seq_id
stringlengths 7
7
| seq_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 0
0
| offset_b
int64 5
5
| cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-25 01:21:50
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A360001 | Expansion of Product_{k>=0} (1 - x^(k^2+4)) in powers of x. | [
"1",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"-1",
"1",
"-1",
"0",
"1",
"0",
"-1",
"0",
"1",
"-2",
"1",
"0",
"-1",
"1",
"1",
"0",
"0",
"1",
"-2",
"0",
"-1",
"-2",
"1",
"0",
"1",
"2",
"1",
"-1",
"1",
"0",
"-2",
"1",
"-1",
"-2",
"0",
"1",
"0",
"0",
"1",
"-1",
"1",
"1",
"0",
"0",
"-1",
"-1",
"1",
"1",
"-2",
"2",
"0",
"-2",
"2",
"1",
"-3",
"0",
"1",
"-3",
"2",
"2",
"-1",
"1"
] | [
"sign",
"look"
] | 10 | 0 | 5 | [
"A276516",
"A359936",
"A359966",
"A359980",
"A360001",
"A360002",
"A360003"
] | null | Seiichi Manyama, Jan 21 2023 | 2023-01-21T11:51:43 | oeisdata/seq/A360/A360001.seq | 63e9bce76a4340a07f48da1a069273af |
A360002 | Expansion of Product_{k>=0} (1 - x^(k^2+5)) in powers of x. | [
"1",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"-1",
"0",
"1",
"0",
"-1",
"1",
"1",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"-1",
"-2",
"0",
"0",
"-1",
"-1",
"2",
"1",
"0",
"0",
"2",
"1",
"-1",
"-1",
"-1",
"0",
"-2",
"-1",
"1",
"2",
"-1",
"0",
"2",
"1",
"-2",
"-1",
"2",
"-1",
"-1",
"-1",
"2",
"0",
"0",
"0",
"2",
"1",
"-2",
"-1",
"1",
"0",
"-4",
"0",
"2"
] | [
"sign",
"look"
] | 11 | 0 | 5 | [
"A276516",
"A359936",
"A359966",
"A359980",
"A360001",
"A360002",
"A360003"
] | null | Seiichi Manyama, Jan 21 2023 | 2023-01-21T11:51:40 | oeisdata/seq/A360/A360002.seq | c975f9e823b12dfab73575df9000eb8b |
A360003 | Expansion of Product_{k>=0} (1 - x^(k^2+10)) in powers of x. | [
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"1",
"0",
"0",
"1",
"1",
"-1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"-2",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"-1",
"-1",
"2",
"0",
"-1",
"0",
"1",
"-1",
"-1",
"0",
"0",
"2",
"-1",
"-1",
"1",
"0",
"-3",
"0",
"2",
"0",
"0",
"-1",
"0",
"1",
"-1",
"-1",
"2",
"2",
"-2",
"0",
"1",
"-1",
"-1",
"-1",
"0",
"2",
"0",
"-3",
"2",
"0",
"-2"
] | [
"sign",
"look"
] | 11 | 0 | 5 | [
"A276516",
"A359936",
"A359966",
"A359980",
"A360001",
"A360002",
"A360003"
] | null | Seiichi Manyama, Jan 21 2023 | 2023-01-21T11:51:37 | oeisdata/seq/A360/A360003.seq | 940e63ff998eb6955424428c453e874c |
A360004 | Sequence of composite digits as they appear in Pi. | [
"4",
"9",
"6",
"8",
"9",
"9",
"8",
"4",
"6",
"6",
"4",
"8",
"9",
"8",
"8",
"4",
"9",
"6",
"9",
"9",
"9",
"8",
"9",
"4",
"9",
"4",
"4",
"9",
"8",
"6",
"4",
"6",
"8",
"6",
"8",
"9",
"9",
"8",
"6",
"8",
"4",
"8",
"4",
"6",
"9",
"8",
"4",
"8",
"8",
"6",
"8",
"6",
"6",
"4",
"9",
"8",
"4",
"4",
"6",
"9",
"8",
"9",
"4",
"8",
"8",
"4",
"8",
"4",
"8",
"4",
"9",
"8",
"9",
"6",
"4",
"4",
"6",
"9",
"4",
"8",
"9",
"4",
"9",
"8",
"9",
"6",
"4",
"4",
"8",
"8",
"9",
"6",
"6",
"9",
"4",
"4",
"6",
"8",
"4"
] | [
"nonn",
"base",
"easy"
] | 39 | 0 | 5 | [
"A000796",
"A002808",
"A073264",
"A086385",
"A086399",
"A360004"
] | null | Miles Galvin, Jan 21 2023 | 2023-03-10T19:39:10 | oeisdata/seq/A360/A360004.seq | 19ea194b6bd1cf9555fdfbf3b933c495 |
A360005 | Two times the median of the multiset of prime indices of n. | [
"2",
"4",
"2",
"6",
"3",
"8",
"2",
"4",
"4",
"10",
"2",
"12",
"5",
"5",
"2",
"14",
"4",
"16",
"2",
"6",
"6",
"18",
"2",
"6",
"7",
"4",
"2",
"20",
"4",
"22",
"2",
"7",
"8",
"7",
"3",
"24",
"9",
"8",
"2",
"26",
"4",
"28",
"2",
"4",
"10",
"30",
"2",
"8",
"6",
"9",
"2",
"32",
"4",
"8",
"2",
"10",
"11",
"34",
"3",
"36",
"12",
"4",
"2",
"9",
"4",
"38",
"2",
"11",
"6",
"40",
"2",
"42",
"13",
"6",
"2",
"9",
"4",
"44",
"2"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A001222",
"A026424",
"A056239",
"A112798",
"A307683",
"A316413",
"A325347",
"A326567",
"A326568",
"A359889",
"A359890",
"A359893",
"A359901",
"A359902",
"A359907",
"A359908",
"A359912",
"A360005",
"A360006",
"A360007",
"A360009"
] | null | Gus Wiseman, Jan 23 2023 | 2023-01-23T12:41:26 | oeisdata/seq/A360/A360005.seq | 602e1e413dca6b9c70ef27379c761db0 |
A360006 | Least positive integer whose prime indices have median n/2. a(1) = 1. | [
"1",
"2",
"6",
"3",
"14",
"5",
"26",
"7",
"38",
"11",
"58",
"13",
"74",
"17",
"86",
"19",
"106",
"23",
"122",
"29",
"142",
"31",
"158",
"37",
"178",
"41",
"202",
"43",
"214",
"47",
"226",
"53",
"262",
"59",
"278",
"61",
"302",
"67",
"326",
"71",
"346",
"73",
"362",
"79",
"386",
"83",
"398",
"89",
"446",
"97",
"458",
"101",
"478",
"103",
"502",
"107",
"526",
"109",
"542",
"113"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A001222",
"A026424",
"A056239",
"A112798",
"A307683",
"A316413",
"A325347",
"A326567",
"A326568",
"A359889",
"A359890",
"A359893",
"A359901",
"A359902",
"A359907",
"A359908",
"A359912",
"A360005",
"A360006",
"A360007",
"A360008",
"A360009"
] | null | Gus Wiseman, Jan 24 2023 | 2023-01-24T12:35:47 | oeisdata/seq/A360/A360006.seq | 9bcdc29fda3475ef077401fee135fc17 |
A360007 | Positions of first appearances in the sequence giving the median of the prime indices of n (A360005(n)/2). | [
"1",
"2",
"3",
"5",
"6",
"7",
"11",
"13",
"14",
"17",
"19",
"23",
"26",
"29",
"31",
"37",
"38",
"41",
"43",
"47",
"53",
"58",
"59",
"61",
"67",
"71",
"73",
"74",
"79",
"83",
"86",
"89",
"97",
"101",
"103",
"106",
"107",
"109",
"113",
"122",
"127",
"131",
"137",
"139",
"142",
"149",
"151",
"157",
"158",
"163",
"167",
"173",
"178",
"179",
"181",
"191",
"193",
"197",
"199",
"202"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A001222",
"A026424",
"A056239",
"A112798",
"A307683",
"A316413",
"A325347",
"A326567",
"A326568",
"A359889",
"A359890",
"A359893",
"A359901",
"A359902",
"A359907",
"A359908",
"A359912",
"A360005",
"A360006",
"A360007",
"A360008",
"A360009"
] | null | Gus Wiseman, Jan 24 2023 | 2023-01-24T12:35:41 | oeisdata/seq/A360/A360007.seq | 0197556dedbb155c185bd957e648f4fc |
A360008 | Positions of first appearances in the sequence giving the mean of prime indices (A326567/A326568). | [
"1",
"3",
"5",
"6",
"7",
"11",
"12",
"13",
"14",
"17",
"18",
"19",
"23",
"24",
"26",
"29",
"31",
"37",
"38",
"41",
"42",
"43",
"47",
"48",
"52",
"53",
"54",
"58",
"59",
"61",
"67",
"71",
"72",
"73",
"74",
"76",
"79",
"83",
"86",
"89",
"92",
"96",
"97",
"101",
"103",
"104",
"106",
"107",
"108",
"109",
"113",
"122",
"124",
"127",
"131",
"137",
"139",
"142",
"148",
"149",
"151",
"152"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A001222",
"A008284",
"A026424",
"A051293",
"A056239",
"A058398",
"A112798",
"A316413",
"A326567",
"A326568",
"A327473",
"A327482",
"A348551",
"A359889",
"A359908",
"A359912",
"A360005",
"A360006",
"A360007",
"A360008"
] | null | Gus Wiseman, Jan 24 2023 | 2023-01-24T12:35:36 | oeisdata/seq/A360/A360008.seq | 84770fd55b1cbef67334db6871881013 |
A360009 | Numbers whose prime indices have integer mean and integer median. | [
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"10",
"11",
"13",
"16",
"17",
"19",
"21",
"22",
"23",
"25",
"27",
"28",
"29",
"30",
"31",
"32",
"34",
"37",
"39",
"41",
"43",
"46",
"47",
"49",
"53",
"55",
"57",
"59",
"61",
"62",
"64",
"67",
"68",
"71",
"73",
"78",
"79",
"81",
"82",
"83",
"85",
"87",
"88",
"89",
"90",
"91",
"94",
"97",
"98",
"99",
"100",
"101",
"103",
"105",
"107",
"109",
"110",
"111"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A001222",
"A008284",
"A026424",
"A056239",
"A058398",
"A067538",
"A112798",
"A307683",
"A316413",
"A325347",
"A326567",
"A326568",
"A326622",
"A327473",
"A327482",
"A328966",
"A348551",
"A349156",
"A359889",
"A359890",
"A359893",
"A359901",
"A359902",
"A359903",
"A359905",
"A359906",
"A359908",
"A359912",
"A360005",
"A360006",
"A360009"
] | null | Gus Wiseman, Jan 24 2023 | 2023-01-24T12:35:30 | oeisdata/seq/A360/A360009.seq | 175ad838ef8655fd317809fd4d868405 |
A360010 | First part of the n-th weakly decreasing triple of positive integers sorted lexicographically. Each n > 0 is repeated A000217(n) times. | [
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8"
] | [
"nonn"
] | 12 | 0 | 5 | [
"A000217",
"A000292",
"A002024",
"A003056",
"A050407",
"A056556",
"A056557",
"A056558",
"A069905",
"A070770",
"A158842",
"A194848",
"A331195",
"A333516",
"A360010",
"A360240"
] | null | Gus Wiseman, Feb 11 2023 | 2024-11-05T12:19:11 | oeisdata/seq/A360/A360010.seq | 889412ecc4379856607abd138880561f |
A360011 | Integers k such that the product of the first k primes is a Niven number. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"9",
"11",
"13",
"14",
"15",
"16",
"18",
"19",
"21",
"22",
"27",
"28",
"30",
"31",
"32",
"34",
"35",
"36",
"38",
"39",
"46",
"47",
"49",
"50",
"52",
"54",
"55",
"57",
"58",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"69",
"70",
"74",
"75",
