sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A379101
Decimal expansion of log(2)/4.
[ "1", "7", "3", "2", "8", "6", "7", "9", "5", "1", "3", "9", "9", "8", "6", "3", "2", "7", "3", "5", "4", "3", "0", "8", "0", "3", "0", "3", "6", "4", "5", "4", "4", "1", "4", "2", "0", "1", "8", "8", "7", "5", "0", "3", "3", "5", "9", "0", "0", "6", "3", "8", "1", "3", "5", "3", "0", "1", "7", "0", "0", "0", "2", "3", "7", "3", "3", "4", "8", "4", "0", "5", "4", "9", "2", "4", "2", "3", "6", "7", "8", "9", "0", "1", "4", "6", "5", "8", "3", "1", "7", "4", "9", "1", "0", "4", "6", "7", "1", "8" ]
[ "nonn", "cons" ]
8
0
2
[ "A002162", "A010767", "A016655", "A379101" ]
null
Stefano Spezia, Dec 15 2024
2024-12-15T11:01:34
oeisdata/seq/A379/A379101.seq
d536cb75d1701db49ccbbabbc5a6fcd3
A379102
Number of fundamentally distinct graceful labelings in a maximally graceful tree with n vertices.
[ "1", "1", "1", "1", "3", "6", "18", "52", "114", "367", "1777", "5249", "21107", "84746", "432769", "10399350" ]
[ "nonn", "more" ]
61
1
5
null
null
Eric W. Weisstein, Dec 28 2024
2024-12-30T09:13:24
oeisdata/seq/A379/A379102.seq
2c11ebcb0885e7edc928ea0c3fece86c
A379103
Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.
[ "0", "1", "5", "35", "295", "2765", "27705", "290535", "3148995", "34995065", "396602605", "4566227435", "53259218495", "627982592965", "7473163652705", "89640387354735", "1082664905352795", "13155505626756465", "160709002086562005", "1972595405313408435", "24315686632846439895", "300886761671728853565", "3736205372071338170505", "46540791299676591116535" ]
[ "nonn", "easy", "changed" ]
28
0
3
[ "A025231", "A047891", "A082298", "A110147", "A379103" ]
null
Nathaniel Johnston, Dec 15 2024
2025-04-27T15:00:53
oeisdata/seq/A379/A379103.seq
66ad1ed5211fb053f9b15d3971db1c5f
A379104
a(n) = third elementary symmetric function of the first n distinct Fibonacci numbers.
[ "6", "61", "389", "2066", "9962", "45594", "202344", "881859", "3801171", "16275292", "69399116", "295177196", "1253532482", "5318285553", "22550198601", "95580699774", "405034367814", "1716140731030", "7270703692340", "30801852323495", "130485697292231", "552764498063256", "2341595675572344" ]
[ "nonn" ]
8
3
1
[ "A000032", "A000045", "A203245", "A379104" ]
null
Clark Kimberling, Dec 16 2024
2024-12-23T10:11:22
oeisdata/seq/A379/A379104.seq
14a16fd361c09c851721d47bb012adb0
A379105
Triangular array read by rows. T(n,k) is the number of n X n matrices T over GF(2) such that there are exactly 2^k vectors v in GF(2)^n with Tv=v, n>=0, 0<=k<=n.
[ "1", "1", "1", "6", "9", "1", "168", "294", "49", "1", "20160", "37800", "7350", "225", "1", "9999360", "19373760", "4036200", "144150", "961", "1", "20158709760", "39687459840", "8543828160", "326932200", "2542806", "3969", "1", "163849992929280", "325139829719040", "71124337751040", "2812314375360", "23435953128", "42677334", "16129", "1" ]
[ "nonn", "tabl" ]
44
0
4
[ "A002416", "A002884", "A060867", "A086699", "A286331", "A346381", "A379105" ]
null
Geoffrey Critzer, Dec 15 2024
2025-01-03T09:37:22
oeisdata/seq/A379/A379105.seq
e1f0fdec7a2fcc539a4bea80af477e77
A379106
Dirichlet convolution of A000120 and A323910, where A323910 is the Dirichlet inverse of the deficiency of n, and A000120 is the binary weight of n.
[ "1", "0", "0", "0", "-2", "2", "-3", "0", "-3", "2", "-7", "4", "-9", "2", "2", "0", "-14", "4", "-15", "4", "-1", "2", "-18", "8", "-8", "2", "-4", "4", "-24", "2", "-25", "0", "-2", "2", "5", "12", "-33", "2", "0", "8", "-37", "0", "-38", "4", "10", "2", "-41", "16", "-20", "0", "2", "4", "-48", "2", "15", "8", "0", "2", "-53", "12", "-55", "2", "19", "0", "16", "-8", "-63", "4", "-3", "-4", "-66", "32", "-69", "2", "-2", "4", "18", "-12", "-73", "16", "-15", "2", "-78", "8", "30" ]
[ "sign" ]
9
1
5
[ "A000120", "A033879", "A294898", "A323910", "A378754", "A378756", "A379106", "A379107" ]
null
Antti Karttunen, Dec 16 2024
2024-12-16T22:18:59
oeisdata/seq/A379/A379106.seq
b031d60eae2eba0fdc9845c003c84c18
A379107
Dirichlet convolution of A033879 and A378990, where A033879 is the deficiency of n, and A378990 is the Dirichlet inverse of the binary weight of n.
[ "1", "0", "0", "0", "2", "-2", "3", "0", "3", "-2", "7", "-4", "9", "-2", "-2", "0", "14", "-4", "15", "-4", "1", "-2", "18", "-8", "12", "-2", "4", "-4", "24", "-10", "25", "0", "2", "-2", "7", "-8", "33", "-2", "0", "-8", "37", "-12", "38", "-4", "2", "-2", "41", "-16", "29", "-8", "-2", "-4", "48", "-14", "13", "-8", "0", "-2", "53", "-20", "55", "-2", "-1", "0", "20", "-20", "63", "-4", "3", "-16", "66", "-16", "69", "-2", "-6", "-4", "24", "-24", "73", "-16", "24", "-2", "78" ]
[ "sign" ]
8
1
5
[ "A000120", "A033879", "A294898", "A378755", "A378757", "A378990", "A379106", "A379107" ]
null
Antti Karttunen, Dec 16 2024
2024-12-16T22:19:11
oeisdata/seq/A379/A379107.seq
13703f18993aeb666d324267d050acfc
A379108
Dirichlet convolution of sigma with A359579.
[ "1", "2", "3", "4", "6", "6", "7", "8", "10", "12", "12", "12", "14", "14", "18", "16", "18", "20", "20", "24", "21", "24", "24", "24", "31", "28", "30", "28", "30", "36", "31", "32", "36", "36", "42", "40", "38", "40", "42", "48", "42", "42", "44", "48", "60", "48", "48", "48", "50", "62", "54", "56", "54", "60", "72", "56", "60", "60", "60", "72", "62", "62", "70", "64", "84", "72", "68", "72", "72", "84", "72", "80", "74", "76", "93", "80", "84", "84", "80", "96", "91", "84", "84", "84" ]
[ "nonn", "mult" ]
13
1
2
[ "A000203", "A000668", "A054784", "A336923", "A359579", "A379108", "A379109" ]
null
Antti Karttunen, Dec 17 2024
2025-01-03T05:19:33
oeisdata/seq/A379/A379108.seq
01fc6f765b741ec95af5ccd3b3134953
A379109
Dirichlet convolution of A046692 (inverse of sigma) with A336923, where A336923(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.
[ "1", "-2", "-3", "0", "-6", "6", "-7", "0", "-1", "12", "-12", "0", "-14", "14", "18", "0", "-18", "2", "-20", "0", "21", "24", "-24", "0", "5", "28", "3", "0", "-30", "-36", "-31", "0", "36", "36", "42", "0", "-38", "40", "42", "0", "-42", "-42", "-44", "0", "6", "48", "-48", "0", "-1", "-10", "54", "0", "-54", "-6", "72", "0", "60", "60", "-60", "0", "-62", "62", "7", "0", "84", "-72", "-68", "0", "72", "-84", "-72", "0", "-74", "76", "-15", "0", "84", "-84", "-80", "0", "0", "84" ]
[ "sign", "mult", "easy" ]
13
1
2
[ "A000203", "A000668", "A046692", "A054784", "A336923", "A379108", "A379109" ]
null
Antti Karttunen, Dec 17 2024
2025-01-03T05:19:51
oeisdata/seq/A379/A379109.seq
c101c4b2085494fed9e5004abf955b0f
A379110
Dirichlet inverse of A324892, where A324892 is multiplicative with a(p^e) = p^e if sigma(p^e) is prime, and 1 otherwise.
[ "1", "-2", "-1", "0", "-1", "2", "-1", "7", "-8", "2", "-1", "0", "-1", "2", "1", "-28", "-1", "16", "-1", "0", "1", "2", "-1", "-7", "-24", "2", "16", "0", "-1", "-2", "-1", "59", "1", "2", "1", "0", "-1", "2", "1", "-7", "-1", "-2", "-1", "0", "8", "2", "-1", "28", "0", "48", "1", "0", "-1", "-32", "1", "-7", "1", "2", "-1", "0", "-1", "2", "8", "-75", "1", "-2", "-1", "0", "1", "-2", "-1", "-56", "-1", "2", "24", "0", "1", "-2", "-1", "28", "56", "2", "-1", "0", "1", "2", "1", "-7" ]
[ "sign", "mult" ]
6
1
2
[ "A000203", "A324892", "A379110" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T08:24:15
oeisdata/seq/A379/A379110.seq
0414f1eb1af3d17b707f6c55ce5ef024
A379111
a(n) = 1 if bigomega(sigma(n)) is equal to omega(n), otherwise 0.
[ "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn", "mult" ]
12
1
null
[ "A000203", "A001221", "A001222", "A010051", "A023194", "A324892", "A379111", "A379112" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T19:35:03
oeisdata/seq/A379/A379111.seq
86c9e4e7e53ca5f9cde158b323b0912a
A379112
Numbers k such that the number of prime factors (with multiplicity) of sigma(k) is equal to the number of distinct prime factors of k.
