sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A379201
Column 1 of triangle A379200; a(n) = A379200(n,1) for n >= 2.
[ "1", "4", "13", "40", "130", "472", "1863", "7536", "30144", "118420", "460746", "1795688", "7059729", "28023636", "111978480", "448799712", "1800225540", "7223348112", "29006342666", "116643481440", "469861180529", "1895748851480", "7658862165738", "30973386496992", "125363177936450", "507777786429164", "2058225234116544" ]
[ "nonn" ]
6
2
2
[ "A379200", "A379201" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:38:32
oeisdata/seq/A379/A379201.seq
dac6081ab03dfa1272b32e867f9cf315
A379202
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2)^(n+1).
[ "1", "4", "20", "122", "850", "6432", "51324", "424694", "3608592", "31291658", "275774228", "2462835772", "22239367632", "202713590686", "1862689951724", "17235880764264", "160466865121154", "1502055108051124", "14127846520455180", "133455751612975948", "1265563747442829216", "12043611154775588194", "114978748131733714360" ]
[ "nonn" ]
9
1
2
[ "A166952", "A378264", "A379199", "A379200", "A379202", "A379203", "A379204", "A379205" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:38:40
oeisdata/seq/A379/A379202.seq
307b61ebcad5fe41257f8214296669ca
A379203
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 3)^(n+1).
[ "1", "5", "34", "290", "2820", "29629", "327301", "3744868", "43981858", "527126689", "6420981368", "79260797860", "989306411413", "12464737320229", "158320378037652", "2025016002188169", "26060398562711196", "337197048402240367", "4384067953773647268", "57245716462267462224", "750403639664344374239", "9871281245683966836462" ]
[ "nonn" ]
8
1
2
[ "A166952", "A378264", "A379199", "A379200", "A379202", "A379203", "A379204", "A379205" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:38:47
oeisdata/seq/A379/A379203.seq
d4d21324286a4075772ba086bb1b675d
A379204
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 4)^(n+1).
[ "1", "6", "52", "572", "7154", "96444", "1365480", "20015404", "301104656", "4622137698", "72110068424", "1140008607808", "18223311950352", "294049155429240", "4783093039542544", "78348659072215696", "1291254702576739650", "21396346604365855060", "356250789435149406252", "5957201829333106382128", "100003077199160840926640" ]
[ "nonn" ]
7
1
2
[ "A166952", "A378264", "A379199", "A379200", "A379202", "A379203", "A379204", "A379205" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:38:56
oeisdata/seq/A379/A379204.seq
dcd694202655e6bb326622097281a95d
A379205
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1).
[ "1", "7", "74", "998", "15268", "251427", "4345869", "77751128", "1427455842", "26740178711", "509068777424", "9820550568868", "191554931918517", "3771529984556599", "74857068226445132", "1496158969938529383", "30086862802675119068", "608303992207446069349", "12358069554479794052292", "252144178158939689795128" ]
[ "nonn" ]
7
1
2
[ "A166952", "A378264", "A379199", "A379200", "A379202", "A379203", "A379204", "A379205" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:39:04
oeisdata/seq/A379/A379205.seq
443f176eeb4a2367212cd11fb701451a
A379206
Central terms of triangle A379200; a(n) = A379200(2*n-1,n-1) for n >= 1.
[ "1", "4", "52", "1004", "24540", "693528", "21365548", "694033712", "23369007288", "808414759404", "28582681491280", "1029170281603296", "37633688114705676", "1394397634883242504", "52252719103306019248", "1977346544751795430944", "75468918458797503960180", "2902157847756806886385760", "112350085062188369503742656" ]
[ "nonn" ]
6
1
2
[ "A379200", "A379206" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:39:12
oeisdata/seq/A379/A379206.seq
17d617e201ca88b679becd557a3a3ff1
A379207
a(n) = 2*prime(n+1) - (prime(n+1) - prime(n))^2.
[ "5", "6", "10", "6", "22", "18", "34", "30", "22", "58", "38", "66", "82", "78", "70", "82", "118", "98", "126", "142", "122", "150", "142", "130", "186", "202", "198", "214", "210", "58", "246", "238", "274", "198", "298", "278", "290", "318", "310", "322", "358", "282", "382", "378", "394", "278", "302", "438", "454", "450", "442", "478", "402", "478", "490", "502", "538", "518", "546", "562" ]
[ "nonn" ]
8
1
1
[ "A000040", "A001223", "A379207" ]
null
Michel Marcus, Dec 18 2024
2024-12-18T09:41:27
oeisdata/seq/A379/A379207.seq
9573f97084db30ab747086e550aee5cf
A379208
Numbers k such that prime(k) and prime(k) + 9 are anagrams.
[ "9", "19", "24", "26", "39", "48", "73", "77", "79", "91", "99", "110", "126", "143", "163", "188", "197", "200", "209", "212", "219", "224", "237", "241", "247", "252", "262", "269", "278", "279", "281", "285", "290", "291", "316", "336", "355", "360", "365", "391", "403", "405", "408", "431", "434", "439", "442", "448", "464", "468", "477", "486", "507", "517", "524", "531", "539", "544", "549", "550", "551", "575", "589", "602", "615" ]
[ "nonn", "base" ]
26
1
1
[ "A140353", "A228157", "A379208" ]
null
Vincenzo Librandi, Dec 18 2024
2025-01-19T00:36:42
oeisdata/seq/A379/A379208.seq
c7d4bba63aeba25892b9de5135969419
A379209
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))).
[ "1", "2", "9", "53", "357", "2605", "20041", "160074", "1314821", "11036015", "94242752", "816190963", "7151741597", "63287390223", "564791911903", "5077284164245", "45935201005749", "417928249605123", "3821430547469626", "35098466575407095", "323662850948066340", "2995524340795970120" ]
[ "nonn" ]
6
0
2
[ "A006013", "A190738", "A379189", "A379209" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-18T09:26:27
oeisdata/seq/A379/A379209.seq
ac8e585d2dbad43715cd25998fdb561d
A379210
List of integers of the form (N^2 - 4)/15.
[ "0", "3", "4", "11", "19", "32", "35", "52", "68", "91", "96", "123", "147", "180", "187", "224", "256", "299", "308", "355", "395", "448", "459", "516", "564", "627", "640", "707", "763", "836", "851", "928", "992", "1075", "1092", "1179", "1251", "1344", "1363", "1460", "1540", "1643", "1664", "1771", "1859", "1972", "1995", "2112", "2208", "2331", "2356", "2483" ]
[ "nonn", "easy" ]
18
1
2
[ "A204220", "A204221", "A204542", "A379210", "A379211", "A379212" ]
null
Peter Bala, Dec 18 2024
2024-12-24T13:48:27
oeisdata/seq/A379/A379210.seq
a30c7eb26aea20ef77d3806fe76e0f45
A379211
List of positive integers that are congruent to {2, 7, 8, 13} mod 15.
[ "2", "7", "8", "13", "17", "22", "23", "28", "32", "37", "38", "43", "47", "52", "53", "58", "62", "67", "68", "73", "77", "82", "83", "88", "92", "97", "98", "103", "107", "112", "113", "118", "122", "127", "128", "133", "137", "142", "143", "148", "152", "157", "158", "163", "167", "172", "173", "178", "182", "187", "188", "193", "197", "202", "203", "208", "212", "217", "218", "223", "227", "232", "233", "238", "242", "247", "248", "253", "257", "262" ]
[ "nonn", "easy" ]
14
1
1
[ "A001622", "A072703", "A151972", "A204542", "A315211", "A379210", "A379211" ]
null
Peter Bala, Dec 18 2024
2024-12-24T07:29:56
oeisdata/seq/A379/A379211.seq
d26a0cad4ce0bcfec79a13eba6d7a22f
A379212
Expansion of Sum_{n >= 0} q^(n*(n+1)) * Product_{k >= 2*n+2} 1 - q^k.
[ "1", "0", "0", "-1", "-1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "0", "-1", "0", "0", "0", "0" ]
[ "sign", "easy" ]
13
0
null
[ "A204220", "A204221", "A379210", "A379211", "A379212" ]
null
Peter Bala, Dec 18 2024
2025-02-16T08:34:07
oeisdata/seq/A379/A379212.seq
b1ac904378d99d4f65a0960db8a05be2
A379213
a(n) is the number of nonnegative integers m such that A184615(m) = A003714(n).
[ "1", "1", "1", "2", "1", "3", "1", "1", "5", "2", "1", "2", "1", "8", "3", "2", "2", "1", "3", "1", "1", "13", "5", "3", "4", "2", "3", "1", "1", "5", "2", "1", "2", "1", "21", "8", "5", "6", "3", "6", "2", "2", "5", "2", "1", "2", "1", "8", "3", "2", "2", "1", "3", "1", "1", "34", "13", "8", "10", "5", "9", "3", "3", "10", "4", "2", "4", "2", "8", "3", "2", "2", "1", "3", "1", "1", "13", "5", "3", "4", "2", "3", "1", "1", "5" ]
[ "nonn", "base" ]
6
0
4
[ "A000045", "A003714", "A005811", "A101211", "A184615", "A379213" ]
null
Rémy Sigrist, Dec 18 2024
2024-12-20T12:37:23
oeisdata/seq/A379/A379213.seq
36e881467a01b21cb9f7f6a7a5d6c8bf
A379214
Decimal expansion of (sqrt(3) + sqrt(5) + 2*sqrt(6))/(8*sqrt(2)).
