sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A384060
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.
[ "1", "4", "82", "3024", "162154", "11438280", "1001454024", "104777127616", "12755141675754", "1771354690734420", "276386332002204450", "47870892086756660064", "9113932961179205496744", "1891845220489637114281216", "425240943851497448491619600", "102899751348092720847554016000" ]
[ "nonn" ]
18
0
2
[ "A007820", "A350376", "A351508", "A383862", "A384031", "A384060" ]
null
Vaclav Kotesovec, May 18 2025
2025-05-19T04:50:49
oeisdata/seq/A384/A384060.seq
780f65478343d74497d671b594be55e6
A384061
Number of antichains in the Bruhat order of type A_n.
[ "3", "9", "250", "67595432" ]
[ "nonn", "hard", "more" ]
12
1
1
[ "A000142", "A005130", "A384061", "A384062" ]
null
Dmitry I. Ignatov, May 18 2025
2025-05-22T21:00:04
oeisdata/seq/A384/A384061.seq
4185c9023682d65df964538baa58ec4d
A384062
Number of maximal antichains in the Bruhat order of type A_n.
[ "2", "4", "43", "183667" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A000142", "A005130", "A384061", "A384062" ]
null
Dmitry I. Ignatov, May 18 2025
2025-05-22T20:56:31
oeisdata/seq/A384/A384062.seq
e85bb51e70afc6a7de4836253fe3ecc0
A384063
Partial sums of A172471.
[ "0", "1", "3", "5", "7", "10", "13", "16", "20", "24", "28", "32", "36", "41", "46", "51", "56", "61", "67", "73", "79", "85", "91", "97", "103", "110", "117", "124", "131", "138", "145", "152", "160", "168", "176", "184", "192", "200", "208", "216", "224", "233", "242", "251", "260", "269", "278", "287", "296", "305", "315", "325", "335", "345", "355", "365", "375", "385", "395", "405", "415", "426", "437" ]
[ "nonn" ]
27
0
3
[ "A000217", "A172471", "A173196", "A384063" ]
null
Hoang Xuan Thanh, May 18 2025
2025-06-04T11:07:32
oeisdata/seq/A384/A384063.seq
48bf3b436130699380a19a0ec2ca64d1
A384064
a(n) = s(n) divided by the smallest multiple prime factor of s(n), where s = A013929.
[ "2", "4", "3", "6", "8", "6", "10", "12", "5", "9", "14", "16", "18", "20", "22", "15", "24", "7", "10", "26", "18", "28", "30", "21", "32", "34", "36", "15", "38", "40", "27", "42", "44", "30", "46", "48", "14", "33", "50", "52", "54", "56", "58", "39", "60", "11", "62", "25", "42", "64", "66", "45", "68", "70", "72", "21", "74", "30", "76", "51", "78", "80", "54", "82", "84", "13", "57", "86" ]
[ "nonn", "easy" ]
26
1
1
[ "A013929", "A046027", "A048105", "A384064" ]
null
Michael De Vlieger, Jun 23 2025
2025-06-25T14:39:23
oeisdata/seq/A384/A384064.seq
87dfca67b3fe14c34a913474244cb1c6
A384065
Cardinality of the lattice of order ideals for every order ideal in the lattice of normal subgroups of the dihedral group D_{2*n}.
[ "3", "10", "4", "11", "4", "16", "4", "12", "5", "16", "4", "20", "4", "16", "7", "13", "4", "23", "4", "20", "7", "16", "4", "25", "5", "16", "6", "20", "4", "39", "4", "14", "7", "16", "7", "33", "4", "16", "7", "25", "4", "39", "4", "20", "11", "16", "4", "31", "5", "23", "7", "20", "4", "31", "7", "25", "7", "16", "4", "69", "4", "16", "11", "15", "7", "39", "4", "20", "7", "39", "4", "48", "4", "16", "11", "20", "7", "39" ]
[ "nonn" ]
11
1
1
[ "A037852", "A384065" ]
null
Miles Englezou, May 18 2025
2025-05-22T22:00:21
oeisdata/seq/A384/A384065.seq
6f3f97a8df5d0535dbbd4270bca1a914
A384066
Limiting values for Cauchy-complete category table A384134.
[ "1", "2", "10", "39", "168" ]
[ "nonn", "hard", "more" ]
13
0
2
[ "A125697", "A125701", "A384066", "A384134" ]
null
Elijah Beregovsky, May 20 2025
2025-05-22T10:51:45
oeisdata/seq/A384/A384066.seq
6b418ca4f3509ef5249b21377676bb4d
A384067
Number of edge-connected components of n faces of the cuboctahedron up to the 48 rotations and reflections of the cuboctahedron.
[ "1", "2", "1", "3", "5", "11", "19", "36", "50", "48", "34", "15", "7", "2", "1" ]
[ "nonn", "fini", "full" ]
20
0
2
[ "A333333", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-20T15:03:45
oeisdata/seq/A384/A384067.seq
99f1986da99a88198d96aa48081dda55
A384068
Number of connected components of n faces of the truncated cube up to the 48 rotations and reflections of the truncated cube.
[ "1", "2", "2", "6", "14", "28", "49", "64", "68", "53", "35", "15", "7", "2", "1" ]
[ "nonn", "fini", "full" ]
15
0
2
[ "A383800", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-21T01:24:47
oeisdata/seq/A384/A384068.seq
917252a86d03fec933b57aa7af0c92c1
A384069
Number of connected components of n faces of the truncated octahedron up to the 48 rotations and reflections of the truncated octahedron.
[ "1", "2", "2", "5", "12", "26", "52", "76", "83", "61", "39", "16", "7", "2", "1" ]
[ "nonn", "fini", "full" ]
15
0
2
[ "A383802", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-21T01:24:43
oeisdata/seq/A384/A384069.seq
6f43e161ad576b34c4b5844abf3d7c64
A384070
Number of connected components of n faces of the rhombicuboctahedron up to the 48 rotations and reflections of the rhombicuboctahedron.
[ "1", "3", "2", "6", "11", "32", "72", "207", "530", "1434", "3575", "8475", "17814", "32643", "49583", "60964", "58922", "44513", "26397", "12494", "4791", "1493", "390", "83", "17", "3", "1" ]
[ "nonn", "fini", "full" ]
19
0
2
[ "A383804", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-22T16:57:13
oeisdata/seq/A384/A384070.seq
6566f7c83a496b63a1deb668359ecbc1
A384071
Number of connected components of n faces of the truncated cuboctahedron up to the 48 rotations and reflections of the truncated cuboctahedron.
[ "1", "3", "3", "11", "28", "100", "319", "1114", "3538", "10313", "25470", "52474", "88257", "121329", "136282", "125885", "95956", "60675", "31943", "14009", "5123", "1549", "398", "84", "17", "3", "1" ]
[ "nonn", "fini", "full" ]
19
0
2
[ "A383806", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-22T16:57:17
oeisdata/seq/A384/A384071.seq
06249efddcbd10ec4c2c68069ff7b71c
A384072
Number of connected components of n faces of the snub cube up to the 24 rotations of the snub cube.
[ "1", "3", "3", "6", "16", "39", "101", "263", "694", "1839", "4884", "12840", "33508", "86227", "218284", "538796", "1284335", "2919365", "6249499", "12411396", "22483152", "36410533", "51641029", "62911551", "64827047", "55869657", "40009946", "23732630", "11668877", "4763611", "1619236", "456756", "106602", "20157", "3101", "358", "37", "3", "1" ]
[ "nonn", "fini", "full" ]
19
0
2
[ "A309159", "A383808", "A383908", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072" ]
null
Peter Kagey, May 18 2025
2025-05-24T14:46:38
oeisdata/seq/A384/A384072.seq
7b5256b31f542f89f791f290a03082e5
A384073
Numbers k such that d(k)^d(k) = d(k) (mod k), where d = A000005.
[ "4", "6", "14", "16", "21", "36", "50", "56", "75", "120", "132", "162", "168", "210", "264", "276", "280", "312", "330", "390", "405", "440", "462", "520", "546", "616", "726", "728", "744", "770", "784", "858", "910", "930", "984", "1012", "1016", "1144", "1155", "1230", "1240", "1260", "1302", "1365", "1430", "1464", "1640", "1722", "1736", "1778", "1830" ]
[ "nonn" ]
13
1
1
[ "A000005", "A384073" ]
null
Juri-Stepan Gerasimov, May 18 2025
2025-05-22T19:41:55
oeisdata/seq/A384/A384073.seq
a67be9ce43fd9015bb0d811dea06eb92
A384074
a(n) = permanent of the n X n circulant matrix with (row 1) = (1, 3, 5, 7, ..., 2n - 1).
