sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384269
G.f. A(x) satisfies x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).
[ "1", "1", "2", "6", "16", "49", "154", "513", "1747", "6078", "21439", "76607", "276685", "1008781", "3707512", "13721086", "51088860", "191245836", "719333008", "2717229481", "10303797518", "39208957744", "149676496756", "573037914270", "2199735075908", "8464921506665", "32648239747059", "126185248269567", "488657718553676", "1895790377527674" ]
[ "nonn" ]
13
0
3
[ "A356499", "A384269", "A384271" ]
null
Paul D. Hanna, May 25 2025
2025-06-01T04:41:19
oeisdata/seq/A384/A384269.seq
d71e639978f010364ff085e71ff48466
A384271
G.f. A(x) satisfies -x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
[ "1", "1", "1", "3", "5", "14", "31", "85", "214", "589", "1572", "4385", "12124", "34315", "97006", "277958", "797969", "2310313", "6708311", "19590928", "57386238", "168805975", "497956135", "1473704926", "4372436946", "13007158125", "38779605810", "115872525324", "346897113802", "1040486309806", "3126167631775", "9407946523434", "28355033124335", "85582565615778" ]
[ "nonn" ]
25
0
4
[ "A356499", "A384271", "A384272", "A384273" ]
null
Paul D. Hanna, May 24 2025
2025-05-25T04:06:47
oeisdata/seq/A384/A384271.seq
3e8b9d91244c37de275ba21dbaab1b55
A384272
G.f. A(x) satisfies -2*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
[ "1", "2", "2", "6", "16", "50", "144", "478", "1510", "5116", "17034", "58812", "202166", "709228", "2489546", "8848146", "31525526", "113236920", "407983964", "1478249454", "5372468156", "19607233026", "71758722172", "263480958508", "969856453650", "3579426292768", "13239549874552", "49078409375334", "182282423994240", "678289439131812", "2528257204808848" ]
[ "nonn", "new" ]
11
0
2
[ "A356499", "A384271", "A384272", "A384273" ]
null
Paul D. Hanna, Jun 29 2025
2025-06-30T11:57:57
oeisdata/seq/A384/A384272.seq
a98b5bd7fd24dc7f4a6511cd5fed7d75
A384273
G.f. A(x) satisfies -3*x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
[ "1", "3", "3", "9", "39", "108", "387", "1581", "5196", "21573", "82596", "318279", "1303146", "5182389", "20919156", "86577264", "351929133", "1462075095", "6077250693", "25277372124", "106131459906", "445859648019", "1878449392365", "7955646845046", "33707865532680", "143344958486019", "610977896794104", "2608218534504888", "11162376089875158" ]
[ "nonn", "new" ]
13
0
2
[ "A356499", "A384271", "A384272", "A384273" ]
null
Paul D. Hanna, Jun 29 2025
2025-07-01T10:44:43
oeisdata/seq/A384/A384273.seq
73fc502170cd91ba07e0fb6c1b52a417
A384274
Number of connected components of polyhedra in the quarter cubic honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "2", "2", "5", "20", "96", "581", "4079", "31079", "247169", "2018826", "16771564", "141113504", "1199154541", "10274686867" ]
[ "nonn" ]
16
0
2
[ "A038119", "A038181", "A343909", "A384254", "A384274", "A384486" ]
null
Peter Kagey, May 24 2025
2025-06-12T14:07:12
oeisdata/seq/A384/A384274.seq
beafaf1f07897a9cab930be0a0fe7ad8
A384275
a(1) = 1, a(2) = 2, a(3) = 4; for n > 3, a(n) is the smallest unused positive number that shares a factor with a(n-1) and at least one other previous term.
[ "1", "2", "4", "6", "8", "10", "12", "3", "9", "15", "5", "20", "14", "16", "18", "21", "7", "28", "22", "24", "26", "30", "25", "35", "40", "32", "34", "36", "27", "33", "11", "44", "38", "42", "39", "13", "52", "46", "48", "45", "50", "54", "51", "17", "68", "56", "49", "63", "57", "19", "76", "58", "60", "55", "65", "70", "62", "64", "66", "69", "23", "92", "72", "74", "78", "75" ]
[ "nonn" ]
9
1
2
[ "A064413", "A098550", "A336957", "A373390", "A384275" ]
null
Scott R. Shannon, May 24 2025
2025-05-25T09:26:39
oeisdata/seq/A384/A384275.seq
6a6f6d9d61099ea012716cccfd0d9f7e
A384276
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number that is coprime to a(n-1) while the total number of prime factors, counted with multiplicity, of the form 4*k+1 and 4*k+3 for all terms a(1)..a(n) never differs by more than 1.
[ "1", "2", "3", "4", "5", "6", "13", "7", "8", "15", "16", "17", "10", "9", "20", "11", "25", "12", "19", "26", "23", "29", "14", "37", "22", "35", "32", "39", "34", "31", "30", "41", "24", "53", "28", "51", "40", "43", "50", "21", "52", "45", "58", "47", "55", "61", "38", "65", "18", "73", "44", "75", "46", "85", "33", "64", "87", "68", "59", "60", "89", "48", "91", "74", "67", "70" ]
[ "nonn" ]
13
1
2
[ "A007350", "A027748", "A038698", "A381902", "A382091", "A384276" ]
null
Scott R. Shannon, May 24 2025
2025-06-05T09:54:17
oeisdata/seq/A384/A384276.seq
d9dac656a2279cab1377e8a6963bef70
A384277
Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.
[ "4", "1", "5", "7", "7", "4", "5", "5", "6", "7", "8", "3", "4", "7", "9", "0", "8", "3", "3", "1", "1", "5", "3", "3", "8", "7", "3", "1", "2", "8", "2", "7", "4", "4", "7", "3", "5", "4", "6", "6", "1", "7", "4", "1", "2", "6", "9", "3", "1", "1", "8", "4", "6", "5", "0", "9", "3", "9", "6", "5", "9", "5", "4", "3", "2", "2", "3", "2", "5", "0", "1", "9", "9", "3", "6", "9", "1", "3", "3", "1", "4", "9", "5", "7", "1", "9", "6" ]
[ "nonn", "cons" ]
16
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589" ]
null
A.H.M. Smeets, May 24 2025
2025-06-27T01:02:12
oeisdata/seq/A384/A384277.seq
376f8f6a16d0f02639caa96a00135ce4
A384278
Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 3.
[ "2", "2", "9", "4", "2", "8", "0", "3", "6", "0", "2", "7", "9", "0", "4", "1", "7", "1", "9", "8", "2", "2", "0", "5", "0", "3", "6", "1", "3", "5", "9", "5", "9", "3", "8", "6", "8", "9", "5", "9", "8", "6", "1", "7", "2", "1", "0", "6", "0", "2", "8", "0", "8", "3", "4", "0", "3", "5", "2", "0", "1", "2", "4", "8", "0", "8", "4", "0", "3", "0", "4", "5", "1", "3", "3", "7", "1", "6", "6", "4", "4", "6", "5", "6", "3", "1", "8" ]
[ "nonn", "cons" ]
13
1
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589" ]
null
A.H.M. Smeets, May 24 2025
2025-06-27T01:02:17
oeisdata/seq/A384/A384278.seq
0011b327e53db04faf9ee3a4df33994a
A384279
Decimal expansion of the largest zero of the Laguerre polynomial of degree 3.
[ "6", "2", "8", "9", "9", "4", "5", "0", "8", "2", "9", "3", "7", "4", "7", "9", "1", "9", "6", "8", "6", "6", "4", "1", "5", "7", "6", "5", "5", "1", "2", "1", "3", "1", "6", "5", "7", "4", "9", "3", "5", "2", "0", "8", "6", "6", "2", "4", "6", "6", "0", "0", "7", "0", "0", "8", "7", "0", "8", "3", "2", "7", "9", "7", "5", "9", "3", "6", "4", "4", "5", "2", "8", "7", "2", "5", "9", "2", "0", "2", "3", "8", "4", "7", "9", "6", "1" ]
[ "nonn", "cons" ]
14
1
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281", "A384463", "A384464", "A384465", "A384466", "A384467", "A384586", "A384587", "A384588", "A384589", "A384590" ]
null
A.H.M. Smeets, May 26 2025
2025-06-27T01:02:23
oeisdata/seq/A384/A384279.seq
62c074bc9252cfcc021842c1a7c66b28
A384280
Decimal expansion of the smallest zero of the Laguerre polynomial of degree 4.
[ "3", "2", "2", "5", "4", "7", "6", "8", "9", "6", "1", "9", "3", "9", "2", "3", "1", "1", "8", "0", "0", "3", "6", "1", "4", "5", "9", "1", "0", "4", "3", "6", "7", "4", "7", "9", "7", "4", "3", "7", "5", "7", "2", "2", "4", "4", "7", "4", "2", "9", "5", "7", "6", "7", "1", "8", "8", "4", "5", "1", "8", "5", "3", "8", "0", "6", "9", "6", "8", "6", "7", "8", "7", "0", "7", "7", "0", "4", "0", "0", "9", "8", "6", "8", "5", "8", "5" ]
[ "nonn", "cons" ]
11
0
1
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281" ]
null
A.H.M. Smeets, May 26 2025
2025-06-05T08:18:05
oeisdata/seq/A384/A384280.seq
d529a6f51cfb21d8fcf3dc49b36ece36
A384281
Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 4.
