seq_id
stringlengths 7
7
| seq_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 0
0
| offset_b
int64 5
5
| cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-25 01:21:50
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A360201 | Number of induced paths in the n-ladder graph P_2 X P_n. | [
"1",
"8",
"25",
"58",
"117",
"218",
"387",
"666",
"1123",
"1868",
"3079",
"5044",
"8229",
"13388",
"21741",
"35262",
"57145",
"92558",
"149863",
"242590",
"392631",
"635408",
"1028235",
"1663848",
"2692297",
"4356368",
"7048897",
"11405506",
"18454653",
"29860418",
"48315339",
"78176034",
"126491659",
"204667988"
] | [
"nonn",
"easy"
] | 10 | 0 | 5 | [
"A360199",
"A360201"
] | null | Andrew Howroyd, Jan 29 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360201.seq | f2f875700411ce31ca1c2b682073f7c7 |
A360202 | Array read by antidiagonals: T(m,n) is the number of (non-null) induced trees in the grid graph P_m X P_n. | [
"1",
"3",
"3",
"6",
"12",
"6",
"10",
"33",
"33",
"10",
"15",
"78",
"138",
"78",
"15",
"21",
"171",
"533",
"533",
"171",
"21",
"28",
"360",
"2003",
"3568",
"2003",
"360",
"28",
"36",
"741",
"7453",
"23686",
"23686",
"7453",
"741",
"36",
"45",
"1506",
"27643",
"156614",
"277606",
"156614",
"27643",
"1506",
"45",
"55",
"3039",
"102432",
"1034875",
"3234373",
"3234373",
"1034875",
"102432",
"3039",
"55"
] | [
"nonn",
"tabl"
] | 12 | 0 | 5 | [
"A000217",
"A116469",
"A125128",
"A287151",
"A360196",
"A360199",
"A360202",
"A360203",
"A360918"
] | null | Andrew Howroyd, Feb 22 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360202.seq | 574553dbbda2bc62d5410a67a04bece9 |
A360203 | Number of (non-null) induced trees in the n X n grid graph. | [
"1",
"12",
"138",
"3568",
"277606",
"66136452",
"48136454388",
"106601739449932",
"716581962133166734",
"14594259085593605592840",
"899530518959027898354960664",
"167638624754374503965030664785872",
"94397539071875018677962029008899452442",
"160524233982090828046095750880433748533447560"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A059525",
"A080691",
"A297664",
"A360200",
"A360202",
"A360203"
] | null | Andrew Howroyd, Feb 22 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360203.seq | 64509047a2d7159441deac9037978d2c |
A360204 | Primitive prime powers. p is a primitive prime power iff it is an odd prime power that exceeds the preceding odd prime power by more than any smaller odd prime power does. ('Prime power' defined in the sense of A246655.) | [
"5",
"17",
"37",
"97",
"149",
"211",
"307",
"907",
"1151",
"1361",
"5623",
"8501",
"9587",
"15727",
"19661",
"31469",
"156007",
"360749",
"370373",
"492227",
"1349651",
"1357333",
"2010881",
"4652507",
"17051887",
"20831533",
"47326913",
"122164969",
"189695893",
"191913031",
"387096383",
"436273291",
"1294268779"
] | [
"nonn"
] | 25 | 0 | 5 | [
"A061345",
"A246655",
"A360204"
] | null | Peter Luschny, Feb 01 2023 | 2023-02-02T06:48:53 | oeisdata/seq/A360/A360204.seq | a9483b11a3094d00983e829668feee1f |
A360205 | Triangle read by rows. T(n, k) = (-1)^(n-k)*(k+1)*binomial(n, k)*pochhammer(1-n, n-k). | [
"1",
"0",
"2",
"0",
"4",
"3",
"0",
"12",
"18",
"4",
"0",
"48",
"108",
"48",
"5",
"0",
"240",
"720",
"480",
"100",
"6",
"0",
"1440",
"5400",
"4800",
"1500",
"180",
"7",
"0",
"10080",
"45360",
"50400",
"21000",
"3780",
"294",
"8",
"0",
"80640",
"423360",
"564480",
"294000",
"70560",
"8232",
"448",
"9",
"0",
"725760",
"4354560",
"6773760",
"4233600",
"1270080",
"197568",
"16128",
"648",
"10"
] | [
"nonn",
"tabl"
] | 6 | 0 | 5 | [
"A002720",
"A045991",
"A052849",
"A069138",
"A271703",
"A360174",
"A360205"
] | null | Peter Luschny, Feb 08 2023 | 2023-02-08T18:11:10 | oeisdata/seq/A360/A360205.seq | 328446667967108e51ad6635bd074a7a |
A360206 | Triangular array T(m,n) read by antidiagonals: T(m,n) = prime(m+n) - prime(m) - prime(n). | [
"-1",
"0",
"1",
"0",
"3",
"3",
"2",
"3",
"5",
"5",
"0",
"3",
"3",
"5",
"7",
"2",
"3",
"5",
"9",
"7",
"11",
"0",
"3",
"7",
"7",
"9",
"11",
"9",
"2",
"7",
"7",
"11",
"11",
"11",
"11",
"15",
"4",
"5",
"9",
"11",
"9",
"11",
"13",
"17",
"15",
"0",
"5",
"7",
"7",
"7",
"11",
"13",
"13",
"15",
"13",
"4",
"7",
"7",
"9",
"11",
"15",
"13",
"17",
"17",
"13",
"17",
"2",
"3",
"5",
"9",
"11",
"11",
"13",
"15",
"13",
"13"
] | [
"tabl",
"sign"
] | 15 | 0 | 5 | [
"A000040",
"A066066",
"A360206"
] | null | Clark Kimberling, Jan 30 2023 | 2023-02-01T08:17:08 | oeisdata/seq/A360/A360206.seq | 998b23adc05001631587eaf751d49997 |
A360207 | Triangular array T(n,k) read by antidiagonals: T(2,1) = 1; otherwise T(n,k) = p(n)!/(p(k)!*p(n-k)!), where p(0)=1 and p(m)=prime(m) for m > 0. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"10",
"10",
"1",
"1",
"21",
"140",
"21",
"1",
"1",
"3960",
"55440",
"55440",
"3960",
"1",
"1",
"78",
"205920",
"432432",
"205920",
"78",
"1",
"1",
"28560",
"1485120",
"588107520",
"588107520",
"1485120",
"28560",
"1",
"1",
"171",
"3255840",
"25395552",
"4788875520",
"25395552",
"3255840",
"171",
"1"
] | [
"nonn",
"tabl"
] | 16 | 0 | 5 | [
"A007318",
"A008578",
"A360207",
"A360208"
] | null | Clark Kimberling, Jan 30 2023 | 2023-02-02T16:52:32 | oeisdata/seq/A360/A360207.seq | d3e70ec910fd5fb61c6aeddb5dc9b118 |
A360208 | Triangular array T(n,k) read by antidiagonals T(n,k) = F(n)!/(F(k)!*F(n-k)!), where F(m) = A000045(m) = m-th Fibonacci number. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"6",
"3",
"1",
"1",
"20",
"60",
"60",
"20",
"1",
"1",
"336",
"6720",
"10080",
"6720",
"336",
"1",
"1",
"154440",
"51891840",
"518918400",
"518918400",
"51891840",
"154440",
"1",
"1",
"8204716800",
"1267136462592000",
"212878925715456000",
"1419192838103040000",
"212878925715456000",
"1267136462592000",
"8204716800",
"1"
] | [
"nonn",
"tabl"
] | 18 | 0 | 5 | [
"A000045",
"A007318",
"A360207",
"A360208"
] | null | Clark Kimberling, Jan 30 2023 | 2024-06-22T14:13:39 | oeisdata/seq/A360/A360208.seq | 1660b5aea5a7bc5a19e2d467d0321cda |
A360209 | Lexicographically earliest infinite sequence of distinct positive numbers such that, for n > 2, a(n) shares a factor with a(n-2) + a(n-1) but shares no factor with a(n-2). | [
"1",
"2",
"3",
"5",
"4",
"6",
"15",
"7",
"8",
"9",
"17",
"10",
"12",
"11",
"23",
"14",
"37",
"27",
"16",
"43",
"59",
"18",
"21",
"13",
"20",
"22",
"33",
"25",
"26",
"24",
"35",
"295",
"32",
"36",
"51",
"29",
"28",
"19",
"47",
"30",
"44",
"259",
"39",
"34",
"73",
"107",
"38",
"40",
"45",
"119",
"41",
"46",
"42",
"55",
"97",
"48",
"50",
"49",
"57",
"52",
"109",
"63",
"54",
"65",
"77",
"56",
"76",
"69",
"75",
"58",
"91",
"149",
"60",
"66"
] | [
"nonn"
] | 20 | 0 | 5 | [
"A098550",
"A251604",
"A336957",
"A337136",
"A353239",
"A359557",
"A360209"
] | null | Scott R. Shannon, Jan 29 2023 | 2023-03-17T07:35:55 | oeisdata/seq/A360/A360209.seq | 759ddc45c25485b5e41647364603a19c |
A360210 | Indices of squares in A068869. | [
"1",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16"
] | [
"nonn",
"more"
] | 17 | 0 | 5 | [
"A068869",
"A360210"
] | null | Alexander R. Povolotsky, Jan 29 2023 | 2023-02-17T16:48:56 | oeisdata/seq/A360/A360210.seq | 2d1dc9058fb40a78316031b87f68b687 |
A360211 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k). | [
"1",
"2",
"5",
"17",
"61",
"221",
"812",
"3021",
"11344",
"42899",
"163146",
"623320",
"2390653",
"9198879",
"35494701",
"137290466",
"532149805",
"2066501909",
"8038146035",
"31312535610",
"122140123201",
"477002869614",
"1864912495716",
"7298427590543",
"28588888586743",
"112080607196843",
"439744801379594"
] | [
"nonn"
] | 14 | 0 | 5 | [
"A000108",
"A005317",
"A024718",
"A026641",
"A176287",
"A176332",
"A360185",
"A360211",
"A360212"
] | null | Seiichi Manyama, Jan 30 2023 | 2023-03-02T09:38:37 | oeisdata/seq/A360/A360211.seq | ddff2212791e7a1b04cb05f5211f766e |
A360212 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-5*k,n-3*k). | [
"1",
"2",
"6",
"19",
"67",
"242",
"890",
"3310",
"12423",
"46959",
"178526",
"681893",
"2614698",
"10059000",
"38807021",
"150080294",
"581649776",
"2258469988",
"8783966719",
"34214789901",
"133450049457",
"521134066663",
"2037313708685",
"7972641631438",
"31228124666374",
"122421230120657"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A000108",
"A191993",
"A307354",
"A360152",
"A360186",
"A360212"
] | null | Seiichi Manyama, Jan 30 2023 | 2023-03-12T11:11:39 | oeisdata/seq/A360/A360212.seq | 56387067a70006c82966a151f15d2191 |
A360213 | Number of distinct stable marriage problem instances up to gender exchange. | [
"1",
"10",
"23436",
"55037822976",
"309586821132441600000",
"9704204980882671472665034752000000",
"3411909590124519376908837990487929799751761920000000",
"24394862766922609598505096548473341484170343775734092352694570188800000000"
] | [
"nonn"
] | 18 | 0 | 5 | [
"A000217",
"A036740",
"A185141",
"A343700",
"A351409",
"A360213"
] | null | Dan Eilers, Jan 29 2023 | 2023-02-18T20:50:59 | oeisdata/seq/A360/A360213.seq | 83fe31386f22054b3de7678cfa5a3b71 |