"77",
"78",
"79",
"80",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"97",
"98",
"99",
"100"
] | [
"nonn",
"base"
] | 17 | 0 | 5 | [
"A002110",
"A005349",
"A359960",
"A360011"
] | null | Michel Marcus, Jan 21 2023 | 2023-01-21T09:33:20 | oeisdata/seq/A360/A360011.seq | 6284f2e72c672a087f976c0d065a4419 |
A360012 | a(n) is the number of triples (u,v,w) of divisors of n with u/v = v/w, and u < v < w. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"4",
"0",
"2",
"0",
"2",
"0",
"0",
"0",
"4",
"1",
"0",
"2",
"2",
"0",
"0",
"0",
"6",
"0",
"0",
"0",
"8",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"8",
"1",
"2",
"0",
"2",
"0",
"4",
"0",
"4",
"0",
"0",
"0",
"4",
"0",
"0",
"2",
"9",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"14",
"0",
"0",
"2",
"2",
"0",
"0",
"0",
"8",
"4",
"0",
"0",
"4",
"0",
"0",
"0"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A002620",
"A005059",
"A091009",
"A132345",
"A360012"
] | null | Rémy Sigrist, Jan 21 2023 | 2023-01-22T16:02:36 | oeisdata/seq/A360/A360012.seq | 93f01d5f2500b80df24821b75d158f9d |
A360013 | Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents. | [
"2",
"4",
"8",
"12",
"16",
"20",
"24",
"28",
"32",
"40",
"44",
"48",
"52",
"56",
"60",
"64",
"68",
"72",
"76",
"80",
"84",
"88",
"92",
"96",
"104",
"112",
"116",
"120",
"124",
"128",
"132",
"136",
"140",
"144",
"148",
"152",
"156",
"160",
"164",
"168",
"172",
"176",
"184",
"188",
"192",
"200",
"204",
"208",
"212",
"220",
"224",
"228",
"232",
"236",
"240",
"244",
"248",
"256"
] | [
"nonn",
"easy"
] | 45 | 0 | 5 | [
"A000079",
"A000265",
"A001222",
"A002865",
"A007814",
"A051903",
"A056911",
"A118914",
"A124010",
"A241131",
"A327473",
"A327476",
"A335738",
"A356862",
"A359178",
"A360013",
"A360014",
"A360015",
"A362605",
"A362606",
"A362608",
"A362610",
"A362611",
"A362612",
"A362613",
"A362614",
"A362615",
"A362616",
"A363486",
"A363487",
"A363723",
"A363727",
"A364061",
"A364062",
"A364160",
"A364193"
] | null | Amiram Eldar, Jan 21 2023 | 2024-07-17T09:58:51 | oeisdata/seq/A360/A360013.seq | c3498830a2285dfb887fff768c914d57 |
A360014 | Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximum of the other exponents. | [
"1",
"6",
"10",
"14",
"22",
"26",
"30",
"34",
"36",
"38",
"42",
"46",
"58",
"62",
"66",
"70",
"74",
"78",
"82",
"86",
"94",
"100",
"102",
"106",
"110",
"114",
"118",
"122",
"130",
"134",
"138",
"142",
"146",
"154",
"158",
"166",
"170",
"174",
"178",
"180",
"182",
"186",
"190",
"194",
"196",
"202",
"206",
"210",
"214",
"216",
"218",
"222",
"226",
"230",
"238",
"246",
"252"
] | [
"nonn",
"easy"
] | 9 | 0 | 5 | [
"A000265",
"A007814",
"A039956",
"A051903",
"A067259",
"A360013",
"A360014",
"A360015"
] | null | Amiram Eldar, Jan 21 2023 | 2023-01-23T02:33:02 | oeisdata/seq/A360/A360014.seq | 59f3581045f249e5961dc299ec6c6411 |
A360015 | Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximal exponent. | [
"1",
"2",
"4",
"6",
"8",
"10",
"12",
"14",
"16",
"20",
"22",
"24",
"26",
"28",
"30",
"32",
"34",
"36",
"38",
"40",
"42",
"44",
"46",
"48",
"52",
"56",
"58",
"60",
"62",
"64",
"66",
"68",
"70",
"72",
"74",
"76",
"78",
"80",
"82",
"84",
"86",
"88",
"92",
"94",
"96",
"100",
"102",
"104",
"106",
"110",
"112",
"114",
"116",
"118",
"120",
"122",
"124",
"128",
"130",
"132",
"134",
"136",
"138"
] | [
"nonn",
"easy"
] | 28 | 0 | 5 | [
"A000079",
"A000265",
"A001222",
"A002865",
"A007814",
"A027746",
"A051903",
"A056239",
"A056911",
"A112798",
"A241131",
"A327473",
"A327476",
"A356862",
"A359178",
"A360013",
"A360014",
"A360015",
"A362605",
"A362611",
"A362613",
"A362614",
"A363486",
"A364061",
"A364062",
"A364158",
"A364159"
] | null | Amiram Eldar, Jan 21 2023 | 2023-07-30T01:35:13 | oeisdata/seq/A360/A360015.seq | b608505ab0f99526cf46c5cacff3cec5 |
A360016 | Number of partitions of 4*n into four odd primes (p_1, p_2, p_3, p_4) (p_1 < p_2 <= p_3 < p_4 and p_1 + p_4 = p_2 + p_3 = 2*n) such that (p_1, p_2) and (p_3, p_4) are consecutive pairs of prime numbers with the same difference, d = p_2 - p_1 = p_4 - p_3, and (p_1, p_3), (p_2, p_4) are also consecutive pairs of prime numbers with the same difference, D = p_3 - p_1 = p_4 - p_2. | [
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"3",
"0"
] | [
"nonn",
"easy"
] | 34 | 0 | 5 | [
"A001359",
"A006512",
"A023200",
"A023201",
"A046117",
"A046132",
"A360016"
] | null | Naohiro Nomoto, Jan 21 2023 | 2023-02-16T05:29:06 | oeisdata/seq/A360/A360016.seq | ed7f5919fd8af9fca12590560ea61107 |
A360017 | Nonsquarefree numbers k such that k - d is also a nonsquarefree number for all proper divisors d of k. | [
"25",
"50",
"125",
"169",
"243",
"289",
"325",
"343",
"351",
"361",
"425",
"605",
"625",
"725",
"729",
"841",
"845",
"925",
"1025",
"1053",
"1325",
"1369",
"1445",
"1450",
"1525",
"1625",
"1681",
"1825",
"1850",
"2125",
"2197",
"2225",
"2401",
"2425",
"2525",
"2725",
"2809",
"2825",
"2873",
"3125",
"3425",
"3625",
"3721",
"3725",
"3757",
"3872",
"3925",
"4205",
"4225",
"4325",
"4525"
] | [
"nonn"
] | 26 | 0 | 5 | [
"A013929",
"A027751",
"A360017"
] | null | Juri-Stepan Gerasimov, Jan 21 2023 | 2023-02-11T20:31:47 | oeisdata/seq/A360/A360017.seq | 1533c0fa6981d3e694794a3fcaa44bb2 |
A360018 | Expansion of Sum_{k>=0} (k * x * (1 + (k * x)^2))^k. | [
"1",
"1",
"4",
"28",
"288",
"3854",
"63104",
"1220729",
"27248128",
"689446671",
"19501121536",
"609753349945",
"20883798220800",
"777529328875208",
"31266494467227648",
"1350520199148276667",
"62360172065142341632",
"3065369553470816704832",
"159818389764050045894656"
] | [
"nonn"
] | 26 | 0 | 5 | [
"A360018",
"A360032",
"A360618",
"A360730"
] | null | Seiichi Manyama, Feb 19 2023 | 2023-02-20T06:13:39 | oeisdata/seq/A360/A360018.seq | 67c89f3b22b9c41ea95ffb14e5094ddc |
A360019 | Lexicographically earliest increasing sequence of positive numbers in which no nonempty subsequence of consecutive terms sums to a triangular number. | [
"2",
"5",
"7",
"11",
"12",
"14",
"16",
"17",
"18",
"19",
"20",
"22",
"25",
"26",
"30",
"31",
"34",
"35",
"37",
"42",
"46",
"49",
"52",
"54",
"59",
"63",
"64",
"68",
"72",
"73",
"77",
"80",
"81",
"84",
"85",
"87",
"92",
"93",
"94",
"98",
"100",
"101",
"108",
"113",
"115",
"117",
"118",
"121",
"122",
"123",
"125",
"129",
"130",
"132",
"133",
"134",
"141",
"142",
"143",
"146",
"149"
] | [
"nonn"
] | 35 | 0 | 5 | [
"A000217",
"A084833",
"A332941",
"A360019"
] | null | Ctibor O. Zizka, Jan 21 2023 | 2023-01-22T17:48:05 | oeisdata/seq/A360/A360019.seq | ebc4c69d1f894e4ae59c8d6ccac908f8 |
A360020 | Irregular triangle T(n, k), n > 0, k = 1..A056137(A009023(n)), read by rows: T(n, k) is the square root of A009023(n)^2 + A359805(n, k)^2. | [
"5",
"10",
"13",
"15",
"17",
"20",
"25",
"29",
"25",
"26",
"30",
"35",
"34",
"40",
"37",
"39",
"45",
"41",
"50",
"58",
"55",
"51",
"53",
"50",
"52",
"60",
"65",
"73",
"65",
"70",
"61",
"65",
"68",
"75",
"65",
"87",
"80",
"85",
"74",
"75",
"78",
"90",
"97",
"85",
"95",
"85",
"82",
"89",
"100",
"85",
"91",
"105",
"116",
"110",
"102",
"106",
"109",
"115",
"100",
"104",
"120",
"101"
] | [
"nonn",
"look",
"tabf"
] | 13 | 0 | 5 | [
"A000196",
"A009023",
"A056137",
"A359805",
"A360020"
] | null | Rémy Sigrist, Mar 08 2023 | 2023-03-13T05:52:07 | oeisdata/seq/A360/A360020.seq | 77b0625378c6e501b1ba1828a9c7921e |
A360021 | Number of unordered triples of self-avoiding paths with nodes that cover all vertices of a convex n-gon; one-node paths are allowed. | [
"1",
"6",
"45",
"315",
"2205",
"15624",
"111888",
"807840",
"5868720",
"42799680",
"312504192",
"2278418688",
"16549827840",
"119567831040",
"858293084160",
"6118081708032",
"43298650386432",
"304260332175360",
"2123395686236160",
"14722247331348480",
"101446590051975168",
"695007859780878336",
"4735844958575001600"
] | [
"nonn",
"easy"
] | 17 | 0 | 5 | [
"A359405",
"A360021"
] | null | Ivaylo Kortezov, Jan 22 2023 | 2023-02-11T20:31:58 | oeisdata/seq/A360/A360021.seq | 94004db8e724a9bc6bfa45469ef971b6 |
A360022 | Triangle read by rows: T(n,k) is the sum of the widths of the k-th diagonals of the symmetric representation of sigma(n). | [
"1",
"1",
"2",
"0",
"2",
"2",
"1",
"2",
"2",
"2",
"0",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"0",
"0",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"0",
"0",
"2",
"2",
"2",
"2",
"2",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2"
] | [
"nonn",
"tabl"
] | 37 | 0 | 5 | [
"A000079",
"A000203",
"A000396",
"A007395",
"A040000",
"A065091",
"A067742",
"A196020",
"A235791",
"A236104",
"A237270",
"A237271",
"A237591",
"A237593",
"A245092",
"A249351",
"A250068",
"A250070",
"A262626",
"A360022"
] | null | Omar E. Pol, Jan 22 2023 | 2023-02-05T13:49:16 | oeisdata/seq/A360/A360022.seq | 518068c629c5284c1088ab3b7f39ebf8 |
A360023 | Expansion of e.g.f. x*exp(x)*(cosh(x))^2. | [