[ "7", "8", "3", "7", "4", "8", "1", "6", "4", "5", "7", "6", "6", "9", "1", "6", "6", "2", "7", "6", "9", "1", "2", "2", "6", "8", "6", "5", "7", "2", "6", "3", "1", "2", "1", "2", "0", "9", "1", "0", "4", "5", "2", "2", "7", "2", "0", "1", "4", "6", "3", "0", "9", "1", "7", "1", "9", "5", "8", "9", "0", "8", "3", "6", "1", "5", "7", "0", "5", "4", "3", "0", "2", "3", "3", "2", "3", "4", "5", "8", "7", "2", "6", "3", "0", "4", "3", "2", "6", "8", "0", "3", "2", "0", "5", "8", "4", "2", "7", "0" ]
[ "nonn", "cons", "easy" ]
18
0
1
[ "A002163", "A002194", "A010464", "A010480", "A377342", "A379214" ]
null
Stefano Spezia, Dec 23 2024
2024-12-23T17:48:37
oeisdata/seq/A379/A379214.seq
4764e6354585f2691b251b655bd60ae3
A379215
Number of minimal edge cuts in the complete bipartite graph K_{n,n}.
[ "1", "6", "24", "106", "460", "1934", "7952", "32274", "130068", "522262", "2093080", "8380442", "33538076", "134184990", "536805408", "2147352610", "8589672484", "34359214118", "137437904936", "549753716778", "2199019061292", "8796084633646", "35184355311664", "140737454800946", "562949886312500", "2251799679467574" ]
[ "nonn", "easy" ]
16
1
2
[ "A377649", "A379215" ]
null
Eric W. Weisstein, Dec 18 2024
2024-12-19T08:53:11
oeisdata/seq/A379/A379215.seq
56199fd39e53ff367888357f7ad91203
A379216
Difference 2*k - A003961(k) computed for k for which this difference divides difference (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "1", "1", "1", "-1", "-3", "3", "-1", "1", "1", "-43", "1", "5", "19", "-1", "-7", "-5", "1", "-2005", "1", "-1", "149", "-193", "-1", "-3", "-79243", "1243", "1253", "-7", "51", "581", "-1", "3093", "1", "155491", "919", "1", "-1", "15833", "-877", "-4295498497", "5129369", "31", "5779339", "-69187", "-29", "6745", "1", "181", "1", "69197", "-397", "-117433", "-101", "-1", "1", "2759", "1", "-29479", "1", "-5626288431709", "29669", "-1", "-132239", "-1", "-1", "14591", "-2267959", "-3187", "787250461" ]
[ "sign" ]
10
1
5
[ "A003961", "A048674", "A252748", "A348514", "A378980", "A378981", "A379216", "A379217" ]
null
Antti Karttunen, Dec 20 2024
2024-12-20T16:12:24
oeisdata/seq/A379/A379216.seq
e0b37873b0bab07eb0fdea7726203a28
A379217
Quotient (A003961(k)-sigma(k)) / (2*k-A003961(k)) computed for those k for which this quotient is an integer, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "0", "0", "1", "-2", "-1", "1", "-3", "18", "9", "-1", "17", "3", "1", "-35", "-7", "-15", "57", "-1", "339", "-381", "3", "-7", "-969", "-1213", "-1", "3", "3", "-979", "419", "29", "-42735", "21", "731232", "3", "1445", "2809731", "-4566981", "557", "-19691", "-1", "5", "544371", "5", "-475", "-1784691", "9051", "176870849", "808683", "280791301", "1803", "-891775", "-3679", "-3733533", "-444406677", "731480523", "275091" ]
[ "sign" ]
14
1
4
[ "A000396", "A003961", "A252748", "A378980", "A378981", "A379216", "A379217" ]
null
Antti Karttunen, Dec 20 2024
2025-01-09T08:01:12
oeisdata/seq/A379/A379217.seq
a13ace6c26f80b5756ffefa52ddc18d1
A379218
Möbius transform of A379108.
[ "1", "1", "2", "2", "5", "2", "6", "4", "7", "5", "11", "4", "13", "6", "10", "8", "17", "7", "19", "10", "12", "11", "23", "8", "25", "13", "20", "12", "29", "10", "30", "16", "22", "17", "30", "14", "37", "19", "26", "20", "41", "12", "43", "22", "35", "23", "47", "16", "43", "25", "34", "26", "53", "20", "55", "24", "38", "29", "59", "20", "61", "30", "42", "32", "65", "22", "67", "34", "46", "30", "71", "28", "73", "37", "50", "38", "66", "26", "79", "40", "61", "41", "83", "24" ]
[ "nonn", "mult" ]
14
1
3
[ "A000027", "A000203", "A000668", "A008683", "A026741", "A336923", "A359579", "A379108", "A379218", "A379219" ]
null
Antti Karttunen, Dec 18 2024
2025-01-03T05:16:05
oeisdata/seq/A379/A379218.seq
0324e8d8a2d9b9ab07381143ca458ea5
A379219
Dirichlet inverse of A379218.
[ "1", "-1", "-2", "-1", "-5", "2", "-6", "-1", "-3", "5", "-11", "2", "-13", "6", "10", "-1", "-17", "3", "-19", "5", "12", "11", "-23", "2", "0", "13", "0", "6", "-29", "-10", "-30", "-1", "22", "17", "30", "3", "-37", "19", "26", "5", "-41", "-12", "-43", "11", "15", "23", "-47", "2", "-7", "0", "34", "13", "-53", "0", "55", "6", "38", "29", "-59", "-10", "-61", "30", "18", "-1", "65", "-22", "-67", "17", "46", "-30", "-71", "3", "-73", "37", "0", "19", "66", "-26", "-79", "5" ]
[ "sign", "mult", "easy" ]
10
1
3
[ "A000668", "A046692", "A336923", "A379109", "A379218", "A379219" ]
null
Antti Karttunen, Dec 18 2024
2025-01-03T05:17:51
oeisdata/seq/A379/A379219.seq
6edc609d999861ea7778372b3d46cd7a
A379220
Square array A(n, k) = sigma((2n-1)^2) * sigma((2k-1)^2), read by antidiagonals.
[ "1", "13", "13", "31", "169", "31", "57", "403", "403", "57", "121", "741", "961", "741", "121", "133", "1573", "1767", "1767", "1573", "133", "183", "1729", "3751", "3249", "3751", "1729", "183", "403", "2379", "4123", "6897", "6897", "4123", "2379", "403", "307", "5239", "5673", "7581", "14641", "7581", "5673", "5239", "307", "381", "3991", "12493", "10431", "16093", "16093", "10431", "12493", "3991", "381", "741", "4953", "9517", "22971", "22143", "17689", "22143", "22971", "9517", "4953", "741" ]
[ "nonn", "tabl" ]
11
1
2
[ "A000203", "A016754", "A379220", "A379221", "A379223" ]
null
Antti Karttunen, Dec 22 2024
2024-12-22T09:07:57
oeisdata/seq/A379/A379220.seq
de6b2353c27729901463b3a327e2c21b
A379221
Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.
[ "1", "13", "21", "31", "233", "35", "57", "403", "439", "73", "121", "845", "961", "805", "137", "133", "1549", "1899", "1831", "1765", "397", "183", "2753", "4011", "4017", "3943", "3025", "475", "403", "2331", "4399", "7665", "7537", "4123", "2159", "695", "307", "7919", "5945", "9709", "16177", "9365", "5737", "7635", "855", "381", "5839", "12501", "10447", "17965", "18389", "10707", "13261", "5299", "901", "741", "4953", "9525", "27083", "24207", "49465", "24339", "27295", "10093", "4537", "1837" ]
[ "nonn", "tabl" ]
12
1
2
[ "A000203", "A016754", "A048720", "A065621", "A065768", "A277320", "A379121", "A379122", "A379123", "A379124", "A379125", "A379220", "A379221", "A379223", "A379224" ]
null
Antti Karttunen, Dec 22 2024
2024-12-22T09:08:02
oeisdata/seq/A379/A379221.seq
b08e1833d04c8190cf8a373f5652c26f
A379222
Number of trailing 1-bits in the binary representation of the sum of the divisors of the n-th odd square: a(n) = sigma((2*n-1)^2).
[ "1", "1", "5", "1", "1", "1", "3", "2", "2", "1", "1", "1", "1", "1", "3", "1", "1", "3", "7", "2", "2", "1", "3", "1", "1", "3", "4", "2", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "6", "1", "2", "2", "1", "6", "1", "2", "1", "3", "2", "2", "3", "7", "2", "1", "7", "2", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "4", "1", "2", "6", "3", "2", "1", "1", "5", "1", "1", "1", "3", "1", "1", "1", "4", "2", "1", "7", "1", "1", "2", "1", "5", "1", "1", "4", "1", "1", "1" ]
[ "nonn" ]
10
1
3
[ "A000203", "A007814", "A016754", "A378998", "A378999", "A379222" ]
null
Antti Karttunen, Dec 22 2024
2025-01-23T22:00:11
oeisdata/seq/A379/A379222.seq
f4bff4f6247c6899bb3006851db7a34f
A379223
Sum of the divisors of the n-th odd square: a(n) = sigma((2*n-1)^2).
[ "1", "13", "31", "57", "121", "133", "183", "403", "307", "381", "741", "553", "781", "1093", "871", "993", "1729", "1767", "1407", "2379", "1723", "1893", "3751", "2257", "2801", "3991", "2863", "4123", "4953", "3541", "3783", "6897", "5673", "4557", "7189", "5113", "5403", "10153", "7581", "6321", "9841", "6973", "9517", "11323", "8011", "10431", "12909", "11811", "9507", "16093", "10303", "10713", "22971", "11557" ]
[ "nonn" ]
15
1
2
[ "A000203", "A016754", "A065621", "A065768", "A379220", "A379221", "A379223", "A379224" ]
null
Antti Karttunen, Dec 21 2024
2024-12-22T13:05:50
oeisdata/seq/A379/A379223.seq
b5780bb12525653c9a78f01c0e561f32
A379224
The reversing binary representation of the sum of the divisors of the n-th odd square: a(n) = A065621(A379223(n)).
