sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384164
a(n) = Product_{k=0..n-1} (3*n+k).
[ "1", "3", "42", "990", "32760", "1395360", "72681840", "4475671200", "318073392000", "25622035084800", "2306992893004800", "229601607198163200", "25028504609870361600", "2965681982933429760000", "379534960108578193920000", "52170410224819317150720000", "7666009844358186506465280000", "1199151678674216896627654656000" ]
[ "nonn", "easy" ]
32
0
2
[ "A000407", "A061924", "A124320", "A352601", "A384164", "A384165" ]
null
Seiichi Manyama, May 21 2025
2025-05-24T10:35:29
oeisdata/seq/A384/A384164.seq
7468646a648991942b6d054b57906f45
A384165
a(n) = Product_{k=0..n-1} (3*n+2*k).
[ "1", "3", "48", "1287", "48384", "2340135", "138378240", "9672183675", "780151357440", "71322093677835", "7287813911347200", "823100991923184975", "101819334240239616000", "13690816766440373134575", "1988199345147516813312000", "310120801435080997013527875", "51709528644340997758648320000" ]
[ "nonn", "easy" ]
23
0
2
[ "A384164", "A384165", "A384166" ]
null
Seiichi Manyama, May 21 2025
2025-05-22T09:54:29
oeisdata/seq/A384/A384165.seq
2a60e52906d7cfe3b98802f7c938af73
A384166
a(n) = Product_{k=0..n-1} (3*n+4*k).
[ "1", "3", "60", "1989", "92160", "5486535", "399072960", "34298042625", "3400783626240", "382128386114475", "47986411423104000", "6659996213472126525", "1012334387351519232000", "167253493686752981883375", "29842935065036371998720000", "5719198821953333723419037625", "1171620424982972483984424960000" ]
[ "nonn", "easy" ]
19
0
2
[ "A303487", "A384164", "A384165", "A384166" ]
null
Seiichi Manyama, May 21 2025
2025-05-22T16:41:11
oeisdata/seq/A384/A384166.seq
481f9606ab27668c09e9bf2eed5b68ce
A384167
a(n) = 2^n * n! * binomial(3*n/2,n) * Sum_{k=1..n} 1/(n+2*k).
[ "1", "10", "143", "2736", "66009", "1926912", "66086271", "2605455360", "116123049585", "5774107852800", "316921177332495", "19032668386099200", "1241454631056114825", "87402945316493721600", "6606130538582006306175", "533534147838972474163200", "45855293972076668267481825", "4178822478568980876361728000" ]
[ "nonn" ]
11
1
2
[ "A098118", "A113551", "A384167", "A384168", "A384169" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:38:33
oeisdata/seq/A384/A384167.seq
9bd9a00f4fb6ab58ffe8d53ef829c12c
A384168
a(n) = 3^n * n! * binomial(4*n/3,n) * Sum_{k=1..n} 1/(n+3*k).
[ "1", "13", "234", "5566", "165944", "5966136", "251491120", "12169996912", "665146831680", "40530954643840", "2724842629685120", "200361647815660800", "15997170878205905920", "1378271357428552115200", "127459020533529062246400", "12593128815600367187507200", "1323895109721239722075136000" ]
[ "nonn" ]
9
1
2
[ "A098118", "A303486", "A384167", "A384168", "A384169" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:39:09
oeisdata/seq/A384/A384168.seq
39b8015d004c1957b1bc1dddac74bc96
A384169
a(n) = 4^n * n! * binomial(5*n/4,n) * Sum_{k=1..n} 1/(n+4*k).
[ "1", "16", "347", "9856", "349269", "14885760", "742589175", "42479124480", "2742327328905", "197267905658880", "15649214440432275", "1357388618032742400", "127808331929417605725", "12983375200126773657600", "1415428114244995252270575", "164837363498660501913600000", "20423530465926352502482292625" ]
[ "nonn" ]
11
1
2
[ "A098118", "A303487", "A384167", "A384168", "A384169" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:39:24
oeisdata/seq/A384/A384169.seq
6a89f395cf9b4a35418c8103b6b6b053
A384170
a(n) = 3^n * n! * binomial(5*n/3,n) * Sum_{k=1..n} 1/(2*n+3*k).
[ "1", "17", "423", "14198", "603194", "31069980", "1882538440", "131223122480", "10345975290000", "910393948446560", "88452245803947200", "9405081915991747200", "1086351888729412883200", "135456246872643979788800", "18134220756665496528460800", "2594357788916663689703168000", "395006034401484168868002560000" ]
[ "nonn" ]
9
1
2
[ "A384136", "A384170" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:39:36
oeisdata/seq/A384/A384170.seq
1c771834a4a6f29e55fff92b9b4f78c9
A384171
a(n) = 2^n * n! * binomial(5*n/2,n) * Sum_{k=1..n} 1/(3*n+2*k).
[ "1", "18", "503", "19312", "946009", "56419200", "3967700295", "321506211840", "29497821190065", "3022798062551040", "342204383046633975", "42414460290839347200", "5712600791700063700425", "830773593435129407078400", "129744737403826992957167175", "21657021896289762215460864000", "3847769544999445159548440534625" ]
[ "nonn" ]
9
1
2
[ "A384137", "A384171", "A384172" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:39:52
oeisdata/seq/A384/A384171.seq
8d8567af62cd8234dcc0383b10405f8a
A384172
a(n) = 4^n * n! * binomial(7*n/4,n) * Sum_{k=1..n} 1/(3*n+4*k).
[ "1", "24", "851", "40832", "2483269", "183241728", "15912395295", "1590131687424", "179766351690345", "22685041361848320", "3161081216499580395", "482101740659382681600", "79876921394710650447405", "14287114673531430042009600", "2743817201103924825303993975", "563131793021994402478188134400" ]
[ "nonn" ]
10
1
2
[ "A384137", "A384166", "A384171", "A384172" ]
null
Seiichi Manyama, May 21 2025
2025-05-21T06:40:14
oeisdata/seq/A384/A384172.seq
b5742f8ac07dd9b161cc10e60b934127
A384173
Number of Hamiltonian paths from NW to SW corners in an n X n grid reduced for symmetry, i.e., where reflection about the x-axis is not counted as distinct.
[ "1", "1", "1", "5", "43", "897", "44209", "4467927", "1043906917", "506673590576", "555799435739334", "1284472450789974196", "6625529679919810063544", "72597408139909172033687226", "1762085630816152820582838187465", "91326629994353561722347679614188407" ]
[ "nonn", "walk" ]
13
1
4
[ "A209077", "A265914", "A384173" ]
null
Oliver R. Bellwood, May 21 2025
2025-06-06T08:07:11
oeisdata/seq/A384/A384173.seq
30e48d8756039921831c3e010cc807b0
A384174
Primes p such that the concatenations of p and 123456789 in both orders are prime.
[ "409", "653", "881", "1091", "1489", "1913", "1993", "2039", "2729", "3677", "4073", "5039", "5507", "5683", "5849", "7349", "7789", "7907", "8419", "8623", "8689", "9973", "10429", "11057", "11617", "11689", "11821", "12527", "13367", "14033", "15259", "15511", "15629", "16139", "17569", "17881", "17911", "19373", "19577", "21187", "21383", "23197", "23399", "23629", "24043", "24317" ]
[ "nonn", "base" ]
34
1
1
[ "A232726", "A232728", "A384174", "A384218" ]
null
Robert Israel, May 22 2025
2025-05-23T10:14:07
oeisdata/seq/A384/A384174.seq
add6524fab9801776d50c1c902a1dc2d
A384175
Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1).
[ "1", "2", "4", "7", "13", "24", "44", "77", "135", "236", "412", "713", "1215", "2048", "3434", "5739", "9559", "15850", "26086", "42605", "69133", "111634", "179602", "288069", "460553", "733370", "1162356", "1833371", "2878621", "4501856", "7016844", "10905449", "16904399", "26132460", "40279108", "61885621", "94766071", "144637928" ]
[ "nonn" ]
12
0
2
[ "A000009", "A010027", "A034839", "A044813", "A047993", "A098859", "A116674", "A242882", "A243815", "A268193", "A325325", "A328592", "A329739", "A336866", "A351202", "A383013", "A384175", "A384176", "A384177", "A384178", "A384879", "A384880", "A384884", "A384886", "A384889", "A384890", "A384891", "A384892", "A384893", "A384905" ]
null
Gus Wiseman, Jun 16 2025
2025-06-18T23:19:55
oeisdata/seq/A384/A384175.seq
a69e8ac42cb9b73d0ddd6f6994bfd64f
A384176
Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1).
[ "0", "0", "0", "1", "3", "8", "20", "51", "121", "276", "612", "1335", "2881", "6144", "12950", "27029", "55977", "115222", "236058", "481683", "979443" ]
[ "nonn", "more" ]
7
0
5
[ "A000009", "A010027", "A034839", "A044813", "A098859", "A116674", "A242882", "A243815", "A268193", "A325325", "A328592", "A329739", "A336866", "A351202", "A383013", "A384175", "A384176", "A384177", "A384178", "A384880", "A384884", "A384886", "A384889", "A384890", "A384891", "A384892", "A384893", "A384905" ]
null
Gus Wiseman, Jun 16 2025
2025-06-17T09:18:05
oeisdata/seq/A384/A384176.seq
9b89f467185ebb530329d8f641e64256
A384177
Number of subsets of {1..n} with all distinct lengths of maximal anti-runs (increasing by more than 1).
[ "1", "2", "3", "5", "10", "19", "35", "62", "109", "197", "364", "677", "1251", "2288", "4143", "7443", "13318", "23837", "42809", "77216", "139751", "253293", "458800", "829237", "1494169", "2683316", "4804083", "8580293", "15301324", "27270061", "48607667", "86696300", "154758265", "276453311", "494050894", "882923051" ]
[ "nonn" ]
13
0
2
[ "A000009", "A010027", "A034839", "A044813", "A047993", "A098859", "A106529", "A116674", "A123513", "A242882", "A243815", "A268193", "A325325", "A328592", "A329739", "A336866", "A351202", "A384175", "A384176", "A384177", "A384178", "A384879", "A384880", "A384884", "A384886", "A384889", "A384890", "A384893", "A384905" ]
null
Gus Wiseman, Jun 16 2025
2025-06-18T23:18:43
oeisdata/seq/A384/A384177.seq
40510fe2095dd35181f2422c52b517d7
A384178
Number of strict integer partitions of n with all distinct lengths of maximal runs (decreasing by 1).