A360214 | a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero octahedral numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"231",
"575",
"721",
"1618",
"1750",
"1877",
"2240",
"2736",
"2995",
"3105",
"3080",
"3500",
"3311",
"3920",
"4151",
"4280",
"4495",
"4719",
"4621",
"4675",
"5041",
"5164",
"5291",
"5060",
"5591",
"5480",
"5566",
"5635",
"5755",
"5985",
"6216",
"6080",
"6279",
"6320",
"6510",
"6655",
"6636",
"6870",
"7145",
"7195",
"6999",
"6971",
"7296",
"7211"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A005900",
"A275154",
"A350205",
"A360214",
"A360215",
"A360216"
] | null | Ilya Gutkovskiy, Jan 30 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360214.seq | c2a93967b2cbd715569ab92d3cc86880 |
A360215 | a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero icosahedral numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"1383",
"4157",
"6548",
"8633",
"9884",
"12503",
"12920",
"15357",
"15812",
"18146",
"18126",
"19755",
"20895",
"22106",
"23229",
"23246",
"23685",
"22118",
"25142",
"25884",
"27894",
"29448",
"28149",
"29703",
"30285",
"31914",
"30966",
"34007",
"34380",
"34390",
"35082",
"35894",
"34389",
"36891",
"37035",
"37425",
"35907",
"35895",
"38856"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A006564",
"A275154",
"A350205",
"A360214",
"A360215",
"A360216"
] | null | Ilya Gutkovskiy, Jan 30 2023 | 2023-01-31T08:52:05 | oeisdata/seq/A360/A360215.seq | d9eddec4e2295cef7079511762968f50 |
A360216 | a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero dodecahedral numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"2025",
"2925",
"9010",
"15521",
"18465",
"19140",
"24899",
"32760",
"33576",
"36245",
"39746",
"39290",
"39270",
"46540",
"50215",
"49055",
"53680",
"50435",
"56585",
"58990",
"57460",
"58380",
"61950",
"63329",
"64600",
"63700",
"64550",
"67305",
"68530",
"71690"
] | [
"nonn"
] | 4 | 0 | 5 | [
"A006566",
"A275154",
"A350205",
"A360214",
"A360215",
"A360216"
] | null | Ilya Gutkovskiy, Jan 30 2023 | 2023-01-31T08:52:12 | oeisdata/seq/A360/A360216.seq | ff7f0b8339d882adf3a29da4252f5d0b |
A360217 | a(n) is the smallest positive integer which can be represented as the sum of n distinct nonzero tetrahedral numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"140",
"305",
"315",
"435",
"644",
"830",
"1141",
"1425",
"1925",
"2380",
"3010",
"3805",
"4720",
"5806",
"7095",
"8510",
"10200",
"12020",
"14115",
"16460",
"19131",
"21990",
"25425",
"29275",
"33495",
"37425",
"42680",
"48300",
"54545",
"60711",
"68391",
"75726",
"84815",
"93370",
"103250",
"114115",
"125360",
"137831",
"150995",
"165545",
"179830"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000292",
"A350205",
"A350288",
"A350397",
"A360217",
"A360218"
] | null | Ilya Gutkovskiy, Jan 30 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360217.seq | 823bd30709e03d8cf24a325986e33c01 |
A360218 | a(n) is the smallest positive integer which can be represented as the sum of n distinct nonzero square pyramidal numbers in exactly n ways, or -1 if no such integer exists. | [
"1",
"5580",
"2814",
"1980",
"1595",
"1700",
"2175",
"2415",
"2830",
"3740",
"4810",
"5995",
"7610",
"9240",
"11380",
"13896",
"16506",
"19735",
"23150",
"27441",
"32085",
"36721",
"42755",
"49570",
"56610",
"65135",
"73165",
"83021",
"93835",
"105671",
"118255",
"132545",
"147546",
"163516",
"182155",
"201040",
"222371",
"244280",
"267856"
] | [
"nonn"
] | 14 | 0 | 5 | [
"A000330",
"A350206",
"A350241",
"A350397",
"A360217",
"A360218"
] | null | Ilya Gutkovskiy, Jan 30 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A360/A360218.seq | 24acfe1b2cea067f31ca473ce73be833 |
A360219 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k). | [
"1",
"2",
"6",
"20",
"68",
"240",
"864",
"3152",
"11616",
"43136",
"161152",
"604992",
"2280416",
"8624832",
"32714688",
"124399488",
"474066560",
"1810053120",
"6922776576",
"26517173760",
"101710338048",
"390603984896",
"1501732753408",
"5779500226560",
"22263437981184",
"85835254221824",
"331193445626880"
] | [
"nonn"
] | 42 | 0 | 5 | [
"A157004",
"A360219",
"A360267",
"A374599"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-07-13T13:47:05 | oeisdata/seq/A360/A360219.seq | 87885d8e61e52cd0ee1a5be2d6da2036 |
A360220 | Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n. | [
"1",
"0",
"0",
"4",
"5",
"0",
"27",
"120",
"333"
] | [
"nonn",
"more",
"hard"
] | 26 | 0 | 5 | [
"A287647",
"A287648",
"A305570",
"A305571",
"A349199",
"A354068",
"A360220"
] | null | Eduard I. Vatutin, Jan 30 2023 | 2023-03-24T18:21:19 | oeisdata/seq/A360/A360220.seq | e984967f2deabf685d993e489180e9b8 |
A360221 | Minimum number of intercalates in an orthogonal diagonal Latin square of order n. | [
"0",
"0",
"0",
"12",
"0",
"0",
"0",
"2",
"0"
] | [
"nonn",
"more",
"hard",
"bref"
] | 17 | 0 | 5 | [
"A305570",
"A305571",
"A307163",
"A354050",
"A360221",
"A360223"
] | null | Eduard I. Vatutin, Jan 30 2023 | 2024-10-20T13:57:38 | oeisdata/seq/A360/A360221.seq | d9ceecfaa7236ecb5acd1ed38a89b82c |
A360222 | a(n) is the number of permutable pieces in a standard n X n X n Rubik's cube. | [
"0",
"8",
"20",
"56",
"92",
"152",
"212",
"296",
"380",
"488",
"596",
"728",
"860",
"1016",
"1172",
"1352",
"1532",
"1736",
"1940",
"2168",
"2396",
"2648",
"2900",
"3176",
"3452",
"3752",
"4052",
"4376",
"4700",
"5048",
"5396",
"5768",
"6140",
"6536",
"6932",
"7352",
"7772",
"8216",
"8660",
"9128",
"9596",
"10088",
"10580",
"11096",
"11612",
"12152"
] | [
"nonn",
"easy"
] | 28 | 0 | 5 | [
"A005897",
"A010677",
"A360222"
] | null | William Riley Barker, Jan 30 2023 | 2024-10-04T15:41:36 | oeisdata/seq/A360/A360222.seq | c72840e0138d02025890ce38916a5f00 |
A360223 | Maximum number of intercalates in an orthogonal diagonal Latin square of order n. | [
"0",
"0",
"0",
"12",
"0",
"0",
"18",
"112",
"72"
] | [
"nonn",
"more",
"hard"
] | 17 | 0 | 5 | [
"A305570",
"A305571",
"A307164",
"A354050",
"A360221",
"A360223"
] | null | Eduard I. Vatutin, Jan 30 2023 | 2024-02-25T06:08:32 | oeisdata/seq/A360/A360223.seq | b064a2bc2ad6f44328c680654abea8c8 |
A360224 | Number of k < n such that gcd(k, n) > 1, gcd(n^2-1, k) = 1, and rad(k) does not divide n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"3",
"0",
"0",
"0",
"2",
"0",
"3",
"0",
"2",
"1",
"4",
"0",
"5",
"0",
"5",
"2",
"1",
"0",
"4",
"0",
"6",
"2",
"6",
"0",
"12",
"0",
"5",
"3",
"7",
"0",
"14",
"0",
"5",
"2",
"10",
"0",
"11",
"0",
"4",
"5",
"13",
"0",
"19",
"0",
"12",
"7",
"7",
"1",
"13",
"0",
"14",
"3",
"11",
"0",
"31",
"0",
"13",
"9",
"8",
"2",
"21",
"0",
"19",
"7",
"21",
"0",
"18",
"2",
"13",
"9",
"22",
"0",
"21",
"1",
"16",
"10",
"16"
] | [
"nonn"
] | 32 | 0 | 5 | [
"A045763",
"A243823",
"A272619",
"A360224"
] | null | Michael De Vlieger, May 19 2023 | 2023-05-20T14:49:52 | oeisdata/seq/A360/A360224.seq | 51c8158b2d4b305b7b0735bd43d3f84d |
A360225 | a(1) = 2, a(2) = 3, a(n) = the smallest prime whose digits consist of a(n-2), followed by zero or more digits, followed by a(n). | [
"2",
"3",
"23",
"3023",
"2393023",
"3023172393023",
"2393023313023172393023",
"3023172393023282393023313023172393023",
"239302331302317239302383023172393023282393023313023172393023"
] | [
"nonn",
"base"
] | 9 | 0 | 5 | [
"A024770",
"A024785",
"A048549",
"A053583",
"A085823",
"A211682",
"A250052",
"A360225"
] | null | Robert C. Lyons, Jan 30 2023 | 2023-01-31T08:36:26 | oeisdata/seq/A360/A360225.seq | 3cee7fc8d334f0ff3d7ca67efbbcecc5 |
A360226 | a(n) = sum of the first n primes whose distance to next prime is 4. | [
"7",
"20",
"39",
"76",
"119",
"186",
"265",
"362",
"465",
"574",
"701",
"864",
"1057",
"1280",
"1509",
"1786",
"2093",
"2406",
"2755",
"3134",
"3531",
"3970",
"4427",
"4890",
"5377",
"5876",
"6489",
"7132",
"7805",
"8544",
"9301",
"10070",
"10893",
"11746",
"12605",
"13482",
"14365",
"15272",
"16209",
"17176",
"18185",
"19272",
"20365",
"21578",
"22857",
"24154",
"25457",
"26880",
"28309",
"29756"
] | [
"nonn",
"easy"
] | 82 | 0 | 5 | [
"A007504",
"A029710",
"A086167",
"A086168",
"A172112",
"A360226"
] | null | Artur Jasinski, Feb 01 2023 | 2023-02-05T07:43:50 | oeisdata/seq/A360/A360226.seq | 4f80e4ed29522569e73dba24a063d640 |
A360227 | The succession of the digits of the sequence is the same when each term is multiplied by 11. | [
"1",
"11",
"2",
"12",
"21",
"3",
"22",
"31",
"33",
"24",
"23",
"4",
"13",
"6",
"32",
"64",
"25",
"34",
"41",
"43",
"66",
"35",
"270",
"42",
"7",
"5",
"37",
"44",
"51",
"47",
"372",
"63",
"8",
"52",
"9",
"70",
"46",
"27",
"75",
"540",
"74",
"84",
"56",
"15",
"17",
"40",
"92",
"69",
"38",
"85",
"72",
"99",
"770",
"50",
"62",
"97",
"82",
"55",
"940",
"81",
"49",
"246",
"16",
"165",
"18",
"7440"
] | [
"base",
"nonn"
] | 26 | 0 | 5 | [
"A360227",
"A362433"
] | null | Eric Angelini, Apr 20 2023 | 2023-04-29T17:04:39 | oeisdata/seq/A360/A360227.seq | 52563791ee39c96be0ce846bc27bb107 |
