112",
"116",
"118",
"122",
"125",
"128",
"129",
"130",
"135",
"136",
"137",
"140",
"142",
"146",
"147",
"148",
"149",
"152",
"155"
] | [
"nonn"
] | 56 | 1 | 2 | [
"A007921",
"A040976",
"A123556",
"A173919",
"A206037",
"A206039",
"A206041",
"A206045",
"A342309",
"A359408",
"A359409",
"A359410",
"A360146",
"A360735"
] | null | Bernard Schott, Dec 30 2022 | 2023-02-26T17:42:05 | oeisdata/seq/A359/A359408.seq | e8b4698554910907903246f1a84b0f3e |
A359409 | Integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has exactly four elements. | [
"18",
"24",
"36",
"54",
"66",
"72",
"78",
"84",
"102",
"108",
"114",
"132",
"138",
"144",
"156",
"162",
"168",
"174",
"186",
"192",
"198",
"204",
"216",
"222",
"228",
"234",
"246",
"258",
"264",
"276",
"282",
"288",
"294",
"306",
"312",
"318",
"324",
"336",
"342",
"348",
"354",
"366",
"372",
"378",
"384",
"396",
"402",
"408",
"414",
"432",
"438",
"444",
"456",
"462",
"468",
"486"
] | [
"nonn"
] | 19 | 1 | 1 | [
"A007921",
"A008588",
"A123556",
"A206037",
"A206039",
"A206041",
"A342309",
"A359408",
"A359409",
"A359410"
] | null | Bernard Schott, Jan 23 2023 | 2023-01-29T19:37:45 | oeisdata/seq/A359/A359409.seq | 452c0ccc27e55dec22b7f97c158666df |
A359410 | Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 6 elements. | [
"30",
"60",
"90",
"120",
"180",
"240",
"270",
"300",
"330",
"360",
"390",
"450",
"480",
"510",
"540",
"570",
"600",
"660",
"690",
"720",
"750",
"780",
"810",
"870",
"900",
"930",
"960",
"990",
"1020",
"1080",
"1110",
"1140",
"1170",
"1200",
"1230",
"1290",
"1320",
"1350",
"1380",
"1410",
"1440",
"1500",
"1530",
"1560",
"1590",
"1620",
"1650",
"1710",
"1740"
] | [
"nonn"
] | 24 | 1 | 1 | [
"A007921",
"A123556",
"A206037",
"A206039",
"A206041",
"A206045",
"A249674",
"A342309",
"A359408",
"A359409",
"A359410",
"A360146"
] | null | Bernard Schott, Jan 29 2023 | 2023-02-12T05:38:06 | oeisdata/seq/A359/A359410.seq | af7f299ccd406180493557bd1e37471d |
A359411 | a(n) is the number of divisors of n that are both infinitary and exponential. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"mult"
] | 15 | 1 | 8 | [
"A037445",
"A049419",
"A077609",
"A080948",
"A138302",
"A246600",
"A318672",
"A322791",
"A325989",
"A359081",
"A359082",
"A359411",
"A359412"
] | null | Amiram Eldar, Dec 30 2022 | 2023-09-01T11:26:46 | oeisdata/seq/A359/A359411.seq | aed553e4c3db26ec43b088de49c60bcd |
A359412 | Numbers with a record number of divisors that are both infinitary and exponential. | [
"1",
"8",
"216",
"27000",
"9261000",
"12326391000",
"27081081027000",
"110924107886592000",
"544970142046826496000",
"3737950204299182936064000",
"45479640135708158783090688000",
"1109202943269786284560798789632000",
"33044264882950203203350756741926912000",
"1673791149116076642859325881248823873536000"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A000079",
"A000578",
"A025487",
"A037992",
"A115964",
"A318278",
"A359411",
"A359412"
] | null | Amiram Eldar, Dec 30 2022 | 2023-04-06T06:35:46 | oeisdata/seq/A359/A359412.seq | 9d46f0952ff2520cf71eb78cac720eb7 |
A359413 | Triangle read by rows: T(n, k) is the number of permutations of size n that require exactly k iterations of the pop-stack sorting map to reach the identity, for n >= 1, 0 <= k <= n-1. | [
"1",
"1",
"1",
"1",
"3",
"2",
"1",
"7",
"8",
"8",
"1",
"15",
"26",
"46",
"32",
"1",
"31",
"80",
"191",
"262",
"155",
"1",
"63",
"234",
"735",
"1440",
"1737",
"830",
"1",
"127",
"664",
"2752",
"6924",
"12314",
"12432",
"5106",
"1",
"255",
"1850",
"10114",
"31928",
"73122",
"112108",
"98156",
"35346",
"1",
"511",
"5088",
"36564",
"145199",
"404758",
"816401",
"1104042",
"844038",
"272198"
] | [
"nonn",
"tabl"
] | 28 | 1 | 5 | [
"A011782",
"A224232",
"A293774",
"A293775",
"A293776",
"A293784",
"A348905",
"A359413"
] | null | Bjarki Ágúst Guðmundsson, Dec 30 2022 | 2022-12-31T11:44:32 | oeisdata/seq/A359/A359413.seq | 525b3e06d829ba9760653785be8492a3 |
A359414 | Primes prime(k) such that prime(k)^2 + prime(k+1)^2 - 1 is the square of a prime. | [
"7",
"11",
"23",
"109",
"211",
"1021",
"42967",
"297779",
"125211211",
"11673806759"
] | [
"nonn",
"more",
"less"
] | 11 | 1 | 1 | [
"A160054",
"A359414"
] | null | Robert Israel, Dec 30 2022 | 2023-01-01T02:58:55 | oeisdata/seq/A359/A359414.seq | c7aefb5ba279ac8de7c7f0e67e7d7294 |
A359415 | Numbers k such that phi(k) is a 5-smooth number where phi is the Euler totient function. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"24",
"25",
"26",
"27",
"28",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"44",
"45",
"48",
"50",
"51",
"52",
"54",
"55",
"56",
"57",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"68",
"70",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"80",
"81",
"82",
"84",
"85",
"88",
"90",
"91",
"93",
"95",
"96",
"97",
"99"
] | [
"nonn",
"easy"
] | 25 | 1 | 2 | [
"A000010",
"A051037",
"A359415"
] | null | Darío Clavijo, Dec 30 2022 | 2023-09-28T09:19:43 | oeisdata/seq/A359/A359415.seq | 369fe776bfdb7dcc7289a517981ec6a2 |
A359416 | Write n as 2^m - k, where 2^m is the least power of 2 >= n (0 <= k <= 2^(m-1)-1). For n a power of 2 (k = 0), a(n) = n. For numbers with k > 0, a(n) is the least p*a(k) which has not occurred previously, the count of k being taken from right to left (backwards) from k = 1 at 2^m - 1. | [
"1",
"2",
"3",
"4",
"9",
"6",
"5",
"8",
"25",
"18",
"27",
"12",
"15",
"10",
"7",
"16",
"49",
"50",
"105",
"36",
"81",
"54",
"75",
"24",
"35",
"30",
"45",
"20",
"21",
"14",
"11",
"32",
"121",
"98",
"231",
"100",
"495",
"210",
"175",
"72",
"225",
"162",
"243",
"108",
"315",
"150",
"147",
"48",
"77",
"70",
"165",
"60",
"135",
"90",
"125",
"40",
"55",
"42",
"63",
"28",
"33",
"22",
"13",
"64"
] | [
"nonn"
] | 29 | 1 | 2 | [
"A000027",
"A005940",
"A122155",
"A356886",
"A357057",
"A359416"
] | null | David James Sycamore, Dec 30 2022 | 2025-03-24T22:35:46 | oeisdata/seq/A359/A359416.seq | 7b468d452326c43d467dde141386014a |
A359417 | Phi-practical numbers (A260653) whose divisors have distinct values of the Euler totient function (A000010). | [
"1",
"3",
"15",
"105",
"165",
"195",
"255",
"495",
"525",
"735",
"975",
"1155",
"1485",
"1785",
"1815",
"1995",
"2145",
"2415",
"2535",
"2625",
"2805",
"3045",
"3135",
"3255",
"3315",
"3675",
"3705",
"3795",
"3885",
"4305",
"4455",
"4485",
"4515",
"4785",
"4845",
"4875",
"4935",
"5115",
"5145",
"5445",
"5565",
"5655",
"5865",
"6045",
"6105",
"6195",
"6405"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A000010",
"A260653",
"A326835",
"A359417"
] | null | Amiram Eldar, Dec 31 2022 | 2023-01-04T01:25:50 | oeisdata/seq/A359/A359417.seq | a3bd8ecd51b60fd147b51555c7f5575b |
A359418 | Unitary phi-practical (A286906) whose unitary divisors have distinct values of the unitary totient function uphi (A047994). | [
"1",
"3",
"15",
"105",
"165",
"195",
"255",
"1155",
"1785",
"1995",
"2145",
"2415",
"2805",
"3045",
"3135",
"3255",
"3315",
"3705",
"3795",
"3885",
"4305",
"4485",
"4515",
"4785",
"4845",
"4935",
"5115",
"5565",
"5655",
"5865",
"6045",
"6105",
"6195",
"6405",
"7035",
"7095",
"7215",
"7395",
"7455",
"7665",
"7755",
"7905",
"7995",
"8295",
"8385",
"8715"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A047994",
"A286906",
"A348004",
"A359417",
"A359418"
] | null | Amiram Eldar, Dec 31 2022 | 2023-01-04T01:29:01 | oeisdata/seq/A359/A359418.seq | 826fce1dac69eca5e39efc66b3cf8d8e |
A359419 | Nonsquarefree numbers that are both phi-practical and unitary phi-practical. | [
"12",
"60",
"84",
"120",
"132",