[ "1", "7", "4", "5", "7", "6", "1", "1", "0", "1", "1", "5", "8", "3", "4", "6", "5", "7", "5", "6", "8", "6", "8", "1", "6", "7", "1", "2", "5", "1", "7", "9", "4", "7", "0", "2", "3", "6", "7", "3", "8", "7", "4", "5", "1", "5", "5", "3", "1", "0", "7", "2", "5", "0", "1", "7", "8", "2", "7", "8", "2", "6", "6", "0", "9", "9", "8", "4", "5", "6", "0", "5", "7", "4", "4", "2", "1", "9", "7", "1", "6", "4", "1", "4", "0", "1", "3" ]
[ "nonn", "cons" ]
10
1
2
[ "A014176", "A100954", "A101465", "A201488", "A384277", "A384278", "A384279", "A384280", "A384281" ]
null
A.H.M. Smeets, May 26 2025
2025-06-05T09:53:45
oeisdata/seq/A384/A384281.seq
ee02605f4fc1544dc294b7fbd208d268
A384282
a(n) is the n-th q-Catalan number for q=n.
[ "1", "1", "5", "847", "18245201", "100333200992026", "228658497157753687896157", "319559330566264937870155968502833579", "380933302489206359659857650468008737411766944866881", "514667012348784999156727812545930551654233884899853599864429378680766" ]
[ "nonn" ]
24
0
3
[ "A384282", "A384437" ]
null
Seiichi Manyama, May 29 2025
2025-05-29T11:01:31
oeisdata/seq/A384/A384282.seq
27bdeaffed6a338b91376b75f66d9d49
A384283
Decimal expansion of the volume of a gyroelongated pentagonal cupola with unit edge.
[ "9", "0", "7", "3", "3", "3", "3", "1", "9", "3", "8", "8", "0", "1", "8", "7", "9", "9", "3", "1", "4", "9", "9", "8", "3", "9", "8", "1", "0", "1", "8", "1", "6", "2", "7", "2", "2", "1", "5", "3", "1", "3", "3", "9", "3", "0", "6", "0", "3", "6", "7", "3", "4", "9", "2", "1", "4", "7", "6", "4", "2", "4", "5", "8", "5", "0", "3", "7", "6", "6", "8", "7", "2", "0", "6", "1", "5", "5", "3", "5", "4", "0", "3", "6", "2", "6", "2", "2", "8", "0" ]
[ "nonn", "cons", "easy" ]
8
1
1
[ "A002163", "A010532", "A179590", "A179639", "A179641", "A384138", "A384140", "A384144", "A384213", "A384283", "A384284" ]
null
Paolo Xausa, May 26 2025
2025-05-28T00:59:42
oeisdata/seq/A384/A384283.seq
1a94cee1bcca09d6904bd2b0c4f4ca48
A384284
Decimal expansion of the surface area of a gyroelongated pentagonal cupola with unit edge.
[ "2", "5", "2", "4", "0", "0", "0", "3", "7", "9", "0", "8", "3", "2", "5", "8", "3", "5", "1", "3", "7", "3", "1", "2", "7", "8", "0", "5", "1", "8", "9", "2", "5", "8", "6", "4", "5", "2", "8", "1", "6", "6", "6", "2", "3", "6", "5", "1", "6", "9", "5", "5", "8", "3", "2", "2", "1", "5", "3", "7", "7", "8", "9", "5", "4", "5", "3", "5", "6", "0", "8", "5", "6", "9", "1", "2", "6", "6", "9", "3", "7", "5", "9", "2", "2", "6", "0", "8", "9", "2" ]
[ "nonn", "cons", "easy" ]
6
2
1
[ "A002163", "A002194", "A179553", "A179591", "A179640", "A384141", "A384283", "A384284" ]
null
Paolo Xausa, May 27 2025
2025-05-28T00:59:51
oeisdata/seq/A384/A384284.seq
6e9416360928f79646c181413e3437c6
A384285
Decimal expansion of the volume of a gyroelongated pentagonal rotunda with unit edge.
[ "1", "3", "6", "6", "7", "0", "5", "0", "8", "4", "3", "6", "7", "1", "6", "9", "6", "9", "3", "2", "1", "2", "3", "5", "3", "0", "8", "9", "9", "2", "3", "3", "2", "8", "6", "5", "6", "5", "4", "0", "0", "2", "6", "4", "3", "6", "6", "9", "7", "8", "9", "8", "4", "4", "5", "2", "0", "1", "7", "4", "8", "2", "0", "5", "9", "2", "2", "8", "3", "2", "4", "2", "3", "2", "9", "5", "6", "5", "7", "3", "8", "8", "1", "5", "9", "0", "1", "0", "0", "2" ]
[ "nonn", "cons", "easy" ]
9
2
2
[ "A002163", "A179590", "A179639", "A179641", "A384138", "A384140", "A384144", "A384213", "A384283", "A384285", "A384286" ]
null
Paolo Xausa, May 29 2025
2025-05-30T10:34:51
oeisdata/seq/A384/A384285.seq
2869f73bfb6c624ae48f31e6fa588f8f
A384286
Decimal expansion of the surface area of a gyroelongated pentagonal rotunda with unit edge.
[ "3", "1", "0", "0", "7", "4", "5", "4", "3", "0", "3", "2", "3", "8", "5", "1", "4", "7", "4", "4", "4", "3", "5", "6", "4", "5", "8", "6", "5", "7", "1", "7", "9", "7", "4", "9", "0", "8", "5", "3", "2", "0", "3", "9", "7", "8", "2", "4", "8", "3", "5", "2", "5", "7", "5", "3", "2", "5", "9", "0", "1", "1", "2", "1", "3", "9", "6", "9", "8", "6", "9", "8", "0", "1", "3", "0", "7", "5", "2", "4", "9", "6", "2", "2", "3", "9", "7", "2", "8", "1" ]
[ "nonn", "cons", "easy" ]
7
2
1
[ "A002163", "A002194", "A179553", "A179591", "A179640", "A384141", "A384284", "A384285", "A384286" ]
null
Paolo Xausa, May 30 2025
2025-05-30T10:34:45
oeisdata/seq/A384/A384286.seq
669ca6d4f08222ccad52eea1393dbe41
A384287
Decimal expansion of the volume of a square orthobicupola with unit edge.
[ "3", "8", "8", "5", "6", "1", "8", "0", "8", "3", "1", "6", "4", "1", "2", "6", "7", "3", "1", "7", "3", "5", "5", "8", "4", "9", "6", "5", "6", "1", "2", "9", "3", "0", "7", "7", "1", "4", "2", "6", "2", "2", "9", "1", "6", "7", "1", "6", "9", "2", "6", "4", "0", "9", "7", "5", "6", "8", "9", "0", "6", "3", "1", "7", "3", "2", "0", "9", "7", "6", "6", "3", "7", "9", "4", "9", "4", "7", "6", "0", "5", "1", "8", "0", "0", "5", "1", "6", "7", "1" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A002193", "A010469", "A010487", "A384287", "A384624" ]
null
Paolo Xausa, Jun 05 2025
2025-06-09T10:37:53
oeisdata/seq/A384/A384287.seq
1658b194fdace2d101d0ea27dc2fad80
A384288
Three-column table read by rows: row n is the unique primitive Pythagorean triple whose inradius is A002378(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "1", "0", "1", "5", "12", "13", "13", "84", "85", "25", "312", "313", "41", "840", "841", "61", "1860", "1861", "85", "3612", "3613", "113", "6384", "6385", "145", "10512", "10513", "181", "16380", "16381", "221", "24420", "24421", "265", "35112", "35113", "313", "48984", "48985", "365", "66612", "66613", "421", "88620", "88621", "481", "115680", "115681", "545", "148512", "148513", "613", "187884", "187885", "685", "234612", "234613", "761", "289560", "289561", "841", "353640", "353641" ]
[ "nonn", "easy", "tabf", "changed" ]
41
0
4
[ "A001844", "A002378", "A008514", "A237516", "A384288", "A384566" ]
null
Miguel-Ángel Pérez García-Ortega, May 31 2025
2025-07-13T17:25:28
oeisdata/seq/A384/A384288.seq
343df9c431df531c67f9453e768cc4c9
A384289
Consecutive internal states of the linear congruential pseudo-random number generator for GWBASIC 3.23 when started at 1.
[ "1", "2745024", "2356867", "12486458", "8679701", "14802820", "7082039", "14027294", "11434089", "5380488", "9466411", "4830274", "15796733", "15840460", "12300383", "15321510", "15423953", "11736400", "10919635", "14405194", "3988453", "8904468", "807303", "4097582", "10044473", "2422296", "6167675", "914770" ]
[ "nonn", "easy" ]
16
1
2
[ "A096550", "A096561", "A384289", "A384290", "A384291" ]
null
Sean A. Irvine, May 24 2025
2025-06-19T19:46:06
oeisdata/seq/A384/A384289.seq
b87488370dc59d1b4109c27c26cab1ae
A384290
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+10395331) mod 2^24 when started at s=1.
[ "1", "10609344", "3405443", "427834", "2388245", "7987076", "1839159", "4065822", "15628393", "661896", "14709291", "13743170", "13699581", "13219020", "11251807", "9554342", "7035345", "11212112", "3579603", "10735178", "6085605", "10477332", "3953031", "2524718", "5850169", "6092312", "3021947", "1439058" ]
[ "nonn", "easy" ]
17
1
2
[ "A383645", "A384289", "A384290", "A384291" ]
null
Sean A. Irvine, May 24 2025
2025-05-27T06:12:03
oeisdata/seq/A384/A384290.seq
d3c4f0171acc87007d074e60dc3677d1
A384291
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+13737667) mod 2^24 when started at s=1.