A360228 | a(n) is the least prime p such that the primes from prime(n) to p contain a complete set of residues modulo at least one of these primes. | [
"3",
"7",
"19",
"29",
"71",
"103",
"103",
"191",
"233",
"317",
"439",
"439",
"467",
"467",
"659",
"659",
"709",
"1013",
"1013",
"1319",
"1319",
"1319",
"1499",
"1499",
"1499",
"1973",
"1973",
"2203",
"2203",
"2203",
"3089",
"3089",
"3449",
"3449",
"3449",
"3539",
"3539",
"3923",
"3923",
"4349",
"4349",
"4349",
"4349",
"4349",
"4793",
"4793",
"4793",
"4793",
"5813",
"5813",
"5813",
"5813",
"5813"
] | [
"nonn"
] | 20 | 0 | 5 | [
"A358238",
"A360228"
] | null | Robert Israel, Jan 30 2023 | 2025-03-25T02:30:05 | oeisdata/seq/A360/A360228.seq | 41ecf6524b5042fe278462532a1700bc |
A360229 | Row sums of triangle A360173. | [
"0",
"1",
"3",
"6",
"16",
"36",
"73",
"156",
"324",
"677",
"1405",
"2864",
"5906",
"12058",
"24548",
"49928",
"101434",
"206173",
"417141",
"844256",
"1707622",
"3452998",
"6970196",
"14058528",
"28368774",
"57197983",
"115239846",
"232020596",
"467296470",
"940684267",
"1892396396",
"3805806218",
"7654402454",
"15391563411"
] | [
"nonn",
"changed"
] | 16 | 0 | 5 | [
"A141001",
"A141002",
"A360173",
"A360229"
] | null | John Tyler Rascoe, Jan 30 2023 | 2025-04-24T06:49:40 | oeisdata/seq/A360/A360229.seq | 9b9d6200fc522bbba81f3a0966dfa61d |
A360230 | a(n) = coefficient of x^n/n! in Sum_{n>=0} (1 + n*x + x^2)^n * x^n/n!. | [
"1",
"1",
"3",
"19",
"109",
"921",
"8911",
"100003",
"1307769",
"18748369",
"307713691",
"5379610611",
"106277271013",
"2194176659689",
"50689643777319",
"1207518763542211",
"31940171681228401",
"862606920178886433",
"25708097594461923379",
"776354747057987797459",
"25741373454075987900381"
] | [
"nonn"
] | 10 | 0 | 5 | [
"A000169",
"A360230"
] | null | Paul D. Hanna, Feb 19 2023 | 2023-03-14T04:09:52 | oeisdata/seq/A360/A360230.seq | c3f516ece61d8e147a5c7613061d165a |
A360231 | G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n-1))^(n+1) for n >= 0. | [
"1",
"1",
"1",
"6",
"53",
"628",
"9167",
"156309",
"3021720",
"64960004",
"1532234825",
"39270176511",
"1085601040372",
"32185085432757",
"1018593646880447",
"34279111177431666",
"1222648239226278333",
"46084480032637208699",
"1830881732391546532475",
"76488074741796221197580",
"3352854778050665597014436"
] | [
"nonn"
] | 14 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237",
"A360337",
"A360345"
] | null | Paul D. Hanna, Feb 02 2023 | 2023-02-06T11:25:49 | oeisdata/seq/A360/A360231.seq | 20b4f8cbf34f92e2e76228ee7c5f47f6 |
A360232 | G.f. Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (1 + n*x + x^2)^n * x^n. | [
"1",
"1",
"2",
"6",
"16",
"51",
"172",
"626",
"2409",
"9791",
"41671",
"185224",
"855865",
"4100761",
"20314349",
"103827684",
"546388333",
"2955518901",
"16407286272",
"93350267922",
"543674327227",
"3237568471183",
"19693508812475",
"122249256779882",
"773797772369256",
"4990290667614087",
"32766888950422831"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A294573",
"A360232",
"A360348",
"A360592"
] | null | Paul D. Hanna, Feb 12 2023 | 2023-02-14T05:15:35 | oeisdata/seq/A360/A360232.seq | 21024e5672c222fff9d1e735f75058a3 |
A360233 | a(n) = coefficient of x^n in A(x) such that x = Sum_{n=-oo..+oo} x^n * (1 - x^n/A(-x))^n. | [
"1",
"1",
"2",
"5",
"15",
"49",
"159",
"528",
"1784",
"6145",
"21439",
"75654",
"269525",
"968405",
"3505034",
"12767879",
"46773194",
"172208150",
"636877121",
"2364867690",
"8813303176",
"32953850231",
"123589941046",
"464792925189",
"1752421377254",
"6622694660061",
"25082577300996",
"95188198019919",
"361915271697707"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A355869",
"A360233"
] | null | Paul D. Hanna, Feb 13 2023 | 2023-02-13T11:42:22 | oeisdata/seq/A360/A360233.seq | e654319ee6d7e0ac4ec2b42f7d4f4b50 |
A360234 | G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+2))^(n+1) for n >= 0. | [
"1",
"1",
"4",
"33",
"414",
"6750",
"131963",
"2957899",
"73968136",
"2027178710",
"60143834893",
"1914750144642",
"64984397381766",
"2339387034919340",
"88976089246855623",
"3563952072597604091",
"149941204887915187568",
"6610797722288579969347",
"304837386103152855175255",
"14675559490665539299350303"
] | [
"nonn"
] | 19 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237",
"A360338",
"A360346"
] | null | Paul D. Hanna, Jan 30 2023 | 2023-02-06T11:28:07 | oeisdata/seq/A360/A360234.seq | 25fbf32c0b70b89b30c485d4ccadc67a |
A360235 | G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+3))^(n+1) for n >= 0. | [
"1",
"1",
"5",
"48",
"673",
"12057",
"256763",
"6232909",
"168035350",
"4945380012",
"157008686993",
"5331606427775",
"192417007138176",
"7344652874314128",
"295384546093569838",
"12478509340848604628",
"552330553975194126634",
"25560514938260757190962",
"1234444956694450007259989",
"62114842767595821207341042"
] | [
"nonn"
] | 21 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237",
"A360338",
"A360347"
] | null | Paul D. Hanna, Jan 30 2023 | 2023-02-06T11:28:54 | oeisdata/seq/A360/A360235.seq | be0636eb9c1c297db713187339e747ad |
A360236 | G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+4))^(n+1) for n >= 0. | [
"1",
"1",
"6",
"66",
"1028",
"20138",
"464863",
"12162876",
"351915528",
"11075859686",
"374858234365",
"13530279602015",
"517628371405448",
"20890826296067329",
"886175281852068632",
"39393952245422498344",
"1830781283537184304756",
"88768944166701791039297",
"4482797026386165709436753",
"235417696462456105986818505"
] | [
"nonn"
] | 19 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237"
] | null | Paul D. Hanna, Jan 30 2023 | 2023-02-02T21:10:38 | oeisdata/seq/A360/A360236.seq | a0252b96c01240a12c27596bda34ae66 |
A360237 | G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+5))^(n+1) for n >= 0. | [
"1",
"1",
"7",
"87",
"1495",
"31865",
"793769",
"22290228",
"689397657",
"23116772771",
"831159921411",
"31787496335409",
"1285410740283302",
"54708408148614317",
"2441969507507612684",
"113988651908380638224",
"5551479742274622439616",
"281540748098045175486249",
"14843765603832700589293465"
] | [
"nonn"
] | 23 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237"
] | null | Paul D. Hanna, Jan 30 2023 | 2023-02-05T03:20:14 | oeisdata/seq/A360/A360237.seq | 93ed4ac74e6f08abaa0eaf1de97984fb |
A360238 | a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1. | [
"2",
"42",
"1376",
"60934",
"3377252",
"224036904",
"17282039280",
"1519096411230",
"149867251224092",
"16398595767212452",
"1971137737765484444",
"258215735255164847944",
"36617351885600586385222",
"5588967440618883091216208",
"913592455995572681826313856",
"159241707066923571547572653630"
] | [
"nonn"
] | 20 | 0 | 5 | [
"A000984",
"A059304",
"A098658",
"A266526",
"A360238",
"A360239",
"A360348"
] | null | Paul D. Hanna, Feb 11 2023 | 2023-02-13T03:42:24 | oeisdata/seq/A360/A360238.seq | 54f8d6d813e30950049aa8bbd51c45e9 |
A360239 | G.f. A(x) = exp( Sum_{k>=1} A360238(k) * x^k/k ), where A360238(k) = [y^k*x^k/k] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for k >= 1. | [
"1",
"2",
"23",
"502",
"16414",
"716936",
"39167817",
"2567058766",
"196159319943",
"17118727499178",
"1679643875717867",
"183020512751712554",
"21928106267349661127",
"2865208654370111795940",
"405479888251812823615679",
"61785441098476295018209264",
"10085622916281496742096639996"
] | [
"nonn"
] | 10 | 0 | 5 | [
"A000108",
"A000984",
"A360238",
"A360239",
"A360349"
] | null | Paul D. Hanna, Feb 11 2023 | 2023-02-13T03:41:48 | oeisdata/seq/A360/A360239.seq | 926c1ed0221f9a73ed7d9dedb473db34 |
A360240 | Weakly decreasing triples of positive integers sorted lexicographically and concatenated. | [
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"3",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"2",
"3",
"3",
"1",
"3",
"3",
"2",
"3",
"3",
"3",
"4",
"1",
"1",
"4",
"2",
"1",
"4",
"2",
"2",
"4",
"3",
"1",
"4",
"3",
"2",
"4",
"3",
"3",
"4",
"4",
"1",
"4",
"4",
"2",
"4",
"4",
"3",
"4",
"4",
"4",
"5",
"1",
"1",
"5",
"2",
"1",
"5",
"2",
"2",
"5",
"3",
"1",
"5",
"3",
"2",
"5",
"3",
"3",
"5",
"4",
"1",
"5",
"4",
"2",
"5",
"4",
"3"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A002024",
"A003056",
"A056556",
"A056557",
"A056558",
"A069905",
"A070770",
"A158842",
"A194848",
"A330709",
"A331195",
"A333516",
"A360010",
"A360240"
] | null | Gus Wiseman, Feb 11 2023 | 2023-02-11T20:32:28 | oeisdata/seq/A360/A360240.seq | 2cd86213e1411d819c01f7dbcbd62f16 |
A360241 | Number of integer partitions of n whose distinct parts have integer mean. | [
"0",
"1",
"2",
"2",
"4",
"3",
"8",
"6",
"13",
"13",
"22",
"19",
"43",
"34",
"56",
"66",
"97",
"92",
"156",
"143",
"233",
"256",
"322",
"341",
"555",
"542",
"710",
"831",
"1098",
"1131",
"1644",
"1660",
"2275",
"2484",
"3035",
"3492",
"4731",
"4848",
"6063",
"6893",
"8943",
"9378",
"12222",
"13025",
"16520",
"18748",
"22048",
"24405",
"31446",
"33698",