"156",
"240",
"420",
"660",
"780",
"840",
"924",
"1020",
"1050",
"1092",
"1140",
"1320",
"1380",
"1428",
"1560",
"1596",
"1680",
"1716",
"1740",
"1860",
"1932",
"2040",
"2100",
"2220",
"2244",
"2280",
"2436",
"2460",
"2508",
"2580",
"2604",
"2640",
"2652",
"2760",
"2820",
"2940",
"2964",
"3036",
"3108",
"3120",
"3180"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A005117",
"A013929",
"A260653",
"A286906",
"A359419"
] | null | Amiram Eldar, Dec 31 2022 | 2023-01-04T01:31:11 | oeisdata/seq/A359/A359419.seq | 28e6c61c08c51fd4c9b9bc53663893d6 |
A359420 | Numbers that are both practical (A005153) and phi-practical (A260653). | [
"1",
"2",
"4",
"6",
"8",
"12",
"16",
"18",
"20",
"24",
"30",
"32",
"36",
"40",
"42",
"48",
"54",
"56",
"60",
"64",
"72",
"80",
"84",
"90",
"96",
"100",
"108",
"112",
"120",
"126",
"128",
"132",
"140",
"144",
"150",
"156",
"160",
"162",
"168",
"176",
"180",
"192",
"198",
"200",
"208",
"210",
"216",
"220",
"224",
"234",
"240",
"252",
"256",
"260",
"264",
"270",
"272",
"280",
"288"
] | [
"nonn"
] | 18 | 1 | 2 | [
"A000010",
"A000203",
"A005153",
"A260653",
"A325781",
"A325795",
"A359420"
] | null | Amiram Eldar, Dec 31 2022 | 2024-02-04T03:27:22 | oeisdata/seq/A359/A359420.seq | e262797847726d8a5ceaa7a44d009e7b |
A359421 | a(n) = number of abelian groups of order p^2 - 1, where p = prime(n). | [
"1",
"3",
"3",
"5",
"3",
"3",
"14",
"6",
"5",
"3",
"11",
"6",
"5",
"3",
"7",
"9",
"3",
"3",
"3",
"10",
"10",
"7",
"3",
"10",
"22",
"6",
"5",
"9",
"9",
"7",
"44",
"3",
"5",
"3",
"6",
"10",
"3",
"15",
"5",
"3",
"6",
"6",
"15",
"15",
"12",
"20",
"3",
"11",
"3",
"3",
"10",
"7",
"14",
"18",
"30",
"5",
"9",
"21",
"3",
"5",
"3",
"6",
"6",
"5",
"5",
"3",
"3",
"14",
"3",
"6",
"11",
"10",
"7",
"3",
"9",
"22",
"3",
"6",
"14"
] | [
"nonn"
] | 22 | 1 | 2 | [
"A000040",
"A000041",
"A000688",
"A084920",
"A359421"
] | null | Ali Ramsey, Dec 31 2022 | 2025-02-03T09:37:07 | oeisdata/seq/A359/A359421.seq | b17baa194583dc4ee785169f36bb8319 |
A359422 | Dirichlet inverse of A187074, characteristic function of numbers that are neither multiples of 3 nor of the form 4u+2. | [
"1",
"0",
"0",
"-1",
"-1",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"0",
"1",
"0",
"-1",
"0",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"1",
"-1",
"0",
"1",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"1",
"0",
"-1",
"1",
"0",
"0",
"-1",
"0",
"-1",
"0",
"0",
"1",
"1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"1",
"0",
"0",
"1",
"-1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"-1",
"1",
"0"
] | [
"sign",
"mult"
] | 17 | 1 | null | [
"A010892",
"A156277",
"A187074",
"A355688",
"A355689",
"A355690",
"A359422"
] | null | Antti Karttunen, Dec 31 2022 | 2023-01-03T09:21:22 | oeisdata/seq/A359/A359422.seq | 7cd97672b2d33794bf535d2f17c8f752 |
A359423 | The least common multiple of the arithmetic derivative and the primorial base exp-function. | [
"0",
"0",
"3",
"6",
"36",
"18",
"5",
"10",
"60",
"30",
"315",
"90",
"400",
"50",
"225",
"600",
"7200",
"450",
"2625",
"250",
"3000",
"750",
"14625",
"2250",
"27500",
"1250",
"1875",
"33750",
"180000",
"11250",
"217",
"14",
"1680",
"42",
"1197",
"252",
"420",
"70",
"105",
"1680",
"21420",
"630",
"7175",
"350",
"8400",
"13650",
"1575",
"3150",
"14000",
"1750",
"7875",
"10500",
"63000",
"15750",
"354375",
"70000"
] | [
"nonn",
"base"
] | 10 | 0 | 3 | [
"A003415",
"A016825",
"A042965",
"A276086",
"A327858",
"A327864",
"A358669",
"A359423",
"A359424"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T21:55:50 | oeisdata/seq/A359/A359423.seq | 7f4d5c7542836e1f359302506de8c353 |
A359424 | The least common multiple of the arithmetic derivative and the primorial base exp-function, reduced modulo 60. | [
"0",
"0",
"3",
"6",
"36",
"18",
"5",
"10",
"0",
"30",
"15",
"30",
"40",
"50",
"45",
"0",
"0",
"30",
"45",
"10",
"0",
"30",
"45",
"30",
"20",
"50",
"15",
"30",
"0",
"30",
"37",
"14",
"0",
"42",
"57",
"12",
"0",
"10",
"45",
"0",
"0",
"30",
"35",
"50",
"0",
"30",
"15",
"30",
"20",
"10",
"15",
"0",
"0",
"30",
"15",
"40",
"0",
"30",
"45",
"30",
"8",
"38",
"57",
"18",
"24",
"42",
"5",
"10",
"0",
"30",
"15",
"30",
"0",
"50",
"15",
"30",
"0",
"30",
"55",
"10",
"0",
"0",
"15"
] | [
"nonn",
"base",
"look"
] | 8 | 0 | 3 | [
"A003415",
"A016825",
"A042965",
"A276086",
"A327858",
"A327864",
"A358669",
"A358765",
"A359423",
"A359424"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T21:55:55 | oeisdata/seq/A359/A359424.seq | 1438bfc8a25d7f3fbd67a27ae4639ec4 |
A359425 | Dirichlet convolution of the arithmetic derivative with the primorial base exp-function. | [
"0",
"2",
"2",
"11",
"2",
"19",
"2",
"45",
"18",
"35",
"2",
"85",
"2",
"31",
"40",
"151",
"2",
"125",
"2",
"195",
"36",
"119",
"2",
"313",
"38",
"83",
"120",
"215",
"2",
"418",
"2",
"649",
"124",
"491",
"52",
"628",
"2",
"295",
"88",
"1057",
"2",
"1046",
"2",
"1629",
"414",
"2303",
"2",
"1777",
"38",
"1541",
"496",
"2241",
"2",
"4424",
"140",
"6421",
"300",
"11315",
"2",
"2048",
"2",
"83",
"1002",
"2013",
"104",
"1864",
"2",
"2073"
] | [
"nonn",
"base",
"look"
] | 9 | 1 | 2 | [
"A003415",
"A276086",
"A347389",
"A347959",
"A359425"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T21:55:59 | oeisdata/seq/A359/A359425.seq | 8c310d38bd1ebf289d2394ddc4deaf63 |
A359426 | a(n) = A342001(A358764(n)). | [
"0",
"1",
"1",
"5",
"2",
"2",
"1",
"7",
"8",
"31",
"13",
"12",
"2",
"9",
"11",
"37",
"16",
"14",
"3",
"11",
"14",
"43",
"19",
"16",
"4",
"13",
"17",
"49",
"22",
"5",
"1",
"9",
"10",
"41",
"17",
"16",
"12",
"59",
"71",
"247",
"106",
"94",
"19",
"73",
"92",
"289",
"127",
"108",
"26",
"87",
"113",
"331",
"148",
"122",
"33",
"101",
"134",
"373",
"169",
"41",
"2",
"11",
"13",
"47",
"20",
"18",
"17",
"69",
"86",
"277",
"121",
"104",
"24",
"83",
"107"
] | [
"nonn",
"base",
"look"
] | 9 | 1 | 4 | [
"A276086",
"A342001",
"A342002",
"A358764",
"A359426"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T16:48:29 | oeisdata/seq/A359/A359426.seq | 71ae8d64550b95fa819b206785249e0a |
A359427 | Dirichlet inverse of A358764. | [
"1",
"-2",
"-3",
"-2",
"-9",
"8",
"-5",
"6",
"-6",
"6",
"-45",
"-4",
"-25",
"-30",
"-21",
"-130",
"-225",
"-70",
"-125",
"-130",
"-345",
"-570",
"-1125",
"-480",
"-544",
"-1150",
"-1812",
"-3550",
"-5625",
"222",
"-7",
"530",
"249",
"858",
"27",
"418",
"-35",
"430",
"45",
"610",
"-315",
"1520",
"-175",
"2650",
"-48",
"3450",
"-1575",
"2060",
"-850",
"804",
"-1275",
"-250",
"-7875",
"4288",
"-3565",
"6150",
"-12375"
] | [
"sign",
"base"
] | 9 | 1 | 2 | [
"A056911",
"A060681",
"A276086",
"A323239",
"A337945",
"A342417",
"A358764",
"A359427",
"A359428"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T16:48:55 | oeisdata/seq/A359/A359427.seq | e903e0159dd7e03d2516bdf807693a9e |
A359428 | Sum of A358764 and its Dirichlet inverse. | [
"2",
"0",
"0",
"4",
"0",
"12",
"0",
"16",
"9",
"36",
"0",
"16",
"0",
"20",
"54",
"20",
"0",
"30",
"0",
"120",
"30",
"180",
"0",
"20",
"81",
"100",
"63",
"200",
"0",
"228",
"0",
"544",
"270",
"900",
"90",
"446",
"0",
"500",
"150",
"820",
"0",
"1660",
"0",
"3000",
"477",
"4500",
"0",
"2760",
"25",
"2554",
"1350",
"5000",
"0",
"7788",
"810",
"14900",
"750",
"22500",
"0",
"936",
"0",
"28",
"2265",
"-12",
"450",
"3324",
"0",
"168",
"6750"
] | [
"sign",
"base",
"look"
] | 12 | 1 | 1 | [
"A053850",
"A060681",
"A276086",
"A342419",
"A353569",
"A358764",
"A359427",
"A359428"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-02T16:48:22 | oeisdata/seq/A359/A359428.seq | bfc1e784833c42a5e7c1f818f8c8b37a |