[ "1", "21", "35", "73", "137", "397", "475", "695", "855", "901", "1837", "1657", "1301", "3277", "1451", "1057", "2881", "2859", "3971", "7135", "3023", "2477", "5099", "6513", "7953", "4283", "7539", "12335", "13801", "5757", "4939", "12049", "14969", "12885", "9277", "13321", "16175", "26873", "9893", "10705", "27281", "11589", "28533", "29775", "8671", "31171", "22197", "29287", "28519", "17253", "30787", "31337" ]
[ "nonn" ]
9
1
2
[ "A065621", "A379221", "A379223", "A379224" ]
null
Antti Karttunen, Dec 21 2024
2025-01-23T12:38:24
oeisdata/seq/A379/A379224.seq
c868c1185534f7affc62f542dcc2322b
A379225
a(n) = A113177(n) mod 5, where A113177 is fully additive with a(p) = Fibonacci(p).
[ "0", "1", "2", "2", "0", "3", "3", "3", "4", "1", "4", "4", "3", "4", "2", "4", "2", "0", "1", "2", "0", "0", "2", "0", "0", "4", "1", "0", "4", "3", "4", "0", "1", "3", "3", "1", "2", "2", "0", "3", "1", "1", "2", "1", "4", "3", "3", "1", "1", "1", "4", "0", "3", "2", "4", "1", "3", "0", "1", "4", "1", "0", "2", "1", "3", "2", "3", "4", "4", "4", "4", "2", "3", "3", "2", "3", "2", "1", "1", "4", "3", "2", "2", "2", "2", "3", "1", "2", "4", "0", "1", "4", "1", "4", "1", "2", "2", "2", "3", "2", "1", "0", "2", "1", "0" ]
[ "nonn" ]
10
1
3
[ "A000045", "A010874", "A030426", "A082116", "A113177", "A374124", "A374208", "A379115", "A379225", "A379226", "A379227" ]
null
Antti Karttunen, Dec 20 2024
2024-12-20T16:11:55
oeisdata/seq/A379/A379225.seq
fdd0b0bb0ff00fbc933859d9a654cd82
A379226
Numbers k for which A113177(k) is a multiple of 5, where A113177 is fully additive with a(p) = Fibonacci(p).
[ "1", "5", "18", "21", "22", "24", "25", "28", "32", "39", "52", "58", "62", "90", "102", "105", "110", "119", "120", "125", "136", "138", "140", "141", "142", "159", "160", "161", "171", "178", "184", "188", "195", "201", "209", "212", "218", "219", "221", "222", "228", "243", "258", "259", "260", "262", "266", "268", "290", "292", "296", "297", "298", "299", "301", "302", "304", "310", "321", "324", "339", "344", "363", "369", "378", "381", "382" ]
[ "nonn" ]
9
1
2
[ "A000045", "A030426", "A113177", "A373586", "A374052", "A374124", "A374208", "A379116", "A379225", "A379226", "A379227" ]
null
Antti Karttunen, Dec 20 2024
2024-12-20T16:11:51
oeisdata/seq/A379/A379226.seq
b80d9908634e3fe6fed1353dfd48b8c6
A379227
a(n) = 1 if A113177(n) is a multiple of 5, otherwise 0, where A113177 is fully additive with a(p) = Fibonacci(p).
[ "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1" ]
[ "nonn" ]
12
1
null
[ "A000045", "A030426", "A082116", "A113177", "A373585", "A374051", "A374124", "A374208", "A379117", "A379225", "A379226", "A379227" ]
null
Antti Karttunen, Dec 20 2024
2024-12-20T16:11:46
oeisdata/seq/A379/A379227.seq
82744a961bcf87a55369ec7f5867fcd2
A379228
a(n) = A379126(n) / n.
[ "1", "2", "3", "2", "7", "3", "7", "2", "15", "7", "3", "3", "5", "7", "15", "2", "31", "15", "7", "7", "31", "3", "7", "3", "31", "5", "31", "7", "31", "15", "31", "2", "63", "31", "15", "15", "7", "7", "7", "7", "63", "31", "3", "3", "63", "7", "15", "3", "63", "31", "63", "5", "63", "31", "7", "7", "27", "31", "63", "15", "63", "31", "63", "2", "127", "63", "31", "31", "15", "15", "15", "15", "127", "7", "31", "7", "15", "7", "15", "7", "51", "63", "31", "31", "127", "3", "31", "3" ]
[ "nonn" ]
9
1
2
[ "A000225", "A379126", "A379228" ]
null
Antti Karttunen, Dec 21 2024
2024-12-21T22:31:47
oeisdata/seq/A379/A379228.seq
4587c2aa9900d144c639090fdab8a120
A379229
Difference A003961(k)-(2*k) computed for the natural numbers k for which k and A003961(k) are relatively prime, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "-1", "-1", "-1", "1", "-3", "-3", "11", "7", "1", "-9", "-9", "5", "49", "-15", "-15", "23", "13", "-5", "-17", "-1", "-1", "71", "43", "-27", "-25", "179", "-1", "-11", "-33", "-7", "7", "109", "-39", "-39", "29", "-5", "-41", "23", "47", "-7", "49", "-47", "-19", "185", "1", "-23", "-57", "-55", "-13", "149", "601", "-11", "-63", "35", "7", "-69", "-67", "-25", "55", "-75", "407", "463", "-35", "-77", "-37", "-31", "-19", "175", "-81", "5", "77", "-1" ]
[ "sign" ]
8
1
5
[ "A003961", "A252748", "A319630", "A379229", "A379230" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T15:11:59
oeisdata/seq/A379/A379229.seq
b456e5638fb9f205e46d819df94d676e
A379230
Difference A003961(k)-(2*k) computed for the natural numbers k for which gcd(k,A003961(k)) > 1, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "3", "21", "5", "39", "87", "45", "7", "153", "81", "85", "309", "267", "195", "63", "91", "531", "95", "-11", "99", "327", "345", "1023", "81", "175", "909", "117", "705", "573", "321", "605", "159", "413", "-65", "1737", "435", "121", "453", "1551", "125", "1149", "117", "189", "1215", "183", "3261", "205", "579", "447", "735", "2943", "-119", "171", "775", "579", "253", "807", "2355", "357", "153", "1971", "155", "189", "1227", "2085" ]
[ "sign" ]
11
1
1
[ "A104210", "A252748", "A379230", "A379231", "A379232", "A379233", "A379235", "A379237" ]
null
Antti Karttunen, Dec 22 2024
2024-12-23T09:42:00
oeisdata/seq/A379/A379230.seq
e5b9a51a3279b1c65279e556cea5d97c
A379231
Terms of A379230 whose absolute value is prime.
[ "3", "5", "7", "-11", "19", "29", "-37", "-23", "31", "-13", "-11", "37", "-311", "317", "593", "23", "-11", "-929", "-53", "41", "-59", "-643", "29" ]
[ "sign", "more" ]
8
1
1
[ "A104210", "A151799", "A252748", "A379230", "A379231", "A379232", "A379233", "A379235", "A379237" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T09:42:05
oeisdata/seq/A379/A379231.seq
cb7364574569f02dedd33c3580540f4a
A379232
Terms k of A104210 for which abs(A003961(k)-(2*k)) is prime, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and A104210 gives numbers m for which gcd(m,A003961(m)) > 1.
[ "6", "15", "35", "77", "646", "1334", "2294", "5681", "6293", "78793", "600677", "2255002", "2482402", "4564166", "8702275", "16798717", "17747807", "22197526", "236981285", "302764377", "1287983157", "2111098886", "2295003595" ]
[ "nonn", "more" ]
9
1
1
[ "A003961", "A104210", "A151799", "A252748", "A379230", "A379231", "A379232" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T09:42:09
oeisdata/seq/A379/A379232.seq
8b28996fda44a1b9f420794d89e0f02e
A379233
Numbers k such that A003961(k) = 2k +- 3, multiplied by the sign of difference A003961(k)-2k, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "-5", "6", "-7", "-161", "1045", "-2525", "2795", "4825", "9725", "-159115", "307993", "-359315", "-18377525", "25484825" ]
[ "sign", "hard", "more" ]
11
1
1
[ "A003961", "A048674", "A104210", "A252748", "A319630", "A348514", "A378980", "A379230", "A379231", "A379233", "A379235", "A379237" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T09:42:14
oeisdata/seq/A379/A379233.seq
bda1ea99d6a17e558d4a6997c846c9f4
A379234
Numbers k for which k XOR 2*k = sigma(k), where sigma is the sum of divisors function.
[ "312", "428", "672", "760", "5009850" ]
[ "nonn", "hard", "more" ]
17
1
1
[ "A000203", "A003714", "A003987", "A005820", "A048724", "A318467", "A379234", "A379236" ]
null
Antti Karttunen, Jan 04 2025
2025-01-07T08:46:30
oeisdata/seq/A379/A379234.seq
60df52193b8572fa124af3f6d0efbe2c
A379235
Numbers k such that A003961(k) = 2k +- 5, multiplied by the sign of difference A003961(k)-2k, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "14", "15", "-22", "-46", "91", "-2782", "-269434", "-1056574", "14129726", "-25652506", "26594126", "34233062", "147087493" ]
[ "sign", "hard", "more" ]
11
1
1
[ "A003961", "A048674", "A104210", "A252748", "A319630", "A348514", "A378980", "A379231", "A379233", "A379235", "A379237" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T09:42:26
oeisdata/seq/A379/A379235.seq
6370a41074813edcfc610a0776600cfe
A379236
Numbers k such that x=(sigma(k) XOR 2*k) divides k in carryless binary arithmetic, when the binary expansions of k and x are interpreted as polynomials in ring GF(2)[X].