"41558"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A051293",
"A058398",
"A067340",
"A067538",
"A067539",
"A078174",
"A082550",
"A102627",
"A116608",
"A240219",
"A316313",
"A316413",
"A325347",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A326622",
"A326669",
"A327475",
"A327482",
"A328966",
"A349156",
"A360069",
"A360071",
"A360241",
"A360242",
"A360243",
"A360246",
"A360247",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 02 2023 | 2023-02-05T23:07:05 | oeisdata/seq/A360/A360241.seq | 02b130272b72887bad04350b9087a7fa |
A360242 | Number of integer partitions of n where the parts do not have the same mean as the distinct parts. | [
"0",
"0",
"0",
"0",
"1",
"3",
"3",
"9",
"11",
"19",
"25",
"43",
"49",
"82",
"103",
"136",
"183",
"258",
"314",
"435",
"524",
"687",
"892",
"1150",
"1378",
"1788",
"2241",
"2773",
"3399",
"4308",
"5142",
"6501",
"7834",
"9600",
"11726",
"14099",
"16949",
"20876",
"25042",
"30032",
"35732",
"43322",
"51037",
"61650",
"72807",
"86319",
"102983",
"122163"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A000009",
"A000041",
"A008284",
"A051293",
"A058398",
"A067340",
"A067538",
"A102627",
"A116608",
"A240219",
"A316313",
"A316413",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A349156",
"A360068",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 04 2023 | 2023-02-06T10:06:20 | oeisdata/seq/A360/A360242.seq | 31a45098c58017bfa452682b2920e2e3 |
A360243 | Number of integer partitions of n where the parts have the same mean as the distinct parts. | [
"1",
"1",
"2",
"3",
"4",
"4",
"8",
"6",
"11",
"11",
"17",
"13",
"28",
"19",
"32",
"40",
"48",
"39",
"71",
"55",
"103",
"105",
"110",
"105",
"197",
"170",
"195",
"237",
"319",
"257",
"462",
"341",
"515",
"543",
"584",
"784",
"1028",
"761",
"973",
"1153",
"1606",
"1261",
"2137",
"1611",
"2368",
"2815",
"2575",
"2591",
"4393",
"3798",
"4602",
"4663",
"5777",
"5121"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A000009",
"A000041",
"A008284",
"A051293",
"A058398",
"A067340",
"A067538",
"A102627",
"A116608",
"A240219",
"A316313",
"A316413",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A349156",
"A360068",
"A360069",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 04 2023 | 2023-02-06T10:06:16 | oeisdata/seq/A360/A360243.seq | 5b93db83556c6a1cc6770786cdebc43b |
A360244 | Number of integer partitions of n where the parts do not have the same median as the distinct parts. | [
"0",
"0",
"0",
"0",
"1",
"3",
"3",
"9",
"11",
"17",
"23",
"37",
"42",
"68",
"87",
"110",
"153",
"209",
"261",
"352",
"444",
"573",
"750",
"949",
"1187",
"1508",
"1909",
"2367",
"2938",
"3662",
"4507",
"5576",
"6826",
"8359",
"10203",
"12372",
"15011",
"18230",
"21996",
"26518",
"31779",
"38219",
"45682",
"54660",
"65112",
"77500",
"92089",
"109285"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A027193",
"A067659",
"A116608",
"A240219",
"A325347",
"A326619",
"A326620",
"A326621",
"A359889",
"A359890",
"A359893",
"A359894",
"A359901",
"A359902",
"A359907",
"A359908",
"A360068",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360248",
"A360249",
"A360250",
"A360251"
] | null | Gus Wiseman, Feb 05 2023 | 2023-02-06T10:06:12 | oeisdata/seq/A360/A360244.seq | 2456e6043fe94c1034ea083adb27bb53 |
A360245 | Number of integer partitions of n where the parts have the same median as the distinct parts. | [
"1",
"1",
"2",
"3",
"4",
"4",
"8",
"6",
"11",
"13",
"19",
"19",
"35",
"33",
"48",
"66",
"78",
"88",
"124",
"138",
"183",
"219",
"252",
"306",
"388",
"450",
"527",
"643",
"780",
"903",
"1097",
"1266",
"1523",
"1784",
"2107",
"2511",
"2966",
"3407",
"4019",
"4667",
"5559",
"6364",
"7492",
"8601",
"10063",
"11634",
"13469",
"15469",
"17985",
"20558",
"23812"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A027193",
"A067659",
"A116608",
"A240219",
"A325347",
"A326619",
"A326620",
"A326621",
"A359889",
"A359890",
"A359893",
"A359894",
"A359901",
"A359902",
"A359907",
"A359908",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360248",
"A360249",
"A360250",
"A360251"
] | null | Gus Wiseman, Feb 05 2023 | 2023-02-06T10:06:07 | oeisdata/seq/A360/A360245.seq | 74c03ab6f3a4ab6be21426a20217db6f |
A360246 | Numbers for which the prime indices do not have the same mean as the distinct prime indices. | [
"12",
"18",
"20",
"24",
"28",
"40",
"44",
"45",
"48",
"50",
"52",
"54",
"56",
"60",
"63",
"68",
"72",
"75",
"76",
"80",
"84",
"88",
"92",
"96",
"98",
"99",
"104",
"108",
"112",
"116",
"117",
"120",
"124",
"126",
"132",
"135",
"136",
"140",
"144",
"147",
"148",
"150",
"152",
"153",
"156",
"160",
"162",
"164",
"168",
"171",
"172",
"175",
"176",
"180",
"184",
"188",
"189"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000975",
"A001222",
"A051293",
"A056239",
"A058398",
"A067340",
"A067538",
"A088529",
"A088530",
"A112798",
"A114638",
"A124010",
"A316413",
"A324570",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359903",
"A360005",
"A360068",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360248",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 07 2023 | 2023-02-08T13:12:01 | oeisdata/seq/A360/A360246.seq | 171584c02f78f356ec085c50588c4a07 |
A360247 | Numbers for which the prime indices have the same mean as the distinct prime indices. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"19",
"21",
"22",
"23",
"25",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"69",
"70",
"71",
"73",
"74",
"77",
"78",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"89",
"90",
"91",
"93",
"94",
"95",
"97",
"100",
"101",
"102",
"103",
"105",
"106",
"107",
"109",
"110",
"111",
"113",
"114",
"115",
"118",
"119",
"121",
"122",
"123",
"125",
"127",
"128",
"129",
"130"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A000975",
"A001222",
"A008284",
"A051293",
"A056239",
"A058398",
"A067340",
"A067538",
"A088529",
"A088530",
"A112798",
"A114638",
"A116608",
"A124010",
"A316413",
"A324570",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359903",
"A360005",
"A360068",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360248",
"A360249",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 07 2023 | 2023-05-22T05:43:18 | oeisdata/seq/A360/A360247.seq | 89885b856cce1cfda1a2684149a91348 |
A360248 | Numbers for which the prime indices do not have the same median as the distinct prime indices. | [
"12",
"18",
"20",
"24",
"28",
"40",
"44",
"45",
"48",
"50",
"52",
"54",
"56",
"60",
"63",
"68",
"72",
"75",
"76",
"80",
"84",
"88",
"92",
"96",
"98",
"99",
"104",
"108",
"112",
"116",
"117",
"120",
"124",
"132",
"135",
"136",
"140",
"144",
"147",
"148",
"150",
"152",
"153",
"156",
"160",
"162",
"164",
"168",
"171",
"172",
"175",
"176",
"184",
"188",
"189",
"192",
"200"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A000975",
"A001222",
"A056239",
"A078174",
"A112798",
"A316413",
"A324570",
"A325347",
"A326567",
"A326568",
"A326619",
"A326620",
"A359890",
"A359893",
"A359901",
"A359907",
"A359908",
"A360005",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360248",
"A360249",
"A360453",
"A360454",
"A360455",
"A360456"
] | null | Gus Wiseman, Feb 07 2023 | 2023-02-09T20:49:19 | oeisdata/seq/A360/A360248.seq | a173293e6f58841fd457a9b7f437688c |
A360249 | Numbers for which the prime indices have the same median as the distinct prime indices. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"19",
"21",
"22",
"23",
"25",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"64",
"65",
"66",
"67",
"69",
"70",
"71",
"73",
"74",
"77",
"78",
"79",
"81",
"82",
"83",
"85",
"86",
"87",
"89",
"90",
"91",
"93",
"94",
"95",
"97",
"100",
"101",
"102",
"103",
"105",
"106",
"107",
"109",
"110",
"111",
"113",
"114",
"115",
"118",
"119",
"121",
"122",
"123",
"125",
"126",
"127",
"128",
"129",
"130"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000975",
"A001222",
"A056239",
"A078174",
"A112798",
"A240219",
"A316413",
"A324570",
"A325347",
"A326567",
"A326568",
"A326619",
"A326620",
"A359889",
"A359890",
"A359893",
"A359894",
"A359901",
"A359903",
"A359907",
"A359908",
"A360005",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360248",
"A360249",
"A360252",
"A360253",
"A360453",
"A360454",
"A360455",
"A360456"
] | null | Gus Wiseman, Feb 07 2023 | 2023-05-22T05:58:10 | oeisdata/seq/A360/A360249.seq | 4a696cd065b9635100c8e8343937c1bd |
A360250 | Number of integer partitions of n where the parts have greater mean than the distinct parts. | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"2",
"3",
"3",
"9",
"5",
"13",
"15",
"18",
"20",
"37",
"34",
"59",
"51",
"68",
"92",
"134",
"121",
"167",
"203",
"251",
"282",
"387",
"375",
"537",
"561",
"714",
"888",
"958",
"1042",
"1408",
"1618",
"1939",
"2076",
"2650",
"2764",
"3479",
"3863",
"4431",
"5387",
"6520",
"6688",
"8098",
"9041",
"10614",
"12084",
"14773",
"15469"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A058398",
"A067538",
"A102627",
