sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A359301 | Least k such that {1, ..., k} contains an n-element set of positive integers satisfying the Lucier-Sárközy difference set condition. | [
"1",
"4",
"9",
"12",
"33",
"36",
"49",
"52",
"65",
"68",
"105",
"108",
"133",
"136",
"153",
"156",
"209",
"212",
"217",
"220",
"243",
"246",
"299",
"302",
"489",
"492"
] | [
"nonn",
"more",
"nice"
] | 21 | 1 | 2 | [
"A174911",
"A359301"
] | null | Charles R Greathouse IV, Dec 24 2022 | 2023-02-19T18:45:27 | oeisdata/seq/A359/A359301.seq | bfc4e6c92a49261a12a5fa74beaf1cb7 |
A359302 | Dirichlet g.f.: zeta(s)^2/zeta(3*s-2). | [
"1",
"2",
"2",
"3",
"2",
"4",
"2",
"0",
"3",
"4",
"2",
"6",
"2",
"4",
"4",
"-3",
"2",
"6",
"2",
"6",
"4",
"4",
"2",
"0",
"3",
"4",
"-5",
"6",
"2",
"8",
"2",
"-6",
"4",
"4",
"4",
"9",
"2",
"4",
"4",
"0",
"2",
"8",
"2",
"6",
"6",
"4",
"2",
"-6",
"3",
"6",
"4",
"6",
"2",
"-10",
"4",
"0",
"4",
"4",
"2",
"12",
"2",
"4",
"6",
"-9",
"4",
"8",
"2",
"6",
"4",
"8",
"2",
"0",
"2",
"4",
"6",
"6",
"4",
"8",
"2",
"-6",
"-13",
"4",
"2",
"12"
] | [
"sign",
"easy",
"mult"
] | 8 | 1 | 2 | [
"A344326",
"A359302"
] | null | Vaclav Kotesovec, Dec 25 2022 | 2023-09-15T05:52:45 | oeisdata/seq/A359/A359302.seq | 22375c2d2e33518f94e5cb5323aaa605 |
A359303 | Bitwise encoding of the state of a 1D cellular automaton after n steps from ...111000... where adjacent cells swap 01 <-> 10 when within triples 110 or 011. | [
"1",
"3",
"5",
"11",
"13",
"39",
"43",
"45",
"103",
"155",
"171",
"173",
"359",
"411",
"619",
"669",
"1367",
"1371",
"1387",
"1437",
"3287",
"4923",
"5339",
"5467",
"5483",
"5533",
"11479",
"13115",
"19675",
"21339",
"21739",
"21853",
"43735",
"43835",
"44251",
"45915",
"52459",
"78685",
"170455",
"173755",
"174555",
"174811",
"174939",
"175339",
"176989",
"367063",
"419515",
"629211"
] | [
"nonn",
"easy"
] | 96 | 1 | 2 | [
"A030101",
"A035327",
"A053644",
"A359303",
"A360141",
"A360142"
] | null | Raphael J. F. Berger, Dec 25 2022 | 2024-04-01T12:09:17 | oeisdata/seq/A359/A359303.seq | 2453353c72d8ec686cea2f3ce73c2908 |
A359304 | Oblong numbers which are products of five distinct primes. | [
"4290",
"4830",
"6006",
"11130",
"12210",
"13110",
"16770",
"23870",
"27390",
"33306",
"34410",
"34782",
"37830",
"44310",
"49062",
"56406",
"60762",
"64770",
"66822",
"70490",
"71022",
"74802",
"82082",
"84390",
"95790",
"101442",
"103362",
"104006",
"109230",
"119370",
"125670",
"127806",
"133590",
"137270",
"148610",
"151710",
"158802"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A002378",
"A046387",
"A359304"
] | null | Massimo Kofler, Dec 25 2022 | 2023-01-14T17:35:31 | oeisdata/seq/A359/A359304.seq | 432c85845a1228f7f1ff7482d3483228 |
A359305 | Number of divisors of 6*n-1 of form 6*k+1. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"3",
"1",
"2",
"1",
"1",
"4",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"3"
] | [
"nonn",
"easy"
] | 21 | 1 | 6 | [
"A000005",
"A001620",
"A016969",
"A078703",
"A279060",
"A319995",
"A359211",
"A359233",
"A359305",
"A359306",
"A359307",
"A359308",
"A359309",
"A359324",
"A359325",
"A359326",
"A359327"
] | null | Seiichi Manyama, Dec 25 2022 | 2022-12-27T07:08:28 | oeisdata/seq/A359/A359305.seq | 09df164a0a086518b732c4ac78697913 |
A359306 | Number of divisors of 6*n-2 of form 6*k+1. | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"1",
"4",
"1"
] | [
"nonn",
"easy"
] | 16 | 1 | 5 | [
"A279060",
"A359305",
"A359306",
"A359307",
"A359308",
"A359309"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-16T02:26:51 | oeisdata/seq/A359/A359306.seq | 9e2f947065c6cd9c43363ff8874509f9 |
A359307 | Number of divisors of 6*n-3 of form 6*k+1. | [
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"1",
"3",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"4",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"1",
"4",
"1",
"1"
] | [
"nonn",
"easy"
] | 14 | 1 | 4 | [
"A279060",
"A359305",
"A359306",
"A359307",
"A359308",
"A359309"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-16T02:26:54 | oeisdata/seq/A359/A359307.seq | 9749fcc62059a5e5a4c678201f455077 |
A359308 | Number of divisors of 6*n-4 of form 6*k+1. | [
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"3",
"2",
"4",
"1",
"2",
"1",
"2",
"2",
"2",
"3",
"2",
"1",
"2",
"2",
"2",
"1",
"4",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"2"
] | [
"nonn",
"easy"
] | 15 | 1 | 3 | [
"A279060",
"A359305",
"A359306",
"A359307",
"A359308",
"A359309"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-16T02:26:57 | oeisdata/seq/A359/A359308.seq | ed225d5769560a55f48df4f4116ca19d |
A359309 | Number of divisors of 6*n-5 of form 6*k+1. | [
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"3",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"4",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"3",
"2",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"2"
] | [
"nonn",
"easy"
] | 15 | 1 | 2 | [
"A279060",
"A359305",
"A359306",
"A359307",
"A359308",
"A359309"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-16T02:27:01 | oeisdata/seq/A359/A359309.seq | 87f22c36748e7f20b0db13162c1ae1dd |
A359310 | Cyclic cubic conductors associated with closed Andozhskii groups. | [
"59031",
"209853",
"247437",
"263017",
"271737",
"329841",
"377923",
"407851",
"412909",
"415597",
"416241",
"416727",
"462573",
"474561",
"487921",
"493839",
"547353",
"586963",
"612747",
"613711",
"615663",
"622063",
"648427",
"651829",
"689347",
"690631",
"753787",
"796779",
"811069",
"818217",
"869611",
"914263",
"915439",
"922167",
"936747",
"977409",
"997087"
] | [
"nonn"
] | 45 | 1 | 1 | null | null | Daniel Constantin Mayer, Dec 25 2022 | 2023-09-24T12:16:31 | oeisdata/seq/A359/A359310.seq | 0fbaeaff0fcd9e0bdd8a356c274b4d88 |
A359311 | Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps which reach at least 6 at some point. | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"12",
"89",
"528",
"2755",
"13244",
"60214",
"263121",
"1116791",
"4637476",
"18936940",
"76327705",
"304520286",
"1205152900",
"4738962369",
"18540020091",
"72240167011",
"280579954028",
"1087033982059",
"4203231136230",
"16228518078010",
"62588797371361",
"241198478726775"
] | [
"nonn",
"easy"
] | 124 | 0 | 8 | [
"A000108",
"A080936",
"A080937",
"A289419",
"A359311"
] | null | Greg Dresden, Jan 21 2023 | 2023-01-25T09:09:26 | oeisdata/seq/A359/A359311.seq | 6f961ae15c3ea76b9e4d5ea2159135f7 |
A359312 | a(1) = 1; for n >= 1, a(2*n) = A000005(a(n)), a(2*n + 1) = A000005(a(n)) + 1. | [
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2"
] | [
"nonn"
] | 20 | 1 | 3 | [
"A000005",
"A131051",
"A359312"
] | null | Ctibor O. Zizka, Dec 25 2022 | 2022-12-31T15:16:24 | oeisdata/seq/A359/A359312.seq | 281902b5f72e716a60ddb4c07c76c590 |
A359313 | Triangular array read by rows. T(n,k) is the number of Green's H-classes contained in the D-class of rank k matrices in the semigroup Mat_n(F_2) of n X n matrices over the field F_2. n>=0, 0<=k<=n. | [
"1",
"1",
"1",
"1",
"9",
"1",
"1",
"49",
"49",
"1",
"1",
"225",
"1225",
"225",
"1",
"1",
"961",
"24025",
"24025",
"961",
"1",
"1",
"3969",
"423801",
"1946025",
"423801",
"3969",
"1",
"1",
"16129",
"7112889",
"139499721",
"139499721",
"7112889",
"16129",
"1",
"1",
"65025",
"116532025",
"9439094025",
"40315419369",
"9439094025",
"116532025",
"65025",
"1"
] | [
"nonn",
"tabl"
] | 15 | 0 | 5 | [
"A002416",
"A002884",
"A005329",
"A022166",
"A243950",
"A296548",
"A359313"
] | null | Geoffrey Critzer, Dec 25 2022 | 2022-12-28T04:59:48 | oeisdata/seq/A359/A359313.seq | 9cd9860cba0c64f74433eb63029aee18 |
A359314 | Three-column table T(n,k) read by rows where the elements in the pair of two adjacent rows, starting with the odd-indexed row T(2j-1,k) and followed by the even-indexed one T(2j,k), are such that they are not multiples of the elements presented in the previous rows and that Sum_{k=1..3} T(2j-1,k)^2 = Sum_{k=1..3} T(2j,k)^2 and Sum_{k=1..3} T(2j-1,k)^6 = Sum_{k=1..3} T(2j,k)^6 for j > 0 and k = 1, 2, 3. | [
"3",
"19",
"22",
"10",
"15",
"23",
"15",
"52",
"65",
"36",
"37",
"67",
"23",
"54",
"73",
"33",
"47",
"74",
"3",
"55",
"80",
"32",
"43",
"81",
"11",
"65",
"78",
"37",
"50",
"81"
] | [
"nonn",
"tabf",
"more"
] | 45 | 1 | 1 | null | null | Alexander R. Povolotsky, Dec 25 2022 | 2023-12-10T09:12:25 | oeisdata/seq/A359/A359314.seq | 210ea127c45c348c409dcd9260f83ece |