[ "1", "10", "198", "7384", "450400", "40340112", "4977778288", "810377196928", "168292881301248", "43412461935328000", "13617419946361149952", "5104272056570488986624", "2253180383840385394370560", "1156924438353338246938200064", "683663789883272270452243200000" ]
[ "nonn" ]
8
1
2
[ "A005408", "A193678", "A384074", "A384075", "A384076", "A384077", "A384078" ]
null
Clark Kimberling, May 22 2025
2025-06-01T17:14:23
oeisdata/seq/A384/A384074.seq
beab7159f0f953a1ab1c20c88250595b
A384075
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-9", "-45", "-4716", "-200200", "-20916552", "-2462535768", "-406262340288", "-84096850828032", "-21708790967664000", "-6808563893605222144", "-2552145158372103507456", "-1126589571631974396251136", "-578462264691449080954733568", "-341831891354409385226121600000" ]
[ "sign" ]
10
1
2
[ "A193678", "A380661", "A384074", "A384075", "A384076", "A384077", "A384078" ]
null
Clark Kimberling, May 22 2025
2025-06-05T00:48:48
oeisdata/seq/A384/A384075.seq
796f55fdce0f4bd74709668a86829a3f
A384076
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
[ "1", "1", "153", "2668", "250200", "19423560", "2515242520", "404114856640", "84196030473216", "21703670967664000", "6808856052755927808", "2552126898198385479168", "1126590812208410998119424", "578462173661889165983466496", "341831898528862885226121600000" ]
[ "nonn" ]
12
1
3
[ "A193678", "A380661", "A384075", "A384076", "A384077", "A384078" ]
null
Clark Kimberling, May 22 2025
2025-06-11T00:34:15
oeisdata/seq/A384/A384076.seq
f194ba26ad4c9d17effe2e03fa5d046e
A384077
a(n) = neg(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-9", "-153", "-2668", "-200200", "-20916552", "-2515242520", "-404114856640", "-84096850828032", "-21708790967664000", "-6808856052755927808", "-2552126898198385479168", "-1126589571631974396251136", "-578462264691449080954733568", "-341831898528862885226121600000" ]
[ "sign" ]
18
1
2
[ "A193678", "A380661", "A384074", "A384076", "A384077", "A384078" ]
null
Clark Kimberling, May 29 2025
2025-06-18T22:07:23
oeisdata/seq/A384/A384077.seq
ff74845eb86109b04a79f2688b516bc9
A384078
a(n) = pos(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
[ "1", "1", "45", "4716", "250200", "19423560", "2462535768", "406262340288", "84196030473216", "21703670967664000", "6808563893605222144", "2552145158372103507456", "1126590812208410998119424", "578462173661889165983466496", "341831891354409385226121600000" ]
[ "nonn" ]
15
1
3
[ "A193678", "A380661", "A384074", "A384076", "A384077", "A384078" ]
null
Clark Kimberling, Jun 01 2025
2025-06-18T22:09:51
oeisdata/seq/A384/A384078.seq
0f62916163f096a0f8359dbbc0f94615
A384079
a(n) = permanent of the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers).
[ "1", "0", "1", "2", "34", "877", "70400", "13131404", "6425063793", "7943767996608", "25443254098886314", "210703114432644635021", "4542702757904484984146944", "255390683442241619390980497544", "37530368819103589103825830619476133", "14431488687735756287625931644915850256384" ]
[ "nonn" ]
7
0
4
[ "A000045", "A123744", "A384079", "A384080" ]
null
Clark Kimberling, Jun 01 2025
2025-06-27T21:57:00
oeisdata/seq/A384/A384079.seq
74080ec7e2777d1a847331777102fcc9
A384080
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-1", "0", "-25", "-295", "-43264", "-5469632", "-3628008315", "-3569061677472", "-13761972434293885", "-98350155131379362607", "-2395228216526569309464064", "-121960521137098218596500559704", "-19460957348767631231695727354978359", "-6994735829985160817748505807288716492800" ]
[ "sign", "new" ]
7
1
4
[ "A123744", "A380661", "A384079", "A384080", "A384313" ]
null
Clark Kimberling, Jun 19 2025
2025-07-02T00:53:55
oeisdata/seq/A384/A384080.seq
32163798bf6cb1bd4905b6af1a70407c
A384081
Consecutive internal states of a linear congruential pseudo-random number generator for the Hewlett-Packard HP-20S when started at 1.
[ "1", "997", "994009", "1026973", "3892081", "404757", "3542729", "2100813", "4510561", "7029317", "8229049", "4361853", "8767441", "1138677", "5260969", "5186093", "534721", "3116837", "7486489", "4029533", "7444401", "2067797", "1593609", "8828173", "1688481", "3415557", "5310329", "4398013", "4818961", "4504117" ]
[ "nonn", "easy" ]
35
1
2
[ "A096550", "A096561", "A384081", "A384568" ]
null
Sean A. Irvine, May 23 2025
2025-06-17T22:36:06
oeisdata/seq/A384/A384081.seq
3e164ef24a09ee00550864bb8439d9a1
A384082
Consecutive states of the linear congruential pseudo-random number generator (61*s+323) mod 500 when started at s=1.
[ "1", "384", "247", "390", "113", "216", "499", "262", "305", "428", "431", "114", "277", "220", "243", "146", "229", "292", "135", "58", "361", "344", "307", "50", "373", "76", "459", "322", "465", "188", "291", "74", "337", "380", "3", "6", "189", "352", "295", "318", "221", "304", "367", "210", "133", "436", "419", "382", "125", "448", "151", "34", "397", "40" ]
[ "nonn", "easy" ]
20
1
2
[ "A096550", "A096561", "A384082" ]
null
Sean A. Irvine, May 18 2025
2025-05-28T20:58:33
oeisdata/seq/A384/A384082.seq
3f2b715f78e05e236f2bf462c9e15d26
A384083
Number of paths with length A383980(n) touching all cells in an n X n grid.
[ "1", "4", "4", "8", "16", "48", "24", "64", "336" ]
[ "nonn", "more", "hard", "walk" ]
13
2
2
[ "A383980", "A384037", "A384083" ]
null
Fülöp Tamás, May 18 2025
2025-06-10T22:35:41
oeisdata/seq/A384/A384083.seq
35c6c79c1897d4e29bf4131eea5e1dae
A384084
Numbers whose prime signatures are self-conjugate.
[ "1", "2", "3", "5", "7", "11", "12", "13", "17", "18", "19", "20", "23", "28", "29", "31", "36", "37", "41", "43", "44", "45", "47", "50", "52", "53", "59", "61", "63", "67", "68", "71", "73", "75", "76", "79", "83", "89", "92", "97", "98", "99", "100", "101", "103", "107", "109", "113", "116", "117", "120", "124", "127", "131", "137", "139", "147", "148", "149", "151", "153" ]
[ "nonn" ]
21
1
2
[ "A001222", "A046523", "A054753", "A181825", "A212166", "A384084" ]
null
Hal M. Switkay, May 18 2025
2025-05-31T21:53:38
oeisdata/seq/A384/A384084.seq
273dcf1ccdf3d7ddc29da87bba213880
A384085
Consecutive states of the linear congruential pseudo-random number generator (40*s+725) mod 729 when started at s=1.
[ "1", "36", "707", "574", "357", "425", "229", "408", "278", "181", "675", "23", "187", "186", "146", "4", "156", "404", "118", "342", "554", "286", "501", "353", "265", "390", "287", "541", "495", "113", "142", "573", "317", "283", "381", "656", "721", "405", "158", "484", "402", "38", "58", "129", "53", "658", "72", "689", "583", "717", "245", "319", "363", "665" ]
[ "nonn", "easy" ]
20
1
2
[ "A096550", "A096561", "A384085" ]
null
Sean A. Irvine, May 18 2025
2025-05-28T20:58:28
oeisdata/seq/A384/A384085.seq
5f8def8bed7966f704f0680e614cef67
A384086
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2.
[ "1", "4", "72", "2352", "112000", "7023540", "546991704", "50923706176", "5517464159232", "682067031126660", "94744306830613000", "14610279918692775504", "2476682373835289303424", "457771369968515293229812", "91624876032673265663215800", "19743379886572250897986694400", "4556982707091255612929249419264" ]
[ "nonn" ]
12
0
2
[ "A129256", "A350366", "A350376", "A351764", "A384086", "A384087", "A384088" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T10:02:45
oeisdata/seq/A384/A384086.seq
5a5d7a3f81072e01578b19ff315a7af7
A384087
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^3.
[ "1", "6", "162", "7848", "552000", "51035310", "5853933666", "802178739936", "127879052859648", "23252775004089990", "4750089647035004250", "1077069265550569663416", "268437124701985949614944", "72940650531961450912140558", "21461129870889481564510048050", "6797577340761206051865208521600", "2306127185536355501260494657447936" ]
[ "nonn" ]
11
0
2
[ "A350366", "A351764", "A383862", "A384012", "A384086", "A384087", "A384088" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T10:03:15
oeisdata/seq/A384/A384087.seq
dd343dd07dea219c74b283aa6334953f
A384088
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.
[ "1", "8", "288", "18528", "1728000", "211687080", "32159822688", "5835397918336", "1231573968949248", "296447550279133320", "80158746419240852000", "24057027574081163030688", "7935414295799696292767232", "2853706409310576479751168168", "1111199574070700473937862463200", "465782420445680979210397280524800" ]
[ "nonn" ]
12
0
2
[ "A350366", "A351764", "A384031", "A384060", "A384086", "A384087", "A384088" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T10:03:46
oeisdata/seq/A384/A384088.seq
15958f8ace8d2fa72243aef5a278214f
A384089
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^n.