"0",
"1",
"2",
"9",
"28",
"105",
"366",
"1281",
"4376",
"14769",
"49210",
"162393",
"531444",
"1727193",
"5580134",
"17936145",
"57395632",
"182948577",
"581130738",
"1840247337",
"5811307340",
"18305618121",
"57531942622",
"180441092769",
"564859072968",
"1765184603025",
"5507375961386",
"17157594341241",
"53379182394916",
"165856745298489"
] | [
"nonn",
"easy"
] | 41 | 0 | 5 | [
"A122983",
"A360023",
"A360035",
"A360036"
] | null | Enrique Navarrete, Jan 22 2023 | 2023-02-20T14:51:17 | oeisdata/seq/A360/A360023.seq | e7632bf7e418c3e320ff7c888be73c5b |
A360024 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n-k,k) * Catalan(k). | [
"1",
"1",
"0",
"-1",
"0",
"3",
"3",
"-5",
"-12",
"5",
"41",
"21",
"-110",
"-165",
"210",
"735",
"-30",
"-2505",
"-2205",
"6555",
"13710",
"-10035",
"-57390",
"-18471",
"185790",
"240793",
"-436317",
"-1276795",
"360302",
"4956495",
"3410749",
"-14776581",
"-26548200",
"28671609",
"124807175",
"14211153",
"-446256722",
"-481156685"
] | [
"sign"
] | 21 | 0 | 5 | [
"A000108",
"A360024",
"A360025",
"A360026",
"A360027"
] | null | Seiichi Manyama, Jan 22 2023 | 2023-01-25T08:21:59 | oeisdata/seq/A360/A360024.seq | 89e6f7638885682c31e2629aba7a55a1 |
A360025 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k) * Catalan(k). | [
"1",
"1",
"1",
"0",
"-1",
"-2",
"-1",
"2",
"7",
"9",
"3",
"-16",
"-39",
"-43",
"9",
"126",
"247",
"199",
"-213",
"-984",
"-1555",
"-756",
"2525",
"7518",
"9593",
"559",
"-24899",
"-56216",
"-55241",
"33150",
"225879",
"407194",
"273199",
"-529745",
"-1938549",
"-2822128",
"-833219",
"6083986",
"15904733",
"18288966",
"-4172187",
"-61154333"
] | [
"sign"
] | 24 | 0 | 5 | [
"A000108",
"A216604",
"A349047",
"A360024",
"A360025",
"A360026",
"A360027"
] | null | Seiichi Manyama, Jan 22 2023 | 2023-01-25T08:23:55 | oeisdata/seq/A360/A360025.seq | d075f75d0ce361461d641d850a51cb5a |
A360026 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * Catalan(k). | [
"1",
"1",
"1",
"1",
"0",
"-1",
"-2",
"-3",
"-2",
"1",
"6",
"13",
"17",
"13",
"-4",
"-39",
"-83",
"-113",
"-92",
"31",
"279",
"605",
"850",
"701",
"-219",
"-2129",
"-4736",
"-6749",
"-5690",
"1569",
"17114",
"38713",
"55957",
"48249",
"-11498",
"-142163",
"-326860",
"-478957",
"-421262",
"84015",
"1210831",
"2829363",
"4197670",
"3762583",
"-601732"
] | [
"sign"
] | 23 | 0 | 5 | [
"A000108",
"A346073",
"A349048",
"A360024",
"A360025",
"A360026",
"A360027"
] | null | Seiichi Manyama, Jan 22 2023 | 2023-01-25T08:25:34 | oeisdata/seq/A360/A360026.seq | 52d5c76347c0708267562b78d32ad459 |
A360027 | a(n) = Sum_{k=0..floor(n/5)} (-1)^k * binomial(n-4*k,k) * Catalan(k). | [
"1",
"1",
"1",
"1",
"1",
"0",
"-1",
"-2",
"-3",
"-4",
"-3",
"0",
"5",
"12",
"21",
"27",
"25",
"10",
"-23",
"-79",
"-149",
"-210",
"-225",
"-143",
"101",
"544",
"1153",
"1783",
"2135",
"1714",
"-81",
"-3735",
"-9263",
"-15724",
"-20603",
"-19490",
"-6485",
"24242",
"75307",
"140955",
"200891",
"215530",
"126527",
"-132122",
"-605687"
] | [
"sign"
] | 24 | 0 | 5 | [
"A000108",
"A346074",
"A360024",
"A360025",
"A360026",
"A360027"
] | null | Seiichi Manyama, Jan 22 2023 | 2023-01-25T08:27:44 | oeisdata/seq/A360/A360027.seq | 4b258e6677e3948d7bdf4c445adde214 |
A360028 | Lexicographically earliest sequence of positive numbers in which no nonempty subsequence of consecutive terms sums to a semiprime. | [
"1",
"1",
"1",
"16",
"1",
"11",
"1",
"11",
"30",
"30",
"79",
"17",
"44",
"28",
"12",
"30",
"150",
"144",
"252",
"304",
"20",
"300",
"132",
"12",
"252",
"234",
"18",
"112",
"32",
"456",
"52",
"520",
"60",
"28",
"120",
"180",
"162",
"2",
"52",
"324",
"42",
"130",
"20",
"60",
"100",
"92",
"132",
"126",
"186",
"184",
"104",
"12",
"104",
"320",
"8",
"12",
"20",
"320",
"104",
"16",
"32",
"208",
"404",
"240",
"300",
"60",
"408"
] | [
"nonn"
] | 20 | 0 | 5 | [
"A001358",
"A332941",
"A360028"
] | null | Ctibor O. Zizka, Jan 22 2023 | 2023-02-15T14:03:32 | oeisdata/seq/A360/A360028.seq | c5f00713b25894093927adaa701c5984 |
A360029 | Consider a ruler composed of n segments with lengths 1, 1/2, 1/3, ..., 1/n with total length A001008(n)/A002805(n). a(n) is the minimum number of distinct distances of all pairs of marks that can be achieved by permuting the positions of the segments. | [
"1",
"3",
"6",
"10",
"15",
"18",
"25",
"33",
"42",
"52",
"63",
"71",
"84",
"98",
"107",
"123",
"140",
"152",
"171",
"185",
"198",
"220",
"243",
"256",
"281",
"307",
"334",
"354",
"383",
"403",
"434",
"466",
"489",
"523",
"552",
"581",
"618",
"656",
"695",
"728"
] | [
"nonn",
"hard",
"more"
] | 25 | 0 | 5 | [
"A000217",
"A001008",
"A002805",
"A003022",
"A360029"
] | null | Hugo Pfoertner, Jan 22 2023 | 2023-02-19T09:17:12 | oeisdata/seq/A360/A360029.seq | cda8d2f727971d262a07f060a1ad449b |
A360030 | a(n) is the minimum number of equal resistors needed in an electrical network so that n nodes can be selected in this network such that there are n*(n-1)/2 distinct resistances 0 < R < oo between the selected nodes. | [
"1",
"3",
"5",
"8",
"10",
"11",
"12"
] | [
"nonn",
"more"
] | 9 | 0 | 5 | [
"A219158",
"A342558",
"A348020",
"A360030"
] | null | Hugo Pfoertner and Rainer Rosenthal, Feb 12 2023 | 2023-02-18T08:08:25 | oeisdata/seq/A360/A360030.seq | b918a5bc083754a16550f21b576718af |
A360031 | a(n) is the number of unlabeled 2-connected graphs with n edges containing at least one pair of nodes with resistance distance 1 when all edges are replaced by unit resistors. | [
"0",
"1",
"1",
"1",
"2",
"5",
"14",
"35",
"111",
"341",
"1130",
"3969",
"15002",
"58429",
"239045",
"1012241"
] | [
"nonn",
"more"
] | 6 | 0 | 5 | [
"A010355",
"A339070",
"A342558",
"A360030",
"A360031"
] | null | Hugo Pfoertner, Mar 11 2023 | 2023-03-31T09:17:34 | oeisdata/seq/A360/A360031.seq | 00df85122c8347889d269cd22f8bd5c5 |
A360032 | Expansion of Sum_{k>=0} (k * x * (1 + (k * x)^3))^k. | [
"1",
"1",
"4",
"27",
"257",
"3189",
"48843",
"889079",
"18730597",
"447945714",
"11983618199",
"354519428597",
"11490618543066",
"404910044246256",
"15412461332440829",
"630199633730994675",
"27548323149955792880",
"1282044807268698303751",
"63284535745130267484867"
] | [
"nonn"
] | 19 | 0 | 5 | [
"A360018",
"A360032",
"A360618",
"A360731"
] | null | Seiichi Manyama, Feb 19 2023 | 2023-02-19T09:21:09 | oeisdata/seq/A360/A360032.seq | 9a0b33e14d09bb51302c98d8acf2e6c3 |
A360033 | Table T(n,k), n >= 1 and k >= 0, read by antidiagonals, related to Jacobsthal numbers A001045. | [
"1",
"2",
"1",
"3",
"3",
"3",
"4",
"5",
"7",
"5",
"5",
"7",
"11",
"13",
"11",
"6",
"9",
"15",
"21",
"27",
"21",
"7",
"11",
"19",
"29",
"43",
"53",
"43",
"8",
"13",
"23",
"37",
"59",
"85",
"107",
"85",
"9",
"15",
"27",
"45",
"75",
"117",
"171",
"213",
"171",
"10",
"17",
"31",
"53",
"91",
"149",
"235",
"341",
"427",
"341",
"11",
"19",
"35",
"61",
"107",
"181",
"299",
"469"
] | [
"nonn",
"tabl",
"easy"
] | 11 | 0 | 5 | [
"A000027",
"A001045",
"A004767",
"A004770",
"A005408",
"A048573",
"A062092",
"A106839",
"A360033"
] | null | Philippe Deléham, Jan 22 2023 | 2023-02-04T11:10:11 | oeisdata/seq/A360/A360033.seq | 248fd11d62b2f50cd837101673efad31 |
A360034 | Binary representation of -n in base i-1. | [
"0",
"11101",
"11100",
"10001",
"10000",
"11001101",
"11001100",
"11000001",
"11000000",
"11011101",
"11011100",
"11010001",
"11010000",
"1110100001101",
"1110100001100",
"1110100000001",
"1110100000000",
"1110100011101",
"1110100011100",
"1110100010001",
"1110100010000",
"1110111001101",
"1110111001100",
"1110111000001"
] | [
"nonn",
"base",
"easy"
] | 16 | 0 | 5 | [
"A256441",
"A271472",
"A360034"
] | null | Jianing Song, Jan 22 2023 | 2023-01-23T16:18:14 | oeisdata/seq/A360/A360034.seq | 2ceeeafe84b7e73c7db6ebc6cf064caf |
A360035 | Expansion of e.g.f. x*exp(x)*cosh(x)*sinh(x). | [
"0",
"0",
"2",
"6",
"28",
"100",
"366",
"1274",
"4376",
"14760",
"49210",
"162382",
"531444",
"1727180",
"5580134",
"17936130",
"57395632",
"182948560",
"581130738",
"1840247318",
"5811307340",
"18305618100",
"57531942622",
"180441092746",
"564859072968",
"1765184603000",
"5507375961386",
"17157594341214",
"53379182394916"
] | [
"nonn",
"easy"
] | 27 | 0 | 5 | [
"A015518",
"A360023",
"A360035",
"A360036"
] | null | Enrique Navarrete, Jan 22 2023 | 2023-02-12T15:19:11 | oeisdata/seq/A360/A360035.seq | 2ef48a64591f803f2dff193c66c5efcf |
A360036 | Expansion of e.g.f. x*exp(x)*(sinh(x))^2. | [
"0",
"0",
"0",
"6",
"24",
"100",
"360",
"1274",
"4368",
"14760",
"49200",
"162382",
"531432",
"1727180",
"5580120",
"17936130",
"57395616",
"182948560",
"581130720",
"1840247318",
"5811307320",
"18305618100",
"57531942600",
"180441092746",
"564859072944",
"1765184603000",
"5507375961360",
"17157594341214",
"53379182394888"
] | [
"nonn",
"easy"
] | 25 | 0 | 5 | [
"A015518",
"A081251",
"A360023",
"A360035",
"A360036"
