sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A384060 | a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4. | [
"1",
"4",
"82",
"3024",
"162154",
"11438280",
"1001454024",
"104777127616",
"12755141675754",
"1771354690734420",
"276386332002204450",
"47870892086756660064",
"9113932961179205496744",
"1891845220489637114281216",
"425240943851497448491619600",
"102899751348092720847554016000"
]
| [
"nonn"
]
| 18 | 0 | 2 | [
"A007820",
"A350376",
"A351508",
"A383862",
"A384031",
"A384060"
]
| null | Vaclav Kotesovec, May 18 2025 | 2025-05-19T04:50:49 | oeisdata/seq/A384/A384060.seq | 780f65478343d74497d671b594be55e6 |
A384061 | Number of antichains in the Bruhat order of type A_n. | [
"3",
"9",
"250",
"67595432"
]
| [
"nonn",
"hard",
"more"
]
| 12 | 1 | 1 | [
"A000142",
"A005130",
"A384061",
"A384062"
]
| null | Dmitry I. Ignatov, May 18 2025 | 2025-05-22T21:00:04 | oeisdata/seq/A384/A384061.seq | 4185c9023682d65df964538baa58ec4d |
A384062 | Number of maximal antichains in the Bruhat order of type A_n. | [
"2",
"4",
"43",
"183667"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 1 | 1 | [
"A000142",
"A005130",
"A384061",
"A384062"
]
| null | Dmitry I. Ignatov, May 18 2025 | 2025-05-22T20:56:31 | oeisdata/seq/A384/A384062.seq | e85bb51e70afc6a7de4836253fe3ecc0 |
A384063 | Partial sums of A172471. | [
"0",
"1",
"3",
"5",
"7",
"10",
"13",
"16",
"20",
"24",
"28",
"32",
"36",
"41",
"46",
"51",
"56",
"61",
"67",
"73",
"79",
"85",
"91",
"97",
"103",
"110",
"117",
"124",
"131",
"138",
"145",
"152",
"160",
"168",
"176",
"184",
"192",
"200",
"208",
"216",
"224",
"233",
"242",
"251",
"260",
"269",
"278",
"287",
"296",
"305",
"315",
"325",
"335",
"345",
"355",
"365",
"375",
"385",
"395",
"405",
"415",
"426",
"437"
]
| [
"nonn"
]
| 27 | 0 | 3 | [
"A000217",
"A172471",
"A173196",
"A384063"
]
| null | Hoang Xuan Thanh, May 18 2025 | 2025-06-04T11:07:32 | oeisdata/seq/A384/A384063.seq | 48bf3b436130699380a19a0ec2ca64d1 |
A384064 | a(n) = s(n) divided by the smallest multiple prime factor of s(n), where s = A013929. | [
"2",
"4",
"3",
"6",
"8",
"6",
"10",
"12",
"5",
"9",
"14",
"16",
"18",
"20",
"22",
"15",
"24",
"7",
"10",
"26",
"18",
"28",
"30",
"21",
"32",
"34",
"36",
"15",
"38",
"40",
"27",
"42",
"44",
"30",
"46",
"48",
"14",
"33",
"50",
"52",
"54",
"56",
"58",
"39",
"60",
"11",
"62",
"25",
"42",
"64",
"66",
"45",
"68",
"70",
"72",
"21",
"74",
"30",
"76",
"51",
"78",
"80",
"54",
"82",
"84",
"13",
"57",
"86"
]
| [
"nonn",
"easy"
]
| 26 | 1 | 1 | [
"A013929",
"A046027",
"A048105",
"A384064"
]
| null | Michael De Vlieger, Jun 23 2025 | 2025-06-25T14:39:23 | oeisdata/seq/A384/A384064.seq | 87dfca67b3fe14c34a913474244cb1c6 |
A384065 | Cardinality of the lattice of order ideals for every order ideal in the lattice of normal subgroups of the dihedral group D_{2*n}. | [
"3",
"10",
"4",
"11",
"4",
"16",
"4",
"12",
"5",
"16",
"4",
"20",
"4",
"16",
"7",
"13",
"4",
"23",
"4",
"20",
"7",
"16",
"4",
"25",
"5",
"16",
"6",
"20",
"4",
"39",
"4",
"14",
"7",
"16",
"7",
"33",
"4",
"16",
"7",
"25",
"4",
"39",
"4",
"20",
"11",
"16",
"4",
"31",
"5",
"23",
"7",
"20",
"4",
"31",
"7",
"25",
"7",
"16",
"4",
"69",
"4",
"16",
"11",
"15",
"7",
"39",
"4",
"20",
"7",
"39",
"4",
"48",
"4",
"16",
"11",
"20",
"7",
"39"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A037852",
"A384065"
]
| null | Miles Englezou, May 18 2025 | 2025-05-22T22:00:21 | oeisdata/seq/A384/A384065.seq | 6f3f97a8df5d0535dbbd4270bca1a914 |
A384066 | Limiting values for Cauchy-complete category table A384134. | [
"1",
"2",
"10",
"39",
"168"
]
| [
"nonn",
"hard",
"more"
]
| 13 | 0 | 2 | [
"A125697",
"A125701",
"A384066",
"A384134"
]
| null | Elijah Beregovsky, May 20 2025 | 2025-05-22T10:51:45 | oeisdata/seq/A384/A384066.seq | 6b418ca4f3509ef5249b21377676bb4d |
A384067 | Number of edge-connected components of n faces of the cuboctahedron up to the 48 rotations and reflections of the cuboctahedron. | [
"1",
"2",
"1",
"3",
"5",
"11",
"19",
"36",
"50",
"48",
"34",
"15",
"7",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 20 | 0 | 2 | [
"A333333",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-20T15:03:45 | oeisdata/seq/A384/A384067.seq | 99f1986da99a88198d96aa48081dda55 |
A384068 | Number of connected components of n faces of the truncated cube up to the 48 rotations and reflections of the truncated cube. | [
"1",
"2",
"2",
"6",
"14",
"28",
"49",
"64",
"68",
"53",
"35",
"15",
"7",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 15 | 0 | 2 | [
"A383800",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-21T01:24:47 | oeisdata/seq/A384/A384068.seq | 917252a86d03fec933b57aa7af0c92c1 |
A384069 | Number of connected components of n faces of the truncated octahedron up to the 48 rotations and reflections of the truncated octahedron. | [
"1",
"2",
"2",
"5",
"12",
"26",
"52",
"76",
"83",
"61",
"39",
"16",
"7",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 15 | 0 | 2 | [
"A383802",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-21T01:24:43 | oeisdata/seq/A384/A384069.seq | 6f43e161ad576b34c4b5844abf3d7c64 |
A384070 | Number of connected components of n faces of the rhombicuboctahedron up to the 48 rotations and reflections of the rhombicuboctahedron. | [
"1",
"3",
"2",
"6",
"11",
"32",
"72",
"207",
"530",
"1434",
"3575",
"8475",
"17814",
"32643",
"49583",
"60964",
"58922",
"44513",
"26397",
"12494",
"4791",
"1493",
"390",
"83",
"17",
"3",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 19 | 0 | 2 | [
"A383804",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-22T16:57:13 | oeisdata/seq/A384/A384070.seq | 6566f7c83a496b63a1deb668359ecbc1 |
A384071 | Number of connected components of n faces of the truncated cuboctahedron up to the 48 rotations and reflections of the truncated cuboctahedron. | [
"1",
"3",
"3",
"11",
"28",
"100",
"319",
"1114",
"3538",
"10313",
"25470",
"52474",
"88257",
"121329",
"136282",
"125885",
"95956",
"60675",
"31943",
"14009",
"5123",
"1549",
"398",
"84",
"17",
"3",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 19 | 0 | 2 | [
"A383806",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-22T16:57:17 | oeisdata/seq/A384/A384071.seq | 06249efddcbd10ec4c2c68069ff7b71c |
A384072 | Number of connected components of n faces of the snub cube up to the 24 rotations of the snub cube. | [
"1",
"3",
"3",
"6",
"16",
"39",
"101",
"263",
"694",
"1839",
"4884",
"12840",
"33508",
"86227",
"218284",
"538796",
"1284335",
"2919365",
"6249499",
"12411396",
"22483152",
"36410533",
"51641029",
"62911551",
"64827047",
"55869657",
"40009946",
"23732630",
"11668877",
"4763611",
"1619236",
"456756",
"106602",
"20157",
"3101",
"358",
"37",
"3",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 19 | 0 | 2 | [
"A309159",
"A383808",
"A383908",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072"
]
| null | Peter Kagey, May 18 2025 | 2025-05-24T14:46:38 | oeisdata/seq/A384/A384072.seq | 7b5256b31f542f89f791f290a03082e5 |
A384073 | Numbers k such that d(k)^d(k) = d(k) (mod k), where d = A000005. | [
"4",
"6",
"14",
"16",
"21",
"36",
"50",
"56",
"75",
"120",
"132",
"162",
"168",
"210",
"264",
"276",
"280",
"312",
"330",
"390",
"405",
"440",
"462",
"520",
"546",
"616",
"726",
"728",
"744",
"770",
"784",
"858",
"910",
"930",
"984",
"1012",
"1016",
"1144",
"1155",
"1230",
"1240",
"1260",
"1302",
"1365",
"1430",
"1464",
"1640",
"1722",
"1736",
"1778",
"1830"
]
| [
"nonn"
]
| 13 | 1 | 1 | [
"A000005",
"A384073"
]
| null | Juri-Stepan Gerasimov, May 18 2025 | 2025-05-22T19:41:55 | oeisdata/seq/A384/A384073.seq | a67be9ce43fd9015bb0d811dea06eb92 |
A384074 | a(n) = permanent of the n X n circulant matrix with (row 1) = (1, 3, 5, 7, ..., 2n - 1). | [
"1",
"10",
"198",
"7384",
"450400",
"40340112",
"4977778288",
"810377196928",
"168292881301248",
"43412461935328000",
"13617419946361149952",
"5104272056570488986624",
"2253180383840385394370560",
"1156924438353338246938200064",