[ "1", "0", "1", "63", "7206", "1357300", "384271700", "153027592116", "81648987014364", "56259916067074896", "48646018448463951450", "51584263505394472459750", "65833976467770842558152992", "99553004175105699906002335098", "176031670802373999913671973955080", "359870756416991348769957239299854000" ]
[ "nonn" ]
11
0
4
[ "A342111", "A351507", "A384018", "A384029", "A384089" ]
null
Seiichi Manyama, May 19 2025
2025-05-19T09:43:52
oeisdata/seq/A384/A384089.seq
028c0d9a99b396ce934a779b5e97f214
A384090
Number of ordered pairs in the Bruhat order on B_n.
[ "3", "33", "847", "40249", "3089459", "350676009" ]
[ "nonn", "more" ]
11
1
1
[ "A005900", "A378072", "A384090" ]
null
Dmitry I. Ignatov, May 19 2025
2025-05-24T00:03:26
oeisdata/seq/A384/A384090.seq
18777c04f853d3a52406b8e1c1de00ee
A384091
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x)^n.
[ "1", "1", "33", "6968", "4503078", "6507545775", "17683339661956", "80849884332530600", "575530003415681613468", "6023356562522188931288775", "88682105895482127774508529242", "1773600518272635675832361778156960", "46830898160739235037404595987069052560", "1594447058825655577475889095097916983404652" ]
[ "nonn" ]
7
0
3
[ "A001044", "A351507", "A384091", "A384092" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T11:48:57
oeisdata/seq/A384/A384091.seq
2d776fbe0e286aeab388abaecdc56c07
A384092
a(n) = [x^n] Product_{k=1..n} 1/(1 - k^2*x)^n.
[ "1", "1", "67", "19316", "14842986", "23959995900", "70300141076691", "340026368533209120", "2526875675012579004324", "27358621384723375076245950", "414013875603209906596527455633", "8469874364125222067804767445806552", "227937197746419681734617268030982470980", "7887251806534473871432104574423885714752540" ]
[ "nonn" ]
6
0
3
[ "A298851", "A351508", "A384091", "A384092" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T11:49:11
oeisdata/seq/A384/A384092.seq
1fc139fc5e3d8740eccaffcd252bef21
A384093
a(n) = [x^n] Product_{k=1..n} ((1 + k^2*x)/(1 - k^2*x))^n.
[ "1", "2", "200", "100372", "141369600", "429768373550", "2413602498186776", "22580623631512230760", "326908252720653523943424", "6930499895312478999698799930", "206129722171946147890239366225000", "8311703033335976017330775929889992316", "441845483828200905036741829941273994080000" ]
[ "nonn" ]
6
0
2
[ "A351764", "A384043", "A384091", "A384092", "A384093" ]
null
Vaclav Kotesovec, May 19 2025
2025-05-19T11:49:31
oeisdata/seq/A384/A384093.seq
e9f2ae69baf1346019971edcc0294463
A384094
Numbers whose square has digit sum 9 and no trailing zero.
[ "3", "6", "9", "12", "15", "18", "21", "39", "45", "48", "51", "102", "105", "111", "201", "249", "318", "321", "348", "351", "501", "549", "1002", "1005", "1011", "1101", "1149", "1761", "2001", "4899", "5001", "10002", "10005", "10011", "10101", "10149", "11001", "14499", "20001", "50001", "100002", "100005", "100011", "100101", "101001", "110001", "200001", "375501", "500001", "1000002" ]
[ "nonn", "base" ]
10
1
1
[ "A004159", "A052216", "A058414", "A133472", "A199685", "A215614", "A237424", "A384094" ]
null
M. F. Hasler, Jun 15 2025
2025-06-18T00:50:43
oeisdata/seq/A384/A384094.seq
2033c46c7009f351c45e75281d59c8bf
A384095
Numbers other than {10^a + 10^b + 1} and {10^a + 5*10^b, min(a, b) = 0} whose square has digit sum 9 and no trailing zero.
[ "9", "18", "39", "45", "48", "249", "318", "321", "348", "351", "549", "1149", "1761", "4899", "10149", "14499", "375501" ]
[ "nonn", "base", "hard", "more" ]
14
1
1
[ "A004159", "A052216", "A058414", "A133472", "A199685", "A215614", "A237424", "A384094", "A384095" ]
null
M. F. Hasler, Jun 15 2025
2025-06-19T17:02:58
oeisdata/seq/A384/A384095.seq
a0c0462307b0d54e432fbe436ea937cb
A384100
a(n) is the least positive x such that x^3 + x + n^2 is a perfect square, or 0 if no such x exists.
[ "0", "72", "4128", "8", "262272", "1000200", "44", "7529928", "16777728", "34012872", "64000800", "113380872", "191104128", "308917128", "12", "729001800", "4", "1544806728", "32", "3010939272", "4096003200", "8", "7256317728", "9474301128", "80", "15625005000", "19770615072", "24794917128", "30840985728", "38068699272" ]
[ "nonn" ]
29
0
2
[ "A384100", "A384101" ]
null
M. F. Hasler, May 19 2025
2025-05-30T22:41:57
oeisdata/seq/A384/A384100.seq
0ed208e71a47b29ddc7db58e9cd1f53a
A384101
a(n) is the least positive integer y such that y^2 = x^3 + x + n^2 for some positive integer x, or 0 if no such y exists.
[ "0", "611", "265222", "23", "134316044", "1000300015", "292", "20662660277", "68722622488", "198364959099", "512009600030", "1207284678721", "2641831428132", "5429539323143", "44", "19683072900045", "18", "60717129072787", "182", "165216338968409", "262144307200060", "31", "618122334258242", "922190780558053" ]
[ "nonn" ]
24
0
2
[ "A384100", "A384101" ]
null
M. F. Hasler, May 19 2025
2025-05-26T16:16:42
oeisdata/seq/A384/A384101.seq
4f9d9055e7e00f0a11b8a3725c851f88
A384102
Least x in absolute value, such that there exists y, |x| >= |y| > 0, such that n = |6xy + x + y|, or 0 if no such x exists. Choose x > 0 if x and -x are both possible.
[ "0", "0", "0", "-1", "0", "1", "0", "1", "-2", "0", "2", "0", "-2", "-3", "2", "3", "0", "0", "-4", "-2", "4", "3", "0", "2", "0", "5", "-4", "2", "4", "0", "-3", "0", "0", "-5", "3", "5", "-3", "0", "-8", "0", "3", "-4", "6", "-9", "0", "4", "0", "-3", "-10", "-4", "10", "0", "-5", "3", "-8", "11", "5", "0", "-12", "3", "12", "-9", "-5", "-6", "-4", "13", "5", "6", "-10", "0", "4", "0", "-4", "-15", "-7", "-6", "0", "11", "4", "6", "16", "-5", "-12", "-17", "12", "-8", "0", "-4", "-7", "8", "18", "-5", "7", "-19", "0", "4", "-9", "5", "-6" ]
[ "sign" ]
5
1
9
[ "A002822", "A060461", "A067611", "A077800", "A171696", "A384102", "A384103" ]
null
M. F. Hasler, Jun 20 2025
2025-06-25T01:00:30
oeisdata/seq/A384/A384102.seq
1cc1bb16249493846bd73bb9df683c07
A384103
a(n) = y with minimum |x| >= |y| > 0, such that n = |6xy + x + y|, or 0 if no such x, y exist. If x and -x are solutions, choose x > 0 > y = -x.
[ "0", "0", "0", "-1", "0", "-1", "0", "1", "-1", "0", "-1", "0", "1", "-1", "1", "-1", "0", "0", "-1", "-2", "-1", "1", "0", "-2", "0", "-1", "1", "2", "1", "0", "-2", "0", "0", "1", "-2", "1", "2", "0", "-1", "0", "2", "-2", "1", "-1", "0", "-2", "0", "-3", "-1", "2", "-1", "0", "-2", "-3", "1", "-1", "-2", "0", "-1", "3", "-1", "1", "2", "-2", "-3", "-1", "2", "-2", "1", "0", "-3", "0", "3", "-1", "-2", "2", "0", "1", "3", "2", "-1", "-3", "1", "-1", "1", "-2", "0", "-4", "2", "-2" ]
[ "sign" ]
4
1
20
[ "A002822", "A060461", "A067611", "A077800", "A171696", "A384102", "A384103" ]
null
M. F. Hasler, Jun 20 2025
2025-06-25T01:00:06
oeisdata/seq/A384/A384103.seq
26be9f6c09545659d3cb0bd7ff09470e
A384104
Number of edge-connected components of n faces of the truncated tetrahedron up to the 24 rotations and reflections of the truncated tetrahedron.
[ "1", "2", "2", "4", "7", "5", "4", "2", "1" ]
[ "nonn", "fini", "full" ]
14
0
2
[ "A383825", "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104" ]
null
Peter Kagey, May 19 2025
2025-06-10T09:00:56
oeisdata/seq/A384/A384104.seq
e26db9b3e4e409327171e5f6712f7bbc
A384105
Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.