[ "1", "2", "4", "9", "16", "18", "25", "36", "50", "64", "100", "144", "225", "289", "400", "450", "576", "578", "729", "900", "1156", "1458", "1600", "1681", "2401", "2601", "2916", "3362", "3481", "3600", "4096", "4624", "4802", "5041", "5202", "6724", "6962", "7225", "7921", "9604", "10082", "10201", "10404", "11664", "13924", "14400", "14450", "15129", "15625", "15842", "17161", "18225", "18496", "20164", "20402", "21609" ]
[ "nonn" ]
15
1
2
[ "A000203", "A001221", "A001222", "A023194", "A028982", "A058063", "A336359", "A336547", "A379111", "A379112" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T19:35:23
oeisdata/seq/A379/A379112.seq
0a7249de4c22fbdd2e61096b93824dfc
A379113
a(1) = 1; for n > 1, a(n) is the greatest proper unitary divisor d of n such that A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
[ "1", "1", "1", "1", "1", "3", "1", "1", "1", "5", "1", "3", "1", "7", "3", "1", "1", "1", "1", "5", "7", "11", "1", "3", "1", "2", "1", "7", "1", "15", "1", "1", "3", "1", "7", "1", "1", "1", "3", "5", "1", "21", "1", "11", "1", "23", "1", "3", "1", "2", "3", "13", "1", "1", "11", "7", "3", "2", "1", "15", "1", "31", "7", "1", "5", "33", "1", "1", "3", "35", "1", "9", "1", "1", "3", "19", "7", "6", "1", "5", "1", "1", "1", "21", "1", "43", "3", "11", "1", "1", "7", "23", "31", "47", "1", "3", "1", "1", "1", "4", "1" ]
[ "nonn" ]
10
1
6
[ "A000203", "A048720", "A065621", "A325567", "A379113", "A379114", "A379119" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T18:30:23
oeisdata/seq/A379/A379113.seq
8abebc545d49aa26d658fc0999f699a7
A379114
Numbers k for which A379113(k) > 1, i.e., k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).
[ "6", "10", "12", "14", "15", "20", "21", "22", "24", "26", "28", "30", "33", "35", "39", "40", "42", "44", "46", "48", "50", "51", "52", "55", "56", "57", "58", "60", "62", "63", "65", "66", "69", "70", "72", "75", "76", "77", "78", "80", "84", "86", "87", "88", "91", "92", "93", "94", "96", "100", "102", "104", "105", "108", "111", "112", "114", "115", "116", "118", "119", "120", "122", "123", "124", "126", "129", "132", "133", "136", "138", "140", "141", "143", "144" ]
[ "nonn" ]
11
1
1
[ "A000396", "A325638", "A325639", "A379113", "A379114", "A379118" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T19:52:09
oeisdata/seq/A379/A379114.seq
9e32637ef8b4b178798f1b1d13d9e666
A379115
a(n) = A328845(n) mod 5, where A328845 is the first Fibonacci based variant of arithmetic derivative.
[ "0", "0", "1", "2", "4", "0", "2", "3", "2", "2", "0", "4", "0", "3", "3", "0", "2", "2", "3", "1", "0", "3", "4", "2", "2", "0", "4", "4", "0", "4", "0", "4", "0", "4", "1", "0", "4", "2", "1", "0", "0", "1", "2", "2", "0", "0", "2", "3", "3", "2", "0", "0", "4", "3", "0", "0", "3", "1", "2", "1", "0", "1", "4", "1", "2", "0", "1", "3", "1", "2", "0", "4", "4", "3", "1", "0", "0", "1", "4", "1", "0", "1", "3", "2", "1", "0", "2", "0", "4", "4", "0", "0", "0", "4", "3", "0", "4", "2", "3", "3", "0", "1", "1", "2", "0", "0" ]
[ "nonn" ]
11
0
4
[ "A010874", "A328845", "A374125", "A374205", "A379115", "A379116", "A379117" ]
null
Antti Karttunen, Dec 15 2024
2024-12-16T08:47:11
oeisdata/seq/A379/A379115.seq
51ae3028ff9c12d0f4a07a2deb5d209e
A379116
Numbers k for which A328845(k) is a multiple of 5, where A328845 is the first Fibonacci based variant of arithmetic derivative.
[ "0", "1", "5", "10", "12", "15", "20", "25", "28", "30", "32", "35", "39", "40", "44", "45", "50", "51", "54", "55", "60", "65", "70", "75", "76", "80", "85", "87", "90", "91", "92", "95", "100", "104", "105", "110", "111", "115", "119", "120", "123", "124", "125", "126", "130", "135", "136", "140", "143", "144", "145", "150", "155", "159", "160", "165", "170", "172", "175", "180", "183", "185", "187", "188", "190", "195", "198", "200", "203", "205" ]
[ "nonn" ]
13
1
3
[ "A328845", "A374046", "A374122", "A374205", "A379115", "A379116", "A379117" ]
null
Antti Karttunen, Dec 15 2024
2024-12-16T08:47:26
oeisdata/seq/A379/A379116.seq
16a9ce987f08814d1a83a20859f89043
A379117
a(n) = 1 if A328845(n) is a multiple of 5, otherwise 0, where A328845 is the first Fibonacci based variant of arithmetic derivative.
[ "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "1", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1" ]
[ "nonn" ]
10
0
null
[ "A328845", "A374205", "A379115", "A379116", "A379117" ]
null
Antti Karttunen, Dec 15 2024
2024-12-16T08:47:37
oeisdata/seq/A379/A379117.seq
c4eb3eed3764f008a256e350663068c8
A379118
Characteristic function of A379114, numbers k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1" ]
[ "nonn" ]
8
1
null
[ "A000203", "A048720", "A065621", "A379113", "A379114", "A379118" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T19:52:05
oeisdata/seq/A379/A379118.seq
53779bdb522e85194b40c8d1283c913c
A379119
a(1) = 1; for n > 1, a(n) is the smallest unitary divisor d > 1 of n such that A048720(A065621(sigma(n/d)),sigma(d)) is equal to sigma(n).
[ "1", "2", "3", "4", "5", "2", "7", "8", "9", "2", "11", "4", "13", "2", "5", "16", "17", "18", "19", "4", "3", "2", "23", "8", "25", "13", "27", "4", "29", "2", "31", "32", "11", "34", "5", "36", "37", "38", "13", "8", "41", "2", "43", "4", "45", "2", "47", "16", "49", "25", "17", "4", "53", "54", "5", "8", "19", "29", "59", "4", "61", "2", "9", "64", "13", "2", "67", "68", "23", "2", "71", "8", "73", "74", "25", "4", "11", "13", "79", "16", "81", "82", "83", "4", "85", "2", "29", "8", "89" ]
[ "nonn" ]
10
1
2
[ "A000203", "A048720", "A065621", "A379113", "A379114", "A379119", "A379120" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T19:35:30
oeisdata/seq/A379/A379119.seq
0f3b58706f2afd8157ab542524a33e96
A379120
a(1) = 1; and for n > 1, a(n) is the smallest divisor d > 1 of n such that A048720(A065621(n/d),d) is equal to n.
[ "1", "2", "3", "2", "5", "3", "7", "2", "3", "5", "11", "3", "13", "7", "15", "2", "17", "3", "19", "5", "7", "11", "23", "3", "25", "13", "27", "7", "29", "15", "31", "2", "3", "17", "7", "3", "37", "19", "39", "5", "41", "7", "43", "11", "15", "23", "47", "3", "7", "25", "51", "13", "53", "27", "55", "7", "57", "29", "59", "15", "61", "31", "63", "2", "5", "3", "67", "17", "69", "7", "71", "3", "73", "37", "15", "19", "77", "39", "79", "5", "81", "41", "83", "7", "85", "43", "87", "11", "89" ]
[ "nonn" ]
10
1
2
[ "A048720", "A065621", "A115872", "A325565", "A325566", "A325567", "A379119", "A379120" ]
null
Antti Karttunen, Dec 17 2024
2024-12-17T21:23:50
oeisdata/seq/A379/A379120.seq
530e1f869e209ff63cfe4a8426e0d8e5
A379121
Odd squares k for which A379113(k) > 1, i.e., k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).
[ "225", "3025", "3249", "12321", "29241", "38025", "91809", "216225", "247009", "354025", "408321", "751689", "772641", "855625", "919681", "1366561", "1595169", "3814209", "9828225", "11189025", "12173121", "12709225", "29430625", "47927929", "52403121", "66471409", "67486225", "77457601", "80263681", "94148209", "100661089", "110397049", "126540001", "204232681", "264875625", "328878225" ]
[ "nonn" ]
30
1
1
[ "A000203", "A016754", "A048720", "A065621", "A277320", "A379113", "A379114", "A379119", "A379121", "A379122", "A379123", "A379124", "A379125", "A379129" ]
null
Antti Karttunen, Dec 18 2024
2024-12-20T13:15:06
oeisdata/seq/A379/A379121.seq
c08dbbc2451e5da149482e238acc65d5
A379122
Odd numbers m for which A379113(m^2) > 1, i.e., k = m^2 has a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).
[ "15", "55", "57", "111", "171", "195", "303", "465", "497", "595", "639", "867", "879", "925", "959", "1169", "1263", "1953", "3135", "3345", "3489", "3565", "5425", "6923", "7239", "8153", "8215", "8801", "8959", "9703", "10033", "10507", "11249", "14291", "16275", "18135", "18569", "18693", "19173", "20271", "23943", "24303", "26607", "28325", "32581", "33655", "34163", "40393", "43927", "46221", "47649", "55281" ]
[ "nonn" ]
9
1
1
[ "A379113", "A379121", "A379122" ]
null
Antti Karttunen, Dec 18 2024
2024-12-20T12:35:05
oeisdata/seq/A379/A379122.seq
3e66d3eb94fb47283f1a70e18f1eebe7
A379123
a(n) = A379113(A379121(n)), where A379121 gives those odd squares k for which A379113(k) > 1.
[ "9", "121", "9", "9", "81", "1521", "9", "9", "49", "49", "81", "9", "9", "625", "49", "49", "9", "961", "9", "9", "9", "961", "961", "49", "9", "961", "961", "169", "961", "961", "16129", "49", "49", "961", "961", "961", "961", "961", "49", "9", "9", "9", "9", "625", "961", "16129", "16129", "961", "961", "961", "49", "9", "49", "16129", "961", "49", "961", "9", "49", "49", "49", "49", "9", "9", "9", "9", "49", "9", "16129", "9", "9", "49", "49", "9", "49", "9" ]
[ "nonn" ]
18
1
1
[ "A016754", "A114390", "A133049", "A379113", "A379121", "A379123", "A379124", "A379125" ]
null
Antti Karttunen, Dec 18 2024
2024-12-20T12:35:20
oeisdata/seq/A379/A379123.seq
a247c2f2032808d17546c10eda0d76c8
A379124
a(n) = A379119(A379121(n)), where A379121 gives those odd squares k for which A379113(k) > 1 and A379119(n) = n/A379113(n).