A359315 | a(n) is the smallest centered triangular number with binary weight n. | [
"1",
"10",
"19",
"46",
"31",
"235",
"631",
"1786",
"1999",
"7669",
"7039",
"12286",
"16381",
"180094",
"114679",
"949231",
"2086831",
"2883574",
"4175839",
"12480511",
"50329585",
"62898151",
"132638719",
"234618814",
"771743710",
"2883510271",
"4269733885",
"8254119871",
"17045499901",
"33214168831"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A000120",
"A005448",
"A089999",
"A358932",
"A359315",
"A359316"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359315.seq | e8bc5d58533ec3aafb082071294cec4e |
A359316 | a(n) is the smallest centered square number with binary weight n. | [
"1",
"5",
"13",
"85",
"61",
"221",
"761",
"1013",
"2813",
"12013",
"23545",
"54781",
"16381",
"196565",
"425965",
"770041",
"3137513",
"7663613",
"13629421",
"20962813",
"63946741",
"121602013",
"192805885",
"499122013",
"989724541",
"2411720701",
"6435110905",
"17162301181",
"29929502461",
"63753420281"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A000120",
"A001844",
"A089998",
"A358932",
"A359315",
"A359316"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359316.seq | e23ebd9dfba61087ac10d777d63837d2 |
A359317 | a(n) is the smallest tetrahedral number with binary weight n. | [
"0",
"1",
"10",
"35",
"120",
"220",
"455",
"2024",
"1771",
"4060",
"14190",
"16215",
"129766",
"32509",
"1414910",
"1823471",
"5159805",
"8171255",
"4192244",
"24117100",
"30865405",
"334985911",
"192937325",
"1610599145",
"1048440315",
"4261347265",
"4244012991",
"63828916911",
"213588635511",
"133110357279"
] | [
"nonn",
"base"
] | 9 | 0 | 3 | [
"A000120",
"A000292",
"A089999",
"A358931",
"A359317",
"A359318"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359317.seq | d22ad15619e46ce0db1732983b36d9bd |
A359318 | a(n) is the smallest square pyramidal number with binary weight n. | [
"0",
"1",
"5",
"14",
"30",
"55",
"819",
"506",
"1785",
"1015",
"16206",
"51039",
"98021",
"81375",
"1113775",
"964535",
"2607099",
"5494655",
"1048061",
"6029275",
"50331190",
"356343295",
"534555645",
"516941815",
"4021378559",
"2143222510",
"12842950505",
"34091142526",
"68651299705",
"124545644405",
"273736383990"
] | [
"nonn",
"base"
] | 10 | 0 | 3 | [
"A000120",
"A000330",
"A089998",
"A358931",
"A359317",
"A359318"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359318.seq | 500e7ac44cc2f0f1c59573f91e75c9a4 |
A359319 | Maximal coefficient of (1 + x) * (1 + x^8) * (1 + x^27) * ... * (1 + x^(n^3)). | [
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"3",
"4",
"5",
"7",
"10",
"14",
"18",
"27",
"36",
"62",
"95",
"140",
"241",
"370",
"607",
"1014",
"1646",
"2751",
"4863",
"8260",
"13909",
"24870",
"41671",
"73936",
"131257",
"228204",
"411128",
"737620",
"1292651",
"2324494",
"4253857",
"7487549",
"13710736",
"25291179",
"44938191",
"82814603"
] | [
"nonn"
] | 31 | 0 | 7 | [
"A000537",
"A000578",
"A001405",
"A025591",
"A160235",
"A279329",
"A359319",
"A359320"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2022-12-31T12:46:16 | oeisdata/seq/A359/A359319.seq | 6b3bc3fd1a9917d01522aebe30809b79 |
A359320 | Maximal coefficient of (1 + x) * (1 + x^16) * (1 + x^81) * ... * (1 + x^(n^4)). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"5",
"5",
"6",
"9",
"13",
"17",
"24",
"34",
"53",
"84",
"130",
"177",
"290",
"500",
"797",
"1300",
"2066",
"3591",
"6090",
"10298",
"17330",
"29888",
"50811",
"88358",
"153369",
"280208",
"481289",
"845090",
"1474535",
"2703811",
"4808816",
"8329214",
"14806743",
"27529781",
"48859783",
"87674040",
"156471632"
] | [
"nonn"
] | 20 | 0 | 10 | [
"A000538",
"A000583",
"A025591",
"A160235",
"A298859",
"A359319",
"A359320"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2024-01-31T14:12:16 | oeisdata/seq/A359/A359320.seq | 9ac204d92fde25130d3f1ec481ec9bca |
A359321 | a(n) is the smallest n-gonal pyramidal number which can be represented as the sum of n distinct nonzero n-gonal pyramidal numbers in exactly n ways, or -1 if none exists. | [
"2300",
"6201",
"8125",
"6391"
] | [
"nonn",
"more"
] | 5 | 3 | 1 | [
"A080851",
"A350210",
"A350397",
"A350423",
"A359321"
] | null | Ilya Gutkovskiy, Dec 25 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359321.seq | 9326bc64993bc5ce6feab56a90a9c4c3 |
A359322 | a(n) is the first prime p such that the average of the squares of n consecutive primes starting with p is prime. | [
"3",
"7",
"7",
"1627",
"83",
"7",
"23",
"7",
"19",
"17",
"73",
"281",
"179",
"257",
"5",
"43",
"73",
"43",
"19",
"67",
"911",
"193",
"7",
"1613",
"139",
"383",
"7",
"719",
"113",
"967",
"31",
"19",
"211",
"769",
"149",
"173",
"13",
"13",
"59",
"137",
"23",
"47",
"89",
"607",
"61",
"127",
"61",
"317",
"1049",
"1277",
"547",
"281",
"317",
"4157",
"199",
"107",
"373",
"149",
"229",
"367",
"1489",
"643",
"563",
"587",
"263"
] | [
"nonn"
] | 13 | 2 | 1 | null | null | Robert Israel, Dec 25 2022 | 2023-01-06T10:42:19 | oeisdata/seq/A359/A359322.seq | 4efc5ed92b726a008b96094a4408bab4 |
A359323 | a(n) is the first prime p such that the average of the n-th powers of n consecutive primes starting with p is prime. | [
"2",
"3",
"1531",
"19",
"631",
"37",
"41",
"13",
"670231",
"614333",
"11699",
"11",
"2447",
"3049",
"223",
"13",
"8353",
"2531",
"2203",
"241",
"3209",
"5023",
"52631",
"461",
"26723",
"3307"
] | [
"nonn",
"more"
] | 22 | 1 | 1 | [
"A359322",
"A359323"
] | null | Robert Israel, Dec 25 2022 | 2025-03-24T05:56:16 | oeisdata/seq/A359/A359323.seq | 82d84a45fea057d58861da876cd12f21 |
A359324 | Number of divisors of 6*n-2 of form 6*k+5. | [
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"1",
"2",
"0",
"1",
"0",
"1",
"2",
"1",
"1",
"2",
"0",
"2",
"0",
"1",
"0",
"1",
"2",
"2",
"0",
"1",
"0",
"2",
"0",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"1",
"2",
"0",
"2",
"1",
"2",
"0",
"2",
"0",
"1",
"2",
"1",
"1",
"1",
"1",
"3",
"0",
"1",
"0",
"1",
"2",
"1",
"0",
"1"
] | [
"nonn",
"easy"
] | 18 | 1 | 12 | [
"A319995",
"A359239",
"A359269",
"A359290",
"A359305",
"A359324",
"A359325",
"A359326",
"A359327"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-14T01:59:23 | oeisdata/seq/A359/A359324.seq | 6e0d7bb5460018259f88a13af69a62a4 |
A359325 | Number of divisors of 6*n-3 of form 6*k+5. | [
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"2",
"0",
"1",
"0",
"0",
"2",
"0",
"1",
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"2",
"1",
"1",
"0",
"0",
"2",
"0",
"1",
"1",
"0",
"2",
"1",
"0",
"0",
"1",
"2",
"0",
"2",
"1",
"1",
"2",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"2",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"0",
"1",
"2",
"1",
"1"
] | [
"nonn",
"easy"
] | 16 | 1 | 18 | [
"A319995",
"A359305",
"A359324",
"A359325",
"A359326",
"A359327"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-16T02:27:04 | oeisdata/seq/A359/A359325.seq | f6194838219e42cd8d44a3365398b828 |
A359326 | Number of divisors of 6*n-4 of form 6*k+5. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"2",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"1",
"1",
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"2",
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"1",
"2",
"2",
"0",
"0",
"0",
"1",
"2",
"0",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"2",
"2",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"1",
"2",
"0"
] | [
"nonn",
"easy"
] | 18 | 1 | 19 | [
"A319995",
"A359305",
"A359324",
"A359325",
"A359326",
"A359327"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-14T01:59:19 | oeisdata/seq/A359/A359326.seq | b487c66b729698c6541bac49b2811756 |
A359327 | Number of divisors of 6*n-5 of form 6*k+5. | [
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"2",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"2",
"0",
"0",
"0",
"1",
"2",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"4",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"2",
"0",
"2",
"0",
"1",
"2"
] | [
"nonn",
"easy"
] | 18 | 1 | 10 | [
"A319995",
"A359239",
"A359240",
"A359241",
"A359305",
"A359324",
"A359325",
"A359326",
"A359327"
] | null | Seiichi Manyama, Dec 25 2022 | 2023-08-14T01:59:32 | oeisdata/seq/A359/A359327.seq | 3f758d1ada64b1335a0c00e6adb395e4 |