] | null | Enrique Navarrete, Jan 22 2023 | 2023-02-12T15:19:02 | oeisdata/seq/A360/A360036.seq | 6ec567a7de0df38d7dffb575a85577aa |
A360037 | Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 2, 2, 2, ..., n, n, n] into k nonempty subsets, for 3 <= k <= 3n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"10",
"13",
"7",
"3",
"1",
"1",
"14",
"92",
"221",
"249",
"172",
"81",
"25",
"6",
"1",
"1",
"50",
"872",
"4277",
"8806",
"9840",
"6945",
"3377",
"1206",
"325",
"65",
"10",
"1",
"1",
"186",
"8496",
"85941",
"320320",
"585960",
"627838",
"442321",
"221475",
"82985",
"24038",
"5496",
"995",
"140",
"15",
"1"
] | [
"nonn",
"tabf"
] | 28 | 0 | 5 | [
"A098233",
"A165434",
"A360037",
"A360038",
"A360039"
] | null | Marko Riedel, Jan 22 2023 | 2023-05-07T04:10:10 | oeisdata/seq/A360/A360037.seq | 3e84c518fc28463675b81230ed136040 |
A360038 | Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 2, 2, 2, 2, ..., n, n, n, n] into k nonempty subsets, for 4 <= k <= 4n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"11",
"19",
"22",
"13",
"7",
"3",
"1",
"1",
"14",
"117",
"445",
"873",
"1002",
"805",
"483",
"226",
"81",
"25",
"6",
"1",
"1",
"51",
"1387",
"12567",
"47986",
"96620",
"120970",
"104942",
"67901",
"34385",
"14150",
"4817",
"1371",
"325",
"65",
"10",
"1",
"1",
"201",
"18171",
"396571",
"3053216",
"11003801",
"22360580",
"29114463",
"26607981",
"18227245",
"9816458",
"4301588",
"1572206",
"487670",
"129880",
"29828",
"5901",
"995",
"140",
"15",
"1"
] | [
"nonn",
"tabf"
] | 15 | 0 | 5 | [
"A098233",
"A165435",
"A360037",
"A360038",
"A360039"
] | null | Marko Riedel, Jan 22 2023 | 2023-01-25T16:26:47 | oeisdata/seq/A360/A360038.seq | 8e41f3872d1f6dd9c1bd17abe5e3799c |
A360039 | Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, ..., n, n, n, n, n] into k nonempty subsets, for 5 <= k <= 5n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"11",
"22",
"32",
"34",
"22",
"13",
"7",
"3",
"1",
"1",
"14",
"123",
"611",
"1703",
"2916",
"3371",
"2935",
"2046",
"1171",
"561",
"226",
"81",
"25",
"6",
"1",
"1",
"51",
"1622",
"22172",
"134766",
"430780",
"838335",
"1110757",
"1086681",
"831650",
"519000",
"272212",
"122736",
"48255",
"16670",
"5087",
"1371",
"325",
"65",
"10",
"1",
"1",
"202",
"25223",
"975478",
"13471057",
"84718407",
"290637504",
"619325134"
] | [
"nonn",
"tabf"
] | 15 | 0 | 5 | [
"A098233",
"A165436",
"A360037",
"A360038",
"A360039"
] | null | Marko Riedel, Jan 22 2023 | 2023-01-25T16:26:42 | oeisdata/seq/A360/A360039.seq | a8efa31d473c52f2ae4c692ca261f015 |
A360040 | Prime numbers missing from A359136: prime numbers for which none of the nontrivial permutations of its digits (permitting leading zeros) produces a prime number. | [
"2",
"3",
"5",
"7",
"19",
"23",
"29",
"41",
"43",
"47",
"53",
"59",
"61",
"67",
"83",
"89",
"257",
"263",
"269",
"409",
"431",
"487",
"523",
"541",
"827",
"829",
"853",
"859",
"2861",
"4027",
"4801",
"5209",
"5623",
"5849"
] | [
"nonn",
"base",
"fini",
"full"
] | 10 | 0 | 5 | [
"A359136",
"A359137",
"A360040",
"A360041"
] | null | Rémy Sigrist, Jan 23 2023 | 2023-01-23T09:10:19 | oeisdata/seq/A360/A360040.seq | 32470a301009d7129052d5933db708d1 |
A360041 | Prime numbers missing from A359137: prime numbers for which none of the nontrivial permutations of its digits (not permitting leading zeros) produces a prime number. | [
"2",
"3",
"5",
"7",
"19",
"23",
"29",
"41",
"43",
"47",
"53",
"59",
"61",
"67",
"83",
"89",
"103",
"109",
"257",
"263",
"269",
"307",
"401",
"409",
"431",
"487",
"503",
"509",
"523",
"541",
"601",
"607",
"809",
"827",
"829",
"853",
"859",
"2017",
"2087",
"2861",
"4027",
"4051",
"4079",
"4801",
"5021",
"5209",
"5623",
"5849",
"6047",
"6053",
"6803",
"8053",
"8059"
] | [
"nonn",
"base",
"fini",
"full"
] | 9 | 0 | 5 | [
"A359136",
"A359137",
"A360040",
"A360041"
] | null | Rémy Sigrist, Jan 23 2023 | 2023-01-23T09:10:00 | oeisdata/seq/A360/A360041.seq | 4448eb91dac6bc4752772af782eed380 |
A360042 | Number of vertices in a Farey fan of order n. | [
"4",
"6",
"11",
"17",
"29",
"39",
"59",
"79",
"107",
"133",
"175",
"213",
"271",
"323",
"385",
"451",
"541",
"621",
"731",
"835",
"955",
"1073",
"1225",
"1367",
"1541",
"1707",
"1897",
"2087",
"2321",
"2535",
"2801",
"3061",
"3345",
"3625",
"3937",
"4243",
"4609",
"4957",
"5335",
"5713",
"6155",
"6569",
"7055",
"7529",
"8031",
"8531",
"9101",
"9649",
"10265",
"10859"
] | [
"nonn"
] | 18 | 0 | 5 | [
"A005598",
"A005728",
"A174030",
"A359690",
"A359968",
"A359974",
"A360042",
"A360043",
"A360044"
] | null | Scott R. Shannon, N. J. A. Sloane and M. Douglas McIlroy Jan 23 2023 | 2023-01-30T10:34:33 | oeisdata/seq/A360/A360042.seq | 2c855f6d47219d35c135fca88131aa6f |
A360043 | Number of edges in a Farey fan of order n. | [
"4",
"9",
"18",
"30",
"52",
"74",
"112",
"154",
"210",
"268",
"352",
"436",
"552",
"668",
"802",
"948",
"1134",
"1316",
"1546",
"1778",
"2038",
"2306",
"2630",
"2952",
"3326",
"3704",
"4124",
"4556",
"5060",
"5552",
"6126",
"6710",
"7338",
"7978",
"8674",
"9376",
"10174",
"10972",
"11824",
"12692",
"13664",
"14620",
"15690",
"16768",
"17898",
"19048",
"20314",
"21574",
"22944",
"24312"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A005598",
"A005728",
"A174030",
"A359693",
"A359970",
"A359976",
"A360042",
"A360043",
"A360044"
] | null | Scott R. Shannon, N. J. A. Sloane and M. Douglas McIlroy, Jan 23 2023 | 2023-01-24T07:50:16 | oeisdata/seq/A360/A360043.seq | dd35794896b138c589f115d8cbaf527c |
A360044 | Table read by rows: T(n,k) is the number of k-gons, 3<=k<=4, in a Farey fan of order n. | [
"0",
"1",
"4",
"0",
"6",
"2",
"10",
"4",
"14",
"10",
"22",
"14",
"30",
"24",
"42",
"34",
"54",
"50",
"74",
"62",
"94",
"84",
"118",
"106",
"142",
"140",
"178",
"168",
"214",
"204",
"258",
"240",
"302",
"292",
"358",
"338",
"414",
"402",
"478",
"466",
"542",
"542",
"626",
"608",
"710",
"696",
"802",
"784",
"894",
"892",
"1010",
"988",
"1126",
"1102",
"1254",
"1216",
"1382",
"1358",
"1526",
"1492"
] | [
"nonn",
"tabf"
] | 16 | 0 | 5 | [
"A005598",
"A005728",
"A174030",
"A359694",
"A359971",
"A359977",
"A360042",
"A360043",
"A360044"
] | null | Scott R. Shannon, N. J. A. Sloane and M. Douglas McIlroy , Jan 23 2023 | 2023-02-02T12:47:06 | oeisdata/seq/A360/A360044.seq | 4223cab8006cfb4aa561f98b6d68aed4 |
A360045 | a(n) = Sum_{k=0..floor(n/3)} binomial(n+2,3*k+2) * Catalan(k). | [
"1",
"3",
"6",
"11",
"21",
"42",
"86",
"180",
"387",
"852",
"1908",
"4329",
"9933",
"23013",
"53748",
"126386",
"298953",
"710847",
"1698086",
"4073181",
"9806565",
"23689555",
"57401322",
"139475190",
"339767545",
"829638396",
"2030206248",
"4978136133",
"12229451631",
"30095772966",
"74184390468",
"183139941384"
] | [
"nonn"
] | 16 | 0 | 5 | [
"A000108",
"A086615",
"A360045",
"A360046",
"A360047"
] | null | Seiichi Manyama, Jan 23 2023 | 2025-02-06T13:23:26 | oeisdata/seq/A360/A360045.seq | c2d255c163246b4cd7f37e4d42e079fa |
A360046 | a(n) = Sum_{k=0..floor(n/4)} binomial(n+3,4*k+3) * Catalan(k). | [
"1",
"4",
"10",
"20",
"36",
"64",
"120",
"240",
"497",
"1036",
"2158",
"4524",
"9625",
"20816",
"45560",
"100368",
"221915",
"492380",
"1097302",
"2457228",
"5526666",
"12474000",
"28233600",
"64061920",
"145704327",
"332174532",
"758977386",
"1737703780",
"3985847284",
"9157908736",
"21074460512",
"48569746368",
"112096071675"
] | [
"nonn"
] | 17 | 0 | 5 | [
"A000108",
"A086615",
"A360045",
"A360046",
"A360047"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-25T08:32:05 | oeisdata/seq/A360/A360046.seq | 4d3bc6282b76bf770855fb5be6ea8719 |
A360047 | a(n) = Sum_{k=0..floor(n/5)} binomial(n+4,5*k+4) * Catalan(k). | [
"1",
"5",
"15",
"35",
"70",
"127",
"220",
"385",
"715",
"1430",
"3005",
"6400",
"13500",
"28050",
"57800",
"119515",
"250425",
"533525",
"1151975",
"2504700",
"5453176",
"11856275",
"25748450",
"55962300",
"121981725",
"266968938",
"586630515",
"1292992795",
"2855288480",
"6311930460",
"13963767356",
"30919563310"
] | [
"nonn"
] | 17 | 0 | 5 | [
"A000108",
"A086615",
"A360045",
"A360046",
"A360047"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-25T08:34:49 | oeisdata/seq/A360/A360047.seq | f83308d1307531387b80260b0f1bdcc6 |
A360048 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,2*k+1) * Catalan(k). | [
"1",
"2",
"2",
"0",
"-3",
"-2",
"9",
"24",
"11",
"-66",
"-152",
"-8",
"587",
"1082",
"-438",
"-5248",
"-7733",
"7942",
"47502",
"53792",
"-105313",
"-430118",
"-343043",
"1249800",
"3866557",
"1730018",
"-13996096",
"-34243896",
"-1947203",
"150962374",
"296101865",
"-121857184",
"-1582561869",
"-2468098042",
"2529520766"
] | [
"sign"
] | 12 | 0 | 5 | [
"A000108",
"A360048",
"A360049",
"A360050",
"A360051"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-25T08:36:30 | oeisdata/seq/A360/A360048.seq | 00cf2f66cbdc010eb403b60dd0e781ad |