[ "25", "25", "361", "1369", "361", "25", "10201", "24025", "5041", "7225", "5041", "83521", "85849", "1369", "18769", "27889", "177241", "3969", "1092025", "1243225", "1352569", "13225", "30625", "978121", "5822569", "69169", "70225", "458329", "83521", "97969", "6241", "2253001", "2582449", "212521", "275625", "342225", "358801", "363609", "7502121", "45657049", "63696361", "65626201", "78659161" ]
[ "nonn" ]
10
1
1
[ "A016754", "A114390", "A133049", "A379113", "A379121", "A379123", "A379124", "A379125" ]
null
Antti Karttunen, Dec 18 2024
2024-12-20T12:35:37
oeisdata/seq/A379/A379124.seq
4c8c477a5748f608652017b6f0038a9a
A379125
Sum of divisors of those odd squares k for which A379113(k) > 1, i.e., k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).
[ "403", "4123", "4953", "18291", "46101", "73749", "133939", "400179", "291441", "542469", "618673", "1153633", "1119859", "1098867", "1077699", "1599249", "2309619", "6848721", "20421219", "20131059", "17598529", "17022999", "44205381", "59669253", "80520921", "68946969", "88131729", "83998281", "88119813", "97595019", "102760497", "137273157", "147291249", "211492119", "574669953" ]
[ "nonn" ]
8
1
1
[ "A000203", "A048720", "A065621", "A277320", "A379113", "A379121", "A379123", "A379124", "A379125" ]
null
Antti Karttunen, Dec 18 2024
2024-12-20T12:35:48
oeisdata/seq/A379/A379125.seq
391b1e231728f1b8ff55ea726c18f753
A379126
a(1) = 1; for n > 1, a(n) is the least number k such that A325567(k) = n, or 0 if no such number exists.
[ "1", "4", "9", "8", "35", "18", "49", "16", "135", "70", "33", "36", "65", "98", "225", "32", "527", "270", "133", "140", "651", "66", "161", "72", "775", "130", "837", "196", "899", "450", "961", "64", "2079", "1054", "525", "540", "259", "266", "273", "280", "2583", "1302", "129", "132", "2835", "322", "705", "144", "3087", "1550", "3213", "260", "3339", "1674", "385", "392", "1539", "1798", "3717", "900", "3843", "1922", "3969", "128" ]
[ "nonn" ]
15
1
2
[ "A048720", "A065621", "A115872", "A266195", "A266351", "A277320", "A325567", "A379126", "A379128", "A379228" ]
null
Antti Karttunen, Dec 21 2024
2024-12-21T22:29:42
oeisdata/seq/A379/A379126.seq
18c94fb1bdc65baa6f91e635683e6fd9
A379127
a(1) = 1; for n > 1, a(n) is the largest proper divisor d of 2n-1 such that A048720(A065621(d),(2n-1)/d) is equal to 2n-1.
[ "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "11", "5", "1", "1", "1", "1", "3", "1", "7", "1", "1", "1", "1", "1", "1", "1", "13", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "43", "1", "19", "9", "1", "1", "1", "1", "1", "1", "1", "1", "3", "5", "1", "1", "23", "1", "11", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "13", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
9
1
5
[ "A048720", "A065621", "A277320", "A325567", "A379127", "A379128" ]
null
Antti Karttunen, Dec 21 2024
2024-12-21T22:29:55
oeisdata/seq/A379/A379127.seq
a6438420c6863a6840126cbe05413f1e
A379128
a(1) = 1; for n > 1, a(n) is the least odd number k such that A325567(k) = 2*n-1, or 0 if no such number exists.
[ "1", "9", "35", "49", "135", "33", "65", "225", "527", "133", "651", "161", "775", "837", "899", "961", "2079", "525", "259", "273", "2583", "129", "2835", "705", "3087", "3213", "3339", "385", "1539", "3717", "3843", "3969", "8255", "2077", "1035", "1065", "9271", "2325", "1155", "1185", "4131", "2573", "10795", "2697", "11303", "2821", "11811", "2945", "12319", "12573", "12827", "1545", "13335", "13589", "13843", "1665" ]
[ "nonn" ]
7
1
2
[ "A048720", "A065621", "A277320", "A325567", "A379126", "A379127", "A379128" ]
null
Antti Karttunen, Dec 21 2024
2024-12-21T22:31:55
oeisdata/seq/A379/A379128.seq
33dc74546789eb75709d273dc6530f70
A379129
a(n) is the number of unitary proper divisors d > 1 of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "2", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "2", "2", "0", "1", "0", "1", "0", "1", "0", "5", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "3", "0", "1", "0", "2", "0", "1", "0", "1", "1", "2", "0", "0", "2", "1", "1", "1", "0", "3", "0", "1", "1", "0", "1", "5", "0", "0", "1", "5", "0", "1", "0", "0", "1", "1", "1", "3", "0", "1", "0", "0", "0", "3", "0", "1", "1", "1", "0", "0", "1", "1", "2", "2", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "3" ]
[ "nonn" ]
20
1
10
[ "A000203", "A048720", "A065621", "A277320", "A379113", "A379114", "A379118", "A379129", "A379130" ]
null
Antti Karttunen, Dec 18 2024
2024-12-18T15:05:55
oeisdata/seq/A379/A379129.seq
e509f2892d6cc6eb0da5fa8bf5c89e91
A379130
a(n) is the number of unitary divisors d of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
[ "1", "1", "2", "1", "1", "2", "2", "1", "1", "3", "1", "2", "1", "2", "2", "1", "1", "1", "1", "2", "4", "3", "1", "2", "1", "2", "1", "2", "1", "6", "2", "1", "2", "1", "2", "1", "1", "1", "2", "2", "1", "4", "1", "2", "1", "3", "1", "2", "1", "2", "2", "3", "1", "1", "3", "2", "2", "2", "1", "4", "1", "2", "2", "1", "2", "6", "1", "1", "2", "6", "1", "2", "1", "1", "2", "2", "2", "4", "1", "2", "1", "1", "1", "4", "1", "2", "2", "2", "1", "1", "2", "2", "4", "3", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "4" ]
[ "nonn" ]
27
1
3
[ "A000203", "A034444", "A046528", "A048720", "A065621", "A277320", "A325565", "A379113", "A379129", "A379130" ]
null
Antti Karttunen, Dec 18 2024
2024-12-18T15:05:30
oeisdata/seq/A379/A379130.seq
a1ff5d9274cafb948e01da8989cdf836
A379131
Decimal expansion of A245781*Pi/2.
[ "5", "1", "6", "3", "3", "5", "9", "7", "6", "2", "8", "1", "7", "2", "3", "8", "7", "1", "3", "1", "3", "7", "9", "2", "6", "1", "9", "1", "8", "1", "2", "2", "1", "9", "1", "4", "9", "3", "8", "3", "2", "9", "7", "3", "9", "5", "3", "1", "5", "1", "3", "2", "8", "9", "3", "5", "2", "3", "8", "9", "4", "4", "7", "0", "4", "4", "5", "7", "9", "1", "7", "7", "4", "1", "2", "2", "8", "0", "3", "3", "9", "4", "6", "9", "1", "8", "7", "6", "4", "9", "5", "2", "7", "4", "9", "8", "4", "0", "2", "9" ]
[ "nonn", "cons" ]
5
0
1
[ "A019669", "A085365", "A245781", "A379131" ]
null
Stefano Spezia, Dec 15 2024
2024-12-16T14:46:40
oeisdata/seq/A379/A379131.seq
24ded1ba1cc23844cc451518477d51b4
A379132
Decimal expansion of the surface area of a pentakis dodecahedron with unit shorter edge length.
[ "2", "7", "9", "3", "5", "2", "4", "9", "6", "0", "0", "7", "0", "0", "7", "9", "3", "1", "0", "5", "8", "1", "0", "1", "9", "1", "2", "7", "9", "9", "6", "3", "6", "8", "0", "7", "0", "5", "2", "5", "7", "7", "8", "6", "1", "0", "9", "0", "7", "3", "6", "2", "6", "2", "5", "3", "5", "8", "6", "5", "9", "8", "4", "3", "0", "7", "7", "6", "1", "1", "3", "9", "5", "8", "0", "3", "1", "2", "7", "3", "3", "1", "2", "7", "0", "1", "6", "9", "7", "5" ]
[ "nonn", "cons", "easy" ]
12
2
1
[ "A002163", "A377750", "A379132", "A379133", "A379134", "A379135", "A379136" ]
null
Paolo Xausa, Dec 16 2024
2025-02-05T10:22:58
oeisdata/seq/A379/A379132.seq
68e962da2a577ff58619b9e8ccff41c7
A379133
Decimal expansion of the volume of a pentakis dodecahedron with unit shorter edge length.
[ "1", "3", "4", "5", "8", "5", "6", "9", "3", "6", "6", "3", "1", "8", "7", "1", "4", "2", "2", "3", "6", "4", "2", "9", "6", "4", "1", "2", "7", "5", "3", "9", "1", "5", "3", "5", "9", "5", "2", "7", "9", "9", "2", "4", "8", "5", "9", "7", "6", "2", "2", "4", "2", "0", "9", "8", "1", "6", "2", "8", "3", "7", "6", "5", "7", "6", "7", "5", "4", "1", "9", "8", "8", "0", "6", "8", "6", "8", "2", "2", "5", "6", "7", "4", "1", "1", "1", "6", "1", "1" ]
[ "nonn", "cons", "easy" ]
12
2
2
[ "A002163", "A377751", "A379132", "A379133", "A379134", "A379135", "A379136" ]
null
Paolo Xausa, Dec 16 2024
2025-02-05T10:25:44
oeisdata/seq/A379/A379133.seq
b53510bf66346689fee4a94893278998
A379134
Decimal expansion of the inradius of a pentakis dodecahedron with unit shorter edge length.