"683663789883272270452243200000"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A005408",
"A193678",
"A384074",
"A384075",
"A384076",
"A384077",
"A384078"
]
| null | Clark Kimberling, May 22 2025 | 2025-06-01T17:14:23 | oeisdata/seq/A384/A384074.seq | beab7159f0f953a1ab1c20c88250595b |
A384075 | a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661. | [
"0",
"-9",
"-45",
"-4716",
"-200200",
"-20916552",
"-2462535768",
"-406262340288",
"-84096850828032",
"-21708790967664000",
"-6808563893605222144",
"-2552145158372103507456",
"-1126589571631974396251136",
"-578462264691449080954733568",
"-341831891354409385226121600000"
]
| [
"sign"
]
| 10 | 1 | 2 | [
"A193678",
"A380661",
"A384074",
"A384075",
"A384076",
"A384077",
"A384078"
]
| null | Clark Kimberling, May 22 2025 | 2025-06-05T00:48:48 | oeisdata/seq/A384/A384075.seq | 796f55fdce0f4bd74709668a86829a3f |
A384076 | a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and pos(M(n)) is the positive part of the determinant of M(n); see A380661. | [
"1",
"1",
"153",
"2668",
"250200",
"19423560",
"2515242520",
"404114856640",
"84196030473216",
"21703670967664000",
"6808856052755927808",
"2552126898198385479168",
"1126590812208410998119424",
"578462173661889165983466496",
"341831898528862885226121600000"
]
| [
"nonn"
]
| 12 | 1 | 3 | [
"A193678",
"A380661",
"A384075",
"A384076",
"A384077",
"A384078"
]
| null | Clark Kimberling, May 22 2025 | 2025-06-11T00:34:15 | oeisdata/seq/A384/A384076.seq | f194ba26ad4c9d17effe2e03fa5d046e |
A384077 | a(n) = neg(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661. | [
"0",
"-9",
"-153",
"-2668",
"-200200",
"-20916552",
"-2515242520",
"-404114856640",
"-84096850828032",
"-21708790967664000",
"-6808856052755927808",
"-2552126898198385479168",
"-1126589571631974396251136",
"-578462264691449080954733568",
"-341831898528862885226121600000"
]
| [
"sign"
]
| 18 | 1 | 2 | [
"A193678",
"A380661",
"A384074",
"A384076",
"A384077",
"A384078"
]
| null | Clark Kimberling, May 29 2025 | 2025-06-18T22:07:23 | oeisdata/seq/A384/A384077.seq | ff74845eb86109b04a79f2688b516bc9 |
A384078 | a(n) = pos(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and pos(M(n)) is the positive part of the determinant of M(n); see A380661. | [
"1",
"1",
"45",
"4716",
"250200",
"19423560",
"2462535768",
"406262340288",
"84196030473216",
"21703670967664000",
"6808563893605222144",
"2552145158372103507456",
"1126590812208410998119424",
"578462173661889165983466496",
"341831891354409385226121600000"
]
| [
"nonn"
]
| 15 | 1 | 3 | [
"A193678",
"A380661",
"A384074",
"A384076",
"A384077",
"A384078"
]
| null | Clark Kimberling, Jun 01 2025 | 2025-06-18T22:09:51 | oeisdata/seq/A384/A384078.seq | 0f62916163f096a0f8359dbbc0f94615 |
A384079 | a(n) = permanent of the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers). | [
"1",
"0",
"1",
"2",
"34",
"877",
"70400",
"13131404",
"6425063793",
"7943767996608",
"25443254098886314",
"210703114432644635021",
"4542702757904484984146944",
"255390683442241619390980497544",
"37530368819103589103825830619476133",
"14431488687735756287625931644915850256384"
]
| [
"nonn"
]
| 7 | 0 | 4 | [
"A000045",
"A123744",
"A384079",
"A384080"
]
| null | Clark Kimberling, Jun 01 2025 | 2025-06-27T21:57:00 | oeisdata/seq/A384/A384079.seq | 74080ec7e2777d1a847331777102fcc9 |
A384080 | a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(0), F(1), ..., F(n-1)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661. | [
"0",
"-1",
"0",
"-25",
"-295",
"-43264",
"-5469632",
"-3628008315",
"-3569061677472",
"-13761972434293885",
"-98350155131379362607",
"-2395228216526569309464064",
"-121960521137098218596500559704",
"-19460957348767631231695727354978359",
"-6994735829985160817748505807288716492800"
]
| [
"sign",
"new"
]
| 7 | 1 | 4 | [
"A123744",
"A380661",
"A384079",
"A384080",
"A384313"
]
| null | Clark Kimberling, Jun 19 2025 | 2025-07-02T00:53:55 | oeisdata/seq/A384/A384080.seq | 32163798bf6cb1bd4905b6af1a70407c |
A384081 | Consecutive internal states of a linear congruential pseudo-random number generator for the Hewlett-Packard HP-20S when started at 1. | [
"1",
"997",
"994009",
"1026973",
"3892081",
"404757",
"3542729",
"2100813",
"4510561",
"7029317",
"8229049",
"4361853",
"8767441",
"1138677",
"5260969",
"5186093",
"534721",
"3116837",
"7486489",
"4029533",
"7444401",
"2067797",
"1593609",
"8828173",
"1688481",
"3415557",
"5310329",
"4398013",
"4818961",
"4504117"
]
| [
"nonn",
"easy"
]
| 35 | 1 | 2 | [
"A096550",
"A096561",
"A384081",
"A384568"
]
| null | Sean A. Irvine, May 23 2025 | 2025-06-17T22:36:06 | oeisdata/seq/A384/A384081.seq | 3e164ef24a09ee00550864bb8439d9a1 |
A384082 | Consecutive states of the linear congruential pseudo-random number generator (61*s+323) mod 500 when started at s=1. | [
"1",
"384",
"247",
"390",
"113",
"216",
"499",
"262",
"305",
"428",
"431",
"114",
"277",
"220",
"243",
"146",
"229",
"292",
"135",
"58",
"361",
"344",
"307",
"50",
"373",
"76",
"459",
"322",
"465",
"188",
"291",
"74",
"337",
"380",
"3",
"6",
"189",
"352",
"295",
"318",
"221",
"304",
"367",
"210",
"133",
"436",
"419",
"382",
"125",
"448",
"151",
"34",
"397",
"40"
]
| [
"nonn",
"easy"
]
| 20 | 1 | 2 | [
"A096550",
"A096561",
"A384082"
]
| null | Sean A. Irvine, May 18 2025 | 2025-05-28T20:58:33 | oeisdata/seq/A384/A384082.seq | 3f2b715f78e05e236f2bf462c9e15d26 |
A384083 | Number of paths with length A383980(n) touching all cells in an n X n grid. | [
"1",
"4",
"4",
"8",
"16",
"48",
"24",
"64",
"336"
]
| [
"nonn",
"more",
"hard",
"walk"
]
| 13 | 2 | 2 | [
"A383980",
"A384037",
"A384083"
]
| null | Fülöp Tamás, May 18 2025 | 2025-06-10T22:35:41 | oeisdata/seq/A384/A384083.seq | 35c6c79c1897d4e29bf4131eea5e1dae |
A384084 | Numbers whose prime signatures are self-conjugate. | [
"1",
"2",
"3",
"5",
"7",
"11",
"12",
"13",
"17",
"18",
"19",
"20",
"23",
"28",
"29",
"31",
"36",
"37",
"41",
"43",
"44",
"45",
"47",
"50",
"52",
"53",
"59",
"61",
"63",
"67",
"68",
"71",
"73",
"75",
"76",
"79",
"83",
"89",
"92",
"97",
"98",
"99",
"100",
"101",
"103",
"107",
"109",
"113",
"116",
"117",
"120",
"124",
"127",
"131",
"137",
"139",
"147",
"148",
"149",
"151",
"153"
]
| [
"nonn"
]
| 21 | 1 | 2 | [
"A001222",
"A046523",
"A054753",
"A181825",
"A212166",
"A384084"
]
| null | Hal M. Switkay, May 18 2025 | 2025-05-31T21:53:38 | oeisdata/seq/A384/A384084.seq | 273dcf1ccdf3d7ddc29da87bba213880 |
A384085 | Consecutive states of the linear congruential pseudo-random number generator (40*s+725) mod 729 when started at s=1. | [
"1",
"36",
"707",
"574",
"357",
"425",
"229",
"408",
"278",
"181",
"675",
"23",
"187",
"186",
"146",
"4",
"156",
"404",
"118",
"342",
"554",
"286",
"501",
"353",
"265",
"390",
"287",
"541",
"495",
"113",
"142",
"573",
"317",
"283",
"381",
"656",
"721",
"405",
"158",
"484",
"402",
"38",
"58",
"129",
"53",
"658",
"72",
"689",
"583",
"717",
"245",
"319",
"363",
"665"
]
| [
"nonn",
"easy"
]
| 20 | 1 | 2 | [
"A096550",
"A096561",
"A384085"
]
| null | Sean A. Irvine, May 18 2025 | 2025-05-28T20:58:28 | oeisdata/seq/A384/A384085.seq | 5f8def8bed7966f704f0680e614cef67 |
A384086 | a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^2. | [
"1",
"4",
"72",
"2352",
"112000",
"7023540",
"546991704",
"50923706176",
"5517464159232",
"682067031126660",
"94744306830613000",
"14610279918692775504",
"2476682373835289303424",
"457771369968515293229812",
"91624876032673265663215800",
"19743379886572250897986694400",
"4556982707091255612929249419264"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A129256",
"A350366",
"A350376",
"A351764",
"A384086",
"A384087",
"A384088"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T10:02:45 | oeisdata/seq/A384/A384086.seq | 5a5d7a3f81072e01578b19ff315a7af7 |
A384087 | a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^3. | [
"1",
"6",
"162",
"7848",
"552000",
"51035310",
"5853933666",
"802178739936",
"127879052859648",
"23252775004089990",