"A116608",
"A240219",
"A316313",
"A316413",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359889",
"A359890",
"A359894",
"A360068",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 06 2023 | 2023-02-07T12:44:28 | oeisdata/seq/A360/A360250.seq | c9eebe135a84fe8473d6d0fc1e67fa11 |
A360251 | Number of integer partitions of n where the parts have lesser mean than the distinct parts. | [
"0",
"0",
"0",
"0",
"1",
"2",
"3",
"7",
"9",
"16",
"22",
"34",
"44",
"69",
"88",
"118",
"163",
"221",
"280",
"376",
"473",
"619",
"800",
"1016",
"1257",
"1621",
"2038",
"2522",
"3117",
"3921",
"4767",
"5964",
"7273",
"8886",
"10838",
"13141",
"15907",
"19468",
"23424",
"28093",
"33656",
"40672",
"48273",
"58171",
"68944",
"81888",
"97596",
"115643"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A058398",
"A067538",
"A102627",
"A116608",
"A240219",
"A316313",
"A316413",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359889",
"A359890",
"A359894",
"A360068",
"A360071",
"A360241",
"A360242",
"A360243",
"A360244",
"A360245",
"A360246",
"A360247",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 06 2023 | 2023-02-07T12:43:57 | oeisdata/seq/A360/A360251.seq | e139a0bea80cfe3a7fd4270e47887f6c |
A360252 | Numbers for which the prime indices have greater mean than the distinct prime indices. | [
"18",
"50",
"54",
"75",
"98",
"108",
"147",
"150",
"162",
"242",
"245",
"250",
"294",
"324",
"338",
"350",
"363",
"375",
"450",
"486",
"490",
"500",
"507",
"578",
"588",
"605",
"648",
"686",
"722",
"726",
"735",
"750",
"845",
"847",
"867",
"882",
"972",
"1014",
"1029",
"1050",
"1058",
"1078",
"1083",
"1125",
"1183",
"1210",
"1250",
"1274",
"1350",
"1372"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A000975",
"A001222",
"A051293",
"A056239",
"A058398",
"A067340",
"A067538",
"A112798",
"A316413",
"A324570",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359903",
"A360005",
"A360241",
"A360242",
"A360243",
"A360246",
"A360247",
"A360248",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 09 2023 | 2023-02-10T14:29:35 | oeisdata/seq/A360/A360252.seq | 8809af1f5b354cb02013626b00acf0da |
A360253 | Numbers for which the prime indices have lesser mean than the distinct prime indices. | [
"12",
"20",
"24",
"28",
"40",
"44",
"45",
"48",
"52",
"56",
"60",
"63",
"68",
"72",
"76",
"80",
"84",
"88",
"92",
"96",
"99",
"104",
"112",
"116",
"117",
"120",
"124",
"126",
"132",
"135",
"136",
"140",
"144",
"148",
"152",
"153",
"156",
"160",
"164",
"168",
"171",
"172",
"175",
"176",
"180",
"184",
"188",
"189",
"192",
"198",
"200",
"204",
"207",
"208",
"212",
"220"
] | [
"nonn"
] | 7 | 0 | 5 | [
"A000975",
"A001222",
"A051293",
"A056239",
"A058398",
"A067340",
"A067538",
"A112798",
"A316413",
"A324570",
"A326567",
"A326568",
"A326619",
"A326620",
"A326621",
"A327482",
"A359903",
"A360005",
"A360241",
"A360242",
"A360243",
"A360246",
"A360247",
"A360248",
"A360250",
"A360251",
"A360252",
"A360253"
] | null | Gus Wiseman, Feb 09 2023 | 2023-02-10T14:29:29 | oeisdata/seq/A360/A360253.seq | eff9f90a62e260f0ac2fe44a22c8365d |
A360254 | Number of integer partitions of n with more adjacent equal parts than distinct parts. | [
"0",
"0",
"0",
"1",
"1",
"1",
"3",
"4",
"7",
"10",
"12",
"18",
"28",
"36",
"52",
"68",
"92",
"119",
"161",
"204",
"269",
"355",
"452",
"571",
"738",
"921",
"1167",
"1457",
"1829",
"2270",
"2834",
"3483",
"4314",
"5300",
"6502",
"7932",
"9665",
"11735",
"14263",
"17227",
"20807",
"25042",
"30137",
"36099",
"43264",
"51646",
"61608",
"73291",
"87146",
"103296"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A000009",
"A000041",
"A000975",
"A008284",
"A027193",
"A067538",
"A102627",
"A116608",
"A237363",
"A240219",
"A325347",
"A359893",
"A359894",
"A359901",
"A359902",
"A359907",
"A359908",
"A360071",
"A360244",
"A360254",
"A360555",
"A360556",
"A360558",
"A360688"
] | null | Gus Wiseman, Feb 20 2023 | 2023-02-21T07:34:04 | oeisdata/seq/A360/A360254.seq | 74b21a11925a9aeebbe24c82285d88b9 |
A360255 | Irregular triangle (an infinite binary tree) read by rows: see Comments section for definition. | [
"0",
"1",
"3",
"6",
"2",
"10",
"7",
"5",
"15",
"13",
"11",
"9",
"21",
"20",
"4",
"18",
"2",
"16",
"14",
"28",
"12",
"28",
"12",
"26",
"8",
"24",
"22",
"20",
"36",
"21",
"19",
"37",
"21",
"17",
"35",
"17",
"33",
"13",
"31",
"11",
"29",
"27",
"45",
"11",
"31",
"9",
"29",
"27",
"47",
"31",
"7",
"27",
"25",
"45",
"7",
"27",
"23",
"43",
"23",
"41",
"19",
"39",
"17",
"37",
"35",
"55",
"22",
"42",
"18"
] | [
"nonn",
"tabf"
] | 14 | 0 | 5 | [
"A000217",
"A141001",
"A141002",
"A321535",
"A360173",
"A360255"
] | null | John Tyler Rascoe, Jan 30 2023 | 2023-02-13T08:57:34 | oeisdata/seq/A360/A360255.seq | 00b0f6f8a552e43f6a9f9930f8152d30 |
A360256 | Number of ways to tile an n X n square using rectangles with distinct height X width dimensions. | [
"1",
"1",
"33",
"513",
"14409",
"693025",
"50447161"
] | [
"nonn",
"more"
] | 51 | 0 | 5 | [
"A004003",
"A065072",
"A099390",
"A182275",
"A360256",
"A360498",
"A360499",
"A360725"
] | null | Scott R. Shannon, Feb 17 2023 | 2023-02-24T07:02:05 | oeisdata/seq/A360/A360256.seq | 410179542fb0066c7e83d1d498428881 |
A360257 | a(1) = 1; for n > 1, a(n) is the number of preceding terms having the same sum of divisors as a(n-1). | [
"1",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"5",
"1",
"6",
"1",
"7",
"1",
"8",
"1",
"9",
"1",
"10",
"1",
"11",
"2",
"2",
"3",
"2",
"4",
"2",
"5",
"2",
"6",
"3",
"3",
"4",
"3",
"5",
"3",
"6",
"4",
"4",
"5",
"4",
"6",
"5",
"5",
"6",
"6",
"7",
"2",
"7",
"3",
"7",
"4",
"7",
"5",
"7",
"6",
"8",
"2",
"8",
"3",
"8",
"4",
"8",
"5",
"8",
"6",
"9",
"2",
"9",
"3",
"9",
"4",
"9",
"5",
"9",
"6",
"10",
"2",
"10",
"3",
"10",
"4",
"10",
"5",
"10",
"6",
"11",
"12",
"1",
"12",
"2",
"11",
"13",
"1"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A000203",
"A276457",
"A356348",
"A360257"
] | null | Scott R. Shannon, Jan 31 2023 | 2023-01-31T08:21:49 | oeisdata/seq/A360/A360257.seq | 9703ee0faef4ffebce2167ea786cfe04 |
A360258 | a(n) is the smallest k such that A360097(k) = n. | [
"13",
"14",
"20",
"7",
"5",
"10",
"4",
"9",
"63",
"6",
"42",
"1590",
"1",
"2",
"5172911835",
"974749335",
"21",
"26135070"
] | [
"nonn",
"more"
] | 33 | 0 | 5 | [
"A018252",
"A124522",
"A360097",
"A360258"
] | null | Jean-Marc Rebert, Feb 01 2023 | 2023-02-17T20:30:31 | oeisdata/seq/A360/A360258.seq | c68cb24afbbff9dd3c6df8b9049b01d8 |
A360259 | a(0) = 0, and for any n > 0, let k > 0 be as small as possible and such that F(2) + ... + F(1+k) >= n (where F(m) denotes A000045(m), the m-th Fibonacci number); a(n) = k + a(F(2) + ... + F(1+k) - n). | [
"0",
"1",
"3",
"2",
"6",
"4",
"3",
"10",
"6",
"7",
"5",
"4",
"15",
"8",
"9",
"11",
"7",
"8",
"6",
"5",
"21",
"10",
"11",
"13",
"12",
"16",
"9",
"10",
"12",
"8",
"9",
"7",
"6",
"28",
"12",
"13",
"15",
"14",
"18",
"16",
"15",
"22",
"11",
"12",
"14",
"13",
"17",
"10",
"11",
"13",
"9",
"10",
"8",
"7",
"36",
"14",
"15",
"17",
"16",
"20",
"18",
"17",
"24",
"20",
"21",
"19",
"18",
"29",
"13",
"14",
"16"
] | [
"nonn",
"look"
] | 13 | 0 | 5 | [
"A000045",
"A001911",
"A095791",
"A227192",
"A360259",
"A360260",
"A360265"
] | null | Rémy Sigrist, Jan 31 2023 | 2023-02-02T14:44:23 | oeisdata/seq/A360/A360259.seq | c198e21faef37f5359cb18f47a22b804 |
A360260 | a(0) = 0, and for any n > 0, let k > 0 be as small as possible and such that T(3) + ... + T(2+k) >= n (where T(m) denotes A000073(m), the m-th tribonacci number); a(n) = k + a(T(3) + ... + T(2+k) - n). | [
"0",
"1",
"3",
"2",
"5",
"6",
"4",
"3",
"8",
"10",
"9",
"6",
"7",
"5",
"4",
"12",
"11",
"14",
"15",
"13",
"8",
"9",
"11",
"10",
"7",
"8",
"6",
"5",
"16",
"17",
"15",
"14",
"19",
"21",
"20",
"17",
"18",
"10",
"11",
"13",
"12",
"15",
"16",
"14",
"9",
"10",
"12",
"11",
"8",
"9",
"7",
"6",
"21",
"23",
"22",
"19",
"20",
"18",
"17",
"25",
"24",
"27",
"28",
"26",
"21",
"22",
"24",
"23",
"12",
"13",
"15"
] | [
"nonn",
"look"
] | 10 | 0 | 5 | [
"A000073",
"A027084",
"A356895",
"A360259",
"A360260"
] | null | Rémy Sigrist, Jan 31 2023 | 2023-02-02T14:43:53 | oeisdata/seq/A360/A360260.seq | 9d1c177a078bbe75c347fc52247bfbea |
A360261 | Determinant of the pentadiagonal symmetric n X n Toeplitz Matrix with a=b=1, c=2. | [
"1",
"1",
"0",
"-1",
"7",
"32",
"9",
"1",
"-32",
"495",
"567",
"288",
"-935",
"3025",
"15840",
"9503",
"2023",
"-29920",
"236457",
"312481",
"304096",
"-639153",
"1252503",
"7566624",
"7396345",
"2283121",
"-20452896",
"108556415",
"167727175",
"236683040",
"-376631991",
"491819329",
"3473805280",
"5032011951",
"2018956023",
"-12052223712",
"47535816601"
] | [
"sign",
"easy"
] | 9 | 0 | 5 | [
"A071534",
"A360261"
] | null | R. J. Mathar, Jan 31 2023 | 2023-06-24T16:02:58 | oeisdata/seq/A360/A360261.seq | 40d01ad749e9ad8e06e66b76e5375962 |
A360262 | Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=b=1, c=3. | [
"1",
"1",
"0",
"-4",
"56",
"177",
"25",
"-248",