A359429 | a(n) = 1 if n is cubefree, but not squarefree, otherwise 0. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 14 | 1 | null | [
"A008966",
"A059956",
"A067259",
"A072411",
"A088453",
"A107078",
"A212793",
"A290107",
"A359429",
"A359474"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:20:32 | oeisdata/seq/A359/A359429.seq | edf3dcf971b5fee1a622a339426c6acf |
A359430 | a(n) = 1 if the arithmetic derivative of n is a multiple of 3, otherwise 0. | [
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1"
] | [
"nonn"
] | 19 | 0 | null | [
"A003415",
"A011655",
"A267142",
"A276086",
"A327863",
"A359430",
"A369643",
"A369653",
"A369658",
"A370118",
"A370122",
"A373143",
"A373253",
"A373254",
"A373256",
"A373371",
"A373591",
"A373592"
] | null | Antti Karttunen, Jan 02 2023 | 2024-06-13T14:57:21 | oeisdata/seq/A359/A359430.seq | 7a7d9e40b93a2842de384a58924fb499 |
A359431 | a(n) = A325973(n) - A326043(n). | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"4",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"6",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"8",
"0",
"0",
"0",
"0",
"0",
"6",
"0",
"8",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"12",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"16",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"12",
"12",
"0",
"0",
"0",
"0",
"0",
"0",
"12",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"20",
"0",
"0",
"0",
"10",
"0",
"0",
"0",
"14",
"0"
] | [
"nonn"
] | 8 | 1 | 16 | [
"A048107",
"A325973",
"A325981",
"A326043",
"A359431",
"A359471"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-04T14:38:13 | oeisdata/seq/A359/A359431.seq | acc0c839b5c8210e0f4bccc0ca02ae1b |
A359432 | Dirichlet inverse of A327936, which is multiplicative sequence with a(p^e) = p if e >= p, otherwise 1. | [
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"-1",
"1",
"0",
"1",
"-1",
"1",
"-1",
"1",
"1",
"1",
"-1",
"0",
"-1",
"1",
"1",
"1",
"-1",
"-1",
"0",
"1",
"-2",
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"0",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"0",
"1",
"-1",
"-1",
"0",
"0",
"1",
"1",
"-1",
"2",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"0",
"-1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"0",
"-1",
"1",
"0",
"1",
"1",
"-1",
"-1",
"-1",
"2",
"1",
"-1",
"-1",
"1",
"1",
"1",
"-1",
"-1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"-1",
"-1",
"1",
"-1",
"2"
] | [
"sign",
"mult"
] | 12 | 1 | 27 | [
"A038838",
"A122132",
"A327936",
"A353627",
"A358216",
"A359432",
"A359433"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-26T04:13:07 | oeisdata/seq/A359/A359432.seq | 6960b6ccf669fd70ae74c2dfa2b03a4f |
A359433 | Dirichlet inverse of A071773. | [
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"-1",
"1",
"-2",
"1",
"-1",
"1",
"-1",
"1",
"1",
"1",
"-1",
"2",
"-1",
"1",
"1",
"1",
"-1",
"-1",
"-4",
"1",
"2",
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"2",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"1",
"2",
"1",
"-1",
"-1",
"-6",
"4",
"1",
"1",
"-1",
"-2",
"1",
"-1",
"1",
"1",
"-1",
"-1",
"-1",
"1",
"2",
"-1",
"1",
"-1",
"-1",
"1",
"1",
"-1",
"-1",
"-2",
"-1",
"1",
"4",
"1",
"1",
"-1",
"-1",
"-1",
"4",
"1",
"-1",
"-1",
"1",
"1",
"1",
"-1",
"-1",
"-2",
"1",
"1",
"1",
"1",
"1",
"1",
"-1",
"6",
"2",
"4",
"-1",
"-1",
"-1",
"-1",
"-1"
] | [
"sign",
"mult"
] | 17 | 1 | 9 | [
"A038838",
"A071773",
"A122132",
"A353627",
"A359432",
"A359433"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-04T02:09:47 | oeisdata/seq/A359/A359433.seq | c18658b2195b8a71d5687db23c6dbe41 |
A359434 | Numbers k >= 1 such that k * phi(k) / (k + phi(k)) is an integer, where phi(k) = A000010(k). | [
"12",
"24",
"36",
"48",
"72",
"96",
"108",
"126",
"144",
"176",
"192",
"216",
"252",
"288",
"324",
"352",
"378",
"384",
"432",
"504",
"576",
"648",
"704",
"756",
"768",
"864",
"882",
"972",
"1008",
"1134",
"1152",
"1296",
"1408",
"1512",
"1536",
"1728",
"1764",
"1936",
"1944",
"2016",
"2268",
"2304",
"2592",
"2646",
"2752",
"2816",
"2916"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A000010",
"A003586",
"A033845",
"A359434"
] | null | Ctibor O. Zizka, Dec 31 2022 | 2022-12-31T15:17:11 | oeisdata/seq/A359/A359434.seq | 61ff93f82156886e6a02c12c4330119e |
A359435 | a(n) = binomial(2*n-1,n) - n^2 - 1. | [
"0",
"18",
"100",
"425",
"1666",
"6370",
"24228",
"92277",
"352594",
"1351933",
"5200130",
"20058103",
"77558534",
"300539938",
"1166802820",
"4537567325",
"17672631538",
"68923264009",
"269128936778",
"1052049481375",
"4116715363270",
"16123801840973",
"63205303218250",
"247959266473375",
"973469712823326"
] | [
"nonn",
"easy"
] | 6 | 3 | 2 | [
"A352027",
"A359435"
] | null | Enrique Navarrete, Dec 31 2022 | 2024-01-20T16:24:56 | oeisdata/seq/A359/A359435.seq | c2b969ba8ba8d4e0d6fe97b769672342 |
A359436 | Primes p such that (4^p - 2^p + 1)/3 is prime. | [
"3",
"5",
"7",
"13",
"29",
"61",
"383",
"401",
"1637",
"1871",
"36229",
"44771",
"44797",
"75167"
] | [
"nonn",
"more",
"hard"
] | 28 | 1 | 1 | [
"A000978",
"A359436"
] | null | Jorge Coveiro, Dec 31 2022 | 2024-09-10T11:53:06 | oeisdata/seq/A359/A359436.seq | c5bd05c07c16cf878f960ef904b42109 |
A359437 | a(n) is the first prime p such that there are exactly n numbers i with 1 <= i < p such that one of i*p-(p-i) and i*p+(p-i) is a prime and the other is the square of a prime. | [
"2",
"17",
"11",
"7",
"239",
"167",
"1933",
"9241",
"19319",
"120121",
"649991",
"4564559",
"513239",
"11324041",
"31831799",
"54708721",
"59219161",
"215975759",
"241431959",
"265012441",
"549789239",
"138389159",
"3336693359",
"1990674841"
] | [
"nonn",
"more"
] | 36 | 0 | 1 | null | null | Robert Israel, Dec 31 2022 | 2024-05-07T02:00:20 | oeisdata/seq/A359/A359437.seq | 15fb1d29e0fcca69db1029b401c8e462 |
A359438 | For n >= 0, let S be the sequence of numbers m such that (m^2 - 2*n^2 + 1)/2 is a square. Then a(n) is the number k such that S(j) = 6*S(j-k) - S(j-2k) for all j for which S(j-2k) is defined. | [
"1",
"1",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"2",
"4",
"4",
"2",
"2",
"4",
"2",
"2",
"4",
"4",
"2",
"3",
"4",
"4",
"4",
"4",
"2",
"4",
"2",
"8",
"2",
"2",
"4",
"2",
"2",
"2",
"6",
"2",
"2",
"4",
"4",
"2",
"2",
"4",
"2",
"4",
"8",
"4",
"2",
"4",
"6",
"2",
"4",
"4",
"2",
"2",
"2",
"8",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"4",
"2",
"4",
"4",
"4",
"2",
"2",
"8",
"4",
"4",
"2",
"4"
] | [
"nonn"
] | 6 | 0 | 3 | [
"A000005",
"A001541",
"A002315",
"A077242",
"A077443",
"A106525",
"A359438"
] | null | Jon E. Schoenfield, Dec 31 2022 | 2023-01-01T09:48:32 | oeisdata/seq/A359/A359438.seq | 16c3851dc2b48c2de4c0e8b3367326e4 |
A359439 | a(n) is the least number of the form p^2 + q^2 - 2 for primes p and q that is an odd multiple of 2^n, or -1 if there is no such number. | [
"11",
"6",
"-1",
"56",
"16",
"32",
"192",
"128",
"2816",
"1536",
"15360",
"30720",
"12288",
"73728",
"147456",
"32768",
"196608",
"1179648",
"22806528",
"11010048",
"34603008",
"31457280",
"314572800",
"679477248",
"50331648",
"301989888",
"1006632960",
"10871635968",
"20132659200",
"4831838208",
"28991029248",
"173946175488",
"450971566080",
"77309411328"
] | [
"sign"
] | 41 | 0 | 1 | [
"A045636",
"A359439"
] | null | Robert Israel, Jan 02 2023 | 2023-01-05T19:00:14 | oeisdata/seq/A359/A359439.seq | 8457216fc4451462ea778664fc47b5b2 |