[ "1", "1", "1", "2", "1", "2", "2", "3", "3", "4", "5", "6", "6", "8", "8", "10", "11", "13", "13", "16", "15", "19", "19", "23", "22", "26", "28", "31", "35", "39", "37", "47", "51", "52", "60", "65", "67", "78", "85", "86", "99", "108", "110", "127", "136", "138", "159", "170", "171", "196", "209", "213", "240", "257", "260", "292", "306", "313", "350", "371", "369", "417", "441" ]
[ "nonn" ]
9
0
4
[ "A000009", "A000041", "A008284", "A044813", "A047993", "A098859", "A239455", "A242882", "A325324", "A325325", "A329739", "A336866", "A351202", "A351293", "A351294", "A351295", "A381432", "A381433", "A384175", "A384176", "A384178", "A384880", "A384884", "A384886" ]
null
Gus Wiseman, Jun 12 2025
2025-06-14T23:51:08
oeisdata/seq/A384/A384178.seq
32744790f646b0d23af6b08eab13f992
A384179
Number of ways to choose strict integer partitions of each conjugate prime index of n.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "4", "2", "1", "2", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "4", "1", "1", "3", "1", "2", "1", "2", "1", "4", "1", "2", "1", "1", "1", "2", "1", "1", "4", "4", "1", "2", "1", "2", "1", "2", "1", "3", "1", "1", "4", "2", "1", "2", "1", "3", "4", "1", "1", "2", "1", "1", "1" ]
[ "nonn" ]
5
1
8
[ "A000009", "A000041", "A033942", "A037143", "A048767", "A048768", "A050361", "A055396", "A056239", "A061395", "A112798", "A122111", "A130091", "A179009", "A217605", "A239455", "A270995", "A279375", "A279790", "A351293", "A351294", "A351295", "A357982", "A381432", "A381433", "A382913", "A383706", "A383707", "A383710", "A384005", "A384010", "A384011", "A384179" ]
null
Gus Wiseman, May 23 2025
2025-05-24T11:00:31
oeisdata/seq/A384/A384179.seq
faa143f7cc27d2611f5270659360da1d
A384180
Irregular triangle read by rows where row n lists the Heinz numbers of all uniform (equal multiplicities) and normal (covering an initial interval) multisets of length n.
[ "2", "4", "6", "8", "30", "16", "36", "210", "32", "2310", "64", "216", "900", "30030", "128", "510510", "256", "1296", "44100", "9699690", "512", "27000", "223092870", "1024", "7776", "5336100", "6469693230", "2048", "200560490130", "4096", "46656", "810000", "9261000", "901800900", "7420738134810", "8192", "304250263527210" ]
[ "nonn", "tabf" ]
5
1
1
[ "A000005", "A000009", "A001694", "A002110", "A047966", "A048767", "A048768", "A056239", "A098859", "A100778", "A106529", "A112798", "A116540", "A122111", "A130091", "A217605", "A258280", "A322792", "A324939", "A325326", "A325337", "A381431", "A383512", "A384180" ]
null
Gus Wiseman, May 25 2025
2025-05-28T09:19:54
oeisdata/seq/A384/A384180.seq
aae9164d3dd801d8ed00a0574f947118
A384181
Primes p such that k! + p or |k! - p| is composite for all k >= 0.
[ "2", "3", "71", "97", "179", "181", "211", "223", "251", "283", "431", "503", "577", "827", "857", "971", "1019", "1021", "1109", "1213", "1249", "1259", "1279", "1289", "1373", "1427", "1429", "1483", "1571", "1609", "1619", "1637", "1699", "1709", "1759", "1801", "2053", "2129", "2141", "2213", "2269", "2281", "2293", "2297", "2339", "2381", "2477", "2503" ]
[ "nonn" ]
18
1
1
[ "A082470", "A352912", "A384181" ]
null
Gonzalo Martínez, May 21 2025
2025-06-02T18:11:27
oeisdata/seq/A384/A384181.seq
4e0cff7b5e0a863c4dd07b858a1c4b26
A384182
a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^4, where 0 < x < y < z < w has exactly n integer solutions.
[ "6", "9", "15", "34", "20", "19", "66", "28", "36", "35", "26", "30", "355", "97", "44", "329", "151", "65", "590", "89", "48", "42", "129", "54", "70", "99", "56", "178", "580", "128", "110", "392", "107", "518", "63", "125", "90", "887", "242", "78", "100", "138", "105", "96", "235", "141", "281", "205", "326", "1094", "117", "108", "197", "860" ]
[ "nonn", "more" ]
14
1
1
[ "A383877", "A384182" ]
null
Zhining Yang, May 21 2025
2025-05-28T16:47:14
oeisdata/seq/A384/A384182.seq
c1d2a6aba73df8ff226674cc9de2ac89
A384183
a(n) = minimum number of steps required to move n stones from a hole to the next one in an infinite row of holes, where at one step we can move any k stones at once from a hole to the hole at distance k to the left or to the right, and there are n stones overall.
[ "0", "1", "2", "3", "4", "5", "5", "6", "7", "7", "6", "7", "7", "8", "7", "7", "8", "9", "8", "8", "9", "8", "8", "9", "8", "9", "8", "9", "9", "10", "9", "9", "10", "9", "9", "9", "10", "10", "9", "10", "9", "10", "9", "10", "10", "10", "10", "10", "10", "10", "10", "10", "11", "11", "10", "10", "10", "10", "10", "11", "10", "11", "10", "11", "11", "10", "11", "11", "11", "11", "11", "11", "11", "11", "10", "11", "11", "11" ]
[ "nonn", "nice" ]
57
0
3
null
null
Konstantin Knop, May 21 2025
2025-06-25T00:26:52
oeisdata/seq/A384/A384183.seq
7b3d1f8ff4db71edee6070112582542b
A384184
Order of the permutation of {0,...,n-1} formed by successively swapping elements at i and 2*i mod n, for i = 0,...,n-1.
[ "1", "2", "1", "4", "2", "2", "2", "8", "3", "4", "5", "4", "6", "4", "6", "16", "4", "6", "9", "8", "4", "10", "28", "8", "10", "12", "9", "8", "14", "12", "12", "32", "5", "8", "70", "12", "18", "18", "24", "16", "10", "8", "7", "20", "210", "56", "126", "16", "110", "20", "60", "24", "26", "18", "120", "16", "9", "28", "29", "24", "30", "24", "60", "64", "6", "10", "33", "16" ]
[ "nonn" ]
72
1
2
[ "A000027", "A001122", "A001133", "A001134", "A001135", "A003418", "A004626", "A051732", "A065119", "A155072", "A225759", "A384184" ]
null
Mia Boudreau, May 29 2025
2025-06-23T22:11:41
oeisdata/seq/A384/A384184.seq
e1f74de52f9a9ca03703d821f15551fb
A384185
Integers in A375491 in order of their first appearance.
[ "1", "2", "4", "6", "12", "5", "8", "24", "3", "7", "18", "16", "30", "36", "48", "10", "32", "14", "72", "9", "60", "96", "120", "19", "64", "13", "40", "144", "21", "35", "56", "38", "28", "90", "26", "240", "15", "192", "384", "44", "76", "360", "88", "80", "180", "168", "114", "54", "288", "112", "264", "25", "41", "33", "256", "98", "20", "55", "312", "128" ]
[ "nonn" ]
9
1
2
[ "A375491", "A384185" ]
null
Robin Jones, May 21 2025
2025-05-26T23:51:35
oeisdata/seq/A384/A384185.seq
c3d0859e7e8bede53cbed1b828241df0
A384186
Number of permutations of 1, 2,..., n with exactly one rising or falling successon, namely (n-1)n or n(n-1).
[ "0", "2", "2", "2", "6", "34", "214", "1506", "11990", "107234", "1065846", "11659426", "139217494", "1801784610", "25124797046", "375531165794", "5989287277014", "101524201538146", "1822662037112950", "34548339122512674", "689469487015534166", "14450128299126915746" ]
[ "nonn", "easy" ]
7
1
2
[ "A002464", "A086652", "A383857", "A384186" ]
null
Wolfdieter Lang, May 21 2025
2025-05-22T01:27:17
oeisdata/seq/A384/A384186.seq
ddebe6bb52e4af9b6dc0492ab6e41733
A384187
Primes p such that p + 6, p^2 + 6, p^3 + 6, p^4 + 6 and p^5 + 6 are primes.
[ "1361", "70216961", "71317991", "311153281", "371383381", "385230821", "400675721", "466490881", "487757861", "620258761", "818694271", "822486341", "888942491", "898259491", "1102784471", "1423261241", "1443957371", "1623698051", "1628827091", "1729743571", "1831375171", "1837091231", "1904579381", "1978478521", "2070333781" ]
[ "nonn" ]
12
1
1
[ "A023201", "A243734", "A384187" ]
null
Gonzalo Martínez, May 21 2025
2025-06-13T15:34:59
oeisdata/seq/A384/A384187.seq
85222d857ad89c0b4ae5ff60682036dc
A384188
Population of elementary triangular automaton rule 178 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "10", "16", "16", "28", "46", "52", "40", "64", "76", "94", "118", "142", "184", "184", "166", "196", "214", "232", "256", "286", "334", "376", "418", "454", "508", "544", "604", "682", "766", "748", "742", "766", "784", "802", "826", "856", "904", "946", "988", "1036", "1090", "1168", "1258", "1360", "1480", "1552", "1636", "1672", "1714", "1756" ]
[ "nonn" ]
9
0
2
null
null
Paul Cousin, May 21 2025
2025-05-22T09:38:32
oeisdata/seq/A384/A384188.seq
dbf9f99dc1497b5406b9ad05004e0c50
A384189
Numbers whose number of zeros in their binary representation is not equal to 1.
[ "1", "3", "4", "7", "8", "9", "10", "12", "15", "16", "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "48", "49", "50", "51", "52", "53", "54", "56", "57", "58", "60", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82" ]
[ "nonn", "base" ]
14
1
2
[ "A023416", "A030130", "A164874", "A384189" ]
null
Chai Wah Wu, May 21 2025
2025-05-22T05:23:06
oeisdata/seq/A384/A384189.seq
fbf4e132b5c1de5809e26bd55838c937
A384190
Number of non-isomorphic AG-groupoids of order n.