"1536",
"19448",
"10025",
"2313",
"-78584",
"1525084",
"2046000",
"1990649",
"-12721279",
"80406480",
"282880000",
"276053680",
"-672007599",
"1449521681",
"28914914000",
"32747999676",
"14429332456",
"-221875825343"
] | [
"sign",
"easy"
] | 6 | 0 | 5 | null | null | R. J. Mathar, Jan 31 2023 | 2024-06-10T00:17:16 | oeisdata/seq/A360/A360262.seq | 07aaa4a18d6502f7afc8bae69ea723a9 |
A360263 | Determinant of the pentadiagonal symmetric nXn Toeplitz Matrix with a=3, b=c=1. | [
"1",
"3",
"8",
"20",
"48",
"115",
"273",
"648",
"1536",
"3640",
"8625",
"20435",
"48416",
"114708",
"271768",
"643875",
"1525473",
"3614160",
"8562688",
"20286768",
"48063521",
"113872355",
"269787000",
"639180820",
"1514350656",
"3587807763"
] | [
"nonn",
"easy"
] | 4 | 0 | 5 | null | null | R. J. Mathar, Jan 31 2023 | 2023-01-31T06:50:57 | oeisdata/seq/A360/A360263.seq | 59d63fa655d6fd6b00ccedd1fe894662 |
A360264 | Sum of mass(k/n) for all k, 1 <= k <= n, that are relatively prime to n. | [
"1",
"2",
"6",
"8",
"18",
"12",
"34",
"26",
"42",
"32",
"74",
"36",
"98",
"56",
"80",
"78",
"150",
"64",
"178",
"92",
"140",
"116",
"238",
"100",
"238",
"148",
"222",
"160",
"338",
"112",
"374",
"214",
"280",
"220",
"348",
"180",
"486",
"260",
"356",
"248",
"562",
"192",
"602",
"316",
"388",
"344",
"682",
"264",
"662",
"328",
"528",
"404",
"810",
"308",
"688",
"424"
] | [
"nonn"
] | 26 | 0 | 5 | [
"A000010",
"A049835",
"A360264"
] | null | Jeffrey Shallit, Jan 31 2023 | 2024-12-13T10:25:21 | oeisdata/seq/A360/A360264.seq | ff68516883a0dc72a3a22c9ff1c8bd3b |
A360265 | a(0) = 0, and for any n > 0, let k > 0 be as small as possible and such that t(k) >= n (where t(m) denotes A000217(m), the m-th triangular number); a(n) = k + a(t(k) - n). | [
"0",
"1",
"3",
"2",
"6",
"4",
"3",
"6",
"7",
"5",
"4",
"11",
"7",
"8",
"6",
"5",
"10",
"12",
"8",
"9",
"7",
"6",
"10",
"11",
"13",
"9",
"10",
"8",
"7",
"14",
"11",
"12",
"14",
"10",
"11",
"9",
"8",
"16",
"15",
"12",
"13",
"15",
"11",
"12",
"10",
"9",
"15",
"17",
"16",
"13",
"14",
"16",
"12",
"13",
"11",
"10",
"15",
"16",
"18",
"17",
"14",
"15",
"17",
"13",
"14",
"12",
"11",
"23",
"16",
"17",
"19"
] | [
"nonn",
"look"
] | 9 | 0 | 5 | [
"A000217",
"A002024",
"A360259",
"A360265"
] | null | Rémy Sigrist, Jan 31 2023 | 2023-02-02T14:43:17 | oeisdata/seq/A360/A360265.seq | 336ffe30096ac5e3796dd07411e52f33 |
A360266 | a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-2*k),n-2*k). | [
"1",
"2",
"6",
"22",
"82",
"312",
"1210",
"4752",
"18834",
"75184",
"301856",
"1217604",
"4930626",
"20032052",
"81615072",
"333328532",
"1364264250",
"5594210292",
"22977466864",
"94517423444",
"389316529512",
"1605533230256",
"6628467569292",
"27393187077144",
"113310732332274",
"469101108803052"
] | [
"nonn"
] | 19 | 0 | 5 | [
"A006139",
"A157004",
"A360266",
"A360267",
"A374598"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-07-13T13:47:14 | oeisdata/seq/A360/A360266.seq | a391400bdd366dc735593df3dcbd1339 |
A360267 | a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k). | [
"1",
"2",
"6",
"20",
"72",
"264",
"984",
"3712",
"14136",
"54224",
"209200",
"810912",
"3155616",
"12320512",
"48239232",
"189336192",
"744722400",
"2934759360",
"11584470336",
"45796087680",
"181285742592",
"718498695424",
"2850802065152",
"11322567705600",
"45011437903104",
"179088911779328"
] | [
"nonn"
] | 23 | 0 | 5 | [
"A006139",
"A360219",
"A360266",
"A360267",
"A374599"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-07-13T13:47:10 | oeisdata/seq/A360/A360267.seq | e100b08d790d96e8515490904e670b0c |
A360268 | A version of the Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 5 places clockwise from i. Repeat, counting 5 places from the next undeleted integer, until only one integer remains. | [
"1",
"1",
"1",
"3",
"4",
"4",
"3",
"1",
"7",
"3",
"9",
"3",
"9",
"1",
"7",
"13",
"2",
"8",
"14",
"20",
"5",
"11",
"17",
"23",
"4",
"10",
"16",
"22",
"28",
"4",
"10",
"16",
"22",
"28",
"34",
"4",
"10",
"16",
"22",
"28",
"34",
"40",
"3",
"9",
"15",
"21",
"27",
"33",
"39",
"45",
"51",
"5",
"11",
"17",
"23",
"29",
"35",
"41",
"47",
"53",
"59",
"3",
"9",
"15",
"21",
"27",
"33",
"39",
"45",
"51",
"57",
"63",
"69",
"1",
"7",
"13",
"19",
"25"
] | [
"nonn"
] | 51 | 0 | 5 | [
"A006257",
"A054995",
"A088333",
"A181281",
"A198789",
"A360268"
] | null | Benjamin Lilley, Jan 31 2023 | 2023-03-17T07:23:32 | oeisdata/seq/A360/A360268.seq | 98849003e363b4632467ae3dd9609286 |
A360269 | Least sum of 2's and 3's required to build n using +, * and parentheses. | [
"2",
"3",
"4",
"5",
"5",
"7",
"6",
"6",
"7",
"8",
"7",
"10",
"9",
"8",
"8",
"10",
"8",
"11",
"9",
"10",
"10",
"12",
"9",
"10",
"11",
"9",
"11",
"11",
"10",
"13",
"10",
"11",
"12",
"12",
"10",
"14",
"12",
"13",
"11",
"15",
"12",
"14",
"12",
"11",
"14",
"13",
"11",
"14",
"12",
"13",
"13",
"15",
"11",
"13",
"13",
"14",
"13",
"16",
"12",
"16",
"14",
"13",
"12",
"15",
"13",
"15",
"14",
"15",
"14"
] | [
"nonn"
] | 20 | 0 | 5 | [
"A000040",
"A025280",
"A360269"
] | null | Tamas Sandor Nagy, Jan 31 2023 | 2023-02-23T13:21:35 | oeisdata/seq/A360/A360269.seq | 4668b405ae3668deef82643091f3c2b3 |
A360270 | Decimal expansion of the kelvin-kilogram relationship (k/c^2) according to the 2019 SI system in units kg. | [
"1",
"5",
"3",
"6",
"1",
"7",
"9",
"1",
"8",
"7",
"2",
"4",
"0",
"3",
"7",
"2",
"2",
"3",
"4",
"7",
"6",
"2",
"7",
"2",
"5",
"1",
"3",
"5",
"8",
"7",
"7",
"4",
"4",
"0",
"1",
"4",
"6",
"9",
"0",
"2",
"9",
"4",
"8",
"0",
"4",
"8",
"1",
"2",
"5",
"4",
"2",
"2",
"3",
"2",
"7",
"3",
"4",
"4",
"4",
"3",
"2",
"7",
"2",
"0",
"2",
"1",
"1",
"5",
"6",
"3",
"1",
"2",
"7",
"0",
"9",
"9",
"9",
"3",
"1",
"7",
"1",
"9",
"0",
"9",
"0",
"7"
] | [
"cons",
"easy",
"nonn"
] | 12 | 0 | 5 | [
"A003678",
"A070063",
"A360270"
] | null | Marco Ripà, Jan 31 2023 | 2025-02-13T04:03:40 | oeisdata/seq/A360/A360270.seq | e5493e2cacc48fb09708a8d7216d898f |
A360271 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * Catalan(n-3*k). | [
"1",
"1",
"2",
"5",
"13",
"38",
"117",
"373",
"1222",
"4085",
"13877",
"47766",
"166229",
"583893",
"2067414",
"7371093",
"26440789",
"95355990",
"345538389",
"1257486165",
"4593933398",
"16841578325",
"61938532181",
"228454719830",
"844882459989",
"3132258655573",
"11638656376150",
"43337083401557"
] | [
"nonn"
] | 15 | 0 | 5 | [
"A000108",
"A157003",
"A360219",
"A360271",
"A360272"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-09-29T13:17:25 | oeisdata/seq/A360/A360271.seq | efab29806f231c6ec5953021ab1a6d72 |
A360272 | a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(n-3*k). | [
"1",
"1",
"2",
"5",
"15",
"46",
"147",
"485",
"1642",
"5669",
"19883",
"70646",
"253755",
"919925",
"3361546",
"12368661",
"45786219",
"170400470",
"637200555",
"2392962645",
"9021255722",
"34128098389",
"129519490219",
"492966689110",
"1881289209003",
"7197100511317",
"27595769836714",
"106032318322517"
] | [
"nonn"
] | 16 | 0 | 5 | [
"A000108",
"A052709",
"A125305",
"A360267",
"A360271",
"A360272",
"A360274"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-09-29T13:17:20 | oeisdata/seq/A360/A360272.seq | a14a0a4b564d0f70f50864e3dcef483e |
A360273 | a(n) = Sum_{k=0..floor(n/2)} Catalan(n-2*k). | [
"1",
"1",
"3",
"6",
"17",
"48",
"149",
"477",
"1579",
"5339",
"18375",
"64125",
"226387",
"807025",
"2900827",
"10501870",
"38258497",
"140146660",
"515897197",
"1907409850",
"7080017617",
"26373676870",
"98562581257",
"369433290520",
"1388466728581",
"5231379691972"
] | [
"nonn",
"easy"
] | 16 | 0 | 5 | [
"A000108",
"A014137",
"A360273",
"A360274"
] | null | Seiichi Manyama, Jan 31 2023 | 2024-09-08T15:49:31 | oeisdata/seq/A360/A360273.seq | 7721b288b6658b22440184bbdd5f10c0 |
A360274 | a(n) = Sum_{k=0..floor(n/3)} Catalan(n-3*k). | [
"1",
"1",
"2",
"6",
"15",
"44",
"138",
"444",
"1474",
"5000",
"17240",
"60260",
"213012",
"760140",
"2734700",
"9907857",
"36117810",
"132379490",
"487546557",
"1803381000",
"6696499910",
"24953813577",
"93285944640",
"349756113560",
"1314857960901",
"4955232346092",
"18717109185712",
"70848408876905"
] | [
"nonn",
"easy"
] | 13 | 0 | 5 | [
"A000108",
"A014137",
"A360273",
"A360274"
] | null | Seiichi Manyama, Jan 31 2023 | 2023-03-12T11:04:07 | oeisdata/seq/A360/A360274.seq | 65d08a08a6aa8140b913ab68193f6c3e |
A360275 | Number of unordered quadruples of self-avoiding paths with nodes that cover all vertices of a convex n-gon. | [
"0",
"0",
"0",
"0",
"0",
"105",
"3780",
"81900",
"1386000",
"20207880",
"266666400",
"3277354080",
"38198160000",
"427365818880",
"4629059635200",
"48842864179200",
"504335346278400",
"5114054709319680",
"51064119467827200",
"503151159589478400",
"4900668252598272000",
"47248486914198011904",
"451429610841538560000"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A001792",
"A332426",
"A359404",
"A360275"
] | null | Ivaylo Kortezov, Feb 01 2023 | 2023-02-17T20:22:25 | oeisdata/seq/A360/A360275.seq | 188f7d80785ec5101022b8da3911787f |