A359328 | Maximal coefficient of x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)). | [
"1",
"1",
"1",
"2",
"4",
"12",
"46",
"251",
"1576",
"11578",
"94933",
"875134",
"8900088",
"99276703",
"1214131109",
"16107824706",
"229757728186",
"3499486564517",
"56862172844198",
"980725126968577",
"17899265342632635",
"345197504845310134",
"7005723403640260805",
"149261757412790940113",
"3329108788695272565243"
] | [
"nonn"
] | 35 | 0 | 4 | [
"A000040",
"A326178",
"A350457",
"A359328",
"A359337",
"A359338",
"A359339"
] | null | Stefano Spezia, Dec 26 2022 | 2024-02-01T16:24:09 | oeisdata/seq/A359/A359328.seq | 6a722b43576cce1059e61625a92eccb9 |
A359329 | Number of diagonals in a regular polygon with n sides not passing through the center. | [
"0",
"0",
"5",
"6",
"14",
"16",
"27",
"30",
"44",
"48",
"65",
"70",
"90",
"96",
"119",
"126",
"152",
"160",
"189",
"198",
"230",
"240",
"275",
"286",
"324",
"336",
"377",
"390",
"434",
"448",
"495",
"510",
"560",
"576",
"629",
"646",
"702",
"720",
"779",
"798",
"860",
"880",
"945",
"966",
"1034",
"1056",
"1127",
"1150",
"1224",
"1248",
"1325",
"1350",
"1430",
"1456",
"1539",
"1566",
"1652",
"1680"
] | [
"nonn",
"easy"
] | 30 | 3 | 3 | [
"A000096",
"A014106",
"A054000",
"A142150",
"A359329"
] | null | Luk De Clercq, Dec 26 2022 | 2024-10-02T07:40:09 | oeisdata/seq/A359/A359329.seq | a13739fa4a59310af9a634d93f63e739 |
A359330 | Composite k for which phi(k) + phi(k') = k, where k' is the arithmetic derivative of k (A003415). | [
"4",
"6",
"8",
"10",
"12",
"18",
"22",
"28",
"34",
"58",
"60",
"72",
"82",
"84",
"88",
"108",
"112",
"118",
"124",
"132",
"140",
"142",
"202",
"204",
"214",
"216",
"220",
"228",
"260",
"274",
"298",
"324",
"340",
"358",
"372",
"382",
"394",
"444",
"454",
"478",
"492",
"508",
"538",
"562",
"564",
"572",
"580",
"620",
"622",
"644",
"694",
"708",
"740",
"804",
"812",
"820"
] | [
"nonn"
] | 18 | 1 | 1 | [
"A000010",
"A001359",
"A002808",
"A003415",
"A023221",
"A051953",
"A066938",
"A190402",
"A359330"
] | null | Marius A. Burtea, Jan 28 2023 | 2023-02-17T22:05:35 | oeisdata/seq/A359/A359330.seq | e07eb72a8842f89a0bac6bc9c59d162a |
A359331 | Nonprime numbers k for which k*k' is a palindrome, where k' is the arithmetic derivative of k (A003415). | [
"1",
"34",
"44",
"49",
"121",
"476",
"524",
"533",
"1808",
"6797",
"7326",
"10016",
"10201",
"10403",
"10817",
"16019",
"17831",
"26322",
"33898",
"55198",
"57247",
"74711",
"87241",
"131395",
"148753",
"156029",
"239593",
"240021",
"289831",
"295022",
"423758",
"441691",
"595777",
"725754",
"900009",
"2568543",
"2910271",
"2981619"
] | [
"nonn",
"base"
] | 18 | 1 | 2 | [
"A002113",
"A003415",
"A018252",
"A190116",
"A359331"
] | null | Marius A. Burtea, Jan 29 2023 | 2023-02-17T22:07:43 | oeisdata/seq/A359/A359331.seq | 9f4768d21938685723bcdd3a782d03a8 |
A359332 | Numbers with arithmetic derivative which is a palindromic prime number (A002385). | [
"6",
"10",
"114",
"130",
"174",
"182",
"222",
"231",
"255",
"273",
"286",
"298",
"357",
"358",
"455",
"574",
"622",
"870",
"1015",
"1309",
"1335",
"1677",
"1695",
"12594",
"13630",
"13686",
"15258",
"18534",
"18654",
"19082",
"19114",
"19522",
"19626",
"19922",
"19986",
"20998",
"21558",
"22178",
"22882",
"22930",
"23062",
"23262",
"23709",
"24338"
] | [
"nonn",
"base"
] | 22 | 1 | 1 | [
"A001097",
"A002113",
"A002385",
"A003415",
"A157037",
"A359332"
] | null | Marius A. Burtea, Jan 29 2023 | 2025-03-24T06:02:28 | oeisdata/seq/A359/A359332.seq | e3a36211257eaaaa12d7dbeb5b3859c0 |
A359333 | a(1) = 0, and for any n > 1, a(n) is chosen among 0 and 1 so as to minimize the length of the longest sequence of distinct integers in arithmetic progression in the interval 1..n and containing n where the sequence is constant; in case of a tie, maximize the least common difference in those longest arithmetic progressions. | [
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1"
] | [
"nonn"
] | 32 | 1 | null | [
"A038219",
"A359333"
] | null | Rémy Sigrist, Jan 23 2023 | 2023-01-26T16:13:57 | oeisdata/seq/A359/A359333.seq | dc19ce9dd653c76805ef64fbc71fb148 |
A359334 | Amicable numbers k that can be expressed as a sum k = x+y = A001065(x) + A001065(y) and a sum k = z+t = A001065(z) + A001065(t) where (x, y, z, t) are parts of two amicable pairs and A001065(i) is the sum of the aliquot parts of i. | [
"67212",
"1296000",
"20528640",
"37739520",
"75479040",
"321408000",
"348364800",
"556839360",
"579156480",
"638668800",
"661893120",
"761177088",
"796340160",
"883872000",
"1181174400",
"1282417920",
"2068416000",
"2395008000",
"2682408960",
"3155023872",
"3599769600",
"4049740800",
"4606156800",
"4716601344"
] | [
"nonn"
] | 83 | 1 | 1 | [
"A001065",
"A002025",
"A036471",
"A063990",
"A066539",
"A180164",
"A259180",
"A259933",
"A359334"
] | null | Zoltan Galantai, Dec 26 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A359/A359334.seq | 7ae0c4beda86c033b82f3f3dbe55ddc6 |
A359335 | Square root of determinant of skew-symmetric 2n X 2n matrix with entries i XOR j for i < j, i=1..2n, j=1..2n. | [
"1",
"3",
"14",
"84",
"360",
"2160",
"10080",
"60480",
"249984",
"1499904",
"6999552",
"41997312",
"179988480",
"1079930880",
"5039677440",
"30238064640",
"122903101440",
"737418608640",
"3441286840320",
"20647721041920",
"88490233036800",
"530941398220800",
"2477726525030400",
"14866359150182400"
] | [
"nonn"
] | 13 | 0 | 2 | [
"A006519",
"A359335"
] | null | Andrey Zabolotskiy, Dec 26 2022 | 2022-12-28T09:04:29 | oeisdata/seq/A359/A359335.seq | 3f06fef36966d95649410b6945d9d422 |
A359336 | Irregular triangle read by rows: the n-th row lists the values 0..2^n-1 representing all subsets of a set of n elements. When its elements are linearly ordered, the subsets are sorted first by their size and then lexicographically. | [
"0",
"0",
"1",
"0",
"2",
"1",
"3",
"0",
"4",
"2",
"1",
"6",
"5",
"3",
"7",
"0",
"8",
"4",
"2",
"1",
"12",
"10",
"9",
"6",
"5",
"3",
"14",
"13",
"11",
"7",
"15",
"0",
"16",
"8",
"4",
"2",
"1",
"24",
"20",
"18",
"17",
"12",
"10",
"9",
"6",
"5",
"3",
"28",
"26",
"25",
"22",
"21",
"19",
"14",
"13",
"11",
"7",
"30",
"29",
"27",
"23",
"15",
"31",
"0",
"32",
"16",
"8",
"4",
"2",
"1",
"48",
"40",
"36",
"34",
"33",
"24",
"20",
"18",
"17",
"12",
"10",
"9",
"6",
"5",
"3",
"56",
"52",
"50",
"49"
] | [
"nonn",
"tabf"
] | 35 | 0 | 5 | [
"A000004",
"A000012",
"A000225",
"A006516",
"A294648",
"A351939",
"A356028",
"A359336"
] | null | Valentin Bakoev, Dec 27 2022 | 2023-03-01T14:51:49 | oeisdata/seq/A359/A359336.seq | 7b5ccf0d59fd3ddcb08b2551179805f5 |
A359337 | Irregular triangle read by rows: the n-th row gives the exponents of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)). | [
"0",
"2",
"4",
"5",
"7",
"12",
"16",
"17",
"22",
"24",
"32",
"42",
"53",
"65",
"79",
"96",
"114",
"134",
"155",
"180",
"205",
"233",
"263",
"294",
"329",
"364",
"403",
"442",
"485",
"529",
"576",
"625",
"676",
"729",
"785",
"842",
"902",
"964",
"1029",
"1097",
"1167",
"1238",
"1313",
"1390",
"1469",
"1552",
"1636",
"1723",
"1813",
"1904",
"1999",
"2096",
"2195",
"2298"
] | [
"nonn",
"tabf"
] | 11 | 0 | 2 | [
"A000040",
"A359328",
"A359337",
"A359338",
"A359339"
] | null | Stefano Spezia, Dec 27 2022 | 2022-12-31T15:18:15 | oeisdata/seq/A359/A359337.seq | 9e1fbd4a6d0ba2cee8df04c3a00df48d |
A359338 | Minimal exponent of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)). | [
"0",
"2",
"4",
"7",
"12",
"16",
"22",
"32",
"42",
"53",
"65",
"79",
"96",
"114",
"134",
"155",
"180",
"205",
"233",
"263",
"294",
"329",
"364",
"403",
"442",
"485",
"529",
"576",
"625",
"676",
"729",
"785",
"842",
"902",
"964",
"1029",
"1097",
"1167",
"1238",
"1313",
"1390",
"1469",
"1552",
"1636",
"1723",
"1813",
"1904",
"1999",
"2096",
"2195",
"2298",
"2402",
"2510"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A000040",
"A359328",
"A359337",
"A359338",
"A359339"
] | null | Stefano Spezia, Dec 27 2022 | 2022-12-31T15:18:36 | oeisdata/seq/A359/A359338.seq | 671ea0c3d02ce41f4eb1958d481e6a68 |
A359339 | Maximal exponent of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)). | [
"0",
"2",
"5",
"7",
"12",
"17",
"24",
"32",
"42",
"53",
"65",
"79",
"96",
"114",
"134",
"155",
"180",
"205",
"233",
"263",
"294",
"329",
"364",
"403",
"442",
"485",
"529",
"576",
"625",
"676",
"729",
"785",
"842",
"902",
"964",
"1029",
"1097",
"1167",
"1238",
"1313",