"4750089647035004250",
"1077069265550569663416",
"268437124701985949614944",
"72940650531961450912140558",
"21461129870889481564510048050",
"6797577340761206051865208521600",
"2306127185536355501260494657447936"
]
| [
"nonn"
]
| 11 | 0 | 2 | [
"A350366",
"A351764",
"A383862",
"A384012",
"A384086",
"A384087",
"A384088"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T10:03:15 | oeisdata/seq/A384/A384087.seq | dd343dd07dea219c74b283aa6334953f |
A384088 | a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4. | [
"1",
"8",
"288",
"18528",
"1728000",
"211687080",
"32159822688",
"5835397918336",
"1231573968949248",
"296447550279133320",
"80158746419240852000",
"24057027574081163030688",
"7935414295799696292767232",
"2853706409310576479751168168",
"1111199574070700473937862463200",
"465782420445680979210397280524800"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A350366",
"A351764",
"A384031",
"A384060",
"A384086",
"A384087",
"A384088"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T10:03:46 | oeisdata/seq/A384/A384088.seq | 15958f8ace8d2fa72243aef5a278214f |
A384089 | a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^n. | [
"1",
"0",
"1",
"63",
"7206",
"1357300",
"384271700",
"153027592116",
"81648987014364",
"56259916067074896",
"48646018448463951450",
"51584263505394472459750",
"65833976467770842558152992",
"99553004175105699906002335098",
"176031670802373999913671973955080",
"359870756416991348769957239299854000"
]
| [
"nonn"
]
| 11 | 0 | 4 | [
"A342111",
"A351507",
"A384018",
"A384029",
"A384089"
]
| null | Seiichi Manyama, May 19 2025 | 2025-05-19T09:43:52 | oeisdata/seq/A384/A384089.seq | 028c0d9a99b396ce934a779b5e97f214 |
A384090 | Number of ordered pairs in the Bruhat order on B_n. | [
"3",
"33",
"847",
"40249",
"3089459",
"350676009"
]
| [
"nonn",
"more"
]
| 11 | 1 | 1 | [
"A005900",
"A378072",
"A384090"
]
| null | Dmitry I. Ignatov, May 19 2025 | 2025-05-24T00:03:26 | oeisdata/seq/A384/A384090.seq | 18777c04f853d3a52406b8e1c1de00ee |
A384091 | a(n) = [x^n] Product_{k=1..n} (1 + k^2*x)^n. | [
"1",
"1",
"33",
"6968",
"4503078",
"6507545775",
"17683339661956",
"80849884332530600",
"575530003415681613468",
"6023356562522188931288775",
"88682105895482127774508529242",
"1773600518272635675832361778156960",
"46830898160739235037404595987069052560",
"1594447058825655577475889095097916983404652"
]
| [
"nonn"
]
| 7 | 0 | 3 | [
"A001044",
"A351507",
"A384091",
"A384092"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T11:48:57 | oeisdata/seq/A384/A384091.seq | 2d776fbe0e286aeab388abaecdc56c07 |
A384092 | a(n) = [x^n] Product_{k=1..n} 1/(1 - k^2*x)^n. | [
"1",
"1",
"67",
"19316",
"14842986",
"23959995900",
"70300141076691",
"340026368533209120",
"2526875675012579004324",
"27358621384723375076245950",
"414013875603209906596527455633",
"8469874364125222067804767445806552",
"227937197746419681734617268030982470980",
"7887251806534473871432104574423885714752540"
]
| [
"nonn"
]
| 6 | 0 | 3 | [
"A298851",
"A351508",
"A384091",
"A384092"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T11:49:11 | oeisdata/seq/A384/A384092.seq | 1fc139fc5e3d8740eccaffcd252bef21 |
A384093 | a(n) = [x^n] Product_{k=1..n} ((1 + k^2*x)/(1 - k^2*x))^n. | [
"1",
"2",
"200",
"100372",
"141369600",
"429768373550",
"2413602498186776",
"22580623631512230760",
"326908252720653523943424",
"6930499895312478999698799930",
"206129722171946147890239366225000",
"8311703033335976017330775929889992316",
"441845483828200905036741829941273994080000"
]
| [
"nonn"
]
| 6 | 0 | 2 | [
"A351764",
"A384043",
"A384091",
"A384092",
"A384093"
]
| null | Vaclav Kotesovec, May 19 2025 | 2025-05-19T11:49:31 | oeisdata/seq/A384/A384093.seq | e9f2ae69baf1346019971edcc0294463 |
A384094 | Numbers whose square has digit sum 9 and no trailing zero. | [
"3",
"6",
"9",
"12",
"15",
"18",
"21",
"39",
"45",
"48",
"51",
"102",
"105",
"111",
"201",
"249",
"318",
"321",
"348",
"351",
"501",
"549",
"1002",
"1005",
"1011",
"1101",
"1149",
"1761",
"2001",
"4899",
"5001",
"10002",
"10005",
"10011",
"10101",
"10149",
"11001",
"14499",
"20001",
"50001",
"100002",
"100005",
"100011",
"100101",
"101001",
"110001",
"200001",
"375501",
"500001",
"1000002"
]
| [
"nonn",
"base"
]
| 10 | 1 | 1 | [
"A004159",
"A052216",
"A058414",
"A133472",
"A199685",
"A215614",
"A237424",
"A384094"
]
| null | M. F. Hasler, Jun 15 2025 | 2025-06-18T00:50:43 | oeisdata/seq/A384/A384094.seq | 2033c46c7009f351c45e75281d59c8bf |
A384095 | Numbers other than {10^a + 10^b + 1} and {10^a + 5*10^b, min(a, b) = 0} whose square has digit sum 9 and no trailing zero. | [
"9",
"18",
"39",
"45",
"48",
"249",
"318",
"321",
"348",
"351",
"549",
"1149",
"1761",
"4899",
"10149",
"14499",
"375501"
]
| [
"nonn",
"base",
"hard",
"more"
]
| 14 | 1 | 1 | [
"A004159",
"A052216",
"A058414",
"A133472",
"A199685",
"A215614",
"A237424",
"A384094",
"A384095"
]
| null | M. F. Hasler, Jun 15 2025 | 2025-06-19T17:02:58 | oeisdata/seq/A384/A384095.seq | a0c0462307b0d54e432fbe436ea937cb |
A384100 | a(n) is the least positive x such that x^3 + x + n^2 is a perfect square, or 0 if no such x exists. | [
"0",
"72",
"4128",
"8",
"262272",
"1000200",
"44",
"7529928",
"16777728",
"34012872",
"64000800",
"113380872",
"191104128",
"308917128",
"12",
"729001800",
"4",
"1544806728",
"32",
"3010939272",
"4096003200",
"8",
"7256317728",
"9474301128",
"80",
"15625005000",
"19770615072",
"24794917128",
"30840985728",
"38068699272"
]
| [
"nonn"
]
| 29 | 0 | 2 | [
"A384100",
"A384101"
]
| null | M. F. Hasler, May 19 2025 | 2025-05-30T22:41:57 | oeisdata/seq/A384/A384100.seq | 0ed208e71a47b29ddc7db58e9cd1f53a |
A384101 | a(n) is the least positive integer y such that y^2 = x^3 + x + n^2 for some positive integer x, or 0 if no such y exists. | [
"0",
"611",
"265222",
"23",
"134316044",
"1000300015",
"292",
"20662660277",
"68722622488",
"198364959099",
"512009600030",
"1207284678721",
"2641831428132",
"5429539323143",
"44",
"19683072900045",
"18",
"60717129072787",
"182",
"165216338968409",
"262144307200060",
"31",
"618122334258242",
"922190780558053"
]
| [
"nonn"
]
| 24 | 0 | 2 | [
"A384100",
"A384101"
]
| null | M. F. Hasler, May 19 2025 | 2025-05-26T16:16:42 | oeisdata/seq/A384/A384101.seq | 4f9d9055e7e00f0a11b8a3725c851f88 |
A384102 | Least x in absolute value, such that there exists y, |x| >= |y| > 0, such that n = |6xy + x + y|, or 0 if no such x exists. Choose x > 0 if x and -x are both possible. | [
"0",
"0",
"0",
"-1",
"0",
"1",
"0",
"1",
"-2",
"0",
"2",
"0",
"-2",
"-3",
"2",
"3",
"0",
"0",
"-4",
"-2",
"4",
"3",
"0",
"2",
"0",
"5",
"-4",
"2",
"4",
"0",
"-3",
"0",
"0",
"-5",
"3",
"5",
"-3",
"0",
"-8",
"0",
"3",
"-4",
"6",
"-9",
"0",
"4",
"0",
"-3",
"-10",
"-4",
"10",
"0",
"-5",
"3",
"-8",
"11",
"5",
"0",
"-12",
"3",
"12",
"-9",
"-5",
"-6",
"-4",
"13",
"5",
"6",
"-10",
"0",
"4",
"0",
"-4",
"-15",
"-7",
"-6",
"0",
"11",
"4",
"6",
"16",
"-5",
"-12",
"-17",
"12",
"-8",
"0",
"-4",
"-7",
"8",
"18",
"-5",
"7",
"-19",
"0",
"4",
"-9",
"5",
"-6"
]
| [
"sign"
]
| 5 | 1 | 9 | [
"A002822",
"A060461",
"A067611",
"A077800",
"A171696",
"A384102",
"A384103"
]
| null | M. F. Hasler, Jun 20 2025 | 2025-06-25T01:00:30 | oeisdata/seq/A384/A384102.seq | 1cc1bb16249493846bd73bb9df683c07 |
A384103 | a(n) = y with minimum |x| >= |y| > 0, such that n = |6xy + x + y|, or 0 if no such x, y exist. If x and -x are solutions, choose x > 0 > y = -x. | [
"0",
"0",
"0",
"-1",
"0",
"-1",
"0",
"1",
"-1",
"0",
"-1",
"0",
"1",
"-1",
"1",
"-1",
"0",
"0",
"-1",
"-2",
"-1",
"1",
"0",
"-2",
"0",
"-1",
"1",
"2",
"1",
"0",
"-2",
"0",
"0",
"1",
"-2",
"1",
"2",
"0",
"-1",
"0",
"2",
"-2",
"1",
"-1",
"0",
"-2",
"0",
"-3",
"-1",
"2",
"-1",
"0",
"-2",
"-3",
"1",
"-1",
"-2",
"0",
"-1",
"3",
"-1",
"1",
"2",
"-2",
"-3",
"-1",
"2",
"-2",
"1",
"0",
"-3",
"0",
"3",
"-1",
"-2",
"2",
"0",
"1",
"3",
"2",
"-1",
"-3",
"1",
"-1",
"1",
"-2",
"0",
"-4",
"2",
"-2"
]
| [
"sign"
]
| 4 | 1 | 20 | [
"A002822",
"A060461",