[ "1", "13951680", "13497987", "7046970", "2650389", "10542980", "14290999", "3607070", "3569769", "6625672", "160299", "10400834", "10291709", "10007756", "7450719", "7522726", "16472529", "3020112", "14720723", "14208586", "15784933", "1498900", "676231", "15697454", "3228729", "521752", "6298747", "11728210" ]
[ "nonn", "easy" ]
11
1
2
[ "A384289", "A384290", "A384291" ]
null
Sean A. Irvine, May 24 2025
2025-06-19T19:49:56
oeisdata/seq/A384/A384291.seq
76a6a87e904fe668fbadea3ed6bb741f
A384292
Consecutive internal states of the linear congruential pseudo-random number generator (214013*s+13523655) mod 2^24 when started at s=1.
[ "1", "13737668", "13733499", "10705750", "2695365", "5655672", "8607071", "956074", "10862281", "15041132", "426883", "3316798", "7405069", "1954976", "13589735", "12754962", "4276881", "7083796", "15164811", "11671078", "798805", "8347080", "9527663", "4764282", "13282137", "16579772", "2970771", "7760142" ]
[ "nonn", "easy" ]
15
1
2
[ "A384289", "A384290", "A384291", "A384292" ]
null
Sean A. Irvine, May 24 2025
2025-06-19T19:50:59
oeisdata/seq/A384/A384292.seq
d1c2fe754d320715a20fa7d743614a50
A384293
Consecutive internal states of the pseudo-random number generator (214013*(s mod 2^16)+13523655) mod 2^24 when started at s=1.
[ "1", "13737668", "4492923", "1465174", "1188037", "13716600", "8738143", "9934506", "13614793", "13927020", "11895683", "4496446", "458253", "7197856", "2514151", "3121170", "8864401", "3086100", "2844043", "6755878", "2240597", "10706376", "942447", "16495226", "10660697", "5962940", "2184339", "16607502" ]
[ "nonn", "easy" ]
12
1
2
[ "A384289", "A384290", "A384291", "A384292", "A384293" ]
null
Sean A. Irvine, May 24 2025
2025-06-19T19:54:42
oeisdata/seq/A384/A384293.seq
d31f9df3dfbf82a6f4be0877b2bd8db6
A384294
The number of Hamiltonian cycles in the concentric ring graph of order n.
[ "6", "12", "30", "34", "56", "108", "150", "244", "418", "642", "1040", "1712", "2726", "4412", "7174", "11554", "18696", "30292", "48950", "79204", "128202", "207362", "335520", "542936", "878406", "1421292", "2299758", "3720994", "6020696", "9741756", "15762390", "25504084", "41266546", "66770562", "108037040", "174807680", "282844646", "457652252", "740496982", "1198149154", "1938646056" ]
[ "nonn", "easy" ]
24
3
1
[ "A000032", "A384294" ]
null
Don Knuth, May 24 2025
2025-05-27T01:14:13
oeisdata/seq/A384/A384294.seq
65aac222411877c04bb4cf7f4f9db536
A384295
a(n) is the number of integer sextuples (a,b,c,d,e,f) satisfying a system of linear inequalities and congruences specified in the comments.
[ "1", "42", "684", "4388", "17976", "56076", "145630", "331410", "682596", "1300338", "2326422", "3952896", "6432777", "10091748", "15340947", "22690710", "32765418", "46319334", "64253491", "87633588", "117708960", "155932526", "203981823", "263781030", "337524061", "427698636", "537111456", "668914338", "826631436" ]
[ "nonn" ]
22
0
2
[ "A370349", "A384127", "A384295" ]
null
Jeffery Opoku, May 24 2025
2025-06-04T10:12:01
oeisdata/seq/A384/A384295.seq
f6904121b109b94dd58f05ae6adb3667
A384296
Square numbers whose iterative sums of digits are squares.
[ "0", "1", "4", "9", "36", "81", "100", "121", "144", "225", "324", "400", "441", "900", "1521", "2025", "2304", "2601", "3600", "8100", "10000", "10201", "10404", "11025", "12100", "12321", "14400", "22500", "32400", "40000", "40401", "44100", "62001", "69696", "90000", "101124", "103041", "121104", "123201", "149769", "152100", "173889", "178929", "199809", "202500", "230400", "251001" ]
[ "nonn", "base" ]
25
1
3
[ "A004159", "A053057", "A070027", "A117676", "A384296" ]
null
Huaineng He, May 24 2025
2025-05-29T23:25:58
oeisdata/seq/A384/A384296.seq
ac818294bc4be0f035daf6d0551cd3f0
A384297
Consecutive internal states of the linear congruential pseudo-random number generator for Microsoft QBASIC when started at 1.
[ "1", "12640960", "8124035", "4294458", "3961109", "14212996", "790583", "4786718", "4094057", "13179272", "9990699", "13415490", "7932413", "570572", "4960351", "10275238", "9132497", "9049424", "14589651", "14601802", "1367013", "4120340", "807303", "11634222", "13190201", "14415384", "4594811", "1111378" ]
[ "nonn", "easy" ]
18
1
2
[ "A096550", "A096561", "A384297" ]
null
Sean A. Irvine, May 24 2025
2025-05-27T10:32:20
oeisdata/seq/A384/A384297.seq
def0e3ea36baf2ac23b7effdcef88447
A384298
Primes p such that p + 4, p + 12 and p + 16 are also primes.
[ "7", "67", "97", "487", "757", "1567", "1597", "2377", "3907", "7687", "8677", "12097", "12907", "13147", "14407", "14767", "15667", "16057", "19417", "21487", "31177", "38317", "43777", "52567", "57637", "58897", "65167", "65827", "67477", "67927", "74857", "81547", "90007", "90187", "93967", "94777", "95467", "95617", "102547", "111427", "112237", "114757", "123817", "129277" ]
[ "nonn" ]
16
1
1
[ "A000040", "A001223", "A052378", "A136162", "A382810", "A384298" ]
null
Alexander Yutkin, May 25 2025
2025-05-30T10:39:53
oeisdata/seq/A384/A384298.seq
22181d38abba885fabb0b02184a76824
A384299
Primes p such that p + 8, p + 12 and p + 20 are also primes.
[ "11", "59", "89", "389", "479", "1439", "1559", "1601", "2531", "2699", "3209", "3449", "3911", "5639", "5849", "7529", "8081", "8669", "10091", "12269", "12401", "12899", "13151", "14411", "14759", "17021", "19421", "21011", "21851", "22271", "23189", "25931", "26099", "28649", "28859", "31139", "31469", "33191", "33569", "36551", "39659", "40751", "42689", "43391", "43781", "44111" ]
[ "nonn" ]
11
1
1
[ "A000040", "A001223", "A052378", "A136162", "A382810", "A384299" ]
null
Alexander Yutkin, May 25 2025
2025-05-29T21:54:32
oeisdata/seq/A384/A384299.seq
2d7d776c3bf26d31dcec2651d2bc78fa
A384300
a(n) = Product_{k=0..2*n-1} (3*n+k-2).
[ "1", "2", "840", "665280", "980179200", "2346549004800", "8326896754176000", "41098950018846720000", "269397128065642536960000", "2264501147602213494374400000", "23751156416080627455365283840000", "304080322557324667642345606348800000", "4667216066941750219330172809445376000000" ]
[ "nonn", "easy" ]
11
0
2
[ "A384262", "A384300", "A384301", "A384302", "A384303" ]
null
Seiichi Manyama, May 25 2025
2025-05-26T05:20:23
oeisdata/seq/A384/A384300.seq
f319b8f7140d0473893b1c14d77d3449
A384301
a(n) = Product_{k=0..2*n-1} (3*n+k-1).
[ "1", "6", "1680", "1235520", "1764322560", "4151586700800", "14572069319808000", "71382386874839040000", "465322312113382563840000", "3894941973875807210323968000", "40716268141852504209197629440000", "519879261146393786614332810854400000", "7961721525959456256504412439642112000000" ]
[ "nonn", "easy" ]
12
0
2
[ "A384263", "A384300", "A384301", "A384302", "A384303" ]
null
Seiichi Manyama, May 25 2025
2025-05-26T05:20:31
oeisdata/seq/A384/A384301.seq
9835d5330c5457b4ce59d44b051a825a
A384302
a(n) = Product_{k=0..2*n-1} (3*n+k).
[ "1", "12", "3024", "2162160", "3047466240", "7117005772800", "24858235898496000", "121350057687226368000", "789024790105300869120000", "6591440263482135279009792000", "68796453067268024353471856640000", "877296253184539514911686618316800000", "13421187715188797689536009541110988800000" ]
[ "nonn", "easy" ]
12
0
2
[ "A384300", "A384301", "A384302", "A384303" ]
null
Seiichi Manyama, May 25 2025
2025-05-26T05:20:38
oeisdata/seq/A384/A384302.seq
5c0fdafc0b48e33ff14d599e4c059ae8
A384303
a(n) = Product_{k=0..2*n-1} (3*n+k+1).
[ "1", "20", "5040", "3603600", "5079110400", "11861676288000", "41430393164160000", "202250096145377280000", "1315041316842168115200000", "10985733772470225465016320000", "114660755112113373922453094400000", "1462160421974232524852811030528000000", "22368646191981329482560015901851648000000" ]
[ "nonn", "easy" ]
13
0
2
[ "A166384", "A384300", "A384301", "A384302", "A384303" ]
null
Seiichi Manyama, May 25 2025
2025-05-26T07:55:24
oeisdata/seq/A384/A384303.seq
0e9553ad1cf42df317abf3dc242aa6fb
A384304
Population of elementary triangular automaton rule 86 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "6", "18", "18", "39", "33", "69", "57", "111", "81", "123", "144", "195", "162", "252", "243", "306", "300", "336", "369", "414", "435", "495", "525", "603", "549", "693", "738", "807", "780", "933", "876", "1014", "1089", "1050", "1239", "1263", "1257", "1296", "1416", "1590", "1506", "1674", "1758", "1938", "1851", "1869", "1992", "2256", "2157" ]
[ "nonn" ]
9
0
2
null
null
Paul Cousin, May 25 2025
2025-05-25T09:22:54
oeisdata/seq/A384/A384304.seq
f30d53da8cc1183445c41b2049a30825
A384305
Expansion of Product_{k>=1} 1/(1 - k*x)^((5/6)^k).