A360049 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+2,3*k+2) * Catalan(k). | [
"1",
"3",
"6",
"9",
"9",
"0",
"-26",
"-72",
"-117",
"-82",
"204",
"975",
"2289",
"3357",
"1332",
"-9834",
"-37935",
"-82593",
"-108282",
"2583",
"487521",
"1621071",
"3261546",
"3685230",
"-2318615",
"-24607854",
"-72887472",
"-134909701",
"-123941901",
"200330184",
"1258932996",
"3377359872",
"5706502677",
"3797618237"
] | [
"sign"
] | 16 | 0 | 5 | [
"A000108",
"A360048",
"A360049",
"A360050",
"A360051"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-11-21T16:29:47 | oeisdata/seq/A360/A360049.seq | 2a196f572aa205e0da7052f0a0de7835 |
A360050 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+3,4*k+3) * Catalan(k). | [
"1",
"4",
"10",
"20",
"34",
"48",
"48",
"0",
"-163",
"-548",
"-1274",
"-2340",
"-3255",
"-2224",
"5304",
"28560",
"82379",
"182300",
"322102",
"410700",
"133128",
"-1295264",
"-5440600",
"-14733680",
"-31384533",
"-52870668",
"-59633454",
"11449780",
"312532426",
"1137823168",
"2918752832",
"5961965824",
"9464314955"
] | [
"sign"
] | 13 | 0 | 5 | [
"A000108",
"A360048",
"A360049",
"A360050",
"A360051"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-25T08:40:18 | oeisdata/seq/A360/A360050.seq | 9cc9eee723b1caf48654f1da33cc1621 |
A360051 | a(n) = Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+4,5*k+4) * Catalan(k). | [
"1",
"5",
"15",
"35",
"70",
"125",
"200",
"275",
"275",
"0",
"-999",
"-3610",
"-9380",
"-20570",
"-39440",
"-65251",
"-85695",
"-56435",
"141735",
"781770",
"2413128",
"5999325",
"12921350",
"24387900",
"39098925",
"46638744",
"11740695",
"-158571665",
"-674961760",
"-1956733020",
"-4724183860",
"-9957286550",
"-18316004575"
] | [
"sign"
] | 13 | 0 | 5 | [
"A000108",
"A360048",
"A360049",
"A360050",
"A360051"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-24T02:56:27 | oeisdata/seq/A360/A360051.seq | 2e012c10c4030421bd5ece64183c7ac1 |
A360052 | Number of length n inversion sequences avoiding the patterns 010 and 201 (or 010 and 210). | [
"1",
"1",
"2",
"5",
"15",
"53",
"214",
"958",
"4650",
"24103",
"131974",
"757011",
"4519321",
"27933252",
"177987808",
"1165057411",
"7811122974",
"53506838952",
"373693431140",
"2656088059747",
"19182588092365",
"140577110057850",
"1044102585724522",
"7851149068600037",
"59714190403840142",
"459001044591439621"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A263777",
"A263779",
"A360052"
] | null | Benjamin Testart, Jan 23 2023 | 2024-07-12T09:51:47 | oeisdata/seq/A360/A360052.seq | f0d3855ef84f2c5ae56dcc5d00907f7b |
A360053 | Primes p such that each prime < p in the prime factorization of 2^(p-1) - 1 has exponent 1. | [
"2",
"3",
"5",
"11",
"17",
"23",
"29",
"47",
"53",
"59",
"71",
"83",
"89",
"107",
"113",
"131",
"149",
"167",
"173",
"179",
"191",
"197",
"227",
"233",
"239",
"251",
"257",
"263",
"269",
"293",
"317",
"347",
"353",
"359",
"383",
"389",
"419",
"431",
"443",
"449",
"467",
"479",
"491",
"503",
"509",
"557",
"563",
"569",
"587",
"593",
"599",
"617",
"647",
"653",
"659",
"677",
"683"
] | [
"nonn"
] | 34 | 0 | 5 | null | null | Alain Rocchelli, Jan 23 2023 | 2023-02-08T13:14:55 | oeisdata/seq/A360/A360053.seq | f81b3231cc14e6ea47b70b28676af8c7 |
A360054 | Number of odd amicable pairs where the smaller term of the pair is less than 10^n. | [
"0",
"0",
"0",
"0",
"3",
"8",
"21",
"55",
"154",
"412",
"1088",
"2632",
"6532",
"15371",
"35218",
"79982",
"180061",
"402560",
"894404",
"1975742"
] | [
"nonn",
"more"
] | 35 | 0 | 5 | [
"A005408",
"A066873",
"A259180",
"A262622",
"A262623",
"A262625",
"A360054"
] | null | Zoltan Galantai, Jan 23 2023 | 2023-01-28T12:23:15 | oeisdata/seq/A360/A360054.seq | 55a8da129a2117fd48cee8366bf5d132 |
A360055 | Number of L-connected free polyominoes with n cells (see comments for definition). | [
"1",
"1",
"1",
"2",
"4",
"7",
"14",
"24",
"48",
"83",
"155",
"265",
"472",
"793",
"1356",
"2235",
"3700",
"5977",
"9636",
"15262",
"24068",
"37439",
"57920",
"88628",
"134838",
"203264",
"304688",
"453126",
"670238",
"984556",
"1438878",
"2089996",
"3021162",
"4343229",
"6215668",
"8851151",
"12550775",
"17716075",
"24907961",
"34873541",
"48644474"
] | [
"nonn"
] | 38 | 0 | 5 | [
"A000105",
"A126764",
"A360055"
] | null | Allan C. Wechsler and John Mason, Jan 23 2023 | 2023-01-28T22:07:24 | oeisdata/seq/A360/A360055.seq | 29ff1a34640b454a6455d0a2edfbf0b0 |
A360056 | a(n) is the position, counted from the right, of the rightmost nonzero value in the n-th nonzero restricted growth string in A239903 and its infinite continuation. | [
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"4",
"1",
"2",
"1",
"1",
"3",
"1"
] | [
"nonn"
] | 37 | 0 | 5 | [
"A239903",
"A360056"
] | null | Italo J Dejter, Jan 23 2023 | 2024-08-05T05:34:58 | oeisdata/seq/A360/A360056.seq | 95e60b896e9ca258ab0dbb1f8d3c8d18 |
A360057 | a(n) = Sum_{k=0..n} binomial(n+4*k+4,n-k) * Catalan(k). | [
"1",
"6",
"27",
"125",
"644",
"3643",
"21974",
"138395",
"898695",
"5970927",
"40386209",
"277127148",
"1924349756",
"13496536510",
"95467320600",
"680260392219",
"4878382821267",
"35182209381590",
"255000022472565",
"1856501085686340",
"13570366067586294",
"99554601986349471",
"732756800760507312"
] | [
"nonn"
] | 28 | 0 | 5 | [
"A000108",
"A086616",
"A162481",
"A358518",
"A360047",
"A360057"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-03-11T08:09:11 | oeisdata/seq/A360/A360057.seq | 5396bb4ce45156653207aa07b626c4c1 |
A360058 | a(n) = Sum_{k=0..n} (-1)^k * binomial(n+2*k+2,n-k) * Catalan(k). | [
"1",
"2",
"2",
"2",
"3",
"3",
"2",
"4",
"5",
"0",
"4",
"13",
"-7",
"-7",
"48",
"-16",
"-93",
"180",
"74",
"-584",
"517",
"1111",
"-2850",
"207",
"8281",
"-10738",
"-11740",
"46967",
"-22167",
"-115845",
"211052",
"94468",
"-766989",
"660110",
"1554938",
"-3983408",
"121429",
"12272689",
"-15692006",
"-18841086",
"72792247",
"-31828764"
] | [
"sign"
] | 27 | 0 | 5 | [
"A000108",
"A162481",
"A360049",
"A360058",
"A360059",
"A360060"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-03-11T08:42:31 | oeisdata/seq/A360/A360058.seq | 6297828710a9181e347141768478b98b |
A360059 | a(n) = Sum_{k=0..n} (-1)^k * binomial(n+3*k+3,n-k) * Catalan(k). | [
"1",
"3",
"4",
"3",
"5",
"12",
"6",
"-13",
"29",
"95",
"-130",
"-304",
"895",
"1050",
"-5068",
"-2181",
"27743",
"-5481",
"-143532",
"117983",
"700831",
"-1074414",
"-3163138",
"7872784",
"12585117",
"-51587107",
"-38040886",
"312988334",
"18178883",
"-1779688404",
"1013771196",
"9485832411",
"-11749675733",
"-46878057651"
] | [
"sign"
] | 25 | 0 | 5 | [
"A000108",
"A358518",
"A360050",
"A360058",
"A360059",
"A360060"
] | null | Seiichi Manyama, Jan 23 2023 | 2024-05-06T22:48:19 | oeisdata/seq/A360/A360059.seq | 31220cead4ecac40b8ba8c41e31c2626 |
A360060 | a(n) = Sum_{k=0..n} (-1)^k * binomial(n+4*k+4,n-k) * Catalan(k). | [
"1",
"4",
"7",
"5",
"4",
"29",
"50",
"-83",
"-185",
"743",
"1425",
"-5250",
"-9868",
"40530",
"73280",
"-319155",
"-557485",
"2573032",
"4341065",
"-21107670",
"-34398290",
"175655925",
"276438452",
"-1479202280",
"-2247154681",
"12581036223",
"18440253397",
"-107916225837",
"-152514334540",
"932452267956",
"1269723550920"
] | [
"sign"
] | 22 | 0 | 5 | [
"A000108",
"A360051",
"A360057",
"A360058",
"A360059",
"A360060"
] | null | Seiichi Manyama, Jan 23 2023 | 2023-01-25T08:13:30 | oeisdata/seq/A360/A360060.seq | 64622d746e739e4210a218d4b30a3a8b |
A360061 | Lexicographically earliest increasing sequence such that a(1) = 2 and for n >= 2, a(1)^2 + a(2)^2 + ... + a(n)^2 is a prime. | [
"2",
"3",
"4",
"12",
"48",
"54",
"66",
"138",
"144",
"162",
"168",
"180",
"198",
"234",
"252",
"264",
"330",
"360",
"366",
"372",
"402",
"420",
"444",
"462",
"480",
"534",
"546",
"552",
"564",
"576",
"600",
"630",
"642",
"678",
"702",
"744",
"756",
"846",
"852",
"858",
"882",
"966",
"1008",
"1206",
"1242",
"1254",
"1266",
"1272",
"1296",
"1302",
"1338",
"1650"
] | [
"easy",
"nonn"
] | 37 | 0 | 5 | [
"A051935",
"A137326",
"A360061"
] | null | Win Wang, Jan 23 2023 | 2025-02-03T09:37:03 | oeisdata/seq/A360/A360061.seq | 315ca4947442aa42e08b1ce1f03d6852 |
A360062 | Triangle read by rows: T(m,n) is the number of spanning trees in the graph whose nodes are the integer lattice points (x,y) with 0 <= x < m and 0 <= y < n, and with an edge between two nodes if there is no other integer lattice point on the line segment between them; 1 <= n <= m. | [
"1",
"1",
"16",
"1",
"576",
"496125",
"1",
"41616",
"1830420480",
"375297659043840",
"1",
"5085025",
"10361547386325",
"166557643451782840320",
"5885897714143664700439342125",
"1",
"945193536",
"144188666818560000",
"258848560805325726352932864",
"1192037309255692352595217996892160000",
"36939045170346949681155330481716034613142893328"
] | [
"nonn",
"tabl"
] | 9 | 0 | 5 | [
"A116469",
"A247943",
"A360062",