"A067611",
"A077800",
"A171696",
"A384102",
"A384103"
]
| null | M. F. Hasler, Jun 20 2025 | 2025-06-25T01:00:06 | oeisdata/seq/A384/A384103.seq | 26be9f6c09545659d3cb0bd7ff09470e |
A384104 | Number of edge-connected components of n faces of the truncated tetrahedron up to the 24 rotations and reflections of the truncated tetrahedron. | [
"1",
"2",
"2",
"4",
"7",
"5",
"4",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 14 | 0 | 2 | [
"A383825",
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104"
]
| null | Peter Kagey, May 19 2025 | 2025-06-10T09:00:56 | oeisdata/seq/A384/A384104.seq | e26db9b3e4e409327171e5f6712f7bbc |
A384105 | Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n. | [
"1",
"1",
"1",
"3",
"4",
"3",
"16",
"36",
"36",
"16",
"218",
"752",
"1104",
"752",
"218",
"9608",
"45960",
"90416",
"90416",
"45960",
"9608",
"1540944",
"9133760",
"22692704",
"30194176",
"22692704",
"9133760",
"1540944",
"882033440",
"6154473664",
"18425858880",
"30679088480",
"30679088480",
"18425858880",
"6154473664",
"882033440"
]
| [
"nonn",
"tabl"
]
| 12 | 0 | 4 | [
"A000273",
"A000595",
"A328874",
"A353996",
"A383617",
"A384105"
]
| null | Peter Dolland, May 19 2025 | 2025-05-21T15:50:17 | oeisdata/seq/A384/A384105.seq | 041471f32e4827c7be689428cd579cda |
A384106 | Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n. | [
"1009736",
"2714690888",
"7334904115448",
"19818905563705976",
"53550675461437475048",
"144693905277386048024168",
"390962878508814502873889816",
"1056203940519850679825934312168",
"2853755704387709706549646191448888",
"7710144396612746633517746345789261976"
]
| [
"nonn",
"changed"
]
| 34 | 1 | 1 | [
"A001235",
"A011541",
"A018850",
"A384106"
]
| null | Jamal Agbanwa, May 19 2025 | 2025-06-30T18:18:35 | oeisdata/seq/A384/A384106.seq | 4d2e68ac2ff805171060257aadc511b0 |
A384107 | Number of connected components of n faces of the icosidodecahedron up to the 120 rotations and reflections of the icosidodecahedron. | [
"1",
"2",
"1",
"3",
"7",
"18",
"49",
"140",
"400",
"1173",
"3398",
"9647",
"26437",
"67979",
"159964",
"334197",
"602603",
"910750",
"1134215",
"1153652",
"963091",
"664159",
"382949",
"185074",
"75612",
"25829",
"7472",
"1766",
"370",
"61",
"12",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 14 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-24T14:46:56 | oeisdata/seq/A384/A384107.seq | 42e531638514ec251f6a22adc171e8c5 |
A384108 | Number of connected components of n faces of the truncated dodecahedron up to the 120 rotations and reflections of the truncated dodecahedron. | [
"1",
"2",
"2",
"7",
"25",
"92",
"380",
"1466",
"5418",
"17823",
"52118",
"132555",
"294285",
"566632",
"950083",
"1384788",
"1760028",
"1948075",
"1881390",
"1581334",
"1157179",
"733548",
"402440",
"189297",
"76312",
"25916",
"7481",
"1767",
"370",
"61",
"12",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 13 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-24T14:47:24 | oeisdata/seq/A384/A384108.seq | 6dc3d9e552393b97b8cf69ea0da8624c |
A384109 | Number of connected components of n faces of the truncated icosahedron up to the 120 rotations and reflections of the truncated icosahedron. | [
"1",
"2",
"2",
"5",
"14",
"41",
"135",
"461",
"1610",
"5564",
"18769",
"59513",
"173692",
"448720",
"993666",
"1820321",
"2700927",
"3225519",
"3146565",
"2555112",
"1761447",
"1041034",
"531851",
"234072",
"88977",
"28779",
"7997",
"1837",
"378",
"62",
"12",
"2",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 13 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-24T05:57:17 | oeisdata/seq/A384/A384109.seq | d9043e20f9d1922dbc325a395fca0667 |
A384110 | Number of connected components of n faces of the rhombicosidodecahedron up to the 120 rotations and reflections of the rhombicosidodecahedron. | [
"1",
"3",
"2",
"6",
"13",
"43",
"125",
"442",
"1498",
"5393",
"19187",
"69186",
"248111",
"888783",
"3159624",
"11137858",
"38773614",
"132891874",
"446478045",
"1463990116",
"4662369227",
"14350218212"
]
| [
"nonn",
"fini",
"more"
]
| 16 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-26T05:50:31 | oeisdata/seq/A384/A384110.seq | 3de161ad704939bedff7ae3e08398c9d |
A384111 | Number of connected components of n faces of the truncated icosidodecahedron up to the 120 rotations and reflections of the truncated icosidodecahedron. | [
"1",
"3",
"3",
"12",
"38",
"167",
"731",
"3504",
"16734",
"81247",
"392387",
"1886246",
"8958474",
"41841440",
"190731843",
"841422704",
"3558291221",
"14287757043"
]
| [
"nonn",
"fini",
"more"
]
| 15 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-26T05:50:05 | oeisdata/seq/A384/A384111.seq | 4086f71556fb496f2868e46be80829ce |
A384112 | Number of connected components of n faces of the snub dodecahedron up to the 60 rotations of the snub dodecahedron. | [
"1",
"3",
"3",
"6",
"19",
"51",
"157",
"465",
"1444",
"4492",
"14236",
"45097",
"143753",
"458400",
"1464997",
"4682469",
"14970906",
"47834908",
"152721958",
"486927066",
"1549733096",
"4920704208",
"15579074400"
]
| [
"nonn",
"fini",
"more"
]
| 15 | 0 | 2 | [
"A384067",
"A384068",
"A384069",
"A384070",
"A384071",
"A384072",
"A384104",
"A384107",
"A384108",
"A384109",
"A384110",
"A384111",
"A384112"
]
| null | Peter Kagey, May 20 2025 | 2025-05-26T05:50:47 | oeisdata/seq/A384/A384112.seq | 935ca24ce0280fe25cf035f5542ed1e6 |
A384113 | Consecutive states of a linear congruential pseudo-random number generator for MacModula-2 when started at 1. | [
"1",
"13",
"169",
"2197",
"829",
"1533",
"1441",
"245",
"874",
"2118",
"2113",
"2048",
"1203",
"1773",
"2250",
"1518",
"1246",
"21",
"273",
"1238",
"2228",
"1232",
"2150",
"218",
"523",
"2177",
"569",
"464",
"1410",
"2153",
"257",
"1030",
"1835",
"745",
"441",
"1111",
"577",
"568",
"451",
"1241",
"2267",
"1739",
"1808",
"394",
"500",
"1878",
"1304"
]
| [
"nonn",
"easy"
]
| 20 | 1 | 2 | [
"A001022",
"A096550",
"A096561",
"A383809",
"A384113"
]
| null | Sean A. Irvine, May 19 2025 | 2025-05-26T06:28:33 | oeisdata/seq/A384/A384113.seq | 28737bd95829ecea113a0756b1eef218 |
A384114 | Consecutive states of the linear congruential pseudo-random number generator (125*s+1) mod 2^12 when started at s=1. | [
"1",
"126",
"3463",
"2796",
"1341",
"3786",
"2211",
"1944",
"1337",
"3286",
"1151",
"516",
"3061",
"1698",
"3355",
"1584",
"1393",
"2094",
"3703",
"28",
"3501",
"3450",
"1171",
"3016",
"169",
"646",
"2927",
"1332",
"2661",
"850",
"3851",
"2144",
"1761",
"3038",
"2919",
"332",
"541",
"2090",
"3203",
"3064",
"2073",
"1078",
"3679",
"1124",
"1237"
]
| [
"nonn",
"easy",
"changed"
]
| 16 | 1 | 2 | [
"A096550",
"A096561",
"A384114"
]
| null | Sean A. Irvine, May 19 2025 | 2025-07-06T17:47:53 | oeisdata/seq/A384/A384114.seq | 5461fcdf03620d6229b75595e67f77d0 |
A384115 | The number of polyforms on the snub square tiling where the adjacent triangles are combined into rhombi. | [
"1",
"2",
"1",
"5",
"10",
"38",
"110",
"400",
"1370",
"5026",
"18249",
"67885"
]
| [
"nonn",
"more"
]
| 10 | 0 | 2 | [
"A309159",
"A384115"
]
| null | Peter Kagey, May 19 2025 | 2025-05-22T00:59:18 | oeisdata/seq/A384/A384115.seq | 9863f9afac56441981ebe1d468ccc7bc |
A384116 | Array read by antidiagonals: T(n,m) is the number of total dominating sets in the n X m rook graph K_n X K_m. | [
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"9",
"4",
"1",
"1",
"11",
"39",
"39",
"11",
"1",
"1",
"26",
"183",
"334",
"183",
"26",
"1",
"1",
"57",
"833",
"3087",
"3087",
"833",
"57",
"1",
"1",
"120",
"3629",
"27472",
"53731",
"27472",
"3629",
"120",
"1",
"1",
"247",
"15291",
"236127",
"922515",
"922515",
"236127",
"15291",
"247",
"1",
"1",
"502",
"63051",
"1975246",
"15524639",
"30844786",
"15524639",
"1975246",
"63051",
"502",
"1"
]
| [
"nonn",
"tabl"
]
| 9 | 0 | 12 | [
"A000012",
"A000295",
"A287063",
"A287274",
"A303208",
"A384116",
"A384117",
"A384118"
]
| null | Andrew Howroyd, May 19 2025 | 2025-05-20T12:52:15 | oeisdata/seq/A384/A384116.seq | 4b501d0097d7e569d173950e13a3b0f1 |