[ "1", "4", "4", "5", "3", "3", "1", "9", "2", "5", "6", "5", "2", "2", "1", "4", "8", "2", "8", "3", "1", "5", "8", "5", "1", "2", "4", "9", "1", "0", "2", "0", "8", "1", "1", "9", "7", "7", "2", "3", "8", "7", "1", "1", "7", "7", "8", "4", "3", "0", "3", "8", "9", "7", "1", "6", "2", "5", "7", "9", "0", "6", "7", "3", "8", "1", "7", "3", "5", "4", "5", "5", "1", "5", "9", "4", "0", "1", "5", "6", "3", "8", "4", "2", "8", "0", "6", "3", "3", "2" ]
[ "nonn", "cons", "easy" ]
9
1
2
[ "A002163", "A379132", "A379133", "A379134", "A379135", "A379136" ]
null
Paolo Xausa, Dec 17 2024
2025-02-05T10:28:29
oeisdata/seq/A379/A379134.seq
c63c59d5ec492011e120f3a74a0c42fd
A379135
Decimal expansion of the midradius of a pentakis dodecahedron with unit shorter edge length.
[ "1", "4", "7", "5", "6", "8", "3", "6", "6", "1", "0", "4", "1", "6", "1", "4", "0", "9", "0", "7", "6", "8", "9", "6", "0", "0", "8", "3", "8", "4", "9", "4", "8", "5", "7", "2", "5", "5", "2", "6", "8", "2", "1", "2", "5", "6", "5", "6", "9", "5", "4", "8", "0", "9", "7", "7", "3", "4", "3", "9", "0", "9", "7", "8", "0", "1", "9", "2", "9", "6", "8", "9", "8", "0", "7", "6", "1", "1", "7", "8", "9", "1", "5", "2", "0", "2", "7", "0", "2", "6" ]
[ "nonn", "cons", "easy" ]
10
1
2
[ "A010499", "A205769", "A379132", "A379133", "A379134", "A379135", "A379136" ]
null
Paolo Xausa, Dec 17 2024
2025-02-05T10:29:07
oeisdata/seq/A379/A379135.seq
cdcde161650668c9b5ad337ef64d8de5
A379136
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentakis dodecahedron.
[ "2", "7", "3", "5", "2", "5", "4", "7", "6", "1", "4", "9", "0", "3", "3", "4", "6", "6", "1", "9", "8", "9", "8", "5", "6", "0", "1", "8", "3", "9", "3", "4", "9", "5", "7", "9", "2", "7", "1", "6", "9", "6", "9", "3", "3", "9", "6", "5", "5", "6", "8", "5", "7", "4", "2", "9", "3", "0", "4", "0", "0", "5", "9", "0", "1", "3", "0", "2", "9", "3", "0", "5", "7", "6", "0", "6", "9", "2", "0", "0", "0", "3", "1", "1", "4", "6", "4", "5", "3", "8" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A002163", "A236367", "A344075", "A379132", "A379133", "A379134", "A379135", "A379136" ]
null
Paolo Xausa, Dec 17 2024
2025-02-05T10:31:12
oeisdata/seq/A379/A379136.seq
63f5f7c33e030262082112a76cc6bd57
A379137
Numbers k such that a nonzero proper substring of the concatenation, in decreasing order, of the prime factors of k (without multiplicity) is divisible by k.
[ "66", "95", "132", "995", "9995", "18733", "85713", "93115", "131131", "197591", "316406", "380627", "632812", "999995", "2897105", "4285713", "7231913", "8691315", "58730137", "99999995", "169035711", "507107133", "3005755566", "4870313015", "6011511132", "9023163631", "9091190911" ]
[ "nonn", "base", "more" ]
36
1
1
[ "A055558", "A085307", "A378950", "A379137" ]
null
Jean-Marc Rebert, Dec 15 2024
2024-12-20T13:15:01
oeisdata/seq/A379/A379137.seq
90cf82c8a63597bf0754a5d7ecbbca07
A379138
a(n) is the first number that is the sum of two palindromic primes in exactly n ways.
[ "0", "4", "10", "504", "25242", "1110", "28782", "46764", "46254", "86058", "50094", "47874", "107880", "108180", "110100", "108990", "107070", "109800", "2726262", "2830272", "2698962", "3029292", "2900982", "2799972", "2979792", "3100002", "2998992", "4498944", "4409034", "4709064", "4510044", "4916184", "4790874", "4787874", "4869684", "4959594", "4896984", "4891884" ]
[ "nonn" ]
7
0
2
[ "A002385", "A377848", "A379138" ]
null
Robert Israel, Dec 15 2024
2024-12-16T02:15:38
oeisdata/seq/A379/A379138.seq
b95a38c7659490a33c74588ff11a418c
A379139
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^(1/3)) * (1 + x*A(x)^(2/3)) )^3.
[ "1", "6", "33", "185", "1065", "6276", "37711", "230277", "1425180", "8920915", "56382321", "359325561", "2306603557", "14900834070", "96801107625", "631995206707", "4144614844047", "27289670546697", "180339237891360", "1195684324845420", "7951560286540908", "53025939926690233", "354509890878236583" ]
[ "nonn" ]
9
0
2
[ "A003517", "A007863", "A379139" ]
null
Seiichi Manyama, Dec 15 2024
2024-12-16T01:52:44
oeisdata/seq/A379/A379139.seq
62ddc392567df056b668f9f1b2903498
A379140
Numbers k such that the greatest prime < 10^k and the least prime > 10^k share no decimal digits.
[ "1", "2", "8", "11", "15", "16", "17", "18", "21", "25", "26", "30", "40", "44", "46", "47", "50", "51", "53", "55", "60", "63", "64", "74", "77", "81", "86", "88", "89", "93", "95", "101", "123", "130", "131", "133", "134", "140", "152", "154", "158", "161", "164", "166", "176", "181", "189", "192", "198", "209", "214", "215", "233", "245", "264", "268", "274", "291", "293", "295", "297", "324", "326", "334", "352", "357" ]
[ "nonn", "base" ]
11
1
2
[ "A003617", "A003618", "A107801", "A379140" ]
null
Robert Israel, Dec 16 2024
2024-12-16T10:58:23
oeisdata/seq/A379/A379140.seq
8d63c2aacdd6405b7ad480872fde090c
A379141
If n = Product (p_j^k_j) then a(n) = numerator of Sum 1/k_j.
[ "0", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "3", "1", "2", "2", "1", "1", "3", "1", "3", "2", "2", "1", "4", "1", "2", "1", "3", "1", "3", "1", "1", "2", "2", "2", "1", "1", "2", "2", "4", "1", "3", "1", "3", "3", "2", "1", "5", "1", "3", "2", "3", "1", "4", "2", "4", "2", "2", "1", "5", "1", "2", "3", "1", "2", "3", "1", "3", "2", "3", "1", "5", "1", "2", "3", "3", "2", "3", "1", "5", "1", "2", "1", "5", "2", "2", "2", "4", "1", "5", "2", "3", "2", "2", "2", "6", "1", "3", "3", "1", "1", "3", "1", "4", "3", "2", "1", "5", "1", "3" ]
[ "nonn", "frac" ]
15
1
6
[ "A001222", "A005361", "A028235", "A028236", "A379141" ]
null
Ilya Gutkovskiy, Dec 16 2024
2025-01-14T01:50:24
oeisdata/seq/A379/A379141.seq
8c850a8137d2d84801bfb88e7a2b1304
A379142
Lexicographically earliest sequence of distinct positive integers such that the sum of terms a(1)..a(n) has no digit in common with the sum of digits in the terms a(1)..a(n).
[ "11", "1", "2", "3", "5", "4", "7", "8", "6", "9", "10", "12", "13", "16", "14", "17", "18", "15", "30", "20", "21", "23", "19", "22", "27", "59", "37", "28", "25", "24", "26", "33", "35", "34", "32", "29", "38", "31", "36", "39", "41", "50", "40", "43", "44", "54", "42", "45", "247", "46", "51", "47", "53", "58", "57", "48", "52", "60", "69", "74", "49", "63", "55", "56", "67", "76", "70", "106", "79", "80", "61", "62", "64", "65", "66", "68", "81", "71", "72", "102", "78", "149", "73", "100", "84", "77", "82", "86", "83", "115" ]
[ "nonn", "base" ]
15
1
1
[ "A000217", "A007953", "A320081", "A379142" ]
null
Scott R. Shannon, Dec 16 2024
2024-12-16T08:54:08
oeisdata/seq/A379/A379142.seq
7e7d83ef9c7fc82d6af2840c15eef117
A379143
Lexicographically earliest sequence of distinct positive integers such that both the sum of terms a(1)..a(n) and the sum of the digits in these terms is a prime number.
[ "2", "3", "6", "8", "4", "24", "20", "42", "22", "48", "44", "28", "26", "40", "114", "68", "64", "176", "82", "66", "80", "46", "84", "192", "110", "60", "138", "156", "118", "62", "136", "174", "134", "154", "200", "172", "158", "130", "132", "194", "222", "178", "86", "88", "150", "116", "246", "190", "228", "206", "244", "152", "204", "112", "264", "170", "196", "288", "866", "240", "208", "248", "312", "268", "242", "198", "282", "286", "266", "354", "220", "284", "262", "224", "280", "260", "330", "226" ]
[ "nonn", "base" ]
18
1
1
[ "A000040", "A000217", "A007953", "A320081", "A379142", "A379143" ]
null
Scott R. Shannon, Dec 16 2024
2025-01-03T04:20:57
oeisdata/seq/A379/A379143.seq
e642c2af4c59d79820248475cfb8f868
A379144
a(n) is the number of iterations of the function x --> 2*x - 1 such that x remains prime, starting from A005382(n).
[ "2", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1", "1", "2", "3", "1", "2", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "3", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1" ]
[ "nonn" ]
26
1
1
[ "A000040", "A005382", "A005383", "A057326", "A064812", "A110581", "A307390", "A379144" ]
null
Ctibor O. Zizka, Dec 16 2024
2024-12-16T14:42:16
oeisdata/seq/A379/A379144.seq
4801aea1a4f50a6b00f2ab9db60f7e73
A379145
Number of horizontal plane Brown's diagonal Latin squares of order 2n with the first row in order.
[ "0", "2", "64", "49152", "478150656" ]
[ "nonn", "more", "hard" ]
16
1
2
[ "A287649", "A339305", "A339641", "A340186", "A379145", "A381626" ]
null
Eduard I. Vatutin, Dec 16 2024
2025-04-09T09:52:14
oeisdata/seq/A379/A379145.seq
9ea0451d327bd97a266f554a7f4e4cd7
A379146
Numbers k that are not in A378930 (i.e., are never the value of f(n) = n * d(n) / gcd(n, d(n))^2, where d = A000005).