"A360063"
] | null | Pontus von Brömssen, Jan 24 2023 | 2023-01-28T15:46:45 | oeisdata/seq/A360/A360062.seq | 1409d0b12c86b0a878261b006798d174 |
A360063 | Triangle read by rows: T(m,n) is the number of Hamiltonian cycles in the graph whose nodes are the integer lattice points (x,y) with 0 <= x < m and 0 <= y < n, and with an edge between two nodes if there is no other integer lattice point on the line segment between them; 1 <= n <= m. | [
"0",
"0",
"3",
"0",
"24",
"1152",
"0",
"354",
"436416",
"2595450592",
"0",
"8138",
"129422880"
] | [
"nonn",
"tabl",
"more"
] | 14 | 0 | 5 | [
"A247943",
"A247944",
"A321172",
"A360062",
"A360063"
] | null | Pontus von Brömssen, Jan 24 2023 | 2023-02-18T08:07:35 | oeisdata/seq/A360/A360063.seq | 115aff8b542bb83d9472dc51816dcda6 |
A360064 | Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes and trominos (L-shaped connection of 3 cubes). | [
"1",
"5",
"89",
"1177",
"16873",
"237977",
"3366793",
"47599097",
"673035625",
"9516252633",
"134553882441",
"1902506043833",
"26900227288361",
"380352114739609",
"5377937177440009",
"76040613721296249",
"1075165950495479017",
"15202163218500810073",
"214948926180739194569"
] | [
"nonn",
"easy"
] | 18 | 0 | 5 | [
"A001045",
"A006253",
"A033516",
"A335559",
"A359885",
"A359886",
"A360064",
"A360065",
"A360066"
] | null | Gerhard Kirchner, Jan 30 2023 | 2024-10-02T07:30:40 | oeisdata/seq/A360/A360064.seq | 940e397d6dc6cafa694ae9ba596ffce8 |
A360065 | Number of 3-dimensional tilings of a 2 X 2 X n box using 2 X 1 X 1 dominos and trominos (L-shaped connection of 3 cubes). | [
"1",
"2",
"45",
"412",
"4705",
"50374",
"549109",
"5955544",
"64683649",
"702259786",
"7625147293",
"82791470836",
"898931464993",
"9760376329678",
"105975828745957",
"1150659965697328",
"12493588746237697",
"135652375422278290",
"1472880803124594061",
"15992184812239930060",
"173639288800074705121"
] | [
"nonn",
"easy"
] | 16 | 0 | 5 | [
"A001045",
"A006253",
"A033516",
"A335559",
"A359884",
"A359885",
"A360064",
"A360065",
"A360066"
] | null | Gerhard Kirchner, Jan 30 2023 | 2024-10-02T10:52:56 | oeisdata/seq/A360/A360065.seq | a19de5b69a176532172b4e3435206f7e |
A360066 | Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes, 2 X 1 X 1 dominos and trominos (L-shaped connection of 3 cubes). | [
"1",
"11",
"444",
"13311",
"422617",
"13265660",
"417336617",
"13123557903",
"412719195520",
"12979269602143",
"408175860119021",
"12836425011761592",
"403683424226081169",
"12695147020245034099",
"399240466722076292612",
"12555423726269799691295",
"394846409914451855949249"
] | [
"nonn"
] | 16 | 0 | 5 | [
"A001045",
"A006253",
"A033516",
"A335559",
"A359884",
"A359885",
"A360064",
"A360065",
"A360066"
] | null | Gerhard Kirchner, Jan 30 2023 | 2024-03-03T17:17:41 | oeisdata/seq/A360/A360066.seq | 7efbf9a5957efa946f251d1e9f6825e0 |
A360067 | a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j). | [
"1",
"0",
"2",
"12",
"2304",
"898560",
"4827340800",
"143219736576000",
"49230909076930560000",
"149334225705682285363200000",
"5482643392499167214520238080000000",
"2322479608280149573505226859610112000000000",
"13283541711093841017468807905468592685056000000000000"
] | [
"nonn"
] | 23 | 0 | 5 | [
"A000178",
"A060238",
"A089064",
"A152653",
"A174890",
"A176001",
"A176005",
"A360067"
] | null | José María Grau Ribas, Jan 24 2023 | 2024-04-19T07:11:55 | oeisdata/seq/A360/A360067.seq | 00be38947a8ef64259140bf0b7113bd7 |
A360068 | Number of integer partitions of n such that the parts have the same mean as the multiplicities. | [
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"6",
"0",
"0",
"0",
"6",
"0",
"7",
"0",
"1",
"0",
"0",
"0",
"0",
"90",
"0",
"63",
"0",
"0",
"0",
"0",
"11",
"0",
"0",
"0",
"436",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2157",
"0",
"0",
"240",
"1595",
"22",
"0",
"0",
"0",
"6464",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"11628",
"4361",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"12927",
"0",
"0",
"621",
"0"
] | [
"nonn"
] | 15 | 0 | 5 | [
"A000009",
"A000041",
"A008284",
"A058398",
"A067340",
"A067538",
"A082550",
"A088529",
"A088530",
"A112798",
"A124010",
"A240219",
"A316313",
"A326567",
"A326568",
"A327475",
"A327482",
"A349156",
"A359893",
"A359897",
"A359903",
"A359904",
"A359905",
"A360068",
"A360069",
"A360070"
] | null | Gus Wiseman, Jan 27 2023 | 2024-07-09T20:44:10 | oeisdata/seq/A360/A360068.seq | 224b4fbdc5a77dce960540754e1cba1f |
A360069 | Number of integer partitions of n whose multiset of multiplicities has integer mean. | [
"0",
"1",
"2",
"3",
"4",
"5",
"9",
"9",
"13",
"16",
"25",
"26",
"39",
"42",
"62",
"67",
"95",
"107",
"147",
"168",
"225",
"245",
"327",
"381",
"471",
"565",
"703",
"823",
"1038",
"1208",
"1443",
"1743",
"2088",
"2439",
"2937",
"3476",
"4163",
"4921",
"5799",
"6825",
"8109",
"9527",
"11143",
"13122",
"15402",
"17887",
"20995",
"24506",
"28546",
"33234",
"38661"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A051293",
"A058398",
"A067340",
"A067538",
"A082550",
"A088529",
"A088530",
"A102627",
"A124010",
"A240219",
"A316313",
"A316413",
"A325347",
"A326622",
"A326669",
"A327475",
"A327482",
"A328966",
"A349156",
"A359905",
"A360068",
"A360069"
] | null | Gus Wiseman, Jan 27 2023 | 2023-01-29T10:45:06 | oeisdata/seq/A360/A360069.seq | ae683a31fce48283f42fe1f20cf52291 |
A360070 | Numbers for which there exists an integer partition such that the parts have the same mean as the multiplicities. | [
"1",
"4",
"8",
"9",
"12",
"16",
"18",
"20",
"25",
"27",
"32",
"36",
"45",
"48",
"49",
"50",
"54",
"63",
"64",
"72",
"75",
"80",
"81",
"90",
"96",
"98",
"99",
"100",
"108",
"112",
"117",
"121",
"125",
"128",
"144",
"147",
"150",
"160",
"162",
"169",
"175",
"176",
"180",
"192",
"196",
"200",
"208",
"216",
"224",
"225",
"240",
"242",
"243",
"245",
"250",
"252",
"256",
"272"
] | [
"nonn"
] | 18 | 0 | 5 | [
"A000009",
"A000041",
"A005117",
"A008284",
"A058398",
"A067340",
"A067538",
"A088529",
"A088530",
"A112798",
"A124010",
"A240219",
"A316313",
"A326567",
"A326568",
"A327482",
"A349156",
"A359903",
"A359904",
"A359905",
"A360068",
"A360069",
"A360070"
] | null | Gus Wiseman, Jan 27 2023 | 2023-01-29T21:02:11 | oeisdata/seq/A360/A360070.seq | bb26dc372a42d127c1117228ffda0a2a |
A360071 | Regular tetrangle where T(n,k,i) = number of integer partitions of n of length k with i distinct parts. | [
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"3",
"0",
"3",
"1",
"0",
"2",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"tabf"
] | 9 | 0 | 5 | [
"A000009",
"A000041",
"A008284",
"A051731",
"A055884",
"A058398",
"A060016",
"A116608",
"A318393",
"A318816",
"A320808",
"A327482",
"A331195",
"A334433",
"A345197",
"A360010",
"A360069",
"A360071",
"A360072"
] | null | Gus Wiseman, Jan 28 2023 | 2023-01-30T09:15:27 | oeisdata/seq/A360/A360071.seq | 097d699368c04c99a80e64ed27033309 |
A360072 | Number of pairs of positive integers (k,i) such that k >= i and there exists an integer partition of n of length k with i distinct parts. | [
"0",
"1",
"2",
"3",
"5",
"5",
"9",
"9",
"13",
"14",
"18",
"19",
"26",
"25",
"30",
"34",
"39",
"40",
"48",
"48",
"56",
"59",
"64",
"67",
"78",
"78",
"84",
"89",
"97",
"99",
"111",
"111",
"121",
"125",
"131",
"137",
"149",
"149",
"158",
"165",
"176",
"177",
"190",
"191",
"202",
"210",
"216",
"222",
"238",
"239",
"250",
"256",
"266",
"270",
"284",
"289",
"302",
"307",
"316",
"323"
] | [
"nonn"
] | 12 | 0 | 5 | [
"A000005",
"A000009",
"A000041",
"A008284",
"A051731",
"A055884",
"A058398",
"A060016",
"A116608",
"A331195",
"A360010",
"A360071",
"A360072"
] | null | Gus Wiseman, Jan 28 2023 | 2023-01-31T14:19:03 | oeisdata/seq/A360/A360072.seq | 6671af68504d87dc2ca746dafb1fb2ba |
A360073 | a(n) is the greatest divisor of n divisible by the product of its own digits. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"5",
"11",
"12",
"1",
"7",
"15",
"8",
"1",
"9",
"1",
"5",
"7",
"11",
"1",
"24",
"5",
"2",
"9",
"7",
"1",
"15",
"1",
"8",
"11",
"2",
"7",
"36",
"1",
"2",
"3",
"8",
"1",
"7",
"1",
"11",
"15",
"2",
"1",
"24",
"7",
"5",
"3",
"4",
"1",
"9",
"11",
"8",
"3",
"2",
"1",
"15",
"1",
"2",
"9",
"8",
"5",
"11",
"1",
"4",
"3",
"7",
"1",
"36",
"1",
"2",
"15",
"4",
"11",
"6",
"1",
"8",
"9"
] | [
"nonn",
"base",
"easy"
] | 11 | 0 | 5 | [
"A007602",
"A335037",
"A337941",
"A360073",
"A360074"
] | null | Rémy Sigrist, Jan 24 2023 | 2023-01-27T03:13:55 | oeisdata/seq/A360/A360073.seq | 837d91055ddb5e222ff92a259c0ba519 |
A360074 | a(n) is the greatest divisor of n divisible by the sum of its own digits. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"1",
"12",
"1",
"7",
"5",
"8",
"1",
"18",
"1",
"20",
"21",
"2",
"1",
"24",
"5",
"2",
"27",
"7",
"1",
"30",
"1",
"8",
"3",
"2",
"7",
"36",
"1",
"2",
"3",
"40",
"1",
"42",