[ "1", "3", "20", "331", "31913", "40104513", "643460323187" ]
[ "nonn", "hard", "more" ]
34
1
2
[ "A001329", "A001426", "A124506", "A350874", "A350875", "A384190" ]
null
Elijah Beregovsky, May 21 2025
2025-05-26T05:50:12
oeisdata/seq/A384/A384190.seq
16ff717e61ec100a3197c4ef3479b6e8
A384191
Unique increasing sequence (a(n)) whose complement, (b(n)), satisfies b(n) = a(a(n))+3.
[ "1", "2", "3", "7", "8", "9", "10", "11", "12", "16", "17", "18", "22", "23", "24", "25", "26", "27", "31", "32", "33", "34", "35", "36", "40", "41", "42", "46", "47", "48", "49", "50", "51", "55", "56", "57", "61", "62", "63", "64", "65", "66", "70", "71", "72", "73", "74", "75", "79", "80", "81", "85", "86", "87", "88", "89", "90", "94", "95", "96", "97", "98", "99", "103", "104" ]
[ "nonn" ]
8
1
2
[ "A000201", "A137708", "A384191", "A384192" ]
null
Clark Kimberling, May 21 2025
2025-05-28T00:53:17
oeisdata/seq/A384/A384191.seq
877ebe6ab769b8546fc6cfc40a878c44
A384192
Complement of A384191.
[ "4", "5", "6", "13", "14", "15", "19", "20", "21", "28", "29", "30", "37", "38", "39", "43", "44", "45", "52", "53", "54", "58", "59", "60", "67", "68", "69", "76", "77", "78", "82", "83", "84", "91", "92", "93", "100", "101", "102", "106", "107", "108", "115", "116", "117", "121", "122", "123", "130", "131", "132", "139", "140", "141", "145", "146", "147", "154", "155" ]
[ "nonn" ]
9
1
1
[ "A137709", "A384191", "A384192" ]
null
Clark Kimberling, May 21 2025
2025-05-30T01:09:07
oeisdata/seq/A384/A384192.seq
616e8f89fcb0e3ea14505815463d4076
A384193
Slice of elementary triangular automaton rule 210, starting from a lone 1 cell.
[ "1", "3", "5", "13", "17", "59", "81", "219", "257", "899", "1301", "3381", "4357", "15245", "20753", "56123", "65809", "230331", "332049", "867227", "1118465", "3914627", "5312837", "14400365", "16847169", "58964835", "85266693", "221592365", "285561153", "999119715", "1358954837", "3674219349", "4312076629", "15094059861" ]
[ "nonn" ]
20
0
2
[ "A372581", "A374413", "A384193" ]
null
Paul Cousin, May 21 2025
2025-06-03T01:11:09
oeisdata/seq/A384/A384193.seq
785869b818d1e6e4b020385c2bcda1ad
A384194
Consecutive states of the linear congruential pseudo-random number generator 259*s mod 2^15 when started at s=1.
[ "1", "259", "1545", "6939", "27729", "5619", "13529", "30603", "29089", "30179", "17577", "30459", "24561", "4307", "1401", "2411", "1857", "22211", "18249", "7899", "14225", "14259", "23065", "10059", "16609", "9123", "3561", "4795", "29489", "2707", "12985", "20779", "7809", "23683", "6281", "21147", "4817", "2419", "3929", "1803", "8225" ]
[ "nonn", "easy" ]
19
1
2
[ "A096555", "A384158", "A384194" ]
null
Sean A. Irvine, May 21 2025
2025-06-15T22:36:22
oeisdata/seq/A384/A384194.seq
3ab32ffd62909f2d36752640bcf4387a
A384195
a(n) = tau(n+1) - tau(n-1), where tau(n) = A000005(n), the number of divisors of n.
[ "1", "1", "0", "1", "0", "0", "1", "0", "-1", "2", "0", "-2", "2", "1", "-2", "1", "0", "0", "2", "-2", "-2", "4", "1", "-4", "1", "2", "-2", "2", "0", "-2", "2", "-2", "0", "5", "-2", "-5", "2", "4", "-2", "0", "0", "-2", "4", "-2", "-4", "6", "1", "-4", "1", "0", "-2", "2", "2", "0", "0", "-4", "-2", "8", "0", "-8", "4", "3", "-2", "1", "-2", "-2", "2", "2", "-2", "4", "0", "-8", "4", "2", "-2", "2", "-2", "2", "3", "-6", "-3", "8", "2", "-8" ]
[ "sign" ]
14
2
10
[ "A000005", "A051950", "A051951", "A067888", "A384195" ]
null
Dan Dart, May 21 2025
2025-05-27T19:09:12
oeisdata/seq/A384/A384195.seq
6a3b0add9b989dce435f3f82a04eaaeb
A384196
Consecutive states of the linear congruential pseudo-random number generator 20403*s mod 2^15 when started at s=1.
[ "1", "20403", "30505", "30891", "9361", "20579", "16953", "25819", "6689", "29715", "1609", "27659", "28849", "27331", "21337", "15931", "14401", "25715", "14697", "2923", "209", "4387", "18553", "923", "23137", "8403", "4233", "22219", "21745", "17283", "8601", "13563", "129", "10547", "2985", "20011", "27921", "483", "24249", "21083" ]
[ "nonn", "easy", "changed" ]
17
1
2
[ "A096550", "A096561", "A384196" ]
null
Sean A. Irvine, May 21 2025
2025-07-06T17:47:49
oeisdata/seq/A384/A384196.seq
a659ccd9ba2ab9012373d060ab9049cf
A384197
The Barret reducer reciprocal mod n.
[ "4", "8", "5", "16", "12", "10", "9", "32", "28", "25", "23", "21", "19", "18", "17", "64", "60", "56", "53", "51", "48", "46", "44", "42", "40", "39", "37", "36", "35", "34", "33", "128", "124", "120", "117", "113", "110", "107", "105", "102", "99", "97", "95", "93", "91", "89", "87", "85", "83", "81", "80", "78", "77", "75", "74", "73", "71", "70", "69", "68", "67", "66", "65", "256" ]
[ "nonn", "easy" ]
11
1
1
[ "A070939", "A143096", "A384197" ]
null
Darío Clavijo, May 21 2025
2025-06-06T14:46:18
oeisdata/seq/A384/A384197.seq
f65da754d79f301cea83f3fc68d22d2e
A384198
a(n) = 3^(n-3)*(binomial(n,3) + 3*binomial(n,2) + 9*n + 27).
[ "1", "4", "16", "64", "255", "1008", "3942", "15228", "58077", "218700", "813564", "2991816", "10884699", "39208536", "139946130", "495303012", "1739406393", "6064804692", "21006799848", "72318491280", "247561692471", "843026984064", "2856838685886", "9637472084364", "32374793163285", "108327417770268", "361133233980372" ]
[ "nonn", "easy", "changed" ]
11
0
2
[ "A382618", "A384198" ]
null
Enrique Navarrete, May 21 2025
2025-06-30T09:05:50
oeisdata/seq/A384/A384198.seq
4e6ce2decbd2d5e82bbde1e4897917f0
A384199
Expansion of e.g.f. log(1 + x)/(1 - 3*x).
[ "0", "1", "5", "47", "558", "8394", "150972", "3171132", "76102128", "2054797776", "61643570400", "2034241452000", "73232652355200", "2856073920854400", "119955098448864000", "5397979517377171200", "259103015526429849600", "13214253812770712217600", "713569705533931031654400" ]
[ "nonn", "easy" ]
18
0
3
[ "A024167", "A069015", "A383897", "A384199" ]
null
Seiichi Manyama, May 22 2025
2025-05-23T03:28:59
oeisdata/seq/A384/A384199.seq
bd1d6a9ea549adc7b733d8cf144066e1
A384200
Expansion of e.g.f. -log(1 - 3*x)/(3 * (1 - x)).
[ "0", "1", "5", "33", "294", "3414", "49644", "872388", "18001584", "426553776", "11408104800", "339766164000", "11148335337600", "399489448694400", "15520734764640000", "649782085752172800", "29160211264750540800", "1396381090351116441600", "71068392067688315596800", "3830710201119961857331200" ]
[ "nonn", "easy" ]
15
0
3
[ "A126674", "A384200" ]
null
Seiichi Manyama, May 22 2025
2025-05-22T16:41:58
oeisdata/seq/A384/A384200.seq
ad64e91d8a2a19e6b9706109b13ffe18
A384201
Expansion of e.g.f. -log(1 - 2*x)/(2 * (1 + x)).
[ "0", "1", "0", "8", "16", "304", "2016", "31968", "389376", "6817536", "117619200", "2422080000", "52684646400", "1277090150400", "33132492288000", "931341738700800", "27948405871411200", "896073058285977600", "30491347526251315200", "1099008249715585843200", "41796901408833994752000" ]
[ "nonn", "easy" ]
9
0
4
[ "A384201", "A384202" ]
null
Seiichi Manyama, May 22 2025
2025-05-22T05:23:34
oeisdata/seq/A384/A384201.seq
3f3546c0693c7e5e91bc40eaf3d13bc0
A384202
Expansion of e.g.f. -log(1 - 3*x)/(3 * (1 + x)).
[ "0", "1", "1", "15", "102", "1434", "20556", "380988", "7974576", "192768336", "5214883680", "156913290720", "5188181880960", "187114724853120", "7308276334974720", "307346919257952000", "13846147184588544000", "665272996712352000000", "33958618500545883648000", "1835197000323512071680000" ]
[ "nonn", "easy" ]
11
0
4
[ "A384201", "A384202" ]
null
Seiichi Manyama, May 22 2025
2025-05-22T06:56:51
oeisdata/seq/A384/A384202.seq
73519382f79aebbdee3ab084fa1c6c33
A384203
Population of elementary triangular automaton rule 250 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "10", "16", "22", "34", "52", "64", "70", "82", "106", "142", "172", "202", "244", "268", "274", "286", "310", "346", "382", "430", "502", "574", "616", "646", "706", "802", "892", "976", "1078", "1132", "1138", "1150", "1174", "1210", "1246", "1294", "1366", "1438", "1486", "1534", "1618", "1750", "1894", "2026", "2182", "2326", "2392", "2422" ]
[ "nonn" ]
9
0
2
null
null
Paul Cousin, May 22 2025
2025-05-22T09:38:37
oeisdata/seq/A384/A384203.seq
61a1e8516576d54173de0d4ee6bf9866
A384205
a(n) = [x^(2*n)] Product_{k=0..n} 1/(1 - k*x)^2.