[ "18", "27", "45", "63", "64", "72", "99", "112", "117", "144", "153", "160", "171", "207", "225", "243", "252", "261", "279", "288", "320", "333", "336", "352", "360", "369", "387", "396", "416", "423", "441", "468", "477", "504", "531", "544", "549", "567", "576", "603", "608", "612", "616", "625", "639", "657", "684", "711", "728", "736", "747", "792", "801", "828", "873", "880", "891", "909", "927", "928", "936", "952", "963", "981", "992" ]
[ "nonn" ]
19
1
1
[ "A000005", "A378930", "A379146" ]
null
Viliam Furík, Dec 16 2024
2024-12-20T11:54:04
oeisdata/seq/A379/A379146.seq
2fe38c913f1faeba3707e2c7582916e2
A379147
Irregular triangle T(n, k), n >= 0, k = 1..2^A007895(n), read by rows; the n-th row lists the integers m such that A184617(abs(m)) = A003714(n).
[ "0", "-1", "1", "-2", "2", "-4", "4", "-5", "-3", "3", "5", "-8", "8", "-9", "-7", "7", "9", "-10", "-6", "6", "10", "-16", "16", "-17", "-15", "15", "17", "-18", "-14", "14", "18", "-20", "-12", "12", "20", "-21", "-19", "-13", "-11", "11", "13", "19", "21", "-32", "32", "-33", "-31", "31", "33", "-34", "-30", "30", "34", "-36", "-28", "28", "36" ]
[ "sign", "tabf", "base" ]
9
0
4
[ "A000045", "A003714", "A007895", "A184617", "A379147", "A379175" ]
null
Rémy Sigrist, Dec 16 2024
2024-12-20T12:36:57
oeisdata/seq/A379/A379147.seq
0ce35ef30b3bdb29085a6ac13b724983
A379148
a(n) is the number of iterations of the function x --> 2*x + 1 such that x remains prime, starting from A005384(n).
[ "4", "1", "3", "2", "1", "1", "2", "1", "1", "5", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "3", "1", "3", "1", "2", "2", "1", "2", "1", "1", "1", "1", "2", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "3", "1", "1", "1", "1", "1", "2", "1" ]
[ "nonn" ]
7
1
1
[ "A000040", "A005384", "A005385", "A371980", "A379148" ]
null
Ctibor O. Zizka, Dec 16 2024
2024-12-16T14:42:30
oeisdata/seq/A379/A379148.seq
cce85d2c8f4fa8736d1c6dd8b92a45b0
A379149
Specialization of the Elementary Symmetric Functions e(n) at x_i -> Euler phi(i).
[ "1", "1", "1", "1", "2", "1", "1", "4", "5", "2", "1", "6", "13", "12", "4", "1", "10", "37", "64", "52", "16", "1", "12", "57", "138", "180", "120", "32", "1", "18", "129", "480", "1008", "1200", "752", "192", "1", "22", "201", "996", "2928", "5232", "5552", "3200", "768", "1", "28", "333", "2202", "8904", "22800", "36944", "36512", "19968", "4608", "1", "32", "445", "3534", "17712", "58416", "128144", "184288", "166016", "84480", "18432" ]
[ "nonn", "tabl" ]
25
0
5
[ "A000010", "A000012", "A001088", "A002088", "A067578", "A379149" ]
null
Wouter Meeussen, Dec 16 2024
2024-12-22T10:36:16
oeisdata/seq/A379/A379149.seq
d981b01bd4fa7737bfc1a2bf58b9bc47
A379150
Smallest prime ending in "3", with n preceding "0" digits.
[ "103", "2003", "70003", "100003", "1000003", "20000003", "500000003", "40000000003", "40000000003", "100000000003", "2000000000003", "230000000000003", "3100000000000003", "11000000000000003", "20000000000000003", "100000000000000003", "1000000000000000003", "310000000000000000003", "500000000000000000003" ]
[ "nonn", "base" ]
25
1
1
[ "A070847", "A070854", "A379150" ]
null
James S. DeArmon, Dec 16 2024
2024-12-27T13:04:27
oeisdata/seq/A379/A379150.seq
2b3e6141d0b8572f0db17ab39c2a60b9
A379151
The binary weights of the Catalan numbers (A000108).
[ "1", "1", "1", "2", "3", "3", "2", "6", "6", "9", "6", "8", "8", "12", "9", "16", "13", "17", "12", "17", "13", "18", "15", "25", "20", "17", "20", "24", "28", "25", "26", "25", "25", "32", "27", "34", "29", "32", "33", "29", "35", "29", "31", "36", "35", "44", "44", "49", "40", "46", "48", "44", "38", "50", "43", "44", "46", "47", "55", "50", "52", "58", "59", "60", "65", "68", "56", "62", "68" ]
[ "nonn", "easy", "base" ]
16
0
4
[ "A000102", "A000108", "A011373", "A079584", "A082481", "A379151", "A379152", "A379153" ]
null
Amiram Eldar, Dec 16 2024
2025-02-05T14:18:58
oeisdata/seq/A379/A379151.seq
0efeb4536d23ddecd73eeb04ee611ae0
A379152
The binary weights of the odd Catalan numbers.
[ "1", "1", "2", "6", "16", "25", "60", "127", "244", "494", "1010", "2015", "4076", "8086", "16281", "32818", "65518", "131059", "262348", "524448", "1047643", "2097675", "4194133", "8386693", "16776916", "33554390", "67114125", "134214652", "268452748" ]
[ "nonn", "base", "more" ]
12
0
3
[ "A000108", "A000120", "A011373", "A038003", "A079584", "A082481", "A379151", "A379152", "A379153" ]
null
Amiram Eldar, Dec 17 2024
2024-12-18T03:15:47
oeisdata/seq/A379/A379152.seq
974bcbb777c8975a39f39f7e48b33e04
A379153
The binary weights of the Apéry numbers (A005259).
[ "1", "2", "3", "6", "6", "14", "15", "15", "20", "19", "23", "23", "27", "34", "35", "44", "40", "36", "40", "44", "41", "48", "52", "62", "64", "66", "57", "66", "72", "79", "71", "75", "77", "78", "79", "78", "88", "86", "92", "100", "103", "103", "92", "116", "96", "116", "117", "113", "129", "117", "123", "128", "123", "126", "130", "133", "129", "142", "147", "134", "135", "148" ]
[ "nonn", "easy", "base" ]
8
0
2
[ "A000120", "A005259", "A011373", "A079584", "A082481", "A379151", "A379152", "A379153" ]
null
Amiram Eldar, Dec 17 2024
2024-12-17T08:44:37
oeisdata/seq/A379/A379153.seq
6b0a19d2d744f85f0d8856c17910fa53
A379154
Prime numbers p such that the interval from p to the next prime number contains a unique perfect power.
[ "3", "13", "47", "61", "79", "97", "127", "139", "167", "193", "211", "223", "241", "251", "283", "317", "337", "359", "397", "439", "479", "509", "523", "571", "619", "673", "727", "773", "839", "887", "953", "997", "1021", "1087", "1153", "1223", "1291", "1327", "1367", "1439", "1511", "1597", "1669", "1723", "1759", "1847", "1933", "2017", "2039", "2113" ]
[ "nonn" ]
19
1
1
[ "A000040", "A001223", "A001597", "A007916", "A023055", "A045542", "A052410", "A053289", "A053607", "A069623", "A081676", "A116086", "A304521", "A366833", "A375706", "A376560", "A377283", "A377287", "A377432", "A377434", "A377436", "A377466", "A377468", "A378355", "A378364", "A378368", "A378374", "A379154" ]
null
Gus Wiseman, Dec 18 2024
2025-01-19T00:34:48
oeisdata/seq/A379/A379154.seq
4b00d0725d85da723f8e41dc7391d50c
A379155
Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).
[ "2", "3", "5", "7", "9", "10", "13", "15", "17", "18", "22", "23", "26", "27", "31", "32", "40", "42", "43", "44", "52", "53", "67", "68", "69", "70", "77", "78", "85", "86", "90", "91", "116", "117", "119", "120", "135", "136", "151", "152", "169", "170", "186", "187", "197", "198", "243", "244", "246", "247", "291", "292", "312", "313", "339", "340", "358", "360", "362" ]
[ "nonn" ]
14
1
1
[ "A000015", "A000040", "A000961", "A001223", "A025474", "A031218", "A053607", "A057820", "A065514", "A067871", "A068315", "A080101", "A080769", "A175106", "A178700", "A246655", "A274605", "A304521", "A345531", "A366833", "A366835", "A377281", "A377283", "A377287", "A377289", "A377434", "A378368", "A378374", "A379155", "A379156", "A379157" ]
null
Gus Wiseman, Dec 22 2024
2025-01-23T00:22:28
oeisdata/seq/A379/A379155.seq
e313fec3a321e19f4401e14482649cc2
A379156
Positions in A246655 (prime powers) of terms q such that there is no prime between q and the next prime power.
[ "6", "14", "41", "359", "3589" ]
[ "nonn", "more" ]
10
1
1
[ "A000015", "A000040", "A000961", "A001223", "A025474", "A031218", "A046933", "A053607", "A057820", "A065514", "A067871", "A068315", "A080101", "A080769", "A131605", "A175106", "A178700", "A246655", "A274605", "A304521", "A345531", "A366833", "A366835", "A377281", "A377287", "A377289", "A377432", "A377434", "A378368", "A379155", "A379156", "A379157" ]
null
Gus Wiseman, Dec 22 2024
2024-12-24T22:13:38
oeisdata/seq/A379/A379156.seq
d37fa2e03a6c168058c79260248e0b4a
A379157
Prime powers p such that the interval from p to the next prime power contains a unique prime number.
[ "3", "4", "7", "9", "13", "16", "23", "27", "31", "32", "47", "49", "61", "64", "79", "81", "113", "125", "127", "128", "167", "169", "241", "243", "251", "256", "283", "289", "337", "343", "359", "361", "509", "512", "523", "529", "619", "625", "727", "729", "839", "841", "953", "961", "1021", "1024", "1327", "1331", "1367", "1369", "1669", "1681", "1847", "1849" ]
[ "nonn" ]
8
1
1
[ "A000015", "A000040", "A000961", "A001223", "A031218", "A046933", "A053607", "A057820", "A065514", "A067871", "A068315", "A080101", "A080769", "A116086", "A175106", "A178700", "A246655", "A274605", "A304521", "A345531", "A366833", "A366835", "A377281", "A377287", "A377289", "A377434", "A378355", "A378374", "A379155", "A379156", "A379157" ]
null
Gus Wiseman, Dec 22 2024
2024-12-23T09:56:22
oeisdata/seq/A379/A379157.seq
9507201e268b1a31648a4a1970dd7575
A379158
Numbers m such that the consecutive prime powers A246655(m) and A246655(m+1) are both prime.