[ "10", "12", "18", "20", "24", "40", "56", "88", "104", "116", "136", "184", "196", "224", "312", "368", "428", "464", "520", "528", "650", "672", "760", "884", "992", "1472", "1504", "1888", "1952", "2528", "3424", "3724", "4832", "5312", "6464", "7136", "9112", "11096", "11288", "11744", "13216", "15352", "15376", "15872", "15968", "16256", "17816", "17964", "22616", "24448", "26728", "28544", "29296", "30592", "30656" ]
[ "nonn" ]
19
1
1
[ "A000203", "A000396", "A003987", "A048720", "A097498", "A153501", "A271816", "A280500", "A318467", "A379234", "A379236" ]
null
Antti Karttunen, Jan 05 2025
2025-03-31T07:00:08
oeisdata/seq/A379/A379236.seq
ade9556b34f3fe815bd4d072cc39c395
A379237
Numbers k such that A003961(k) = 2k +- 7, multiplied by the sign of difference A003961(k)-2k, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
[ "9", "35", "-38", "39", "-51", "69", "-374", "-4521", "7869", "10426", "12639", "-16094", "-29354", "102579", "-103881", "1295206", "-3298514", "4267318", "478642449", "-2120241621" ]
[ "sign", "hard", "more" ]
10
1
1
[ "A003961", "A048674", "A104210", "A252748", "A319630", "A348514", "A378980", "A379231", "A379233", "A379235", "A379237" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T09:42:31
oeisdata/seq/A379/A379237.seq
c2a67fd7b66ae52209810cd0da665036
A379238
a(n) = 1 if A003961(n)-sigma(n) is prime, otherwise 0, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
[ "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "0" ]
[ "nonn" ]
8
1
null
[ "A000203", "A003961", "A010051", "A286385", "A349167", "A379238", "A379239" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T15:11:55
oeisdata/seq/A379/A379238.seq
57f059a40aa8409609c8d1436e84e80e
A379239
Numbers k for which A003961(k)-sigma(k) is prime, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
[ "4", "6", "7", "10", "12", "13", "15", "19", "21", "22", "23", "28", "31", "33", "34", "35", "37", "39", "43", "45", "47", "48", "51", "53", "55", "58", "61", "67", "73", "76", "77", "79", "82", "83", "84", "89", "95", "97", "103", "105", "109", "111", "112", "113", "115", "118", "123", "124", "127", "129", "131", "141", "142", "143", "145", "148", "151", "153", "155", "156", "157", "159", "161", "163", "165", "167", "173", "185", "187", "192", "193", "199" ]
[ "nonn" ]
9
1
1
[ "A000203", "A003961", "A023200", "A031924", "A031926", "A031930", "A031932", "A031936", "A031938", "A286385", "A349165", "A379238", "A379239" ]
null
Antti Karttunen, Dec 23 2024
2024-12-23T11:38:20
oeisdata/seq/A379/A379239.seq
db6873f44d2eeb782fbfb0cd6cded4e3
A379240
Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), for all i, j, where f(n) = [A003415(n), A085731(n)] if A359550(n) = 1, otherwise f(n) = n.
[ "1", "2", "2", "3", "2", "4", "2", "5", "6", "7", "2", "8", "2", "9", "10", "11", "2", "12", "2", "13", "14", "15", "2", "16", "17", "18", "19", "20", "2", "21", "2", "22", "23", "24", "25", "26", "2", "27", "28", "29", "2", "30", "2", "31", "32", "33", "2", "34", "35", "36", "37", "38", "2", "39", "28", "40", "41", "21", "2", "42", "2", "43", "44", "45", "46", "47", "2", "48", "49", "50", "2", "51", "2", "52", "53", "54", "46", "55", "2", "56", "57", "58", "2", "59", "41", "60", "61", "62", "2", "63", "37", "64" ]
[ "nonn" ]
8
1
2
[ "A003415", "A048103", "A083345", "A085371", "A100716", "A344025", "A359550", "A369046", "A369051", "A376418", "A379240" ]
null
Antti Karttunen, Dec 19 2024
2024-12-19T21:15:42
oeisdata/seq/A379/A379240.seq
308ccbef452506961d93d445d731a1e1
A379241
Maximum number of connections for a 2 X n rectangle.
[ "1", "5", "22", "54", "134", "269", "534", "934", "1618", "2573", "4062", "6030", "8902", "12549", "17614", "23854", "32194", "42229", "55238" ]
[ "nonn", "more" ]
23
2
2
null
null
Rodolfo Kurchan, Dec 18 2024
2024-12-23T01:57:58
oeisdata/seq/A379/A379241.seq
a3c215739fd68dc2b6fc8af504b3f52f
A379242
Minimum crossing number at which there are n torus knots.
[ "1", "3", "15", "63", "189", "432", "792", "1232", "1584", "2880", "4320", "5040", "6336", "7920", "12096", "15120", "19008", "22176", "30240", "33264", "43200", "47520", "44352", "65520", "75600", "108000", "90720", "120960", "168480", "131040", "151200", "181440", "252000", "196560", "221760", "237600", "362880", "403200", "302400" ]
[ "nonn" ]
13
0
2
[ "A051764", "A379242" ]
null
Alex Klotz, Dec 18 2024
2024-12-30T14:53:04
oeisdata/seq/A379/A379242.seq
63b9373668a852076c10ab26c5514ae3
A379243
a(n) = (10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1)^n, where v_p(n) indicates the p-adic valuation of n.
[ "111", "1212201", "1331363033001", "146415324072600440001", "1610517320513310012100005500001", "1771561966306219615026620001815000066000001", "194871722400927338207105124350046585000254100000770000001", "2143588825589736849603708090188560102487000074536000033880000008800000001" ]
[ "nonn", "base" ]
10
1
1
[ "A000533", "A001597", "A063006", "A121520", "A199691", "A317905", "A372490", "A373387", "A379243" ]
null
Marco Ripà, Dec 18 2024
2024-12-30T17:21:20
oeisdata/seq/A379/A379243.seq
b13063742f40a76af472fe7701f37f81
A379244
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^3)/(1 - x*A(x)) )^2.
[ "1", "4", "40", "540", "8400", "141876", "2528760", "46815116", "891483808", "17350187364", "343578992328", "6900588813564", "140230648164720", "2878066866407316", "59571280942854808", "1242093725341221996", "26064579113472078144", "550041399791036747460", "11665771061882347813224", "248527169321049466503132" ]
[ "nonn" ]
8
0
2
[ "A032349", "A364167", "A371675", "A379174", "A379244" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-19T10:10:34
oeisdata/seq/A379/A379244.seq
a647c152ae2f2b44b53b925647802a97
A379245
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^2)/(1 - x*A(x)) )^3.
[ "1", "6", "72", "1100", "18984", "352608", "6879152", "139012368", "2884353888", "61091682368", "1315450042368", "28709737064064", "633684940733696", "14120739728984832", "317243001537462528", "7178031348934793472", "163423203504309020160", "3741114809852278047744" ]
[ "nonn" ]
9
0
2
[ "A363380", "A365843", "A369215", "A379245", "A379246" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-19T10:10:30
oeisdata/seq/A379/A379245.seq
33fe0f240c9520a306ad0ec9f4fa4cdf
A379246
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^3)/(1 - x*A(x)) )^3.
[ "1", "6", "90", "1838", "43362", "1111878", "30101786", "846703950", "24501770370", "724733787206", "21813611057562", "665947742487342", "20571682188676450", "641823879285627654", "20195381326042866138", "640146274715559742670", "20421757641058980395010", "655181707585675667750790", "21125606434257067959841242" ]
[ "nonn" ]
7
0
2
[ "A365843", "A379172", "A379245", "A379246", "A379247" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-19T10:10:26
oeisdata/seq/A379/A379246.seq
5029ff67539fc66c919deb0b1c9e61e4
A379247
G.f. A(x) satisfies A(x) = 1 + x * A(x)^4 * (1 + A(x)^5).
[ "1", "2", "26", "506", "11650", "294338", "7889658", "220337562", "6341770050", "186793134530", "5603256962842", "170587626013306", "5257389708399426", "163705194058656258", "5142396822771086970", "162763301041914082970", "5185766155796261822338", "166183971861135163491458" ]
[ "nonn" ]
5
0
2
[ "A363380", "A379247" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-19T10:10:22
oeisdata/seq/A379/A379247.seq
524ec55c5f953595fe4142447836cf98
A379248
a(1) = 1, a(2) = 2, for a(n) > 2, a(n) is the smallest unused positive number that shares a factor with a(n-1) while no exponent of each distinct prime factor of a(n) is the same as the exponent of the same prime factor of a(n-1).
[ "1", "2", "4", "6", "8", "10", "12", "9", "3", "18", "15", "25", "5", "50", "16", "14", "20", "22", "24", "26", "28", "30", "27", "21", "36", "32", "34", "40", "38", "44", "42", "45", "33", "54", "39", "63", "48", "46", "52", "56", "49", "7", "98", "35", "75", "55", "100", "58", "60", "62", "64", "66", "68", "70", "72", "51", "81", "57", "90", "69", "99", "78", "76", "74", "80", "82", "84", "86", "88", "92", "94", "96", "104", "102", "108", "87", "117", "93", "126", "111", "135", "114", "112", "106", "116", "110", "121", "11", "242" ]
[ "nonn", "look" ]
39
1
2
[ "A027746", "A051903", "A064413", "A124010", "A348086", "A373545", "A373546", "A375563", "A375564", "A379248", "A379290", "A379291", "A379292", "A379293", "A379294", "A379295", "A379296" ]
null
Scott R. Shannon, Dec 18 2024
2025-01-05T10:03:10
oeisdata/seq/A379/A379248.seq
e9fce4464a60685ab37c21bf1269524a
A379249
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^2.
[ "1", "3", "18", "148", "1403", "14417", "156161", "1755664", "20293341", "239654554", "2879027132", "35072400492", "432238230583", "5379422216020", "67513288465855", "853481985400772", "10858099927189575", "138912471444569435", "1786014309638224994", "23065160118446902506", "299062458173041384523" ]
[ "nonn" ]
5
0
2
[ "A198953", "A379190", "A379249" ]
null
Seiichi Manyama, Dec 18 2024
2024-12-19T10:10:39
oeisdata/seq/A379/A379249.seq
53906c91c1fd405afa9b724c13c84545
A379250
a(1)=1; thereafter, a(n) is the number of coincidences between the sequence thus far and its terms rearranged in descending order.