A360276 | Number of unordered quadruples of self-avoiding paths with nodes that cover all vertices of a convex n-gon; one-node paths are allowed. | [
"0",
"0",
"10",
"105",
"1015",
"9625",
"90972",
"861420",
"8191920",
"78309000",
"752317280",
"7257522272",
"70223986560",
"680703296000",
"6601793730560",
"63984047339520",
"619018056228864",
"5972223901440000",
"57415027394027520",
"549677356175073280",
"5238367168966328320",
"49678823782558924800",
"468783944069762252800"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A001792",
"A359405",
"A360021",
"A360276"
] | null | Ivaylo Kortezov, Feb 01 2023 | 2023-02-17T20:14:09 | oeisdata/seq/A360/A360276.seq | 0f62edc9e9a774d997807cd22ee49929 |
A360277 | Primes p that are congruent to 1 mod 2*k, where k = primepi(p) is the index of the prime. | [
"11",
"13",
"1087",
"64591",
"64601",
"64661",
"3523969",
"3524249",
"189963073",
"189963091",
"189963847",
"189968887",
"189969319",
"189969337",
"1394194181",
"1394194481",
"1394194561",
"1394197381",
"1394199221",
"1394199241",
"10246935931",
"10246936019",
"10246936481",
"75370121689",
"75370121857",
"75370122409"
] | [
"nonn"
] | 27 | 0 | 5 | [
"A000040",
"A000720",
"A048891",
"A360277"
] | null | Najeem Ziauddin, Feb 01 2023 | 2023-02-09T10:39:22 | oeisdata/seq/A360/A360277.seq | f2272eac9ddf6bcae06d87e957202d7c |
A360278 | Determinant of the matrix [L(j+k)+d(j,k)]_{1<=j,k<=n}, where L(n) denotes the Lucas number A000032(n), and d(j,k) is 1 or 0 according as j = k or not. | [
"4",
"16",
"44",
"121",
"319",
"841",
"2204",
"5776",
"15124",
"39601",
"103679",
"271441",
"710644",
"1860496",
"4870844",
"12752041",
"33385279",
"87403801",
"228826124",
"599074576",
"1568397604",
"4106118241",
"10749957119",
"28143753121",
"73681302244",
"192900153616",
"505019158604",
"1322157322201",
"3461452807999",
"9062201101801",
"23725150497404",
"62113250390416",
"162614600673844",
"425730551631121",
"1114577054219519"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A000032",
"A000045",
"A360278"
] | null | Zhi-Wei Sun, Feb 01 2023 | 2023-02-01T10:23:38 | oeisdata/seq/A360/A360278.seq | a2e1e75e8486db13e3d8c228419da756 |
A360279 | Decimal expansion of a constant related to the asymptotics of A302702. | [
"2",
"1",
"2",
"4",
"6",
"0",
"6",
"5",
"8",
"3",
"6",
"2",
"4",
"2",
"8",
"9",
"7",
"9",
"1",
"8",
"2",
"7",
"8",
"8",
"2",
"5",
"7",
"4",
"6",
"9",
"8",
"9",
"2",
"4",
"1",
"7",
"1",
"6",
"8",
"6",
"2",
"5",
"9",
"6",
"6",
"4",
"0",
"5",
"1",
"0",
"9",
"0",
"7",
"2",
"3",
"1",
"1",
"2",
"0",
"8",
"2",
"0",
"1",
"8",
"3",
"1",
"6",
"9",
"2",
"8",
"8",
"6"
] | [
"nonn",
"cons"
] | 11 | 0 | 5 | [
"A302702",
"A302703",
"A360231",
"A360234",
"A360235",
"A360236",
"A360237",
"A360279"
] | null | Vaclav Kotesovec, Feb 01 2023 | 2023-02-05T03:17:08 | oeisdata/seq/A360/A360279.seq | c0a9f449c29ce96045f5eeaed4df6503 |
A360280 | Squares that are the hypotenuse of a primitive Pythagorean triangle. | [
"25",
"169",
"289",
"625",
"841",
"1369",
"1681",
"2809",
"3721",
"4225",
"5329",
"7225",
"7921",
"9409",
"10201",
"11881",
"12769",
"15625",
"18769",
"21025",
"22201",
"24649",
"28561",
"29929",
"32761",
"34225",
"37249",
"38809",
"42025",
"48841",
"52441",
"54289",
"58081",
"66049",
"70225",
"72361",
"76729",
"78961",
"83521",
"85849",
"93025",
"97969"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A000290",
"A008846",
"A020882",
"A198436",
"A360280"
] | null | Alexandru Petrescu, Feb 01 2023 | 2023-02-17T21:44:26 | oeisdata/seq/A360/A360280.seq | 3e1d34b26fbc4eafb420e4fedd0de233 |
A360281 | Lexicographically earliest sequence of distinct positive integers such that for any n > 2, a(n) is a divisor or a multiple of a(n-1) + a(n-2). | [
"1",
"2",
"3",
"5",
"4",
"9",
"13",
"11",
"6",
"17",
"23",
"8",
"31",
"39",
"7",
"46",
"53",
"33",
"43",
"19",
"62",
"27",
"89",
"29",
"59",
"22",
"81",
"103",
"92",
"15",
"107",
"61",
"12",
"73",
"85",
"79",
"41",
"10",
"51",
"122",
"173",
"295",
"18",
"313",
"331",
"14",
"69",
"83",
"38",
"121",
"159",
"20",
"179",
"199",
"21",
"44",
"65",
"109",
"58",
"167",
"25",
"16",
"82",
"49"
] | [
"nonn"
] | 14 | 0 | 5 | [
"A085947",
"A328444",
"A332301",
"A360281"
] | null | Rémy Sigrist, Feb 01 2023 | 2024-07-21T11:36:25 | oeisdata/seq/A360/A360281.seq | c85b591352c7057826f958cf0e13fc24 |
A360282 | Triangle read by rows. T(n, k) = (1/2) * binomial(2*(n - k + 1), n - k + 1) * binomial(2*n - k, k - 1) for n > 0, T(0, 0) = 1. | [
"1",
"0",
"1",
"0",
"3",
"2",
"0",
"10",
"12",
"3",
"0",
"35",
"60",
"30",
"4",
"0",
"126",
"280",
"210",
"60",
"5",
"0",
"462",
"1260",
"1260",
"560",
"105",
"6",
"0",
"1716",
"5544",
"6930",
"4200",
"1260",
"168",
"7",
"0",
"6435",
"24024",
"36036",
"27720",
"11550",
"2520",
"252",
"8"
] | [
"nonn",
"tabl"
] | 16 | 0 | 5 | [
"A001700",
"A053123",
"A088218",
"A135503",
"A172431",
"A182626",
"A360282",
"A360546"
] | null | Peter Luschny, Feb 11 2023 | 2023-02-14T03:51:51 | oeisdata/seq/A360/A360282.seq | 4491a9077ccf3858fc14d4a328b08afe |
A360283 | a(n) = lcm({n! * binomial(n, k) for k = 0..n}). | [
"1",
"1",
"4",
"18",
"288",
"1200",
"43200",
"529200",
"11289600",
"91445760",
"9144576000",
"92207808000",
"13277924352000",
"160283515392000",
"2094371267788800",
"58904191906560000",
"15079473128079360000",
"242109318556385280000",
"78443419212268830720000",
"1415903716781452394496000"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A002397",
"A003418",
"A005722",
"A021012",
"A196347",
"A360283"
] | null | Peter Luschny, Feb 14 2023 | 2023-02-15T09:41:38 | oeisdata/seq/A360/A360283.seq | 24f566ff4a2943ed8351793cf4af83d7 |
A360284 | Least integer nu such that the first zero of the Bessel j-function of index nu is at least nu + n. | [
"0",
"2",
"7",
"16",
"29",
"48",
"73",
"106",
"148",
"199",
"260",
"333",
"417",
"515",
"627",
"754",
"897",
"1057",
"1234",
"1431",
"1647",
"1884",
"2142",
"2423",
"2727",
"3056",
"3410",
"3791",
"4198",
"4634",
"5099",
"5594",
"6120",
"6678",
"7268",
"7893",
"8552",
"9247",
"9979",
"10748",
"11555",
"12402",
"13290"
] | [
"nonn"
] | 8 | 0 | 5 | null | null | Charles R Greathouse IV, Feb 01 2023 | 2023-02-01T23:04:45 | oeisdata/seq/A360/A360284.seq | d60ad2d04508d3807e8ff32c1cb2c84e |
A360285 | Triangle read by rows: T(n,k) is the number of subsets of {1,...,n} of cardinality k in which no two elements are coprime; n >= 0, 0 <= k <= floor(n/2) + [n=1]. | [
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"1",
"5",
"1",
"1",
"6",
"4",
"1",
"1",
"7",
"4",
"1",
"1",
"8",
"7",
"4",
"1",
"1",
"9",
"9",
"5",
"1",
"1",
"10",
"14",
"11",
"5",
"1",
"1",
"11",
"14",
"11",
"5",
"1",
"1",
"12",
"21",
"24",
"16",
"6",
"1",
"1",
"13",
"21",
"24",
"16",
"6",
"1",
"1",
"14",
"28",
"39",
"36",
"21",
"7",
"1",
"1",
"15",
"34",
"48",
"41",
"22",
"7",
"1",
"1",
"16",
"41",
"69",
"76",
"57",
"28",
"8",
"1"
] | [
"nonn",
"tabf"
] | 18 | 0 | 5 | [
"A056171",
"A355146",
"A360285"
] | null | Marcel K. Goh, Feb 01 2023 | 2023-10-23T17:39:36 | oeisdata/seq/A360/A360285.seq | 72445bbdcb5a18b3fa27e7cc365b7869 |
A360286 | Irregular triangle read by rows where row n is the lexicographically earliest sequence of visits, taking steps by 1, around a circle of vertices 1..n where the numbers of visits to the vertices are 1..n in some order. | [
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"4",
"3",
"4",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"5",
"4",
"3",
"4",
"3",
"4",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"6",
"5",
"4",
"3",
"4",
"3",
"4",
"3",
"4",
"5",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"7",
"6",
"5",
"4",
"3",
"4",
"3",
"4",
"3",
"4",
"3",
"4",
"5",
"6",
"5"
] | [
"nonn",
"tabf"
] | 48 | 0 | 5 | [
"A000217",
"A360286"
] | null | Tamas Sandor Nagy, Feb 01 2023 | 2023-03-01T23:19:44 | oeisdata/seq/A360/A360286.seq | 453b94c297737025d45c028adba6a327 |
A360287 | a(n) is the concatenation of the positions of 1-bits in the binary expansion of the Gray code for n, when 1 is the rightmost position; a(0) = 0. | [
"0",
"1",
"12",
"2",
"23",
"123",
"13",
"3",
"34",
"134",
"1234",
"234",
"24",
"124",
"14",
"4",
"45",
"145",
"1245",
"245",
"2345",
"12345",
"1345",
"345",
"35",
"135",
"1235",
"235",
"25",
"125",
"15",
"5",
"56",
"156",
"1256",
"256",
"2356",
"12356",
"1356",
"356",
"3456",
"13456",
"123456",
"23456",
"2456",
"12456",
"1456",
"456",
"46",
"146",
"1246",
"246"
] | [
"nonn",
"look",
"base"
] | 31 | 0 | 5 | [
"A000225",
"A000975",
"A003188",
"A007908",
"A048794",
"A227738",
"A360287"
] | null | Alois P. Heinz, Feb 01 2023 | 2023-02-02T16:46:19 | oeisdata/seq/A360/A360287.seq | a9504379e65ccd3b45b12766286d8202 |
A360288 | Number T(n,k) of permutations of [n] whose excedance set is the k-th finite subset of positive integers in standard order; triangle T(n,k), n>=0, 0<=k<=ceiling(2^(n-1))-1, read by rows. | [
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"7",