"1",
"4",
"45",
"2",
"1",
"48",
"7",
"50",
"3",
"4",
"1",
"54",
"5",
"8",
"3",
"2",
"1",
"60",
"1",
"2",
"63",
"8",
"5",
"6",
"1",
"4",
"3",
"70",
"1",
"72",
"1",
"2",
"5",
"4",
"7",
"6",
"1",
"80"
] | [
"nonn",
"base",
"easy"
] | 12 | 0 | 5 | [
"A005349",
"A332268",
"A360073",
"A360074"
] | null | Rémy Sigrist, Jan 24 2023 | 2023-09-04T11:19:30 | oeisdata/seq/A360/A360074.seq | b043a12070395ea761ee24490c7c81b0 |
A360075 | a(n) is the product of the digits of A007602(n), the n-th Zuckerman number. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"1",
"2",
"5",
"8",
"18",
"1",
"2",
"5",
"16",
"6",
"15",
"16",
"35",
"4",
"12",
"16",
"6",
"15",
"96",
"24",
"12",
"48",
"84",
"105",
"48",
"1",
"2",
"3",
"5",
"6",
"3",
"42",
"32",
"63",
"4",
"108",
"3",
"18",
"48",
"24",
"175",
"35",
"4",
"32",
"24",
"108",
"3",
"18",
"144",
"21",
"252",
"18",
"135",
"8",
"64",
"96",
"96",
"288",
"108",
"14",
"63"
] | [
"nonn",
"base"
] | 9 | 0 | 5 | [
"A007602",
"A007954",
"A051801",
"A288069",
"A325454",
"A360075"
] | null | Rémy Sigrist, Jan 24 2023 | 2023-01-27T03:12:48 | oeisdata/seq/A360/A360075.seq | a32df56b159e2b5ec0a4b65c2c1a6246 |
A360076 | a(n) = Sum_{k=0..n} binomial(3*k,n-k) * Catalan(k). | [
"1",
"1",
"5",
"20",
"90",
"430",
"2136",
"10937",
"57307",
"305822",
"1656482",
"9083432",
"50328114",
"281324294",
"1584578746",
"8984740485",
"51242962251",
"293772468164",
"1691974930584",
"9785378133297",
"56805049768157",
"330880419984832",
"1933299689139364",
"11328101469158554"
] | [
"nonn"
] | 28 | 0 | 5 | [
"A000108",
"A052709",
"A073155",
"A099234",
"A360076",
"A360082",
"A360083"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:08:17 | oeisdata/seq/A360/A360076.seq | d4ad15ce00408b7304a1771af4948836 |
A360077 | Odd numbers k such that k mod (k-s) = 1, where s is the greatest square < k. | [
"3",
"7",
"11",
"13",
"19",
"21",
"27",
"29",
"31",
"33",
"41",
"43",
"51",
"53",
"55",
"57",
"61",
"67",
"71",
"73",
"83",
"85",
"89",
"91",
"97",
"103",
"109",
"111",
"123",
"125",
"127",
"129",
"131",
"133",
"141",
"155",
"157",
"171",
"173",
"175",
"177",
"181",
"183",
"193",
"199",
"201",
"209",
"211",
"227",
"229",
"233",
"239",
"241",
"253",
"259",
"261",
"271",
"273",
"291"
] | [
"nonn"
] | 17 | 0 | 5 | [
"A002496",
"A002522",
"A360077"
] | null | Bill McEachen, Jan 24 2023 | 2023-02-13T04:33:49 | oeisdata/seq/A360/A360077.seq | 218f1057c60d14cd46a236c3fbb8a3f4 |
A360078 | Moebius function for the floor quotient poset. | [
"1",
"-1",
"-1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"-2",
"-2",
"-2",
"-2",
"-2",
"-2",
"-1",
"-1",
"-1",
"-1",
"0",
"0",
"-1",
"-1",
"-1",
"-2",
"-2",
"-2",
"-2",
"-3",
"-3",
"-3",
"-3",
"-3",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"0",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
] | [
"sign",
"look"
] | 26 | 0 | 5 | [
"A002321",
"A008683",
"A360078",
"A360079"
] | null | Harry Richman, Jan 24 2023 | 2024-02-14T20:17:56 | oeisdata/seq/A360/A360078.seq | bc48d52deb21fe1ff833ceb62b90aa71 |
A360079 | Finite differences of Moebius function for the floor quotient poset. | [
"1",
"-2",
"0",
"1",
"0",
"1",
"0",
"-1",
"1",
"0",
"0",
"-1",
"0",
"0",
"0",
"1",
"0",
"-2",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"-1",
"0",
"0",
"-1",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"-1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"-2"
] | [
"sign"
] | 16 | 0 | 5 | [
"A002321",
"A008683",
"A360078",
"A360079"
] | null | Harry Richman, Jan 24 2023 | 2024-01-01T19:49:38 | oeisdata/seq/A360/A360079.seq | e8a03c53b6ff3f40434a0c4ba10041c1 |
A360080 | Smallest k such that 2^(2^n) + k is a safe prime. | [
"1",
"7",
"7",
"7",
"91",
"3103",
"12451",
"230191",
"286867",
"1657867",
"10029811",
"29761351",
"22410151",
"98402791",
"167137543"
] | [
"nonn",
"more",
"hard"
] | 22 | 0 | 5 | [
"A005385",
"A013597",
"A013603",
"A058220",
"A181356",
"A335313",
"A350696",
"A360080",
"A360081"
] | null | Mark Andreas, Jan 25 2023 | 2023-01-29T17:52:24 | oeisdata/seq/A360/A360080.seq | 58894e9a0b040e7d94dc6ca05c02e324 |
A360081 | Smallest k such that 2^(3*2^n) + k is a safe prime. | [
"3",
"19",
"31",
"691",
"907",
"2887",
"15943",
"69283",
"216127",
"1108831",
"8344423",
"10976347",
"166965391",
"385465771",
"26580643"
] | [
"nonn",
"more",
"hard"
] | 21 | 0 | 5 | [
"A005385",
"A013597",
"A013603",
"A057821",
"A181356",
"A335313",
"A350696",
"A360080",
"A360081"
] | null | Mark Andreas, Jan 25 2023 | 2023-01-27T15:26:59 | oeisdata/seq/A360/A360081.seq | 926167f30ad0f2000179f457f2037b7e |
A360082 | a(n) = Sum_{k=0..n} binomial(4*k,n-k) * Catalan(k). | [
"1",
"1",
"6",
"27",
"134",
"709",
"3892",
"22004",
"127250",
"749230",
"4476386",
"27071344",
"165398868",
"1019405720",
"6330482488",
"39571612357",
"248796862550",
"1572300095758",
"9981970108384",
"63633339713190",
"407162295120570",
"2614059813642256",
"16834457481559076"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000108",
"A052709",
"A073155",
"A099235",
"A360076",
"A360082",
"A360083"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:08:13 | oeisdata/seq/A360/A360082.seq | c0cab365a988424e9cb2f04476147f67 |
A360083 | a(n) = Sum_{k=0..n} binomial(5*k,n-k) * Catalan(k). | [
"1",
"1",
"7",
"35",
"189",
"1092",
"6538",
"40278",
"253730",
"1626858",
"10582616",
"69669273",
"463319257",
"3107941405",
"21004392887",
"142882885210",
"977562617826",
"6722361860888",
"46438235933700",
"322111000796428",
"2242538435656450",
"15665017062799230",
"109761527468995102"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A000108",
"A052709",
"A073155",
"A360076",
"A360082",
"A360083",
"A360090"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:08:08 | oeisdata/seq/A360/A360083.seq | 9489fd481ed1b0cc8980f3014ce9401d |
A360084 | a(n) = Sum_{k=0..n} (-1)^k * binomial(3*k,n-k) * Catalan(k). | [
"1",
"-1",
"-1",
"4",
"-2",
"-14",
"36",
"-1",
"-191",
"418",
"182",
"-2904",
"5546",
"5226",
"-47466",
"78843",
"121489",
"-813060",
"1157400",
"2659695",
"-14364997",
"17078752",
"56866292",
"-259091498",
"246553176",
"1202210486",
"-4736784794",
"3346401868",
"25255328948",
"-87323306720",
"39123129700"
] | [
"sign"
] | 8 | 0 | 5 | [
"A000108",
"A360084",
"A360085",
"A360086"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:08:04 | oeisdata/seq/A360/A360084.seq | 6bc6e134bb142009f123ae602af04552 |
A360085 | a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k) * Catalan(k). | [
"1",
"-1",
"-2",
"5",
"6",
"-37",
"12",
"236",
"-454",
"-1038",
"5258",
"-688",
"-41780",
"79528",
"212032",
"-1067717",
"99414",
"9232114",
"-17976592",
"-49506598",
"255604634",
"-28864080",
"-2294742268",
"4618754686",
"12550067560",
"-67132100862",
"10660021188",
"612813797856",
"-1280237246540",
"-3357371054108"
] | [
"sign"
] | 7 | 0 | 5 | [
"A000108",
"A360084",
"A360085",
"A360086"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:59 | oeisdata/seq/A360/A360085.seq | 7fb8badb03f0bf550a846295217b97b1 |
A360086 | a(n) = Sum_{k=0..n} (-1)^k * binomial(5*k,n-k) * Catalan(k). | [
"1",
"-1",
"-3",
"5",
"19",
"-52",
"-114",
"570",
"470",
"-6026",
"2156",
"59311",
"-93869",
"-519805",
"1668241",
"3635670",
"-23289426",
"-11134840",
"280455900",
"-238282316",
"-2944763030",
"6683843250",
"25804836482",
"-113673966635",
"-155130413515",
"1570407337023",
"-253144380823",
"-18639853806224"
] | [
"sign"
] | 7 | 0 | 5 | [
"A000108",
"A360084",
"A360085",
"A360086"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:55 | oeisdata/seq/A360/A360086.seq | 3680505f5a8d812178ed158be6dae176 |
A360087 | a(n) = Sum_{k=0..n} (-1)^k * binomial(3*k,n-k). | [
"1",
"-1",
"-2",
"2",
"6",
"-5",
"-17",
"12",
"48",
"-28",
"-135",
"63",
"378",
"-134",
"-1054",
"259",
"2927",
"-408",
"-8096",
"280",
"22305",
"1551",
"-61210",
"-10638",
"167310",
"46683",
"-455489",
"-175852",
"1234960",
"612380",
"-3334215",
"-2031953",
"8962498",
"6523626",
"-23981046",
"-20445373",
"63855135",
"62900496"
] | [
"sign",
"easy"
] | 12 | 0 | 5 | [
"A077979",
"A099234",
"A360087",
"A360088",
"A360089"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:38 | oeisdata/seq/A360/A360087.seq | a10fa45cdfea26fdbe0c4da2d5a65d49 |
A360088 | a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k). | [
"1",
"-1",
"-3",
"1",
"13",
"4",
"-49",
"-46",
"165",
"284",
"-476",
"-1417",
"1003",
"6220",
"-110",
"-24644",
"-14831",
"88184",
"113224",
"-278288",
"-619744",
"715647",
"2891977",
"-1036173",
"-12068353",
"-3381661",
"45588556",
"41600921",
"-154355594",
"-259984429",
"448828716",
"1305250324",
"-964837159",
"-5754843123"
] | [
"sign",
"easy"
] | 11 | 0 | 5 | [
"A077979",
"A099235",
"A360087",
"A360088",
"A360089"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:42 | oeisdata/seq/A360/A360088.seq | a9363ae1b6767da26146ecbc30bee1a9 |