A359440 | A measure of the extent of reflective symmetry in the pattern of primes around each prime gap: a(n) is the largest k such that prime(n-j) + prime(n+1+j) has the same value for each j in 0..k. | [
"0",
"0",
"0",
"1",
"2",
"2",
"1",
"0",
"0",
"4",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"2",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0"
] | [
"nonn"
] | 45 | 1 | 5 | [
"A000040",
"A006562",
"A051795",
"A055381",
"A081235",
"A359440"
] | null | Alexandre Herrera, Jan 01 2023 | 2023-01-08T13:30:18 | oeisdata/seq/A359/A359440.seq | 327613427e4cc9be17c5bef729f117d3 |
A359441 | The n-Queens Constant. | [
"1",
"9",
"4",
"4",
"0",
"0"
] | [
"nonn",
"cons",
"hard",
"more"
] | 10 | 1 | 2 | [
"A000170",
"A359441"
] | null | Vaclav Kotesovec, Jan 01 2023 | 2023-01-01T08:44:01 | oeisdata/seq/A359/A359441.seq | 01b30a2755a3a5769c68335488fdcd76 |
A359442 | a(n) = Sum_{d|n} d^(n + 1 - d - n/d). | [
"1",
"2",
"2",
"4",
"2",
"15",
"2",
"74",
"83",
"643",
"2",
"12635",
"2",
"117715",
"397188",
"2359426",
"2",
"103572204",
"2",
"1260918355",
"13841818644",
"25937425627",
"2",
"5612318393211",
"152587890627",
"23298085126579",
"1853020231898564",
"2422197090649523",
"2",
"1032944452284531101",
"2",
"10376297939508166658"
] | [
"nonn"
] | 50 | 1 | 2 | [
"A294645",
"A342628",
"A342629",
"A342677",
"A359442",
"A359700"
] | null | Seiichi Manyama, Jan 14 2023 | 2023-08-09T00:53:37 | oeisdata/seq/A359/A359442.seq | a4a4344e0af8982ca882aab27a7a23af |
A359443 | Primes p such that if q is the next prime, the sum (with multiplicity) of prime factors of p^2 + q^2 is a square. | [
"11",
"17",
"23",
"79",
"131",
"229",
"1019",
"1123",
"1583",
"3299",
"4019",
"4091",
"15307",
"28813",
"29147",
"35083",
"35933",
"43427",
"43597",
"47809",
"68683",
"69029",
"72047",
"80173",
"80513",
"82483",
"83257",
"84263",
"92567",
"94583",
"100693",
"118603",
"129517",
"155317",
"163243",
"165553",
"190181",
"191021",
"198901",
"199211",
"223439",
"225721",
"257273",
"265117"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A001414",
"A051448",
"A359443"
] | null | Robert Israel, Jan 01 2023 | 2023-01-06T03:24:41 | oeisdata/seq/A359/A359443.seq | 5e5696e329485bf881dc6eb88aa34766 |
A359444 | a(n) is the least number that has exactly n divisors with sum of digits n. | [
"1",
"20",
"60",
"440",
"1400",
"420",
"11200",
"11440",
"324",
"58520",
"180880",
"18480",
"585200",
"523600",
"114240",
"1133440",
"2420600",
"17820",
"9634240",
"9529520",
"1659840",
"33353320",
"71380400",
"4748100",
"178890320",
"228388160",
"671328",
"413736400",
"1081662400",
"73670520",
"3301916800",
"2325202880"
] | [
"nonn",
"base"
] | 59 | 1 | 2 | [
"A007953",
"A359444",
"A359959"
] | null | Robert Israel, Jan 21 2023 | 2023-01-27T19:57:16 | oeisdata/seq/A359/A359444.seq | 143d7abeee00f72e4987c3e6fc6714e8 |
A359445 | Numbers k such that the sums (with multiplicity) of prime factors of k and k+1 are both squares. | [
"255",
"290",
"323",
"578",
"1484",
"2219",
"2418",
"2491",
"4370",
"4706",
"5243",
"6075",
"7139",
"7930",
"9378",
"10082",
"10554",
"10603",
"12716",
"15872",
"16739",
"18146",
"18938",
"22424",
"22842",
"25227",
"25283",
"25959",
"26910",
"28364",
"28448",
"30255",
"33669",
"33698",
"34316",
"34317",
"38895",
"40179",
"41261",
"43343",
"43999",
"47384",
"60400",
"62695",
"64970"
] | [
"nonn"
] | 15 | 1 | 1 | [
"A001414",
"A051448",
"A359445"
] | null | Robert Israel, Jan 01 2023 | 2024-04-12T09:25:09 | oeisdata/seq/A359/A359445.seq | 78fa45844d5ee0ea77ea8da781ee2d98 |
A359446 | a(n) is the period of the decimal expansion of 1/A243110(n). | [
"1",
"2",
"3",
"4",
"7",
"5",
"21",
"29",
"20",
"22",
"7",
"10",
"11",
"18",
"35",
"51",
"45",
"61",
"9",
"11",
"14",
"17",
"15",
"16",
"21",
"47",
"51",
"54",
"55",
"24",
"28",
"37",
"13",
"44",
"44",
"26",
"17"
] | [
"nonn",
"base",
"more"
] | 23 | 1 | 2 | [
"A060370",
"A243110",
"A359446"
] | null | Pedro K. Krause, Jan 01 2023 | 2023-02-26T20:34:03 | oeisdata/seq/A359/A359446.seq | 84ea172728d3f3e4a3bcc49409356ac7 |
A359447 | a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd prime, or -1 if there is no such number. | [
"-1",
"-1",
"152",
"2224",
"9056",
"108736",
"-1",
"4532992",
"34674176",
"268684288",
"2280249344",
"18693763072",
"138890141696",
"1111848828928",
"8803419521024",
"70375767212032",
"564861779443712",
"4507018424221696",
"36030079546425344",
"288238419152207872",
"2305850719072157696",
"18446757709572210688",
"147573952867129622528"
] | [
"sign"
] | 10 | 1 | 3 | [
"A086119",
"A359447",
"A359448"
] | null | Robert Israel, Jan 01 2023 | 2023-01-06T10:43:43 | oeisdata/seq/A359/A359447.seq | ad5358ec1fa165bfefee9629ee99bb0b |
A359448 | a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd number. | [
"35",
"54",
"468",
"152",
"16",
"9056",
"81088",
"527744",
"4532992",
"33900032",
"268684288",
"2148866048",
"17185288192",
"137439174656",
"1099611160576",
"8797884612608",
"70369850097664",
"562950041894912",
"4503607335190528",
"36028810622664704",
"288230406982991872",
"2305843633483415552",
"18446744212436156416",
"147573952867129622528"
] | [
"nonn"
] | 15 | 0 | 1 | [
"A007814",
"A086119",
"A359447",
"A359448"
] | null | Robert Israel, Jan 01 2023 | 2024-07-09T19:12:25 | oeisdata/seq/A359/A359448.seq | 3dfb04c23bb9d7d1fed42f8e7244eaf3 |
A359449 | Positive integers in which the sum of the k-th powers of their digits is a prime number for k = 1, 2, 3, 4, 5, and 6 but not for k=7. | [
"223",
"232",
"322",
"1349",
"1394",
"1439",
"1493",
"1934",
"1943",
"2023",
"2032",
"2203",
"2230",
"2302",
"2320",
"3022",
"3149",
"3194",
"3202",
"3220",
"3419",
"3491",
"3914",
"3941",
"4139",
"4193",
"4319",
"4391",
"4913",
"4931",
"9134",
"9143",
"9314",
"9341",
"9413",
"9431",
"10349",
"10394",
"10439",
"10493",
"10934",
"10943",
"13049",
"13094",
"13409",
"13490",
"13904",
"13940"
] | [
"nonn",
"base",
"easy"
] | 25 | 1 | 1 | [
"A028834",
"A108662",
"A210767",
"A225534",
"A245358",
"A359449"
] | null | José Hernández, Jan 02 2023 | 2023-01-20T10:00:54 | oeisdata/seq/A359/A359449.seq | aaf0aa91c720972d912c37e63ee4614a |
A359450 | a(1) = 1, a(2) = 2; thereafter a(n) = n * a(A070939(n)). | [
"1",
"2",
"6",
"24",
"30",
"36",
"42",
"192",
"216",
"240",
"264",
"288",
"312",
"336",
"360",
"480",
"510",
"540",
"570",
"600",
"630",
"660",
"690",
"720",
"750",
"780",
"810",
"840",
"870",
"900",
"930",
"1152",
"1188",
"1224",
"1260",
"1296",
"1332",
"1368",
"1404",
"1440",
"1476",
"1512",
"1548",
"1584",
"1620",
"1656",
"1692",
"1728",
"1764",
"1800",
"1836"
] | [
"nonn",
"base"
] | 11 | 1 | 2 | [
"A070939",
"A359450",
"A359451"
] | null | Amiram Eldar, Jan 02 2023 | 2023-01-04T01:30:58 | oeisdata/seq/A359/A359450.seq | d47552d507c3ec4abaffdafebf8452f2 |
A359451 | Decimal expansion of Sum_{k>=1} 1/A359450(k). | [
"2",
"0",
"8",
"6",
"3",
"7",
"7",
"6",
"6",
"5",
"0",
"0",
"5",
"9",
"8",
"8",
"7",
"1",
"6",
"0",
"8",
"9",
"7",
"5",
"5",
"8",
"5",
"6",
"7",
"3",
"4",
"1",
"3",
"2",
"7",
"7",
"2",
"6",
"9",
"2",
"0",
"2",
"2",
"0",
"9",
"6",
"9",
"2",
"2",
"3",
"9",
"5",
"1",
"6",
"9",
"5",
"1",
"2",
"3",
"8",
"3",
"8",
"5",
"7",
"9",
"2",
"1",
"5",
"3",
"2",
"0",
"0",
"0",
"2",
"8",
"2",
"1",
"0",
"0",
"2",
"6",
"1",
"4",
"7",
"1",
"6",
"0",
"5",
"8",
"4",
"8",
"5",
"2",
"6",
"7",
"0",
"9",
"4",
"9",
"0",
"7"
] | [
"nonn",
"cons",
"base"
] | 10 | 1 | 1 | [
"A001008",
"A002805",
"A359450",
"A359451"
] | null | Amiram Eldar, Jan 02 2023 | 2025-03-24T22:35:55 | oeisdata/seq/A359/A359451.seq | bc28235a413ca86a39783ada6588db68 |