[ "1", "1", "1", "3", "4", "3", "16", "36", "36", "16", "218", "752", "1104", "752", "218", "9608", "45960", "90416", "90416", "45960", "9608", "1540944", "9133760", "22692704", "30194176", "22692704", "9133760", "1540944", "882033440", "6154473664", "18425858880", "30679088480", "30679088480", "18425858880", "6154473664", "882033440" ]
[ "nonn", "tabl" ]
12
0
4
[ "A000273", "A000595", "A328874", "A353996", "A383617", "A384105" ]
null
Peter Dolland, May 19 2025
2025-05-21T15:50:17
oeisdata/seq/A384/A384105.seq
041471f32e4827c7be689428cd579cda
A384106
Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n.
[ "1009736", "2714690888", "7334904115448", "19818905563705976", "53550675461437475048", "144693905277386048024168", "390962878508814502873889816", "1056203940519850679825934312168", "2853755704387709706549646191448888", "7710144396612746633517746345789261976" ]
[ "nonn", "changed" ]
34
1
1
[ "A001235", "A011541", "A018850", "A384106" ]
null
Jamal Agbanwa, May 19 2025
2025-06-30T18:18:35
oeisdata/seq/A384/A384106.seq
4d2e68ac2ff805171060257aadc511b0
A384107
Number of connected components of n faces of the icosidodecahedron up to the 120 rotations and reflections of the icosidodecahedron.
[ "1", "2", "1", "3", "7", "18", "49", "140", "400", "1173", "3398", "9647", "26437", "67979", "159964", "334197", "602603", "910750", "1134215", "1153652", "963091", "664159", "382949", "185074", "75612", "25829", "7472", "1766", "370", "61", "12", "2", "1" ]
[ "nonn", "fini", "full" ]
14
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-24T14:46:56
oeisdata/seq/A384/A384107.seq
42e531638514ec251f6a22adc171e8c5
A384108
Number of connected components of n faces of the truncated dodecahedron up to the 120 rotations and reflections of the truncated dodecahedron.
[ "1", "2", "2", "7", "25", "92", "380", "1466", "5418", "17823", "52118", "132555", "294285", "566632", "950083", "1384788", "1760028", "1948075", "1881390", "1581334", "1157179", "733548", "402440", "189297", "76312", "25916", "7481", "1767", "370", "61", "12", "2", "1" ]
[ "nonn", "fini", "full" ]
13
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-24T14:47:24
oeisdata/seq/A384/A384108.seq
6dc3d9e552393b97b8cf69ea0da8624c
A384109
Number of connected components of n faces of the truncated icosahedron up to the 120 rotations and reflections of the truncated icosahedron.
[ "1", "2", "2", "5", "14", "41", "135", "461", "1610", "5564", "18769", "59513", "173692", "448720", "993666", "1820321", "2700927", "3225519", "3146565", "2555112", "1761447", "1041034", "531851", "234072", "88977", "28779", "7997", "1837", "378", "62", "12", "2", "1" ]
[ "nonn", "fini", "full" ]
13
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-24T05:57:17
oeisdata/seq/A384/A384109.seq
d9043e20f9d1922dbc325a395fca0667
A384110
Number of connected components of n faces of the rhombicosidodecahedron up to the 120 rotations and reflections of the rhombicosidodecahedron.
[ "1", "3", "2", "6", "13", "43", "125", "442", "1498", "5393", "19187", "69186", "248111", "888783", "3159624", "11137858", "38773614", "132891874", "446478045", "1463990116", "4662369227", "14350218212" ]
[ "nonn", "fini", "more" ]
16
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-26T05:50:31
oeisdata/seq/A384/A384110.seq
3de161ad704939bedff7ae3e08398c9d
A384111
Number of connected components of n faces of the truncated icosidodecahedron up to the 120 rotations and reflections of the truncated icosidodecahedron.
[ "1", "3", "3", "12", "38", "167", "731", "3504", "16734", "81247", "392387", "1886246", "8958474", "41841440", "190731843", "841422704", "3558291221", "14287757043" ]
[ "nonn", "fini", "more" ]
15
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-26T05:50:05
oeisdata/seq/A384/A384111.seq
4086f71556fb496f2868e46be80829ce
A384112
Number of connected components of n faces of the snub dodecahedron up to the 60 rotations of the snub dodecahedron.
[ "1", "3", "3", "6", "19", "51", "157", "465", "1444", "4492", "14236", "45097", "143753", "458400", "1464997", "4682469", "14970906", "47834908", "152721958", "486927066", "1549733096", "4920704208", "15579074400" ]
[ "nonn", "fini", "more" ]
15
0
2
[ "A384067", "A384068", "A384069", "A384070", "A384071", "A384072", "A384104", "A384107", "A384108", "A384109", "A384110", "A384111", "A384112" ]
null
Peter Kagey, May 20 2025
2025-05-26T05:50:47
oeisdata/seq/A384/A384112.seq
935ca24ce0280fe25cf035f5542ed1e6
A384113
Consecutive states of a linear congruential pseudo-random number generator for MacModula-2 when started at 1.
[ "1", "13", "169", "2197", "829", "1533", "1441", "245", "874", "2118", "2113", "2048", "1203", "1773", "2250", "1518", "1246", "21", "273", "1238", "2228", "1232", "2150", "218", "523", "2177", "569", "464", "1410", "2153", "257", "1030", "1835", "745", "441", "1111", "577", "568", "451", "1241", "2267", "1739", "1808", "394", "500", "1878", "1304" ]
[ "nonn", "easy" ]
20
1
2
[ "A001022", "A096550", "A096561", "A383809", "A384113" ]
null
Sean A. Irvine, May 19 2025
2025-05-26T06:28:33
oeisdata/seq/A384/A384113.seq
28737bd95829ecea113a0756b1eef218
A384114
Consecutive states of the linear congruential pseudo-random number generator (125*s+1) mod 2^12 when started at s=1.
[ "1", "126", "3463", "2796", "1341", "3786", "2211", "1944", "1337", "3286", "1151", "516", "3061", "1698", "3355", "1584", "1393", "2094", "3703", "28", "3501", "3450", "1171", "3016", "169", "646", "2927", "1332", "2661", "850", "3851", "2144", "1761", "3038", "2919", "332", "541", "2090", "3203", "3064", "2073", "1078", "3679", "1124", "1237" ]
[ "nonn", "easy", "changed" ]
16
1
2
[ "A096550", "A096561", "A384114" ]
null
Sean A. Irvine, May 19 2025
2025-07-06T17:47:53
oeisdata/seq/A384/A384114.seq
5461fcdf03620d6229b75595e67f77d0
A384115
The number of polyforms on the snub square tiling where the adjacent triangles are combined into rhombi.
[ "1", "2", "1", "5", "10", "38", "110", "400", "1370", "5026", "18249", "67885" ]
[ "nonn", "more" ]
10
0
2
[ "A309159", "A384115" ]
null
Peter Kagey, May 19 2025
2025-05-22T00:59:18
oeisdata/seq/A384/A384115.seq
9863f9afac56441981ebe1d468ccc7bc
A384116
Array read by antidiagonals: T(n,m) is the number of total dominating sets in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "4", "9", "4", "1", "1", "11", "39", "39", "11", "1", "1", "26", "183", "334", "183", "26", "1", "1", "57", "833", "3087", "3087", "833", "57", "1", "1", "120", "3629", "27472", "53731", "27472", "3629", "120", "1", "1", "247", "15291", "236127", "922515", "922515", "236127", "15291", "247", "1", "1", "502", "63051", "1975246", "15524639", "30844786", "15524639", "1975246", "63051", "502", "1" ]
[ "nonn", "tabl" ]
9
0
12
[ "A000012", "A000295", "A287063", "A287274", "A303208", "A384116", "A384117", "A384118" ]
null
Andrew Howroyd, May 19 2025
2025-05-20T12:52:15
oeisdata/seq/A384/A384116.seq
4b501d0097d7e569d173950e13a3b0f1
A384117
Array read by antidiagonals: T(n,m) is the number of minimum total dominating sets in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "3", "4", "3", "1", "1", "6", "3", "3", "6", "1", "1", "10", "4", "6", "4", "10", "1", "1", "15", "5", "4", "4", "5", "15", "1", "1", "21", "6", "5", "80", "5", "6", "21", "1", "1", "28", "7", "6", "65", "65", "6", "7", "28", "1", "1", "36", "8", "7", "96", "410", "96", "7", "8", "36", "1", "1", "45", "9", "8", "133", "306", "306", "133", "8", "9", "45", "1" ]
[ "nonn", "tabl" ]
11
0
12
[ "A000012", "A000217", "A303211", "A384116", "A384117", "A384118", "A384119" ]
null
Andrew Howroyd, May 19 2025
2025-05-20T12:52:11
oeisdata/seq/A384/A384117.seq
5d2399a4f193e9d96ceefa7304a109c2
A384118
Array read by antidiagonals: T(n,m) is the number of minimal total dominating sets in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "3", "4", "3", "1", "1", "6", "5", "5", "6", "1", "1", "10", "12", "51", "12", "10", "1", "1", "15", "37", "97", "97", "37", "15", "1", "1", "21", "98", "218", "368", "218", "98", "21", "1", "1", "28", "219", "519", "2229", "2229", "519", "219", "28", "1", "1", "36", "430", "1417", "6232", "7310", "6232", "1417", "430", "36", "1" ]
[ "nonn", "tabl" ]
6
0
12
[ "A290632", "A347921", "A384116", "A384117", "A384118" ]
null
Andrew Howroyd, May 19 2025
2025-05-20T12:52:07
oeisdata/seq/A384/A384118.seq
8338b7f989c4794b65b3e2f13b885c51
A384119
Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "3", "6", "3", "1", "1", "4", "9", "9", "4", "1", "1", "5", "16", "48", "16", "5", "1", "1", "6", "25", "64", "64", "25", "6", "1", "1", "7", "36", "125", "488", "125", "36", "7", "1", "1", "8", "49", "216", "625", "625", "216", "49", "8", "1", "1", "9", "64", "343", "1296", "6130", "1296", "343", "64", "9", "1", "1", "10", "81", "512", "2401", "7776", "7776", "2401", "512", "81", "10", "1" ]
[ "nonn", "tabl" ]
6
0
8
[ "A079901", "A248744", "A287274", "A290632", "A384119" ]
null
Andrew Howroyd, May 20 2025
2025-05-20T12:52:02
oeisdata/seq/A384/A384119.seq
45ca540def874d7a717bd8e21462a09b
A384120
Array read by antidiagonals: T(n,m) is the number of cliques in the n X m rook graph K_n X K_m.