"3",
"7",
"1",
"3",
"1",
"1",
"1",
"15",
"7",
"31",
"3",
"17",
"7",
"15",
"1",
"7",
"3",
"7",
"1",
"3",
"1",
"1",
"1",
"31",
"15",
"115",
"7",
"69",
"31",
"115",
"3",
"37",
"17",
"69",
"7",
"37",
"15",
"31",
"1",
"15",
"7",
"31",
"3",
"17",
"7",
"15",
"1",
"7",
"3",
"7",
"1",
"3",
"1",
"1",
"1",
"63",
"31",
"391",
"15",
"245",
"115",
"675",
"7",
"145",
"69"
] | [
"nonn",
"look",
"tabf"
] | 48 | 0 | 5 | [
"A000012",
"A000027",
"A000142",
"A000225",
"A011782",
"A029767",
"A048793",
"A048794",
"A152884",
"A263756",
"A329369",
"A360288",
"A360289"
] | null | Alois P. Heinz, Feb 01 2023 | 2024-12-02T09:30:20 | oeisdata/seq/A360/A360288.seq | c02f556e27d7158911bce4b37fe9e04a |
A360289 | Number T(n,k) of permutations of [n] whose excedance set is the k-th finite subset of positive integers in Gray order; triangle T(n,k), n>=0, 0<=k<=ceiling(2^(n-1))-1, read by rows. | [
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"7",
"7",
"3",
"1",
"1",
"3",
"1",
"1",
"15",
"31",
"7",
"7",
"15",
"17",
"3",
"1",
"3",
"1",
"1",
"3",
"7",
"7",
"1",
"1",
"31",
"115",
"15",
"31",
"115",
"69",
"7",
"7",
"37",
"31",
"15",
"17",
"69",
"37",
"3",
"1",
"7",
"7",
"3",
"1",
"1",
"3",
"1",
"3",
"17",
"15",
"7",
"7",
"31",
"15",
"1",
"1",
"63",
"391",
"31",
"115",
"675",
"245",
"15",
"31",
"261",
"391"
] | [
"nonn",
"look",
"tabf"
] | 33 | 0 | 5 | [
"A000012",
"A000027",
"A000142",
"A000225",
"A003188",
"A006068",
"A011782",
"A152884",
"A227738",
"A263756",
"A360287",
"A360288",
"A360289"
] | null | Alois P. Heinz, Feb 01 2023 | 2023-12-09T09:00:08 | oeisdata/seq/A360/A360289.seq | 0733ef63c7b93dd9b40219987db79c59 |
A360290 | a(n) = Sum_{k=0..floor(n/2)} binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k). | [
"1",
"2",
"6",
"22",
"82",
"314",
"1222",
"4814",
"19138",
"76626",
"308550",
"1248230",
"5069266",
"20654602",
"84392838",
"345659166",
"1418769154",
"5834283298",
"24031706246",
"99134911542",
"409495076050",
"1693539077210",
"7011618614342",
"29058701620974",
"120540377731266",
"500443750830962"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A085362",
"A360185",
"A360290",
"A360291",
"A360292",
"A360293"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-02-02T10:36:31 | oeisdata/seq/A360/A360290.seq | 158b2986249a5238dec2c79c41b01909 |
A360291 | a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k). | [
"1",
"2",
"6",
"20",
"72",
"264",
"984",
"3714",
"14148",
"54284",
"209482",
"812196",
"3161340",
"12345658",
"48348522",
"189807336",
"746740510",
"2943359208",
"11620961412",
"45950375602",
"181936110006",
"721233025332",
"2862271873966",
"11370584735100",
"45212101270728",
"179926167512914"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A085362",
"A360186",
"A360290",
"A360291",
"A360292",
"A360294"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-02-03T01:37:31 | oeisdata/seq/A360/A360291.seq | 25aec394ace56763d0c447a9b65262fa |
A360292 | a(n) = Sum_{k=0..floor(n/4)} binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k). | [
"1",
"2",
"6",
"20",
"70",
"254",
"936",
"3492",
"13150",
"49882",
"190318",
"729576",
"2807816",
"10841962",
"41983588",
"162973568",
"633994982",
"2471010742",
"9646981054",
"37718873700",
"147676286078",
"578883674722",
"2271704404900",
"8923807316892",
"35087269756344",
"138075819924306"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A085362",
"A360290",
"A360291",
"A360292",
"A360295"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-02-03T01:37:44 | oeisdata/seq/A360/A360292.seq | 709637bca1e4b59c3dcb0f155daed0d4 |
A360293 | a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k). | [
"1",
"2",
"6",
"18",
"58",
"194",
"662",
"2290",
"8002",
"28178",
"99830",
"355426",
"1270586",
"4557682",
"16396454",
"59135458",
"213745922",
"774077986",
"2808105318",
"10202439858",
"37118386490",
"135210620194",
"493082387766",
"1799998114770",
"6577045868866",
"24052649767730",
"88031695861590"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A360293",
"A360294",
"A360295"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-02-02T10:44:42 | oeisdata/seq/A360/A360293.seq | 74e967fad0ec454535f830ce600a58d7 |
A360294 | a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k). | [
"1",
"2",
"6",
"20",
"68",
"240",
"864",
"3154",
"11628",
"43196",
"161430",
"606228",
"2285780",
"8647738",
"32811378",
"124804104",
"475748330",
"1817005536",
"6951390372",
"26634502642",
"102189927918",
"392559063268",
"1509684132394",
"5811772604124",
"22394185567728",
"86364110132930",
"333329513935842"
] | [
"nonn"
] | 12 | 0 | 5 | [
"A360293",
"A360294",
"A360295"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-02-06T18:56:28 | oeisdata/seq/A360/A360294.seq | 8e04ced55eebee56ab5cf4b2509a5064 |
A360295 | a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k). | [
"1",
"2",
"6",
"20",
"70",
"250",
"912",
"3372",
"12590",
"47362",
"179230",
"681528",
"2601896",
"9966798",
"38288420",
"147453664",
"569092438",
"2200577502",
"8523612766",
"33064771524",
"128438624798",
"499525018638",
"1944918241388",
"7580283784548",
"29571439970136",
"115459524588322",
"451157870454298"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A360293",
"A360294",
"A360295"
] | null | Seiichi Manyama, Feb 01 2023 | 2023-03-12T10:58:22 | oeisdata/seq/A360/A360295.seq | 3cd974dd544f44ab938202df6eb50432 |
A360296 | a(1) = 1, and for any n > 1, a(n) is the sum of the terms of the sequence at indices k < n whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n. | [
"1",
"1",
"1",
"2",
"3",
"3",
"2",
"4",
"8",
"11",
"8",
"8",
"11",
"8",
"4",
"8",
"20",
"34",
"26",
"34",
"51",
"40",
"20",
"20",
"40",
"51",
"34",
"26",
"34",
"20",
"8",
"16",
"48",
"96",
"76",
"118",
"186",
"152",
"76",
"96",
"208",
"281",
"186",
"152",
"208",
"124",
"48",
"48",
"124",
"208",
"152",
"186",
"281",
"208",
"96",
"76",
"152",
"186",
"118",
"76",
"96",
"48",
"16",
"32"
] | [
"nonn",
"look",
"base"
] | 8 | 0 | 5 | [
"A165418",
"A301983",
"A360296"
] | null | Rémy Sigrist, Feb 02 2023 | 2023-02-02T14:42:44 | oeisdata/seq/A360/A360296.seq | 6b997024493ccd8814578575f45644f3 |
A360297 | a(n) = minimal positive k such that the sum of the primes prime(n) + prime(n+1) + ... + prime(n+k) is divisible by prime(n+k+1), or -1 if no such k exists. | [
"1",
"3",
"7",
"11",
"26",
"20",
"27",
"52",
"1650",
"142",
"53",
"168234",
"212",
"7",
"13"
] | [
"nonn",
"more",
"changed"
] | 23 | 0 | 5 | [
"A000040",
"A007504",
"A332542",
"A332580",
"A360297",
"A360311",
"A360312"
] | null | Scott R. Shannon, Feb 02 2023 | 2025-04-22T16:26:13 | oeisdata/seq/A360/A360297.seq | 75af1cb1244dc6bb886ffe2441d6e1b7 |
A360298 | Irregular triangle (an infinite binary tree) read by rows. The tree has root node 1 in row n = 1. For n > 1, each node with value m in row n-1 has a left child with value m / n if n divides m, and a right child with value m * n. | [
"1",
"2",
"6",
"24",
"120",
"20",
"720",
"140",
"5040",
"1120",
"630",
"40320",
"10080",
"70",
"5670",
"4480",
"362880",
"1008",
"100800",
"7",
"700",
"567",
"56700",
"448",
"44800",
"36288",
"3628800",
"11088",
"1108800",
"77",
"7700",
"6237",
"623700",
"4928",
"492800",
"399168",
"39916800",
"924",
"133056",
"92400",
"13305600",
"924",
"92400",
"74844",
"51975",
"7484400",
"59136",
"5913600",
"33264",
"4790016",
"3326400",
"479001600"
] | [
"nonn",
"look",
"tabf",
"easy"
] | 12 | 0 | 5 | [
"A000142",
"A008336",
"A360173",
"A360298",
"A360299",
"A360300"
] | null | Rémy Sigrist, Feb 02 2023 | 2023-02-02T14:41:03 | oeisdata/seq/A360/A360298.seq | e3257a3c1bfef6e5eae8b33946705162 |
A360299 | a(n) is the number of terms in the n-th row of A360298. | [
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"5",
"10",
"10",
"15",
"15",
"29",
"44",
"73",
"73",
"136",
"136",
"264",
"383",
"740",
"740",
"1418",
"2440",
"4727",
"7831",
"15154",
"15154",
"25836",
"25836",
"46502",
"69638",
"139276",
"240132",
"447972",
"447972",
"880859",
"1343707",
"2448270",
"2448270",
"4742231",
"4742231",
"9309245",
"17932278"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A360298",
"A360299"
] | null | Rémy Sigrist, Feb 02 2023 | 2023-02-02T12:47:37 | oeisdata/seq/A360/A360299.seq | 226cb052ebc1664a739119683a291f45 |
A360300 | a(n) is the least term in the n-th row of A360298. | [
"1",
"2",
"6",
"24",
"120",
"20",
"140",
"630",
"70",
"7",
"77",
"924",
"12012",
"858",
"5720",
"12870",
"218790",
"12155",
"230945",
"46189",
"969969",
"176358",
"4056234",
"676039",
"676039",
"104006",
"312018",
"44574",
"1292646",
"1077205",
"33393355",
"66786710",
"2203961430",
"64822395",
"90751353",
"90751353",
"3357800061"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A008336",
"A360298",
"A360300"
] | null | Rémy Sigrist, Feb 02 2023 | 2023-02-02T12:47:31 | oeisdata/seq/A360/A360300.seq | 19a1fcf976705a00ad9c3bc3b3359699 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.