[ "1", "1", "2", "1", "2", "1", "2", "3", "2", "3", "2", "3", "2", "3", "3", "3", "3", "3", "4", "3", "4", "3", "4", "3", "4", "5", "6", "7", "8", "7", "8", "7", "8", "7", "8", "7", "6", "5", "4", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "4", "6", "6", "8", "8", "10", "10", "11", "12", "12", "13", "12", "12", "11", "12", "12", "11", "12", "12", "12", "12", "12", "12", "11", "11", "10", "11", "9", "9", "7" ]
[ "nonn" ]
26
1
3
[ "A276638", "A379250", "A379265", "A379266" ]
null
Neal Gersh Tolunsky, Dec 17 2024
2024-12-22T09:29:22
oeisdata/seq/A379/A379250.seq
9270907eecb563a6b89fce51ec0135d8
A379251
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^2) )^2.
[ "1", "4", "32", "340", "4144", "54724", "761712", "11004500", "163453472", "2480507524", "38292849280", "599455647828", "9493724671184", "151835354054212", "2448792546337360", "39781755539153748", "650386418008379200", "10692713526634029316", "176669496568313495520", "2931998993134971532116", "48854054306918652620912" ]
[ "nonn" ]
8
0
2
[ "A006319", "A032349", "A361638", "A379251", "A379252" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:10:03
oeisdata/seq/A379/A379251.seq
fde88d0a467ecabdc97d3752d164a9d5
A379252
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^3) )^2.
[ "1", "4", "40", "572", "9552", "174004", "3352440", "67171500", "1385457568", "29220437860", "627287390664", "13661411796508", "301096488681200", "6703186665881876", "150517000234338072", "3404956079399106700", "77526315562007606080", "1775260286963982001860", "40857405217738915499880", "944584396250976659451388" ]
[ "nonn" ]
8
0
2
[ "A006319", "A032349", "A379251", "A379252", "A379253" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:09:59
oeisdata/seq/A379/A379252.seq
bc00622a9e6686ca223706d4671b0f90
A379253
G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x)^5).
[ "1", "2", "18", "250", "4114", "74274", "1422370", "28375578", "583343970", "12271614850", "262896435954", "5715805729274", "125797580340978", "2797216275743010", "62745424152317314", "1418139209556260250", "32263795396317233090", "738290052194219833346", "16981168956515987563730" ]
[ "nonn" ]
6
0
2
[ "A361638", "A379253" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:10:18
oeisdata/seq/A379/A379253.seq
71971a6fc079406d40700a05b38a24ac
A379254
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^2) )^3.
[ "1", "6", "72", "1136", "20496", "400176", "8230592", "175643712", "3852905472", "86338960640", "1967950718976", "45483461999616", "1063433350498304", "25107661327202304", "597766180153565184", "14335020154675867648", "345948883288769740800", "8395511682729703931904" ]
[ "nonn" ]
8
0
2
[ "A213282", "A365843", "A379254", "A379255", "A379256" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:09:55
oeisdata/seq/A379/A379254.seq
0cae7a634f35944d475b1bb913d90503
A379255
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^3) )^3.
[ "1", "6", "90", "1910", "47250", "1274406", "36344906", "1077809718", "32899427106", "1026823733702", "32619190553274", "1051205539768566", "34282637873690290", "1129326395659189734", "37522172645425790634", "1255954522404101871286", "42312438228338307500610", "1433621819994034883749254" ]
[ "nonn" ]
7
0
2
[ "A213282", "A365843", "A379254", "A379255", "A379257" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:09:52
oeisdata/seq/A379/A379255.seq
45a432e77a24333cb0c2016fa0b80631
A379256
G.f. A(x) satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x)^4).
[ "1", "2", "20", "296", "5168", "98896", "2006592", "42403584", "923292672", "20570204672", "466681402112", "10744734700032", "250415336695808", "5896251565619200", "140051037257007104", "3351752341884928000", "80744484314316193792", "1956433860220223062016", "47647871136991576260608" ]
[ "nonn" ]
6
0
2
[ "A379256", "A379257" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:10:12
oeisdata/seq/A379/A379256.seq
c277b113f80a21c7d8136dc606619ecc
A379257
G.f. A(x) satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x)^7).
[ "1", "2", "26", "530", "12850", "342370", "9684010", "285483666", "8675363298", "269823659586", "8547536496442", "274825739078930", "8945617644054546", "294204116545534370", "9761360051405903434", "326339380099797219474", "10982521821776648986050", "371758494418806559639170" ]
[ "nonn" ]
6
0
2
[ "A379256", "A379257" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-19T10:10:08
oeisdata/seq/A379/A379257.seq
6b6f3e882ae0507a6b121499871c246f
A379258
a(n) is the number of iterations of the Euler phi function needed to reach 1 starting at the n-th 3-smooth number.
[ "1", "2", "3", "3", "3", "4", "4", "4", "5", "4", "5", "5", "6", "5", "6", "5", "7", "6", "6", "7", "6", "8", "7", "6", "8", "7", "7", "9", "8", "7", "9", "8", "7", "10", "9", "8", "8", "10", "9", "8", "11", "10", "9", "8", "11", "10", "9", "12", "9", "11", "10", "9", "12", "11", "10", "13", "9", "12", "11", "10", "13", "10", "12", "11", "14", "10", "13", "12", "11", "14", "10", "13", "12", "15", "11", "14", "11" ]
[ "nonn", "easy" ]
11
1
2
[ "A000010", "A003586", "A022328", "A022329", "A022330", "A022331", "A049108", "A086420", "A202821", "A379258" ]
null
Amiram Eldar, Dec 19 2024
2024-12-20T02:43:54
oeisdata/seq/A379/A379258.seq
57814e54ffb5c462f6f726d4feafb4e2
A379259
a(n) is the number of iterations that n requires to reach a 3-smooth number under the map x -> phi(x).
[ "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "2", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "2", "3", "0", "2", "1", "0", "1", "2", "1", "2", "0", "2", "1", "1", "0", "1", "1", "1", "1", "2", "1", "2", "2", "1", "3", "4", "0", "2", "2", "1", "1", "2", "0", "2", "1", "1", "2", "3", "1", "2", "2", "1", "0", "1", "2", "3", "1", "3", "1", "2", "0", "1", "1", "2", "1", "2", "1", "2", "1", "0", "2", "3", "1", "1", "2", "2" ]
[ "nonn", "easy" ]
7
1
11
[ "A000010", "A003434", "A003586", "A086420", "A122254", "A246491", "A379259" ]
null
Amiram Eldar, Dec 19 2024
2024-12-20T09:24:19
oeisdata/seq/A379/A379259.seq
e5abf9176b847077ca3a0cc4452f1398
A379260
Index of first appearance of n in sequence A379049.
[ "0", "1", "3", "2", "9", "4", "6", "26", "24", "5", "18", "7", "78", "28", "12", "11", "54", "19", "216", "71", "15", "29", "162", "53", "21", "73", "231", "16", "486", "13", "51", "217", "84", "83", "36", "14", "33", "647", "57", "32", "4374", "31", "237", "649", "45", "22", "207", "236", "165", "1945", "693", "50", "2151", "212", "90", "46", "87", "160", "39366", "86", "63" ]
[ "base", "nonn" ]
10
2
3
[ "A005812", "A134022", "A134023", "A140267", "A345128", "A379049", "A379260" ]
null
Lei Zhou, Dec 19 2024
2024-12-21T01:07:49
oeisdata/seq/A379/A379260.seq
2f85fb388543c7526ee5317d14ea8ffd
A379261
Irregular triangle T(n, k), n >= 0, k = 1..A379213(n), read by rows; the n-th row lists the nonnegative integers m such that A184615(m) = A003714(n).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "14", "15", "16", "13", "17", "18", "19", "20", "21", "22", "23", "24", "27", "28", "30", "31", "32", "25", "29", "33", "26", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "46", "47", "48", "54", "55", "56", "59", "60", "62", "63", "64", "45", "49", "57", "61", "65", "50", "58", "66", "51", "52", "67", "68" ]
[ "nonn", "tabf", "base" ]
7
0
3
[ "A003714", "A184615", "A379213", "A379261", "A379262" ]
null
Rémy Sigrist, Dec 19 2024
2024-12-20T12:37:30
oeisdata/seq/A379/A379261.seq
9acee9b556ecd08f8a08f04b21a77a4d
A379262
Inverse permutation to A379261.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "16", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "30", "33", "25", "26", "31", "27", "28", "29", "32", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "56", "45", "46", "47", "57", "61", "64", "65", "68", "48", "49", "50", "58", "62", "51", "52", "59", "53", "54", "55", "60", "63", "66" ]
[ "nonn", "base" ]
6
0
3
[ "A379261", "A379262" ]
null
Rémy Sigrist, Dec 19 2024
2024-12-20T12:37:37
oeisdata/seq/A379/A379262.seq
86d6f5c80ad6ad90968f45b1af4a4b4d
A379263
a(n) = n for 1 <= n <= 3. For n >3 a(n) is the smallest positive integer not already in the sequence which is prime to a(n-3) but not to a(n-2)*a(n-1).
[ "1", "2", "3", "4", "9", "8", "15", "5", "21", "7", "6", "10", "12", "25", "27", "35", "14", "16", "18", "33", "11", "55", "20", "24", "26", "13", "65", "45", "30", "22", "28", "49", "63", "39", "36", "32", "34", "17", "51", "57", "19", "38", "40", "42", "69", "23", "115", "50", "44", "48", "77", "75", "85", "54", "46", "52", "91", "105", "81", "60", "58", "29", "203", "119", "56", "62", "31" ]
[ "nonn" ]
11
1
2
[ "A098550", "A379263" ]
null
David James Sycamore, Dec 19 2024
2024-12-20T12:57:22
oeisdata/seq/A379/A379263.seq
e7df40eb9534aafe0c90d92ef4d48052
A379264
Pentagonal numbers that are abundant.