"1390",
"1469",
"1552",
"1636",
"1723",
"1813",
"1904",
"1999",
"2096",
"2195",
"2298",
"2402",
"2510"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A000040",
"A359328",
"A359337",
"A359338",
"A359339"
] | null | Stefano Spezia, Dec 27 2022 | 2022-12-31T15:18:48 | oeisdata/seq/A359/A359339.seq | 288ea43ac0d3f7cf403d683d2b28c94d |
A359340 | The primes associated with A339174. | [
"2",
"3",
"7",
"43",
"3613",
"65250781",
"38318979202732621",
"8810065002836730577256726488782121",
"6131762382982476362788562753503495060507087787406616806191258317645081"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A061092",
"A071580",
"A339174",
"A359340"
] | null | Jeppe Stig Nielsen, Dec 27 2022 | 2023-01-02T09:01:05 | oeisdata/seq/A359/A359340.seq | 00b306e212b9a753758ba8535a08565b |
A359341 | Number of pandigital squares with n digits. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"87",
"504",
"4275",
"29433",
"179235",
"955818",
"4653802",
"21034628",
"89834238",
"366490378",
"1440743933",
"5493453262"
] | [
"nonn",
"base"
] | 10 | 1 | 10 | [
"A036745",
"A225218",
"A359341"
] | null | Martin Renner, Dec 27 2022 | 2022-12-31T02:12:22 | oeisdata/seq/A359/A359341.seq | e8de94746c9ac9d7cd41b7d845ec4067 |
A359342 | Least pandigital square with n digits. | [
"1026753849",
"10057482369",
"100549873216",
"1000574082369",
"10000938205476",
"100005740082369",
"1000000973875264",
"10000057400082369",
"100000030347218596",
"1000000574000082369",
"10000000365759287524",
"100000005740000082369",
"1000000003751486308921",
"10000000057400000082369"
] | [
"nonn",
"base"
] | 12 | 10 | 1 | [
"A225218",
"A359342",
"A359343",
"A359344"
] | null | Martin Renner, Dec 27 2022 | 2022-12-31T02:12:45 | oeisdata/seq/A359/A359342.seq | 74967ac054a33e08d59e2e052c7fc586 |
A359343 | Square roots of least pandigital squares with n digits. | [
"32043",
"100287",
"317096",
"1000287",
"3162426",
"10000287",
"31622792",
"100000287",
"316227814",
"1000000287",
"3162277718",
"10000000287",
"31622776661",
"100000000287",
"316227766026",
"1000000000287",
"3162277660177",
"10000000000287",
"31622776601685",
"100000000000287",
"316227766016843"
] | [
"nonn",
"base"
] | 15 | 10 | 1 | [
"A359342",
"A359343",
"A359345"
] | null | Martin Renner, Dec 27 2022 | 2023-01-05T18:59:39 | oeisdata/seq/A359/A359343.seq | 7cb3138d2c25b5e4bf403c49df7aa6ba |
A359344 | Largest pandigital square with n digits. | [
"9814072356",
"99853472016",
"998732401956",
"9998490637521",
"99992580137641",
"999984024130576",
"9999925800137641",
"99999987340240516",
"999999258000137641",
"9999999562540763281",
"99999992580000137641",
"999999991102375684521",
"9999999925800000137641",
"99999999986188478340025"
] | [
"nonn",
"base"
] | 8 | 10 | 1 | [
"A225218",
"A359342",
"A359344",
"A359345"
] | null | Martin Renner, Dec 27 2022 | 2022-12-31T02:12:55 | oeisdata/seq/A359/A359344.seq | d18c786eb4ceb85c3f372a46d4a37ce8 |
A359345 | Roots of largest pandigital squares with n digits. | [
"99066",
"315996",
"999366",
"3162039",
"9999629",
"31622524",
"99999629",
"316227746",
"999999629",
"3162277591",
"9999999629",
"31622776461",
"99999999629",
"316227765995",
"999999999629",
"3162277660155",
"9999999999629",
"31622776601681",
"99999999999629",
"316227766016811",
"999999999999629"
] | [
"nonn",
"base"
] | 8 | 10 | 1 | [
"A359343",
"A359344",
"A359345"
] | null | Martin Renner, Dec 27 2022 | 2022-12-31T02:13:03 | oeisdata/seq/A359/A359345.seq | d251723303a2a02fd0e9a9cc2df65538 |
A359346 | Reversible pandigital square numbers. | [
"1234549876609",
"9066789454321",
"123452587690084",
"123454387666009",
"123454987660900",
"123456987654400",
"123458987664100",
"123478988652100",
"125688987432100",
"146678985432100",
"445678965432100",
"480096785254321",
"900666783454321",
"906678945432100",
"10223418547690084"
] | [
"nonn",
"base"
] | 20 | 1 | 1 | [
"A036745",
"A061457",
"A156977",
"A225218",
"A359346",
"A359347"
] | null | Martin Renner, Dec 27 2022 | 2023-01-23T13:13:09 | oeisdata/seq/A359/A359346.seq | 813e8aa3648dd295dd1d62869a2b0a74 |
A359347 | Roots of reversible pandigital square numbers. | [
"1111103",
"3011111",
"11110922",
"11111003",
"11111030",
"11111120",
"11111210",
"11112110",
"11211110",
"12111110",
"21111110",
"21911111",
"30011111",
"30111110",
"101110922",
"101111112",
"101111121",
"101111211",
"102111111",
"110109212",
"110911211",
"110921111",
"111109220",
"111110030",
"111110103"
] | [
"nonn",
"base"
] | 21 | 1 | 1 | [
"A102859",
"A359346",
"A359347"
] | null | Martin Renner, Dec 27 2022 | 2023-01-21T18:12:43 | oeisdata/seq/A359/A359347.seq | c6bbdfa8c963dc2a919ccccc4a51812c |
A359348 | Maximal coefficient of (1 + x) * (1 + x^3) * (1 + x^6) * ... * (1 + x^(n*(n+1)/2)). | [
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"4",
"5",
"7",
"12",
"18",
"27",
"44",
"73",
"122",
"210",
"362",
"620",
"1050",
"1857",
"3290",
"5949",
"10665",
"19086",
"34330",
"62252",
"113643",
"209460",
"383888",
"706457",
"1300198",
"2407535",
"4468367",
"8331820",
"15525814",
"28987902",
"54180854",
"101560631",
"190708871",
"358969426"
] | [
"nonn"
] | 16 | 0 | 5 | [
"A000217",
"A024940",
"A025591",
"A158380",
"A160235",
"A359348"
] | null | Seiichi Manyama, Dec 27 2022 | 2022-12-29T03:04:34 | oeisdata/seq/A359/A359348.seq | b311e14f9a525b2d5bac51ec39036ce8 |
A359349 | The initial bits, written from left to right, in the 2-adic limit of the mod 2^e value of the odd factor of (2^e)!. | [
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0"
] | [
"nonn",
"more"
] | 85 | 1 | null | [
"A000722",
"A067667",
"A359349"
] | null | Donald M Davis, Jul 05 2023 | 2023-08-20T21:55:12 | oeisdata/seq/A359/A359349.seq | 42ca54bb12b4350ddc5ed9c67b0b6545 |
A359350 | Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n is constructed by replacing A336811(n,k) with the largest partition into consecutive parts of A000217(A336811(n,k)). | [
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"4",
"3",
"2",
"1",
"2",
"1",
"1",
"5",
"4",
"3",
"2",
"1",
"3",
"2",
"1",
"2",
"1",
"1",
"1",
"6",
"5",
"4",
"3",
"2",
"1",
"4",
"3",
"2",
"1",
"3",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"5",
"4",
"3",
"2",
"1",
"4",
"3",
"2",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"6",
"5",
"4",
"3",
"2",
"1",
"5",
"4",
"3",
"2",
"1",
"4",
"3",
"2",
"1",
"4",
"3",
"2",
"1",
"3",
"2",
"1"
] | [
"nonn",
"tabf"
] | 39 | 1 | 2 | [
"A000027",
"A000041",
"A000070",
"A000217",
"A014153",
"A176206",
"A299779",
"A336811",
"A336812",
"A338156",
"A359279",
"A359280",
"A359350"
] | null | Omar E. Pol, Dec 27 2022 | 2023-09-01T14:16:44 | oeisdata/seq/A359/A359350.seq | 5638c330dd2bd368fbb096b02c54295e |
A359351 | a(n) = A001952(A003151(n)). | [
"6",
"13",
"23",
"30",
"40",
"47",
"54",
"64",
"71",
"81",
"88",
"95",
"105",
"112",
"122",
"129",
"139",
"146",
"153",
"163",
"170",
"180",
"187",
"194",
"204",
"211",
"221",
"228",
"238",
"245",
"252",
"262",
"269",
"279",
"286",
"293",
"303",
"310",
"320",
"327",
"334",
"344",
"351",
"361",
"368",
"378",
"385",
"392",
"402",
"409",
"419",
"426",
"433",
"443"
] | [
"nonn",
"easy"
] | 4 | 1 | 1 | [
"A001951",
"A001952",
"A003151",
"A003152",
"A184922",
"A188376",
"A188396",
"A341239",
"A356136",
"A359351"
] | null | Clark Kimberling, Dec 27 2022 | 2023-01-08T11:45:10 | oeisdata/seq/A359/A359351.seq | 6e97d9c8187e53ddec423ef7a54be654 |
A359352 | a(n) = A026430(1 + A026430(n)). | [
"3",
"6",
"9",
"10",
"14",
"15",
"16",
"19",
"23",
"24",
"26",
"28",
"30",
"33",
"36",
"37",
"41",
"42",
"44",
"46",
"48",
"51",
"54",
"55",
"57",
"60",
"63",
"65",
"68",
"69",
"70",
"73",
"77",
"78",
"80",
"82",
"84",
"87",
"90",
"91",
"93",
"96",
"99",
"100",
"103",
"105",
"107",
"109",
"111",
"114",
"117",
"118",
"121",
"123",
"125",
"128",
"130",
"132",
"134",
"136",
"138"
] | [
"nonn",
"easy"
] | 17 | 1 | 1 | [
"A026530",
"A285953",
"A285954",
"A359277",
"A359352",
"A359353",
"A360139"
] | null | Clark Kimberling, Jan 26 2023 | 2023-03-01T14:28:32 | oeisdata/seq/A359/A359352.seq | 14b5b4c2a08bb8f5b64dc49229c825cb |
A359353 | a(n) = A026430(A285953(n+1)). | [
"1",
"5",
"8",
"12",
"18",
"21",
"27",
"31",
"35",
"39",
"45",
"50",
"52",
"59",
"61",
"66",
"72",
"75",
"81",
"86",
"88",
"95",
"98",
"102",
"108",
"113",
"116",
"120",
"126",
"129",
"135",
"139",
"143",
"147",
"153",