[ "1", "3", "201", "40792", "16904053", "11861321255", "12632193171300", "19003969060842360", "38387884967440214085", "100260769162534336491025", "328834941448280603509191681", "1323249839691864496146379353852", "6410573322270839015074278503521740", "36805304509116365389123823470306765972" ]
[ "nonn" ]
10
0
2
[ "A007820", "A350376", "A384205", "A384206" ]
null
Vaclav Kotesovec, May 22 2025
2025-05-22T17:07:03
oeisdata/seq/A384/A384205.seq
45ed9f9f520d845f3fd1475af13dbd4d
A384206
a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^2.
[ "1", "4", "1291", "2107596", "9822847079", "99559982844000", "1870441451243408425", "58630795546429054116336", "2846132741588198942785663319", "202389763024999232451527049522000", "20194222519959431156536932169706390700", "2731878423936456763814384150978735866605108" ]
[ "nonn" ]
8
0
2
[ "A350376", "A384206", "A384207" ]
null
Vaclav Kotesovec, May 22 2025
2025-05-22T17:09:18
oeisdata/seq/A384/A384206.seq
578e278a9ea384fa48602c076632acbe
A384207
a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^3.
[ "1", "10", "6562", "21157758", "192817813260", "3803916720008250", "138757892706447212551", "8432782489668636227456524", "792912489591430219972681508172", "109146372957847294924041235504625400", "21071987342698034891951000233099719150440", "5513873439400596105839885628799257242723984298" ]
[ "nonn" ]
11
0
2
[ "A007820", "A383862", "A384022", "A384206", "A384207" ]
null
Vaclav Kotesovec, May 22 2025
2025-05-22T17:12:46
oeisdata/seq/A384/A384207.seq
b849396273631f7bfc3294d13289f5d6
A384208
a(n) is the number of ways to partition a square n X n into five rectangles of different dimensions, without any straight cut spanning the entire square.
[ "0", "0", "0", "1", "4", "15", "39", "88", "162", "283", "450", "691", "1005", "1425", "1954", "2626", "3444", "4452", "5652", "7094", "8775", "10755", "13035", "15676", "18679", "22053", "25819", "29967", "34543", "39531", "44976", "50878", "57231", "64026", "71296", "79026", "87243", "95920", "105036", "114590", "124672", "135206", "146231", "157684", "169642", "182051", "194927", "208298", "222125", "236484" ]
[ "nonn" ]
21
1
5
[ "A381847", "A384208" ]
null
Janaka Rodrigo, May 22 2025
2025-06-04T10:24:24
oeisdata/seq/A384/A384208.seq
1d87dc45d32eae310aa4309b767c99a5
A384209
Maximum period for Game of Life on a simple graph with n vertices.
[ "1", "1", "1", "1", "2", "4", "8", "14", "27" ]
[ "nonn", "more" ]
8
1
5
[ "A357951", "A384209" ]
null
Pontus von Brömssen, May 22 2025
2025-05-22T09:53:28
oeisdata/seq/A384/A384209.seq
c3de30753be04bc418947d793a304723
A384210
Number of numbers <= n of the form p * m^2, where p is a prime and m is an integer >= 1.
[ "0", "1", "2", "2", "3", "3", "4", "5", "5", "5", "6", "7", "8", "8", "8", "8", "9", "10", "11", "12", "12", "12", "13", "13", "13", "13", "14", "15", "16", "16", "17", "18", "18", "18", "18", "18", "19", "19", "19", "19", "20", "20", "21", "22", "23", "23", "24", "25", "25", "26", "26", "27", "28", "28", "28", "28", "28", "28", "29", "29", "30", "30", "31", "31", "31", "31", "32", "33", "33", "33", "34", "35", "36", "36", "37" ]
[ "nonn" ]
16
1
3
[ "A000720", "A001221", "A008836", "A229125", "A358769", "A384210" ]
null
Ridouane Oudra, May 22 2025
2025-06-06T14:48:06
oeisdata/seq/A384/A384210.seq
659915eb94c098c44127c962f3adee37
A384211
a(n) is the number of distinct ways of representing n in any integer base >= 2 using only prime digits.
[ "0", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "2", "1", "2", "2", "2", "1", "4", "2", "3", "2", "3", "1", "6", "2", "3", "4", "4", "1", "6", "2", "5", "4", "5", "2", "7", "2", "7", "4", "5", "3", "8", "4", "9", "3", "7", "3", "12", "3", "6", "5", "6", "4", "11", "2", "9", "4", "9", "6", "13", "3", "11", "8", "12", "3", "12", "3", "13", "7", "8", "5", "14", "5", "13", "5", "11", "4", "15", "3", "13", "8", "10", "7", "15" ]
[ "nonn", "base" ]
12
0
12
[ "A055240", "A355034", "A384211" ]
null
Felix Huber, May 23 2025
2025-05-30T18:11:10
oeisdata/seq/A384/A384211.seq
031ccf5bb2fb0a1010cad6b33da19d1f
A384212
a(n) is the number of bases >= 2 in which the alternating sum of digits of n is equal to 0.
[ "0", "0", "1", "1", "1", "2", "1", "2", "2", "2", "1", "4", "1", "2", "3", "3", "1", "4", "1", "3", "2", "2", "1", "6", "2", "2", "3", "4", "1", "6", "1", "4", "3", "2", "2", "7", "1", "2", "3", "6", "1", "5", "1", "4", "5", "2", "1", "8", "2", "3", "3", "4", "1", "5", "2", "6", "3", "2", "1", "9", "1", "2", "5", "5", "3", "6", "1", "4", "2", "6", "1", "10", "1", "2", "5", "4", "2", "5", "1", "8", "3", "2", "1", "8", "3", "2", "2" ]
[ "nonn", "base" ]
19
1
6
[ "A055240", "A061845", "A135499", "A135551", "A225693", "A384211", "A384212" ]
null
Felix Huber, May 24 2025
2025-06-03T17:49:23
oeisdata/seq/A384/A384212.seq
a33953b6f3029d83b7b611fcfc3833b3
A384213
Decimal expansion of the volume of an elongated pentagonal rotunda with unit edge.
[ "1", "4", "6", "1", "1", "9", "7", "1", "8", "1", "1", "0", "6", "2", "8", "3", "5", "5", "7", "6", "3", "3", "8", "7", "2", "2", "4", "7", "0", "7", "9", "4", "9", "1", "5", "8", "9", "3", "5", "5", "7", "6", "3", "1", "3", "6", "8", "2", "9", "4", "1", "4", "2", "5", "1", "0", "3", "1", "4", "9", "9", "5", "0", "5", "6", "9", "3", "5", "3", "9", "6", "1", "9", "9", "2", "2", "4", "6", "1", "7", "5", "7", "0", "3", "0", "6", "9", "0", "4", "7" ]
[ "nonn", "cons", "easy" ]
11
2
2
[ "A002163", "A010476", "A179637", "A384138", "A384140", "A384144", "A384213" ]
null
Paolo Xausa, May 23 2025
2025-05-23T10:14:01
oeisdata/seq/A384/A384213.seq
9f1b7d3250cdbc3c754daffa838738b7
A384214
Decimal expansion of the volume of a gyroelongated square cupola with unit edge.
[ "6", "2", "1", "0", "7", "6", "5", "7", "9", "2", "0", "3", "9", "2", "0", "0", "0", "3", "6", "6", "5", "8", "2", "2", "8", "8", "3", "3", "4", "5", "9", "8", "0", "7", "3", "1", "6", "9", "6", "0", "1", "0", "0", "3", "2", "0", "9", "1", "3", "7", "4", "5", "1", "7", "8", "3", "6", "4", "1", "8", "1", "7", "0", "5", "4", "3", "7", "9", "9", "6", "0", "4", "6", "7", "0", "8", "9", "3", "8", "4", "9", "5", "9", "9", "9", "4", "2", "7", "1", "3" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A002193", "A010466", "A179587", "A179638", "A384142", "A384214", "A384215" ]
null
Paolo Xausa, May 23 2025
2025-05-24T01:56:29
oeisdata/seq/A384/A384214.seq
16f5dc075f440e755111ee713a47cd8d
A384215
Decimal expansion of the surface area of a gyroelongated square cupola with unit edge.
[ "1", "8", "4", "8", "8", "6", "8", "1", "1", "6", "2", "5", "9", "0", "5", "7", "6", "5", "6", "5", "2", "4", "0", "6", "0", "9", "1", "5", "5", "9", "4", "8", "7", "5", "7", "9", "9", "1", "8", "5", "3", "3", "7", "0", "0", "1", "9", "8", "0", "5", "7", "9", "9", "2", "8", "6", "6", "3", "2", "3", "9", "4", "3", "7", "3", "2", "4", "1", "1", "3", "0", "0", "4", "1", "4", "6", "8", "2", "1", "4", "2", "6", "3", "1", "0", "6", "5", "0", "6", "0" ]
[ "nonn", "cons", "easy" ]
7
2
2
[ "A002194", "A010466", "A384214", "A384215" ]
null
Paolo Xausa, May 23 2025
2025-05-24T01:58:52
oeisdata/seq/A384/A384215.seq
c227b4651f544b4d6fe84b4c9b008ea6
A384216
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] (1 + k*x)^(n/k).
[ "1", "1", "1", "1", "1", "2", "1", "1", "0", "6", "1", "1", "-2", "-3", "24", "1", "1", "-4", "0", "0", "120", "1", "1", "-6", "15", "40", "45", "720", "1", "1", "-8", "42", "0", "-280", "0", "5040", "1", "1", "-10", "81", "-264", "-1155", "0", "-1575", "40320", "1", "1", "-12", "132", "-896", "0", "20160", "24640", "0", "362880", "1", "1", "-14", "195", "-2040", "8645", "57456", "-208845", "-291200", "99225", "3628800" ]
[ "sign", "tabl", "easy" ]
21
0
6
[ "A282627", "A303489", "A383996", "A383997", "A384216" ]
null
Seiichi Manyama, May 22 2025
2025-05-24T05:29:37
oeisdata/seq/A384/A384216.seq
813e19eefe3e18264e892a9a6ff87874
A384217
Consecutive states of the linear congruential pseudo-random number generator (843314861*s+453816693) mod 2^31 when started at s=1.