[ "1", "4", "8", "11", "12", "16", "19", "20", "21", "24", "25", "28", "29", "30", "33", "34", "35", "36", "37", "38", "39", "45", "46", "47", "48", "49", "50", "51", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "71", "72", "73", "74", "75", "76", "79", "80", "81", "82", "83", "84", "87", "88", "89", "92", "93", "94", "95", "96", "97", "98", "99", "100" ]
[ "nonn" ]
7
1
2
[ "A000015", "A000040", "A000961", "A001223", "A025474", "A031218", "A053607", "A057820", "A065514", "A067871", "A068315", "A080769", "A131605", "A178700", "A246655", "A274605", "A304521", "A345531", "A366833", "A366835", "A377281", "A377287", "A377289", "A378368", "A379155", "A379156", "A379157", "A379158", "A379541" ]
null
Gus Wiseman, Dec 23 2024
2024-12-25T00:50:46
oeisdata/seq/A379/A379158.seq
89a0ef61284b119b178a67cfed900abf
A379159
G.f. A(x) satisfies A(x) = (1 + x^3) * (1 + x*A(x)^3).
[ "1", "1", "3", "13", "59", "294", "1548", "8473", "47694", "274347", "1605553", "9529080", "57219636", "346989180", "2121996165", "13071868062", "81039237719", "505230120558", "3165528142389", "19922166970041", "125882558097870", "798300369383649", "5079196380442687", "32413550247722622", "207420591733202421" ]
[ "nonn" ]
9
0
3
[ "A200725", "A364329", "A364336", "A379159", "A379160" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T08:44:54
oeisdata/seq/A379/A379159.seq
372a6bcf6b2d1131b05cc8b7dc17c6ba
A379160
G.f. A(x) satisfies A(x) = (1 + x^4) * (1 + x*A(x)^3).
[ "1", "1", "3", "12", "56", "277", "1449", "7872", "43978", "251049", "1457910", "8585724", "51152973", "307770236", "1867362978", "11412645576", "70194232585", "434157164246", "2698676669337", "16849393604484", "105621663128839", "664493496025485", "4194246946152171", "26553277765995984", "168567628890184974", "1072818569798746567" ]
[ "nonn" ]
10
0
3
[ "A200725", "A364330", "A364336", "A379159", "A379160" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T08:44:49
oeisdata/seq/A379/A379160.seq
1bbd99bcece5eb4efcddd82708e01618
A379161
Primes p such that the multiplicative order of 7 modulo p is prime.
[ "19", "29", "47", "59", "83", "167", "223", "227", "311", "367", "383", "389", "419", "439", "467", "479", "503", "563", "587", "607", "653", "719", "809", "839", "887", "971", "983", "1123", "1307", "1319", "1447", "1487", "1543", "1733", "1811", "1823", "1907", "1997", "2063", "2099", "2153", "2239", "2383", "2579", "2741", "2801", "2819", "2837", "2887", "2903", "2909", "2999", "3023", "3083", "3167", "3463", "3547" ]
[ "nonn" ]
13
1
1
[ "A000040", "A122094", "A277048", "A277049", "A379161" ]
null
Vincenzo Librandi, Dec 17 2024
2025-01-03T11:47:38
oeisdata/seq/A379/A379161.seq
db9d96b2c232388de5aec1272472dd7e
A379162
Ulam numbers that are sphenics.
[ "102", "114", "138", "182", "238", "258", "273", "282", "370", "402", "429", "434", "483", "602", "627", "646", "861", "986", "1023", "1030", "1311", "1335", "1338", "1406", "1462", "1790", "1834", "1902", "1946", "2054", "2093", "2134", "2247", "2330", "2354", "2445", "2486", "2613", "2630", "2635", "2674", "2919", "2985", "3070", "3219", "3395" ]
[ "nonn" ]
14
1
1
[ "A002858", "A007304", "A068820", "A378795", "A379162" ]
null
Massimo Kofler, Dec 17 2024
2025-01-03T21:23:24
oeisdata/seq/A379/A379162.seq
89643e8d4bf7a5fdbb4a39e67d881577
A379163
Number of fixed site animals with n nodes on the nodes of the tetrakis square tiling.
[ "2", "6", "26", "121", "597", "3040", "15876", "84520", "456584", "2494906", "13759902", "76475067", "427805198", "2406492158", "13602178244" ]
[ "nonn", "hard", "more" ]
24
1
1
[ "A001168", "A001207", "A001420", "A196991", "A196992", "A196993", "A197158", "A197160", "A197461", "A197464", "A197467", "A379163" ]
null
Johann Peters, Dec 17 2024
2024-12-23T22:19:34
oeisdata/seq/A379/A379163.seq
dd19cc9c09e1b939ca8dd5ba45a14cdd
A379164
Achilles numbers that are deficient.
[ "675", "1125", "1323", "2312", "2888", "3087", "3267", "4232", "4563", "5324", "6075", "6125", "6728", "7688", "7803", "8575", "8788", "9747", "10125", "10952", "11907", "11979", "13448", "14283", "14792", "15125", "16875", "17672", "19652", "19773", "21125", "22472", "22707", "25947", "27436", "27783", "27848", "28125", "29403", "29768", "30375", "33275", "35912", "36125", "36963", "40328" ]
[ "nonn" ]
6
1
1
[ "A005100", "A052486", "A378859", "A379164" ]
null
Massimo Kofler, Dec 17 2024
2024-12-22T16:55:43
oeisdata/seq/A379/A379164.seq
9b1cafed4c025cd1b5c18afef7f728f0
A379165
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number that is either coprime to both a(n-1) and a(n-2) or shares a factor with both a(n-1) and a(n-2).
[ "1", "2", "3", "5", "4", "7", "9", "8", "6", "10", "11", "13", "12", "17", "19", "14", "15", "18", "20", "16", "21", "23", "22", "25", "27", "26", "24", "28", "29", "31", "30", "37", "41", "32", "33", "35", "34", "39", "36", "42", "38", "40", "43", "47", "44", "45", "48", "49", "53", "46", "51", "54", "55", "50", "57", "59", "52", "61", "63", "58", "56", "60", "62", "64", "65", "67", "66", "71", "73", "68", "69", "72", "75", "70", "78", "74", "76", "77", "79", "80", "81", "83", "82", "85", "87", "86", "84", "88", "89", "91" ]
[ "nonn" ]
16
1
2
[ "A064413", "A098550", "A336957", "A353239", "A379165", "A379166" ]
null
Scott R. Shannon, Dec 17 2024
2025-01-03T04:26:46
oeisdata/seq/A379/A379165.seq
90b30189e63f10c88a85bef27a722e6e
A379166
Numbers in A379165 that share a factor with both previous terms, in order of appearance.
[ "6", "10", "18", "20", "16", "24", "28", "36", "42", "38", "40", "48", "54", "50", "56", "60", "62", "64", "72", "75", "70", "78", "74", "76", "84", "88", "96", "102", "98", "100", "108", "114", "110", "112", "118", "120", "126", "130", "132", "136", "138", "144", "150", "156", "154", "160", "162", "158", "164", "166", "168", "174", "180", "176", "182", "186", "190", "192", "194", "196", "204", "200", "206", "210", "214", "216", "228", "230", "226", "234", "240", "238", "244", "246", "248", "250", "258", "260" ]
[ "nonn" ]
18
1
1
[ "A064413", "A098550", "A336957", "A353239", "A379165", "A379166" ]
null
Scott R. Shannon, Dec 17 2024
2024-12-20T11:40:15
oeisdata/seq/A379/A379166.seq
bff1c86404159c8f45a0c979d797d3fb
A379167
Table read by row, where T(n,k), n>0 and k>0, represents the smallest n-digit number that is the product of k distinct primes and is sandwiched between semiprime numbers, or -1 if no such number exists.
[ "5", "-1", "34", "-1", "122", "186", "870", "-1", "1042", "1146", "1190", "5610", "-1", "10118", "10002", "10030", "10230", "39270", "-1", "100462", "100158", "100030", "100122", "110670", "881790", "-1", "1000478", "1000022", "1000010", "1000758", "1001130", "1009470", "-1", "10000202", "10000258", "10000002", "10000218", "10001670", "10010910", "15825810" ]
[ "sign", "tabf", "base" ]
32
1
1
[ "A001358", "A067885", "A378097", "A378627", "A379167" ]
null
Jean-Marc Rebert, Dec 17 2024
2025-01-11T16:26:43
oeisdata/seq/A379/A379167.seq
0708c783d903243862252e597e9c3fa0
A379168
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A140049.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "55", "0", "1", "4", "21", "140", "1005", "0", "1", "5", "32", "261", "2600", "26601", "0", "1", "6", "45", "424", "4965", "68752", "941863", "0", "1", "7", "60", "635", "8304", "132003", "2414188", "42372177", "0", "1", "8", "77", "900", "12845", "223104", "4617675", "107385896", "2336926665", "0" ]
[ "nonn", "tabl" ]
20
0
8
[ "A000007", "A058127", "A140049", "A379168", "A380178" ]
null
Seiichi Manyama, Feb 11 2025
2025-02-27T11:17:23
oeisdata/seq/A379/A379168.seq
7ba9d504b994931f771589e88f323b79
A379169
Let m the concatenation, in ascending order, of the divisors of k written in base 2 and then converted to base 10. Sequence lists k which divide m.
[ "1", "2", "4", "6", "8", "16", "21", "32", "48", "52", "56", "64", "99", "110", "128", "168", "198", "256", "336", "384", "512", "656", "960", "1024", "1376", "1792", "1820", "1953", "2048", "3072", "3456", "3744", "4096", "4270", "4448", "4601", "4672", "6526", "8192", "8704", "11144", "11264", "12800", "13684", "16384", "19712", "24576", "32768", "37116" ]
[ "nonn", "easy", "base" ]
10
1
2
[ "A000079", "A069872", "A379169", "A379170" ]
null
Paolo P. Lava, Dec 17 2024
2025-01-29T09:17:55
oeisdata/seq/A379/A379169.seq
46c3a57e3871ba8662cec27a0745b0d6
A379170
Let m be the concatenation, in descending order, of the divisors of k written in base 2 and then converted in base 10. Sequence lists k which divide m.