[ "1", "30", "615", "11260", "205695", "4013406", "88035585", "2255192280", "68859250020", "2506898720040", "107238427737876", "5281094776037040", "293625956135692020", "18139856902224931080", "1229886945212115522060", "90641666662687182976896", "7206758883035555464430370", "614391718014749017022916060" ]
[ "nonn" ]
29
0
2
[ "A084785", "A090358", "A090362", "A094418", "A384305", "A384324", "A384325", "A384326" ]
null
Seiichi Manyama, May 26 2025
2025-05-31T04:10:25
oeisdata/seq/A384/A384305.seq
8282af4d4ddd3e13df8a98dcf5c16c74
A384306
Primes whose sum of digits in both base 8 and base 10 are recursively prime down to 2, 3, 5, or 7.
[ "2", "3", "5", "7", "131", "311", "887", "1013", "1949", "2399", "2621", "2957", "3251", "3323", "3701", "4289", "4919", "4973", "5099", "5101", "5477", "5927", "5981", "6359", "6599", "6779", "6863", "8069", "8447", "8573", "8627", "8669", "8951", "9677", "10141", "10181", "10211", "10589", "10631", "11399", "11597", "12101", "12479", "12659", "12983" ]
[ "nonn", "base" ]
44
1
1
[ "A000040", "A007953", "A070027", "A384306" ]
null
Jean-Louis Lascoux, May 25 2025
2025-06-10T12:25:36
oeisdata/seq/A384/A384306.seq
a27d646e4e0826dec61d80d0ee22b0ac
A384307
Decimal expansion of sqrt(6/Pi)*Gamma(2/3)/3^(1/3).
[ "1", "2", "9", "7", "5", "2", "8", "0", "7", "1", "1", "4", "0", "3", "7", "5", "0", "6", "5", "0", "6", "0", "1", "2", "2", "2", "7", "4", "0", "9", "0", "9", "2", "8", "6", "2", "9", "6", "3", "8", "8", "0", "9", "0", "2", "9", "1", "2", "9", "9", "7", "5", "6", "9", "8", "2", "3", "9", "6", "4", "2", "4", "1", "5", "1", "3", "4", "1", "1", "8", "0", "3", "9", "4", "1", "0", "5", "9", "9", "5", "8", "5", "8", "7", "6", "0", "5", "4", "2", "0", "2", "7", "4", "9", "0", "4", "8", "1", "3", "3" ]
[ "nonn", "cons" ]
8
1
2
[ "A002581", "A073006", "A132696", "A384307" ]
null
Stefano Spezia, May 25 2025
2025-05-27T01:15:33
oeisdata/seq/A384/A384307.seq
8f80b13499c24e373bf7c2dbdec10e14
A384308
a(1) = 3; for n > 1, a(n) is the smallest number that has not appeared before and has the same set of prime divisors as a(n-1) + 1.
[ "3", "2", "9", "10", "11", "6", "7", "4", "5", "12", "13", "14", "15", "8", "27", "28", "29", "30", "31", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "81", "82", "83", "42", "43", "44", "45", "46", "47", "36", "37", "38", "39", "40", "41", "84", "85", "86", "87", "88", "89", "60", "61", "62", "63", "32", "33", "34", "35", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "90", "91", "92", "93", "94", "95", "72", "73", "74", "75" ]
[ "nonn" ]
45
1
1
[ "A064413", "A257218", "A384308" ]
null
SiYang Hu, May 25 2025
2025-06-04T11:07:19
oeisdata/seq/A384/A384308.seq
c075c43afae544321ff3fb83174365c5
A384309
a(1) = 1. Thereafter a(n) is the cardinality of the set of terms whose leading decimal digit is the same as that of a(n-1).
[ "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2", "10", "21", "11", "22", "12", "23", "13", "24", "14", "25", "15", "26", "16", "27", "17", "28", "18", "29", "19", "30", "3", "4", "3", "5", "3", "6", "3", "7", "3", "8", "3", "9", "3", "10", "31", "11" ]
[ "nonn", "base", "look" ]
24
1
3
[ "A00003", "A248034", "A384309" ]
null
David James Sycamore, May 25 2025
2025-06-02T16:23:52
oeisdata/seq/A384/A384309.seq
3e0b3fc601c4ed8d666f4c2f09027b8e
A384310
Numbers k such that A383844(k) and A383844(k+1) are nonzero.
[ "0", "3", "6", "7", "12", "20", "26", "27", "28", "53", "56", "61", "74", "88", "145", "146", "252", "289", "299", "308", "320", "323", "340", "471", "577", "578", "739", "1240", "1517", "1568", "1579", "1857", "2638", "3042", "3043", "3133", "3455", "3565", "4910", "8683", "8684", "8857", "8858", "9291", "14549", "17913", "18117", "20005", "21989", "32552", "37902", "42514", "44869", "47877", "49942" ]
[ "nonn" ]
29
1
2
[ "A024934", "A383844", "A384310" ]
null
Miles Englezou, Jun 04 2025
2025-06-10T00:37:47
oeisdata/seq/A384/A384310.seq
e08c46fe74caf936564a1fc2cdb42807
A384311
a(n) is the number of ways to partition an n X n X n cube into 4 cuboids of different dimensions.
[ "0", "0", "4", "12", "47", "85", "183", "266", "466", "613", "941", "1179", "1668", "2007", "2701", "3159", "4079", "4690", "5868", "6635", "8122", "9064", "10874", "12030", "14196", "15564", "18142", "19740", "22739", "24613", "28065", "30206", "34174", "36601", "41087", "43851", "48888", "51975", "57631", "61059", "67331", "71158", "78078" ]
[ "nonn" ]
13
1
3
[ "A381847", "A384311" ]
null
Janaka Rodrigo, May 25 2025
2025-05-31T08:13:02
oeisdata/seq/A384/A384311.seq
19935dfe5f39deae4bf4fbcb8feb831b
A384312
Third center column of elementary triangular automaton rule 86, starting from a lone 1 cell.
[ "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1" ]
[ "nonn" ]
12
0
null
[ "A384304", "A384312" ]
null
Paul Cousin, May 25 2025
2025-05-27T01:15:12
oeisdata/seq/A384/A384312.seq
21b49f4c30cbebe1fc3ba9798e73f642
A384313
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
[ "0", "0", "2", "9", "582", "27136", "7661772", "2797055478", "4374706319136", "11681281664592429", "112352959301265272414", "2147474541377915674682880", "133430162305143400794479937840", "18069411470335957872130103264497774", "7436752857750595469877425837627133763584" ]
[ "nonn", "new" ]
7
1
3
[ "A123744", "A380661", "A384079", "A384080", "A384313" ]
null
Clark Kimberling, Jun 27 2025
2025-07-02T00:52:42
oeisdata/seq/A384/A384313.seq
f98dade2b01ddfd4ff8cabbb1f6a853a
A384314
Numbers k such that the nonzero digits in the ternary expansion k = d(1),...,d(m) satisfy d(2*i+1) = d(1) and d(2*i) = 3-d(1).
[ "0", "1", "2", "3", "5", "6", "7", "9", "10", "15", "16", "18", "20", "21", "23", "27", "29", "30", "32", "45", "47", "48", "50", "54", "55", "60", "61", "63", "64", "69", "70", "81", "82", "87", "88", "90", "91", "96", "97", "135", "136", "141", "142", "144", "145", "150", "151", "162", "164", "165", "167", "180", "182", "183", "185", "189", "191", "192", "194", "207", "209" ]
[ "base", "easy", "nonn" ]
29
1
3
null
null
Frederik P.J. Vandecasteele, May 25 2025
2025-06-18T19:02:57
oeisdata/seq/A384/A384314.seq
a2df53399fc1a29d4a4b9b32e21eb328
A384315
Consecutive internal states of the linear congruential pseudo-random number generator for Demos started at 1.
[ "1", "8192", "9317", "9225317", "19706942", "64858329", "25218022", "53630558", "40796927", "52681924", "53134651", "4299603", "62185148", "971592", "41535118", "60983366", "19606857", "50156573", "32119735", "27545333", "62690922", "51199833", "56863186", "18164438", "43380397", "13011312", "34587268", "44612022" ]
[ "nonn", "easy" ]
17
1
2
[ "A096550", "A096561", "A384315" ]
null
Sean A. Irvine, May 25 2025
2025-05-28T20:00:07
oeisdata/seq/A384/A384315.seq
ea7d189c5ec210ec6c3a1ec038656f01
A384316
Consecutive states of the linear congruential pseudo-random number generator 3125*s mod 2^26 when started at s=1.
[ "1", "3125", "9765625", "50153869", "31643185", "33596453", "30652329", "24179197", "62518625", "16800021", "20933977", "54644589", "39390609", "17996549", "1987593", "37212637", "56938177", "26204661", "16751545", "3664205", "42133745", "361957", "57373801", "45352381", "59378721", "2494165", "9637401", "52107053" ]
[ "nonn", "easy" ]
12
1
2
[ "A096550", "A096561", "A384316" ]
null
Sean A. Irvine, May 25 2025
2025-05-27T16:41:36
oeisdata/seq/A384/A384316.seq
7fc08d60b0dde36bd6c2a93b48ada92a
A384317
Number of integer partitions of n with more than one possible way to choose disjoint strict partitions of each part.