"158",
"160",
"167",
"170",
"174",
"180",
"185",
"188",
"192",
"198",
"201",
"207",
"212",
"214",
"221",
"224",
"228",
"234",
"237",
"243",
"248",
"250"
] | [
"nonn",
"easy"
] | 8 | 1 | 2 | [
"A026530",
"A285953",
"A285954",
"A359277",
"A359352",
"A359353",
"A360134",
"A360139"
] | null | Clark Kimberling, Jan 30 2023 | 2023-01-31T08:33:35 | oeisdata/seq/A359/A359353.seq | 10038268f5d53daac8362eb92939a288 |
A359354 | Position of the first subsequence of n primes that differs from the first n primes, but where the relative distances among their elements coincide with those of the subsequence of first n primes except for a scale factor. | [
"2",
"2",
"3",
"238",
"28495",
"576169",
"24635028"
] | [
"nonn",
"hard",
"more"
] | 20 | 1 | 1 | [
"A001223",
"A272863",
"A274225",
"A274263",
"A359354"
] | null | Andres Cicuttin, Dec 27 2022 | 2023-02-10T20:14:46 | oeisdata/seq/A359/A359354.seq | 892f76a2ce9e68a74974a965bbcaea00 |
A359355 | a(n) = A359107(2*n, n) = Sum_{j=0..n} Stirling2(2*n, j) = Sum_{j=0..n} A048993(2*n, j). | [
"1",
"1",
"8",
"122",
"2795",
"86472",
"3403127",
"164029595",
"9433737120",
"635182667816",
"49344452550230",
"4371727233798927",
"437489737355466560",
"49048715505983309703",
"6116937802946210183545",
"843220239072837883168510",
"127757559136845878072576947",
"21166434937698025552654090472"
] | [
"nonn"
] | 16 | 0 | 3 | [
"A048993",
"A102661",
"A359107",
"A359355"
] | null | Peter Luschny, Dec 27 2022 | 2023-06-13T15:21:48 | oeisdata/seq/A359/A359355.seq | 490532f94f1ca067544bc1dd64f54096 |
A359356 | a(n-1) + a(n) has only digits also in a(n); lexicographically earliest such sequence of distinct nonnegative integers. | [
"0",
"1",
"10",
"12",
"179",
"132",
"1048",
"416",
"135",
"126",
"125",
"1025",
"136",
"15",
"146",
"82",
"31",
"302",
"53",
"128",
"183",
"130",
"14",
"157",
"1254",
"139",
"304",
"73",
"41",
"403",
"74",
"208",
"103",
"152",
"1028",
"91",
"21",
"201",
"32",
"159",
"506",
"160",
"17",
"124",
"1036",
"104",
"51",
"504",
"95",
"16",
"204",
"62",
"129",
"203",
"52",
"503"
] | [
"nonn",
"base"
] | 23 | 0 | 3 | [
"A359356",
"A359517"
] | null | M. F. Hasler and Eric Angelini, Dec 27 2022 | 2023-01-06T14:12:00 | oeisdata/seq/A359/A359356.seq | b0134e571a053becf268644298ef3656 |
A359357 | Number of different ratios between consecutive prime gaps among the first n primes. | [
"1",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"5",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"10",
"10",
"10",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"14",
"14",
"14",
"14",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"15",
"15",
"16",
"17",
"17",
"17",
"17",
"17",
"18",
"18",
"18",
"18",
"18",
"18",
"18",
"19",
"19",
"19",
"19"
] | [
"nonn"
] | 26 | 3 | 2 | [
"A001223",
"A272863",
"A274225",
"A274263",
"A275785",
"A359357"
] | null | Andres Cicuttin, Dec 27 2022 | 2023-02-07T12:43:07 | oeisdata/seq/A359/A359357.seq | 71c34b0b9bacd011d7fbdfff85ecd8ba |
A359358 | Let y be the integer partition with Heinz number n. Then a(n) is the size of the Young diagram of y after removing a rectangle of the same length as y and width equal to the smallest part of y. | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"3",
"1",
"0",
"0",
"2",
"0",
"2",
"2",
"4",
"0",
"1",
"0",
"5",
"0",
"3",
"0",
"3",
"0",
"0",
"3",
"6",
"1",
"2",
"0",
"7",
"4",
"2",
"0",
"4",
"0",
"4",
"1",
"8",
"0",
"1",
"0",
"4",
"5",
"5",
"0",
"3",
"2",
"3",
"6",
"9",
"0",
"3",
"0",
"10",
"2",
"0",
"3",
"5",
"0",
"6",
"7",
"5",
"0",
"2",
"0",
"11",
"2",
"7",
"1",
"6",
"0",
"2",
"0",
"12",
"0",
"4",
"4",
"13"
] | [
"nonn"
] | 8 | 1 | 10 | [
"A001222",
"A055396",
"A056239",
"A061395",
"A112798",
"A124010",
"A241916",
"A243055",
"A243503",
"A246277",
"A268192",
"A316413",
"A325351",
"A325352",
"A326836",
"A326837",
"A326844",
"A326846",
"A355534",
"A356958",
"A358172",
"A358195",
"A359358",
"A359360"
] | null | Gus Wiseman, Dec 27 2022 | 2022-12-28T09:05:02 | oeisdata/seq/A359/A359358.seq | 632f60dc1e4a6a85695d044a6d53bb94 |
A359359 | Sum of positions of zeros in the binary expansion of n, where positions are read starting with 1 from the left (big-endian). | [
"1",
"0",
"2",
"0",
"5",
"2",
"3",
"0",
"9",
"5",
"6",
"2",
"7",
"3",
"4",
"0",
"14",
"9",
"10",
"5",
"11",
"6",
"7",
"2",
"12",
"7",
"8",
"3",
"9",
"4",
"5",
"0",
"20",
"14",
"15",
"9",
"16",
"10",
"11",
"5",
"17",
"11",
"12",
"6",
"13",
"7",
"8",
"2",
"18",
"12",
"13",
"7",
"14",
"8",
"9",
"3",
"15",
"9",
"10",
"4",
"11",
"5",
"6",
"0",
"27",
"20",
"21",
"14",
"22",
"15",
"16",
"9",
"23",
"16",
"17",
"10"
] | [
"nonn",
"base"
] | 14 | 0 | 3 | [
"A000120",
"A003714",
"A023416",
"A029931",
"A030190",
"A039004",
"A048793",
"A059015",
"A065359",
"A069010",
"A070939",
"A073642",
"A083652",
"A230877",
"A328594",
"A328595",
"A345927",
"A359359",
"A359400",
"A359402",
"A359495"
] | null | Gus Wiseman, Jan 03 2023 | 2023-01-05T18:30:39 | oeisdata/seq/A359/A359359.seq | f6eb432f618a3210d4c59078f34b0b34 |
A359360 | Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n. | [
"0",
"1",
"2",
"2",
"3",
"2",
"4",
"3",
"4",
"2",
"5",
"3",
"6",
"2",
"4",
"4",
"7",
"3",
"8",
"3",
"4",
"2",
"9",
"4",
"6",
"2",
"6",
"3",
"10",
"3",
"11",
"5",
"4",
"2",
"6",
"4",
"12",
"2",
"4",
"4",
"13",
"3",
"14",
"3",
"6",
"2",
"15",
"5",
"8",
"3",
"4",
"3",
"16",
"4",
"6",
"4",
"4",
"2",
"17",
"4",
"18",
"2",
"6",
"6",
"6",
"3",
"19",
"3",
"4",
"3",
"20",
"5",
"21",
"2",
"6",
"3",
"8",
"3",
"22",
"5",
"8",
"2"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A001222",
"A006141",
"A055396",
"A056239",
"A061395",
"A112798",
"A124010",
"A241916",
"A243055",
"A246277",
"A268192",
"A316413",
"A325352",
"A326836",
"A326837",
"A326844",
"A326846",
"A355534",
"A356958",
"A358172",
"A358195",
"A359358",
"A359360"
] | null | Gus Wiseman, Dec 28 2022 | 2022-12-28T15:42:39 | oeisdata/seq/A359/A359360.seq | be59f693024248aa52e8376d2c37b9e1 |
A359361 | Irregular triangle read by rows whose n-th row lists the partial sums of the integer partition with Heinz number n. | [
"1",
"2",
"1",
"2",
"3",
"2",
"3",
"4",
"1",
"2",
"3",
"2",
"4",
"3",
"4",
"5",
"2",
"3",
"4",
"6",
"4",
"5",
"3",
"5",
"1",
"2",
"3",
"4",
"7",
"2",
"4",
"5",
"8",
"3",
"4",
"5",
"4",
"6",
"5",
"6",
"9",
"2",
"3",
"4",
"5",
"3",
"6",
"6",
"7",
"2",
"4",
"6",
"4",
"5",
"6",
"10",
"3",
"5",
"6",
"11",
"1",
"2",
"3",
"4",
"5",
"5",
"7",
"7",
"8",
"4",
"7",
"2",
"4",
"5",
"6",
"12",
"8",
"9",
"6",
"8",
"3",
"4",
"5",
"6",
"13"
] | [
"nonn",
"tabf"
] | 13 | 2 | 2 | [
"A000009",
"A000041",
"A000720",
"A001221",
"A001222",
"A003963",
"A048793",
"A055396",
"A056239",
"A061395",
"A112798",
"A261079",
"A296150",
"A304818",
"A318283",
"A325362",
"A355536",
"A358134",
"A358136",
"A358137",
"A359361",
"A359397"
] | null | Gus Wiseman, Dec 30 2022 | 2023-03-31T05:51:08 | oeisdata/seq/A359/A359361.seq | 60583a0ed5bbe5445109d7ea3920702c |
A359362 | a(n) = (A001222(n) + 1) * A056239(n), where A001222 counts prime indices and A056239 adds them up. | [
"0",
"2",
"4",
"6",
"6",
"9",
"8",
"12",
"12",
"12",
"10",
"16",
"12",
"15",
"15",
"20",
"14",
"20",
"16",
"20",
"18",
"18",
"18",
"25",
"18",
"21",
"24",
"24",
"20",
"24",
"22",
"30",
"21",
"24",
"21",
"30",
"24",
"27",
"24",
"30",
"26",
"28",
"28",
"28",
"28",
"30",
"30",
"36",
"24",
"28",
"27",
"32",
"32",
"35",
"24",
"35",
"30",
"33",
"34",
"35",
"36",
"36",
"32",
"42",
"27",
"32",
"38"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A001222",
"A055396",
"A056239",
"A061395",
"A112798",
"A261079",
"A316413",
"A326836",
"A326837",
"A326844",
"A326846",
"A359358",
"A359362"
] | null | Gus Wiseman, Dec 31 2022 | 2023-01-02T02:17:16 | oeisdata/seq/A359/A359362.seq | 860f93b3eca5f05fd8ae5922deaac126 |
A359363 | Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"4",
"1",
"0",
"1",
"10",
"10",
"1",
"0",
"1",
"20",
"50",
"20",
"1",
"0",
"1",
"35",
"175",
"175",
"35",
"1",
"0",
"1",
"56",
"490",
"980",
"490",
"56",
"1",
"0",
"1",
"84",
"1176",
"4116",
"4116",
"1176",
"84",
"1",
"0",
"1",
"120",
"2520",
"14112",
"24696",
"14112",
"2520",
"120",
"1",
"0",
"1",
"165",
"4950",
"41580",
"116424",
"116424",
"41580",
"4950",
"165",
"1"
] | [
"nonn",
"tabl"
] | 36 | 0 | 9 | [
"A000178",
"A000292",
"A001181",
"A006542",
"A046996",
"A047819",
"A056939",
"A056940",
"A056941",
"A090181",
"A097805",