[ "1", "1297131554", "17103983", "1426780792", "2111429773", "1142766270", "888797147", "1081516660", "1471148505", "488941338", "1429379591", "2081849904", "166513637", "1928300854", "1776832243", "142642604", "236172977", "1916812562", "182141599", "551190760", "1397538365", "1487855278", "1455317259" ]
[ "nonn", "easy" ]
24
1
2
[ "A096550", "A096561", "A384217", "A384387" ]
null
Sean A. Irvine, May 29 2025
2025-05-30T03:43:53
oeisdata/seq/A384/A384217.seq
edfe7c0eba02e6b38745a0430e50a8f9
A384218
Numbers k such that the concatenations of k and 123456789 in both orders are prime.
[ "217", "409", "629", "653", "779", "871", "881", "1091", "1463", "1489", "1913", "1993", "2039", "2729", "2881", "3397", "3649", "3677", "3751", "3961", "4073", "4321", "4843", "4961", "5039", "5507", "5609", "5683", "5849", "5941", "6593", "6613", "6713", "6923", "7349", "7571", "7789", "7907", "8413", "8419", "8617", "8623", "8687", "8689", "8797", "8909", "9083", "9589", "9973", "10241" ]
[ "nonn", "base" ]
16
1
1
[ "A232725", "A232727", "A384174", "A384218" ]
null
Robert Israel, May 22 2025
2025-05-23T10:13:52
oeisdata/seq/A384/A384218.seq
9910abb5ed94251b90213f39e4c7cf2c
A384219
Areas of triangles whose three vertices are consecutive ordered pairs of consecutive odd Fibonacci numbers such that an ordered pair’s y-value is the next ordered pair’s x-value.
[ "2", "6", "24", "104", "442", "1870", "7920", "33552", "142130", "602070", "2550408", "10803704", "45765226", "193864606", "821223648", "3478759200", "14736260450", "62423800998", "264431464440", "1120149658760", "4745030099482", "20100270056686", "85146110326224", "360684711361584", "1527884955772562" ]
[ "nonn", "easy" ]
17
1
1
[ "A000045", "A014437", "A384219" ]
null
Angela L. Brobson, May 22 2025
2025-05-30T18:47:35
oeisdata/seq/A384/A384219.seq
33de3d57125d5d3432f4aa9bc8abc0dc
A384220
Consecutive states of the linear congruential pseudo-random number generator for Smalltalk-80 when started at 1.
[ "1", "41030", "24167", "29748", "11069", "4562", "19459", "53408", "8761", "54302", "60255", "60364", "8437", "29482", "55419", "12728", "9073", "15094", "28503", "52836", "58797", "14210", "52211", "44496", "58281", "13518", "51791", "31740", "22885", "48858", "1643", "42216", "17121", "8614", "56391", "21652", "23581", "26930" ]
[ "nonn", "easy" ]
14
1
2
[ "A096550", "A096561", "A383940", "A384220" ]
null
Sean A. Irvine, May 22 2025
2025-05-28T00:56:38
oeisdata/seq/A384/A384220.seq
d7afd2afe803fc1b1bc431b63d8259bd
A384221
Consecutive states of the linear congruential pseudo-random number generator for the Texas Instruments TI99 when started at 1.
[ "1", "60062", "56335", "54564", "49133", "60602", "58139", "22240", "20761", "56598", "51559", "19676", "40837", "55218", "39667", "29464", "55089", "14478", "41919", "50580", "25629", "39850", "28619", "32848", "62025", "56582", "51991", "8012", "28085", "6306", "49571", "24200", "609", "43646", "40815", "14852", "7245", "11930" ]
[ "nonn", "easy" ]
15
1
2
[ "A096550", "A096561", "A384221" ]
null
Sean A. Irvine, May 22 2025
2025-05-28T16:25:07
oeisdata/seq/A384/A384221.seq
3f3c1017d955fc03046077fe5693dd48
A384222
Irregular triangle read by rows: T(n,k) is the length of the k-th sublist of divisors of n whose terms increase by a factor of at most 2, with n >= 1, k >= 1.
[ "1", "2", "1", "1", "3", "1", "1", "4", "1", "1", "4", "1", "1", "1", "2", "2", "1", "1", "6", "1", "1", "2", "2", "1", "2", "1", "5", "1", "1", "6", "1", "1", "6", "1", "1", "1", "1", "2", "2", "1", "1", "8", "1", "1", "1", "2", "2", "1", "1", "1", "1", "6", "1", "1", "8", "1", "1", "6", "1", "1", "1", "1", "2", "2", "1", "2", "1", "9", "1", "1", "2", "2", "1", "1", "1", "1", "8", "1", "1", "8", "1", "1", "3", "3", "1", "4", "1", "2", "2", "1", "1", "10", "1", "1", "1", "2", "2", "2", "1", "1", "1", "1", "3", "3", "1", "1", "8" ]
[ "nonn", "tabf", "changed" ]
79
1
2
[ "A000005", "A000203", "A027750", "A174973", "A237270", "A237271", "A237591", "A237593", "A240062", "A320537", "A384149", "A384222" ]
null
Omar E. Pol, Jun 03 2025
2025-07-08T10:44:20
oeisdata/seq/A384/A384222.seq
079a7983825f6a29a43a6ebf87730d54
A384223
Irregular triangle read by rows: T(n,k) is the sum of the k-th odd divisor and the next even divisors that are less than the next odd divisor of n, with n >= 1, k >= 1.
[ "1", "3", "1", "3", "7", "1", "5", "3", "9", "1", "7", "15", "1", "3", "9", "3", "15", "1", "11", "3", "25", "1", "13", "3", "21", "1", "3", "5", "15", "31", "1", "17", "3", "9", "27", "1", "19", "7", "35", "1", "3", "7", "21", "3", "33", "1", "23", "3", "57", "1", "5", "25", "3", "39", "1", "3", "9", "27", "7", "49", "1", "29", "3", "3", "21", "45", "1", "31", "63", "1", "3", "11", "33", "3", "51", "1", "5", "7", "35", "3", "13", "75", "1", "37", "3", "57", "1", "3", "13", "39", "7", "83" ]
[ "nonn", "tabf", "easy" ]
20
1
2
[ "A000079", "A000203", "A001227", "A027750", "A237270", "A237271", "A237593", "A279387", "A384149", "A384223", "A384224" ]
null
Omar E. Pol, Jun 03 2025
2025-06-16T17:30:34
oeisdata/seq/A384/A384223.seq
87e16ff20d24d2bc6c008ac9f6b7196b
A384224
Irregular triangle read by rows: T(n,k) is the number of divisors in the k-th sublist of the divisors of n formed by the k-th odd divisor and the next even divisors that are less than the next odd divisor of n, with n >= 1, k >= 1.
[ "1", "2", "1", "1", "3", "1", "1", "2", "2", "1", "1", "4", "1", "1", "1", "2", "2", "1", "1", "2", "4", "1", "1", "2", "2", "1", "1", "1", "1", "5", "1", "1", "2", "2", "2", "1", "1", "3", "3", "1", "1", "1", "1", "2", "2", "1", "1", "2", "6", "1", "1", "1", "2", "2", "1", "1", "1", "1", "3", "3", "1", "1", "2", "1", "3", "2", "1", "1", "6", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "3", "4", "1", "1", "2", "2", "1", "1", "1", "1", "3", "5", "1", "1", "2", "2", "2", "2", "1", "1", "3", "3" ]
[ "nonn", "tabf", "easy" ]
16
1
2
[ "A000005", "A000079", "A001227", "A027750", "A237270", "A237271", "A237593", "A279387", "A384222", "A384223", "A384224" ]
null
Omar E. Pol, Jun 04 2025
2025-06-16T17:37:41
oeisdata/seq/A384/A384224.seq
494904b81108d483e0ad3535b886b419
A384225
Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th sublist of divisors of n whose terms increase by a factor of at most 2, with n >= 1, k >= 1.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "4", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "4", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4" ]
[ "nonn", "tabf", "changed" ]
26
1
8
[ "A001227", "A237271", "A237590", "A237593", "A279387", "A280940", "A384149", "A384222", "A384225" ]
null
Omar E. Pol, Jun 16 2025
2025-07-08T10:42:33
oeisdata/seq/A384/A384225.seq
6e2a1255865ff1803013378a87bec1d6
A384226
Irregular triangle read by rows: T(n,k) is the sum of odd divisors in the k-th sublist of divisors of n whose terms increase by a factor of at most 2, with n >= 1, k >= 1.
[ "1", "1", "1", "3", "1", "1", "5", "4", "1", "7", "1", "1", "3", "9", "1", "5", "1", "11", "4", "1", "13", "1", "7", "1", "8", "15", "1", "1", "17", "13", "1", "19", "6", "1", "3", "7", "21", "1", "11", "1", "23", "4", "1", "5", "25", "1", "13", "1", "3", "9", "27", "8", "1", "29", "24", "1", "31", "1", "1", "3", "11", "33", "1", "17", "1", "12", "35", "13", "1", "37", "1", "19", "1", "3", "13", "39", "6", "1", "41", "32", "1", "43", "1", "11", "1", "32", "45", "1", "23", "1", "47", "4" ]
[ "nonn", "tabf", "changed" ]
22
1
4
[ "A000593", "A237271", "A237593", "A384149", "A384222", "A384225", "A384226" ]
null
Omar E. Pol, Jun 24 2025
2025-07-08T10:42:46
oeisdata/seq/A384/A384226.seq
db2c647affd3824c1d86c0d301ba7f9e
A384231
Index of the largest odd noncomposite divisor in the list of divisors of n.