[ "1", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "8", "9", "8", "1", "1", "16", "18", "18", "16", "1", "1", "32", "35", "34", "35", "32", "1", "1", "64", "68", "62", "62", "68", "64", "1", "1", "128", "133", "114", "105", "114", "133", "128", "1", "1", "256", "262", "214", "180", "180", "214", "262", "256", "1", "1", "512", "519", "410", "319", "286", "319", "410", "519", "512", "1" ]
[ "nonn", "tabl", "easy" ]
9
0
5
[ "A000012", "A000079", "A083706", "A250770", "A288958", "A384120", "A384121" ]
null
Andrew Howroyd, May 20 2025
2025-05-20T19:16:18
oeisdata/seq/A384/A384120.seq
93b63e7ef4ca7d65a8282b8ac660ae71
A384121
Array read by antidiagonals: T(n,m) is the number of dominating sets in the n X m rook complement graph.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "39", "39", "1", "1", "1", "1", "183", "421", "183", "1", "1", "1", "1", "833", "3825", "3825", "833", "1", "1", "1", "1", "3629", "32047", "64727", "32047", "3629", "1", "1", "1", "1", "15291", "260355", "1046425", "1046425", "260355", "15291", "1", "1", "1", "1", "63051", "2092909", "16771879", "33548731", "16771879", "2092909", "63051", "1", "1" ]
[ "nonn", "tabl" ]
6
0
13
[ "A000012", "A287063", "A292073", "A384120", "A384121", "A384122", "A384123" ]
null
Andrew Howroyd, May 20 2025
2025-05-20T19:16:08
oeisdata/seq/A384/A384121.seq
1b39a27a7315fecdd0750925e4de7c85
A384122
Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook complement graph.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "3", "3", "1", "1", "1", "1", "4", "48", "4", "1", "1", "1", "1", "5", "100", "100", "5", "1", "1", "1", "1", "6", "185", "240", "185", "6", "1", "1", "1", "1", "7", "306", "480", "480", "306", "7", "1", "1", "1", "1", "8", "469", "840", "1000", "840", "469", "8", "1", "1", "1", "1", "9", "680", "1344", "1800", "1800", "1344", "680", "9", "1", "1" ]
[ "nonn", "tabl" ]
9
0
13
[ "A090197", "A272871", "A292074", "A384121", "A384122", "A384123" ]
null
Andrew Howroyd, May 20 2025
2025-05-22T16:57:42
oeisdata/seq/A384/A384122.seq
2e60ee4bbde5669d354d0a8e414248b4
A384123
Array read by antidiagonals: T(n,m) is the number of minimal dominating sets in the n X m rook complement graph.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "5", "5", "1", "1", "1", "1", "12", "48", "12", "1", "1", "1", "1", "37", "121", "121", "37", "1", "1", "1", "1", "98", "278", "320", "278", "98", "1", "1", "1", "1", "219", "579", "729", "729", "579", "219", "1", "1", "1", "1", "430", "1102", "1480", "1610", "1480", "1102", "430", "1", "1", "1", "1", "767", "1943", "2741", "3161", "3161", "2741", "1943", "767", "1", "1" ]
[ "nonn", "tabl" ]
10
0
13
[ "A000012", "A289121", "A291623", "A384121", "A384122", "A384123" ]
null
Andrew Howroyd, May 20 2025
2025-05-22T16:57:28
oeisdata/seq/A384/A384123.seq
77a3385b25479d9428d5064a9c68fea5
A384124
Array read by antidiagonals: T(n,m) is the number of irredundant sets in the n X m rook complement graph.
[ "1", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "8", "9", "8", "1", "1", "16", "24", "24", "16", "1", "1", "32", "77", "94", "77", "32", "1", "1", "64", "178", "284", "284", "178", "64", "1", "1", "128", "373", "624", "777", "624", "373", "128", "1", "1", "256", "724", "1234", "1620", "1620", "1234", "724", "256", "1", "1", "512", "1331", "2258", "3049", "3286", "3049", "2258", "1331", "512", "1" ]
[ "nonn", "tabl" ]
10
0
5
[ "A000012", "A000079", "A290710", "A291622", "A384123", "A384124" ]
null
Andrew Howroyd, May 22 2025
2025-05-22T16:57:23
oeisdata/seq/A384/A384124.seq
39775b4b307f694cebd9a7b46d14114d
A384125
Array read by antidiagonals: T(n,m) is the number of edges in the n X m rook graph K_n X K_m.
[ "0", "1", "1", "3", "4", "3", "6", "9", "9", "6", "10", "16", "18", "16", "10", "15", "25", "30", "30", "25", "15", "21", "36", "45", "48", "45", "36", "21", "28", "49", "63", "70", "70", "63", "49", "28", "36", "64", "84", "96", "100", "96", "84", "64", "36", "45", "81", "108", "126", "135", "135", "126", "108", "81", "45", "55", "100", "135", "160", "175", "180", "175", "160", "135", "100", "55" ]
[ "nonn", "tabl", "easy" ]
12
1
4
[ "A000217", "A000290", "A003991", "A045943", "A045991", "A054000", "A067707", "A269457", "A360855", "A384120", "A384125" ]
null
Andrew Howroyd, May 20 2025
2025-05-23T01:09:30
oeisdata/seq/A384/A384125.seq
e8e86d64554c6c714ff0d70cfb001427
A384126
Consecutive states of a linear congruential pseudo-random number generator (93*s+1) mod 2^13 when started at s=1.
[ "1", "94", "551", "2092", "6141", "5866", "4867", "2072", "4281", "4918", "6815", "3012", "1589", "322", "5371", "7984", "5233", "3342", "7703", "3676", "5997", "666", "4595", "1352", "2857", "3558", "3215", "4084", "2981", "6898", "2539", "6752", "5345", "5566", "1543", "4236", "733", "2634", "7395", "7800", "4505", "1174", "2687", "4132", "7445" ]
[ "nonn", "easy" ]
20
1
2
[ "A096550", "A096561", "A384126" ]
null
Sean A. Irvine, May 19 2025
2025-06-13T19:59:37
oeisdata/seq/A384/A384126.seq
8a40e62c17e7bb41c0476fbeab62d41b
A384127
a(n) is the number of integer quintuples (a,b,c,d,e) satisfying a system of linear inequalities and congruences specified in the comments.
[ "1", "25", "226", "1000", "3126", "7877", "17151", "33602", "60751", "103127", "166378", "257402", "384478", "557377", "787503", "1088004", "1473903", "1962229", "2572128", "3325004", "4244630", "5357279", "6691855", "8280004", "10156255", "12358131", "14926280", "17904606", "21340380", "25284381", "29791007", "34918406" ]
[ "nonn", "easy" ]
22
0
2
[ "A370349", "A384127", "A384295" ]
null
Jeffery Opoku, May 19 2025
2025-06-04T11:52:40
oeisdata/seq/A384/A384127.seq
317bc151ee04638ff55ced7eae4123df
A384128
Number of iterations for the circular absolute first-difference on decimal digits to reach a repdigit.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "3", "2", "3", "5", "6", "5", "6" ]
[ "nonn", "base" ]
19
1
100
[ "A010785", "A384128" ]
null
Pietro Tiaraju Giavarina dos Santos, May 20 2025
2025-06-13T21:47:04
oeisdata/seq/A384/A384128.seq
1f270e6f2cdbd622f688afb8cce1c09b
A384129
Number of permutations of 3*n objects with exactly 2*n cycles.
[ "1", "3", "85", "4536", "357423", "37312275", "4853222764", "756111184500", "137272511800831", "28460103232088385", "6634460278534540725", "1717750737160208150400", "489078062391738506912340", "151874660255802127280374140", "51082995429153110239690350120", "18500755859447038660174079965500" ]
[ "nonn", "easy" ]
12
0
2
[ "A132393", "A187646", "A348084", "A384129" ]
null
Seiichi Manyama, May 20 2025
2025-05-23T03:57:37
oeisdata/seq/A384/A384129.seq
a2b2fc269d5b392df4783199455a6b1f
A384130
Number of permutations of 4*n objects with exactly 3*n cycles.