[ "1", "21", "253", "1407", "3425", "17457", "17459", "933661", "1279313", "29581875", "47960915", "76385733", "158292295", "3222873413", "3817850653", "319145363229" ]
[ "nonn", "base", "more" ]
11
1
2
[ "A224930", "A379169", "A379170" ]
null
Paolo P. Lava, Dec 17 2024
2025-01-03T02:04:41
oeisdata/seq/A379/A379170.seq
864d716ad90f23211a83474a62a65c36
A379171
G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^3.
[ "1", "4", "21", "139", "1021", "8010", "65708", "556751", "4834686", "42800265", "384832083", "3504693519", "32261240127", "299685628629", "2805773759322", "26448278629697", "250806022116194", "2390973659474304", "22901157688878983", "220279614235505630", "2126890041331033797", "20606993367985131716" ]
[ "nonn" ]
11
0
2
[ "A025227", "A365764", "A369215", "A379171", "A379172", "A379173" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T10:12:31
oeisdata/seq/A379/A379171.seq
5ac7f46c7fcf1d7df10be22f54dc6939
A379172
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3)/(1 - x*A(x))^3.
[ "1", "4", "33", "358", "4445", "59745", "846023", "12430941", "187753479", "2896929975", "45465112431", "723520554096", "11647721390271", "189352106241567", "3104046096391902", "51254005259550753", "851674902290491936", "14231191062537888864", "238978853442142491358", "4030889937027642017872" ]
[ "nonn" ]
10
0
2
[ "A365764", "A369215", "A379171", "A379172" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T10:12:27
oeisdata/seq/A379/A379172.seq
267b2eb23f366b3f9e59769efa829ac3
A379173
G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^2.
[ "1", "3", "11", "53", "284", "1630", "9794", "60830", "387390", "2515892", "16599051", "110943779", "749603067", "5111606801", "35133394554", "243146923574", "1692918638012", "11850006727400", "83341778073920", "588646472669454", "4173607638548291", "29694593381322531", "211941668053441490", "1517087043428034420" ]
[ "nonn" ]
10
0
2
[ "A003169", "A025227", "A249924", "A379171", "A379173", "A379174" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T10:12:23
oeisdata/seq/A379/A379173.seq
84d767d2b43bef6a4a5b5a9277d89270
A379174
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3)/(1 - x*A(x))^2.
[ "1", "3", "20", "176", "1772", "19309", "221651", "2640016", "32322122", "404256442", "5142846467", "66341063274", "865723122919", "11408144684248", "151593390664710", "2029025599194394", "27330120599494110", "370183683091079836", "5038997387800717228", "68896081533831380702", "945747379824209853435" ]
[ "nonn" ]
8
0
2
[ "A003169", "A249924", "A379173", "A379174" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-17T10:12:18
oeisdata/seq/A379/A379174.seq
bd4e61bd1b4b81a5554de80ab0943bc1
A379175
Irregular triangle T(n, k), n >= 0, k = 1..ceiling(2^(A007895(n)-1)); the n-th row lists the nonnegative integers m such that A184617(m) = A003714(n).
[ "0", "1", "2", "4", "3", "5", "8", "7", "9", "6", "10", "16", "15", "17", "14", "18", "12", "20", "11", "13", "19", "21", "32", "31", "33", "30", "34", "28", "36", "27", "29", "35", "37", "24", "40", "23", "25", "39", "41", "22", "26", "38", "42", "64", "63", "65", "62", "66", "60", "68", "59", "61", "67", "69", "56", "72", "55", "57", "71", "73", "54", "58", "70", "74", "48", "80", "47", "49", "79", "81" ]
[ "nonn", "tabf", "base" ]
9
0
3
[ "A003714", "A007895", "A184617", "A368225", "A379147", "A379175", "A379176" ]
null
Rémy Sigrist, Dec 17 2024
2024-12-20T12:37:08
oeisdata/seq/A379/A379175.seq
2aafd9a239d7e7952218b9133c213798
A379176
Inverse permutation to A379175.
[ "0", "1", "2", "4", "3", "5", "9", "7", "6", "8", "10", "18", "16", "19", "14", "12", "11", "13", "15", "20", "17", "21", "39", "35", "33", "36", "40", "29", "27", "30", "25", "23", "22", "24", "26", "31", "28", "32", "41", "37", "34", "38", "42", "78", "74", "79", "70", "66", "64", "67", "71", "80", "75", "81", "60", "56", "54", "57", "61", "50", "48", "51", "46", "44", "43", "45", "47", "52" ]
[ "nonn", "base" ]
6
0
3
[ "A379175", "A379176" ]
null
Rémy Sigrist, Dec 17 2024
2024-12-20T12:37:15
oeisdata/seq/A379/A379176.seq
4c0ce79bf1c255760fabe94253ae5fc8
A379177
Lower matching number of the n X n X n grid graph.
[ "0", "3", "9", "22", "43" ]
[ "nonn", "more", "hard" ]
7
1
2
[ "A280984", "A379177" ]
null
Eric W. Weisstein, Dec 17 2024
2024-12-18T22:58:44
oeisdata/seq/A379/A379177.seq
0f8b65ba7053086fe80416f894307370
A379178
Number of fixed site animals with n nodes on the nodes of the kisrhombille tiling.
[ "6", "18", "90", "479", "2718", "16126", "97885", "603741", "3771287", "23792622", "151342506", "969465873", "6248109573" ]
[ "nonn", "hard", "more" ]
10
1
1
[ "A001168", "A001207", "A001420", "A196991", "A196992", "A196993", "A197158", "A197160", "A197461", "A197464", "A197467", "A379178" ]
null
Johann Peters, Dec 17 2024
2024-12-23T22:19:42
oeisdata/seq/A379/A379178.seq
ce6334c7dcb63170f43a22fbaa5935a1
A379179
The Anti-Parker Square, read by rows.
[ "8288641", "16492609", "4515625", "5992609", "9765625", "13538641", "15015625", "3038641", "11242609" ]
[ "nonn", "tabf", "fini", "full" ]
12
1
1
[ "A364264", "A379179" ]
null
Paolo Xausa, Dec 17 2024
2024-12-20T02:37:12
oeisdata/seq/A379/A379179.seq
c66a99354e6f8dfe882c510e46db86bf
A379180
Nonnegative integers with mode and mean of the digits equal.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "22", "33", "44", "55", "66", "77", "88", "99", "111", "222", "333", "444", "555", "666", "777", "888", "999", "1012", "1021", "1102", "1111", "1120", "1201", "1210", "1223", "1232", "1322", "1335", "1353", "1447", "1474", "1533", "1559", "1595", "1744", "1955", "2011", "2024", "2042", "2101", "2110", "2123", "2132" ]
[ "nonn", "base", "easy" ]
7
1
3
[ "A115353", "A378560", "A378835", "A379180", "A379181" ]
null
Stefano Spezia, Dec 17 2024
2024-12-20T12:46:31
oeisdata/seq/A379/A379180.seq
3a4d58177ed20274a743181bbb354629
A379181
a(n) is the number of n-digit nonnegative integers with mode and mean of the digits equal.
[ "10", "9", "9", "237", "1617", "15099", "98490", "855675", "7020429", "68359815", "638064114", "6014495595", "55556308754", "504305784381", "4627364658702", "42696037939075", "402860074430853", "3847842858816523", "36989026236202050", "355682935667617515", "3396760984948340678", "32234267063991934093" ]
[ "nonn", "base", "more" ]
21
1
1
[ "A378564", "A378836", "A379180", "A379181" ]
null
Stefano Spezia, Dec 17 2024
2024-12-22T20:36:44
oeisdata/seq/A379/A379181.seq
52cb1113b8d9fc0e4374c7da2e9f0ba2
A379182
Number of minimal edge covers in the n-double cone graph.
[ "0", "1", "21", "58", "149", "566", "1676", "5482", "18021", "59665", "199700", "670517", "2259384", "7624878", "25759564", "87078065", "294452965", "995889190", "3368616437", "11395096538", "38547768152", "130403228310", "441145535869", "1492374662977", "5048648849760", "17079422831941", "57779211419220", "195465558240778" ]
[ "nonn", "easy" ]
11
0
3
[ "A364741", "A372976", "A379182" ]
null
Eric W. Weisstein, Dec 17 2024
2024-12-18T19:20:11
oeisdata/seq/A379/A379182.seq
6c1883490e0e2e90cb80f88b750366b4
A379183
a(1)=0, a(2)=a(3)=1; a(n) = n - a(a(n-2)) for n>3.
[ "0", "1", "1", "4", "5", "2", "2", "7", "8", "8", "4", "5", "9", "9", "7", "8", "15", "11", "12", "16", "16", "14", "15", "15", "18", "19", "16", "16", "21", "22", "15", "18", "26", "23", "16", "21", "29", "22", "18", "26", "30", "23", "21", "29", "29", "25", "26", "30", "30", "28", "29", "36", "32", "33", "37", "30", "28", "36", "43", "39", "40", "44", "37", "35", "36", "50", "46", "40", "44", "44", "42", "43", "50", "53", "47", "44" ]
[ "nonn" ]
34
1
4
[ "A005206", "A135414", "A163801", "A379183", "A379184" ]
null
Bradley Klee, Dec 17 2024
2024-12-31T14:39:53
oeisdata/seq/A379/A379183.seq
b6b18bc04172b3602c9637d8a605da90
A379184
a(n) = A379183(n) mod 2.
[ "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1" ]
[ "nonn" ]
21
1
null
[ "A171587", "A379183", "A379184", "A379274", "A379275" ]
null
Bradley Klee, Dec 17 2024
2024-12-23T13:25:40
oeisdata/seq/A379/A379184.seq
f13123a070d805cd101fe104e99353bb
A379185
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))^2).
[ "1", "3", "18", "139", "1222", "11618", "116372", "1209779", "12930966", "141225530", "1569136588", "17680779230", "201562070356", "2320574126216", "26942875644408", "315109464849603", "3708926665685286", "43901133108206978", "522240410257549260", "6240258006163094026", "74864641626913850964" ]
[ "nonn" ]
6
0
2
[ "A006632", "A369616", "A379185", "A379186" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:27:51
oeisdata/seq/A379/A379185.seq
604ec78234690946fcc23024473b7799
A379186
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))^2).