"A142465",
"A217800",
"A342889",
"A359363"
] | null | Peter Luschny, Dec 28 2022 | 2024-01-04T08:57:55 | oeisdata/seq/A359/A359363.seq | bd4880281aa41a6b7ee927287280ca75 |
A359364 | Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0. | [
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"3",
"0",
"1",
"0",
"6",
"0",
"2",
"1",
"0",
"10",
"0",
"10",
"0",
"1",
"0",
"15",
"0",
"30",
"0",
"5",
"1",
"0",
"21",
"0",
"70",
"0",
"35",
"0",
"1",
"0",
"28",
"0",
"140",
"0",
"140",
"0",
"14",
"1",
"0",
"36",
"0",
"252",
"0",
"420",
"0",
"126",
"0",
"1",
"0",
"45",
"0",
"420",
"0",
"1050",
"0",
"630",
"0",
"42",
"1",
"0",
"55",
"0",
"660",
"0",
"2310",
"0",
"2310",
"0",
"462",
"0"
] | [
"nonn",
"tabl"
] | 37 | 0 | 9 | [
"A000012",
"A000108",
"A000217",
"A000910",
"A001006",
"A002457",
"A002522",
"A014531",
"A023426",
"A025179",
"A025235",
"A026300",
"A034827",
"A055151",
"A056107",
"A080159",
"A088625",
"A088626",
"A091147",
"A097610",
"A107131",
"A107587",
"A126120",
"A138364",
"A189912",
"A213380",
"A343386",
"A343773",
"A359364",
"A359647",
"A359649"
] | null | Peter Luschny, Jan 09 2023 | 2023-01-10T13:05:07 | oeisdata/seq/A359/A359364.seq | 1ddf52afefcbcbfc75288d8532512098 |
A359365 | a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1. | [
"1",
"1",
"2",
"6",
"72",
"240",
"3600",
"75600",
"1411200",
"10160640",
"457228800",
"4191264000",
"184415616000",
"2054916864000",
"12466495641600",
"1308982042368000",
"314155690168320000",
"14241724620963840000",
"2178983867007467520000",
"37260624125827694592000",
"337119932567012474880000"
] | [
"nonn"
] | 14 | 0 | 3 | [
"A103505",
"A271703",
"A359365"
] | null | Peter Luschny, Dec 30 2022 | 2022-12-30T11:23:53 | oeisdata/seq/A359/A359365.seq | c5c6448bc3bd82c710160b6f865c49b1 |
A359366 | a(n) = (1/8)*(((3*n + 1) + (n - 1)*(-1)^n)*(n + 1)). | [
"0",
"1",
"3",
"4",
"10",
"9",
"21",
"16",
"36",
"25",
"55",
"36",
"78",
"49",
"105",
"64",
"136",
"81",
"171",
"100",
"210",
"121",
"253",
"144",
"300",
"169",
"351",
"196",
"406",
"225",
"465",
"256",
"528",
"289",
"595",
"324",
"666",
"361",
"741",
"400",
"820",
"441",
"903",
"484",
"990",
"529",
"1081",
"576",
"1176",
"625",
"1275",
"676",
"1378",
"729",
"1485"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A000290",
"A014105",
"A056136",
"A106465",
"A359366"
] | null | Peter Luschny, Dec 30 2022 | 2022-12-30T15:44:21 | oeisdata/seq/A359/A359366.seq | 14393a03ff747864cc750fb8a744af02 |
A359367 | a(n) = number of regular polytopes of rank m-n with group S_m, up to isomorphism and duality (this is independent of m if m >= 2n+3). | [
"1",
"1",
"7",
"9",
"35",
"48",
"135"
] | [
"nonn",
"hard",
"more"
] | 18 | 1 | 3 | null | null | Peter J. Cameron, Dec 28 2022 | 2023-01-28T11:58:14 | oeisdata/seq/A359/A359367.seq | 8a4a2a19b693407ebb2cc2081217e343 |
A359368 | Sequence begins 1, 1, 1; for even n > 3, a(n) = a(n/2 - 1) + a(n/2 + 1); for odd n > 3, a(n) = -a((n-1)/2). | [
"1",
"1",
"1",
"2",
"-1",
"3",
"-1",
"0",
"-2",
"5",
"1",
"-2",
"-3",
"3",
"1",
"-3",
"0",
"5",
"2",
"-1",
"-5",
"3",
"-1",
"-2",
"2",
"1",
"3",
"-2",
"-3",
"0",
"-1",
"1",
"3",
"2",
"0",
"2",
"-5",
"4",
"-2",
"-3",
"1",
"2",
"5",
"-6",
"-3",
"1",
"1",
"1",
"2",
"-1",
"-2",
"5",
"-1",
"-1",
"-3",
"0",
"2",
"-2",
"3",
"-4",
"0",
"1",
"1",
"2",
"-1",
"3",
"-3",
"3",
"-2",
"4",
"0",
"-5",
"-2",
"6",
"5",
"-7",
"-4",
"1",
"2",
"-1"
] | [
"sign",
"easy"
] | 27 | 1 | 4 | null | null | Eden Lippmann, Dec 28 2022 | 2024-12-19T11:46:19 | oeisdata/seq/A359/A359368.seq | 1566a2a21899b8c6f0d68b9d5ec642e9 |
A359369 | a(1) = 1. Thereafter a(n) = Sum_{j=1..n} {b(a(j)), where b(a(j)) = b(a(n))}, and b is A000120. | [
"1",
"1",
"2",
"3",
"2",
"4",
"5",
"4",
"6",
"6",
"8",
"7",
"3",
"10",
"12",
"14",
"6",
"16",
"8",
"9",
"18",
"20",
"22",
"9",
"24",
"26",
"12",
"28",
"15",
"4",
"10",
"30",
"8",
"11",
"18",
"32",
"12",
"34",
"36",
"38",
"21",
"24",
"40",
"42",
"27",
"12",
"44",
"30",
"16",
"13",
"33",
"46",
"20",
"48",
"50",
"36",
"52",
"39",
"24",
"54",
"28",
"42",
"45",
"32",
"14",
"48",
"56",
"51",
"36",
"58",
"40",
"60",
"44",
"54",
"48",
"62",
"5"
] | [
"nonn"
] | 21 | 1 | 3 | [
"A000005",
"A000120",
"A000225",
"A359369"
] | null | David James Sycamore, Dec 28 2022 | 2023-01-16T09:04:44 | oeisdata/seq/A359/A359369.seq | a8f0487beac450340c2fd2b574ae1dba |
A359370 | a(n) = 1 if n is not a multiple of 4 and has an even number of prime factors (with multiplicity), otherwise a(n) = 0. | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 11 | 1 | null | [
"A001222",
"A166486",
"A358839",
"A359170",
"A359370",
"A359371",
"A359372"
] | null | Antti Karttunen, Dec 28 2022 | 2022-12-30T16:14:47 | oeisdata/seq/A359/A359370.seq | 46fce55787dcc5a4ed16a8f9104ea0bb |
A359371 | Nonmultiples of 4 that have an even number of prime factors (with multiplicity). | [
"1",
"6",
"9",
"10",
"14",
"15",
"21",
"22",
"25",
"26",
"33",
"34",
"35",
"38",
"39",
"46",
"49",
"51",
"54",
"55",
"57",
"58",
"62",
"65",
"69",
"74",
"77",
"81",
"82",
"85",
"86",
"87",
"90",
"91",
"93",
"94",
"95",
"106",
"111",
"115",
"118",
"119",
"121",
"122",
"123",
"126",
"129",
"133",
"134",
"135",
"141",
"142",
"143",
"145",
"146",
"150",
"155",
"158",
"159",
"161",
"166",
"169",
"177",
"178",
"183",
"185",
"187",
"189"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A001222",
"A008836",
"A010873",
"A028260",
"A042968",
"A046337",
"A166486",
"A358839",
"A359370",
"A359371",
"A359373"
] | null | Antti Karttunen, Dec 28 2022 | 2022-12-29T09:09:21 | oeisdata/seq/A359/A359371.seq | 213e4f0807774c6f86b81f5434053cce |
A359372 | a(n) = 1 if n is not a multiple of 4 and has an odd number of prime factors (with multiplicity), otherwise a(n) = 0. | [
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 8 | 1 | null | [
"A001222",
"A166486",
"A358839",
"A359372",
"A359373"
] | null | Antti Karttunen, Dec 28 2022 | 2022-12-29T15:11:46 | oeisdata/seq/A359/A359372.seq | f983587a715b8f72e36e76f16d7155b1 |
A359373 | Nonmultiples of 4 that have an odd number of prime factors (with multiplicity). | [
"2",
"3",
"5",
"7",
"11",
"13",
"17",
"18",
"19",
"23",
"27",
"29",
"30",
"31",
"37",
"41",
"42",
"43",
"45",
"47",
"50",
"53",
"59",
"61",
"63",
"66",
"67",
"70",
"71",
"73",
"75",
"78",
"79",
"83",
"89",
"97",
"98",
"99",
"101",
"102",
"103",
"105",
"107",
"109",
"110",
"113",
"114",
"117",
"125",
"127",
"130",
"131",
"137",
"138",
"139",
"147",
"149",
"151",
"153",
"154",
"157",
"162",
"163",
"165",
"167",
"170",
"171",
"173",
"174"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A001222",
"A008836",
"A010873",
"A026424",
"A042968",
"A067019",
"A166486",
"A358839",
"A359371",
"A359372",
"A359373"
] | null | Antti Karttunen, Dec 28 2022 | 2022-12-29T09:16:26 | oeisdata/seq/A359/A359373.seq | cdc13f3c07df31efc53183d77cceceb9 |
A359374 | Parity of A252463(n). | [
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 14 | 1 | null | [
"A000035",
"A064989",
"A252463",
"A359374",
"A359375",
"A359376",
"A359379"
] | null | Antti Karttunen, Dec 31 2022 | 2023-01-24T02:50:57 | oeisdata/seq/A359/A359374.seq | dc217d5456d848dd7c0cedf8ae73e53a |
A359375 | Numbers that are neither multiples of 4 nor of the form 6u+3. | [
"1",
"2",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"17",
"18",
"19",
"22",
"23",
"25",
"26",
"29",
"30",
"31",
"34",
"35",
"37",
"38",
"41",
"42",
"43",
"46",
"47",
"49",
"50",
"53",
"54",
"55",
"58",
"59",
"61",
"62",
"65",
"66",
"67",
"70",
"71",
"73",
"74",
"77",
"78",
"79",
"82",
"83",
"85",
"86",
"89",
"90",
"91",
"94",
"95",
"97",
"98",
"101",
"102",
"103",
"106",
"107",
"109",
"110",
"113",
"114",
"115",
"118",
"119",
"121",
"122",
"125"
] | [
"nonn",
"easy"
] | 16 | 1 | 2 | [
"A000035",
"A064989",
"A252463",
"A359374",
"A359375",
"A359376",
"A359380"
] | null | Antti Karttunen, Dec 31 2022 | 2023-01-24T02:50:23 | oeisdata/seq/A359/A359375.seq | f8b7db5110ea84967828776053be51b6 |
A359376 | Numbers that are either odd multiples of 3 or multiples of 4. Numbers k such that A252463(k) is even. | [
"0",
"3",
"4",
"8",
"9",
"12",
"15",
"16",
"20",
"21",
"24",
"27",
"28",
"32",
"33",
"36",
"39",
"40",
"44",
"45",
"48",
"51",
"52",
"56",
"57",
"60",
"63",
"64",
"68",
"69",
"72",
"75",
"76",
"80",
"81",
"84",
"87",
"88",
"92",
"93",
"96",
"99",
"100",
"104",
"105",
"108",
"111",
"112",
"116",