[ "12", "70", "176", "210", "330", "532", "852", "1080", "1520", "1820", "1926", "2262", "2380", "2752", "3290", "3432", "3876", "4030", "4510", "4676", "5192", "5370", "5922", "6700", "7740", "8400", "9560", "10542", "11310", "12376", "12650", "13776", "14652", "14950", "17120", "17442", "18426", "18760", "19780", "20475", "21540", "22632", "25676", "26070", "27270", "27676", "28912", "29330", "31032" ]
[ "nonn" ]
22
1
1
[ "A000326", "A005101", "A379264" ]
null
Massimo Kofler, Dec 19 2024
2025-04-04T22:30:05
oeisdata/seq/A379/A379264.seq
b5e9a6ff94f2f8d81b30117aa06ca960
A379265
a(n) is the number of coincidences of the first n terms of this sequence and A379266, i.e., the number of equalities a(k) = A379266(k) for 0 <= k < n.
[ "0", "1", "2", "2", "3", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "11", "12", "13", "13", "14", "14", "14", "14", "14", "15" ]
[ "nonn" ]
22
0
3
[ "A272727", "A379265", "A379266", "A379297" ]
null
Pontus von Brömssen, Dec 19 2024
2025-01-11T03:59:21
oeisdata/seq/A379/A379265.seq
a86f8dc437a1469a2266d9fc2020661d
A379266
a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A379265 in reverse order, i.e., the number of equalities a(k) = A379265(n-1-k) for 0 <= k < n.
[ "0", "1", "0", "2", "0", "1", "1", "2", "1", "0", "3", "1", "0", "2", "0", "2", "2", "2", "2", "3", "3", "3", "1", "0", "3", "2", "3", "3", "4", "5", "4", "4", "4", "3", "3", "3", "2", "2", "2", "3", "6", "6", "6", "6", "8", "7", "6", "5", "5", "5", "5", "4", "4", "4", "4", "4", "4", "4", "3", "4", "2", "1", "0", "5", "4", "4", "5", "6", "7", "8", "7", "9", "10", "11", "12", "12", "13", "16", "16", "16", "16", "14", "12" ]
[ "nonn" ]
18
0
4
[ "A272727", "A379266", "A379297" ]
null
Pontus von Brömssen, Dec 19 2024
2025-01-11T03:59:35
oeisdata/seq/A379/A379266.seq
8134976396a14cec2ac5b907130d303f
A379267
Numbers whose binary representation contains exactly two zeros.
[ "4", "9", "10", "12", "19", "21", "22", "25", "26", "28", "39", "43", "45", "46", "51", "53", "54", "57", "58", "60", "79", "87", "91", "93", "94", "103", "107", "109", "110", "115", "117", "118", "121", "122", "124", "159", "175", "183", "187", "189", "190", "207", "215", "219", "221", "222", "231", "235", "237", "238", "243", "245", "246", "249", "250", "252", "319", "351" ]
[ "nonn", "base" ]
17
1
1
[ "A023416", "A357773", "A379267" ]
null
Chai Wah Wu, Dec 19 2024
2024-12-21T11:08:58
oeisdata/seq/A379/A379267.seq
94025e88158a75bdabaa418e44940fdb
A379268
Numbers with only digits "1" and two digits "0".
[ "100", "1001", "1010", "1100", "10011", "10101", "10110", "11001", "11010", "11100", "100111", "101011", "101101", "101110", "110011", "110101", "110110", "111001", "111010", "111100", "1001111", "1010111", "1011011", "1011101", "1011110", "1100111", "1101011", "1101101", "1101110", "1110011", "1110101", "1110110", "1111001" ]
[ "nonn", "base" ]
12
1
1
[ "A007088", "A023416", "A357773", "A379267", "A379268" ]
null
Chai Wah Wu, Dec 19 2024
2024-12-20T19:11:47
oeisdata/seq/A379/A379268.seq
7c7966c998bd33b5f10ec44b94f72afc
A379269
Numbers whose binary representation has exactly three zeros.
[ "8", "17", "18", "20", "24", "35", "37", "38", "41", "42", "44", "49", "50", "52", "56", "71", "75", "77", "78", "83", "85", "86", "89", "90", "92", "99", "101", "102", "105", "106", "108", "113", "114", "116", "120", "143", "151", "155", "157", "158", "167", "171", "173", "174", "179", "181", "182", "185", "186", "188", "199", "203", "205", "206", "211", "213", "214", "217" ]
[ "nonn", "base" ]
15
1
1
[ "A023416", "A056557", "A333516", "A360010", "A360573", "A379269" ]
null
Chai Wah Wu, Dec 19 2024
2024-12-21T11:09:29
oeisdata/seq/A379/A379269.seq
3a6c23c86ff0929f74303fed84456036
A379270
Numbers with only digits "1" and three digits "0".
[ "1000", "10001", "10010", "10100", "11000", "100011", "100101", "100110", "101001", "101010", "101100", "110001", "110010", "110100", "111000", "1000111", "1001011", "1001101", "1001110", "1010011", "1010101", "1010110", "1011001", "1011010", "1011100", "1100011", "1100101", "1100110", "1101001", "1101010", "1101100" ]
[ "nonn", "base" ]
10
1
1
[ "A007088", "A023416", "A056557", "A333516", "A360010", "A360573", "A379269", "A379270" ]
null
Chai Wah Wu, Dec 19 2024
2024-12-20T20:42:59
oeisdata/seq/A379/A379270.seq
9aa1d8272a3925746b7e6cb67fc557a9
A379272
Number of binary min-heaps on n elements from the set {0,1} that give a max-heap when reversed.
[ "1", "2", "3", "4", "6", "8", "10", "14", "18", "22", "33", "40", "54", "74", "93", "116", "172", "204", "268", "378", "482", "584", "905", "1036", "1378", "1858", "2520", "3002", "4700", "5298", "7089", "9456", "12420", "15452", "24160", "26542", "36646", "47634", "64183", "75568", "126118", "135226", "188098", "244172", "329098", "383142", "626452", "689466", "980284", "1229296", "1691506" ]
[ "nonn" ]
14
0
2
[ "A056971", "A091980", "A273755", "A379272" ]
null
Alois P. Heinz, Feb 18 2025
2025-02-24T09:27:13
oeisdata/seq/A379/A379272.seq
b56e115607675867b23224e093ea3959
A379273
Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 2*Pi/3} (negated).
[ "1", "9", "4", "0", "3", "9", "1", "9", "8", "2", "0", "7", "2", "0", "5", "9", "6", "9", "7", "9", "3", "6", "4", "9", "2", "5", "5", "9", "1", "3", "1", "0", "6", "3", "7", "1", "6", "1", "1", "9", "1", "8", "4", "1", "8", "7", "8", "3", "6", "2", "5", "4", "5", "2", "6", "9", "4", "3", "2", "6", "0", "7", "6", "2", "9", "4", "4", "8", "5", "7", "1", "3", "2", "3", "5", "9", "3", "4", "5", "8", "6", "7", "4", "5", "8", "9", "4", "9", "5", "4", "5", "5", "7", "2", "3", "2", "4", "8", "7", "3" ]
[ "nonn", "cons" ]
4
1
2
[ "A379042", "A379273" ]
null
Detlef Meya, Dec 19 2024
2024-12-30T17:21:36
oeisdata/seq/A379/A379273.seq
6ca34e1490d5d240fa21fa04a6a2a5b7
A379274
a(n) = A135414(n) mod 2.
[ "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0" ]
[ "nonn", "easy" ]
15
1
null
[ "A135414", "A171587", "A379184", "A379274", "A379275" ]
null
Bradley Klee, Dec 19 2024
2024-12-23T13:23:31
oeisdata/seq/A379/A379274.seq
e6ddf994c298780b370358d2307468fb
A379275
a(n) = A163801(n) mod 2.
[ "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0" ]
[ "nonn" ]
18
0
null
[ "A163801", "A171587", "A379184", "A379274", "A379275" ]
null
Bradley Klee, Dec 19 2024
2025-01-04T17:30:45
oeisdata/seq/A379/A379275.seq
587272067e477493a91ca837c2565eac
A379276
Decimal expansion of 2^(5^0.4) - 0.6 - ((0.3^9)/7)^(0.8^0.1).
[ "3", "1", "4", "1", "5", "9", "2", "6", "5", "3", "5", "9", "0", "4", "5", "3", "1", "1", "3", "1", "1", "0", "3", "2", "5", "1", "0", "8", "0", "7", "4", "9", "0", "0", "8", "4", "8", "4", "7", "6", "7", "4", "3", "3", "3", "4", "1", "7", "7", "2", "9", "6", "0", "1", "0", "4", "5", "8", "8", "2", "3", "9", "0", "3", "6", "5", "9", "2", "0", "8", "3", "8", "5", "9", "8", "9", "9", "3", "8", "2", "4", "4", "1", "6", "9", "5", "0", "9", "3", "9" ]
[ "nonn", "cons", "easy" ]
13
1
1
[ "A000796", "A221185", "A379276" ]
null
Paolo Xausa, Dec 19 2024
2024-12-20T13:28:11
oeisdata/seq/A379/A379276.seq
99b965ae6537f893e48c996fbf983495
A379277
Number of solid partitions with multiplicities of parts matching the n-th composition in standard order.