A384117 | Array read by antidiagonals: T(n,m) is the number of minimum total dominating sets in the n X m rook graph K_n X K_m. | [
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"4",
"3",
"1",
"1",
"6",
"3",
"3",
"6",
"1",
"1",
"10",
"4",
"6",
"4",
"10",
"1",
"1",
"15",
"5",
"4",
"4",
"5",
"15",
"1",
"1",
"21",
"6",
"5",
"80",
"5",
"6",
"21",
"1",
"1",
"28",
"7",
"6",
"65",
"65",
"6",
"7",
"28",
"1",
"1",
"36",
"8",
"7",
"96",
"410",
"96",
"7",
"8",
"36",
"1",
"1",
"45",
"9",
"8",
"133",
"306",
"306",
"133",
"8",
"9",
"45",
"1"
]
| [
"nonn",
"tabl"
]
| 11 | 0 | 12 | [
"A000012",
"A000217",
"A303211",
"A384116",
"A384117",
"A384118",
"A384119"
]
| null | Andrew Howroyd, May 19 2025 | 2025-05-20T12:52:11 | oeisdata/seq/A384/A384117.seq | 5d2399a4f193e9d96ceefa7304a109c2 |
A384118 | Array read by antidiagonals: T(n,m) is the number of minimal total dominating sets in the n X m rook graph K_n X K_m. | [
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"4",
"3",
"1",
"1",
"6",
"5",
"5",
"6",
"1",
"1",
"10",
"12",
"51",
"12",
"10",
"1",
"1",
"15",
"37",
"97",
"97",
"37",
"15",
"1",
"1",
"21",
"98",
"218",
"368",
"218",
"98",
"21",
"1",
"1",
"28",
"219",
"519",
"2229",
"2229",
"519",
"219",
"28",
"1",
"1",
"36",
"430",
"1417",
"6232",
"7310",
"6232",
"1417",
"430",
"36",
"1"
]
| [
"nonn",
"tabl"
]
| 6 | 0 | 12 | [
"A290632",
"A347921",
"A384116",
"A384117",
"A384118"
]
| null | Andrew Howroyd, May 19 2025 | 2025-05-20T12:52:07 | oeisdata/seq/A384/A384118.seq | 8338b7f989c4794b65b3e2f13b885c51 |
A384119 | Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"6",
"3",
"1",
"1",
"4",
"9",
"9",
"4",
"1",
"1",
"5",
"16",
"48",
"16",
"5",
"1",
"1",
"6",
"25",
"64",
"64",
"25",
"6",
"1",
"1",
"7",
"36",
"125",
"488",
"125",
"36",
"7",
"1",
"1",
"8",
"49",
"216",
"625",
"625",
"216",
"49",
"8",
"1",
"1",
"9",
"64",
"343",
"1296",
"6130",
"1296",
"343",
"64",
"9",
"1",
"1",
"10",
"81",
"512",
"2401",
"7776",
"7776",
"2401",
"512",
"81",
"10",
"1"
]
| [
"nonn",
"tabl"
]
| 6 | 0 | 8 | [
"A079901",
"A248744",
"A287274",
"A290632",
"A384119"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-20T12:52:02 | oeisdata/seq/A384/A384119.seq | 45ca540def874d7a717bd8e21462a09b |
A384120 | Array read by antidiagonals: T(n,m) is the number of cliques in the n X m rook graph K_n X K_m. | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"8",
"9",
"8",
"1",
"1",
"16",
"18",
"18",
"16",
"1",
"1",
"32",
"35",
"34",
"35",
"32",
"1",
"1",
"64",
"68",
"62",
"62",
"68",
"64",
"1",
"1",
"128",
"133",
"114",
"105",
"114",
"133",
"128",
"1",
"1",
"256",
"262",
"214",
"180",
"180",
"214",
"262",
"256",
"1",
"1",
"512",
"519",
"410",
"319",
"286",
"319",
"410",
"519",
"512",
"1"
]
| [
"nonn",
"tabl",
"easy"
]
| 9 | 0 | 5 | [
"A000012",
"A000079",
"A083706",
"A250770",
"A288958",
"A384120",
"A384121"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-20T19:16:18 | oeisdata/seq/A384/A384120.seq | 93b63e7ef4ca7d65a8282b8ac660ae71 |
A384121 | Array read by antidiagonals: T(n,m) is the number of dominating sets in the n X m rook complement graph. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"9",
"1",
"1",
"1",
"1",
"39",
"39",
"1",
"1",
"1",
"1",
"183",
"421",
"183",
"1",
"1",
"1",
"1",
"833",
"3825",
"3825",
"833",
"1",
"1",
"1",
"1",
"3629",
"32047",
"64727",
"32047",
"3629",
"1",
"1",
"1",
"1",
"15291",
"260355",
"1046425",
"1046425",
"260355",
"15291",
"1",
"1",
"1",
"1",
"63051",
"2092909",
"16771879",
"33548731",
"16771879",
"2092909",
"63051",
"1",
"1"
]
| [
"nonn",
"tabl"
]
| 6 | 0 | 13 | [
"A000012",
"A287063",
"A292073",
"A384120",
"A384121",
"A384122",
"A384123"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-20T19:16:08 | oeisdata/seq/A384/A384121.seq | 1b39a27a7315fecdd0750925e4de7c85 |
A384122 | Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook complement graph. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"4",
"48",
"4",
"1",
"1",
"1",
"1",
"5",
"100",
"100",
"5",
"1",
"1",
"1",
"1",
"6",
"185",
"240",
"185",
"6",
"1",
"1",
"1",
"1",
"7",
"306",
"480",
"480",
"306",
"7",
"1",
"1",
"1",
"1",
"8",
"469",
"840",
"1000",
"840",
"469",
"8",
"1",
"1",
"1",
"1",
"9",
"680",
"1344",
"1800",
"1800",
"1344",
"680",
"9",
"1",
"1"
]
| [
"nonn",
"tabl"
]
| 9 | 0 | 13 | [
"A090197",
"A272871",
"A292074",
"A384121",
"A384122",
"A384123"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-22T16:57:42 | oeisdata/seq/A384/A384122.seq | 2e60ee4bbde5669d354d0a8e414248b4 |
A384123 | Array read by antidiagonals: T(n,m) is the number of minimal dominating sets in the n X m rook complement graph. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"5",
"5",
"1",
"1",
"1",
"1",
"12",
"48",
"12",
"1",
"1",
"1",
"1",
"37",
"121",
"121",
"37",
"1",
"1",
"1",
"1",
"98",
"278",
"320",
"278",
"98",
"1",
"1",
"1",
"1",
"219",
"579",
"729",
"729",
"579",
"219",
"1",
"1",
"1",
"1",
"430",
"1102",
"1480",
"1610",
"1480",
"1102",
"430",
"1",
"1",
"1",
"1",
"767",
"1943",
"2741",
"3161",
"3161",
"2741",
"1943",
"767",
"1",
"1"
]
| [
"nonn",
"tabl"
]
| 10 | 0 | 13 | [
"A000012",
"A289121",
"A291623",
"A384121",
"A384122",
"A384123"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-22T16:57:28 | oeisdata/seq/A384/A384123.seq | 77a3385b25479d9428d5064a9c68fea5 |
A384124 | Array read by antidiagonals: T(n,m) is the number of irredundant sets in the n X m rook complement graph. | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"8",
"9",
"8",
"1",
"1",
"16",
"24",
"24",
"16",
"1",
"1",
"32",
"77",
"94",
"77",
"32",
"1",
"1",
"64",
"178",
"284",
"284",
"178",
"64",
"1",
"1",
"128",
"373",
"624",
"777",
"624",
"373",
"128",
"1",
"1",
"256",
"724",
"1234",
"1620",
"1620",
"1234",
"724",
"256",
"1",
"1",
"512",
"1331",
"2258",
"3049",
"3286",
"3049",
"2258",
"1331",
"512",
"1"
]
| [
"nonn",
"tabl"
]
| 10 | 0 | 5 | [
"A000012",
"A000079",
"A290710",
"A291622",
"A384123",
"A384124"
]
| null | Andrew Howroyd, May 22 2025 | 2025-05-22T16:57:23 | oeisdata/seq/A384/A384124.seq | 39775b4b307f694cebd9a7b46d14114d |
A384125 | Array read by antidiagonals: T(n,m) is the number of edges in the n X m rook graph K_n X K_m. | [
"0",
"1",
"1",
"3",
"4",
"3",
"6",
"9",
"9",
"6",
"10",
"16",
"18",
"16",
"10",
"15",
"25",
"30",
"30",
"25",
"15",
"21",
"36",
"45",
"48",
"45",
"36",
"21",
"28",
"49",
"63",
"70",
"70",
"63",
"49",
"28",
"36",
"64",
"84",
"96",
"100",
"96",
"84",
"64",
"36",
"45",
"81",
"108",
"126",
"135",
"135",
"126",
"108",
"81",
"45",
"55",
"100",
"135",
"160",
"175",
"180",
"175",
"160",
"135",
"100",
"55"
]
| [
"nonn",
"tabl",
"easy"
]
| 12 | 1 | 4 | [
"A000217",
"A000290",
"A003991",
"A045943",
"A045991",
"A054000",
"A067707",
"A269457",
"A360855",
"A384120",
"A384125"
]
| null | Andrew Howroyd, May 20 2025 | 2025-05-23T01:09:30 | oeisdata/seq/A384/A384125.seq | e8e86d64554c6c714ff0d70cfb001427 |
A384126 | Consecutive states of a linear congruential pseudo-random number generator (93*s+1) mod 2^13 when started at s=1. | [
"1",
"94",
"551",
"2092",
"6141",
"5866",
"4867",
"2072",
"4281",
"4918",
"6815",
"3012",
"1589",
"322",
"5371",
"7984",
"5233",
"3342",
"7703",
"3676",
"5997",
"666",
"4595",
"1352",
"2857",
"3558",
"3215",
"4084",
"2981",
"6898",
"2539",
"6752",
"5345",
"5566",
"1543",
"4236",
"733",
"2634",
"7395",
"7800",
"4505",
"1174",
"2687",
"4132",
"7445"
]
| [
"nonn",
"easy"
]
| 20 | 1 | 2 | [
"A096550",
"A096561",
"A384126"
]
| null | Sean A. Irvine, May 19 2025 | 2025-06-13T19:59:37 | oeisdata/seq/A384/A384126.seq | 8a40e62c17e7bb41c0476fbeab62d41b |
A384127 | a(n) is the number of integer quintuples (a,b,c,d,e) satisfying a system of linear inequalities and congruences specified in the comments. | [
"1",
"25",
"226",
"1000",
"3126",
"7877",
"17151",
"33602",
"60751",
"103127",
"166378",
"257402",
"384478",
"557377",
"787503",
"1088004",
"1473903",
"1962229",
"2572128",
"3325004",
"4244630",
"5357279",
"6691855",