A359452 | Number of vertices in the partite set of the n-Menger sponge graph that contains the corners. | [
"1",
"8",
"208",
"3968",
"80128",
"1599488",
"32002048",
"639991808",
"12800032768",
"255999868928",
"5120000524288",
"102399997902848",
"2048000008388608",
"40959999966445568",
"819200000134217728",
"16383999999463129088",
"327680000002147483648",
"6553599999991410065408",
"131072000000034359738368"
] | [
"nonn",
"easy"
] | 27 | 0 | 2 | [
"A009964",
"A083233",
"A262710",
"A291066",
"A332705",
"A359452",
"A359453"
] | null | Allan Bickle, Jan 02 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359452.seq | c5a0a366144318476247fb0b94602ba5 |
A359453 | Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners. | [
"0",
"12",
"192",
"4032",
"79872",
"1600512",
"31997952",
"640008192",
"12799967232",
"256000131072",
"5119999475712",
"102400002097152",
"2047999991611392",
"40960000033554432",
"819199999865782272",
"16384000000536870912",
"327679999997852516352",
"6553600000008589934592",
"131071999999965640261632"
] | [
"nonn",
"easy"
] | 27 | 0 | 2 | [
"A009964",
"A083233",
"A291066",
"A332705",
"A359452",
"A359453"
] | null | Allan Bickle, Jan 02 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359453.seq | 8ea4267a639362ba0cc2e5ea34bc0a52 |
A359454 | Decimal expansion of Knopfmacher's limit: Limit_{x -> 1 from below} (1/(1-x)) * Product_{k>=2} (1 - x^m(k)/(k+1)), where m(k) = A060681(k) = k - k/A020639(k). | [
"2",
"2",
"9",
"2",
"1",
"7",
"3",
"6",
"9",
"5",
"3"
] | [
"nonn",
"cons",
"more"
] | 5 | 1 | 1 | [
"A020639",
"A060681",
"A359454"
] | null | Amiram Eldar, Jan 02 2023 | 2023-01-02T03:32:44 | oeisdata/seq/A359/A359454.seq | 953e228d946ac4505a6666088da4eb5e |
A359455 | Expansion of Sum_{k>0} x^k / (1 - x^(k^3)). | [
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2"
] | [
"nonn",
"easy"
] | 33 | 1 | 2 | [
"A000005",
"A163671",
"A359455"
] | null | Seiichi Manyama, Jan 06 2023 | 2023-08-14T01:59:28 | oeisdata/seq/A359/A359455.seq | 16aa0e8559f1f399b6bc06b6e2728d72 |
A359456 | Characteristic function of Fibonorial numbers. | [
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"cons",
"easy"
] | 40 | 1 | null | [
"A003266",
"A012245",
"A359456"
] | null | A.H.M. Smeets, Jan 02 2023 | 2024-12-15T17:14:49 | oeisdata/seq/A359/A359456.seq | b2de01d209008673910aa3d4bd7cfaa3 |
A359457 | Continued fraction for constant A359456. | [
"0",
"9",
"11",
"99",
"1",
"10",
"9",
"999999999999999999",
"1",
"8",
"10",
"1",
"99",
"11",
"9"
] | [
"nonn",
"cofr",
"more"
] | 24 | 0 | 2 | [
"A058304",
"A317331",
"A317332",
"A317333",
"A359456",
"A359457",
"A359458"
] | null | A.H.M. Smeets, Jan 02 2023 | 2025-03-24T22:36:01 | oeisdata/seq/A359/A359457.seq | 87fb6b3167ece61cb741997b49037a8d |
A359458 | a(n) = A001911(n)*A003266(n+2). | [
"0",
"2",
"18",
"180",
"2640",
"59280",
"2096640",
"118067040",
"10659448800",
"1548438091200",
"362727075110400",
"137200338475200000",
"83862700757150515200",
"82876486430812314240000",
"132456397879190606981760000",
"342431262483097194433458432000",
"1432128704666605129972385934336000"
] | [
"nonn",
"easy"
] | 21 | 0 | 2 | [
"A000045",
"A001911",
"A003266",
"A359456",
"A359457",
"A359458"
] | null | A.H.M. Smeets, Jan 03 2023 | 2023-02-20T13:05:46 | oeisdata/seq/A359/A359458.seq | 779e5b3a92ef720f24816e89b1488bbc |
A359459 | a(n) = coefficient of x^n/n! in A(x) = Sum_{n>=0} x^n/n! * ( (1 + sqrt(n)*x)^sqrt(n) + 1/(1 - sqrt(n)*x)^sqrt(n) )/2. | [
"1",
"1",
"3",
"10",
"49",
"331",
"3091",
"36142",
"507585",
"8264917",
"153670771",
"3217628206",
"75150452257",
"1941092955127",
"55052488501011",
"1703811095028946",
"57225901450900801",
"2075951065582081417",
"80989170394085892451",
"3385153152861566082994",
"151069646253007978014801",
"7176064437477333753215491"
] | [
"nonn"
] | 18 | 0 | 3 | null | null | Paul D. Hanna, Jan 03 2023 | 2023-01-07T10:53:02 | oeisdata/seq/A359/A359459.seq | 1a3cdb7d9caa5da4103b8e6a0a2ab92e |
A359460 | a(n) = coefficient of x^n/n! in A(x) = Sum_{n>=0} x^n * ( (exp(sqrt(n)*x) + x)^sqrt(n) + exp(n*x)/(1 + x*exp(sqrt(n)*x))^sqrt(n) )/2. | [
"1",
"1",
"4",
"18",
"124",
"1015",
"10446",
"124894",
"1734160",
"27065133",
"473544010",
"9079863496",
"190885380192",
"4332022328803",
"106201585772114",
"2781910780856250",
"77941165007299936",
"2315379935517658841",
"73009619250079314690",
"2426165226652313377828",
"85041434421474110745040"
] | [
"sign"
] | 10 | 0 | 3 | [
"A359460",
"A359461"
] | null | Paul D. Hanna, Jan 02 2023 | 2023-01-03T09:21:15 | oeisdata/seq/A359/A359460.seq | 2b20bfd63412d607b48a169f89d22b8b |
A359461 | a(n) = coefficient of x^n/n! in A(x) such that A(x) = Sum_{n>=0} x^n * ( (A(x)^sqrt(n) + x)^sqrt(n) + A(x)^n/(1 + x*A(x)^sqrt(n))^sqrt(n) )/2. | [
"1",
"1",
"4",
"27",
"264",
"3480",
"57960",
"1168860",
"27716080",
"755797392",
"23309811000",
"802356730560",
"30495894175296",
"1268569374923136",
"57327261461502032",
"2796658399257297120",
"146484112541333548800",
"8199099498574437696000",
"488395687438426037605920",
"30847715523237047711124096",
"2059258090155754103465678080"
] | [
"nonn"
] | 23 | 0 | 3 | [
"A359460",
"A359461",
"A359462"
] | null | Paul D. Hanna, Jan 02 2023 | 2023-01-05T00:12:31 | oeisdata/seq/A359/A359461.seq | e2abed7ea5f59f655a99b1d9cc7ad0e2 |
A359462 | a(n) = coefficient of x^n/n! in A(x) = Sum_{n>=0} x^n * ( (A(x)^sqrt(2*n) + x)^sqrt(2*n) + A(x)^(2*n)/(1 + x*A(x)^sqrt(2*n))^sqrt(2*n) )/2. | [
"1",
"1",
"6",
"66",
"1080",
"24210",
"689160",
"23806160",
"967458688",
"45226555164",
"2391009969600",
"141058577704968",
"9187128380964864",
"654761426765669080",
"50687036874968329472",
"4235395789572088071840",
"379953548646431877841920",
"36422572996966918108870800",
"3715607345159938499844931584"
] | [
"nonn"
] | 6 | 0 | 3 | [
"A359461",
"A359462"
] | null | Paul D. Hanna, Jan 03 2023 | 2023-01-05T10:34:30 | oeisdata/seq/A359/A359462.seq | 1e642f0a9122c3bac92dd62d3895f2da |
A359463 | Coefficient a(n) of x^n in power series A(x), n >= 0, such that A(x) = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^(n-1))^n. | [
"1",
"1",
"2",
"6",
"20",
"69",
"245",
"896",
"3362",
"12869",
"50024",
"196896",
"783205",
"3143713",
"12717532",
"51798089",
"212233756",
"874193355",
"3617797596",
"15035379576",
"62724649455",
"262579756558",
"1102680011825",
"4643936681122",
"19609621413193",
"83005706694022",
"352145760387515",
"1497067760933244"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A290003",
"A359463"
] | null | Paul D. Hanna, Jan 17 2023 | 2023-03-14T04:20:58 | oeisdata/seq/A359/A359463.seq | 4f23af1fafbf79cf2c7e216b6965980c |
A359464 | a(n) = 1 if the total number of 1-bits in the exponents of prime factorization n is even, otherwise 0. | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"easy",
"base"
] | 24 | 1 | null | [
"A000379",
"A059841",
"A064547",
"A092248",
"A359464",
"A359465",
"A367514"
] | null | Antti Karttunen, Jan 02 2023 | 2024-10-02T12:36:06 | oeisdata/seq/A359/A359464.seq | c022879bea6cdc9f65bdd20729f80de7 |
A359465 | a(n) = 1 if n is an odd squarefree number with an even number of prime factors, otherwise 0. | [
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0"
] | [
"nonn"
] | 16 | 1 | null | [
"A000035",
"A008966",
"A046390",
"A056913",
"A065043",
"A185197",
"A323239",
"A343370",
"A353481",
"A353557",
"A353629",
"A353675",
"A359464",
"A359465"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-05T03:20:19 | oeisdata/seq/A359/A359465.seq | 53aab9a859533ec5b439efb39efc4979 |