[ "0", "0", "0", "1", "1", "1", "4", "4", "5", "5", "12", "12", "16", "19", "22", "35", "38", "48", "58", "68", "79", "110", "121", "149", "175", "207", "242", "281", "352", "397", "473" ]
[ "nonn", "more" ]
6
0
7
[ "A098859", "A179009", "A239455", "A299200", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384347" ]
null
Gus Wiseman, May 28 2025
2025-05-28T09:17:21
oeisdata/seq/A384/A384317.seq
8e819437ad29123e33c32fd4405d9604
A384318
Number of strict integer partitions of n that are not maximally refined.
[ "0", "0", "0", "1", "1", "1", "3", "4", "4", "5", "9", "10", "13", "15", "17", "26", "29", "36", "43", "49", "57", "74", "84", "101", "118", "136", "158", "181", "219", "248", "291" ]
[ "nonn", "more" ]
14
0
7
[ "A048767", "A098859", "A179009", "A179822", "A239455", "A279375", "A317142", "A326080", "A351293", "A357982", "A382525", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384350", "A384391", "A384392" ]
null
Gus Wiseman, May 28 2025
2025-06-11T23:41:02
oeisdata/seq/A384/A384318.seq
77a8bb40150dcc3393fbbad27f3958d9
A384319
Number of strict integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.
[ "0", "0", "0", "1", "1", "0", "2", "3", "1", "0", "4", "4", "4", "2", "0", "6", "7", "8", "8", "3", "2", "9", "9", "14", "13", "6", "7", "3", "15", "13", "20" ]
[ "nonn", "more" ]
5
0
7
[ "A098859", "A179009", "A239455", "A279375", "A299200", "A317142", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384347", "A384390" ]
null
Gus Wiseman, May 28 2025
2025-05-28T09:17:12
oeisdata/seq/A384/A384319.seq
086c33617b34b1b515d7cdd41c8d7958
A384320
Heinz numbers of integer partitions whose distinct parts are maximally refined.
[ "1", "2", "3", "4", "6", "8", "9", "10", "12", "14", "15", "16", "18", "20", "24", "27", "28", "30", "32", "36", "40", "42", "45", "48", "50", "54", "56", "60", "64", "66", "70", "72", "75", "78", "80", "81", "84", "90", "96", "98", "100", "105", "108", "110", "112", "120", "126", "128", "132", "135", "140", "144", "150", "156", "160", "162", "168", "180", "182", "192", "196" ]
[ "nonn" ]
16
1
2
[ "A048767", "A048768", "A055396", "A056239", "A061395", "A112798", "A130091", "A179009", "A279375", "A279790", "A299200", "A317142", "A326080", "A351294", "A351295", "A357982", "A381454", "A382525", "A383706", "A383707", "A384318", "A384320", "A384321", "A384322", "A384390", "A384392" ]
null
Gus Wiseman, Jun 01 2025
2025-06-10T16:26:02
oeisdata/seq/A384/A384320.seq
4bbe335108a96e074929e3def8ab85f0
A384321
Numbers whose distinct prime indices are not maximally refined.
[ "5", "7", "11", "13", "17", "19", "21", "22", "23", "25", "26", "29", "31", "33", "34", "35", "37", "38", "39", "41", "43", "46", "47", "49", "51", "53", "55", "57", "58", "59", "61", "62", "65", "67", "69", "71", "73", "74", "77", "79", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "102", "103", "106", "107", "109", "111", "113", "114", "115", "118", "119" ]
[ "nonn" ]
10
1
1
[ "A048767", "A048768", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A317142", "A326080", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A383706", "A383707", "A384005", "A384317", "A384318", "A384320", "A384321", "A384322", "A384323", "A384390" ]
null
Gus Wiseman, Jun 01 2025
2025-06-11T23:40:56
oeisdata/seq/A384/A384321.seq
f904e16b1e0c3cb27a07a0ff977d7999
A384322
Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.
[ "5", "7", "11", "13", "17", "19", "21", "22", "23", "26", "29", "31", "33", "34", "35", "37", "38", "39", "41", "43", "46", "47", "51", "53", "55", "57", "58", "59", "61", "62", "65", "67", "69", "71", "73", "74", "77", "79", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "102", "103", "106", "107", "109", "111", "113", "114", "115", "118", "119", "122" ]
[ "nonn" ]
5
1
1
[ "A048767", "A048768", "A055396", "A056239", "A061395", "A098859", "A112798", "A122111", "A130091", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A317142", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384005", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384347", "A384390" ]
null
Gus Wiseman, Jun 01 2025
2025-06-01T22:18:28
oeisdata/seq/A384/A384322.seq
079fe5d29e4d643c31938beae4a63c7c
A384323
Number of integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.
[ "0", "0", "0", "1", "1", "0", "3", "3", "2", "0", "6", "6", "6", "6", "4", "10", "10", "14", "16", "15", "16", "17", "20", "25", "27", "28", "37", "43", "31", "42", "44" ]
[ "nonn", "more" ]
8
0
7
[ "A000009", "A000041", "A048767", "A048768", "A098859", "A179009", "A217605", "A239455", "A279790", "A299200", "A317142", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384005", "A384317", "A384318", "A384319", "A384321", "A384322", "A384323", "A384347", "A384390" ]
null
Gus Wiseman, May 30 2025
2025-05-30T23:14:24
oeisdata/seq/A384/A384323.seq
10887137263205b0e2b2dcaedda5e886
A384324
Expansion of Product_{k>=1} 1/(1 - k*x)^((2/3)^k).
[ "1", "6", "33", "200", "1428", "12408", "132604", "1730160", "27043866", "495026316", "10388326986", "245555445888", "6446710871724", "185904786328920", "5836500883321164", "198054400887909264", "7220679972923312487", "281402128806812402490", "11671796413017231008663" ]
[ "nonn" ]
17
0
2
[ "A004123", "A084785", "A090351", "A090352", "A384305", "A384324", "A384325", "A384326" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:10:25
oeisdata/seq/A384/A384324.seq
bcd629cf733e475255069413fbb17802
A384325
Expansion of Product_{k>=1} 1/(1 - k*x)^((3/4)^k).
[ "1", "12", "114", "1084", "11319", "136920", "1981228", "34705656", "731268315", "18203860748", "524073230394", "17111173850652", "623571696107069", "25046605210733184", "1097919954149781264", "52109508350206511840", "2660615337817983390318", "145353541761618312219336" ]
[ "nonn" ]
14
0
2
[ "A032033", "A084785", "A090353", "A384305", "A384324", "A384325", "A384326" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T07:56:56
oeisdata/seq/A384/A384325.seq
39908b5c930fbb5ce21bbb0b239c3fbf
A384326
Expansion of Product_{k>=1} 1/(1 - k*x)^((4/5)^k).
[ "1", "20", "290", "3940", "55695", "872904", "15862460", "343510120", "8931896095", "276115329860", "9954870557826", "410042908659060", "18954497571869745", "969420292296268320", "54253252462944958560", "3293672518482920204544", "215400856153695252763320", "15088195059520554250863840" ]
[ "nonn" ]
13
0
2
[ "A084785", "A090356", "A094417", "A384305", "A384324", "A384325", "A384326" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T07:58:13
oeisdata/seq/A384/A384326.seq
58cc703a2e332c7f02392ca379a59ff8
A384327
Minimal Trips Around The Collatz Galaxy: a(n) is the minimal cycle length containing n. Each step in the cycle must be either to the next larger integer or follow a Collatz trajectory: k -> 3k+1 if k is odd or k -> k/2 if k is even.
[ "2", "2", "3", "3", "4", "4", "5", "4", "5", "4", "5", "5", "6", "5", "6", "4", "6", "6", "7", "6", "7", "5", "6", "6", "8", "7", "8", "5", "7", "7", "8", "8", "9", "6", "7", "7", "9", "9", "10", "6", "8", "8", "9", "9", "11", "7", "8", "8", "10", "10", "11", "7", "9", "9", "10", "10", "12", "8", "9", "9", "11", "11", "12", "8", "10", "10", "11", "11", "13", "9", "10", "10", "12", "12", "13", "9", "11", "11", "12" ]
[ "nonn" ]
23
1
1
[ "A006370", "A384327" ]
null
Gordon Hamilton, May 26 2025
2025-06-24T00:51:24
oeisdata/seq/A384/A384327.seq
a3283788910970bfa504b1ff845dfcc3
A384328
Expansion of 1 / ((1-x)^3 * (1-x^7)).
[ "1", "3", "6", "10", "15", "21", "28", "37", "48", "61", "76", "93", "112", "133", "157", "184", "214", "247", "283", "322", "364", "410", "460", "514", "572", "634", "700", "770", "845", "925", "1010", "1100", "1195", "1295", "1400", "1511", "1628", "1751", "1880", "2015", "2156", "2303", "2457", "2618", "2786", "2961" ]
[ "nonn", "easy" ]
40
0
2
[ "A000292", "A002623", "A014125", "A122046", "A122047", "A175724", "A384328" ]
null
Hoang Xuan Thanh, May 26 2025
2025-06-09T21:10:28
oeisdata/seq/A384/A384328.seq
286ddf64da665c06f71314990b8521a8
A384329
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000217(n) and its long leg and hypotenuse are consecutive natural numbers, n >= 0.