[ "1", "6", "322", "32670", "4899622", "973941900", "241276443496", "71603372991150", "24764667228756390", "9781650150525639540", "4344363139637533397580", "2143082171052546774398348", "1162585907585797437278546956", "687872810620417599693839111880", "440840269604491448260396623711300" ]
[ "nonn", "easy" ]
26
0
2
[ "A132393", "A187646", "A242676", "A383881", "A383882", "A384129", "A384130" ]
null
Seiichi Manyama, May 20 2025
2025-05-23T06:18:23
oeisdata/seq/A384/A384130.seq
bd41597d816f05dd049c819588f3b61a
A384131
Smallest positive number divisible by n that has n letters in US English, or 0 if none exists.
[ "6", "4", "40", "12", "70", "56", "36", "100", "33", "300", "1000000001", "406", "150", "112", "170", "162", "418", "11020", "336", "528", "828", "4800", "3300", "1404", "1620", "1512", "1218", "1770", "1147", "1344", "1353", "2788", "3325", "3888", "12728", "13376", "13338", "103360", "22878", "23478", "27778", "101728", "103725", "111734", "111578" ]
[ "nonn", "word" ]
29
3
1
[ "A005589", "A134629", "A384131" ]
null
Jason Bard, May 20 2025
2025-05-28T21:29:49
oeisdata/seq/A384/A384131.seq
1aa8e1ebaab7076ff38ffd7639ededb5
A384132
Integers k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^3, where 0 < x < y < z < w has no integer solutions.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "15", "16", "17", "19", "21", "22", "25", "27", "29", "47", "58", "61", "71", "113", "121" ]
[ "nonn", "more" ]
18
1
2
[ "A003327", "A383877", "A384132" ]
null
Zhining Yang, May 20 2025
2025-06-02T16:24:29
oeisdata/seq/A384/A384132.seq
8eabfde012649f0bcd317aa03848a723
A384133
Triangle read by rows: T(n,k) is the number of linear intervals of height k in the Tamari lattice Tam_n (0 <= k < n).
[ "1", "2", "1", "5", "5", "2", "14", "21", "12", "2", "42", "84", "56", "14", "2", "132", "330", "240", "72", "16", "2", "429", "1287", "990", "330", "90", "18", "2", "1430", "5005", "4004", "1430", "440", "110", "20", "2", "4862", "19448", "16016", "6006", "2002", "572", "132", "22", "2", "16796", "75582", "63648", "24752", "8736", "2730", "728", "156", "24", "2" ]
[ "nonn", "tabl" ]
11
1
2
[ "A000108", "A000260", "A344136", "A384133" ]
null
Ludovic Schwob, May 20 2025
2025-05-30T01:07:12
oeisdata/seq/A384/A384133.seq
49debad3b1e2e640548f5906dff007b2
A384134
Triangle read by rows: T(n,k) is the number of Cauchy-complete categories with n morphisms and k objects.
[ "1", "1", "1", "1", "2", "1", "2", "6", "2", "1", "1", "12", "9", "2", "1", "2", "23", "25", "10", "2", "1", "1", "45", "69", "35", "10", "2", "1", "5", "98", "178", "119", "38", "10", "2", "1", "2", "278", "457", "371", "151", "39", "10", "2", "1" ]
[ "nonn", "tabl", "hard", "more" ]
26
1
5
[ "A000001", "A125697", "A384066", "A384134", "A384135" ]
null
Elijah Beregovsky, May 20 2025
2025-05-31T14:39:13
oeisdata/seq/A384/A384134.seq
ea2c111a53f88570b1734497bfda0320
A384135
Number of Cauchy-complete categories with n morphisms.
[ "1", "2", "4", "11", "25", "63", "163", "451", "1311" ]
[ "nonn", "hard", "more" ]
9
1
2
[ "A125697", "A384135" ]
null
Elijah Beregovsky, May 20 2025
2025-05-22T10:53:00
oeisdata/seq/A384/A384135.seq
dcf24a5d2a791d1ed51efb91082d2298
A384136
a(n) = (3*n)!/(2*n)! * Sum_{k=1..n} 1/(2*n+k).
[ "1", "11", "191", "4578", "140274", "5238132", "230784840", "11720201616", "674092013040", "43310839531680", "3074579815271040", "238983481496188800", "20187063842072319360", "1841332369689189619200", "180372122189263722009600", "18885338733119777188300800", "2104722524872544008142592000" ]
[ "nonn" ]
9
1
2
[ "A098118", "A383678", "A384136", "A384137" ]
null
Seiichi Manyama, May 20 2025
2025-05-20T08:53:42
oeisdata/seq/A384/A384136.seq
2b91a53c4919f968e0bfb14addce4d8e
A384137
a(n) = (4*n)!/(3*n)! * Sum_{k=1..n} 1/(3*n+k).
[ "1", "15", "362", "12122", "520024", "27216936", "1681732464", "119823343440", "9671547654720", "872215286083200", "86920331742115200", "9485402065890543360", "1124985637517264409600", "144084905450972444851200", "19819350850103541715507200", "2914041773775561429169612800", "456069533875430113486232985600" ]
[ "nonn" ]
7
1
2
[ "A098118", "A382349", "A384136", "A384137" ]
null
Seiichi Manyama, May 20 2025
2025-05-20T08:53:27
oeisdata/seq/A384/A384137.seq
9dc4c1a46f364163a933c39c9b7c8b39
A384138
Decimal expansion of the volume of an elongated pentagonal pyramid with unit edge.
[ "2", "0", "2", "1", "9", "8", "0", "2", "3", "2", "9", "8", "4", "7", "9", "1", "4", "9", "3", "4", "4", "2", "7", "2", "7", "5", "4", "6", "9", "1", "9", "0", "7", "9", "4", "4", "2", "5", "5", "0", "7", "3", "3", "2", "6", "8", "3", "2", "7", "3", "4", "5", "2", "3", "4", "3", "8", "5", "0", "4", "8", "7", "5", "8", "9", "1", "5", "9", "7", "4", "0", "3", "0", "7", "7", "7", "2", "0", "8", "1", "0", "2", "1", "4", "1", "3", "7", "5", "1", "7" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A002163", "A179553", "A383852", "A384138", "A384139", "A384140" ]
null
Paolo Xausa, May 20 2025
2025-05-22T05:22:40
oeisdata/seq/A384/A384138.seq
db39fd55789aa983ddbe25202fd9c940
A384139
Decimal expansion of the volume of an elongated triangular bipyramid with unit edge.
[ "6", "6", "8", "7", "1", "4", "9", "6", "2", "2", "8", "7", "7", "3", "5", "1", "6", "4", "8", "4", "8", "8", "0", "9", "7", "0", "6", "0", "7", "8", "0", "8", "4", "4", "3", "8", "1", "6", "3", "9", "7", "9", "9", "5", "9", "3", "4", "8", "7", "5", "3", "1", "6", "9", "2", "1", "0", "0", "6", "5", "0", "3", "4", "5", "2", "8", "1", "0", "5", "3", "3", "3", "9", "7", "0", "8", "8", "4", "5", "1", "5", "7", "4", "5", "3", "5", "1", "1", "3", "5" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A010482", "A165663", "A383852", "A384138", "A384139", "A384140" ]
null
Paolo Xausa, May 20 2025
2025-05-22T05:22:24
oeisdata/seq/A384/A384139.seq
ad8c9a47028fd1cff6982f21fac18072
A384140
Decimal expansion of the volume of an elongated pentagonal bipyramid with unit edge.
[ "2", "3", "2", "3", "4", "8", "3", "0", "6", "5", "3", "8", "0", "6", "1", "6", "0", "6", "4", "1", "2", "6", "4", "4", "3", "1", "1", "6", "4", "4", "9", "5", "4", "9", "2", "8", "5", "6", "9", "4", "0", "9", "2", "3", "6", "6", "6", "4", "4", "4", "9", "2", "1", "3", "9", "5", "6", "3", "0", "0", "2", "8", "1", "0", "8", "0", "8", "0", "7", "9", "0", "6", "9", "3", "4", "5", "4", "4", "9", "9", "7", "2", "9", "5", "0", "3", "0", "9", "1", "0" ]
[ "nonn", "cons", "easy" ]
8
1
1
[ "A002163", "A383852", "A384138", "A384139", "A384140", "A384141" ]
null
Paolo Xausa, May 20 2025
2025-05-22T05:21:24
oeisdata/seq/A384/A384140.seq
31ee9bee0375d113c2112f160d536301
A384141
Decimal expansion of the surface area of an elongated pentagonal bipyramid with unit edge.