A359466 | a(n) = 1 if n has exactly one non-unitary prime factor, otherwise 0. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] | [
"nonn"
] | 18 | 1 | null | [
"A056170",
"A059956",
"A154945",
"A181819",
"A190641",
"A353670",
"A359466",
"A359467",
"A359472",
"A359474"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-05T03:20:28 | oeisdata/seq/A359/A359466.seq | d6367683d3a172eda609197afafcfe7a |
A359467 | a(n) = (A166486(n)+A353627(n)) mod 2. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] | [
"nonn"
] | 21 | 1 | null | [
"A166486",
"A342419",
"A353459",
"A353627",
"A355689",
"A358839",
"A359466",
"A359467",
"A359468",
"A359469"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-24T02:50:51 | oeisdata/seq/A359/A359467.seq | c0caa9b10c820bd00cce78aeab6a48a7 |
A359468 | Numbers that are either multiples of 4 with their odd part squarefree, or that are not multiples of 4 and not squarefree. | [
"4",
"8",
"9",
"12",
"16",
"18",
"20",
"24",
"25",
"27",
"28",
"32",
"40",
"44",
"45",
"48",
"49",
"50",
"52",
"54",
"56",
"60",
"63",
"64",
"68",
"75",
"76",
"80",
"81",
"84",
"88",
"90",
"92",
"96",
"98",
"99",
"104",
"112",
"116",
"117",
"120",
"121",
"124",
"125",
"126",
"128",
"132",
"135",
"136",
"140",
"147",
"148",
"150",
"152",
"153",
"156",
"160",
"162",
"164",
"168",
"169",
"171",
"172",
"175",
"176",
"184",
"188",
"189",
"192",
"198",
"204",
"207",
"208",
"212",
"220",
"224",
"225",
"228"
] | [
"nonn"
] | 18 | 1 | 1 | [
"A000265",
"A166486",
"A190641",
"A327877",
"A342419",
"A355689",
"A359467",
"A359468"
] | null | Antti Karttunen, Jan 02 2023 | 2023-01-24T02:50:55 | oeisdata/seq/A359/A359468.seq | 3c2986e20c4fceafc807ceb58735c504 |
A359469 | a(n) = A353459(n) mod 2. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] | [
"nonn"
] | 12 | 1 | null | [
"A003961",
"A348717",
"A353457",
"A353458",
"A353459",
"A359466",
"A359467",
"A359469",
"A359470"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-06T10:51:29 | oeisdata/seq/A359/A359469.seq | d1877627d5186b0da38018a447916548 |
A359470 | Positions of odd terms in A353459. | [
"4",
"8",
"9",
"12",
"16",
"18",
"20",
"24",
"25",
"27",
"28",
"32",
"40",
"44",
"45",
"48",
"49",
"50",
"52",
"54",
"56",
"60",
"63",
"64",
"68",
"75",
"76",
"80",
"81",
"84",
"88",
"90",
"92",
"96",
"98",
"99",
"100",
"104",
"112",
"116",
"117",
"120",
"121",
"124",
"125",
"126",
"128",
"132",
"135",
"136",
"140",
"147",
"148",
"150",
"152",
"153",
"156",
"160",
"162",
"164",
"168",
"169",
"171",
"172",
"175",
"176",
"184",
"188",
"189"
] | [
"nonn"
] | 4 | 1 | 1 | [
"A353459",
"A359469",
"A359470"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-04T12:50:53 | oeisdata/seq/A359/A359470.seq | 419ef153ebdefe422290106d451fdebb |
A359471 | a(n) = 1 if the product of exponents in the prime factorization of n is less than 3, otherwise 0. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 20 | 1 | null | [
"A005361",
"A008966",
"A034444",
"A048105",
"A048106",
"A048107",
"A059956",
"A271971",
"A325973",
"A326043",
"A359431",
"A359471",
"A359472",
"A359474",
"A359475"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:20:11 | oeisdata/seq/A359/A359471.seq | 3263468eb28d747dd8b30ddae53f6fca |
A359472 | a(n) = 1 if the product of exponents in the prime factorization of n is 3, otherwise 0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 26 | 1 | null | [
"A000688",
"A005361",
"A034444",
"A048105",
"A048106",
"A048109",
"A295316",
"A295883",
"A359466",
"A359471",
"A359472",
"A359473",
"A359474"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:20:14 | oeisdata/seq/A359/A359472.seq | 3f1aea42868c44f6fad9d4c37ec15e30 |
A359473 | a(n) = 1 if the number of divisors of n is a power of 2, otherwise 0. | [
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1"
] | [
"nonn"
] | 17 | 1 | null | [
"A000005",
"A036537",
"A162643",
"A209229",
"A295316",
"A327839",
"A348341",
"A359472",
"A359473"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:20:07 | oeisdata/seq/A359/A359473.seq | e798cab73ad78b152c0a2e7df2eb60cb |
A359474 | a(n) = 1 if the product of exponents in the prime factorization of n is 2, otherwise 0. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 17 | 1 | null | [
"A000688",
"A005361",
"A008966",
"A046660",
"A060687",
"A271971",
"A302048",
"A359429",
"A359466",
"A359471",
"A359472",
"A359474",
"A359475"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:20:04 | oeisdata/seq/A359/A359474.seq | 50e709a0fa824ac37fbefc00090347cc |
A359475 | a(n) = 1 if n is a cubefree nonsquare whose factorization into a product of primes contains exactly one square, otherwise 0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0"
] | [
"nonn"
] | 14 | 1 | null | [
"A049240",
"A072357",
"A271971",
"A302048",
"A359471",
"A359474",
"A359475"
] | null | Antti Karttunen, Jan 04 2023 | 2023-01-05T03:19:58 | oeisdata/seq/A359/A359475.seq | a96e7c7696a617a43f6ecc4f278086e7 |
A359476 | The sequence {-a(n)}_{n>=1} gives all negative integers that are properly represented by each primitive binary quadratic forms of discriminant 28 that is properly equivalent to the reduced principal form [1, 4, -3]. | [
"3",
"6",
"7",
"14",
"19",
"27",
"31",
"38",
"47",
"54",
"59",
"62",
"63",
"83",
"87",
"94",
"103",
"111",
"118",
"126",
"131",
"139",
"159",
"166",
"167",
"171",
"174",
"199",
"203",
"206",
"222",
"223",
"227",
"243",
"251",
"259",
"262",
"271",
"278",
"279",
"283",
"307",
"311",
"318",
"327",
"334",
"339",
"342",
"367",
"371",
"383",
"398",
"399",
"406",
"411",
"419",
"423",
"439",
"446",
"447",
"454",
"467",
"479",
"486"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A242666",
"A358946",
"A358947",
"A359476",
"A359477"
] | null | Wolfdieter Lang, Jan 10 2023 | 2023-04-21T12:49:39 | oeisdata/seq/A359/A359476.seq | ad503d73a4467b59a0ee26e9f275541a |
A359477 | a(n) = 2^m(n), where m(n) is the number of distinct primes, neither 2 nor 7, dividing A359476(n). | [
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"4",
"2",
"4",
"4",
"2",
"2",
"2",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"4",
"4",
"2",
"2",
"2",
"4",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"2",
"4"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A358946",
"A358947",
"A359476",
"A359477"
] | null | Wolfdieter Lang, Jan 10 2023 | 2023-01-12T01:53:44 | oeisdata/seq/A359/A359477.seq | 80d7f449c8494ba0014260a2e534618d |
A359478 | a(1) = 1; a(n) = -Sum_{k=2..n} k * a(floor(n/k)). | [
"1",
"-2",
"-5",
"-3",
"-8",
"1",
"-6",
"-6",
"-6",
"9",
"-2",
"-8",
"-21",
"0",
"15",
"15",
"-2",
"-2",
"-21",
"-31",
"-10",
"23",
"0",
"0",
"0",
"39",
"39",
"25",
"-4",
"-49",
"-80",
"-80",
"-47",
"4",
"39",
"39",
"2",
"59",
"98",
"98",
"57",
"-6",
"-49",
"-71",
"-71",
"-2",
"-49",
"-49",
"-49",
"-49",
"2",
"-24",
"-77",
"-77",
"-22",
"-22",
"35",
"122",
"63",
"93",
"32",
"125",
"125",
"125",
"190",
"91"
] | [
"sign",
"look"
] | 30 | 1 | 2 | [
"A092149",
"A359478",
"A359479",
"A359484",
"A360390",
"A360658"
] | null | Seiichi Manyama, Mar 31 2023 | 2023-05-10T04:30:49 | oeisdata/seq/A359/A359478.seq | 75a11e076f86bb3f2e3d72e95aafef16 |
A359479 | a(1) = 1; a(n) = Sum_{k=2..n} (-1)^k * k * a(floor(n/k)). | [
"1",
"2",
"-1",
"5",
"0",
"-3",
"-10",
"14",
"14",
"9",
"-2",
"-20",
"-33",
"-40",
"-25",
"71",
"54",
"54",
"35",
"5",
"26",
"15",
"-8",
"-80",
"-80",
"-93",
"-93",
"-135",
"-164",
"-149",
"-180",
"204",
"237",
"220",
"255",
"255",
"218",
"199",
"238",
"118",
"77",
"98",
"55",
"-11",
"-11",
"-34",
"-81",
"-369",
"-369",