[ "-1", "0", "1", "1", "0", "1", "5", "12", "13", "11", "60", "61", "19", "180", "181", "29", "420", "421", "41", "840", "841", "55", "1512", "1513", "71", "2520", "2521", "89", "3960", "3961", "109", "5940", "5941", "131", "8580", "8581", "155", "12012", "12013", "181", "16380", "16381", "209", "21840", "21841", "239", "28560", "28561", "271", "36720", "36721", "305", "46512", "46513", "341", "58140", "58141" ]
[ "sign", "easy", "tabf", "changed" ]
19
0
7
[ "A000217", "A062392", "A165900", "A384329", "A384498" ]
null
Miguel-Ángel Pérez García-Ortega, May 26 2025
2025-07-13T17:25:16
oeisdata/seq/A384/A384329.seq
f83a3dccbd9607260fe93cf479315d7c
A384330
Number of distinct subsets S of [n] such that for all 1 <= k <= n, there exist elements x,y in S (not necessarily distinct) such that x*y = 2k.
[ "1", "0", "1", "1", "1", "1", "3", "3", "8", "11", "30", "30", "57", "57", "159", "295", "427", "427", "1033", "1033", "1973", "3610", "10427", "10427", "20575", "28731", "83535", "142793", "273755", "273755", "549946", "549946", "1245416", "2289562", "6665252", "12386159", "24210731", "24210731", "71150197", "131657471", "256115337", "256115337" ]
[ "nonn" ]
26
0
7
[ "A000079", "A000225", "A383968", "A384330" ]
null
Darío Clavijo, May 26 2025
2025-05-26T18:29:21
oeisdata/seq/A384/A384330.seq
a3d6320ef649413f68a3a7ee4a92606f
A384331
Consecutive internal states of a linear congruential pseudo-random number generator for Microsoft C and C++ when started at 1.
[ "1", "2745024", "1210316419", "415139642", "1736732949", "1256316804", "1030492215", "752224798", "1924036713", "1766988168", "1603301931", "373929026", "1844513277", "1525789900", "1102819423", "652855718", "32201169", "196285776", "782671571", "316395082", "356309989", "2122833684", "957108615" ]
[ "nonn", "easy" ]
47
1
2
[ "A096557", "A384289", "A384331" ]
null
Sean A. Irvine, May 28 2025
2025-06-19T19:56:33
oeisdata/seq/A384/A384331.seq
27fd054af013cb0305a96492e7bd7d34
A384332
Expansion of Product_{k>=1} (1 + k*x)^((2/3)^k).
[ "1", "6", "3", "20", "-207", "2538", "-36381", "599760", "-11210229", "234779146", "-5455240455", "139445920452", "-3892724842549", "117916363928070", "-3854035833235839", "135241405277665656", "-5072575747811807052", "202559732310632082120", "-8581116791103001216108" ]
[ "sign" ]
15
0
2
[ "A004123", "A116603", "A384324", "A384332", "A384333", "A384334", "A384344" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:10:33
oeisdata/seq/A384/A384332.seq
f7a9c745fef12c092017e67f7c36e539
A384333
Expansion of Product_{k>=1} (1 + k*x)^((3/4)^k).
[ "1", "12", "30", "76", "-819", "15120", "-320568", "7719984", "-208986462", "6300545128", "-209806494828", "7660698340008", "-304718887446110", "13127557400200944", "-609336227455254936", "30330991088734345200", "-1612305658103085757467", "91179423240593288760396", "-5467060640706775435713298" ]
[ "sign" ]
14
0
2
[ "A032033", "A116603", "A381890", "A384325", "A384332", "A384333", "A384334" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:10:37
oeisdata/seq/A384/A384333.seq
17fdc4bcb6f7cae9581b4de59e109f90
A384334
Expansion of Product_{k>=1} (1 + k*x)^((4/5)^k).
[ "1", "20", "110", "340", "-1995", "53904", "-1534600", "49159600", "-1758057650", "69662897000", "-3037327435860", "144787947993000", "-7502235351828450", "420296374337607600", "-25335189019626256200", "1636008982452733508400", "-112721505676611504401025", "8256863266451569604835900" ]
[ "sign" ]
15
0
2
[ "A094417", "A116603", "A384326", "A384332", "A384333", "A384334", "A384345" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:10:40
oeisdata/seq/A384/A384334.seq
1cdc5298129d034d2e43d9c1364cd64a
A384335
Expansion of g.f.: cosh(7*arctanh(6*sqrt(x))).
[ "1", "882", "150822", "14431284", "1052738694", "65805858972", "3724625506140", "196735568051880", "9876433300259526", "476865669055691916", "22326189769485093492", "1019514155600973935448", "45604820017276687744668", "2004918589790139365901720", "86848896758228990302070520", "3714470212008822424691576400" ]
[ "nonn" ]
11
0
2
[ "A383928", "A384335" ]
null
Karol A. Penson, May 26 2025
2025-05-28T01:05:53
oeisdata/seq/A384/A384335.seq
b0c8653c5db61594564f3dd78cac90b3
A384336
a(1) = 1, a(2) = 2. For n > 2, a(n) = number of a(k), k = 1..n-2 such that a(k) divides a(n-1).
[ "1", "2", "1", "1", "2", "4", "5", "3", "3", "4", "6", "7", "3", "5", "4", "7", "4", "8", "9", "6", "9", "7", "5", "5", "6", "10", "9", "8", "10", "10", "11", "3", "6", "12", "17", "3", "7", "6", "14", "9", "11", "4", "9", "12", "21", "12", "22", "7", "7", "8", "12", "23", "3", "8", "13", "3", "9", "15", "14", "12", "26", "6", "17", "4", "10", "12", "29", "3", "10", "13", "4", "11", "5", "7", "9", "17", "5", "8" ]
[ "nonn" ]
53
1
2
[ "A000005", "A384336" ]
null
David James Sycamore, May 28 2025
2025-06-01T16:36:25
oeisdata/seq/A384/A384336.seq
1f87b9fdf9b707c9d9245c3a0be4d635
A384337
Numbers k such that there exists m > k with k | m^3 + 1 and m | k^3 + 1.
[ "1", "2", "3", "5", "9", "14", "35", "45", "49", "54", "61", "65", "93", "99", "114", "117", "146", "147", "185", "234", "299", "325", "329", "362", "365", "398", "413", "434", "437", "549", "594", "619", "626", "635", "794", "874", "915", "962", "981", "1057", "1209", "1251", "1550", "1638", "1699", "2021", "2110", "2149", "2219", "2345", "2394", "2409", "2449", "2667", "2763", "2771", "2881", "2989", "3002" ]
[ "nonn" ]
16
1
2
null
null
Robert Israel, May 26 2025
2025-06-02T13:22:25
oeisdata/seq/A384/A384337.seq
2ec02817685745313bedf9e6c08f5482
A384339
Consecutive states of the linear congruential pseudo-random number generator for Berkeley Pascal 3.1 when started at 1.
[ "1", "113280614", "518180871", "401789364", "123511293", "522841650", "132082531", "254284640", "306822585", "36791486", "267986559", "195744204", "63672117", "39581194", "434609499", "223082744", "48501361", "535916054", "463875063", "53294308", "487523181", "390617314", "240119379", "401404304", "176021033" ]
[ "nonn", "easy" ]
10
1
2
[ "A383940", "A384150", "A384194", "A384236", "A384339" ]
null
Sean A. Irvine, May 26 2025
2025-05-27T08:40:13
oeisdata/seq/A384/A384339.seq
dbb194bd4597e9d74c52f508a829546c
A384340
Consecutive states of the linear congruential pseudo-random number generator (314159221*s+211324863) mod 10^9 when started at s=1.
[ "1", "525484084", "688663427", "968835230", "345480693", "594745016", "131517399", "829111042", "288543145", "869414908", "434391531", "199282214", "320720157", "893442560", "869170623", "49089546", "741928529", "919640772", "742683475", "166897838", "983989061", "87606344", "997022887", "710415890" ]
[ "nonn", "easy" ]
14
1
2
[ "A384081", "A384340", "A384341" ]
null
Sean A. Irvine, May 26 2025
2025-05-27T08:39:20
oeisdata/seq/A384/A384340.seq
bff45008be3531ff818b5d185889a8b2
A384341
Consecutive states of the linear congruential pseudo-random number generator (31481*s+21139) mod 10^5 when started at s=1.
[ "1", "52620", "51359", "53818", "65597", "80296", "19515", "72854", "37913", "60292", "73591", "39410", "87349", "55008", "27987", "79886", "12305", "94844", "5103", "68682", "99181", "38200", "95339", "88198", "82377", "31476", "17095", "88834", "4293", "69072", "76771", "48990", "75329", "53388", "28767", "35066", "33885", "54824" ]
[ "nonn", "easy" ]
11
1
2
[ "A384081", "A384340", "A384341" ]
null
Sean A. Irvine, May 26 2025
2025-05-27T08:38:31
oeisdata/seq/A384/A384341.seq
6352f50149f03916fc48ba2977c9daeb
A384343
Expansion of Product_{k>=1} (1 + k*x)^((1/2)^(k+1)).
[ "1", "1", "-1", "3", "-14", "86", "-650", "5822", "-60287", "708873", "-9334633", "136142011", "-2179136696", "37987580268", "-716513806824", "14540745561432", "-315936103907094", "7318039354370826", "-180020739049731594", "4687207255550122014", "-128782014195949550724", "3723598212075752653284", "-113023054997369519314572" ]
[ "sign" ]
14
0
4
[ "A000670", "A084784", "A381890", "A384343", "A384344", "A384345" ]
null
Seiichi Manyama, May 26 2025
2025-05-29T07:16:19
oeisdata/seq/A384/A384343.seq
3f80dbfea5a84b8c19bfc45b063fd0a7
A384344
Expansion of Product_{k>=1} (1 + k*x)^((1/6) * (2/3)^k).