"8280004",
"10156255",
"12358131",
"14926280",
"17904606",
"21340380",
"25284381",
"29791007",
"34918406"
]
| [
"nonn",
"easy"
]
| 22 | 0 | 2 | [
"A370349",
"A384127",
"A384295"
]
| null | Jeffery Opoku, May 19 2025 | 2025-06-04T11:52:40 | oeisdata/seq/A384/A384127.seq | 317bc151ee04638ff55ced7eae4123df |
A384128 | Number of iterations for the circular absolute first-difference on decimal digits to reach a repdigit. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"3",
"2",
"3",
"5",
"6",
"5",
"6"
]
| [
"nonn",
"base"
]
| 19 | 1 | 100 | [
"A010785",
"A384128"
]
| null | Pietro Tiaraju Giavarina dos Santos, May 20 2025 | 2025-06-13T21:47:04 | oeisdata/seq/A384/A384128.seq | 1f270e6f2cdbd622f688afb8cce1c09b |
A384129 | Number of permutations of 3*n objects with exactly 2*n cycles. | [
"1",
"3",
"85",
"4536",
"357423",
"37312275",
"4853222764",
"756111184500",
"137272511800831",
"28460103232088385",
"6634460278534540725",
"1717750737160208150400",
"489078062391738506912340",
"151874660255802127280374140",
"51082995429153110239690350120",
"18500755859447038660174079965500"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 2 | [
"A132393",
"A187646",
"A348084",
"A384129"
]
| null | Seiichi Manyama, May 20 2025 | 2025-05-23T03:57:37 | oeisdata/seq/A384/A384129.seq | a2b2fc269d5b392df4783199455a6b1f |
A384130 | Number of permutations of 4*n objects with exactly 3*n cycles. | [
"1",
"6",
"322",
"32670",
"4899622",
"973941900",
"241276443496",
"71603372991150",
"24764667228756390",
"9781650150525639540",
"4344363139637533397580",
"2143082171052546774398348",
"1162585907585797437278546956",
"687872810620417599693839111880",
"440840269604491448260396623711300"
]
| [
"nonn",
"easy"
]
| 26 | 0 | 2 | [
"A132393",
"A187646",
"A242676",
"A383881",
"A383882",
"A384129",
"A384130"
]
| null | Seiichi Manyama, May 20 2025 | 2025-05-23T06:18:23 | oeisdata/seq/A384/A384130.seq | bd41597d816f05dd049c819588f3b61a |
A384131 | Smallest positive number divisible by n that has n letters in US English, or 0 if none exists. | [
"6",
"4",
"40",
"12",
"70",
"56",
"36",
"100",
"33",
"300",
"1000000001",
"406",
"150",
"112",
"170",
"162",
"418",
"11020",
"336",
"528",
"828",
"4800",
"3300",
"1404",
"1620",
"1512",
"1218",
"1770",
"1147",
"1344",
"1353",
"2788",
"3325",
"3888",
"12728",
"13376",
"13338",
"103360",
"22878",
"23478",
"27778",
"101728",
"103725",
"111734",
"111578"
]
| [
"nonn",
"word"
]
| 29 | 3 | 1 | [
"A005589",
"A134629",
"A384131"
]
| null | Jason Bard, May 20 2025 | 2025-05-28T21:29:49 | oeisdata/seq/A384/A384131.seq | 1aa8e1ebaab7076ff38ffd7639ededb5 |
A384132 | Integers k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^3, where 0 < x < y < z < w has no integer solutions. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"15",
"16",
"17",
"19",
"21",
"22",
"25",
"27",
"29",
"47",
"58",
"61",
"71",
"113",
"121"
]
| [
"nonn",
"more"
]
| 18 | 1 | 2 | [
"A003327",
"A383877",
"A384132"
]
| null | Zhining Yang, May 20 2025 | 2025-06-02T16:24:29 | oeisdata/seq/A384/A384132.seq | 8eabfde012649f0bcd317aa03848a723 |
A384133 | Triangle read by rows: T(n,k) is the number of linear intervals of height k in the Tamari lattice Tam_n (0 <= k < n). | [
"1",
"2",
"1",
"5",
"5",
"2",
"14",
"21",
"12",
"2",
"42",
"84",
"56",
"14",
"2",
"132",
"330",
"240",
"72",
"16",
"2",
"429",
"1287",
"990",
"330",
"90",
"18",
"2",
"1430",
"5005",
"4004",
"1430",
"440",
"110",
"20",
"2",
"4862",
"19448",
"16016",
"6006",
"2002",
"572",
"132",
"22",
"2",
"16796",
"75582",
"63648",
"24752",
"8736",
"2730",
"728",
"156",
"24",
"2"
]
| [
"nonn",
"tabl"
]
| 11 | 1 | 2 | [
"A000108",
"A000260",
"A344136",
"A384133"
]
| null | Ludovic Schwob, May 20 2025 | 2025-05-30T01:07:12 | oeisdata/seq/A384/A384133.seq | 49debad3b1e2e640548f5906dff007b2 |
A384134 | Triangle read by rows: T(n,k) is the number of Cauchy-complete categories with n morphisms and k objects. | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"6",
"2",
"1",
"1",
"12",
"9",
"2",
"1",
"2",
"23",
"25",
"10",
"2",
"1",
"1",
"45",
"69",
"35",
"10",
"2",
"1",
"5",
"98",
"178",
"119",
"38",
"10",
"2",
"1",
"2",
"278",
"457",
"371",
"151",
"39",
"10",
"2",
"1"
]
| [
"nonn",
"tabl",
"hard",
"more"
]
| 26 | 1 | 5 | [
"A000001",
"A125697",
"A384066",
"A384134",
"A384135"
]
| null | Elijah Beregovsky, May 20 2025 | 2025-05-31T14:39:13 | oeisdata/seq/A384/A384134.seq | ea2c111a53f88570b1734497bfda0320 |
A384135 | Number of Cauchy-complete categories with n morphisms. | [
"1",
"2",
"4",
"11",
"25",
"63",
"163",
"451",
"1311"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 1 | 2 | [
"A125697",
"A384135"
]
| null | Elijah Beregovsky, May 20 2025 | 2025-05-22T10:53:00 | oeisdata/seq/A384/A384135.seq | dcf24a5d2a791d1ed51efb91082d2298 |
A384136 | a(n) = (3*n)!/(2*n)! * Sum_{k=1..n} 1/(2*n+k). | [
"1",
"11",
"191",
"4578",
"140274",
"5238132",
"230784840",
"11720201616",
"674092013040",
"43310839531680",
"3074579815271040",
"238983481496188800",
"20187063842072319360",
"1841332369689189619200",
"180372122189263722009600",
"18885338733119777188300800",
"2104722524872544008142592000"
]
| [
"nonn"
]
| 9 | 1 | 2 | [
"A098118",
"A383678",
"A384136",
"A384137"
]
| null | Seiichi Manyama, May 20 2025 | 2025-05-20T08:53:42 | oeisdata/seq/A384/A384136.seq | 2b91a53c4919f968e0bfb14addce4d8e |
A384137 | a(n) = (4*n)!/(3*n)! * Sum_{k=1..n} 1/(3*n+k). | [
"1",
"15",
"362",
"12122",
"520024",
"27216936",
"1681732464",
"119823343440",
"9671547654720",
"872215286083200",
"86920331742115200",
"9485402065890543360",
"1124985637517264409600",
"144084905450972444851200",
"19819350850103541715507200",
"2914041773775561429169612800",
"456069533875430113486232985600"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A098118",
"A382349",
"A384136",
"A384137"
]
| null | Seiichi Manyama, May 20 2025 | 2025-05-20T08:53:27 | oeisdata/seq/A384/A384137.seq | 9dc4c1a46f364163a933c39c9b7c8b39 |
A384138 | Decimal expansion of the volume of an elongated pentagonal pyramid with unit edge. | [
"2",
"0",
"2",
"1",
"9",
"8",
"0",
"2",
"3",
"2",
"9",
"8",
"4",
"7",
"9",
"1",
"4",
"9",
"3",
"4",
"4",
"2",
"7",
"2",
"7",
"5",
"4",
"6",
"9",
"1",
"9",
"0",
"7",
"9",
"4",
"4",
"2",
"5",
"5",
"0",
"7",
"3",
"3",
"2",
"6",
"8",
"3",
"2",
"7",
"3",
"4",
"5",
"2",
"3",
"4",
"3",
"8",
"5",
"0",
"4",
"8",
"7",
"5",
"8",
"9",
"1",
"5",
"9",
"7",
"4",
"0",
"3",
"0",
"7",
"7",
"7",
"2",
"0",
"8",
"1",
"0",
"2",
"1",
"4",
"1",
"3",
"7",
"5",
"1",
"7"
]
| [
"nonn",
"cons",
"easy"
]
| 10 | 1 | 1 | [
"A002163",
"A179553",
"A383852",
"A384138",
"A384139",
"A384140"
]
| null | Paolo Xausa, May 20 2025 | 2025-05-22T05:22:40 | oeisdata/seq/A384/A384138.seq | db39fd55789aa983ddbe25202fd9c940 |
A384139 | Decimal expansion of the volume of an elongated triangular bipyramid with unit edge. | [
"6",
"6",
"8",
"7",
"1",
"4",
"9",
"6",
"2",
"2",
"8",
"7",
"7",
"3",
"5",
"1",
"6",
"4",
"8",
"4",
"8",
"8",
"0",
"9",
"7",
"0",
"6",
"0",
"7",
"8",
"0",
"8",
"4",
"4",
"3",
"8",
"1",
"6",
"3",
"9",
"7",
"9",
"9",
"5",
"9",
"3",
"4",
"8",
"7",
"5",
"3",
"1",
"6",
"9",
"2",
"1",
"0",
"0",
"6",
"5",
"0",
"3",
"4",
"5",
"2",
"8",
"1",
"0",
"5",
"3",
"3",
"3",
"9",
"7",
"0",
"8",
"8",
"4",
"5",
"1",
"5",
"7",
"4",
"5",
"3",
"5",
"1",
"1",
"3",
"5"
]
| [
"nonn",
"cons",
"easy"
]
| 8 | 0 | 1 | [
"A010482",
"A165663",
"A383852",
"A384138",
"A384139",
"A384140"
]
| null | Paolo Xausa, May 20 2025 | 2025-05-22T05:22:24 | oeisdata/seq/A384/A384139.seq | ad8c9a47028fd1cff6982f21fac18072 |
A384140 | Decimal expansion of the volume of an elongated pentagonal bipyramid with unit edge. | [
"2",
"3",
"2",
"3",
"4",
"8",
"3",
"0",
"6",
"5",
"3",
"8",
"0",
"6",
"1",
"6",
"0",
"6",
"4",
"1",
"2",
"6",
"4",
"4",
"3",
"1",
"1",
"6",
"4",
"4",
"9",
"5",
"4",
"9",
"2",
"8",
"5",
"6",
"9",
"4",
"0",
"9",
"2",
"3",
"6",
"6",
"6",
"4",
"4",
"4",
"9",
"2",
"1",
"3",
"9",
"5",
"6",
"3",
"0",
"0",
"2",
"8",
"1",
"0",