"-369",
"-318",
"-396",
"-449",
"-449",
"-394",
"-562",
"-505",
"-534"
] | [
"sign",
"look"
] | 27 | 1 | 2 | [
"A309288",
"A359479"
] | null | Seiichi Manyama, Mar 31 2023 | 2023-05-10T04:30:57 | oeisdata/seq/A359/A359479.seq | 6633516e5082995448d0e786db84bf56 |
A359480 | Number of Q-isomorphism classes of elliptic curves E/Q with good reduction away from 2 and prime(n). | [
"24",
"752",
"280",
"288",
"232",
"336",
"256",
"336",
"256",
"296",
"280",
"240",
"176",
"168",
"136",
"296",
"304",
"176",
"112",
"288",
"136",
"304",
"176",
"192",
"152",
"216",
"104",
"240",
"160",
"144",
"280",
"160",
"152",
"168",
"112",
"128",
"136",
"232",
"144",
"184",
"128",
"152",
"80",
"88",
"112",
"112",
"112",
"280",
"112",
"288",
"160",
"120",
"168",
"112",
"224",
"112",
"120",
"112",
"136"
] | [
"nonn"
] | 19 | 1 | 1 | [
"A332545",
"A359480",
"A361661"
] | null | Robin Visser, Mar 31 2023 | 2023-06-23T03:30:53 | oeisdata/seq/A359/A359480.seq | c3bb911042c1c043bdf85d33f92449dc |
A359481 | Irregular triangle read by rows in which T(n,k) is one half of the number of overpartitions of n having k distinct parts, n>=1, k>=1. | [
"1",
"2",
"2",
"2",
"3",
"4",
"2",
"10",
"4",
"12",
"4",
"2",
"22",
"8",
"4",
"26",
"20",
"3",
"34",
"40",
"4",
"44",
"60",
"8",
"2",
"54",
"100",
"16",
"6",
"58",
"148",
"40",
"2",
"74",
"208",
"80",
"4",
"88",
"268",
"160",
"4",
"88",
"388",
"240",
"16",
"5",
"110",
"468",
"416",
"32",
"2",
"118",
"616",
"616",
"80",
"6",
"136",
"736",
"936",
"160",
"2",
"142",
"940",
"1296",
"320",
"6",
"162",
"1108",
"1816",
"576"
] | [
"nonn",
"tabf"
] | 20 | 1 | 2 | [
"A000005",
"A000079",
"A000217",
"A003056",
"A014968",
"A116608",
"A235790",
"A359481"
] | null | Omar E. Pol, Mar 31 2023 | 2023-06-11T11:50:53 | oeisdata/seq/A359/A359481.seq | 25b5502ae112d0c588e63b77619125be |
A359482 | Lexicographically earliest sequence of distinct terms > 0 such that the sum a(n) + a(n+1) is a substring of the concatenation (a(n), a(n+1)). | [
"1",
"10",
"99",
"889",
"8009",
"1101",
"9089",
"80718",
"100284",
"183899",
"206021",
"396118",
"215703",
"354632",
"108578",
"469891",
"229021",
"61195",
"34146",
"7321",
"13817",
"3536",
"1825",
"749",
"167",
"508",
"324",
"2096",
"4337",
"2958",
"2870",
"4171",
"12941",
"16470",
"30560",
"25465",
"21056",
"35296",
"17665",
"35927",
"23345",
"10106",
"548",
"279",
"516",
"1094",
"3228",
"5302"
] | [
"base",
"nonn"
] | 45 | 1 | 2 | [
"A300000",
"A359482"
] | null | Eric Angelini and Hans Havermann, Jul 03 2023 | 2023-08-02T11:50:50 | oeisdata/seq/A359/A359482.seq | 7af35b86135726cdf9a68e7cbc5c34e1 |
A359483 | For n > 2, a(n) is the least prime p > a(n-1) such that a(n-1) + p is divisible by a(n-2); a(1) = 2, a(2) = 3. | [
"2",
"3",
"5",
"7",
"13",
"29",
"101",
"131",
"677",
"2467",
"5657",
"19013",
"48871",
"521519",
"553643",
"3618509",
"14098067",
"116168257",
"193989217",
"1200029867",
"8887409417",
"12713128189",
"573855893333",
"773735694701",
"9555670385293",
"30678585739159",
"160434821966701",
"1312137293512931",
"2217428789754491",
"100129280104254127"
] | [
"nonn"
] | 12 | 1 | 1 | null | null | Zak Seidov and Robert Israel, Mar 31 2023 | 2023-04-02T08:39:37 | oeisdata/seq/A359/A359483.seq | 7d316ba9c4737dfae2fe985f4bf8caa6 |
A359484 | a(n) = n * mu(n) if n is odd, otherwise n * mu(n) - (n/2) * mu(n/2). | [
"1",
"-3",
"-3",
"2",
"-5",
"9",
"-7",
"0",
"0",
"15",
"-11",
"-6",
"-13",
"21",
"15",
"0",
"-17",
"0",
"-19",
"-10",
"21",
"33",
"-23",
"0",
"0",
"39",
"0",
"-14",
"-29",
"-45",
"-31",
"0",
"33",
"51",
"35",
"0",
"-37",
"57",
"39",
"0",
"-41",
"-63",
"-43",
"-22",
"0",
"69",
"-47",
"0",
"0",
"0",
"51",
"-26",
"-53",
"0",
"55",
"0",
"57",
"87",
"-59",
"30",
"-61",
"93",
"0",
"0",
"65",
"-99",
"-67",
"-34",
"69",
"-105",
"-71",
"0"
] | [
"sign",
"mult"
] | 32 | 1 | 2 | [
"A008683",
"A055615",
"A092673",
"A358276",
"A359478",
"A359484",
"A359485",
"A359531"
] | null | Seiichi Manyama, Mar 31 2023 | 2023-06-09T23:59:03 | oeisdata/seq/A359/A359484.seq | c02147c1bef7b7e05b9d0d2d8d2c6a4b |
A359485 | a(1) = 1, a(2) = -5; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2. | [
"1",
"-5",
"-9",
"4",
"-25",
"45",
"-49",
"0",
"0",
"125",
"-121",
"-36",
"-169",
"245",
"225",
"0",
"-289",
"0",
"-361",
"-100",
"441",
"605",
"-529",
"0",
"0",
"845",
"0",
"-196",
"-841",
"-1125",
"-961",
"0",
"1089",
"1445",
"1225",
"0",
"-1369",
"1805",
"1521",
"0",
"-1681",
"-2205",
"-1849",
"-484",
"0",
"2645",
"-2209",
"0",
"0",
"0",
"2601",
"-676",
"-2809",
"0",
"3025",
"0",
"3249",
"4205",
"-3481",
"900",
"-3721",
"4805",
"0"
] | [
"sign",
"mult"
] | 21 | 1 | 2 | [
"A092673",
"A334657",
"A359484",
"A359485",
"A359531",
"A360390"
] | null | Seiichi Manyama, Apr 01 2023 | 2023-05-10T04:31:04 | oeisdata/seq/A359/A359485.seq | e0cfe6e11a5677bd2cb79a7f08da895a |
A359486 | Indices of primes in A087712. | [
"3",
"4",
"5",
"10",
"11",
"15",
"17",
"20",
"31",
"34",
"41",
"45",
"46",
"59",
"60",
"67",
"69",
"75",
"80",
"82",
"83",
"85",
"90",
"93",
"102",
"109",
"119",
"127",
"136",
"153",
"155",
"157",
"170",
"179",
"191",
"205",
"206",
"207",
"211",
"221",
"230",
"236",
"241",
"246",
"249",
"253",
"254",
"272",
"276",
"277",
"283",
"295",
"309",
"314",
"322",
"327",
"328",
"331",
"332",
"334",
"345"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A027746",
"A049084",
"A087712",
"A098282",
"A112798",
"A359486"
] | null | Jean-Marc Rebert, Jan 02 2023 | 2023-01-28T11:52:18 | oeisdata/seq/A359/A359486.seq | d8b20cd634219ed71373f5940c23440c |
A359487 | a(n) is the smallest start of a run of 2 or more integers having a prime factor greater than n. | [
"2",
"5",
"10",
"10",
"13",
"13",
"22",
"22",
"22",
"22",
"37",
"37",
"37",
"37",
"37",
"37",
"37",
"37",
"46",
"46",
"46",
"46",
"58",
"58",
"58",
"58",
"58",
"58",
"61",
"61",
"73",
"73",
"73",
"73",
"73",
"73",
"82",
"82",
"82",
"82",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"106",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157",
"157"
] | [
"nonn"
] | 34 | 1 | 1 | [
"A006530",
"A327909",
"A359487",
"A359488"
] | null | Thomas Garrison, Jan 02 2023 | 2023-03-28T07:59:43 | oeisdata/seq/A359/A359487.seq | f2587fa6774ad38d4ecb5d717a5a4b29 |
A359488 | Run lengths of A359487. | [
"1",
"1",
"2",
"2",
"4",
"8",
"4",
"6",
"2",
"6",
"4",
"12",
"26",
"4",
"6",
"8",
"16",
"18",
"8",
"18",
"16",
"6",
"12",
"8",
"12",
"18",
"4",
"6",
"12",
"20",
"10",
"12",
"14",
"24",
"6",
"22",
"8",
"12",
"40",
"12",
"8",
"4",
"48",
"8",
"10",
"38",
"30",
"16",
"8",
"6",
"12",
"22",
"12",
"6",
"2",
"22",
"8",
"28",
"8",
"16",
"18",
"48",
"2",
"18",
"48",
"34",
"26",
"16",
"14",
"30",
"12",
"4",
"6"
] | [
"nonn"
] | 10 | 1 | 3 | [
"A359487",
"A359488"
] | null | Thomas Garrison, Jan 02 2023 | 2023-02-12T10:39:36 | oeisdata/seq/A359/A359488.seq | dcaf70030fc418174c0bdf0dae264e40 |
A359489 | Expansion of 1/sqrt(1 - 4*x/(1-x)^3). | [
"1",
"2",
"12",
"68",
"396",
"2358",
"14262",
"87252",
"538440",
"3345434",
"20899816",
"131154264",
"826135794",
"5220372274",
"33077821314",
"210087769632",
"1337104370320",
"8525602760550",
"54449281992528",
"348250972411252",
"2230296171922008",
"14300414859019290",
"91791793780179790"
] | [
"nonn"
] | 28 | 0 | 2 | [
"A085362",
"A110170",
"A162478",
"A359489",
"A359758",
"A360132"
] | null | Seiichi Manyama, Mar 24 2023 | 2023-08-09T13:13:24 | oeisdata/seq/A359/A359489.seq | 9553e86561ee1a80e44e8fad67b85ee6 |
A359490 | Primes p followed by two or more 2-pseudoprimes (A001567) before the next prime. | [
"4363",
"13729",