[ "1", "1", "-2", "10", "-77", "787", "-9972", "150552", "-2637729", "52615903", "-1177590290", "29228602546", "-796945212035", "23681656958269", "-761803800466856", "26376749702235900", "-978091742247376932", "38674335439691203644", "-1624351949069462807480", "72221688529265896447384" ]
[ "sign" ]
11
0
3
[ "A050351", "A090351", "A381890", "A384343", "A384344", "A384345" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:34:24
oeisdata/seq/A384/A384344.seq
34f51a8598e2d97b7117c2da636c3e9c
A384345
Expansion of Product_{k>=1} (1 + k*x)^((1/20) * (4/5)^k).
[ "1", "1", "-4", "36", "-494", "9026", "-205284", "5581276", "-176518189", "6366839811", "-257967985400", "11601382088720", "-573484266103260", "30909105184132900", "-1804012437852543160", "113356419526025564808", "-7629831521445348113927", "547688013439312943707673", "-41765446604358525581076812" ]
[ "sign" ]
10
0
3
[ "A050353", "A090356", "A381890", "A384343", "A384344", "A384345" ]
null
Seiichi Manyama, May 26 2025
2025-05-27T10:34:36
oeisdata/seq/A384/A384345.seq
996e0f9d8a67ea7eb3856417f60670e2
A384346
Consecutive internal states of the linear congruential pseudo-random number generator (4253261*s+12896793) mod 2^24 when started at s=1.
[ "1", "372838", "7765191", "4398068", "1141373", "15605682", "6176419", "2364192", "13454009", "15104446", "16260159", "8774412", "449717", "6277770", "831899", "15169464", "15932529", "11656726", "5003959", "16547108", "2409965", "15155298", "11219859", "5857104", "4740393", "4799854", "8198191", "14633532" ]
[ "nonn", "easy" ]
10
1
2
[ "A096550", "A096561", "A384346" ]
null
Sean A. Irvine, May 27 2025
2025-06-19T19:57:37
oeisdata/seq/A384/A384346.seq
5e3d1ac7a808d94f62948c03a700aa41
A384347
Heinz numbers of integer partitions with exactly two possible ways to choose disjoint strict partitions of each part.
[ "5", "7", "21", "22", "25", "26", "33", "35", "39", "49", "102", "114", "130", "147", "154", "165", "170", "175", "190", "195", "231", "238", "242", "255", "275", "285" ]
[ "nonn", "more" ]
7
1
1
[ "A048767", "A055396", "A056239", "A061395", "A112798", "A179009", "A239455", "A299200", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A382525", "A382771", "A382857", "A382912", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384323", "A384347" ]
null
Gus Wiseman, May 27 2025
2025-05-28T10:53:22
oeisdata/seq/A384/A384347.seq
c1d28f08fd6be072a1bad61d8197f195
A384348
Number of integer partitions of n with no proper way to choose disjoint strict partitions of each part.
[ "1", "1", "2", "2", "4", "6", "7", "11", "17", "25", "30", "44", "61", "82", "113", "141", "193", "249", "327", "422", "548", "682", "881", "1106", "1400", "1751" ]
[ "nonn" ]
5
0
3
[ "A000009", "A000041", "A048767", "A048768", "A098859", "A179009", "A217605", "A239455", "A279790", "A299200", "A317142", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A381454", "A382525", "A382912", "A382913", "A383533", "A383706", "A383707", "A383708", "A383710", "A383711", "A384005", "A384317", "A384318", "A384319", "A384321", "A384322", "A384323", "A384347", "A384348", "A384349", "A384390", "A384393", "A384395" ]
null
Gus Wiseman, May 30 2025
2025-05-30T23:12:25
oeisdata/seq/A384/A384348.seq
267bee9dd07bb572c61d3f5674fd4f26
A384349
Heinz numbers of integer partitions with no proper way to choose disjoint strict partitions of each part.
[ "1", "2", "3", "4", "6", "8", "9", "10", "12", "14", "15", "16", "18", "20", "24", "27", "28", "30", "32", "36", "40", "42", "44", "45", "48", "50", "52", "54", "56", "60", "63", "64", "66", "68", "70", "72", "75", "76", "78", "80", "81", "84", "88", "90", "92", "96", "98", "99", "100", "104", "105", "108", "110", "112", "116", "117", "120", "124", "125", "126", "128", "132", "135" ]
[ "nonn" ]
7
1
2
[ "A048767", "A048768", "A056239", "A112798", "A122111", "A130091", "A179009", "A279375", "A279790", "A317142", "A326080", "A351294", "A357982", "A381454", "A382525", "A382912", "A382913", "A383706", "A383707", "A383708", "A383710", "A384317", "A384319", "A384320", "A384321", "A384322", "A384348", "A384349", "A384389", "A384390" ]
null
Gus Wiseman, Jun 03 2025
2025-06-05T09:54:29
oeisdata/seq/A384/A384349.seq
04881dbad16c4d77d0f7af792d368b8e
A384350
Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.
[ "0", "0", "0", "1", "4", "13", "33", "81", "183", "402", "856", "1801", "3721", "7646", "15567", "31575" ]
[ "nonn", "more" ]
8
0
5
[ "A048767", "A048768", "A179009", "A217605", "A239455", "A279375", "A279790", "A299200", "A317141", "A317142", "A326080", "A326083", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A383706", "A383707", "A383708", "A383710", "A384317", "A384318", "A384319", "A384320", "A384321", "A384322", "A384350", "A384391" ]
null
Gus Wiseman, Jun 05 2025
2025-06-07T16:45:56
oeisdata/seq/A384/A384350.seq
14407bcb4642798f6902fb2e845f2059
A384351
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/2)^(k+2)).
[ "1", "1", "7", "143", "6140", "455828", "51947988", "8414718996", "1836791273514", "519582028795210", "184852108308617398", "80776494267416227078", "42529172631705836804876", "26553065315757661351020284", "19397441882229095276127402500", "16390942374821715002096327774628" ]
[ "nonn" ]
11
0
3
[ "A055203", "A084784", "A262809", "A384351", "A384352", "A384353" ]
null
Seiichi Manyama, May 27 2025
2025-05-29T07:03:08
oeisdata/seq/A384/A384351.seq
2f47b4906f783198c81421e45b2695bf
A384352
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).
[ "1", "1", "32", "5392", "2676188", "2930633692", "5993325199448", "20540879727692152", "109337218761743017718", "854254522610491562826582", "9378640254148405369808277352", "139752461092050444767050922501096", "2747716352285121538660626991038190636", "69628008338488529846443753577404293410060" ]
[ "nonn" ]
10
0
3
[ "A062208", "A084784", "A262809", "A384351", "A384352", "A384353" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:25
oeisdata/seq/A384/A384352.seq
517b3ab33900b7fa0f765a6d071c9e1a
A384353
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/2)^(k+4)).
[ "1", "1", "161", "233201", "1388333781", "23407417517205", "900363695229160325", "68584682130559722233525", "9362104205577409136806214275", "2125938144923623062958782871506275", "758178276483321320080629434392636915075", "405630344408921348237973282862682052175313075" ]
[ "nonn" ]
12
0
3
[ "A062205", "A084784", "A262809", "A384351", "A384352", "A384353" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:22
oeisdata/seq/A384/A384353.seq
833a0bfe5967aacdfca7d64f84a02683
A384354
Numbers k such that the arithmetic mean of the divisors of k evenly divides k+1.
[ "1", "2", "3", "5", "7", "11", "13", "17", "19", "20", "23", "29", "31", "35", "37", "41", "43", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "101", "103", "104", "107", "109", "113", "127", "131", "137", "139", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "207", "211", "223", "227", "229", "233", "239", "241", "251", "257", "263", "269", "271", "277", "281", "283", "293" ]
[ "nonn" ]
24
1
2
[ "A000005", "A000040", "A000203", "A384354" ]
null
Ivan N. Ianakiev, May 27 2025
2025-06-04T17:58:56
oeisdata/seq/A384/A384354.seq
f950dd7281738a094764ff39ac72e720
A384355
Population of elementary triangular automaton rule 58 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "9", "13", "22", "18", "36", "54", "48", "54", "84", "96", "108", "132", "180", "204", "174", "186", "252", "216", "294", "258", "264", "432", "324", "426", "474", "534", "498", "702", "666", "732", "648", "792", "750", "816", "834", "864", "840", "942", "852", "1068", "972", "1218", "1080", "1272", "1392", "1572", "1506", "1380", "1728", "1716", "1662" ]
[ "nonn" ]
9
0
2
[ "A384355", "A384363" ]
null
Paul Cousin, May 27 2025
2025-05-28T00:58:48
oeisdata/seq/A384/A384355.seq
e833670ded72da5384e21ffc5d744a6a
A384356
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/18) * (2/3)^k).
[ "1", "1", "19", "1147", "145606", "31784062", "10617130378", "5033441934298", "3213448742033479", "2657684269018334807", "2763967539211567981613", "3530274805575983022456005", "5432490565296371673408076892", "9912854399723224290769677025316", "21163615551469069985356131546443588" ]
[ "nonn" ]
12
0
3
[ "A384356", "A384362" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:09
oeisdata/seq/A384/A384356.seq
26056732949e8fcb8e790eab1699e67b
A384357
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/54) * (2/3)^k).
[ "1", "1", "153", "128793", "319155321", "1744213657689", "17803590830142393", "304609764628470426969", "8095576593110601916260369", "315845539893724747798646514673", "17317064152543324914717101316522961", "1288754843591816442932799782872809777393", "126555732798742295186573610437899751882638209" ]
[ "nonn" ]
11
0
3
[ "A384357", "A384362" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:14
oeisdata/seq/A384/A384357.seq
a74ba6886e8cc914840b8d31a5ec4277
A384358
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/162) * (2/3)^k).