[ "1", "1", "2", "1", "2", "3", "2", "1", "2", "3", "2", "3", "2", "3", "3", "1", "2", "3", "2", "4", "3", "3", "2", "3", "2", "3", "2", "4", "2", "4", "2", "1", "3", "3", "3", "3", "2", "3", "3", "4", "2", "5", "2", "4", "3", "3", "2", "3", "2", "3", "3", "4", "2", "3", "3", "4", "3", "3", "2", "5", "2", "3", "3", "1", "3", "5", "2", "4", "3", "4", "2", "3", "2", "3", "3", "4", "3", "5", "2", "4", "2", "3", "2", "6", "3", "3", "3", "5", "2", "4", "3", "4", "3", "3", "3", "3", "2", "3", "4", "4" ]
[ "nonn", "easy" ]
14
1
3
[ "A000079", "A006005", "A027750", "A383401", "A384231", "A384232", "A384233", "A384234" ]
null
Omar E. Pol, May 29 2025
2025-06-03T00:59:39
oeisdata/seq/A384/A384231.seq
6c2d113e686b893f38f224eeb6f1bab6
A384232
Smallest number whose largest odd noncomposite divisor is its n-th divisor.
[ "1", "3", "6", "20", "42", "84", "156", "312", "684", "1020", "1380", "1860", "3480", "3720", "4920", "7320", "10980", "14640", "16920", "21960", "26280", "34920", "45720", "59640", "69840", "89880", "106680", "125160", "145320", "177240", "213360", "244440", "269640", "354480", "320040", "375480", "435960", "456120", "531720", "647640", "708120" ]
[ "nonn" ]
20
1
2
[ "A006005", "A027750", "A087134", "A383402", "A384232", "A384233" ]
null
Omar E. Pol, May 23 2025
2025-05-29T00:13:52
oeisdata/seq/A384/A384232.seq
c212fffee45f1b73bf02f367046464fc
A384233
Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd noncomposite divisor is its k-th divisor, n >= 1, k >= 1.
[ "1", "2", "3", "4", "5", "6", "8", "7", "10", "20", "16", "9", "12", "28", "42", "32", "11", "14", "30", "60", "84", "64", "13", "15", "40", "66", "132", "156", "128", "17", "18", "44", "78", "168", "204", "312", "256", "19", "21", "52", "88", "198", "228", "408", "684", "512", "23", "22", "56", "102", "210", "264", "456", "696", "1020", "1024", "25", "24", "68", "104", "220", "276", "468", "744", "1140", "1380" ]
[ "nonn", "tabl" ]
17
1
2
[ "A000079", "A006005", "A027750", "A061345", "A065091", "A087134", "A383961", "A384232", "A384233" ]
null
Omar E. Pol, May 22 2025
2025-05-29T00:12:45
oeisdata/seq/A384/A384233.seq
ecc4f9b6d55e66c45a7a19c0b79a7079
A384234
Irregular triangle read by rows: T(n,k) is the index of the k-th odd noncomposite divisor in the list of divisors of n, with n >=1, k >= 1.
[ "1", "1", "1", "2", "1", "1", "2", "1", "3", "1", "2", "1", "1", "2", "1", "3", "1", "2", "1", "3", "1", "2", "1", "3", "1", "2", "3", "1", "1", "2", "1", "3", "1", "2", "1", "4", "1", "2", "3", "1", "3", "1", "2", "1", "3", "1", "2", "1", "3", "1", "2", "1", "4", "1", "2", "1", "3", "4", "1", "2", "1", "1", "2", "3", "1", "3", "1", "2", "3", "1", "3", "1", "2", "1", "3", "1", "2", "3", "1", "4", "1", "2", "1", "3", "5", "1", "2", "1", "4", "1", "2", "3", "1", "3", "1", "2", "1", "3", "1", "2", "1", "3" ]
[ "nonn", "tabf", "easy" ]
12
1
4
[ "A000012", "A000079", "A006005", "A027750", "A383962", "A384231", "A384232", "A384233", "A384234" ]
null
Omar E. Pol, May 29 2025
2025-06-03T01:00:09
oeisdata/seq/A384/A384234.seq
e44aa22a0623a0de8e3d0c7c8a41ea85
A384235
a(n) is the least number that is the concatenation of n consecutive primes, in increasing order, and is the product of n primes, counted with multiplicity.
[ "2", "35", "357", "11131719", "3571113", "5711131719", "463467479487491499503", "811821823827829839853857", "103910491051106110631069108710911093", "1291129713011303130713191321132713611367", "19011907191319311933194919511973197919871993", "109091093710939109491095710973109791098710993110031102711047" ]
[ "nonn", "base" ]
17
1
1
[ "A383114", "A384235" ]
null
Robert Israel, May 23 2025
2025-06-03T02:28:06
oeisdata/seq/A384/A384235.seq
b5998cab47584b12b40b7fb3b34ea34b
A384236
Consecutive states of the linear congruential pseudo-random number generator (9806*s+1) mod (2^17-1) when started at s=1.
[ "1", "9807", "92400", "111649", "125103", "66530", "52814", "32564", "33629", "122410", "4243", "57352", "99123", "108674", "50015", "110480", "65066", "114640", "94945", "33358", "86404", "34681", "83713", "123077", "122366", "97063", "93248", "38593", "40982", "5807", "58629", "38569", "67780", "120711", "120937", "108886" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384236" ]
null
Sean A. Irvine, May 22 2025
2025-06-17T17:47:10
oeisdata/seq/A384/A384236.seq
f51546cca521b1006f93c2d24bcf1a26
A384237
The number of divisors d of n such that d^d = d (mod n).
[ "1", "2", "2", "2", "2", "3", "2", "2", "2", "3", "2", "4", "2", "3", "3", "2", "2", "3", "2", "3", "3", "3", "2", "3", "2", "3", "2", "4", "2", "6", "2", "2", "3", "3", "2", "4", "2", "3", "3", "3", "2", "4", "2", "3", "3", "3", "2", "3", "2", "3", "3", "3", "2", "3", "3", "4", "3", "3", "2", "4", "2", "3", "3", "2", "4", "5", "2", "3", "3", "3", "2", "3", "2", "3", "3", "3", "2", "4", "2", "4", "2", "3", "2", "6", "3", "3", "3", "3", "2", "5", "3", "3", "3", "3", "3", "2", "2", "3", "2", "3" ]
[ "nonn" ]
22
1
2
[ "A000005", "A027750", "A384237" ]
null
Juri-Stepan Gerasimov, May 22 2025
2025-05-31T00:00:43
oeisdata/seq/A384/A384237.seq
acbb2d3a9a45da48f390fdda67b3c067
A384238
Decimal expansion of sqrt(5) - log(phi) - 1, where phi is the golden ratio.
[ "7", "5", "4", "8", "5", "6", "1", "5", "2", "4", "4", "0", "1", "8", "6", "2", "4", "8", "9", "1", "1", "4", "1", "4", "7", "5", "5", "3", "0", "6", "9", "0", "7", "8", "1", "2", "3", "0", "5", "4", "3", "4", "0", "2", "5", "2", "2", "5", "8", "6", "5", "2", "0", "4", "6", "0", "9", "8", "7", "9", "0", "7", "6", "5", "7", "0", "3", "5", "7", "0", "5", "8", "0", "2", "9", "5", "8", "3", "1", "2", "5", "0", "0", "2", "4", "0", "4" ]
[ "nonn", "cons" ]
24
0
1
[ "A002163", "A002390", "A384238", "A384682" ]
null
Kritsada Moomuang, May 22 2025
2025-06-09T10:38:50
oeisdata/seq/A384/A384238.seq
173457cd2983d85d593e9ef63a79c6e4
A384239
The number of primes p <= n such that p^p = p (mod n).
[ "0", "1", "1", "1", "1", "2", "1", "3", "1", "1", "1", "4", "2", "2", "3", "3", "2", "3", "2", "5", "3", "1", "1", "8", "1", "2", "1", "3", "2", "6", "1", "2", "3", "2", "4", "5", "1", "4", "3", "8", "2", "7", "3", "5", "5", "1", "1", "10", "4", "3", "2", "4", "1", "3", "3", "8", "4", "3", "1", "11", "3", "3", "7", "3", "5", "6", "2", "3", "3", "7", "1", "11", "2", "2", "5", "5", "6", "7", "1", "12", "3", "4", "1", "14", "2", "4", "5", "8", "2", "11" ]
[ "nonn" ]
20
1
6
[ "A000720", "A010051", "A384239" ]
null
Juri-Stepan Gerasimov, May 22 2025
2025-05-30T16:50:18
oeisdata/seq/A384/A384239.seq
9ef3b5ae651e9040964192effbf2cbca
A384240
Consecutive states of the linear congruential pseudo-random number generator (2897*s + 1) mod 2^23 when started at s=1.
[ "1", "2898", "6899", "3209188", "2439973", "5393846", "6383767", "5280968", "6531913", "6640922", "3672891", "3610284", "6787181", "7954814", "1589983", "834960", "2960017", "2011874", "6705027", "4835700", "47541", "3508550", "5665063", "3570264", "8289753", "7218346", "7137227", "7016508", "1226493", "4769038" ]
[ "nonn", "easy" ]
13
1
2
[ "A096550", "A096561", "A384240" ]
null
Sean A. Irvine, May 22 2025
2025-06-19T19:44:06
oeisdata/seq/A384/A384240.seq
25df307fc065aff435edf210e77a89ad
A384241
a(n) = Product_{k=0..n-1} (3*n-4*k).
[ "1", "3", "12", "45", "0", "-3465", "-60480", "-626535", "0", "204417675", "6227020800", "104928949125", "0", "-77849405258625", "-3379030566912000", "-78792721832199375", "0", "104312208642352585875", "5875458349746585600000", "174954117301479619228125", "0", "-362526128354588965187045625", "-25100240092118201519308800000" ]
[ "sign", "easy" ]
11
0
2
[ "A064352", "A343445", "A383996", "A384166", "A384241" ]
null
Seiichi Manyama, May 22 2025
2025-05-23T10:20:55
oeisdata/seq/A384/A384241.seq
ae5d540ef8499a68e2b6e375e35cbf8a
A384242
a(n) = Product_{k=0..n-1} (4*n-5*k).
[ "1", "4", "24", "168", "1056", "0", "-229824", "-7233408", "-162860544", "-2573835264", "0", "2333140153344", "131053381595136", "4948323499671552", "124773727026364416", "0", "-256422032696998232064", "-20710128948965418074112", "-1096668276542495972130816", "-37948699305215165278715904", "0" ]
[ "sign", "easy" ]
13
0
2
[ "A061924", "A343446", "A383997", "A384242" ]
null
Seiichi Manyama, May 22 2025
2025-05-26T05:43:00
oeisdata/seq/A384/A384242.seq
4c1bc686cab536c01a05bb5735d32862
A384243
a(n) = 2^(n-6)*n*(n^3 - 6*n^2 + 19*n - 14).