"31607",
"6973007",
"208969199"
] | [
"nonn",
"more"
] | 11 | 1 | 1 | [
"A001567",
"A335326",
"A359490"
] | null | Charles R Greathouse IV, Mar 07 2023 | 2023-03-13T06:00:58 | oeisdata/seq/A359/A359490.seq | cdc29dec4b7a3ab50f89cbdb4bed754b |
A359491 | Numbers k with the property that the set of decimal digits of k matches the set of first digits of the prime factors of k. | [
"2",
"3",
"5",
"7",
"333",
"23532",
"33165",
"77322",
"175175",
"232152",
"321372",
"373212",
"515375",
"712236",
"2249232",
"2321232",
"2971332",
"3372138",
"3611322",
"4313331",
"5773131",
"12322332",
"23147124",
"42323112",
"72325232",
"113338575",
"123221232",
"132232224",
"172232112",
"212322912",
"221437272",
"273233331"
] | [
"nonn",
"base"
] | 26 | 1 | 1 | [
"A115024",
"A359491"
] | null | John R Phelan, Jan 02 2023 | 2023-01-28T15:46:49 | oeisdata/seq/A359/A359491.seq | f0c0ba7bc1eea417f6c692f4b35e58ba |
A359492 | a(n) is the least number of the form p^2 + q^2 - 2 for primes p and q that is an odd prime times 2^n, or -1 if there is no such number. | [
"11",
"6",
"-1",
"56",
"48",
"96",
"192",
"384",
"2816",
"1536",
"109568",
"10582016",
"12288",
"7429922816",
"64176128",
"4318724096",
"196608",
"60486975488",
"9388028592128",
"849566088298496",
"214058289594368",
"896029329195008"
] | [
"sign",
"more"
] | 17 | 0 | 1 | [
"A045636",
"A359439",
"A359492"
] | null | Robert Israel, Jan 02 2023 | 2023-01-06T10:43:50 | oeisdata/seq/A359/A359492.seq | abf73941316dc28b3f10fe371f1769e0 |
A359493 | Numbers k such that the bottom entry in the ratio d(i)/d(i+1) triangle of the elements in the divisors of n, where d(1) < d(2) < ... < d(q) denote the divisors of k, is equal to 1. | [
"1",
"4",
"8",
"9",
"16",
"25",
"27",
"32",
"36",
"49",
"64",
"81",
"100",
"121",
"125",
"128",
"144",
"169",
"196",
"225",
"243",
"256",
"289",
"324",
"343",
"361",
"400",
"441",
"484",
"512",
"529",
"576",
"625",
"676",
"729",
"784",
"841",
"900",
"961",
"1024",
"1089",
"1156",
"1225",
"1296",
"1331",
"1369",
"1444",
"1521",
"1600",
"1681",
"1764",
"1849",
"1936"
] | [
"nonn"
] | 24 | 1 | 2 | [
"A001597",
"A359247",
"A359493"
] | null | Michel Lagneau, Jan 03 2023 | 2023-02-12T10:38:22 | oeisdata/seq/A359/A359493.seq | 665a63ad195b52fe6d0e0ef308d9647c |
A359494 | Zeroless numbers k which can be written as a product of the powers whose base is a digit of k and whose exponent is a nonnegative integer. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"25",
"32",
"36",
"64",
"125",
"128",
"135",
"175",
"216",
"243",
"256",
"324",
"375",
"384",
"432",
"512",
"625",
"672",
"729",
"735",
"784",
"864",
"875",
"1296",
"1372",
"1715",
"1764",
"1792",
"2592",
"2744",
"2916",
"3125",
"3375",
"3456",
"3645",
"3675",
"4375",
"5832",
"6144",
"6272",
"6912",
"7776",
"8192",
"8575",
"9216"
] | [
"nonn",
"base"
] | 44 | 1 | 2 | [
"A002473",
"A238985",
"A359494"
] | null | Felix Huber, Jan 03 2023 | 2024-04-28T11:11:03 | oeisdata/seq/A359/A359494.seq | 6be758d1942b88e3dd3c62429eab4b14 |
A359495 | Sum of positions of 1's in binary expansion minus sum of positions of 1's in reversed binary expansion, where positions in a sequence are read starting with 1 from the left. | [
"0",
"0",
"-1",
"0",
"-2",
"0",
"-2",
"0",
"-3",
"0",
"-2",
"1",
"-4",
"-1",
"-3",
"0",
"-4",
"0",
"-2",
"2",
"-4",
"0",
"-2",
"2",
"-6",
"-2",
"-4",
"0",
"-6",
"-2",
"-4",
"0",
"-5",
"0",
"-2",
"3",
"-4",
"1",
"-1",
"4",
"-6",
"-1",
"-3",
"2",
"-5",
"0",
"-2",
"3",
"-8",
"-3",
"-5",
"0",
"-7",
"-2",
"-4",
"1",
"-9",
"-4",
"-6",
"-1",
"-8",
"-3",
"-5",
"0",
"-6",
"0",
"-2",
"4",
"-4",
"2",
"0",
"6"
] | [
"sign",
"look",
"base"
] | 21 | 0 | 5 | [
"A000120",
"A029931",
"A030190",
"A030308",
"A048793",
"A053632",
"A070939",
"A222955",
"A230877",
"A231204",
"A291166",
"A326669",
"A326672",
"A326673",
"A359042",
"A359043",
"A359401",
"A359402",
"A359495"
] | null | Gus Wiseman, Jan 05 2023 | 2023-01-09T12:41:35 | oeisdata/seq/A359/A359495.seq | c37d6e2e27d826a79a17d8e7bd71721a |
A359496 | Nonnegative integers whose sum of positions of 1's in their binary expansion is less than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left. | [
"2",
"4",
"6",
"8",
"10",
"12",
"13",
"14",
"16",
"18",
"20",
"22",
"24",
"25",
"26",
"28",
"29",
"30",
"32",
"34",
"36",
"38",
"40",
"41",
"42",
"44",
"46",
"48",
"49",
"50",
"52",
"53",
"54",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"64",
"66",
"68",
"72",
"74",
"76",
"80",
"81",
"82",
"84",
"86",
"88",
"89",
"90",
"92",
"94",
"96",
"97",
"98",
"100",
"101",
"102",
"104",
"105",
"106"
] | [
"nonn",
"base"
] | 12 | 1 | 1 | [
"A000120",
"A029931",
"A030190",
"A030308",
"A048793",
"A051293",
"A053632",
"A070939",
"A222955",
"A230877",
"A231204",
"A291166",
"A304818",
"A326669",
"A326672",
"A326673",
"A358194",
"A359043",
"A359401",
"A359402",
"A359495",
"A359496"
] | null | Gus Wiseman, Jan 18 2023 | 2023-03-07T19:04:19 | oeisdata/seq/A359/A359496.seq | e0bac97539c2382184a75b42c77102d5 |
A359497 | Greatest positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n. | [
"1",
"2",
"3",
"5",
"7",
"11",
"13",
"17",
"19",
"25",
"29",
"35",
"49",
"55",
"77",
"121",
"91",
"143",
"169",
"187",
"221",
"289",
"247",
"323",
"361",
"391",
"437",
"539",
"605",
"847",
"1331",
"715",
"1001",
"1573",
"1183",
"1859",
"2197",
"1547",
"2431",
"2873",
"3179",
"3757",
"4913",
"3553",
"4199",
"5491",
"4693",
"6137",
"6859",
"9317",
"14641"
] | [
"nonn"
] | 13 | 0 | 2 | [
"A001222",
"A001248",
"A029931",
"A055932",
"A056239",
"A089633",
"A112798",
"A243055",
"A304818",
"A318283",
"A320387",
"A358136",
"A358137",
"A358194",
"A359043",
"A359361",
"A359497",
"A359676",
"A359678",
"A359679",
"A359681",
"A359682",
"A359683",
"A359755"
] | null | Gus Wiseman, Jan 15 2023 | 2023-01-21T22:26:51 | oeisdata/seq/A359/A359497.seq | 5c00dbd6180f3b5dd87dbd5d4439e96c |
A359498 | a(n) = ((2*n+1)^8 - 1)/32. | [
"0",
"205",
"12207",
"180150",
"1345210",
"6698715",
"25491585",
"80090332",
"217992420",
"530736345",
"1181964355",
"2447218290",
"4768371582",
"8825923015",
"15632700405",
"26652844920",
"43950269320",
"70371105957",
"109764982935",
"167250289390",
"249528913410",
"365256258675",
"525472668457",
"744102708180"
] | [
"nonn",
"easy"
] | 18 | 0 | 2 | [
"A000217",
"A219086",
"A359498",
"A359499"
] | null | Jianing Song, Jan 03 2023 | 2025-01-23T12:37:47 | oeisdata/seq/A359/A359498.seq | f0749bc313615009d5976004da0a2fcd |
A359499 | a(n) = ((2*n+1)^16 - 1)/64. | [
"0",
"672605",
"2384185791",
"519264540150",
"28953440450810",
"717964529118315",
"10397134518487185",
"102631380558013916",
"760331123057294820",
"4506897086994080745",
"22352635785031020755",
"95822037745015603890",
"363797880709171295166",
"1246350673076132966615",
"3910101151255427324805"
] | [
"nonn",
"easy"
] | 22 | 0 | 2 | [
"A000217",
"A219086",
"A359498",
"A359499"
] | null | Jianing Song, Jan 03 2023 | 2024-10-04T10:04:20 | oeisdata/seq/A359/A359499.seq | 74165b8beb2944e2c87efd3e1892eedf |
A359500 | a(n) = (7^2^n - 1)/2^(n+3). | [
"3",
"75",
"90075",
"259632270075",
"4314170602515315024630075",
"2382344702413741601833152075318304337413311121350075",
"1452944967966417671787414728262962471027692106596483349510252251060925112718067382475349181570930962790075"
] | [
"nonn",
"easy"
] | 18 | 1 | 1 | [
"A068531",
"A097421",
"A261066",
"A359500"
] | null | Jianing Song, Jan 03 2023 | 2025-02-10T20:49:10 | oeisdata/seq/A359/A359500.seq | 943960c7684bb9b1e15453f44812da92 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.