[ "1", "3", "3", "6", "9", "6", "9", "13", "21", "24", "33", "13", "21", "24", "33", "24", "48", "57", "84", "51", "93", "90", "135", "24", "48", "57", "84", "51", "93", "90", "135", "48", "102", "144", "213", "138", "258", "252", "387", "111", "228", "282", "426", "219", "417", "408", "633", "48", "102", "144", "213", "138", "258", "252", "387", "111", "228", "282", "426", "219" ]
[ "nonn" ]
13
1
2
[ "A000041", "A000219", "A000293", "A066099", "A207542", "A379277" ]
null
John Tyler Rascoe, Dec 19 2024
2024-12-21T11:17:52
oeisdata/seq/A379/A379277.seq
bf7cc28b8ff04cb1a138978206416d74
A379278
Number of solid partitions of n such that all parts occur with the same multiplicity.
[ "1", "1", "4", "10", "20", "31", "97", "105", "228", "466", "657", "953", "2958", "2675", "4884", "11635", "13485", "19136", "58099", "48816", "89138", "219474", "197247", "296097", "1026590", "713425", "1099311", "3386891", "2744274", "3788578", "15225795", "8562311", "13588731", "47251379", "28547765", "43887961", "200572890", "90616026" ]
[ "nonn", "changed" ]
10
0
3
[ "A000041", "A000219", "A000293", "A207542", "A323657", "A379278" ]
null
John Tyler Rascoe, Dec 19 2024
2025-04-24T16:44:08
oeisdata/seq/A379/A379278.seq
799c51274fc38824613c446f6da4b4cc
A379279
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^2) * (1 + x*A(x)) )^2.
[ "1", "4", "30", "288", "3125", "36490", "447478", "5683186", "74105002", "986302778", "13344661479", "182998935930", "2537838036761", "35530970858236", "501523116910044", "7129275916213606", "101973703002773268", "1466574750062589956", "21194869324964207133", "307642575576365729486", "4482940969372057898247" ]
[ "nonn" ]
9
0
2
[ "A073155", "A215715", "A371675", "A379251", "A379279", "A379280", "A379282" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:47:48
oeisdata/seq/A379/A379279.seq
e56ce3a4300172b5fb1d2d26c86badf7
A379280
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^3) * (1 + x*A(x)) )^2.
[ "1", "4", "38", "500", "7601", "125520", "2187736", "39608616", "737651032", "14040612502", "271931510448", "5341639974490", "106167131932708", "2131125360950758", "43142742495766252", "879810600033569754", "18057207334571432048", "372701480245014988624", "7731178967720860156743" ]
[ "nonn" ]
12
0
2
[ "A364333", "A379244", "A379249", "A379252", "A379280", "A379283" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:41:08
oeisdata/seq/A379/A379280.seq
4f22f2e3f43ec354c05edab1a9116ad9
A379281
G.f. A(x) satisfies A(x) = 1/( (1 - x) * (1 - x*A(x)) )^2.
[ "1", "4", "18", "96", "575", "3706", "25078", "175666", "1262723", "9261018", "69024147", "521281642", "3980391050", "30678331440", "238350850248", "1864751821958", "14678131286357", "116160233811868", "923684828888152", "7376541052964806", "59137050311947284", "475757909357776656", "3839678158239147611" ]
[ "nonn" ]
10
0
2
[ "A199475", "A379281", "A379282", "A379283" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:42:04
oeisdata/seq/A379/A379281.seq
f0db7cf3836019c183bb9ab00cd4ef3f
A379282
G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^2) * (1 - x*A(x)) )^2.
[ "1", "4", "34", "376", "4743", "64710", "929906", "13865206", "212509079", "3327383632", "52994140217", "855842582128", "13982509284464", "230686414552016", "3837897905208588", "64314848237403878", "1084624929809399857", "18393856772155371200", "313487249756740510907", "5366521088581773011788" ]
[ "nonn" ]
10
0
2
[ "A371675", "A379251", "A379279", "A379281", "A379282", "A379283", "A379284" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:43:03
oeisdata/seq/A379/A379282.seq
f0511b4b891835851c42e8f6c1cbf6dd
A379283
G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^3) * (1 - x*A(x)) )^2.
[ "1", "4", "42", "612", "10387", "192312", "3766316", "76716624", "1608691229", "34495221722", "752911467734", "16671973428486", "373609441084507", "8457057155407906", "193087102810266948", "4441320670474030222", "102821800799622552713", "2394063264658388861914", "56025225620739219372819" ]
[ "nonn" ]
11
0
2
[ "A379189", "A379244", "A379252", "A379280", "A379281", "A379282", "A379283", "A379287" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:43:58
oeisdata/seq/A379/A379283.seq
8be79c221a27f8f6333d264d0969acf6
A379284
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^4)).
[ "1", "2", "15", "158", "1943", "26099", "371128", "5491868", "83692617", "1304579981", "20703125143", "333366138381", "5433036837372", "89448269251685", "1485469625972490", "24854484773368344", "418581393456669989", "7090045259711970090", "120706208890692261466", "2064356606197948427512", "35449776962011108029539" ]
[ "nonn" ]
10
0
2
[ "A118969", "A199475", "A379209", "A379284", "A379285", "A379286", "A379287" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:44:47
oeisdata/seq/A379/A379284.seq
aef5978eb799c18bba188471c3ad4130
A379285
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^3)).
[ "1", "2", "13", "115", "1175", "13052", "153115", "1866599", "23414063", "300238945", "3917984904", "51862207151", "694670871393", "9398137507922", "128235826442635", "1762706644013297", "24386388751113511", "339295523459625535", "4744546261930628062", "66644485202547680010", "939916204595095866644" ]
[ "nonn" ]
12
0
2
[ "A118969", "A199475", "A379209", "A379284", "A379285", "A379286", "A379287" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:45:48
oeisdata/seq/A379/A379285.seq
4321f749e6b060b667a246d455ef41aa
A379286
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^5)).
[ "1", "2", "17", "209", "3025", "47975", "806673", "14126236", "254880645", "4705443504", "88458542000", "1687588704861", "32589587581341", "635824437818621", "12513756861585915", "248148065577971460", "4953215882123744005", "99442753396113435246", "2006704742456528041800", "40679834776076235917841" ]
[ "nonn" ]
10
0
2
[ "A118969", "A199475", "A379209", "A379284", "A379285", "A379286", "A379287" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:46:43
oeisdata/seq/A379/A379286.seq
2ae5a5c6afffacdbe372672b521fe117
A379287
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^6)).
[ "1", "2", "19", "268", "4477", "82110", "1597963", "32402460", "677152153", "14481799261", "315417278757", "6972246638416", "156017257712825", "3527275634678216", "80447862652931941", "1848737311902300600", "42766087499793329349", "995043161703028219128", "23271045049097437148389" ]
[ "nonn" ]
9
0
2
[ "A118969", "A199475", "A379209", "A379284", "A379285", "A379286", "A379287" ]
null
Seiichi Manyama, Dec 19 2024
2024-12-20T02:48:41
oeisdata/seq/A379/A379287.seq
ba73a56f24773dc94ce1d2d106297a2f
A379288
Irregular triangle read by rows in which row n lists the odd divisors of n except the "e" odd divisors described in A005279.
[ "1", "1", "1", "3", "1", "1", "5", "1", "1", "7", "1", "1", "3", "9", "1", "5", "1", "11", "1", "1", "13", "1", "7", "1", "3", "15", "1", "1", "17", "1", "1", "19", "1", "1", "3", "7", "21", "1", "11", "1", "23", "1", "1", "5", "25", "1", "13", "1", "3", "9", "27", "1", "1", "29", "1", "1", "31", "1", "1", "3", "11", "33", "1", "17", "1", "5", "35", "1", "1", "37", "1", "19", "1", "3", "13", "39", "1", "1", "41", "1", "1", "43" ]
[ "nonn", "tabf" ]
83
1
4
[ "A000203", "A001227", "A003056", "A005279", "A182469", "A237270", "A237271", "A237593", "A239657", "A249223", "A379288", "A379374", "A379379", "A379384", "A379461", "A379634" ]
null
Omar E. Pol, Dec 21 2024
2025-01-20T20:05:00
oeisdata/seq/A379/A379288.seq
2e7d7498f41d1cab020d3cec836493ab
A379289
Spiral sequence of squares starting with 1 in the center. Each new term is the sum of its eight neighbors, negated if the number of nonempty neighbors is even. Spiral moves up first, then right, down, left, repeating outward.
[ "1", "1", "-2", "0", "-1", "0", "-1", "-1", "1", "-2", "2", "1", "1", "0", "3", "2", "-1", "0", "2", "1", "0", "1", "0", "2", "1", "1", "-2", "1", "-5", "-3", "2", "0", "-4", "-1", "-3", "-2", "3", "0", "-1", "-2", "-1", "0", "0", "-1", "0", "-3", "0", "-4", "-2", "1", "2", "-2", "8", "-1", "7", "6", "-8", "0", "2", "3", "5", "1", "1", "2", "-5", "0", "-2", "5", "-1", "4", "-3", "-3", "3", "1", "0", "4", "-1" ]
[ "sign" ]
8
1
3
null
null
Alexander Shahan, Dec 20 2024
2024-12-20T12:46:01
oeisdata/seq/A379/A379289.seq
21276a649d4b899efd32665f117b0b7d
A379290
Index where prime(n) appears as a term in A379248.
[ "2", "9", "13", "42", "88", "94", "233", "241", "412", "651", "659", "669", "1169", "1175", "1187", "2009", "2015", "2021", "2145", "2151", "2157", "2163", "2169", "3380", "5219", "5227", "5233", "5239", "5245", "5251", "5257", "5425", "10971", "10979", "11003", "11125", "11131", "11145", "11151", "11157", "11163", "11169", "11175", "14284", "14290", "14300", "18865", "18871", "18905", "19479", "19485", "19519", "19525", "19531", "19537", "19543", "19549" ]
[ "nonn" ]
9
1
1
[ "A064413", "A064955", "A379248", "A379290", "A379291", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-21T23:52:29
oeisdata/seq/A379/A379290.seq
a677798fd48d01fa6e82b8666c2bf3ae
A379291
Index where prime(n) first appears as a factor of a term in A379248.