[ "0", "0", "1", "6", "30", "140", "600", "2352", "8512", "28800", "92160", "281600", "827904", "2356224", "6522880", "17633280", "46694400", "121438208", "310837248", "784465920", "1954938880", "4816896000", "11747721216", "28386000896", "68010639360", "161690419200", "381681664000", "895098028032", "2086448136192", "4836200284160" ]
[ "nonn", "easy" ]
11
0
4
[ "A060354", "A327319", "A383778", "A384243" ]
null
Enrique Navarrete, May 23 2025
2025-05-27T10:10:09
oeisdata/seq/A384/A384243.seq
b8483bd1f98f9c98c89037283f368380
A384244
Triangle in which the n-th row gives the numbers k from 1 to n such that the greatest common unitary divisor of k and n is 1.
[ "1", "1", "1", "2", "1", "2", "3", "1", "2", "3", "4", "1", "4", "5", "1", "2", "3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "7", "1", "2", "3", "4", "5", "6", "7", "8", "1", "3", "4", "7", "8", "9", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "2", "5", "7", "8", "9", "10", "11", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "1", "3", "4", "5", "8", "9", "11", "12", "13", "1", "2", "4", "7", "8", "9", "11", "13", "14" ]
[ "nonn", "tabf", "easy" ]
9
1
4
[ "A038566", "A064379", "A077610", "A089912", "A116550", "A165430", "A200723", "A225174", "A384046", "A384244" ]
null
Amiram Eldar, May 23 2025
2025-05-27T01:17:52
oeisdata/seq/A384/A384244.seq
99da3be026595605afb157aa453948b7
A384245
Triangle read by rows: T(n, k) for 1 <= k <= n is the largest divisor of k that is an infinitary divisor of n.
[ "1", "1", "2", "1", "1", "3", "1", "1", "1", "4", "1", "1", "1", "1", "5", "1", "2", "3", "2", "1", "6", "1", "1", "1", "1", "1", "1", "7", "1", "2", "1", "4", "1", "2", "1", "8", "1", "1", "1", "1", "1", "1", "1", "1", "9", "1", "2", "1", "2", "5", "2", "1", "2", "1", "10", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "11", "1", "1", "3", "4", "1", "3", "1", "4", "3", "1", "1", "12", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "13" ]
[ "nonn", "tabl", "easy" ]
8
1
3
[ "A050873", "A064379", "A077609", "A384047", "A384245", "A384246" ]
null
Amiram Eldar, May 23 2025
2025-05-27T01:17:42
oeisdata/seq/A384/A384245.seq
bca069befca97f028d88ce6f98adb7cc
A384246
Triangle in which the n-th row gives the numbers from 1 to n whose largest divisor that is an infinitary divisor of n is 1.
[ "1", "1", "1", "2", "1", "2", "3", "1", "2", "3", "4", "1", "5", "1", "2", "3", "4", "5", "6", "1", "3", "5", "7", "1", "2", "3", "4", "5", "6", "7", "8", "1", "3", "7", "9", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "2", "5", "7", "10", "11", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "1", "3", "5", "9", "11", "13", "1", "2", "4", "7", "8", "11", "13", "14", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15" ]
[ "nonn", "tabf", "easy" ]
7
1
4
[ "A064379", "A384046", "A384245", "A384246", "A384247", "A384248" ]
null
Amiram Eldar, May 23 2025
2025-05-27T01:17:33
oeisdata/seq/A384/A384246.seq
e20e1842f4f9fc4fe57964a84c88e12d
A384247
The number of integers from 1 to n whose largest divisor that is an infinitary divisor of n is 1.
[ "1", "1", "2", "3", "4", "2", "6", "4", "8", "4", "10", "6", "12", "6", "8", "15", "16", "8", "18", "12", "12", "10", "22", "8", "24", "12", "18", "18", "28", "8", "30", "16", "20", "16", "24", "24", "36", "18", "24", "16", "40", "12", "42", "30", "32", "22", "46", "30", "48", "24", "32", "36", "52", "18", "40", "24", "36", "28", "58", "24", "60", "30", "48", "48", "48", "20", "66", "48", "44", "24" ]
[ "nonn", "easy", "mult" ]
6
1
3
[ "A000010", "A001146", "A006519", "A047994", "A064380", "A091732", "A116550", "A138302", "A268335", "A384246", "A384247", "A384248" ]
null
Amiram Eldar, May 23 2025
2025-05-27T01:17:06
oeisdata/seq/A384/A384247.seq
0fee8728d3eb341ef7b1e8783f9e9200
A384248
The sum of the integers from 1 to n whose largest divisor that is an infinitary divisor of n is 1.
[ "1", "1", "3", "6", "10", "6", "21", "16", "36", "20", "55", "36", "78", "42", "60", "120", "136", "72", "171", "120", "126", "110", "253", "96", "300", "156", "243", "252", "406", "120", "465", "256", "330", "272", "420", "432", "666", "342", "468", "320", "820", "252", "903", "660", "720", "506", "1081", "720", "1176", "600", "816", "936", "1378", "486", "1100", "672" ]
[ "nonn", "easy" ]
6
1
3
[ "A023896", "A138302", "A200723", "A268335", "A333576", "A384246", "A384247", "A384248" ]
null
Amiram Eldar, May 23 2025
2025-05-27T01:17:11
oeisdata/seq/A384/A384248.seq
5ee83091e1ff595c8145ba3de242dd1f
A384249
The number of integers k from 1 to n such that the greatest divisor of k that is an infinitary divisor of n is squarefree.
[ "1", "2", "3", "3", "5", "6", "7", "6", "8", "10", "11", "9", "13", "14", "15", "15", "17", "16", "19", "15", "21", "22", "23", "18", "24", "26", "24", "21", "29", "30", "31", "30", "33", "34", "35", "24", "37", "38", "39", "30", "41", "42", "43", "33", "40", "46", "47", "45", "48", "48", "51", "39", "53", "48", "55", "42", "57", "58", "59", "45", "61", "62", "56", "48", "65", "66", "67", "51" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A005117", "A063659", "A065176", "A077609", "A384048", "A384247", "A384249", "A384250", "A384251", "A384252" ]
null
Amiram Eldar, May 23 2025
2025-05-24T00:21:55
oeisdata/seq/A384/A384249.seq
1e670e98e8a1546f0e5b7e3d599ec39f
A384250
The number of integers k from 1 to n such that the greatest divisor of k that is an infinitary divisor of n is a powerful number.
[ "1", "1", "2", "4", "4", "2", "6", "6", "9", "4", "10", "8", "12", "6", "8", "16", "16", "9", "18", "16", "12", "10", "22", "12", "25", "12", "21", "24", "28", "8", "30", "18", "20", "16", "24", "36", "36", "18", "24", "24", "40", "12", "42", "40", "36", "22", "46", "32", "49", "25", "32", "48", "52", "21", "40", "36", "36", "28", "58", "32", "60", "30", "54", "64", "48", "20", "66", "64", "44" ]
[ "nonn", "easy", "mult" ]
12
1
3
[ "A001694", "A006519", "A077609", "A384039", "A384050", "A384247", "A384249", "A384250", "A384251", "A384252" ]
null
Amiram Eldar, May 23 2025
2025-05-24T00:22:04
oeisdata/seq/A384/A384250.seq
c12fa0c199be2de1e6fa1dbd2391d2f9
A384251
The number of integers k from 1 to n such that the greatest divisor of k that is an infinitary divisor of n is odd.
[ "1", "1", "3", "3", "5", "3", "7", "4", "9", "5", "11", "9", "13", "7", "15", "15", "17", "9", "19", "15", "21", "11", "23", "12", "25", "13", "27", "21", "29", "15", "31", "16", "33", "17", "35", "27", "37", "19", "39", "20", "41", "21", "43", "33", "45", "23", "47", "45", "49", "25", "51", "39", "53", "27", "55", "28", "57", "29", "59", "45", "61", "31", "63", "48", "65", "33", "67", "51", "69" ]
[ "nonn", "easy", "mult" ]
14
1
3
[ "A006519", "A026741", "A048649", "A077609", "A384055", "A384247", "A384249", "A384250", "A384251", "A384252" ]
null
Amiram Eldar, May 23 2025
2025-05-24T00:21:48
oeisdata/seq/A384/A384251.seq
36f4490a7df411fac0ed56cc8d281299
A384252
The number of integers k from 1 to n such that the greatest divisor of k that is an infinitary divisor of n is a power of 2.
[ "1", "2", "2", "4", "4", "4", "6", "8", "8", "8", "10", "8", "12", "12", "8", "16", "16", "16", "18", "16", "12", "20", "22", "16", "24", "24", "18", "24", "28", "16", "30", "32", "20", "32", "24", "32", "36", "36", "24", "32", "40", "24", "42", "40", "32", "44", "46", "32", "48", "48", "32", "48", "52", "36", "40", "48", "36", "56", "58", "32", "60", "60", "48", "64", "48", "40", "66", "64", "44" ]
[ "nonn", "easy", "mult" ]
15
1
2
[ "A000079", "A006519", "A062570", "A077609", "A384056", "A384247", "A384249", "A384250", "A384251", "A384252" ]
null
Amiram Eldar, May 23 2025
2025-05-24T00:21:37
oeisdata/seq/A384/A384252.seq
4d30aba513666a9b964e0d9d8eac7fec
A384253
a(n) = 1 + ((1+(-1)^(n-1))*(n-1)!)/(n+1).
[ "2", "1", "2", "1", "9", "1", "181", "1", "8065", "1", "604801", "1", "68428801", "1", "10897286401", "1", "2324754432001", "1", "640237370572801", "1", "221172909834240001", "1", "93666727314800640001", "1", "47726800133326110720001", "1", "28806532937614688256000001", "1", "20325889640780924033433600001", "1", "16578303738261941164769280000001" ]
[ "nonn" ]
9
1
1
[ "A060593", "A384253" ]
null
Michel Marcus, May 23 2025
2025-05-26T05:48:59
oeisdata/seq/A384/A384253.seq
b01f70f6c82b24302e98a8f83062a60d
A384254
Number of connected components of n polyhedra in the rectified cubic honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "2", "2", "9", "40", "290", "2529", "26629", "301289", "3568048", "43305326", "534671742", "6684869463" ]
[ "nonn", "more", "hard" ]
17
0
2
[ "A038119", "A038181", "A343577", "A343909", "A384254", "A384274" ]
null
Peter Kagey, May 23 2025
2025-06-09T14:40:40
oeisdata/seq/A384/A384254.seq
2483133088a968471d1277a0ed9908f5
A384255
Integers k such that there exists an integer 0<m<k such that sigma(m)^2 + sigma(k)^2 = 2*(m^2+k^2).