"8",
"0",
"8",
"0",
"7",
"9",
"0",
"6",
"9",
"3",
"4",
"5",
"4",
"4",
"9",
"9",
"7",
"2",
"9",
"5",
"0",
"3",
"0",
"9",
"1",
"0"
]
| [
"nonn",
"cons",
"easy"
]
| 8 | 1 | 1 | [
"A002163",
"A383852",
"A384138",
"A384139",
"A384140",
"A384141"
]
| null | Paolo Xausa, May 20 2025 | 2025-05-22T05:21:24 | oeisdata/seq/A384/A384140.seq | 31ee9bee0375d113c2112f160d536301 |
A384141 | Decimal expansion of the surface area of an elongated pentagonal bipyramid with unit edge. | [
"9",
"3",
"3",
"0",
"1",
"2",
"7",
"0",
"1",
"8",
"9",
"2",
"2",
"1",
"9",
"3",
"2",
"3",
"3",
"8",
"1",
"8",
"6",
"1",
"5",
"8",
"5",
"3",
"7",
"6",
"4",
"6",
"8",
"0",
"9",
"1",
"7",
"3",
"5",
"7",
"0",
"1",
"3",
"1",
"3",
"4",
"5",
"2",
"5",
"9",
"5",
"1",
"5",
"7",
"0",
"1",
"3",
"9",
"5",
"1",
"7",
"4",
"4",
"8",
"6",
"2",
"9",
"8",
"3",
"2",
"5",
"4",
"2",
"2",
"7",
"2",
"0",
"0",
"0",
"0",
"9",
"2",
"7",
"0",
"2",
"8",
"6",
"5",
"4",
"6"
]
| [
"nonn",
"cons",
"easy"
]
| 9 | 1 | 1 | [
"A002163",
"A120011",
"A384140",
"A384141"
]
| null | Paolo Xausa, May 20 2025 | 2025-05-22T05:19:54 | oeisdata/seq/A384/A384141.seq | 1de1bca8d42b5bd5ca2a7f437a71606d |
A384142 | Decimal expansion of the volume of a gyroelongated square bipyramid with unit edge. | [
"1",
"4",
"2",
"8",
"4",
"0",
"4",
"5",
"0",
"2",
"6",
"2",
"7",
"7",
"4",
"8",
"4",
"0",
"0",
"5",
"2",
"7",
"1",
"4",
"6",
"5",
"4",
"9",
"0",
"7",
"8",
"8",
"6",
"7",
"9",
"2",
"7",
"9",
"8",
"0",
"9",
"0",
"4",
"1",
"6",
"4",
"1",
"8",
"4",
"7",
"7",
"8",
"1",
"6",
"9",
"2",
"7",
"4",
"0",
"4",
"4",
"7",
"1",
"1",
"5",
"5",
"3",
"3",
"4",
"9",
"5",
"5",
"2",
"1",
"9",
"8",
"9",
"4",
"2",
"8",
"9",
"2",
"7",
"8",
"3",
"2",
"7",
"2",
"2",
"9"
]
| [
"nonn",
"cons",
"easy"
]
| 8 | 1 | 2 | [
"A002193",
"A010474",
"A010502",
"A179638",
"A384142"
]
| null | Paolo Xausa, May 22 2025 | 2025-05-23T10:14:24 | oeisdata/seq/A384/A384142.seq | 922f0c5d5bcccf5f12a29f89cc6f94d6 |
A384143 | Decimal expansion of the volume of an elongated triangular cupola with unit edge. | [
"3",
"7",
"7",
"6",
"5",
"8",
"7",
"5",
"1",
"3",
"3",
"3",
"0",
"8",
"9",
"5",
"1",
"4",
"7",
"6",
"2",
"5",
"9",
"1",
"0",
"1",
"1",
"5",
"7",
"6",
"6",
"8",
"9",
"0",
"2",
"8",
"2",
"5",
"5",
"5",
"6",
"0",
"1",
"1",
"1",
"0",
"1",
"9",
"6",
"3",
"6",
"1",
"0",
"0",
"3",
"0",
"6",
"4",
"2",
"7",
"6",
"9",
"1",
"7",
"5",
"0",
"3",
"5",
"0",
"9",
"9",
"2",
"4",
"0",
"8",
"1",
"6",
"2",
"2",
"5",
"8",
"7",
"9",
"9",
"7",
"0",
"4",
"2",
"2",
"2"
]
| [
"nonn",
"cons",
"easy"
]
| 9 | 1 | 1 | [
"A002193",
"A002194",
"A344078",
"A383852",
"A384139",
"A384141",
"A384143"
]
| null | Paolo Xausa, May 22 2025 | 2025-05-23T10:14:16 | oeisdata/seq/A384/A384143.seq | 1a2ac74558819cf17098ff7168264a74 |
A384144 | Decimal expansion of the volume of an elongated pentagonal cupola with unit edge. | [
"1",
"0",
"0",
"1",
"8",
"2",
"5",
"4",
"1",
"6",
"1",
"2",
"7",
"1",
"3",
"2",
"6",
"6",
"3",
"7",
"3",
"6",
"5",
"1",
"7",
"5",
"5",
"5",
"2",
"5",
"7",
"9",
"7",
"9",
"2",
"0",
"5",
"0",
"3",
"1",
"0",
"5",
"0",
"0",
"9",
"3",
"1",
"9",
"1",
"8",
"8",
"3",
"1",
"5",
"5",
"0",
"4",
"4",
"5",
"1",
"5",
"5",
"4",
"5",
"6",
"2",
"1",
"0",
"8",
"3",
"8",
"8",
"3",
"8",
"3",
"2",
"9",
"5",
"9",
"7",
"2",
"2",
"9",
"0",
"7",
"9",
"4",
"2",
"7",
"2"
]
| [
"nonn",
"cons",
"easy"
]
| 9 | 2 | 5 | [
"A010476",
"A010532",
"A179591",
"A384138",
"A384140",
"A384144",
"A384213"
]
| null | Paolo Xausa, May 22 2025 | 2025-05-23T10:14:11 | oeisdata/seq/A384/A384144.seq | 148d99edca7581feaca17407ab1c2ce3 |
A384145 | G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x*A(x)^3) ). | [
"1",
"1",
"2",
"8",
"44",
"298",
"2359",
"21112",
"209175",
"2262121",
"26431042",
"331096188",
"4419824468",
"62565545535",
"935341395343",
"14716294925179",
"242945752432294",
"4197094127399756",
"75698807290515322",
"1422350601250404765",
"27788515730656558613",
"563512508612712699574",
"11841983002490204813514"
]
| [
"nonn"
]
| 21 | 0 | 3 | [
"A110447",
"A162661",
"A384145",
"A384649",
"A384650",
"A384652"
]
| null | Seiichi Manyama, Jun 06 2025 | 2025-06-06T08:36:01 | oeisdata/seq/A384/A384145.seq | f96283a180398c6d07db50c9316976d0 |
A384146 | Smallest squarefree order m > 0 for which there are n nonisomorphic finite groups of order m, or 0 if no such order exists. | [
"1",
"6",
"609",
"30",
"273",
"42",
"903",
"510",
"8729",
"3255",
"494711",
"210",
"16951",
"5115",
"54431",
"1218"
]
| [
"nonn",
"more"
]
| 29 | 1 | 2 | [
"A046057",
"A384146"
]
| null | Robin Jones, May 21 2025 | 2025-05-29T07:31:02 | oeisdata/seq/A384/A384146.seq | 0a3df39628ff5fc313041106de3fd31a |
A384147 | Array A(n,k) = n*(A(n-1,k)+A(n-2,k)+...+A(n-k,k)), where A(n,k) = n if n <= k, read by antidiagonals with n >= 1 and k >= 1. | [
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"8",
"3",
"4",
"1",
"20",
"3",
"4",
"5",
"1",
"56",
"27",
"4",
"5",
"6",
"1",
"152",
"99",
"4",
"5",
"6",
"7",
"1",
"416",
"387",
"64",
"5",
"6",
"7",
"8",
"1",
"1136",
"1539",
"304",
"5",
"6",
"7",
"8",
"9",
"1",
"3104",
"6075",
"1504",
"125",
"6",
"7",
"8",
"9",
"10",
"1",
"8480",
"24003",
"7504",
"725",
"6",
"7",
"8",
"9",
"10",
"11",
"1",
"23168",
"94851",
"37504",
"4325",
"216",
"7",
"8",
"9",
"10",
"11",
"12"
]
| [
"nonn",
"tabl"
]
| 22 | 1 | 3 | [
"A000012",
"A000578",
"A002024",
"A002260",
"A080040",
"A384147"
]
| null | Jason Bard, May 25 2025 | 2025-06-03T19:08:29 | oeisdata/seq/A384/A384147.seq | c1473056b7798abcdadaadddf4d164cc |
A384148 | Numbers k such that (2^k-1)^k == 1 (mod (2^k+1)*k^2) and 2^(k-1) != 1 (mod k). | [
"30457",
"33865",
"80185",
"82621",
"86785",
"104845",
"212401",
"250705"
]
| [
"nonn",
"hard",
"more"
]
| 18 | 1 | 1 | [
"A001567",
"A066488",
"A384148"
]
| null | Thomas Ordowski, May 20 2025 | 2025-05-28T16:20:58 | oeisdata/seq/A384/A384148.seq | f5a6a141ceffde13e8a7704bea20f030 |
A384149 | Irregular triangle T(n, k) in which row n gives the 2-densely-aggregated composition of sigma(n). | [
"1",
"3",
"1",
"3",
"7",
"1",
"5",
"12",
"1",
"7",
"15",
"1",
"3",
"9",
"3",
"15",
"1",
"11",
"28",
"1",
"13",
"3",
"21",
"1",
"8",
"15",
"31",
"1",
"17",
"39",
"1",
"19",
"42",
"1",
"3",
"7",
"21",
"3",
"33",
"1",
"23",
"60",
"1",
"5",
"25",
"3",
"39",
"1",
"3",
"9",
"27",
"56",
"1",
"29",
"72",
"1",
"31",
"63",
"1",
"3",
"11",
"33",
"3",
"51",
"1",
"12",
"35",
"91",
"1",
"37",
"3",
"57",
"1",
"3",
"13",
"39",
"90",
"1",
"41",
"96",
"1",
"43",
"7",
"77",
"1",
"32",
"45"
]
| [
"nonn",
"easy",
"tabf"
]
| 33 | 1 | 2 | [
"A000203",
"A027750",
"A174973",
"A237270",
"A237271",
"A384149"
]
| null | Peter Munn, May 22 2025 | 2025-06-15T17:43:32 | oeisdata/seq/A384/A384149.seq | 08f1c620c1376a050b324bc78db3a2fb |
A384150 | Consecutive states of the linear congruential pseudo-random number generator (10924*s+11830) mod (2^15+1) when started at s=1. | [
"1",
"22754",
"23661",
"2722",
"25475",
"26382",
"5443",
"28196",
"29103",
"8164",
"30917",
"31824",
"10885",
"869",
"1776",
"13606",
"3590",
"4497",
"16327",
"6311",
"7218",
"19048",
"9032",
"9939",
"21769",
"11753",
"12660",
"24490",
"14474",
"15381",
"27211",
"17195",
"18102",
"29932",
"19916",
"20823",
"32653",
"22637",
"23544"
]
| [
"nonn",
"easy"
]
| 59 | 1 | 2 | [
"A096550",
"A096561",
"A384150"
]
| null | Sean A. Irvine, May 21 2025 | 2025-06-17T17:44:46 | oeisdata/seq/A384/A384150.seq | e2bc014873cb9ad4054b8c83724a3587 |
A384151 | Population of elementary triangular automaton rule 122 at generation n, starting from a lone 1 cell at generation 0. | [
"1",
"4",
"9",
"16",
"18",
"30",
"42",
"60",
"54",
"66",
"84",
"126",
"120",
"168",
"204",
"210",
"216",
"234",
"240",
"282",
"300",
"342",
"408",
"450",
"480",
"474",
"540",
"636",
"642",
"750",
"852",
"852",
"870",
"882",
"906",
"948",
"960",
"996",
"1086",
"1098",
"1152",
"1164",
"1236",
"1344",
"1422",
"1530",
"1686",
"1776",
"1800",
"1830",
"1860",
"1968"
]
| [
"nonn"
]
| 8 | 0 | 2 | null | null | Paul Cousin, May 20 2025 | 2025-05-21T01:27:16 | oeisdata/seq/A384/A384151.seq | ad325c8df50fbee8d80fec0c70663135 |