[ "9", "3", "3", "0", "1", "2", "7", "0", "1", "8", "9", "2", "2", "1", "9", "3", "2", "3", "3", "8", "1", "8", "6", "1", "5", "8", "5", "3", "7", "6", "4", "6", "8", "0", "9", "1", "7", "3", "5", "7", "0", "1", "3", "1", "3", "4", "5", "2", "5", "9", "5", "1", "5", "7", "0", "1", "3", "9", "5", "1", "7", "4", "4", "8", "6", "2", "9", "8", "3", "2", "5", "4", "2", "2", "7", "2", "0", "0", "0", "0", "9", "2", "7", "0", "2", "8", "6", "5", "4", "6" ]
[ "nonn", "cons", "easy" ]
9
1
1
[ "A002163", "A120011", "A384140", "A384141" ]
null
Paolo Xausa, May 20 2025
2025-05-22T05:19:54
oeisdata/seq/A384/A384141.seq
1de1bca8d42b5bd5ca2a7f437a71606d
A384142
Decimal expansion of the volume of a gyroelongated square bipyramid with unit edge.
[ "1", "4", "2", "8", "4", "0", "4", "5", "0", "2", "6", "2", "7", "7", "4", "8", "4", "0", "0", "5", "2", "7", "1", "4", "6", "5", "4", "9", "0", "7", "8", "8", "6", "7", "9", "2", "7", "9", "8", "0", "9", "0", "4", "1", "6", "4", "1", "8", "4", "7", "7", "8", "1", "6", "9", "2", "7", "4", "0", "4", "4", "7", "1", "1", "5", "5", "3", "3", "4", "9", "5", "5", "2", "1", "9", "8", "9", "4", "2", "8", "9", "2", "7", "8", "3", "2", "7", "2", "2", "9" ]
[ "nonn", "cons", "easy" ]
8
1
2
[ "A002193", "A010474", "A010502", "A179638", "A384142" ]
null
Paolo Xausa, May 22 2025
2025-05-23T10:14:24
oeisdata/seq/A384/A384142.seq
922f0c5d5bcccf5f12a29f89cc6f94d6
A384143
Decimal expansion of the volume of an elongated triangular cupola with unit edge.
[ "3", "7", "7", "6", "5", "8", "7", "5", "1", "3", "3", "3", "0", "8", "9", "5", "1", "4", "7", "6", "2", "5", "9", "1", "0", "1", "1", "5", "7", "6", "6", "8", "9", "0", "2", "8", "2", "5", "5", "5", "6", "0", "1", "1", "1", "0", "1", "9", "6", "3", "6", "1", "0", "0", "3", "0", "6", "4", "2", "7", "6", "9", "1", "7", "5", "0", "3", "5", "0", "9", "9", "2", "4", "0", "8", "1", "6", "2", "2", "5", "8", "7", "9", "9", "7", "0", "4", "2", "2", "2" ]
[ "nonn", "cons", "easy" ]
9
1
1
[ "A002193", "A002194", "A344078", "A383852", "A384139", "A384141", "A384143" ]
null
Paolo Xausa, May 22 2025
2025-05-23T10:14:16
oeisdata/seq/A384/A384143.seq
1a2ac74558819cf17098ff7168264a74
A384144
Decimal expansion of the volume of an elongated pentagonal cupola with unit edge.
[ "1", "0", "0", "1", "8", "2", "5", "4", "1", "6", "1", "2", "7", "1", "3", "2", "6", "6", "3", "7", "3", "6", "5", "1", "7", "5", "5", "5", "2", "5", "7", "9", "7", "9", "2", "0", "5", "0", "3", "1", "0", "5", "0", "0", "9", "3", "1", "9", "1", "8", "8", "3", "1", "5", "5", "0", "4", "4", "5", "1", "5", "5", "4", "5", "6", "2", "1", "0", "8", "3", "8", "8", "3", "8", "3", "2", "9", "5", "9", "7", "2", "2", "9", "0", "7", "9", "4", "2", "7", "2" ]
[ "nonn", "cons", "easy" ]
9
2
5
[ "A010476", "A010532", "A179591", "A384138", "A384140", "A384144", "A384213" ]
null
Paolo Xausa, May 22 2025
2025-05-23T10:14:11
oeisdata/seq/A384/A384144.seq
148d99edca7581feaca17407ab1c2ce3
A384145
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x*A(x)^3) ).
[ "1", "1", "2", "8", "44", "298", "2359", "21112", "209175", "2262121", "26431042", "331096188", "4419824468", "62565545535", "935341395343", "14716294925179", "242945752432294", "4197094127399756", "75698807290515322", "1422350601250404765", "27788515730656558613", "563512508612712699574", "11841983002490204813514" ]
[ "nonn" ]
21
0
3
[ "A110447", "A162661", "A384145", "A384649", "A384650", "A384652" ]
null
Seiichi Manyama, Jun 06 2025
2025-06-06T08:36:01
oeisdata/seq/A384/A384145.seq
f96283a180398c6d07db50c9316976d0
A384146
Smallest squarefree order m > 0 for which there are n nonisomorphic finite groups of order m, or 0 if no such order exists.
[ "1", "6", "609", "30", "273", "42", "903", "510", "8729", "3255", "494711", "210", "16951", "5115", "54431", "1218" ]
[ "nonn", "more" ]
29
1
2
[ "A046057", "A384146" ]
null
Robin Jones, May 21 2025
2025-05-29T07:31:02
oeisdata/seq/A384/A384146.seq
0a3df39628ff5fc313041106de3fd31a
A384147
Array A(n,k) = n*(A(n-1,k)+A(n-2,k)+...+A(n-k,k)), where A(n,k) = n if n <= k, read by antidiagonals with n >= 1 and k >= 1.
[ "1", "1", "2", "1", "2", "3", "1", "8", "3", "4", "1", "20", "3", "4", "5", "1", "56", "27", "4", "5", "6", "1", "152", "99", "4", "5", "6", "7", "1", "416", "387", "64", "5", "6", "7", "8", "1", "1136", "1539", "304", "5", "6", "7", "8", "9", "1", "3104", "6075", "1504", "125", "6", "7", "8", "9", "10", "1", "8480", "24003", "7504", "725", "6", "7", "8", "9", "10", "11", "1", "23168", "94851", "37504", "4325", "216", "7", "8", "9", "10", "11", "12" ]
[ "nonn", "tabl" ]
22
1
3
[ "A000012", "A000578", "A002024", "A002260", "A080040", "A384147" ]
null
Jason Bard, May 25 2025
2025-06-03T19:08:29
oeisdata/seq/A384/A384147.seq
c1473056b7798abcdadaadddf4d164cc
A384148
Numbers k such that (2^k-1)^k == 1 (mod (2^k+1)*k^2) and 2^(k-1) != 1 (mod k).
[ "30457", "33865", "80185", "82621", "86785", "104845", "212401", "250705" ]
[ "nonn", "hard", "more" ]
18
1
1
[ "A001567", "A066488", "A384148" ]
null
Thomas Ordowski, May 20 2025
2025-05-28T16:20:58
oeisdata/seq/A384/A384148.seq
f5a6a141ceffde13e8a7704bea20f030
A384149
Irregular triangle T(n, k) in which row n gives the 2-densely-aggregated composition of sigma(n).
[ "1", "3", "1", "3", "7", "1", "5", "12", "1", "7", "15", "1", "3", "9", "3", "15", "1", "11", "28", "1", "13", "3", "21", "1", "8", "15", "31", "1", "17", "39", "1", "19", "42", "1", "3", "7", "21", "3", "33", "1", "23", "60", "1", "5", "25", "3", "39", "1", "3", "9", "27", "56", "1", "29", "72", "1", "31", "63", "1", "3", "11", "33", "3", "51", "1", "12", "35", "91", "1", "37", "3", "57", "1", "3", "13", "39", "90", "1", "41", "96", "1", "43", "7", "77", "1", "32", "45" ]
[ "nonn", "easy", "tabf" ]
33
1
2
[ "A000203", "A027750", "A174973", "A237270", "A237271", "A384149" ]
null
Peter Munn, May 22 2025
2025-06-15T17:43:32
oeisdata/seq/A384/A384149.seq
08f1c620c1376a050b324bc78db3a2fb
A384150
Consecutive states of the linear congruential pseudo-random number generator (10924*s+11830) mod (2^15+1) when started at s=1.
[ "1", "22754", "23661", "2722", "25475", "26382", "5443", "28196", "29103", "8164", "30917", "31824", "10885", "869", "1776", "13606", "3590", "4497", "16327", "6311", "7218", "19048", "9032", "9939", "21769", "11753", "12660", "24490", "14474", "15381", "27211", "17195", "18102", "29932", "19916", "20823", "32653", "22637", "23544" ]
[ "nonn", "easy" ]
59
1
2
[ "A096550", "A096561", "A384150" ]
null
Sean A. Irvine, May 21 2025
2025-06-17T17:44:46
oeisdata/seq/A384/A384150.seq
e2bc014873cb9ad4054b8c83724a3587
A384151
Population of elementary triangular automaton rule 122 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "9", "16", "18", "30", "42", "60", "54", "66", "84", "126", "120", "168", "204", "210", "216", "234", "240", "282", "300", "342", "408", "450", "480", "474", "540", "636", "642", "750", "852", "852", "870", "882", "906", "948", "960", "996", "1086", "1098", "1152", "1164", "1236", "1344", "1422", "1530", "1686", "1776", "1800", "1830", "1860", "1968" ]
[ "nonn" ]
8
0
2
null
null
Paul Cousin, May 20 2025
2025-05-21T01:27:16
oeisdata/seq/A384/A384151.seq
ad325c8df50fbee8d80fec0c70663135
A384152
Consecutive states of the linear congruential pseudo-random number generator used by OMNITAB II when started at 1.