[ "1", "1", "1321", "16210201", "820657237561", "117856012064818489", "38648527065793350391329", "25112088578490906968072202609", "29248901038277816617484354852346429", "56683882435365104654655753669402941927069", "172551008002533192343018045442364399983107657925" ]
[ "nonn" ]
10
0
3
[ "A384358", "A384362" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:18
oeisdata/seq/A384/A384358.seq
58a4be1026f48cfb605d67bbef295b9d
A384359
Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/48) * (3/4)^k).
[ "1", "1", "37", "4453", "1126375", "489185863", "324848377243", "306044183298331", "388203452145317314", "637855747987693348770", "1317841032827800659419754", "3343784211346797764798294634", "10221662989279986155378379955158", "37051850653048390530321630384383382", "157140052593846256021318451838028238910" ]
[ "nonn" ]
8
0
3
[ "A384359", "A384364" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:05
oeisdata/seq/A384/A384359.seq
6fea3f2402eba7e888c5f154acd467d8
A384360
Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/192) * (3/4)^k).
[ "1", "1", "424", "998584", "6925040260", "105920615923684", "3026129933925315784", "144928319460945421096936", "10782220800085014574469693026", "1177609713750570874317795178806210", "180749886489278186545417627942230436008", "37658177020555445685152123914054243838809128" ]
[ "nonn" ]
10
0
3
[ "A384360", "A384364" ]
null
Seiichi Manyama, May 27 2025
2025-05-27T10:33:02
oeisdata/seq/A384/A384360.seq
6127042ea2204a9d35a2732a5e1aa66c
A384361
Consecutive internal states of the linear congruential pseudo-random number generator of the HP 48 series calculators when started at 999500333083533.
[ "999500333083533", "529199358633911", "43582181444437", "294922982088079", "41089642444893", "284830972469031", "786870433805477", "40703079813759", "869103111377453", "156083179654551", "561556952003317", "315753873725039", "722319935785213", "518159379358471", "201897051493957", "715330849773919" ]
[ "nonn", "easy" ]
17
1
1
[ "A096550", "A096561", "A381318", "A382535", "A383809", "A384081", "A384221", "A384361", "A384416" ]
null
Paolo Xausa, May 27 2025
2025-05-28T10:45:39
oeisdata/seq/A384/A384361.seq
bc14827b699ef48220f935608b5233fc
A384362
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 2^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
[ "1", "1", "1", "1", "2", "1", "1", "10", "4", "1", "1", "74", "148", "8", "1", "1", "730", "13540", "2440", "16", "1", "1", "9002", "2308756", "3087368", "42256", "32", "1", "1", "133210", "632363044", "10208479240", "778026256", "752800", "64", "1", "1", "2299754", "253970683348", "69754997963528", "52520969994256", "207633589664", "13660480", "128", "1" ]
[ "nonn", "tabl" ]
18
0
5
[ "A000012", "A000079", "A004123", "A098270", "A262809", "A384362", "A384364" ]
null
Seiichi Manyama, May 27 2025
2025-05-28T04:33:21
oeisdata/seq/A384/A384362.seq
c88817fb880f46c28916c087b69c8fbc
A384363
Slice of elementary triangular automaton rule 58, starting from a lone 1 cell.
[ "1", "3", "6", "13", "31", "48", "104", "220", "484", "796", "1700", "3580", "7940", "12588", "27516", "57284", "122956", "201036", "439756", "909068", "2048428", "3260604", "6950308", "14619132", "31505156", "51481228", "112237244", "232238020", "525920332", "837265868", "1779497548", "3753480012", "8055847244", "13161451340" ]
[ "nonn" ]
12
0
2
[ "A384355", "A384363" ]
null
Paul Cousin, May 27 2025
2025-05-28T00:58:42
oeisdata/seq/A384/A384363.seq
7d5a7d6b84f9776756a3f6c19e23eba2
A384364
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 3^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
[ "1", "1", "1", "1", "3", "1", "1", "21", "9", "1", "1", "219", "657", "27", "1", "1", "3045", "119241", "22869", "81", "1", "1", "52923", "40365873", "80850987", "836001", "243", "1", "1", "1103781", "21955523049", "747786838869", "60579666801", "31436181", "729", "1", "1", "26857659", "17512689629457", "14298291269335467", "16117269494868801", "48066954848379", "1204022961", "2187", "1" ]
[ "nonn", "tabl" ]
15
0
5
[ "A000012", "A000244", "A032033", "A084768", "A262809", "A384362", "A384364" ]
null
Seiichi Manyama, May 27 2025
2025-05-28T04:33:12
oeisdata/seq/A384/A384364.seq
a6d0d4572ff8f2e8d0dbe3ec168fe11f
A384367
a(n) = a(n-1)+2*a(n-2)+a(n-3) with a(0)=1, a(1)=4, a(2) = 6.
[ "1", "4", "6", "15", "31", "67", "144", "309", "664", "1426", "3063", "6579", "14131", "30352", "65193", "140028", "300766", "646015", "1387575", "2980371", "6401536", "13749853", "29533296", "63434538", "136250983", "292653355", "628589859", "1350147552", "2899980625", "6228865588", "13378974390", "28736686191" ]
[ "nonn", "easy" ]
11
0
2
[ "A016957", "A384367" ]
null
Eric W. Weisstein, May 27 2025
2025-05-27T11:05:32
oeisdata/seq/A384/A384367.seq
390c803e68c590fbc5aad9a61cafab3b
A384368
Number of permutations of [2n] with n inversions.
[ "1", "1", "5", "29", "174", "1068", "6655", "41926", "266338", "1703027", "10947079", "70673825", "457927079", "2976282415", "19395654894", "126688273871", "829176461458", "5436687172806", "35703722618623", "234807844921153", "1546217013188447", "10193761267335877", "67275841673522196", "444431529264364506" ]
[ "nonn" ]
32
0
3
[ "A008302", "A100220", "A128566", "A384368" ]
null
Alois P. Heinz, May 27 2025
2025-06-09T06:18:41
oeisdata/seq/A384/A384368.seq
b5cecb9e183b26c068c5905a12ea5cf6
A384369
Numbers k such that Omega(k)^Omega(k) = Omega(k) (mod k) where Omega = A001222.
[ "1", "2", "3", "5", "7", "8", "11", "12", "13", "17", "19", "23", "29", "31", "36", "37", "41", "43", "47", "48", "53", "59", "61", "67", "71", "73", "79", "80", "83", "84", "89", "97", "101", "103", "107", "109", "113", "120", "126", "127", "131", "137", "139", "149", "151", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199", "208", "211", "223", "227", "229", "233", "239", "241" ]
[ "nonn" ]
16
1
2
[ "A000040", "A001222", "A384369" ]
null
Juri-Stepan Gerasimov, May 30 2025
2025-06-04T23:21:41
oeisdata/seq/A384/A384369.seq
da764e0daa525b11eb4859b0f511ae09
A384370
Squarefree integers m such that there are precisely 5 groups of order m.
[ "273", "399", "651", "741", "777", "1209", "1281", "1365", "1407", "1443", "1533", "1659", "1677", "1767", "1995", "2037", "2109", "2163", "2289", "2379", "2451", "2613", "2847", "2919", "3003", "3171", "3297", "3423", "3441", "3477", "3705", "3783", "3801", "3819", "3885", "3999", "4017", "4053", "4161", "4179", "4251", "4389", "4503", "4641", "4683", "4773", "4809", "4953" ]
[ "nonn" ]
15
1
1
[ "A054397", "A384370" ]
null
Robin Jones, May 27 2025
2025-05-31T19:20:44
oeisdata/seq/A384/A384370.seq
0d65849b9ef890c2f5da5890ebdb8ad2
A384371
Number of rich ternary words of length n.
[ "1", "3", "9", "27", "75", "201", "513", "1269", "3033", "7047", "15903", "35031", "75291", "158487", "326889", "662259", "1318803", "2585931", "4996251", "9524343", "17925495", "33341619", "61324821", "111624927", "201179643", "359232897", "635814867", "1116019719", "1943414733", "3358893675", "5763797829" ]
[ "nonn" ]
8
0
2
[ "A216264", "A384371" ]
null
Lucas Mol, May 27 2025
2025-05-30T23:34:03
oeisdata/seq/A384/A384371.seq
99be9d20cd690a6053ea8743fab85a18
A384372
Numbers m such that both m-1 and m+1 are the product of at least 4 not necessarily distinct primes.
[ "55", "89", "127", "151", "161", "197", "199", "209", "233", "249", "251", "271", "295", "305", "307", "329", "341", "343", "349", "351", "377", "379", "391", "415", "449", "461", "463", "485", "487", "489", "491", "511", "521", "545", "551", "559", "569", "571", "593", "631", "649", "665", "685", "687", "689", "701", "703", "713", "727", "737", "739", "749", "751" ]
[ "nonn" ]
32
1
1
[ "A001222", "A176462", "A384372" ]
null
Sinuhe Perea, May 27 2025
2025-06-14T21:45:03
oeisdata/seq/A384/A384372.seq
55efe4ebe2dc0f52d6422f7fffdc79b6
A384373
Consecutive internal states of the linear congruential pseudo-random number generator 131075*s mod 2^27 when started at s=1.
[ "1", "131075", "786441", "3538971", "14155857", "53084403", "56885977", "131991691", "11540897", "89279715", "29157033", "42513403", "126884849", "110253011", "56425337", "17363563", "133224257", "106202563", "109285705", "102544347", "34347921", "88494771", "87619609", "131917899", "2930913", "38283939" ]
[ "nonn", "easy" ]
9
1
2
[ "A096550", "A096561", "A384373" ]
null
Sean A. Irvine, May 27 2025
2025-05-28T09:18:22
oeisdata/seq/A384/A384373.seq
9db901d31006622ea4e9ae5cf3e21988