A384152 | Consecutive states of the linear congruential pseudo-random number generator used by OMNITAB II when started at 1. | [
"1",
"125",
"7433",
"3429",
"2641",
"2445",
"2521",
"3829",
"3489",
"1949",
"6057",
"3461",
"6641",
"2733",
"5753",
"6421",
"8001",
"701",
"5705",
"421",
"3473",
"8141",
"1817",
"5941",
"5345",
"4573",
"6377",
"2501",
"1329",
"2285",
"7097",
"2389",
"3713",
"5373",
"8073",
"1509",
"209",
"1549",
"5209",
"3957",
"3105",
"3101",
"2601",
"5637",
"113"
]
| [
"nonn",
"easy",
"changed"
]
| 20 | 1 | 2 | [
"A096550",
"A096561",
"A383809",
"A384113",
"A384126",
"A384152",
"A384971",
"A384973"
]
| null | Sean A. Irvine, May 20 2025 | 2025-07-06T17:47:58 | oeisdata/seq/A384/A384152.seq | 3d0df24b5ac2b85f2f5a0c03f223cda9 |
A384153 | a(n) is the number of binary strings of length n whose shortest run of 1s is of length 1. | [
"0",
"1",
"2",
"4",
"9",
"20",
"43",
"91",
"191",
"398",
"824",
"1697",
"3480",
"7111",
"14487",
"29439",
"59694",
"120820",
"244153",
"492716",
"993171",
"1999923",
"4023679",
"8089182",
"16251760",
"32632321",
"65490672",
"131377999",
"263452079",
"528125695",
"1058395038",
"2120551916",
"4247705401",
"8506995748",
"17034321659"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 3 | [
"A000071",
"A384153",
"A384154"
]
| null | Félix Balado, May 20 2025 | 2025-05-26T20:05:43 | oeisdata/seq/A384/A384153.seq | 08a784bc8c66928b677e8467740b09ac |
A384154 | a(n) is the number of binary strings of length n whose shortest run of 1s is of length 2. | [
"0",
"0",
"1",
"2",
"3",
"5",
"10",
"20",
"38",
"70",
"128",
"234",
"427",
"776",
"1404",
"2531",
"4550",
"8161",
"14608",
"26099",
"46550",
"82901",
"147441",
"261913",
"464759",
"823902",
"1459287",
"2582615",
"4567357",
"8072082",
"14257631",
"25169443",
"44410452",
"78325112",
"138082349",
"243339192",
"428683436",
"754961473"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 4 | [
"A000100",
"A384153",
"A384154"
]
| null | Félix Balado, May 20 2025 | 2025-06-24T16:10:24 | oeisdata/seq/A384/A384154.seq | 4cfbe643e8c3592ce983da2bf5fbbf2b |
A384155 | a(n) is the number of binary strings of length n whose shortest run of 1s is of length 3. | [
"0",
"0",
"0",
"1",
"2",
"3",
"4",
"6",
"11",
"21",
"38",
"65",
"108",
"179",
"299",
"502",
"842",
"1406",
"2337",
"3872",
"6403",
"10575",
"17445",
"28742",
"47293",
"77720",
"127578",
"209210",
"342768",
"561131",
"917910",
"1500476",
"2451158",
"4001723",
"6529439",
"10648199",
"17356589",
"28278426"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 5 | [
"A384153",
"A384154",
"A384155"
]
| null | Félix Balado, May 31 2025 | 2025-06-04T18:42:16 | oeisdata/seq/A384/A384155.seq | 49620a5d6b4354b3de2db4fd5bc39539 |
A384156 | Number of group Schur rings of the cyclic group Z_n. | [
"1",
"1",
"2",
"3",
"3",
"7",
"4",
"10",
"7",
"10",
"34",
"32",
"6",
"13",
"21"
]
| [
"nonn",
"more"
]
| 10 | 1 | 3 | [
"A112951",
"A270785",
"A270786",
"A270787",
"A270789",
"A384156"
]
| null | Joseph E. Marrow, May 20 2025 | 2025-06-07T09:54:24 | oeisdata/seq/A384/A384156.seq | 11cb9c16e5b884a69690a3c8c7be9a0e |
A384157 | Irregular triangle read by rows: T(n,k) is the number of connected induced k-vertex subgraphs of the hyperoctahedral graph of dimension n >= 1 up to automorphisms of the hyperoctahedral graph; 0 <= k <= 2*n. | [
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"3",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"3",
"3",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"4",
"4",
"3",
"3",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"4",
"3",
"3",
"2",
"2",
"1",
"1"
]
| [
"nonn",
"tabf"
]
| 15 | 1 | 12 | [
"A008967",
"A369605",
"A383973",
"A384157"
]
| null | Peter Kagey and Pontus von Brömssen, May 21 2025 | 2025-05-27T01:10:42 | oeisdata/seq/A384/A384157.seq | 9f2f57a8570cda7db16ee3f33b281f14 |
A384158 | Consecutive states of the linear congruential pseudo-random number generator for 16-bit WATFOR/WATFIV when started at 1. | [
"1",
"253",
"31241",
"6885",
"5201",
"5133",
"20697",
"26229",
"16801",
"23581",
"2217",
"3845",
"22513",
"26925",
"29049",
"9365",
"10049",
"19261",
"23369",
"14117",
"32657",
"4685",
"5657",
"22197",
"12513",
"20061",
"29161",
"4933",
"2865",
"3949",
"16057",
"31957",
"24193",
"25981",
"19593",
"9061",
"31441",
"24717",
"27481",
"5877"
]
| [
"nonn",
"easy"
]
| 22 | 1 | 2 | [
"A096550",
"A096561",
"A384158",
"A384159",
"A384160"
]
| null | Sean A. Irvine, May 20 2025 | 2025-05-26T06:32:50 | oeisdata/seq/A384/A384158.seq | ba83519cbd60afd56dcc14d51c281c11 |
A384159 | Consecutive states of the linear congruential pseudo-random number generator for 32-bit WATFOR/WATFIV when started at 1. | [
"1",
"20613",
"424895769",
"938169853",
"404929649",
"1693398709",
"828374025",
"631292077",
"1220159969",
"1976439269",
"430365689",
"2020481117",
"2026879057",
"763630101",
"1799615721",
"1993805069",
"1909315521",
"1935501125",
"533477081",
"1446792893",
"636483633",
"859521397",
"574460361",
"126586221"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A096550",
"A096561",
"A384158",
"A384159",
"A384160"
]
| null | Sean A. Irvine, May 20 2025 | 2025-05-28T16:23:46 | oeisdata/seq/A384/A384159.seq | e407d8a251fb128514552d1734131a19 |
A384160 | Consecutive states of the linear congruential pseudo-random number generator for 36-bit WATFOR/WATFIV when started at 1. | [
"1",
"131069",
"17179082761",
"17183408101",
"34345582673",
"53083917",
"16988766937",
"17848727413",
"32066509217",
"7739650845",
"25740764841",
"33596591109",
"30610037745",
"12186659885",
"12166953849",
"6296898965",
"7334844225",
"19577928253",
"5497393481",
"14152584229",
"20226775953"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A096550",
"A096561",
"A384158",
"A384159",
"A384160"
]
| null | Sean A. Irvine, May 20 2025 | 2025-05-28T16:24:06 | oeisdata/seq/A384/A384160.seq | 270bbbe449568e7a165eac942c8e024c |
A384161 | Sum of next a(n) successive prime cubes is prime. | [
"4",
"7",
"3",
"11",
"13",
"9",
"131",
"9",
"15",
"3",
"31",
"27",
"3",
"13",
"7",
"3",
"31",
"131",
"15",
"17",
"13",
"5",
"21",
"29",
"3",
"33",
"3",
"7",
"11",
"43",
"5",
"41",
"43",
"49",
"27",
"49",
"37",
"85",
"5",
"41",
"3",
"41",
"65",
"51",
"13",
"29",
"65",
"5",
"89",
"3",
"27",
"75",
"3",
"73",
"3",
"3",
"5",
"3",
"23",
"9",
"7",
"3",
"71",
"55",
"35",
"7",
"71",
"71",
"19",
"33",
"15"
]
| [
"nonn"
]
| 24 | 1 | 1 | [
"A030078",
"A073684",
"A383504",
"A384161"
]
| null | Abhiram R Devesh, May 20 2025 | 2025-06-09T21:01:05 | oeisdata/seq/A384/A384161.seq | df0f6ce049eb92cf378d55bfd244a09b |
A384162 | Number of length n words over an n-ary alphabet such that a single letter in every run of letters is marked. | [
"1",
"6",
"45",
"460",
"5945",
"92736",
"1694329",
"35487432",
"838341009",
"22054058290",
"639434542021",
"20260243575936",
"696512594466793",
"25822887652517970",
"1027054229302256625",
"43622499402922710256",
"1970666970910292873249",
"94353519890358073478880",
"4772755056209685781141981"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 2 | [
"A000312",
"A011782",
"A342168",
"A351016",
"A351638",
"A384162"
]
| null | John Tyler Rascoe, May 21 2025 | 2025-05-27T17:55:58 | oeisdata/seq/A384/A384162.seq | 80407582ec42df440f2ce5d7bc5ce630 |
A384163 | a(n) = Product_{k=0..n-1} (2*n+3*k). | [
"1",
"2",
"28",
"648",
"20944",
"869440",
"44089920",
"2641533440",
"182573036800",
"14299419214080",
"1251598943795200",
"121073405444992000",
"12826824167930572800",
"1477015178613438464000",
"183679785389526871244800",
"24533610049517447983104000",
"3502810763000490499317760000",
"532374290389646285405913088000"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 2 | [
"A352601",
"A384163"
]
| null | Seiichi Manyama, May 21 2025 | 2025-05-22T09:39:24 | oeisdata/seq/A384/A384163.seq | 6617195962161bffb6e1a22575504db3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.