[ "1", "3", "21", "202", "2270", "27903", "363412", "4927840", "68834941", "983680783", "14312988289", "211329419670", "3158263216267", "47682769300288", "726188701482730", "11142842570134264", "172101193009427174", "2673445730846829604", "41742159037922167264", "654721526817143247304", "10311337739352708700427" ]
[ "nonn" ]
8
0
2
[ "A006632", "A369616", "A379174", "A379185", "A379186", "A379188", "A379189" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:27:54
oeisdata/seq/A379/A379186.seq
9fe2405514bd7938c63381e766efe058
A379187
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))^3).
[ "1", "4", "30", "286", "3091", "36063", "442898", "5642628", "73893561", "988585443", "13453580815", "185661101085", "2592069904059", "36545520229810", "519601325300487", "7441580996167052", "107255985242888943", "1554576968046707916", "22644622298400113411", "331322620547205661043" ]
[ "nonn" ]
7
0
2
[ "A118971", "A369215", "A369617", "A379187", "A379188" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:27:58
oeisdata/seq/A379/A379187.seq
30234cd26ecaaf266b0fa0c7fce524fa
A379188
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))^3).
[ "1", "4", "34", "392", "5271", "77530", "1208602", "19620262", "328167191", "5616065633", "97867738285", "1730732539345", "30981439344096", "560293394484145", "10221582080782452", "187884236846039893", "3476266045318846245", "64690833375603622619", "1210026171180264742927", "22736845507710710652858" ]
[ "nonn" ]
11
0
2
[ "A118971", "A369617", "A379172", "A379186", "A379187", "A379188", "A379189", "A379190", "A379191" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:28:01
oeisdata/seq/A379/A379188.seq
529225517ca676fbc936ce9a0a988f40
A379189
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))).
[ "1", "2", "11", "84", "749", "7297", "75263", "807795", "8928259", "100930845", "1161556834", "13563086118", "160286280443", "1913502807883", "23041637546674", "279535792627983", "3413404764685607", "41920395344282046", "517450364496878615", "6416254102356745484", "79884728250064030602", "998261210034672052421" ]
[ "nonn" ]
7
0
2
[ "A379186", "A379188", "A379189" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:28:04
oeisdata/seq/A379/A379189.seq
8b1c0ead9c565c3a3343fd710158cc95
A379190
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.
[ "1", "4", "30", "304", "3557", "45150", "604222", "8393282", "119872890", "1749183075", "25964512607", "390828464403", "5951561595889", "91523131078999", "1419293428538496", "22169968253466467", "348507676062911520", "5509187208564734328", "87522347516801353980", "1396619714730284551913", "22375420057050167868366" ]
[ "nonn" ]
10
0
2
[ "A002293", "A198953", "A274735", "A364475", "A379172", "A379188", "A379190", "A379191" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:26:07
oeisdata/seq/A379/A379190.seq
7ee391a4fbac0b8bf803c049cfa12669
A379191
G.f. A(x) satisfies A(x) = (1 + x*A(x))^3/(1 - x*A(x)^3).
[ "1", "4", "31", "338", "4356", "61603", "923958", "14433315", "232298914", "3825260332", "64140203645", "1091364139213", "18796605318655", "327056343952311", "5740466392321499", "101516213938082457", "1807045676161156515", "32352346658163940698", "582185299986049977601", "10524395285312191583304", "191034444423571726099486" ]
[ "nonn" ]
9
0
2
[ "A307678", "A379172", "A379188", "A379190", "A379191", "A379192" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:27:45
oeisdata/seq/A379/A379191.seq
a3258a33d56d2b61c3adb38664588254
A379192
G.f. A(x) satisfies A(x) = (1 + x*A(x))^3/(1 - x*A(x)^2).
[ "1", "4", "27", "235", "2344", "25374", "289906", "3441015", "42017262", "524418639", "6660297019", "85796763321", "1118314903447", "14722203914653", "195465862293738", "2614323606027841", "35191188308646852", "476390139438508209", "6481416282265645008", "88577523301166187997", "1215421503348039618483" ]
[ "nonn" ]
6
0
2
[ "A307678", "A379191", "A379192" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:28:08
oeisdata/seq/A379/A379192.seq
56843d31aa4f382a9099704cb6a0f8df
A379193
G.f. A(x) satisfies A(x) = (1 + x*A(x))^2/(1 - x*A(x)^2).
[ "1", "3", "16", "113", "921", "8161", "76362", "742402", "7425651", "75918094", "789808133", "8334087494", "88983204682", "959557630166", "10435688564260", "114329775220590", "1260613164978289", "13978381013355836", "155778935125738138", "1743836357339342353", "19599785557100463390", "221094189317073465597", "2502296315746442064053" ]
[ "nonn" ]
7
0
2
[ "A379193", "A379194" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:28:11
oeisdata/seq/A379/A379193.seq
4a78a9b68fd55a000fe3adfc75fb68dc
A379194
G.f. A(x) satisfies A(x) = (1 + x*A(x))^2/(1 - x*A(x)^3).
[ "1", "3", "19", "174", "1883", "22323", "280409", "3666736", "49386326", "680431419", "9544684113", "135852904486", "1957119390279", "28482417043498", "418119577938769", "6184065626127498", "92062362629472668", "1378427894172778961", "20744229318047760620", "313606289763390553200", "4760422971894347226659" ]
[ "nonn" ]
7
0
2
[ "A349310", "A379191", "A379193", "A379194" ]
null
Seiichi Manyama, Dec 17 2024
2024-12-18T09:28:15
oeisdata/seq/A379/A379194.seq
fff8ac2c13a592ca9a695c9fcc6688f6
A379195
G.f. A(x) satisfies x = Sum_{n=-oo..+oo} (A(x) - A(x)^n)^(n+1).
[ "1", "1", "1", "2", "5", "10", "21", "56", "148", "359", "906", "2450", "6571", "17338", "46777", "128681", "352859", "967315", "2679764", "7474260", "20860226", "58375826", "164197258", "463322792", "1309547562", "3710517258", "10543567357", "30021808808", "85628123727", "244694423127", "700553813377", "2008780153580", "5768264675938", "16587793685429", "47766704865133" ]
[ "nonn" ]
16
1
4
[ "A290003", "A379195" ]
null
Paul D. Hanna, Jan 14 2025
2025-01-26T02:43:50
oeisdata/seq/A379/A379195.seq
0e762dd9308a789615613ee0d42cc31a
A379196
G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} x^(4*n) * (1 - x^n)^(4*n) * A(x)^n.
[ "1", "4", "10", "20", "36", "60", "94", "140", "204", "292", "474", "756", "1556", "2600", "5612", "9404", "21174", "39896", "95446", "204960", "486168", "1076000", "2392306", "5215772", "11042630", "24216104", "51067130", "115069352", "246871472", "563237900", "1216798802", "2743669520", "5908953208", "13085409072", "28224118088", "61889692388", "134885809852" ]
[ "nonn" ]
10
0
2
[ "A357546", "A379196" ]
null
Paul D. Hanna, Jan 14 2025
2025-01-15T04:17:14
oeisdata/seq/A379/A379196.seq
f70053a3e71a62f9f51586cb19eeaf8e
A379197
G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} x^n * (1 + x^n)^n * A(x)^n.
[ "1", "0", "4", "8", "34", "132", "638", "2820", "13168", "62036", "300220", "1464380", "7227616", "35973092", "180572534", "912481936", "4639054638", "23709435920", "121753848044", "627893481912", "3250523102274", "16885954908704", "87997395891936", "459904413345900", "2409993698814872", "12659707993570100", "66651577298786350", "351644960592378116", "1858837753276366880" ]
[ "nonn" ]
11
0
3
null
null
Paul D. Hanna, Jan 15 2025
2025-01-22T04:26:38
oeisdata/seq/A379/A379197.seq
d26d9df4e5b7be6e7d297f5110800198
A379198
G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} x^n * (1 + x^n)^n * (1+x)^(n^2) * A(x)^n.
[ "1", "1", "6", "29", "148", "865", "5481", "35891", "240290", "1642093", "11426333", "80724482", "577729923", "4182253815", "30591920071", "225940210520", "1684083322944", "12665316644764", "96106894379213", "736020834061010", "5691806197738505", "44482817526595550", "351740903195391707", "2818488652963003522", "22931501032724375064" ]
[ "nonn" ]
7
0
3
null
null
Paul D. Hanna, Jan 15 2025
2025-01-16T04:31:15
oeisdata/seq/A379/A379198.seq
e3f3519445688489d6614451f544db02
A379199
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).
[ "1", "1", "2", "2", "4", "9", "45", "164", "546", "1493", "3944", "10588", "32997", "112945", "396404", "1330461", "4265180", "13292275", "41778612", "135378928", "452828655", "1534394542", "5175561385", "17246318586", "56998526633", "188492707958", "628391304843", "2115131897264", "7162685531894", "24280930956521", "82152859633099" ]
[ "nonn" ]
10
1
3
[ "A166952", "A378264", "A379199", "A379200", "A379202", "A379203", "A379204", "A379205" ]
null
Paul D. Hanna, Dec 20 2024
2025-01-26T18:14:40
oeisdata/seq/A379/A379199.seq
e3832ff4a0dbc539efa8ec7a1e51473c
A379200
G.f. A(x,y) satisfies 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows.
[ "1", "2", "1", "4", "4", "2", "8", "13", "12", "5", "18", "40", "52", "40", "14", "52", "130", "204", "215", "140", "42", "184", "472", "813", "1004", "896", "504", "132", "688", "1863", "3430", "4588", "4816", "3738", "1848", "429", "2512", "7536", "15016", "21472", "24540", "22656", "15576", "6864", "1430", "8866", "30144", "65880", "102177", "124830", "126801", "104940", "64779", "25740", "4862", "30824", "118420", "284305", "483300", "636750", "693528", "638825", "479908", "268840", "97240", "16796" ]
[ "nonn", "tabl" ]
17
1
2
[ "A000108", "A028329", "A166952", "A378264", "A379199", "A379200", "A379201", "A379202", "A379203", "A379204", "A379205", "A379206" ]
null
Paul D. Hanna, Dec 20 2024
2024-12-20T23:38:23
oeisdata/seq/A379/A379200.seq
f83b8d694619e4003dd4ce451b033e3a