[ "1", "125", "7433", "3429", "2641", "2445", "2521", "3829", "3489", "1949", "6057", "3461", "6641", "2733", "5753", "6421", "8001", "701", "5705", "421", "3473", "8141", "1817", "5941", "5345", "4573", "6377", "2501", "1329", "2285", "7097", "2389", "3713", "5373", "8073", "1509", "209", "1549", "5209", "3957", "3105", "3101", "2601", "5637", "113" ]
[ "nonn", "easy", "changed" ]
20
1
2
[ "A096550", "A096561", "A383809", "A384113", "A384126", "A384152", "A384971", "A384973" ]
null
Sean A. Irvine, May 20 2025
2025-07-06T17:47:58
oeisdata/seq/A384/A384152.seq
3d0df24b5ac2b85f2f5a0c03f223cda9
A384153
a(n) is the number of binary strings of length n whose shortest run of 1s is of length 1.
[ "0", "1", "2", "4", "9", "20", "43", "91", "191", "398", "824", "1697", "3480", "7111", "14487", "29439", "59694", "120820", "244153", "492716", "993171", "1999923", "4023679", "8089182", "16251760", "32632321", "65490672", "131377999", "263452079", "528125695", "1058395038", "2120551916", "4247705401", "8506995748", "17034321659" ]
[ "nonn", "easy" ]
12
0
3
[ "A000071", "A384153", "A384154" ]
null
Félix Balado, May 20 2025
2025-05-26T20:05:43
oeisdata/seq/A384/A384153.seq
08a784bc8c66928b677e8467740b09ac
A384154
a(n) is the number of binary strings of length n whose shortest run of 1s is of length 2.
[ "0", "0", "1", "2", "3", "5", "10", "20", "38", "70", "128", "234", "427", "776", "1404", "2531", "4550", "8161", "14608", "26099", "46550", "82901", "147441", "261913", "464759", "823902", "1459287", "2582615", "4567357", "8072082", "14257631", "25169443", "44410452", "78325112", "138082349", "243339192", "428683436", "754961473" ]
[ "nonn", "easy" ]
15
0
4
[ "A000100", "A384153", "A384154" ]
null
Félix Balado, May 20 2025
2025-06-24T16:10:24
oeisdata/seq/A384/A384154.seq
4cfbe643e8c3592ce983da2bf5fbbf2b
A384155
a(n) is the number of binary strings of length n whose shortest run of 1s is of length 3.
[ "0", "0", "0", "1", "2", "3", "4", "6", "11", "21", "38", "65", "108", "179", "299", "502", "842", "1406", "2337", "3872", "6403", "10575", "17445", "28742", "47293", "77720", "127578", "209210", "342768", "561131", "917910", "1500476", "2451158", "4001723", "6529439", "10648199", "17356589", "28278426" ]
[ "nonn", "easy" ]
10
0
5
[ "A384153", "A384154", "A384155" ]
null
Félix Balado, May 31 2025
2025-06-04T18:42:16
oeisdata/seq/A384/A384155.seq
49620a5d6b4354b3de2db4fd5bc39539
A384156
Number of group Schur rings of the cyclic group Z_n.
[ "1", "1", "2", "3", "3", "7", "4", "10", "7", "10", "34", "32", "6", "13", "21" ]
[ "nonn", "more" ]
10
1
3
[ "A112951", "A270785", "A270786", "A270787", "A270789", "A384156" ]
null
Joseph E. Marrow, May 20 2025
2025-06-07T09:54:24
oeisdata/seq/A384/A384156.seq
11cb9c16e5b884a69690a3c8c7be9a0e
A384157
Irregular triangle read by rows: T(n,k) is the number of connected induced k-vertex subgraphs of the hyperoctahedral graph of dimension n >= 1 up to automorphisms of the hyperoctahedral graph; 0 <= k <= 2*n.
[ "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "3", "2", "2", "1", "1", "1", "1", "1", "2", "3", "3", "3", "2", "2", "1", "1", "1", "1", "1", "2", "3", "3", "4", "3", "3", "2", "2", "1", "1", "1", "1", "1", "2", "3", "3", "4", "4", "4", "3", "3", "2", "2", "1", "1", "1", "1", "1", "2", "3", "3", "4", "4", "5", "4", "4", "3", "3", "2", "2", "1", "1" ]
[ "nonn", "tabf" ]
15
1
12
[ "A008967", "A369605", "A383973", "A384157" ]
null
Peter Kagey and Pontus von Brömssen, May 21 2025
2025-05-27T01:10:42
oeisdata/seq/A384/A384157.seq
9f2f57a8570cda7db16ee3f33b281f14
A384158
Consecutive states of the linear congruential pseudo-random number generator for 16-bit WATFOR/WATFIV when started at 1.
[ "1", "253", "31241", "6885", "5201", "5133", "20697", "26229", "16801", "23581", "2217", "3845", "22513", "26925", "29049", "9365", "10049", "19261", "23369", "14117", "32657", "4685", "5657", "22197", "12513", "20061", "29161", "4933", "2865", "3949", "16057", "31957", "24193", "25981", "19593", "9061", "31441", "24717", "27481", "5877" ]
[ "nonn", "easy" ]
22
1
2
[ "A096550", "A096561", "A384158", "A384159", "A384160" ]
null
Sean A. Irvine, May 20 2025
2025-05-26T06:32:50
oeisdata/seq/A384/A384158.seq
ba83519cbd60afd56dcc14d51c281c11
A384159
Consecutive states of the linear congruential pseudo-random number generator for 32-bit WATFOR/WATFIV when started at 1.
[ "1", "20613", "424895769", "938169853", "404929649", "1693398709", "828374025", "631292077", "1220159969", "1976439269", "430365689", "2020481117", "2026879057", "763630101", "1799615721", "1993805069", "1909315521", "1935501125", "533477081", "1446792893", "636483633", "859521397", "574460361", "126586221" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A096561", "A384158", "A384159", "A384160" ]
null
Sean A. Irvine, May 20 2025
2025-05-28T16:23:46
oeisdata/seq/A384/A384159.seq
e407d8a251fb128514552d1734131a19
A384160
Consecutive states of the linear congruential pseudo-random number generator for 36-bit WATFOR/WATFIV when started at 1.
[ "1", "131069", "17179082761", "17183408101", "34345582673", "53083917", "16988766937", "17848727413", "32066509217", "7739650845", "25740764841", "33596591109", "30610037745", "12186659885", "12166953849", "6296898965", "7334844225", "19577928253", "5497393481", "14152584229", "20226775953" ]
[ "nonn", "easy" ]
11
1
2
[ "A096550", "A096561", "A384158", "A384159", "A384160" ]
null
Sean A. Irvine, May 20 2025
2025-05-28T16:24:06
oeisdata/seq/A384/A384160.seq
270bbbe449568e7a165eac942c8e024c
A384161
Sum of next a(n) successive prime cubes is prime.
[ "4", "7", "3", "11", "13", "9", "131", "9", "15", "3", "31", "27", "3", "13", "7", "3", "31", "131", "15", "17", "13", "5", "21", "29", "3", "33", "3", "7", "11", "43", "5", "41", "43", "49", "27", "49", "37", "85", "5", "41", "3", "41", "65", "51", "13", "29", "65", "5", "89", "3", "27", "75", "3", "73", "3", "3", "5", "3", "23", "9", "7", "3", "71", "55", "35", "7", "71", "71", "19", "33", "15" ]
[ "nonn" ]
24
1
1
[ "A030078", "A073684", "A383504", "A384161" ]
null
Abhiram R Devesh, May 20 2025
2025-06-09T21:01:05
oeisdata/seq/A384/A384161.seq
df0f6ce049eb92cf378d55bfd244a09b
A384162
Number of length n words over an n-ary alphabet such that a single letter in every run of letters is marked.
[ "1", "6", "45", "460", "5945", "92736", "1694329", "35487432", "838341009", "22054058290", "639434542021", "20260243575936", "696512594466793", "25822887652517970", "1027054229302256625", "43622499402922710256", "1970666970910292873249", "94353519890358073478880", "4772755056209685781141981" ]
[ "nonn", "easy" ]
8
1
2
[ "A000312", "A011782", "A342168", "A351016", "A351638", "A384162" ]
null
John Tyler Rascoe, May 21 2025
2025-05-27T17:55:58
oeisdata/seq/A384/A384162.seq
80407582ec42df440f2ce5d7bc5ce630
A384163
a(n) = Product_{k=0..n-1} (2*n+3*k).
[ "1", "2", "28", "648", "20944", "869440", "44089920", "2641533440", "182573036800", "14299419214080", "1251598943795200", "121073405444992000", "12826824167930572800", "1477015178613438464000", "183679785389526871244800", "24533610049517447983104000", "3502810763000490499317760000", "532374290389646285405913088000" ]
[ "nonn", "easy" ]
18
0
2
[ "A352601", "A384163" ]
null
Seiichi Manyama, May 21 2025
2025-05-22T09:39:24
oeisdata/seq/A384/A384163.seq
6617195962161bffb6e1a22575504db3