[ "2", "4", "6", "16", "18", "20", "27", "29", "38", "48", "50", "64", "66", "68", "71", "84", "106", "108", "113", "117", "119", "130", "133", "139", "161", "171", "173", "177", "179", "183", "205", "209", "214", "216", "224", "226", "273", "277", "281", "284", "289", "303", "310", "312", "316", "318", "364", "384", "386", "388", "392", "396", "398", "431", "437", "441", "458", "460", "462", "464", "468", "476", "500", "504", "506", "508", "549", "553", "559", "563", "565", "585", "589", "594", "599", "603" ]
[ "nonn" ]
9
1
1
null
null
Scott R. Shannon, Dec 20 2024
2024-12-21T23:52:24
oeisdata/seq/A379/A379291.seq
cd881924b670dce2ca5a62835b82d52a
A379292
Number k such that A379248(k) = k.
[ "1", "2", "33", "155", "913", "1145" ]
[ "nonn", "more" ]
6
1
2
[ "A064413", "A152458", "A379248", "A379291", "A379292", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-21T23:52:21
oeisdata/seq/A379/A379292.seq
4c82d6c4e300bc36d8a2fb2efcd272c6
A379293
Index where n appears as a term in A379248.
[ "1", "2", "9", "3", "13", "4", "42", "5", "8", "6", "88", "7", "94", "16", "11", "15", "233", "10", "241", "17", "24", "18", "412", "19", "12", "20", "23", "21", "651", "22", "659", "26", "33", "27", "44", "25", "669", "29", "35", "28", "1169", "31", "1175", "30", "32", "38", "1187", "37", "41", "14", "56", "39", "2009", "34", "46", "40", "58", "48", "2015", "49", "2021", "50", "36", "51", "96", "52", "2145", "53", "60", "54", "2151", "55", "2157", "64", "45", "63", "90", "62", "2163", "65", "57", "66", "2169", "67", "98" ]
[ "nonn" ]
8
1
2
[ "A064413", "A064664", "A379248", "A379291", "A379293", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-21T23:52:17
oeisdata/seq/A379/A379293.seq
06687848aedca2f8b0ee4745b6d07b3a
A379294
Record high values of A379248.
[ "1", "2", "4", "6", "8", "10", "12", "18", "25", "50", "54", "63", "98", "100", "104", "108", "117", "126", "135", "242", "338", "343", "392", "578", "722", "735", "784", "1058", "1089", "1210", "1444", "1682", "1922", "2738", "3174", "3362", "3698", "4418", "4563", "4732", "4901", "5547", "5618", "6962", "7442", "7581", "7942", "8410", "8978", "10082", "10658", "12482", "13778", "15059", "16428", "17797", "18818", "20402", "21218", "22898", "23762", "25538", "32258", "34322" ]
[ "nonn" ]
10
1
2
[ "A064413", "A064424", "A379248", "A379290", "A379294", "A379295", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-22T22:03:06
oeisdata/seq/A379/A379294.seq
f6db3ae4bf229d677cc6a741d000a549
A379295
Indices where record high values occur in A379248.
[ "1", "2", "3", "4", "5", "6", "7", "10", "12", "14", "34", "36", "43", "47", "73", "75", "77", "79", "81", "89", "95", "168", "170", "234", "242", "344", "346", "413", "423", "425", "648", "652", "660", "670", "1166", "1170", "1176", "1188", "1607", "1609", "1611", "2002", "2010", "2016", "2022", "2046", "2048", "2142", "2146", "2152", "2158", "2164", "2170", "3373", "3375", "3377", "5220", "5228", "5234", "5240", "5246", "5252", "5258", "5426", "10966", "10968", "10972", "10980", "11004", "11122" ]
[ "nonn" ]
7
1
2
[ "A064413", "A064424", "A379248", "A379290", "A379294", "A379295", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-22T22:03:02
oeisdata/seq/A379/A379295.seq
eff53c5c6eb8d41685e322cabe320353
A379296
First differences of A379290.
[ "7", "4", "29", "46", "6", "139", "8", "171", "239", "8", "10", "500", "6", "12", "822", "6", "6", "124", "6", "6", "6", "6", "1211", "1839", "8", "6", "6", "6", "6", "6", "168", "5546", "8", "24", "122", "6", "14", "6", "6", "6", "6", "6", "3109", "6", "10", "4565", "6", "34", "574", "6", "34", "6", "6", "6", "6", "6", "6", "11195", "6", "36", "6", "6", "426", "418", "8", "42", "10068", "8", "8", "6", "6", "6", "6", "25229", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "686", "6", "64", "6", "6", "6", "6", "394", "22241", "8", "6" ]
[ "nonn" ]
14
1
1
[ "A064413", "A064955", "A379248", "A379290", "A379291", "A379296" ]
null
Scott R. Shannon, Dec 20 2024
2024-12-21T23:52:13
oeisdata/seq/A379/A379296.seq
e8d64d1eca2aae8a8a38f22a245407cc
A379297
Numbers k such that A379265(k) = A379266(k).
[ "0", "1", "3", "10", "28", "29", "40", "45", "69", "71", "72", "73", "74", "76", "81", "212", "423", "489", "492", "494", "591", "593", "672", "745", "757", "847", "849", "868", "1178", "1283", "1705", "1902", "1903", "1904", "1905", "1906", "1908", "1911", "1912", "1914", "2243", "2285", "2615", "2616", "3021", "3072", "3074", "3076", "3649", "3682", "3685" ]
[ "nonn" ]
8
1
3
[ "A379265", "A379266", "A379297" ]
null
Pontus von Brömssen, Dec 20 2024
2024-12-20T11:07:48
oeisdata/seq/A379/A379297.seq
c7bb47463cfffa69f367b44a16469b14
A379298
Largest number k for which k^2 is n digits long and has the maximum sum of digits possible for such a square (A371728(n)).
[ "3", "7", "28", "83", "313", "937", "3114", "9417", "29614", "94863", "298327", "987917", "3162083", "9893887", "29983327", "99483667", "315432874", "994927133", "2999833327", "9486778167", "31464263856", "99497231067", "299998333327", "999949483667", "3160522105583", "9892825177313", "29999983333327" ]
[ "nonn", "base", "more" ]
23
1
1
[ "A348303", "A371728", "A379298", "A380052", "A380193", "A380566", "A380797" ]
null
Zhining Yang, Feb 05 2025
2025-03-29T10:45:27
oeisdata/seq/A379/A379298.seq
181bea2a05e08247f971f8c5ac933cb9
A379299
a(n) is the maximum number k such that every permutation of the integers mod n admits at least k collinear triples.
[ "0", "0", "1", "0", "2", "0", "3", "0", "5", "2", "5", "0", "6", "9", "6", "4", "8" ]
[ "nonn", "more" ]
30
1
5
[ "A000755", "A000769", "A000938", "A272651", "A379299" ]
null
Joshua Cooper, Dec 20 2024
2025-01-09T13:20:03
oeisdata/seq/A379/A379299.seq
26a9fa827538e685200b9ae9fcf35320
A379300
Number of prime indices of n that are composite.
[ "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "2", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1" ]
[ "nonn" ]
13
1
49
[ "A000009", "A000040", "A000041", "A000070", "A000420", "A000586", "A000607", "A001222", "A001223", "A002095", "A002808", "A018252", "A023895", "A034891", "A036497", "A038348", "A038550", "A055396", "A056239", "A061395", "A065310", "A066207", "A066208", "A066247", "A073445", "A073783", "A076610", "A087436", "A096258", "A112798", "A113646", "A114374", "A175804", "A204389", "A256012", "A257991", "A257992", "A257994", "A302478", "A302540", "A320628", "A320629", "A330944", "A330945", "A331386", "A331915", "A349158", "A376680", "A377033", "A377034", "A377037", "A378373", "A378456", "A379300", "A379301", "A379302", "A379303", "A379304", "A379305", "A379306", "A379307", "A379308", "A379309", "A379310", "A379311", "A379312", "A379315", "A379316", "A379317" ]
null
Gus Wiseman, Dec 25 2024
2024-12-26T21:43:33
oeisdata/seq/A379/A379300.seq
c962128e0d14172a124b9ca2f0dccd7d
A379301
Positive integers whose prime indices include a unique composite number.
[ "7", "13", "14", "19", "21", "23", "26", "28", "29", "35", "37", "38", "39", "42", "43", "46", "47", "52", "53", "56", "57", "58", "61", "63", "65", "69", "70", "71", "73", "74", "76", "77", "78", "79", "84", "86", "87", "89", "92", "94", "95", "97", "101", "103", "104", "105", "106", "107", "111", "112", "113", "114", "115", "116", "117", "119", "122", "126", "129", "130", "131" ]
[ "nonn" ]
10
1
1
[ "A000009", "A000040", "A000041", "A000070", "A000586", "A000607", "A001222", "A001223", "A002095", "A002808", "A018252", "A023895", "A034891", "A036497", "A038348", "A038550", "A055396", "A056239", "A061395", "A065310", "A066207", "A066208", "A066247", "A073445", "A073783", "A076610", "A087436", "A096258", "A112798", "A113646", "A114374", "A204389", "A256012", "A257991", "A257992", "A257994", "A302478", "A302540", "A320628", "A320629", "A330944", "A330945", "A331386", "A331915", "A349158", "A376680", "A377033", "A377034", "A377037", "A379300", "A379301", "A379302", "A379303", "A379304", "A379305", "A379306", "A379307", "A379308", "A379309", "A379310", "A379311", "A379312", "A379315", "A379316", "A379317" ]
null
Gus Wiseman, Dec 25 2024
2024-12-26T23:02:57
oeisdata/seq/A379/A379301.seq
89d44fe6da186a7bd1ea22f9d148ce7f