"117",
"120",
"123",
"124",
"128",
"129",
"132",
"135",
"136",
"140",
"141",
"144",
"147",
"148",
"152",
"153",
"156",
"159",
"160",
"164",
"165"
] | [
"nonn",
"easy"
] | 16 | 1 | 2 | [
"A000035",
"A008586",
"A016945",
"A064989",
"A252463",
"A359374",
"A359375",
"A359376",
"A359379"
] | null | Antti Karttunen, Dec 31 2022 | 2023-01-24T02:50:30 | oeisdata/seq/A359/A359376.seq | 486dad525bce1b237083a9bd64c82792 |
A359377 | a(n) = 1 if 3*n is squarefree, otherwise 0. | [
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0"
] | [
"nonn",
"mult"
] | 28 | 1 | null | [
"A000035",
"A008966",
"A011655",
"A055615",
"A088245",
"A156277",
"A261034",
"A323239",
"A349125",
"A353627",
"A359377",
"A359378",
"A365428"
] | null | Antti Karttunen, Dec 29 2022 | 2023-09-16T16:03:07 | oeisdata/seq/A359/A359377.seq | 9912afcb24ef3885baca500555ee2bca |
A359378 | Dirichlet inverse of A359377, where A359377(n) = 1 if 3*n is squarefree, otherwise 0. | [
"1",
"-1",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"0",
"1",
"1",
"0",
"-1",
"-1",
"0",
"-1",
"-1",
"0",
"1",
"1",
"0",
"-1",
"1",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"0",
"1",
"-1",
"0",
"-1",
"-1",
"0",
"1",
"1",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"1",
"1",
"0",
"-1",
"-1",
"0",
"-1",
"-1",
"0",
"-1",
"1",
"0",
"-1",
"1",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"0",
"1",
"1",
"0",
"1",
"-1",
"0",
"1",
"-1",
"0",
"1",
"1",
"0",
"-1",
"-1",
"0",
"1",
"-1",
"0",
"-1",
"1",
"0",
"1"
] | [
"sign",
"mult"
] | 20 | 1 | null | [
"A001651",
"A008585",
"A008836",
"A011655",
"A156277",
"A166698",
"A358839",
"A359170",
"A359171",
"A359172",
"A359377",
"A359378",
"A359381"
] | null | Antti Karttunen, Dec 29 2022 | 2023-01-03T09:21:28 | oeisdata/seq/A359/A359378.seq | 6c2fa52be6585fee146bd12e6fcc3988 |
A359379 | a(n) = 1 if n is either a multiple of 4, or an odd multiple of 3, otherwise 0. | [
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1"
] | [
"nonn",
"easy"
] | 17 | 0 | null | [
"A079979",
"A121262",
"A359374",
"A359375",
"A359376",
"A359379"
] | null | Antti Karttunen, Dec 31 2022 | 2023-01-24T02:50:36 | oeisdata/seq/A359/A359379.seq | 224b39d39c38a433b3c0ac532ee3032c |
A359380 | Numbers that are neither multiples of 3 nor of the form 4u+2. | [
"1",
"4",
"5",
"7",
"8",
"11",
"13",
"16",
"17",
"19",
"20",
"23",
"25",
"28",
"29",
"31",
"32",
"35",
"37",
"40",
"41",
"43",
"44",
"47",
"49",
"52",
"53",
"55",
"56",
"59",
"61",
"64",
"65",
"67",
"68",
"71",
"73",
"76",
"77",
"79",
"80",
"83",
"85",
"88",
"89",
"91",
"92",
"95",
"97",
"100",
"101",
"103",
"104",
"107",
"109",
"112",
"113",
"115",
"116",
"119",
"121",
"124",
"125",
"127",
"128",
"131",
"133",
"136",
"137",
"139",
"140"
] | [
"nonn",
"easy"
] | 18 | 1 | 2 | [
"A010892",
"A057079",
"A187074",
"A359375",
"A359380"
] | null | Antti Karttunen, Dec 31 2022 | 2024-07-10T16:48:13 | oeisdata/seq/A359/A359380.seq | d50b203641cf643e3d248bad1b66dcb8 |
A359381 | Nonmultiples of 3 that have an odd number of prime factors (with multiplicity). | [
"2",
"5",
"7",
"8",
"11",
"13",
"17",
"19",
"20",
"23",
"28",
"29",
"31",
"32",
"37",
"41",
"43",
"44",
"47",
"50",
"52",
"53",
"59",
"61",
"67",
"68",
"70",
"71",
"73",
"76",
"79",
"80",
"83",
"89",
"92",
"97",
"98",
"101",
"103",
"107",
"109",
"110",
"112",
"113",
"116",
"124",
"125",
"127",
"128",
"130",
"131",
"137",
"139",
"148",
"149",
"151",
"154",
"157",
"163",
"164",
"167",
"170",
"172",
"173",
"175",
"176",
"179",
"181",
"182"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A001651",
"A008836",
"A010872",
"A026424",
"A359171",
"A359172",
"A359373",
"A359378",
"A359381"
] | null | Antti Karttunen, Dec 30 2022 | 2023-02-23T09:43:38 | oeisdata/seq/A359/A359381.seq | 91d9b5f2a2b67d4bf42d0e54387e51c1 |
A359382 | a(n) = number of k < t such that rad(k) = rad(t) and k does not divide t, where t = A360768(n) and rad(k) = A007947(k). | [
"1",
"1",
"1",
"2",
"2",
"4",
"2",
"1",
"1",
"1",
"4",
"2",
"2",
"4",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"2",
"8",
"1",
"2",
"1",
"7",
"2",
"1",
"2",
"5",
"2",
"1",
"1",
"3",
"3",
"1",
"6",
"1",
"1",
"5",
"5",
"4",
"5",
"1",
"1",
"4",
"8",
"3",
"3",
"1",
"2",
"1",
"4",
"2",
"3",
"5",
"10",
"2",
"1",
"3",
"3",
"1",
"1",
"1",
"6",
"1",
"3",
"7",
"1",
"1",
"7",
"3",
"14",
"3",
"6",
"3",
"2",
"1",
"1",
"2",
"7",
"2",
"1",
"1",
"2",
"2",
"8",
"4",
"6",
"4",
"8",
"1",
"1",
"2",
"1",
"6",
"9",
"2",
"1"
] | [
"nonn"
] | 16 | 1 | 4 | [
"A007947",
"A010846",
"A013929",
"A020639",
"A024619",
"A027750",
"A126706",
"A162306",
"A243822",
"A272618",
"A355432",
"A359382",
"A359929",
"A360589",
"A360768"
] | null | Michael De Vlieger, Mar 29 2023 | 2023-04-01T13:29:08 | oeisdata/seq/A359/A359382.seq | deda77c221d4456470a1fe4f78dbaf89 |
A359383 | Allan W. Johnson, Jr.'s 4 X 4 magic square of squares. | [
"900",
"60516",
"29584",
"2025",
"8649",
"13456",
"4356",
"66564",
"15876",
"19044",
"56169",
"1936",
"67600",
"9",
"2916",
"22500"
] | [
"nonn",
"fini",
"full"
] | 19 | 1 | 1 | [
"A271580",
"A359383"
] | null | Robert C. Lyons, Dec 28 2022 | 2024-02-12T08:39:17 | oeisdata/seq/A359/A359383.seq | 5714ed75b9e5ad0f059e1171cb9e3e38 |
A359384 | a(1) = 0. If a(n-1) is a first occurrence, a(n) = A000120(a(n-1)). Otherwise, if a(n-1) is a repeat of a prior terms, a(n) = number of indices j < n such that a(j) = a(n-1). | [
"0",
"0",
"2",
"1",
"1",
"2",
"2",
"3",
"2",
"4",
"1",
"3",
"2",
"5",
"2",
"6",
"2",
"7",
"3",
"3",
"4",
"2",
"8",
"1",
"4",
"3",
"5",
"2",
"9",
"2",
"10",
"2",
"11",
"3",
"6",
"2",
"12",
"2",
"13",
"3",
"7",
"2",
"14",
"3",
"8",
"2",
"15",
"4",
"4",
"5",
"3",
"9",
"2",
"16",
"1",
"5",
"4",
"6",
"3",
"10",
"2",
"17",
"2",
"18",
"2",
"19",
"3",
"11",
"2",
"20",
"2",
"21",
"3",
"12",
"2",
"22",
"3",
"13",
"2",
"23",
"4"
] | [
"nonn"
] | 15 | 1 | 3 | [
"A000120",
"A359384"
] | null | David James Sycamore, Dec 27 2022 | 2023-01-14T08:44:57 | oeisdata/seq/A359/A359384.seq | 62d40720152f4fbf93c206fda6d6c9d1 |
A359385 | The lexicographically earliest "Increasing Term Fractal Jump Sequence" that does not use the digit 0 in any terms. | [
"1",
"2",
"21",
"22",
"23",
"112",
"122",
"132",
"133",
"134",
"141",
"221",
"311",
"2112",
"2113",
"3111",
"21111",
"31113",
"31114",
"31124",
"31131",
"34111",
"41121",
"42111",
"43111",
"111121",
"111122",
"112111",
"112311",
"131111",
"211112",
"211113",
"1111311",
"1111312",
"3111311",
"3111312",
"4111131",
"4111132",
"4141111"
] | [
"nonn",
"base"
] | 15 | 1 | 2 | [
"A105395",
"A105396",
"A105397",
"A105398",
"A105647",
"A359385"
] | null | Tyler Busby, Dec 29 2022 | 2022-12-31T10:49:54 | oeisdata/seq/A359/A359385.seq | 917f6d3761e862f86f4399b41c0b14f0 |
A359386 | a(n) is the least positive integer that can be expressed as the sum of one or more consecutive prime powers (not including 1) in exactly n ways. | [
"1",
"2",
"5",
"9",
"29",
"1027",
"6659",
"13560",
"2149512",
"38239583"
] | [
"nonn",
"more"
] | 24 | 0 | 2 | [
"A054859",
"A246655",
"A359386"
] | null | Ilya Gutkovskiy, Mar 13 2023 | 2023-03-14T09:27:44 | oeisdata/seq/A359/A359386.seq | f1dc8bf881983e34513bc46efc17ce5b |
A359387 | Primes p such that the smallest prime factor of (2^(p-1)-1)/(3*p) is greater than p. | [
"11",
"23",
"47",
"59",
"83",
"107",
"167",
"179",
"227",
"263",
"347",
"359",
"383",
"443",
"467",
"479",
"503",
"563",
"587",
"647",
"719",
"839",
"863",
"887",
"983",
"1019",
"1187",
"1283",
"1307",
"1319",
"1367",
"1439",
"1487",
"1523",
"1619",
"1823",
"1847",
"1907",
"2027",
"2039",
"2063",
"2099",
"2207",
"2243",
"2447",
"2459",
"2579",
"2687",
"2699"
] | [
"nonn"
] | 45 | 1 | 1 | [
"A068231",
"A096060",
"A358527",
"A359387"
] | null | Alain Rocchelli, Dec 29 2022 | 2023-01-21T02:40:31 | oeisdata/seq/A359/A359387.seq | dc90ef7ed138a2b53b95cacd8140863a |
A359388 | a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on. | [
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"2",
"2",
"4",
"5",
"7",
"11",
"15",
"24",
"33",
"50",
"73",
"105",
"159",
"229",
"342",
"501",
"738",
"1094",
"1604",
"2378",
"3499",
"5166",
"7627",
"11243",
"16610",
"24494",
"36165",
"53376",
"78775",
"116301",
"171642",
"253398",
"374034",
"552139",
"815079",
"1203166",
"1776174",
"2621938",
"3870572",
"5713798",
"8434744"
] | [
"nonn"
] | 33 | 0 | 8 | [
"A000040",
"A004526",