A360089 | a(n) = Sum_{k=0..n} (-1)^k * binomial(5*k,n-k). | [
"1",
"-1",
"-4",
"-1",
"21",
"29",
"-80",
"-244",
"153",
"1473",
"836",
"-6920",
"-12220",
"23209",
"91213",
"-21511",
"-510680",
"-457965",
"2210520",
"4921941",
"-6271749",
"-33288595",
"-3876765",
"173223185",
"214943855",
"-682969376",
"-1912499375",
"1498348275",
"11882164650",
"5332839025",
"-57402248250",
"-92821609874"
] | [
"sign",
"easy"
] | 13 | 0 | 5 | [
"A077979",
"A360087",
"A360088",
"A360089",
"A360090"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:46 | oeisdata/seq/A360/A360089.seq | 56a40414cce364e22e750457e93ff855 |
A360090 | a(n) = Sum_{k=0..n} binomial(5*k,n-k). | [
"1",
"1",
"6",
"21",
"71",
"251",
"882",
"3088",
"10829",
"37975",
"133146",
"466852",
"1636944",
"5739647",
"20125051",
"70564951",
"247423522",
"867546829",
"3041899638",
"10665883415",
"37398034921",
"131129599227",
"459782762029",
"1612146986543",
"5652708454881",
"19820223058176",
"69496108849357"
] | [
"nonn",
"easy"
] | 13 | 0 | 5 | [
"A002478",
"A099234",
"A099235",
"A360090"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-01-25T09:07:51 | oeisdata/seq/A360/A360090.seq | 4a1d3b19e21e2cc8734b130df3355214 |
A360091 | Numerator of (n-2)!*Sum_{k=1..n} (-1)^(k+1)/((n-k)!*k^k). | [
"3",
"31",
"517",
"322537",
"2840123",
"324200318207",
"1285595921612117",
"73566451396634047493",
"44670351166870486810889",
"1129160781485410557635298647751929",
"1103929347366548607910442339939699",
"25219262227183500148649140605496240723288052699"
] | [
"nonn",
"frac"
] | 26 | 0 | 5 | [
"A001620",
"A360091",
"A360092"
] | null | Michel Marcus, Jan 25 2023 | 2023-12-09T17:15:51 | oeisdata/seq/A360/A360091.seq | c4ddeb8332f7a1a57b255b4f344ccec0 |
A360092 | Denominator of (n-2)!*Sum_{k=1..n} (-1)^(k+1)/((n-k)!*k^k). | [
"4",
"108",
"3456",
"3600000",
"48600000",
"8004837960000",
"43717088378880000",
"3319007595022909440000",
"2592974683611648000000000",
"82200659870363161557652992000000000",
"98640791844435793869183590400000000",
"2715985485838884679142342027478742851379200000000"
] | [
"nonn",
"frac"
] | 18 | 0 | 5 | [
"A360091",
"A360092"
] | null | Michel Marcus, Jan 25 2023 | 2023-01-26T03:39:36 | oeisdata/seq/A360/A360092.seq | a03ed7b92b60c99252a3b758a32283b7 |
A360093 | a(n) is the smallest positive integer which can be represented as the sum of distinct partition numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"3",
"8",
"15",
"18",
"23",
"30",
"33",
"38",
"43",
"45",
"48",
"56",
"58",
"63",
"71",
"74",
"-1",
"78",
"80",
"85",
"90",
"93",
"100",
"101",
"106",
"104",
"109",
"113",
"115",
"119",
"122",
"130",
"-1",
"134",
"135",
"145",
"141",
"150",
"153",
"146",
"149",
"163",
"156",
"158",
"165",
"167",
"173",
"-1",
"176",
"178",
"182",
"181",
"-1",
"183",
"186",
"196",
"193",
"191",
"199"
] | [
"sign"
] | 5 | 0 | 5 | [
"A000041",
"A280253",
"A360093"
] | null | Ilya Gutkovskiy, Jan 25 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360093.seq | fbe7a1eefaccb6e29fd708744b4c941c |
A360094 | Decimal expansion of Sum_{p primes, p == 1 mod 4} log(p)/p^2. | [
"1",
"0",
"7",
"3",
"5",
"9",
"5",
"4",
"5",
"2",
"9",
"7",
"1",
"1",
"3",
"0",
"7",
"7",
"1",
"3",
"8",
"4",
"5",
"0",
"3",
"8",
"2",
"0",
"0",
"9",
"1",
"2",
"1",
"9",
"0",
"1",
"1",
"6",
"6",
"3",
"3",
"9",
"3",
"9",
"6",
"9",
"1",
"2",
"6",
"3",
"7",
"7",
"7",
"9",
"3",
"7",
"2",
"6",
"5",
"9",
"5",
"8",
"0",
"7",
"8",
"0",
"2",
"7",
"8",
"7",
"7",
"0",
"5",
"8",
"5",
"0",
"7",
"3",
"6",
"8",
"7",
"8",
"6",
"3",
"9",
"9",
"6",
"4",
"6",
"6",
"5",
"0",
"7",
"6",
"5",
"7",
"2",
"0",
"1",
"0",
"1",
"9",
"5",
"1",
"4",
"1"
] | [
"nonn",
"cons"
] | 9 | 0 | 5 | [
"A085548",
"A086032",
"A086239",
"A136271",
"A358789",
"A360094",
"A360095"
] | null | Vaclav Kotesovec, Jan 25 2023 | 2023-01-25T10:01:19 | oeisdata/seq/A360/A360094.seq | 4fe2ff3367fb1c18f80bef5b34ab8587 |
A360095 | Decimal expansion of Sum_{p primes, p == 3 (mod 4)} log(p)/p^2. | [
"2",
"1",
"2",
"4",
"4",
"4",
"7",
"6",
"8",
"9",
"3",
"1",
"6",
"6",
"5",
"0",
"5",
"7",
"7",
"0",
"5",
"0",
"6",
"7",
"7",
"9",
"2",
"6",
"8",
"2",
"8",
"2",
"5",
"2",
"1",
"4",
"8",
"7",
"0",
"3",
"7",
"3",
"6",
"9",
"5",
"8",
"4",
"3",
"7",
"6",
"6",
"6",
"9",
"7",
"8",
"1",
"0",
"4",
"9",
"7",
"5",
"3",
"7",
"1",
"6",
"7",
"7",
"0",
"9",
"5",
"9",
"7",
"6",
"0",
"2",
"0",
"8",
"1",
"1",
"5",
"3",
"5",
"8",
"9",
"6",
"1",
"3",
"7",
"0",
"5",
"9",
"6",
"1",
"4",
"0",
"7",
"4",
"3",
"8",
"3",
"3",
"7",
"4",
"4",
"7",
"3"
] | [
"nonn",
"cons"
] | 11 | 0 | 5 | [
"A085548",
"A085991",
"A086239",
"A136271",
"A358789",
"A360094",
"A360095"
] | null | Vaclav Kotesovec, Jan 25 2023 | 2023-03-02T21:25:23 | oeisdata/seq/A360/A360095.seq | 2bffc18675cb389ddeb968e232fc4b9c |
A360096 | To get a(n), replace 0's in the binary expansion of n with (-1) and interpret the result in base n. | [
"0",
"1",
"1",
"4",
"11",
"21",
"41",
"57",
"439",
"640",
"909",
"1222",
"1859",
"2354",
"2953",
"3616",
"61167",
"78303",
"98837",
"123121",
"152379",
"185641",
"224113",
"268227",
"344999",
"405601",
"473901",
"550423",
"637363",
"732483",
"837929",
"954305",
"32472031",
"37912414",
"44058661",
"50977186",
"58741163",
"67420476"
] | [
"nonn",
"base"
] | 12 | 0 | 5 | [
"A030300",
"A057427",
"A360096",
"A360099"
] | null | Alois P. Heinz, Jan 25 2023 | 2023-01-30T18:38:41 | oeisdata/seq/A360/A360096.seq | 801ef93243563272bb6878ac95d1b97a |
A360097 | a(n) = smallest k such that 2*n*k-1 and 2*n*k+1 are nonprimes. | [
"13",
"14",
"20",
"7",
"5",
"10",
"4",
"4",
"8",
"6",
"7",
"5",
"1",
"2",
"4",
"2",
"1",
"4",
"2",
"3",
"17",
"4",
"2",
"3",
"1",
"4",
"4",
"1",
"2",
"2",
"2",
"1",
"8",
"3",
"8",
"2",
"4",
"1",
"8",
"2",
"3",
"11",
"1",
"2",
"10",
"1",
"1",
"3",
"4",
"3",
"2",
"2",
"4",
"2",
"2",
"5",
"3",
"1",
"1",
"1",
"1",
"1",
"9",
"4",
"2",
"4",
"1",
"4",
"3",
"4",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"4",
"3",
"1",
"2",
"2",
"4",
"7",
"1"
] | [
"nonn"
] | 17 | 0 | 5 | [
"A018252",
"A124522",
"A360097"
] | null | Tamas Sandor Nagy, Jan 25 2023 | 2023-02-09T09:39:13 | oeisdata/seq/A360/A360097.seq | b0cb7728291b99273e8654cf12d9cc92 |
A360098 | Square array read by antidiagonals upwards: T(n,k) is the number of ways of choosing nonnegative numbers for k n-sided dice, k >= 0, n >= 1, so that summing the faces can give any integer from 0 to n^k - 1. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"15",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"105",
"1",
"1",
"1",
"1",
"1",
"1",
"71",
"1",
"945",
"1",
"1",
"1",
"1",
"1",
"10",
"1",
"1001",
"1",
"10395",
"1",
"1",
"1",
"1",
"1",
"3",
"280",
"1",
"18089",
"1",
"135135",
"1",
"1",
"1",
"1",
"1",
"7",
"15",
"15400",
"1",
"398959",
"1"
] | [
"nonn",
"tabl"
] | 24 | 0 | 5 | [
"A001147",
"A002119",
"A025035",
"A025036",
"A060540",
"A118914",
"A131514",
"A273013",
"A360098"
] | null | William P. Orrick, Jan 25 2023 | 2023-02-18T15:28:51 | oeisdata/seq/A360/A360098.seq | 6101502bcde7e76e97deec47d3bacc9c |
A360099 | To get A(n,k), replace 0's in the binary expansion of n with (-1) and interpret the result in base k; square array A(n,k), n>=0, k>=0, read by antidiagonals. | [
"0",
"0",
"1",
"0",
"1",
"-1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"2",
"-1",
"0",
"1",
"2",
"3",
"-1",
"1",
"0",
"1",
"3",
"4",
"1",
"1",
"-1",
"0",
"1",
"4",
"5",
"5",
"3",
"1",
"1",
"0",
"1",
"5",
"6",
"11",
"7",
"5",
"3",
"-1",
"0",
"1",
"6",
"7",
"19",
"13",
"11",
"7",
"-2",
"1",
"0",
"1",
"7",
"8",
"29",
"21",
"19",
"13",
"1",
"0",
"-1",
"0",
"1",
"8",
"9",
"41",
"31",
"29",
"21",
"14",
"3",
"0",
"1",
"0",
"1",
"9",
"10",
"55",
"43",
"41",
"31",
"43",
"16",
"5",
"2",
"-1"
] | [
"sign",
"tabl",
"look",
"base"
] | 25 | 0 | 5 | [
"A000004",
"A000012",
"A000027",
"A002061",
"A006257",
"A023443",
"A030300",
"A057427",
"A062157",
"A062158",
"A083074",
"A145037",
"A147991",
"A147992",
"A147993",
"A152618",
"A153777",
"A165900",
"A359925",
"A360096",
"A360099"
] | null | Alois P. Heinz, Jan 25 2023 | 2023-02-03T11:32:40 | oeisdata/seq/A360/A360099.seq | f2f091e7bac5c9ff60f3084f5cecaf4c |
A360100 | a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * Catalan(k). | [
"1",
"1",
"5",
"23",
"111",
"562",
"2952",
"15948",
"88076",
"495077",
"2823293",
"16295020",
"95007654",
"558765743",
"3310999269",
"19748462718",
"118471172054",
"714355994997",
"4327148812557",
"26319195869861",
"160677354596769",
"984236344800234",
"6047526697800992",
"37262944840704171"
] | [
"nonn"
] | 21 | 0 | 5 | [
"A000108",
"A002212",
"A006319",
"A162475",
"A162481",
"A258973",
"A360100",
"A360101",
"A360102"
] | null | Seiichi Manyama, Jan 25 2023 | 2023-08-16T08:21:59 | oeisdata/seq/A360/A360100.seq | ededab074bff4d06e0fbebb267d63a78 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.