[ "2", "21", "27", "123", "175", "2133", "2187", "6093", "340917", "504309", "1594323", "1895841", "5308415", "23006577", "62188641" ]
[ "nonn", "hard", "more", "changed" ]
28
1
1
[ "A063990", "A259180", "A383484", "A383714", "A384255" ]
null
S. I. Dimitrov, May 23 2025
2025-07-10T12:14:43
oeisdata/seq/A384/A384255.seq
7805a31a2196378866651bb9a8abb625
A384256
a(n) = Product_{k=0..n-1} (n+3*k+1).
[ "1", "2", "18", "280", "6160", "174960", "6086080", "250490240", "11904278400", "641472832000", "38645634227200", "2573895458534400", "187787322731008000", "14894027431162880000", "1275931456704672768000", "117412145664335441920000", "11550258696757088788480000", "1209613643310990696210432000" ]
[ "nonn", "easy" ]
8
0
2
[ "A303486", "A384256", "A384257" ]
null
Seiichi Manyama, May 23 2025
2025-05-23T10:15:26
oeisdata/seq/A384/A384256.seq
e0520a9b57f6fd44e5712fce0712c9b3
A384257
a(n) = Product_{k=0..n-1} (n+3*k+2).
[ "1", "3", "28", "440", "9720", "276640", "9634240", "396809280", "18866848000", "1016990374400", "61283225203200", "4082333102848000", "297880548623257600", "23628360309345792000", "2024347339040266240000", "186294495108985303040000", "18327479444105919639552000", "1919453757320555804508160000" ]
[ "nonn", "easy" ]
8
0
2
[ "A303486", "A384256", "A384257" ]
null
Seiichi Manyama, May 23 2025
2025-05-23T10:15:21
oeisdata/seq/A384/A384257.seq
836f245f4b95ea1476b067c75f18f8e9
A384258
a(n) = Product_{k=0..n-1} (n+4*k+1).
[ "1", "2", "21", "384", "9945", "332640", "13627845", "660602880", "36974963025", "2346549004800", "166490632833525", "13059009124761600", "1122040194333683625", "104802322548059136000", "10572978481108199281125", "1145749403453003661312000", "132730561036298082383150625", "16369108295524571830763520000" ]
[ "nonn", "easy" ]
9
0
2
[ "A303487", "A384258", "A384259" ]
null
Seiichi Manyama, May 23 2025
2025-05-23T10:15:17
oeisdata/seq/A384/A384258.seq
0fd6e8a39d4f357e578512ab131373c4
A384259
a(n) = Product_{k=0..n-1} (n+4*k+3).
[ "1", "4", "45", "840", "21945", "737280", "30282525", "1470268800", "82380323025", "5231974809600", "371413503586125", "29144138639616000", "2504851570980383625", "234017443515727872000", "23613335889752371888125", "2559272716623604101120000", "296519181502679448839150625", "36572320958219876869079040000" ]
[ "nonn", "easy" ]
11
0
2
[ "A303487", "A384258", "A384259" ]
null
Seiichi Manyama, May 23 2025
2025-05-26T07:15:26
oeisdata/seq/A384/A384259.seq
9357d1dba4f9a8c48e073c6480f5f490
A384260
Consecutive internal states of the linear congruential pseudo-random number generator 3373*s mod (2^24-3) when started at s=1.
[ "1", "3373", "11377129", "5569986", "13861431", "13291345", "2993549", "14135764", "15869839", "9657477", "10099488", "7830634", "5395220", "11578168", "12586013", "6272959", "2625114", "12918271", "2905922", "3782514", "7737842", "11174851", "11152025", "1268779", "1402252", "15399143", "15835104", "9936813" ]
[ "nonn", "easy" ]
12
1
2
[ "A096550", "A096561", "A384260" ]
null
Sean A. Irvine, May 23 2025
2025-06-19T19:45:11
oeisdata/seq/A384/A384260.seq
70253c4735570e5e48f1759770f9945f
A384261
a(n) = Product_{k=0..n-1} (2*n+k-1).
[ "1", "1", "12", "210", "5040", "154440", "5765760", "253955520", "12893126400", "741354768000", "47621141568000", "3379847863392000", "262662462526464000", "22183557976419840000", "2023140487449489408000", "198155371076302768128000", "20744817468539834621952000", "2311708772421640603275264000" ]
[ "nonn", "easy" ]
13
0
3
[ "A064352", "A090816", "A117671", "A352601", "A384261" ]
null
Seiichi Manyama, May 23 2025
2025-05-26T05:19:53
oeisdata/seq/A384/A384261.seq
ab4d8e19535d6ba3cff7c5b56912fea0
A384262
a(n) = Product_{k=0..n-1} (3*n+k-2).
[ "1", "1", "20", "504", "17160", "742560", "39070080", "2422728000", "173059286400", "13995229248000", "1264020397516800", "126115611484262400", "13776096431889792000", "1635195634511530291200", "209574860127295703040000", "28844656968251942737920000", "4243193364951971128258560000", "664387519844376163893657600000" ]
[ "nonn", "easy" ]
15
0
3
[ "A061924", "A335647", "A384164", "A384262", "A384263" ]
null
Seiichi Manyama, May 23 2025
2025-05-26T07:57:24
oeisdata/seq/A384/A384262.seq
84bb6ed5b115fc56e9a88c50070e024b
A384263
a(n) = Product_{k=0..n-1} (3*n+k-1).
[ "1", "2", "30", "720", "24024", "1028160", "53721360", "3315312000", "235989936000", "19033511777280", "1715456253772800", "170866312333516800", "18638248113733248000", "2209723830420986880000", "282926061171849199104000", "38906746608339829739520000", "5719086709283091520696320000", "894889312443445445244518400000" ]
[ "nonn", "easy" ]
11
0
2
[ "A061924", "A384164", "A384262", "A384263" ]
null
Seiichi Manyama, May 23 2025
2025-05-24T10:35:41
oeisdata/seq/A384/A384263.seq
b1832e26b47f5a44d808d6c0914a99e5
A384264
G.f. A(x) satisfies a(n) = [x^n] ( A(x)^(n-1) - 2*A(x)^n + A(x)^(n+1) ) for n > 1, with a(0) = a(1) = 1.
[ "1", "1", "1", "4", "21", "138", "1049", "8878", "81802", "808584", "8487493", "93916298", "1089508229", "13195281850", "166288822167", "2174706541532", "29449251073640", "412174159048920", "5952977488264644", "88601062941267432", "1357279730956877595", "21377432888018361996", "345837371025600620202", "5741547579102846093378", "97738792064478739075798" ]
[ "nonn" ]
7
0
4
null
null
Paul D. Hanna, May 23 2025
2025-05-24T02:23:34
oeisdata/seq/A384/A384264.seq
f0f59d65312aa37099ef9ecb44e7267c
A384265
G.f. A(x) satisfies A( x/A(x)^2 + x^2 ) = 1 + x*A(x)^2.
[ "1", "1", "3", "16", "119", "1087", "11408", "132468", "1663047", "22234598", "313303201", "4618133168", "70815362628", "1124901511837", "18450127411436", "311636597558992", "5409374008212747", "96326565666389514", "1757212245656330130", "32798907320986196010", "625759879697614204041", "12192353855092076824051", "242419156191210763668352" ]
[ "nonn" ]
12
0
3
[ "A145347", "A182954", "A383563", "A384265" ]
null
Paul D. Hanna, May 30 2025
2025-05-31T14:38:08
oeisdata/seq/A384/A384265.seq
01a06f5817176cd7d91dc31d1ad596da
A384266
G.f. A(x) = (3*sqrt(1 - 8*x) - (1 - 4*x)) / (2*(1 - 8*x - 2*x^2)).
[ "1", "4", "22", "136", "892", "6064", "42232", "299296", "2149360", "15596992", "114138592", "841108096", "6234779584", "46448349952", "347541337984", "2610319254016", "19671552622336", "148689857920000", "1126905157115392", "8561360256526336", "65185363066289152", "497307750242234368", "3800975843189291008", "29100188150365757440" ]
[ "nonn" ]
27
0
2
[ "A179587", "A384266" ]
null
Paul D. Hanna, Jun 06 2025
2025-06-08T03:32:47
oeisdata/seq/A384/A384266.seq
99c2d9c4f4184113850152c8bfc66b94
A384267
G.f. A(x) satisfies A(x) = 1 + abs( x/A(x)^2 ).
[ "1", "1", "2", "1", "6", "13", "4", "80", "242", "109", "1702", "5177", "2208", "40348", "128560", "56864", "1052102", "3406333", "1509862", "28900645", "94971462", "42420281", "825816148", "2740269448", "1228678588", "24277298940", "81183221736", "36526643608", "729682028652", "2454721201940", "1107304048024", "22319301025880", "75450489469554" ]
[ "nonn" ]
10
0
3
[ "A006013", "A380708", "A380710", "A384267" ]
null
Paul D. Hanna, Jun 19 2025
2025-06-20T10:46:39
oeisdata/seq/A384/A384267.seq
76aa53c9081cc8caf30394079922d05f
A384268
E.g.f. A(x) satisfies 1 = Sum_{n>=0} (A(x) - x^n)^n / n!.
[ "1", "-1", "8", "-54", "484", "-5220", "69978", "-1123584", "20636208", "-427048560", "9855043560", "-251178602400", "6999042156456", "-211667930623968", "6906285876838320", "-241834002452380800", "9045871629011352960", "-359980905120027776640", "15186181445703977599296", "-676969958167108542074880", "31797743045658537121856640" ]
[ "sign" ]
10
1
3
null
null
Paul D. Hanna, Jun 05 2025
2025-06-06T08:57:57
oeisdata/seq/A384/A384268.seq
aa7a19d44e9a7c9ad9cd9f7dd4df6c37