"A023360",
"A078974",
"A326178",
"A359328",
"A359388"
] | null | Stefano Spezia, Dec 29 2022 | 2023-01-01T14:49:39 | oeisdata/seq/A359/A359388.seq | d1b026fbfbb2209101617d873537ea5f |
A359389 | Maximal coefficient of Product_{k=1..n} (1 + 2*x^k). | [
"1",
"2",
"4",
"8",
"16",
"32",
"72",
"176",
"384",
"976",
"2496",
"6560",
"17152",
"45952",
"123520",
"336640",
"920832",
"2526976",
"6979584",
"19379712",
"53966336",
"150892544",
"423132160",
"1190260736",
"3356964864",
"9491228672",
"26889519104",
"76351971328",
"217229369344",
"619159953408",
"1767696515072",
"5054679908352"
] | [
"nonn"
] | 11 | 0 | 2 | [
"A025591",
"A032302",
"A160235",
"A359389"
] | null | Vaclav Kotesovec, Dec 29 2022 | 2022-12-30T01:14:35 | oeisdata/seq/A359/A359389.seq | c1d79d9e928bf2853f20d9a4e18521f6 |
A359390 | Sequence lists the numbers k such that bottom entry is an integer in the ratio d(i+1)/d(i) triangle of the elements in the divisors of n, where d(1) < d(2) < ... < d(q) denote the divisors of k. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"13",
"16",
"17",
"19",
"23",
"25",
"27",
"29",
"31",
"32",
"36",
"37",
"41",
"43",
"47",
"49",
"53",
"59",
"61",
"64",
"67",
"71",
"73",
"79",
"81",
"83",
"89",
"97",
"100",
"101",
"103",
"107",
"109",
"113",
"121",
"125",
"127",
"128",
"131",
"137",
"139",
"144",
"149",
"151",
"157",
"163",
"167",
"169",
"173",
"179",
"181",
"191",
"193"
] | [
"nonn"
] | 54 | 1 | 2 | [
"A000290",
"A000961",
"A323306",
"A359390"
] | null | Michel Lagneau, Jan 03 2023 | 2023-01-28T12:17:00 | oeisdata/seq/A359/A359390.seq | 97048064cd39c25337292f0fecb178fb |
A359391 | a(n) is the smallest number which can be represented as the sum of n distinct positive Fibonacci numbers (1 is allowed twice as a part) in exactly n ways, or -1 if no such number exists. | [
"1",
"2",
"3",
"16",
"27",
"71",
"116",
"278",
"451",
"818",
"1305",
"2169",
"3925",
"8119",
"13117",
"23252",
"37858",
"62999",
"101939",
"178088",
"298357",
"484576",
"813710",
"1613509",
"2610739",
"4224275",
"6845969",
"11280196",
"19772533",
"32524576",
"53157802",
"85936132"
] | [
"nonn",
"more"
] | 25 | 0 | 2 | [
"A000045",
"A000121",
"A013583",
"A083853",
"A359391"
] | null | Ilya Gutkovskiy, Dec 29 2022 | 2023-01-07T11:05:50 | oeisdata/seq/A359/A359391.seq | 00ffa82bbeccf9c41c872be687ffb581 |
A359392 | Number of trees on n unlabeled nodes with all nodes of degree <= 7. | [
"1",
"1",
"1",
"1",
"2",
"3",
"6",
"11",
"23",
"46",
"104",
"230",
"539",
"1270",
"3081",
"7536",
"18785",
"47207",
"120074",
"307739",
"795426",
"2069248",
"5418014",
"14263084",
"37742929",
"100331646",
"267854040",
"717863832",
"1930888297",
"5210968114",
"14106844554"
] | [
"nonn"
] | 18 | 0 | 5 | [
"A036722",
"A144528",
"A359392"
] | null | Robert A. Russell, Dec 29 2022 | 2023-02-12T10:23:31 | oeisdata/seq/A359/A359392.seq | ff8659b6f7ca11e8f0d39d3f84e9661a |
A359393 | a(n) is the number of times A025581(n-1) (runs of k..0) occur among terms a(1..n-1). | [
"0",
"0",
"2",
"1",
"1",
"2",
"0",
"2",
"2",
"3",
"0",
"1",
"4",
"3",
"4",
"0",
"2",
"2",
"6",
"3",
"5",
"1",
"1",
"2",
"3",
"7",
"5",
"5",
"1",
"1",
"3",
"2",
"5",
"8",
"7",
"5",
"1",
"2",
"1",
"5",
"2",
"5",
"10",
"9",
"5",
"1",
"1",
"2",
"1",
"8",
"2",
"5",
"12",
"12",
"5",
"1",
"1",
"2",
"2",
"1",
"10",
"2",
"5",
"15",
"15",
"5",
"0",
"2",
"1",
"2",
"2",
"1",
"12",
"2",
"5",
"19",
"17",
"6",
"3",
"0",
"2",
"1",
"2",
"2",
"2",
"13"
] | [
"nonn",
"easy"
] | 21 | 1 | 3 | [
"A025581",
"A032531",
"A342585",
"A359393"
] | null | Tamas Sandor Nagy, Dec 29 2022 | 2024-12-19T11:46:19 | oeisdata/seq/A359/A359393.seq | b0acfd9be1b9574ee4350916dee2576b |
A359394 | Numbers k such that the average of the squares of k consecutive primes starting with 7 is a prime. | [
"3",
"4",
"7",
"9",
"24",
"28",
"3872",
"15172",
"23440",
"1390100",
"7031920"
] | [
"nonn",
"more"
] | 9 | 1 | 1 | [
"A359322",
"A359394"
] | null | Robert Israel, Dec 29 2022 | 2022-12-31T15:23:03 | oeisdata/seq/A359/A359394.seq | cdac477fa5696f74604bb3959afdff4d |
A359395 | Least odd prime p in position n in the prime factorization of M(p) = 2^(p - 1) - 1. | [
"3",
"5",
"17",
"13",
"71",
"37",
"157",
"61",
"211",
"313",
"1289",
"241",
"337",
"181",
"577",
"601",
"541",
"1381",
"421",
"1201",
"1009",
"1621",
"1873",
"3433",
"4561",
"1801",
"3301",
"2161",
"3061",
"5281",
"3361",
"2521",
"7393",
"6481",
"4201",
"4621",
"8737",
"9181",
"6301",
"19501",
"7561",
"16633",
"12241",
"26881",
"15601",
"9241",
"21001",
"14281",
"12601",
"53551"
] | [
"nonn"
] | 34 | 1 | 1 | [
"A098102",
"A358527",
"A359395"
] | null | Jean-Marc Rebert, Dec 31 2022 | 2023-01-14T12:41:17 | oeisdata/seq/A359/A359395.seq | 31c12d3794114a381f975a2153d72103 |
A359396 | a(n) is the least k such that k^j+2 is prime for j = 1 to n but not n+1. | [
"5",
"9",
"105",
"3",
"909",
"4995825",
"28212939"
] | [
"nonn",
"more"
] | 15 | 1 | 1 | [
"A087576",
"A359396"
] | null | Robert Israel, Dec 29 2022 | 2023-01-11T08:48:08 | oeisdata/seq/A359/A359396.seq | b621793e032a98e9a532f7390bfb2986 |
A359397 | Squarefree numbers with weakly decreasing first differences of 0-prepended prime indices. | [
"1",
"2",
"3",
"5",
"6",
"7",
"11",
"13",
"15",
"17",
"19",
"21",
"23",
"29",
"30",
"31",
"35",
"37",
"41",
"43",
"47",
"53",
"55",
"59",
"61",
"65",
"67",
"71",
"73",
"77",
"79",
"83",
"89",
"91",
"97",
"101",
"103",
"105",
"107",
"109",
"113",
"119",
"127",
"131",
"133",
"137",
"139",
"143",
"149",
"151",
"157",
"163",
"167",
"173",
"179",
"181",
"187",
"191",
"193",
"197"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A000009",
"A000720",
"A001221",
"A001222",
"A005117",
"A056239",
"A112798",
"A253566",
"A261079",
"A287352",
"A296150",
"A304818",
"A318283",
"A325362",
"A355536",
"A358136",
"A358137",
"A358169",
"A359361",
"A359397"
] | null | Gus Wiseman, Dec 31 2022 | 2023-01-01T19:30:36 | oeisdata/seq/A359/A359397.seq | 01f8cdbeea2c7990a95ac2fa4f5eefd7 |
A359398 | Number of unlabeled trees covering 2n nodes, half of which are leaves. | [
"0",
"1",
"2",
"8",
"32",
"158",
"833",
"4755",
"28389",
"176542",
"1131055",
"7432876",
"49873477",
"340658595",
"2362652648",
"16605707901",
"118082160358",
"848399575321",
"6152038125538",
"44981009272740",
"331344933928536",
"2457372361637286",
"18337490246234464",
"137612955519565773",
"1038076541372187991"
] | [
"nonn"
] | 11 | 1 | 3 | [
"A000055",
"A000088",
"A000272",
"A001187",
"A001349",
"A001433",
"A002494",
"A006125",
"A006129",
"A014068",
"A055290",
"A055314",
"A163395",
"A185650",
"A358107",
"A358732",
"A359398"
] | null | Gus Wiseman, Jan 01 2023 | 2023-01-02T00:06:07 | oeisdata/seq/A359/A359398.seq | d6e942ac6c2f73eb1d8d03e3f662afcf |
A359399 | a(1) = 1; a(n) = Sum_{k=2..n} k * a(floor(n/k)). | [
"1",
"2",
"5",
"11",
"16",
"31",
"38",
"62",
"80",
"105",
"116",
"194",
"207",
"242",
"287",
"383",
"400",
"526",
"545",
"675",
"738",
"793",
"816",
"1200",
"1250",
"1315",
"1423",
"1605",
"1634",
"1979",
"2010",
"2394",
"2493",
"2578",
"2683",
"3475",
"3512",
"3607",
"3724",
"4364",
"4405",
"4888",
"4931",
"5217",
"5577",
"5692",
"5739",
"7563",
"7661",
"8011"
] | [
"nonn"
] | 16 | 1 | 2 | [
"A022825",
"A359399"
] | null | Seiichi Manyama, Mar 31 2023 | 2023-04-01T11:23:52 | oeisdata/seq/A359/A359399.seq | c9bc9631f6a219c7f824b9c29e44bc3a |
A359400 | Sum of positions of zeros in the reversed binary expansion of n, where positions in a sequence are read starting with 1 from the left. | [
"1",
"0",
"1",
"0",
"3",
"2",
"1",
"0",
"6",
"5",
"4",
"3",
"3",
"2",
"1",
"0",
"10",
"9",
"8",
"7",
"7",
"6",
"5",
"4",
"6",
"5",
"4",
"3",
"3",
"2",
"1",
"0",
"15",
"14",
"13",
"12",
"12",
"11",
"10",
"9",
"11",
"10",
"9",
"8",
"8",
"7",
"6",
"5",
"10",
"9",
"8",
"7",
"7",
"6",
"5",
"4",
"6",
"5",
"4",
"3",
"3",
"2",
"1",
"0",
"21",
"20",
"19",
"18",
"18",
"17",
"16",
"15",
"17",
"16",
"15",
"14",
"14",
"13"
] | [
"nonn",
"base"
] | 47 | 0 | 5 | [
"A000120",
"A003714",
"A023416",
"A029931",
"A030190",
"A030308",
"A039004",
"A048793",
"A059015",
"A069010",
"A070939",
"A073642",
"A230877",
"A328594",
"A328595",
"A344618",
"A345927",
"A359359",
"A359400",
"A359402",
"A359495",
"A368494"
] | null | Gus Wiseman, Jan 05 2023 | 2024-03-23T20:26:12 | oeisdata/seq/A359/A359400.seq | 3c199ac4c63c0e02de2706a3c570d179 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.